Package 'paleomorph'

April 19, 2017
Type Package
Title Geometric Morphometric Tools for Paleobiology
Version 0.1.4
Date 2017-04-19
Author Tim Lucas, Anjali Goswami
Maintainer Tim Lucas timcdlucas@gmail.com
Description Fill missing symmetrical data with mirroring, calculate Procrustes alignments with or without scaling, and compute standard or vector correlation and covariance matrices (congruence coefficients) of 3D landmarks. Tolerates missing data for all analyses.
License MIT + file LICENSE
Imports stats, utils
Suggests knitr, testthat, abind, rgl
LazyData true
URL https://github.com/timcdlucas/paleomorph/
BugReports https://github.com/timcdlucas/paleomorph/issues
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-19 20:15:20 UTC

R topics documented:

countMissing 2
covar 2
dotcorr 3
dotcvm 4
mirrorfill 4
mirrorfill1 5
plotSpecimens 6
procrustes 7
Index 9

Count the number of missing landmarks in an array

Description

Count the number of missing landmarks in an array

Usage

countMissing(A)

Arguments

A An $\mathrm{N} \times 3 \times \mathrm{M}$ array where N is the number of landmarks, 3 is the number of dimensions, and M is the number of specimens.

Value

A length n vector giving the number of missing landmarks for each specimen.

Examples

```
    A <- array(1:(3*6*7), dim = c(7, 3, 6))
    A[2, , 1] <- NA
    countMissing(A)
```

 covar
 Calculate covariance matrix between individual landmark coordinates

Description

Calculate covariance matrix between individual landmark coordinates. Skips any missing values in computation of covariance matrix.

Usage

covar (A)

Arguments

A
An $\mathrm{N} \times 3 \times \mathrm{M}$ array where N is the number of landmarks, 3 is the number of dimensions, and M is the number of specimens.

Details

This function does not guarantee that the returned matrix is positive definite. If the covariance matrix is not positive definite a warning is given and the matrix can be bent to create the closest positive definite matrix with as.matrix(Matrix: :nearPD(mat)\$mat).

Value

$3 \mathrm{~N} x 3 \mathrm{~N}$ covariance matrix

Examples

$\mathrm{A}<-\operatorname{array}(\operatorname{rnorm}(4 * 2 * 3), \operatorname{dim}=c(2,3,4))$
A.cov <- $\operatorname{covar}(\mathrm{A})$

dotcorr

Calculate 3D vector correlation matrix using the congruence coefficient. Skips any missing values in computation of correlation matrix

Description

Calculate 3D vector correlation matrix using the congruence coefficient. Skips any missing values in computation of correlation matrix. Gives an $\mathrm{N} x \mathrm{~N}$ correlation matrix.

Usage

dotcorr(A)

Arguments

A An $\mathrm{N} \times 3 \times \mathrm{M}$ array where N is the number of landmarks, 3 is the number of dimensions, and M is the number of specimens.

Value

Correlation matrix

Examples

```
A <- array(rnorm(4 * 2 * 3), dim = c(2, 3, 4))
A.corr <- dotcorr(A)
```

dotcvm
Calculate $2 d$ or $3 D$ covariance matrix using unscaled congruence co-
efficient. Skips any missing values in computation of covariance ma-
trix

Description

Calculate 2D or 3D covariance matrix using unscaled congruence coefficient. Skips any missing values in computation of covariance matrix

Usage

dotcvm(A)

Arguments

A
An $\mathrm{N} \times \mathrm{D} \times \mathrm{M}$ array where N is the number of landmarks, D is the number of dimensions (2 or 3), and M is the number of specimens.

Details

This function does not guarantee that the returned matrix is positive definite. If the covariance matrix is not positive definite a warning is given and the matrix can be bent to create the closest positive definite matrix with as.matrix(Matrix: :nearPD(mat)\$mat).

Value

$\mathrm{N} x \mathrm{~N}$ covariance matrix

Examples

```
A <- array(rnorm(4* 2 * 3), dim = c(2, 3, 4))
A.cvm <- dotcvm(A)
```

```
mirrorfill
```

Fill missing symmetrical landmarks for all specimens in an array using mirrored values from other side of a bilaterally symmetrical object where present

Description

Given an Nx 3 x M matrix, where N is the number of landmarks, 3 is the number of dimensions, and M is the number of specimens, fill in missing landmarks using their mirrored counterpart.

Usage

mirrorfill(A, l1, l2)

Arguments

A
An $\mathrm{N} \times 3 \times \mathrm{M}$ matrix where N is the number of landmarks, 3 is the number of dimensions, and M is the number of specimens.
Vector of indices for which landmarks to use to make a specimen midline
12 Vector or matrix of pairs of symmetrical landmarks

Details

12 should be either

- An even length vector containing pairs of landmarks on either side of the specimen. i.e. 12[1] and 12 [2] are paired, 12 [3] and $12[4]$ are paired etc.
- A two column matrix with each row giving a pair of symmetrical landmarks.

12 should be an even number length containing pairs of landmarks on either side of the specimen.

Examples

```
# Create array
A <- array(rep(1:36, by = 4), dim = c(12, 3, 4))
# Make it symmetrical
A[7:12, 1:2,] <- A[1:6, 1:2, ]
A[7:12, 3, ] <- -A[1:6, 3, ]
# Remove some data points
missinga <- A
missinga[1:2, , 1:3] <- NA
mirrorA <- mirrorfill(missinga, l1 = c(3:6, 9:12), l2 = c(1, 7, 2, 8))
```

mirrorfill1 Fill missing landmarks for a single specimen using mirrored values
from other side of object

Description

Given an $n \mathrm{x} 3$ matrix, replace a set of landmarks using their mirrored counterpart.

Usage

mirrorfill1(s, l1, l2)

Arguments

s
An $n \times 3$ matrix containing 3D landmark data of n landmarks.
$11 \quad$ Vector of indices for which landmarks to use to make a specimen midline.
12 Vector or matrix of pairs of symmetrical landmarks.

Details

12 should be either

- An even length vector containing pairs of landmarks on either side of the specimen. i.e. 12[1] and 12 [2] are paired, 12 [3] and $12[4]$ are paired etc.
- A two column matrix with each row giving a pair of symmetrical landmarks.

Examples

```
# Make data that is reflected in x plane
s <- matrix(rep(1:21, 2), byrow = TRUE, ncol = 3)
s[1:7, 1] <- -s[1:7, 1]
# Now remove some data
s[1, ] <- NA
# Mirror point 1 using it's complimentary landmark, point 8.
mirrorS <- mirrorfill1(s, l1 = c(2:7, 9:14), l2 = c(1, 8))
```

plotSpecimens

Plot an array of specimen landmark data in an interactive 3D frame

Description

This function requires the rgl package. Given a $N \times 3 \times M$ array (where M is the number of specimens and N is the number of landmarks), as used elsewhere in this package, plot each specimen in a different colour in an intereactive 3D frame.

Usage

plotSpecimens(A, $11=$ NULL, midlineSpecimens $=$ NULL, cols $=$ NULL, bySpecimen = TRUE, planeOptions = NULL, ...)

Arguments

A An N x $3 \times$ M array.
11 Optional vector of indices for which landmarks to use to make a specimen midline. If NULL, no midline plane is plotted.
midlineSpecimens
Numeric vector indicating which specimens should be used to built the midline plane. If NULL, but 11 is defined, all specimens are used.
cols A vector of colours.
bySpecimen Logical that determined whether points should be coloured by specimen (default) or by landmark.
planeOptions Named list of parameters passed to rgl.material to control the appearence of plotted mirror planes.
... Further parameters passed to plot3d.

See Also

```
plot3d mirrorfill planes3d rgl.material
```


Examples

```
A <- array(rep(rnorm(3 * 20, sd = 30), by = 6) + rnorm(6 * 20 * 3),
    dim}=c(20, 3, 6)
plotSpecimens(A)
plotSpecimens(A, bySpecimen = FALSE)
plotSpecimens(A, cols = grey(seq(0, 1, length.out = 6)))
plotSpecimens(A, l1 = c(1:4), planeOptions = list(alpha = 0.4, color = 'red'))
```


procrustes Conducts Procrustes superimposition to align 3D shapes with or with-

 out scaling to centroid size.
Description

Conducts Procrustes superimposition to align 3D shapes with or without scaling to centroid size. Skips any missing values in computation of Procrustes coordinates.

Usage

procrustes(A, scale = TRUE, scaleDelta = FALSE, maxiter = 1000, tolerance $=1 \mathrm{e}-05$)

Arguments

A
$\mathrm{N} \times 3 \times \mathrm{M}$ matrix where N is the number of landmarks, 3 is the number of dimensions, and M is the number of specimens
scale Logical indicating whether objects should be scaled to unit centroid size
scaleDelta Logical determining whether deltaa should be scaled by the total number of landmarks.
maxiter Maximum number of iterations to attempt
tolerance Difference between two iterations that will cause the search to stop.

Details

A number of computations are run until the difference between two iterations is less than tolerance. The more specimens and landmarks you have, the less each landmark is allowed to move before this tolerance is reached. Setting scaleDelta = TRUE will make the alignment run faster but have potentially less well aligned results. But the alignment between a large and small array of shapes should be more comparable with scaleDelta = TRUE. However, preliminary tests imply that run time scales linearly with scaleDel ta set to TRUE or FALSE.

Value

A new ($\mathrm{N} \times 3 \times \mathrm{M}$) array, where each 3d vector has been rotated and translated to minimize distances among specimens, and scaled to unit centroid size if requested.

Examples

```
# Make an array with 6 specimens and 20 landmarks
A <- array(rep(rnorm(6 * 20, sd = 20), each = 6) + rnorm(20 * 3 * 6 ),
    dim = c(20, 3, 6))
# Align the data (although it is already largely aligned)
aligned <- procrustes(A)
plotSpecimens(aligned)
```


Index

```
countMissing, 2
covar, 2
dotcorr, 3
dotcvm,4
mirrorfill,4,7
mirrorfill1,5
planes3d, 7
plot3d,7
plotSpecimens,6
procrustes,7
rgl.material, 6,7
```

