
Set Partitions in R

Robin K. S. Hankin

Auckland University of Technology
Luke J. West

National Oceanography Centre, Southampton

Abstract

This vignette is based on Hankin (2007a).
This short paper introduces a code snippet in the form of an R function that enumerates

all possible partitions of a finite set given the sizes of the equivalence classes. Three
combinatorial problems are solved using the software: one from bioinformatics, one from
scheduling theory, and one from forensic science.

Keywords: Set Partitions, Forensic Science, Enumerative Combinatorics, R.

1. Introduction

A partition of a set S = {1, 2, . . . , n} is a family of sets T1, T2, . . . Tk satisfying

1. Ti ∪ Tj = ∅ if i 6= j

2.
⋃k

i=1 Tk = S

3. Ti 6= ∅ for i = 1, . . . , k.

There are exactly fifteen ways to partition a set of four elements, shown in Table 1 using
standard notation. Here (13)(2)(4) represents the same partition as (2)(4)(31): the induced
equivalence relation is identical. Either one may be represented as 1213, indicating that
elements one and three are in the first equivalence class (“1”), element two in the second, and
element four in the third. In Table 1, two partitions appear in the same column if their ‘shape’
(that is, the size distribution of the equivalence classes, formally defined in Section 2 below) is
the same. The shapes correspond to integer partitions in standard form (Hankin 2005), and
appear in standard order (Andrews 1998). This suggests a natural method for enumerating
the equivalence relations on a set of cardinality n: enumerate the integer partitions of n, and
for each of these, enumerate the distinct equivalence relations of that shape.

(1234) (123)(4) (12)(34) (12)(3)(4) (1)(2)(3)(4)
(124)(3) (13)(24) (13)(2)(4)
(134)(2) (14)(23) (14)(2)(3)
(234)(1) (23)(1)(4)

(24)(1)(3)
(34)(1)(2)

Table 1: The fifteen partitions of a set of four elements



2 Set partitions in R

This paper introduces software that enumerates1 all set partitions of a set of a specified (finite)
size. The new functionality presented here is given by setparts(), an R (R Development Core
Team 2007) wrapper for C++ code, currently part of the partitions package (Hankin 2005,
2007b), version 1.7-3, available under the GPL from CRAN, http://www.r-project.org/.

Function setparts() takes a single argument a, coerced to integer mode. The default case
is that of a being a vector of length greater than one, in which case it returns all partitions
of a set of sum(a) elements into equivalence classes of the sizes of the elements of a; in the
case of a being of length one, it returns all partitions of a set of a elements. If a is a matrix,
it returns all equivalence classes with sizes of the columns of a.

2. Algorithms

In this paper, we present an algorithm that lists all partitions of a given “shape”. Formally,
the shape λ = (λ1, . . . λk) of a partition is given by the sizes of the Ti; these are conventionally
given in standard (i.e. non-increasing) order. Thus λ is an integer partition of n (Hankin
2005), written λ ⊢ n.

The distinct equivalence relations may be enumerated, for a given integer partition, using a
recursive algorithm that operates on partially filled partitions.

Consider an integer partition λ = (λ1, . . . λk), also written
(

1f1 , . . . , nfn

)

; the latter notation

indicates that fi elements of λ are equal to i. The algorithm used here fills the equivalence
classes sequentially from left to right using a technique originally due to Killworth (2007).

The partitions are ordered from largest to smallest; non-empty ties are broken lexicographi-
cally. This prevents the reporting of identical equivalence classes (to see this, consider the two
identical equivalence relations (123)(45)(67)(8) and (123)(67)(45)(8): the second descriptor
does not occur in the algorithm because the third equivalence class precedes the second).

Thus, starting with an empty partition of a given size, one may apply the algorithm detailed
in Figure 1 recursively until each full partition is recorded.

2.1. Performance and complexity

The total number of set partitions corresponding to a particular integer partition λ is given
by elementary combinatorial arguments as

n!
∏k

i=1 λi! · ∏n
j=1 fj !

. (1)

However, the number of integer partitions increases rapidly with n; the exact value is given
by the partition function P(n) of the package (Hankin 2005), but the asymptotic form given
by Hardy and Ramanujan (1918), viz.

P (n) =
eπ

√
2n/3

4n
√

3
·
(

1 + O(n−1)
)

(2)

1The transitive verb “to enumerate” can be used in two senses: firstly, “to calculate the number of”; and
secondly, “to list each occurrence of, as if for the purpose of counting”. This paper adopts the second usage.

http://www.r-project.org/


Robin K. S. Hankin, Luke G. West 3

(...)(..)(..)

(1..)(..)(..)
(2..)(..)(..)
(3..)(..)(..)
(4..)(..)(..)
(5..)(..)(..)
(6..)(..)(..)
(7..)(..)(..)

(34.)(..)(..)
(35.)(..)(..)
(36.)(..)(..)
(37.)(..)(..)

(356)(..)(..)
(357)(..)(..)

(356)(1.)(..)
(356)(2.)(..)
(356)(4.)(..)
(356)(7.)(..)

(356)(21)(..)
(356)(24)(..)
(356)(27)(..)

(356)(21)(4.)
(356)(21)(7.)

(367)(24)(58)

A

A

Figure 1: The algorithm used to enumerate set partitions of a given shape. Unfilled positions
are indicated by a dot. Of the partitions at a given level, the children of one are shown.
The initial empty configuration is filled from left to right from a ‘pool’ of unused elements;
equivalence classes are ordered by size (largest first) and ties are broken lexicographically
at runtime to suppress reporting of identical equivalence relations in which two classes are
transposed. Within a class, the elements of partially- and completely- filled equivalence
classes are ordered in increasing order. A cross indicates an illegal configuration in which
the partially filled class cannot be completed as insufficient elements remain in the pool; the
algorithm prunes such configurations as soon as they are detected. Successful termination of
the algorithm, viz. a filled partition, is indicated by a tick (“check mark”) at which point the
filled equivalence class is reported, and the recursion bottoms out

shows that the rate of growth is rapid. The number of set partitions of a set of size n is given
by the Bell numbers B(n) (Rota 1964), which grow much more rapidly than the partition
function; an asymptotic form was given by Bender (1974):

B(n) = tn−tet−1 (log t)−1/2 · (1 + o(n)) (3)

where t = eW0(n−1/2). Here W0(·) denotes the principal branch of the Lambert W func-
tion (Corless, Gonnet, Hare, Jeffrey, and Knuth 1996), provided with the gsl package (Hankin
2006). Equation 3 is easily evaluated and can be used to give a feel for the magnitude of the
Bell numbers. Note that convergence is quite slow; for example, B(10) = 115975 (compare
about 1.48 × 103 from Equation 3), and B(100) ≃ 4.76 × 10115 (compare 5.43 × 10115).

3. Applications

Many problems in science and industry involve the optimization of some desideratum over
a finite number of options. Such optimization is frequently soluble within the discipline
of computational combinatorics: simply enumerate the possible solutions and choose the
best. One advantage of this method over heuristic optimization techniques such as tabu
search (Glover 1997) is that by enumerating all possible solutions, one is certain to find the
global optimum. In this section we present three examples of setparts() in use: one from
bioinformatics, one from multiprocessor scheduling, and one from forensic science.



4 Set partitions in R

3.1. Bioinformatics

In studies of allelic segregation under disomic inheritance, one situation encountered is that
of enumerating the possible arrangements of alleles on genetic loci2. Rodzen and May (2002)
consider the white sturgeon; there is much uncertainty surrounding the organization of this
species’s genome.

Many alleles of interest may be identified in the genome of the white sturgeon. Sometimes
these are known to be either monosomic or disomic, but it is not known which alleles are colo-
cated, nor which alleles are monosomic and which are disomic. If researchers have identified,
say, five alleles (conventionally labelled 1-5), and further that two pairs of these are colocated
at two disomic loci and one is monosomic, then there are a number of possible arrangements
for these alleles on the chromosome. In the language of the package, we wish to enumerate
the partitions of a set of five elements (the alleles) into equivalence classes of size 2,2,1 (the
loci). The five alleles are arranged into two from one disomic locus, two from another disomic
locus, and one from a monosomic locus.

Enumerating the possible arrangements is accomplished using the setparts() function:

> setparts(c(2,2,1))

[1,] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3

[2,] 2 2 3 1 1 1 2 2 3 2 2 3 1 1 1

[3,] 3 2 2 3 2 2 1 1 1 3 2 2 2 1 2

[4,] 2 3 2 2 3 2 3 2 2 1 1 1 2 2 1

[5,] 1 1 1 2 2 3 2 3 2 2 3 2 1 2 2

Each column comprises two 1s, two 2s, and one 3. Thus the first column, x=12321, say,
indicates that alleles 1 and 5 [which(x==1)] occur at the first locus (which is disomic); alleles 2
and 4 [which(x==2)] at the second (also disomic); and allele 3 [which(x==3)] at the third
locus, which is monosomic. This could be written (15)(24)(3); the R idiom would be

> a <- c(1,2,3,2,1)

> split(seq_along(a),a)

$`1`

[1] 1 5

$`2`

[1] 2 4

$`3`

[1] 3

2A chromosome is a double helix of DNA, typically occurring in matched pairs in cell nuclei. A locus is
an identifiable position on a chromosome pair; a gene is a distinct sequence of DNA base pairs occurring at a
locus; an allele is one of a number of distinguishable forms for a particular gene; the genome is the complete
set of genes present in the chromosomes; a monosomic locus contains two copies of one, and a disomic locus

two different, alleles. Two alleles at the same locus are said to be colocated. A monosomic (disomic) allele is
one that occurs at a monosomic (disomic) locus in a given genome. A gamete is a sequence of alleles chosen
from the genome: monosomic and disomic alleles are chosen with probability 1 and 0.5 respectively.



Robin K. S. Hankin, Luke G. West 5

[use listParts(c(2,2,1)) to see all possible equivalence classes]. Two examples of elec-
trophoresis gels, corresponding to the partitions of the first and last columns respectively, are
shown in figure 2, which is analogous to Figure 1 of Rodzen and May (2002).

1

2

3

4

5

parent gametes

123 134 235 345

1

2

3

4

5

parent gametes

123 125 134 145

Figure 2: Two electrophoresis gels showing the possible bands that can occur with two different
arrangements of alleles. In both gels, two loci are disomic, and one is monosomic. Left, gel
corresponding to (15)(24)(3), or 12321; this would mean that alleles 1 and 5 are at one
disomic locus, alleles 2 and 4 at another, and allele 3 at a monosomic locus. Thus band
combinations 1-5 and 2-4 are absent. The gel on the right corresponds to (1)(24)(35), or
31212

3.2. Scheduling theory

The “augmented multiprocessing model” is an abstract description of a certain class of prob-
lems that occurs frequently in the field of scheduling theory (Garey and Johnson 1975). We
consider a simple variant of the augmented multiprocessing model (specifically, the “three par-
tition problem”, which is known to be NP-complete) and solve it using the software presented
here.

Consider a set of tasks T = {T1, . . . , Tm}; task i requires time τi for its completion in the
sense that if it begins executing at time t it will complete at time t+τi. Each of these tasks is
to be executed by one of n processors. It is desired to allocate the tasks among the processors
so that all tasks are completed in the minimum possible time.

Thus if there are m = 4 tasks with Ti requiring τi = i time units (“seconds”) for completion,
and n = 2 processors, it is clear that allocating tasks 1 and 4 to one processor, and tasks 2
and 3 to the second is optimal. This would correspond to the set partition (14)(23); the time
required is 1 + 4 = 2 + 3 = 5 seconds. Other allocations such as (24)(13) would take longer
(2 + 4 = 6 seconds).

More complex examples are not so straightforward. Consider the case where m = 9 and
again τi = i; now there are n = 3 processors. The possible task schedules may be enumerated
using the restrictedparts() function3 of the partitions package:

> jj <- setparts(restrictedparts(m,n,include.zero=FALSE))

> summary(jj)

[1,] 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1

[2,] 1 1 1 1 1 1 1 1 1 1 ... 2 2 2 2 2 2 2 2 2 2

[3,] 1 1 1 1 1 1 1 1 1 1 ... 3 2 2 2 2 3 3 3 3 3

3Recall that restrictedparts(a,b) enumerates the possible partitions of a into at most b parts.



6 Set partitions in R

[4,] 1 1 1 1 1 1 1 1 1 1 ... 3 3 3 3 2 2 2 2 3 3

[5,] 2 2 2 2 1 1 1 1 1 1 ... 3 3 3 2 3 3 3 2 2 2

[6,] 3 1 1 1 2 2 2 1 1 1 ... 2 3 2 3 3 3 2 3 3 2

[7,] 1 3 1 1 3 1 1 2 2 1 ... 2 2 3 3 3 2 3 3 2 3

[8,] 1 1 3 1 1 3 1 3 1 2 ... 1 1 1 1 1 1 1 1 1 1

[9,] 1 1 1 3 1 1 3 1 3 3 ... 1 1 1 1 1 1 1 1 1 1

Each column corresponds to a task allocation schedule. The first column, for example, indi-
cates that tasks 1,2,3,4,7,8,9 are allocated to processor 1, task 5 to processor 2, and task 6 to
processor 3 and the set partition might be written (1234789)(5)(6). In the matrix, the max-
imum entry of each column is 3, showing that all three processors are always used (setting
include.zero to TRUE would relax this requirement and allow some columns to correspond
to allocations in which only one or two processors are allocated a nonzero number of tasks).

The objective function to be minimized is just the time for the processor which finished last:

> tau <- 1:9

> slowest <- function(x) max(tapply(tau, x, sum))

The minimal objective function is clearly 45/3=15. Identifying allocations that attain this
bound is straightforward:

> time.taken <- apply(jj,2,slowest)

> minimal.time <- sum(tau)/n

> jj[,time.taken == minimal.time]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 1 1 1 1 1 2 1 1

[2,] 1 1 1 1 2 2 1 2 2

[3,] 1 1 2 2 1 1 1 3 3

[4,] 1 2 1 2 1 2 1 3 2

[5,] 1 2 2 1 2 1 2 1 3

[6,] 2 2 3 3 3 1 1 2 1

[7,] 3 3 2 1 1 3 3 2 3

[8,] 3 3 1 2 2 3 3 3 1

[9,] 2 1 3 3 3 2 2 1 2

Thus 9 allocations attain the maximal possible efficiency: a conclusion difficult to achieve
without enumeration. These optima may be differentiated using some secondary character-
istic, such as even distribution of the number of tasks among the processors. This would
prescribe either the eighth or ninth columns, which both allocate three tasks to each proces-
sor.

3.3. Forensic science

In the field of forensic science, one situation sometimes encountered is the following. Crimes Cj ,
where i = 1, . . . , n have been committed; it is desired to infer how many perpetrators are re-
sponsible and which crimes each perpetrator is responsible for. One prominent example would
be multiple unsolved homicides (Roberts 2003).



Robin K. S. Hankin, Luke G. West 7

Evidence at each of the n crime scenes is available in the form of m Bernoulli random variables
that indicate various forensic characteristics at the crime scene (examples might include pres-
ence or absence of a weapon, forced entry, etc). The evidence may be organized in a m-by-n
matrix E of zeroes and ones indicating whether forensic characteristic i was true at crime
scene j, where 1 6 i 6 m and 1 6 j 6 n.

A given row of E thus corresponds to a particular type of evidence; if perpetrator k com-
mitted crime j, we would have Eij = 1 with probability pik, specific to perpetrator k. For
each evidence i, it is assumed that each perpetrator has a pik chosen at random from a
beta distribution with parameters αi, βi for 1 6 i 6 m, and that all perpetrators have the
same αi, βi; these will be known (or at least estimated) from previous studies of similar crimes.
An example is shown below.

crime

evidence C1 C2 C3

E1 0 0 1

E2 0 0 1

E3 0 0 1

E4 1 1 0

E5 1 1 0

Thus in this example there are n = 3 crimes and m = 5 forensic characteristics. Observe
that C1 and C2 have identical evidence, and that C3 has contrary evidence. This would
suggest that there are exactly two perpetrators: one responsible for C1 and C2, and one for
C3, corresponding to partition (12)(3); the hypothesis that this is the case is written H[1,1,2].

Considering a single type of evidence, and a single perpetrator, the probability of observing a
successes and b failures is

Γ(α + β)

Γ(α)Γ(β)

∫ 1

p=0

[

(a + b)!

a!b!
pa(1 − p)b

]

pα−1(1−p)β−1 dp =
(a + b)!

a!b!
· Γ(α + β)

Γ(α)Γ(β)
·Γ(a + α)Γ(b + β)

Γ(a + b + α + β)
.

Here the probability p is integrated over its range, weighted by its prior (the posterior would
also be a beta distribution, with parameters α + a and β + b).

Now consider a set partition ℘ = T1, . . . , Tr of crimes; identify a perpetrator with each
equivalence class of crimes and observe that a single perpetrator has m specific values of pi,
1 6 i 6 m and acts independently of other perpetrators. The likelihood of ℘ is then

L(℘) = C

(

Γ(α + β)

Γ(α)Γ(β)

)r

·
r

∏

k=1

m
∏

i=1

Γ(aik + αi)Γ(bik + βi)

Γ(aik + bik + αi + βi)

where aik =
∑

j∈Tk
Eij and bik =

∑

j∈Tk
1 − Eij are the total successes and failures for

evidence i due to perpetrator k (under H℘). Here C denotes an arbitrary multiplicative
constant.

It is interesting to note that the case α = β = 1 is not uninformative in this context, even
though this induces a uniform prior distribution on p. To see this, consider the first line of
the five by three matrix above [0,0,1].



8 Set partitions in R

The likelihood function for this row is on five partitions:

L(H[1,1,1]) =
Γ(α + 1)Γ(β + 2)

Γ(α + β + 3)
·
(

Γ(α + β)

Γ(α)Γ(β)

)1

L(H[1,2,1]) =
Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
· Γ(α)Γ(β + 1)

Γ(α + β + 1)
·
(

Γ(α + β)

Γ(α)Γ(β)

)2

L(H[1,1,2]) =
Γ(α)Γ(β + 2)

Γ(α + β + 2)
· Γ(α + 1)Γ(β)

Γ(α + β + 1)
·
(

Γ(α + β)

Γ(α)Γ(β)

)2

L(H[2,1,1]) =
Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
· Γ(α)Γ(β + 1)

Γ(α + β + 1)
·
(

Γ(α + β)

Γ(α)Γ(β)

)2

L(H[1,2,3]) =
Γ(α)Γ(β + 1)

Γ(α + β + 1)
· Γ(α)Γ(β + 1)

Γ(α + β + 1)
· Γ(α + 1)Γ(β)

Γ(α + β + 1)
·
(

Γ(α + β)

Γ(α)Γ(β)

)3

.

Thus if α = β = 1 the likelihood function is

L(H[1,1,1]) = C/12

L(H[1,2,1]) = C/12

L(H[1,1,2]) = C/6

L(H[2,1,1]) = C/12

L(H[1,2,3]) = C/8

so the highest likelihood is indeed that of H[1,1,2]. It is also instructive to assume α = β and
consider the limit as α −→ 0. This would correspond to perpetrators having either a very
small p, or p close to 1, intermediate values being rare. To first order in α:

L(H[1,1,1]) = C · α/4

L(H[1,2,1]) = C · α/4

L(H[1,1,2]) = C · (1 − α)/4

L(H[2,1,1]) = C · α/4

L(H[1,2,3]) = C · 1/8

so the maximum likelihood partition would again be H[1,1,2]; but one would not be able to
reject the hypothesis that there are three distinct perpetrators (that is, H[1,2,3]) at the two
units of support level.

As a final example, consider the case where α = β and α −→ ∞. This corresponds to each
perpetrator leaving positive evidence with probability 1

2 . The five likelihoods all tend to the
same limit.

Generalization to arbitrary factors

These ideas have a natural generalization to arbitrary factors. The beta distribution becomes
a Dirichlet distribution and the posterior probability becomes

(
∑

al)!
∏

al!

Γ (
∑

αl)
∏

Γ (αl)

∏

Γ (al + αl)

Γ (
∑

al +
∑

αl)



Robin K. S. Hankin, Luke G. West 9

where outcome l is observed with frequency al and the corresponding prior distributions are
Dirichlet with parameters αi = (αi1, . . . , αiu). The likelihood is then

L(℘) = C
n

∏

i=1

[

(

Γ (
∑

l αil)
∏

l Γ (αil)

)r r
∏

k=1

∏

l Γ (aikl + αil)

Γ (
∑

l (aikl + αil))

]

(4)

where aikl is the frequency of outcome l for evidence i and perpetrator k, under H℘.

Example Consider a case where seven crimes have been committed; there are five forensic
characteristics. The evidence matrix is as follows:

crime

evidence C1 C2 C3 C4 C5 C6 C7

E1 2 1 2 2 2 2 1

E2 2 2 1 1 1 1 2

E3 4 1 4 4 4 4 1

E4 4 1 2 2 4 2 1

E5 3 2 1 4 1 1 2

Each column corresponds to a crime and each row corresponds to a forensic characteristic.
Rows 1 and 2 are Bernoulli: each is either 1 or 2. Rows 3-5 are Dirichlet with four possible
outcomes. In this case, it is assumed that the prior is uniform, viz α1 = α2 = 1 for rows 1
and 2 and α1 = α2 = α3 = α4 = 1 for rows 3-5.

Figure 3 shows the likelihood and support for each of the distinct set partitions on a set of six
elements: variable support is from Equation 4. The maximum likelihood estimator is given
by

> sp <- setparts(7)

> sp[,which.max(support)]

[1] 3 2 1 1 1 1 2

which could be written (3456)(27)(1). This suggests that crimes 3-6 were committed by the
same perpetrator, crimes 2 and 7 by another perpetrator, and crime 1 by a third perpetrator.
Note that the maximum likelihood hypothesis is unique.

The likelihood function may be used to identify those hypotheses that cannot be rejected on
the grounds of insufficient support. There are 9 partitions that have fewer than two units of
support less than the maximum. These are:

> sp[, support > -2]

partition

crime H1 H2 H3 H4 H5 H6 H7 H8 H9

C1 3 1 2 2 3 3 1 2 2

C2 2 2 3 2 2 2 2 3 3



10 Set partitions in R

0 200 600

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hypothesis

lik
e

lih
o

o
d

0 200 600

−
1

0
−

8
−

6
−

4
−

2
0

hypothesis

s
u

p
p

o
rt

Figure 3: The likelihood (left) and support (right) for each of the 877 partitions on a set of
seven elements. The horizontal line shows two units of support less than the maximum



Robin K. S. Hankin, Luke G. West 11

C3 1 1 1 1 1 1 1 1 1

C4 1 1 1 1 1 4 3 2 1

C5 1 1 2 1 4 1 1 1 1

C6 1 1 1 1 1 1 1 1 1

C7 2 2 3 2 2 2 2 3 4

and the supports for these hypotheses are

> support[support > -2]

[1] 0.0000000 -0.3646431 -1.1469859 -1.5040774 -1.7460665

[6] -1.7460665 -1.7917595 -1.8401331 -1.9853750

respectively.

Interpretation of this result is not straightforward. One may assert that crimes C3 and C6 were
committed by the same perpetrator, and that certain pairs of crimes (specifically C2-C3, C2-
C4, C2-C5, C2-C6, C3-C7, C4-C7, C5-C7, and C6-C7) were committed by different perpetrators:
for any hypothesis that does not satisfy these criteria, one could gain at least two units
of support by adopting instead the best supported hypothesis H[3,2,1,1,1,1,2], corresponding
to (3456)(27)(1).

4. Note: a gotcha

Note carefully that setparts(c(2,1,1)) does not enumerate the ways of placing four num-
bered balls in three labelled boxes of capacities 2,1,1. This is because there are two boxes of
capacity 1, and swapping the balls between these boxes gives a different box partition but
the same set partition (because sets are unordered).

> setparts(c(2,1,1))

[1,] 1 1 1 2 2 2

[2,] 2 1 2 1 1 3

[3,] 3 2 1 3 1 1

[4,] 1 3 3 1 3 1

Note the absence of a column reading 1 1 3 2. This would correspond to placing balls 1 and
2 in box 1 (of size 2), ball 3 in box 3 (of size 1) and ball 4 in box 2 (also of size 1). The
missing column is because the two boxes of size 1 are indistinguishable, so 1 1 3 2 is the
same set partition as 1 1 2 3, as in each case balls 3 and 4 are placed in “a box of size 1”.

If you want to enumerate the ways of choosing two workers, a secretary and a chair from four
people (who are conveniently numbered 1,2,3,4), use multinomial():

> multinomial(c(worker=2,secretary=1,chair=1))



12 Set partitions in R

worker 1 1 1 1 1 1 2 2 3 2 2 3

worker 2 2 3 4 3 4 3 4 4 3 4 4

secretary 3 4 2 2 4 3 1 1 1 4 3 2

chair 4 3 4 3 2 2 4 3 2 1 1 1

Above, see how the rows are named for their equivalence class. The first two columns differ
only in the identity of the secretary and the chair (and would be identical set partitions as
given by setparts(c(2,1,1))). The reason I mention this is to avoid the following gotcha
(which looks plausible but is incorrect):

> v <- c(worker=2,secretary=1,chair=1)

> a <- apply(setparts(v),2,order)

> rownames(a) <- rep(names(v),v)

> as.partition(a)

worker 1 1 1 2 2 3

worker 4 2 3 4 3 4

secretary 2 3 2 1 1 1

chair 3 4 4 3 4 2

The above is an incomplete enumeration. We see 1,4,2,3 [which would correspond to set
partition 1,2,3,1] but not 1,4,3,2 [which would correspond to set partition 1,3,2,1]. These two
differ in that the secretary and chair have swapped roles.

5. Conclusions

Enumeration of set partitions is required in several branches of computational combinatorics.

The software discussed in this code snippet enumerates set partitions for finite sets, under a
variety of restrictions on the sizes of the induced equivalence classes and was used to solve
three problems drawn from diverse applications in computational statistics.

Acknowledgement

We would like to acknowledge the many stimulating and insightful comments made on the
R-help list while preparing this software.

References

Andrews GE (1998). The Theory Of Partitions. Cambridge University Press.

Bender EA (1974). “Asymptotic Methods in Enumeration.” SIAM Review, 16(4), 485.

Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996). “On the Lambert W
Function.” Advances in Computational Mathematics, 5, 329–359.



Robin K. S. Hankin, Luke G. West 13

Garey MR, Johnson DS (1975). “Complexity Results for Multiprocessor Scheduling Under
Resource Constraints.” SIAM Journal of Computing, 4(4), 397–411.

Glover F (1997). Tabu Search. Kluwer Academic.

Hankin RKS (2005). “Additive integer partitions in R.” Journal of Statistical Software, Code

Snippets, 16(1).

Hankin RKS (2006). “Special Functions in R: Introducing the gsl Package.” R News, 6(4),
24–26. URL https://CRAN.R-project.org/doc/Rnews/.

Hankin RKS (2007a). “Set partitions in R.” Journal of Statistical Software, Code Snippets,
23(2).

Hankin RKS (2007b). “Urn sampling without replacement: enumerative combinatorics in R.”
Journal of Statistical Software, Code Snippets, 17(1).

Hardy GH, Ramanujan S (1918). “Asymptotic Formulæ in Combinatorial Analysis.” Pro-

ceedings of the London Mathematical Society, 17, 75–115. Series 2.

Killworth P (2007). Personal Communication.

R Development Core Team (2007). R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
https://www.R-project.org.

Roberts AR (2003). Critical Issues in Crime and Justice. Sage Publications.

Rodzen JA, May B (2002). “Inheritance of Microsatellite Loci in the White Sturgeon
(Acipenser Transmontanus).” Genome, 45, 1064–1076.

Rota GC (1964). “The Number of Partitions of a Set.” The American Mathematical Monthly,
71(5), 498–504.

Affiliation:

Robin K. S. Hankin
Auckland University of Technology
AUT Tower
Wakefield Street
Auckland, New Zealand
E-mail: hankin.robin@gmail.com

Luke J. West
National Oceanography Centre, Southampton
European Way
Southampton SO14 3ZH
United Kingdom

https://CRAN.R-project.org/doc/Rnews/
https://www.R-project.org
mailto:hankin.robin@gmail.com

	Introduction
	Algorithms
	Performance and complexity

	Applications
	Bioinformatics
	Scheduling theory
	Forensic science
	Generalization to arbitrary factors


	Note: a gotcha
	Conclusions

