
Package ‘pathmapping’
March 22, 2017

Type Package

Title Compute Deviation and Correspondence Between Spatial Paths

Version 1.0.2

Date 2017-03-22

Author Shane T. Mueller & Brandon S. Perelman

Maintainer Shane T. Mueller <shanem@mtu.edu>

Description Functions to compute and display the area-based deviation between spa-
tial paths and to compute a mapping based on minimizing area and distance-based cost. For de-
tails, see: Mueller, S. T., Perelman, B. S., & Veinott, E. S. (2016) <DOI:10.3758/s13428-015-
0562-7>.

License GPL-2

URL https://sites.google.com/a/mtu.edu/mapping/,

https://github.com/stmueller/pathmapping/

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-03-22 16:41:16 UTC

R topics documented:
pathmapping-package . 2
ClosestPoint . 3
connected . 4
Cost . 5
CreateMap . 6
DistancePointSegment . 11
even . 12
GetMinMap . 13
InsertIntersections . 14
IntersectPoint . 15
ldist . 16
LineMagnitude . 16

1

https://sites.google.com/a/mtu.edu/mapping/
https://github.com/stmueller/pathmapping/

2 pathmapping-package

linesIntersect . 17
LinkCost . 17
livenodes . 18
LLbeta . 18
LLKscore . 19
odd . 19
PathDist . 20
PathOverlap . 20
PlotGrid . 21
PlotMap . 22
SimplifyPath . 23
SummarizeMapping . 24
surveyors . 25

Index 27

pathmapping-package Compute Deviation and Correspondence Between Spatial Paths

Description

Functions to compute and display the area-based deviation between spatial paths and to compute
a mapping based on minimizing area and distance-based cost. For details, see: "Mueller, S. T.,
Perelman, B. S., & Veinott, E. S. (2016). An optimization approach for mapping and measuring the
divergence and correspondence between paths. Behavior research methods, 48(1), 53-71."

Details

Package: pathmapping
Type: Package
Version: 1.0.1
Date: 2016-03-15
License: GPL 2.0

Computing the least-area mapping between paths.

Author(s)

Shane T. Mueller and Brandon Perelman

Maintainer: Shane T. Mueller <shanem@mtu.edu>

References

See Mueller et al., (2016).
https://sites.google.com/a/mtu.edu/mapping/

https://sites.google.com/a/mtu.edu/mapping/

ClosestPoint 3

ClosestPoint Find Closest Point

Description

Find the the point on a line segment (x1,y1) (x2,y2) that is closest to point (px,py).

Usage

ClosestPoint(px, py, x1, y1, x2, y2)

Arguments

px x coordinate of point

py y coordinate of point

x1 x coordinate of one end of a segment

y1 y coordinate of one end of a segment

x2 x coordenite of other end of a segment

y2 y coordinate of other end of a segment

Details

This function finds the the point on a line segment (x1,y1) (x2,y2) that is closest to point (px,py).
If the line perpendicular to the line segment does not intersect the segment, the function will re-
turn an end point of the segment, otherwise, it will return a point on the line segment where the
perpendicular line intersects the segment.

Value

a point-pair (x,y)

Note

Uses LineMagnitude, also supplied by the pathmapping package.

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

See Also

LineMagnitude, DistancePointSegment

https://sites.google.com/a/mtu.edu/mapping/

4 connected

Examples

ClosestPoint(1,10,2,0,5,0) #returns end point 2 0
ClosestPoint(20,10,2,0,5,0) #returns other end point 5 0
ClosestPoint(4.5,10,2,0,5,0) #returns closest point 4.5 0

connected Determine whether two nodes are connected.

Description

Determines whether two nodes in the planar graph describing the mapping between two adjacent
node-node mappings. That is, given a two correspondences between a nodes on two paths, it de-
termines whether there is a legal transition between them. This can be seen as two elements of the
mapping matrix, each specified by a row and column.

Usage

connected(r1, c1, r2, c2)

Arguments

r1 row of first node

c1 column of first node

r2 row of second node

c2 column of second node.

Details

r1,c1 should specify a node to the left/above r2,c2. The outcome depends on whether r,c is a node
or segment on the path. Point-point mappings can transition to the next point-segment mappings,
or the next point-point segment.

Value

returns T or F

Note

The outcome of this does not depend on the actual paths–it is simply a logical computation based
on transitions between points and segments.

Author(s)

Shane T. Mueller and Brandon Perelman

Cost 5

References

See Mueller et al., 2016 https://sites.google.com/a/mtu.edu/mapping/

Examples

connected(3,5,2,4)
connected(3,3,1,1)

Cost Compute area-based cost

Description

This function computes an area associated with a transition between two correspondences on two
paths. A number of cost functions can be specified, but the most reasonable are Cost.quadratic (the
default) and Cost.area. other cost functions are not robust to choices of segmentation.

Usage

Cost(xy1, xy2, i, j, pi, pj, opposite, costfn)

Arguments

xy1 A path of x,y coordinates (a matrix in two columns)

xy2 A second path of x,y coordinates (a matrix in two columns)

i Index of Node i of path xy1

j Index of Node j of path xy2

pi Index of node previous to node i on path xy1

pj Index of node previous to node j on path xy2

opposite matrix specifying whether points on one path are ’opposite’ points on another
path, and if so the proportion between the two points where the orthogonal line
falls.

costfn Specify a cost function to use. By default, Cost.quadratic is used, although
Cost.area is also reasonable. Other cost functions are provided but may be sen-
sitive to segmentation.

Details

This is the basic cost function for a transition between nodes. This function does not need to be
used directly, but is called repeatedly by CreateMap

Value

returns a floating-point value descibing the area defined by the the two path transitions provided the
transitions are legal (according to connected. Otherwise, it will return Inf.

https://sites.google.com/a/mtu.edu/mapping/

6 CreateMap

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

CreateMap Create a mapping between paths

Description

Given two paths, this creates a mapping that minimizes the

Usage

CreateMap(xy1.1, xy2.1, plotgrid = F,costfn=Cost.area,
nondecreasingos = F, verbose = F, insertopposites = T)

Arguments

xy1.1 The first path (a matrix of x,y points).

xy2.1 The second path (a matrix of x,y points).

plotgrid T/F variable; should the lattice grid be plotted? Defaults to F

costfn Cost function to use to measure deviation between path segments.
nondecreasingos

T/F variable; defaults to F. If T, forces multiple consecutive mappings of points
on one map to a single segment on the second map be monotonic. This will not
necessarily find the optimal mapping; to do this, you must set insertopposites=T.

verbose T/F; Whether to print out intermediate status information.
insertopposites

T/F; defaults to T. If T, it will insert points on each path when they are oppo-
site a point on the other graph. This allows for an optimal monotonic mapping
between paths, at the cost of (possibly substantial) efficiency cost.

Details

This finds the minimum-area mapping between two paths. It also produces a candidate minimum-
area mapping.

Value

returns a mapping object

https://sites.google.com/a/mtu.edu/mapping/

CreateMap 7

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

See Also

GetMinMap

Examples

##################################
Example from appendix of Mueller, Perelman, & Veinott:

pathA <- rbind(c(0,0),c(5,0),c(10,0))
pathB <- rbind(c(1,1),c(2,-1),c(3,4),c(5,1),c(10,-3))
answer<- CreateMap(pathA,pathB,FALSE)
PlotMap(answer)
answer2 <- GetMinMap(answer)
PlotMap(answer2)

Not run:
##################################
##Here is an example of two diagonal paths, a fixed number
##of units apart look at how different equivalent paths produce
different mappings, but the same area

test2.a <- cbind(1:10*10,1:10*10)
test2.b <- cbind(1:10*10+10,1:10*10)

test2.outa <- CreateMap(test2.a,test2.b,FALSE)
test2.outb <- CreateMap(test2.b,test2.a,FALSE)
test2.outc <- CreateMap((test2.a[10:1,]),(test2.b[10:1,]),FALSE)
test2.outd <- CreateMap((test2.b[10:1,]),(test2.a[10:1,]),FALSE)

par(mfrow=c(2,2))
PlotMap(test2.outa)
PlotMap(test2.outb)
PlotMap(test2.outc)
PlotMap(test2.outd)

##################################
##Now, get the 'minimum-distance' mapping among these:

test2.mapa <- GetMinMap(test2.outa)
test2.mapb <- GetMinMap(test2.outb)

https://sites.google.com/a/mtu.edu/mapping/

8 CreateMap

test2.mapc <- GetMinMap(test2.outc)
test2.mapd <- GetMinMap(test2.outd)

par(mfrow=c(2,2))
PlotMap(test2.mapa)
PlotMap(test2.mapb)
PlotMap(test2.mapc)
PlotMap(test2.mapd)

##################################
Example: a loop and itself

test3.a <- rbind(c(102, 100),
c(120, 109), c(133, 124),
c(146, 138), c(158, 155),
c(174, 166), c(194, 170),
c(213, 173), c(233, 176),
c(251, 169), c(260, 151),
c(255, 132), c(245, 115),
c(235, 98), c(223, 82),
c(212, 65), c(194, 58),
c(175, 65), c(166, 82),
c(169, 101), c(300,101))

test3.b <- test3.a

test3.out <- CreateMap(test3.a,test3.b)
PlotMap(test3.out)

##
##Example: A loop with an offset version of itself

test4.a <- test3.a
test4.b <- test3.a + 20
test4.out <- CreateMap(test4.a,test4.b,plotgrid=FALSE)
par(mfrow=c(1,2))
PlotMap(test4.out)
PlotMap(GetMinMap(test4.out))

#######################################
Example: a gentle curve, and a line.
test5.a <- cbind((-10):10*10,exp(-(-10:10*10)^2/500))
test5.b <- cbind(-10:10*10,-.5)
test5.a2 <- test5.a[21:1,]
test5.b2 <- test5.b[21:1,]

test5.out <- CreateMap(test5.b,test5.a,FALSE)
test5.outb <-CreateMap(test5.b2,test5.a2,FALSE)
par(mfrow=c(2,2))
PlotMap(test5.out)
PlotMap(test5.outb)

CreateMap 9

PlotMap(GetMinMap(test5.out))
PlotMap(GetMinMap(test5.outb))

Note: the curved path gets 'shadow' opposite points inserted, and so
##the MinMap is a bit off. In this case, we shouldn't need to insert
##opposites, so we can turn it off:

test5.out <- CreateMap(test5.b,test5.a,plotgrid=FALSE,insertopposites=FALSE)
test5.outb <-CreateMap(test5.b2,test5.a2,plotgrid=FALSE,insertopposites=FALSE)
par(mfrow=c(2,2))
PlotMap(test5.out)
PlotMap(test5.outb)

PlotMap(GetMinMap(test5.out))
PlotMap(GetMinMap(test5.outb))

#######################################
##Cut off one part:
test5.b2<- test5.b[c(1,5,21),]
test5.out2 <- CreateMap(test5.a,test5.b2,FALSE)

PlotMap(test5.out2)
PlotMap(GetMinMap(test5.out2))

######################################
Example: a path with a bump. Note that
if we don't allow mapping points onto segments
the area goes outside the polygon.

test6.a <- rbind(c(0,0),c(1,0),c(10,0))
test6.b <- rbind(c(0,1),c(4,1),c(5,9),c(6,1),c(10,1))

##true area should be 1x10 + 2*8/2 = 18.
test6.out <- CreateMap(test6.a,test6.b,FALSE)
PlotMap(test6.out)
PlotMap(GetMinMap(test6.out))

#######################################
Example: to lines, one with a bump
test7.a <- rbind(c(1,0),c(2,-1),c(3,0),c(4,0),c(5,0),c(6,0))
test7.b <- rbind(c(1,1),c(2,1),c(3,1),c(4,1),c(5,1),c(6,1))

test7.out <- CreateMap(test7.a,test7.b,FALSE)
test7.outr <- CreateMap(test7.b,test7.a,FALSE)

test7.outmin <- GetMinMap(test7.out)

par(mfrow=c(3,1),mar=c(3,2,2,0))
PlotMap(test7.out)

10 CreateMap

PlotMap(test7.outr)
PlotMap(GetMinMap(test7.out))

##
Example: simplified case with a lot of 'opposites'
test8.a <- cbind(0:4+.5,0)
test8.b <- cbind(0:4,1)
test8.out <- CreateMap(test8.a,test8.b,FALSE)
par(mfrow=c(1,2))
PlotMap(test8.out)
PlotMap(GetMinMap(test8.out))

##
Example: a crossover

test9.a <- rbind(c(0,0),c(1,0),c(10,0))
test9.b <- rbind(c(0,-1),c(4,-1),c(5,9),c(6,-1),c(10,-1))
test9.out <- CreateMap(test9.a,test9.b,FALSE)
PlotMap(test9.out)
PlotMap(GetMinMap(test9.out))

##
Example: a variation on previous
test10.a <- test9.b
test10.b <- rbind(c(0,10),c(20,10))
test10.out <- CreateMap(test10.a,test10.b,FALSE)
test10.out2 <- CreateMap(test10.b,test10.a,FALSE)

PlotMap(test10.out)
PlotMap(test10.out2)
PlotMap(GetMinMap(test10.out))
PlotMap(GetMinMap(test10.out2))

#######################################
Example: Appendix figures
pathA <- rbind(c(0,0),c(5,0),c(10,0))
pathB <- rbind(c(1,1),c(2,-1),c(3,4),c(5,1),c(10,-3))
map1 <- CreateMap(pathA,pathB,FALSE,insertopposites=FALSE)

##map2 is broken, or at least the display of map2:
map2 <- GetMinMap(map1)

par(mfrow=c(2,1))
PlotMap(map1)
PlotMap(map2)

##
Example: another crossover

DistancePointSegment 11

real.sub <- rbind(c(50,25),c(100,150),c(275,275))
mem.sub <- rbind(c(100,30),c(150,250), c(250,200))

xy1 <- real.sub
xy2 <- mem.sub

test10.out <- CreateMap(xy1,xy2,FALSE)
PlotMap(test10.out)
PlotMap(GetMinMap(test10.out))

End(Not run)

DistancePointSegment Compute distance between a point and a segment

Description

Compute distance between a point and a segment

Usage

DistancePointSegment(px, py, x1, y1, x2, y2)

Arguments

px x coordinate of point

py y coordinate of point

x1 x coordinate of one end of segment

y1 y coordinate of one end of segment

x2 x coordinate of other end of segment

y2 y coordinate of other end of segment

Details

Computes the distance between a point and a segment via the shortest line. This line will be per-
pendicular to the segment if the point opposes the line, or it will be attached directly to an endpoint.

Value

returns a scalar value measuring the distance

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

https://sites.google.com/a/mtu.edu/mapping/

12 even

See Also

LineMagnitude,ClosestPoint

Examples

##select a random point and find its closest point
##on the segment.
x1 <- runif(1)*20
y1 <- runif(1)*20

s1x <- 5;s1y <- 5
s2x <- 0;s2y <- 15

d <- DistancePointSegment(x1,y1,s1x,s1y,s2x,s2y)
plot(c(s1x,s2x),c(s1y,s2y),pch=16,xlab="x",ylab="y",

ylim=c(-1,20),xlim=c(-1,20),type="o")
points(x1,y1,col="red",pch=16,cex=2)

p2 <- ClosestPoint(x1,y1,s1x,s1y,s2x,s2y)
segments(p2[1],p2[2],x1,y1,lty=3)
text(10,2,paste("Distance from line to point:",

round(d,3)))

even Is a number even?

Description

Is a number even?

Usage

even(x)

Arguments

x a number

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

https://sites.google.com/a/mtu.edu/mapping/

GetMinMap 13

GetMinMap Gets least-distance mapping among the minimum-area mappings.

Description

Finds minimum linear-distance mapping among the least-cost area-based mappings between paths.

Usage

GetMinMap(mapping, leftbias=T, verbose = F)

Arguments

mapping An object computed via CreateMap()

leftbias Boolean value determining whether to prefer left or upper node connections first.

verbose Whether intermediate output should be printed.

Details

GetMinMap() finds the best mapping between two paths amongst those that have the smallest area-
based dissimilarity. It adds several data structures to a mapping produced by CreateMap: $least-
costchain and $chainpath, and it sets the boolian $minmap from FALSE to TRUE.

Value
$leastcostchain

The complete matrix used to solve the minimization.

$chainpath The sequence of consecutive nodes representing the path.

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

See Also

See Also CreateMap,

https://sites.google.com/a/mtu.edu/mapping/

14 InsertIntersections

InsertIntersections Inserts points on paths where two paths intersect

Description

This function does two rounds of insertion. First, it inserts a point on each path whenever path1
intersects path2. Next, it optionally inserts points on segments of one path that are ’opposite’ points
on the other path, to allow a monotonic mapping between the two paths.

Usage

InsertIntersections(path1, path2, insertopposites = T, verbose = F)

Arguments

path1 path1

path2 path2

insertopposites

T/F, whether points opposite points on the other path should be inserted

verbose T/F, whether to print interim progress information

Value

A list of four data sequences are returned:

newpath1 New list 1 with new points inserted

newpath2 New list2 with new points inserted

key1 Set of indices mapping the points back to the original path 1. Inserted points are
labeled -1

key2 Set of indices mapping the points back to the original path 2. Inserted points are
labeled -1

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

https://sites.google.com/a/mtu.edu/mapping/

IntersectPoint 15

IntersectPoint Find where point opposite segment intersects segment.

Description

Find where point opposite segment intersects segment. It gives a proportion of AB that the orthog-
onal line passing through C meets. If outside (0,1) it does not pass through AB

Usage

IntersectPoint(A, B, C)

Arguments

A (x,y) point on one end of line segment

B (x,y) point on other end of line segment

C (x,y) point to compare to line segment

Value

returns a value which is the proportion of the length of AB where AC proects onto the line defined
by AB. If the return value is between 0 and 1, the point is opposite the line segment. If negative, it
falls on the A side of AB; if greater than 1, it falls to the B side of AB.

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

See Also

LineMagnitude,ClosestPoint,DistancePointSegment

https://sites.google.com/a/mtu.edu/mapping/

16 LineMagnitude

ldist Compute line length

Description

Computes line length

Usage

ldist(p1,p2)

Arguments

p1 (x,y) point on one end of line segment

p2 (x,y) point on other end of line segment

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

LineMagnitude Compute line length

Description

Computes line length

Usage

LineMagnitude(x1, y1, x2, y2)

Arguments

x1 x coordinate of one end of line

y1 y coordinate of one end of line

x2 x coordinate of other end of line

y2 y coordinate of other end of line

Author(s)

Shane T. Mueller and Brandon Perelman

https://sites.google.com/a/mtu.edu/mapping/

linesIntersect 17

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

linesIntersect Checks whether two line segments intersect.

Description

Checks whether two line segments intersect.

Usage

linesIntersect(A1, A2, B1, B2)

Arguments

A1 one end of line A (x,y) pair

A2 other end of line A (x,y) pair

B1 one end of line B (x,y) pair

B2 other end of line B (x,y) pair

Value

returns a boolean value indicating whether there is an intersection.

Note

Results may not be consistent if intersection happens exactly at one end of a segment, due to round-
ing error.

LinkCost Computes the distance of a particular link between paths

Description

This computes the distance between two paths for a particular pair of nodes (points or segments).
This is primarily a helper function for the pathmapping library, and typically does not need to be
used by end users.

Usage

LinkCost(xy1, xy2, i, j)

https://sites.google.com/a/mtu.edu/mapping/

18 LLbeta

Arguments

xy1 Path1

xy2 Path2

i Index of path1. This is not the row of path1, but the implied node, where the
first node is the first point, the second node is the first segment, the third node is
the second point, and so on.

j Index of path2. This is not the row of path1, but the implied node, where the
first node is the first point, the second node is the first segment, the third node is
the second point, and so on.

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

livenodes Which nodes are legal mappings?

Description

Which nodes are legal mappings?

LLbeta Compute Latecki/Lakaemper beta

Description

Compute Latecki/Lakaemper beta

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016).
L. J. Latecki and R. Lakaemper. Convexity Rule for Shape Decomposition Based on Discrete
Contour Evolution. Computer Vision and Image Understanding, vol. 73, pp. 441-454, 1999.
https://sites.google.com/a/mtu.edu/mapping/

https://sites.google.com/a/mtu.edu/mapping/
https://sites.google.com/a/mtu.edu/mapping/

LLKscore 19

LLKscore Compute Latecki/Lakaemper K score

Description

Compute Latecki/Lakaemper K score

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016).
L. J. Latecki and R. Lakaemper. Convexity Rule for Shape Decom- a position Based on Discrete
Contour Evolution. Computer Vision and Image Understanding, vol. 73, pp. 441-454, 1999.
https://sites.google.com/a/mtu.edu/mapping/

odd Is a number odd?

Description

Is a number odd?

Usage

odd(x)

Arguments

x a number

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

https://sites.google.com/a/mtu.edu/mapping/
https://sites.google.com/a/mtu.edu/mapping/

20 PathOverlap

PathDist Compute Length of a path

Description

This function computes the length of a path. It does so by summing each consecutive line segment.

Usage

PathDist(path)

Arguments

path A two-column matrix describing the x,y coordinates of a path.

Value

returns a scalar value indicating path length.

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

PathOverlap Compute the proportion overlap of two paths.

Description

This computes the proportion of the two paths that are mapped onto one another. The outcome is
a number between 0 and 1.0, measuring how much of each path corresponds to a non-endpoint of
the other map. This does not by itself measure path similarity, because two paths that are highly
dissimilar that happen to start and end at similar spots would have a value close to 1.0. This is
sensitive to ’partial’ paths. If on path is a sub-path of the other, then it should measure the average
of the proportion of path1 that is in path2 and the proportion of path2 that is in path1.

Usage

PathOverlap(mapping)

Arguments

mapping mapping is the output of CreateMap().

https://sites.google.com/a/mtu.edu/mapping/

PlotGrid 21

Details

PathOverlap works with a basic mapping and computes ’minimal’ mappings, both left-biased and
right-biased, to arrive at two best mappings (those involving the least distance between correspond-
ing points). These will typically be identical, but there are non-degenerate cases where they can
differ.

Once this mapping is arrived at, the algorithm identifies the core of the mapping–the central segment
of both paths that are mapped onto the core of the other path, by identifying the segments of each
path (on both ends) that are mapped onto the endpoint of the other path. For each path, the length
of its core is subtracted from the total length of the path, and these two values are averaged together
for the returned proportion value.

The result of this can be used to weigh distance between paths in terms of overall path similarity.
A reasonable measure of path similarity might be the (area between paths) / (average length of
two paths) / overlap, so that two paths with low overlap get their total distance inflated by that
proportion.

Value

Return value is a number between 0 and 1. Values below 0.5 are difficult, because the average
overlap of the two paths is found. Thus, even if one path has 0 overlap, the other is likely to have
an overlap near 1.0, resulting in an average of 0.5.

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

PlotGrid Plot the grid associated with a particular mapping problem.

Description

This function plots a grid associated with the mapping between two paths. This will plot n*2-1
by m*2-1 nodes, associated with each point and segment in each path. This gets quite substantial
when the paths have more than a handful of points (5-10), and is only really useful for display and
debugging purposes. This is called by CreateMap, which overlays costs over the map on its own.

Usage

PlotGrid(path1,path2)

Arguments

path1 The first path

path2 The second path

https://sites.google.com/a/mtu.edu/mapping/

22 PlotMap

Details

Warning–do not use for anything but very small paths, as it will take a long time to draw and be
uninterpretable.

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/

PlotMap Plot the paths and their mapping.

Description

Plots the paths and the mappings between paths.

Usage

PlotMap(mapping, cols = c("grey40"), linecol = "grey25",
xlim= NA, ylim = NA, ...)

Arguments

mapping A map object produced by CreateMap() or GetMinMap()

cols A set of colors to shade consecutive polygons.

linecol Color for lines connecting paths

xlim two values that override default x range.

ylim two values that override default y range.

... other graphical arguments

https://sites.google.com/a/mtu.edu/mapping/

SimplifyPath 23

SimplifyPath Simplify a path

Description

This function takes a path and removes points that impact the shape of the path less than a tolerance
value, which is a scaled measure of degree deviation from removing a path. It is based on an
algorithm described by Latecki & Lakaemper.

Usage

SimplifyPath(path,
tolerance = 0.075,
truncate=F,
faster = T,
verbose = F, plot = F)

Arguments

path a 2-column matrix of x,y points

truncate Number of digits to round values to. If FALSE (the default), there is no round-
ing. If another value, the value is used as the digits argument of round to use
to truncate the precision of the path. This can help simplify the path by rounding
to a known precision level.

tolerance a tolerance threshold; any point that does not impact the shape of the path more
than this is removed. For this, smaller values remove fewer points. Depending
on the complexity of the path, values from 0.01 to 0.1 may be good starting
points.

faster If TRUE, this uses a faster point-trimming method. If T, it removes all points that
have a K value equal to the minimum value, which can be many (for example, a
bunch that are equal to 0). If F, it will only remove one one each round, which
can be very slow.

verbose if TRUE, will print out intermediate information during the shape evolution.

plot if TRUE, will create a plot of the path and overlay the evolving simplified path.

Value

Returns a path with redundant points removed.

Author(s)

Shane T. Mueller and Brandon Perelman

24 SummarizeMapping

References

See Mueller et al., (2016).
and
L. J. Latecki and R. Lakaemper. Convexity Rule for Shape Decomposition Based on Discrete
Contour Evolution. Computer Vision and Image Understanding, vol. 73, pp. 441-454, 1999.
https://sites.google.com/a/mtu.edu/mapping/

Examples

path <- cbind(1:100,exp(-(1:100-50)^2/80))
path2 <- SimplifyPath(path)

Not run:
plot(path)
plot(path2)
plot(path)
points(SimplifyPath(path,tolerance=.1),type="o",

col="red",cex=1.2,lwd=2)
plot(path)
points(SimplifyPath(path,tolerance=.01,plot=TRUE),type="o",

col="red",cex=1.2,lwd=2)
plot(path)
points(SimplifyPath(path,tolerance=.005,plot=TRUE),type="o",

col="red",cex=1.2,lwd=2)

End(Not run)

SummarizeMapping Summarize the mapping obtained by GetMinMap

Description

Returns a data frame outlining specifically the mapping between two paths, including all the inferred
points, identifying the original points, and the distances between corresponding points/segments.

Usage

SummarizeMapping(mapping)

Arguments

mapping The output of GetMinMapping()

Details

This provides a detailed analysis of the outcome of a mapping, in the form of a seven-column
data frame. An original path is transformed into a multi-segment path by adding intersections and
’opposite’ points lying on segments.

https://sites.google.com/a/mtu.edu/mapping/

surveyors 25

Value

The first two columns indicate the index node of these two lengthened paths that correspond to one
another. Odd nodes indicate points, and even nodes indicate segments (segments can be skipped).
These correspond to rows and columns of the optimization matrix also returned by CreateMap and
GetMinMapping.

The next two columns indicate how these rows are mapped back onto the original paths. 0 indicates
the row was not an original point, non-zero integers indicate specific elements of the paths.

The next two column indicate the x,y coordinates on path 1 of each point (original or inferred).
The following two columns indicate the x,y, coordinates on path 2. The final column indicates the
euclidean distance corresponding to the particular mapping indicated.

Author(s)

Shane T. Mueller and Brandon Perelman

surveyors The Surveyor’s Formula

Description

Computes the area of a polygon using the so-called Surveyor’s formula, with special-purpose faster
versions for 3- and 4-gons, and a compiled version implemented via the ’shoelace’ formula.

Usage

surveyors(poly,usedet=FALSE)
surveyors.3(poly)
surveyors.4(poly)
shoelace(poly)

Arguments

poly A 2-column matrix containing the vertices of a polygon (x and y coordinates).

usedet TRUE/FALSE variable, if T, will force the use of the true surveyor’s formula,
which is 15-20x slower than the special-purpose triangle/4-gon code. This is
only really good for testing/validating things.

Details

This computes the area of a polygon using the so-called ’surveyor’s’ formula. It computes the sum
of the determinants of each edge, which results in the area of the polygon, provided the polygon is
regular (does not intersect itself, etc.). If the polygon is not regular, it will not measure the area,
because negative areas will be subtracted from positive areas.

The general surveyor’s formula is pretty inefficient. We primarily (probably exclusively) use it
for 2-, 3-, and 4-gons, and so there are special-purpose functions defined as surveyors.3 and

26 surveyors

surveyors.4 that are used in these cases that are about 15-20x faster than the general one, using
the so-called ’shoelace’ formula.

Calls to this function account for a lot of the efficiency of the entire algorithm. Currently, surveyors
tests the size of the n-gon and routes to the specialized function, which appears to add 20% over-
head. If you know that you are dealing with a trigon or a quadrilateral, you can cut down time by a
small amount. even more efficiency.

The shoelace function is a compiled c function that implements the surveyor’s formula for polygons
of any size. It is not restricted to 3- or 4-gons like surveyors.3 and surveyors.4, but is still slightly
slower than these functions for 3- and 4-gons because of the overhead of calling the compiled
function. It takes about 1.5x as long as the special-purpose surveyor’s formula for 3 and 4 points, but
it is not restricted on the number of points, so is a fast replacement for the much slower surveyors()
function. Consequently, it is not currently used in the library directly. Note that like all surveyor’s
formula implementations, it will not handle cross-over paths appropriately.

Value

returns a measure of area.

Author(s)

Shane T. Mueller and Brandon Perelman

References

See Mueller et al., (2016). https://sites.google.com/a/mtu.edu/mapping/ and B. Braden.
"The Surveyor’s Area Formula". The College Mathematics Journal, vol. 17, no. 4, pp. 326-337,
1986.

Examples

poly <- rbind(c(1,1),c(10,1),c(5,3))
surveyors(poly)

Profiling test for 3-gon
poly <- rbind(c(1.1,1.2),c(2.1,3.3),c(4.1,1.2))

#system.time(for(i in 1:50000)surveyors(poly,usedet=TRUE))
#system.time(for(i in 1:50000)surveyors(poly))
#system.time(for(i in 1:50000)surveyors.3(poly))
#system.time(for(i in 1:50000)shoelace(poly))
Profiling Test for 4-gon
poly2 <- rbind(c(1.1,1.2),c(2.2,1.3),c(4.0,4.25),c(1.3,3.9))
#system.time(for(i in 1:50000)surveyors(poly2,usedet=TRUE))
#system.time(for(i in 1:50000)surveyors(poly2))
#system.time(for(i in 1:50000)surveyors.4(poly2))
#system.time(for(i in 1:50000)shoelace(poly2))

poly3 <- cbind(runif(20),runif(20))
#system.time(for(i in 1:50000)surveyors(poly3,usedet=TRUE))
#system.time(for(i in 1:50000)shoelace(poly3))

https://sites.google.com/a/mtu.edu/mapping/

Index

∗Topic package
pathmapping-package, 2

ClosestPoint, 3, 12, 15
connected, 4
Cost, 5
CreateMap, 6, 13

DistancePointSegment, 3, 11, 15

even, 12

GetMinMap, 7, 13

InsertIntersections, 14
IntersectPoint, 15

ldist, 16
LineMagnitude, 3, 12, 15, 16
linesIntersect, 17
LinkCost, 17
livenodes, 18
LLbeta, 18
LLKscore, 19

odd, 19

PathDist, 20
pathmapping (pathmapping-package), 2
pathmapping-package, 2
PathOverlap, 20
PlotGrid, 21
PlotMap, 22

round, 23

shoelace (surveyors), 25
SimplifyPath, 23
SummarizeMapping, 24
surveyors, 25

27

	pathmapping-package
	ClosestPoint
	connected
	Cost
	CreateMap
	DistancePointSegment
	even
	GetMinMap
	InsertIntersections
	IntersectPoint
	ldist
	LineMagnitude
	linesIntersect
	LinkCost
	livenodes
	LLbeta
	LLKscore
	odd
	PathDist
	PathOverlap
	PlotGrid
	PlotMap
	SimplifyPath
	SummarizeMapping
	surveyors
	Index

