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1 Introduction

The following text is a (slightly) modified form of a short course given on eco-
phylogenetics. It is not intended as a rigorous, comprehensive explanation of how
PGLMMs work, but we hope its more conversational tone might make it a useful
introduction. PGLMMs are extremely flexible: this is their greatest strength, but it
can make them difficult for the beginner. Persevere, because it’s worth it! For more
information, read the original papers (Ives & Helmus, 2011; Rafferty & Ives, 2013)
or this short overview (Pearse et al., 2014).

2 PGLMMs

Fingerprint regressions (fingerprint.regression) are great, but some ecologists
have a more fundamental question that they feel they don’t answer: what drives co-
occurrence in my system? Is it shared/divergent traits, phylogenetic (dis-)similarity,
shared/divergent environmental responses (driven by traits or phylogeny), or... some-
thing else that’s unique to species/sites?
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A Phylogenetic Generalised Linear Mixed Model (PGLMM) is one way of an-
swering that question. It’s, quite literally, just a regression where you ask predict
species’ presence/absence/abundance at sites. What makes it difficult to wrap your
head around are the random effects, which incorporate species’ traits, environmental
conditions, species’ phylogenetic relatedness, and species’ responses to environmental
conditions (as a function of traits and phylogeny).

Let’s step through a simple example of how to simulate some data under PGLMM,
and then you can try and fit it to your own data. Be careful not to try this with the
mammal dataset from earlier as-is; PGLMMs can take a very long time to fit with
large datasets...

nspp <- 15

nsite <- 10

env <- 1:nsite

env <- as.numeric(scale(env))

Nothing too scary. We say how many species and sites we want to simulate, then
setup a (scaled) linear environmental gradient.

require(pez)

require(ape)

phy <- rcoal(n = nspp)

Vphy <- vcv(phy)

Vphy <- Vphy/(det(Vphy)^(1/nspp))

For some reason, this part seems to scare the living daylights out of people, but it
really shouldn’t. First step: simulate a phylogeny. Second step: calculate the Vari-
ance Co-Variance (VCV) matrix of that phylogeny, which is just the branch length
seperating species. Third step: standardise that VCV matrix. More species tends to
mean larger phylogenetic distances, so we have to standardise the VCV to make the
next few steps work in the same way across all phylogenies. It’s like standardising
variables in a regression (e.g., like we did for the environmental gradient)—it keeps
the effect sizes constant.

The determinant (det) popping up is probably what is so scary, so we’re now
going to explain what it is. If you don’t care then (maybe) good for you and just
skip this. In maths, you can turn essentially any matrix into a shape in multiple
dimensions - a 2-by-2 matrix defines a parallelogram (each ‘side’ of the matrix is a
‘side’ of the parallelogram), 3-by-3 becomes a cuboid-like thing, etc. The determinant
is simply the area/volume of that shape. So, by dividing all the elements of the matrix
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by the matrix’s ‘volume’, we standardise all the elements to account for the size of
it. But wait! If the determinant is an area/volume, and all the elements are simply
distances, then we have a unit problem - the VCV is distances (one dimension, e.g.,
years) yet the determinant is an area/volume (many dimensions, e.g., years3). So we
put the determinant to the power of 1

n.spp
so that the units match (e.g., years

((years3)( 1
3
))

is the same as years
years

).

iD <- t(chol(Vphy))

intercept <- iD %*% rnorm(nspp)

slope <- iD %*% rnorm(nspp)

Now we must simulate set the parameters (rules) that determine how species are
distributed throughout our ecosystem. First: the VCV has repeated elements across
the ‘diagonal’ (i.e., the distance from species A to B is the same as B to A), so set
all those repeated elements to 0 to avoid double-counting. This is called Cholesky
decomposition; we then flip the matrix round (‘transpose’ it) to allow for matrix-
magic in the next step. Second and third: we want to simulate species’ presences and
absences along the environmental gradient, which means we need an intercept and
slope that determines presence/absence along the gradient for each species. Draw
some random numbers, then multiply them by the transformed matrix from step
one, to get single intercepts and slopes for each species where close relatives have
similar values. The Cholesky decomposition, combined with the magic of matrix
multiplication, assures this. Note that you could play around with the variance et
al. on the random draw to set up different kinds of relationships...

prob <- rep(intercept, each = nsite)

prob <- prob + rep(slope, each = nsite) *

rep(env, nspp)

prob <- prob + rnorm(nspp * nsite)

pres <- rbinom(length(prob), size = 1, prob = exp(prob)/(1 +

exp(prob)))

Now we have to figure out the probabilities of species being in each community.
First: add all the intercepts of the probabilities of being in a site. Second: add to
the intercept the slope of each species’ relationship multiplied by the environmental
value in that site. Third: add some error to that relationship. Fourth: randomly
draw presence (1) and absence (0) on the basis of a logit for each species in each
site on the basis of the probabilities we’ve created. The use of rep might seem a bit
weird, so print it out and check it by eye if you’re confused.
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site <- factor(rep(1:nsite, nspp))

species <- factor(rep(1:nspp, each = nsite))

env <- rep(env, nspp)

This final step is important, and getting it right is all the more important because
the PGLMM function is written rather oddly. The site and species variable must
be a factors. You will get what seem like odd error messages if the lengths of all
your data points do not match up; bear in mind that a ‘non-conformable argument’,
in maths, is something that’s the wrong length. This is PGLMM’s way of saying
something like “you’ve given me ten sites and ten species, but only fifty pieces of
data”.

r.intercept.spp.indep <- list(1, sp = species,

covar = diag(nspp))

r.intercept.spp.phy <- list(1, sp = species,

covar = Vphy)

r.slope.spp.indep <- list(env, sp = species,

covar = diag(nspp))

r.slope.spp.phy <- list(env, sp = species,

covar = Vphy)

r.site <- list(1, site = site, covar = diag(nsite))

rnd.effects <- list(r.intercept.spp.indep,

r.intercept.spp.phy, r.slope.spp.indep,

r.slope.spp.phy, r.site)

Now we can finally take advantage of the power of PGLMM - we can set whatever
kind of model we want. In this case it’s a simple one - random effects for the intercept
and slope, either for each species independently or allowing for phylogenetic co-
variation. I make one last one for the sites, and merge them all together in one big
list. We can now test whether environment has an effect (the slope), whether species
have different overall means (the intercepts), whether phylogeny plays a role, and
control for site-level differences in abundance. You can specify anything you want in
these random effects - some people have put space, others time, and in the paper in
your reading list there’s an example of traits.

model <- communityPGLMM(pres ~ env, family = "binomial",

sp = species, site = site, random.effects = rnd.effects,

REML = TRUE, verbose = FALSE)

4



communityPGLMM.binary.LRT(model, re.number = 1)

## $LR

## [1] -1.505543e-08

##

## $df

## [1] 1

##

## $Pr

## [1] 0.5

communityPGLMM.binary.LRT(model, re.number = 2)

## $LR

## [1] 24.30176

##

## $df

## [1] 1

##

## $Pr

## [1] 1.566526e-12

Now we fit the model! We can check the significances of each of the random
effect structures as shown. Note that we’re using random effects because, were we to
estimate fixed effects, we’d be estimating at least 20 parameters, which is way too
many for 100 data points. Of course, not everyone likes random effects, and many
people don’t like testing for their significance... Search out the ’glmm wiki’ online
for more details.

We went through all that simulation because it’s important to see that PGLMM
is “nothing more” than a fancy way of regressing presence/absence of species against
environmental variables and traits. Look at the simplicity of the formula (presence
environment), and the simplicity of the model we used to simulate the data (a slope
over an environmental gradient). You’ll also be pleased to note that there’s a sim-
ple wrapper for all this, so when you’re working with real data you can just use
as.data.frame on a comparative.comm object to automatically create all the vari-
ables you need. Of course, it won’t create the random effects for you - because that’s
the fun bit where you get to decide what questions you want to answer!
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