Package 'photobiology'

March 25, 2022

Type Package

Title Photobiological Calculations

Version 0.10.10

Date 2022-03-24

Description Definitions of classes, methods, operators and functions for use in photobiology and radiation meteorology and climatology. Calculation of effective (weighted) and not-weighted irradiances/doses, fluence rates, transmittance, reflectance, absorptance, absorbance and diverse ratios and other derived quantities from spectral data. Local maxima and minima: peaks, valleys and spikes. Conversion between energy-and photon-based units. Wavelength interpolation. Astronomical calculations related solar angles and day length. Colours and vision. This package is part of the 'r4photobiology' suite, Aphalo, P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.

License GPL (>= 2)

Depends R (>= 3.6.0)

Imports stats, polynom (>= 1.4-0), tibble (>= 3.0.4), stringr (>= 1.4.0), lubridate (>= 1.7.8), plyr (>= 1.8.4), dplyr (>= 1.0.2), tidyr (>= 1.1.2), splus2R (>= 1.2-2), zoo (>= 1.8-8), rlang (>= 0.4.8)

Suggests knitr (>= 1.30), rmarkdown (>= 2.4), testthat (>= 2.3.2), roxygen2 (>= 7.1.1)

LazyLoad yes

LazyData yes

ByteCompile true

URL https://docs.r4photobiology.info/photobiology/,
 https://github.com/aphalo/photobiology

BugReports https://github.com/aphalo/photobiology/issues

Encoding UTF-8

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

```
Author Pedro J. Aphalo [aut, cre] (<https://orcid.org/0000-0003-3385-972X>),
Titta K. Kotilainen [ctb] (<https://orcid.org/0000-0002-2822-9734>),
Glenn Davis [ctb],
Agnese Fazio [ctb]
```

Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>

Repository CRAN

Date/Publication 2022-03-25 16:00:06 UTC

R topics documented:

3
)
l
2
5
3
Ĺ
3
ŧ
5
5
1
3
)
)
2
3
5
5
5
3
)
)
Ĺ
3
ŧ
5
1
1
)
)
Ĺ
2
2
3

beesxyzCMF.spct	. 54
black_body.spct	. 55
c	. 55
calc_multipliers	. 56
calc_source_output	. 57
ccd.spct	. 58
checkTimeUnit	. 59
check_spct	. 60
check_spectrum	. 63
check_w.length	. 64
ciev10.spct	. 64
ciev2.spct	. 65
ciexyzCC10.spct	. 66
ciexyzCC2.spct	. 67
ciexyzCMF10.spct	. 68
ciexyzCMF2.spct	. 69
class_spct	. 70
clean	. 70
clear.spct	. 75
clear_body.spct	. 76
clip wl	. 76
collect2mspct	. 78
color of	. 79
compare_spct	. 81
cone_fundamentals10.spct	. 83
convertTfrType	. 84
convertThickness	. 85
convertTimeUnit	. 86
convolve_each	. 87
copy_attributes	. 87
cps2irrad	. 88
D2.UV586	. 89
D2.UV653	. 90
D2.UV654	. 90
D2_spectrum	. 91
D65.illuminant.spct	. 91
day_night	. 92
defunct	. 95
despike	. 96
diffraction_single_slit	. 103
dim.generic_mspct	. 104
divgeneric_spct	. 104
div_spectra	. 105
drop_user_cols	. 106
e2q	. 108
e2qmol_multipliers	. 109
e2quantum_multipliers	. 110
enable_check_spct	. 110

energy_as_default	 	 	 111
energy_irradiance	 	 	 112
energy_ratio	 	 	 113
eq_ratio	 	 	 114
ET_ref	 	 	 116
Extract	 	 	 119
Extract_mspct	 	 	 121
e fluence	 	 	 122
e irrad	 	 	 125
e ratio	 	 	 128
e response	 	 	 131
 FEL.BN.9101.165	 	 	 134
FEL spectrum	 	 	 134
findMultipleWl	 	 	 135
find peaks	 	 	 135
find spikes	 	 	 136
find wls	 	 	 138
fit neaks	 	 	 130
fluence	 	 	 141
format solar time	 	 	 144
format tod_time	 	 	 144
formatted range	 	 	 1/15
formaticu_range	 	 	 145
fshift	 	 	 145
Isilit	 	 	 151
generic_inspet	 	 	 155
getES w1 Osed	 	 	 150
getFilterFloperties	 	 	 157
	 	 • • • • •	 150
	 	 	 159
getInstrDesc	 	 	 100
getinstructures	 	 	 101
getivispet version	 	 	 101
	 	 • • • • •	 162
getNormalized	 	 	 163
getResponseType	 	 	 164
getRfrIype	 	 	 165
getScaled	 	 	 165
getSpctVersion	 	 • • • • •	 166
getIfrIype	 	 • • • • •	 167
getTimeUnit	 	 • • • • •	 167
getWhatMeasured	 	 • • • • •	 168
getWhenMeasured	 	 • • • • •	 169
getWhereMeasured	 	 	 171
get_attributes	 	 	 172
get_peaks	 	 ••••	 174
green_leaf.spct	 	 ••••	 175
head_tail	 	 ••••	 176
insert_hinges	 	 ••••	 178

insert_spct_hinges	179
integrate_spct	179
integrate_xy	180
interpolate_spct	181
interpolate spectrum	182
interpolate wl	183
irrad	185
irradiance	188
irrad_extraterrestrial	189
is.generic mspct	190
is.generic_spct	192
is.old_spct	193
is.solar_time	193
is.summary generic spct	194
is.waveband	195
isValidInstrDesc	195
isValidInstrSettings	196
is absorbance based	196
is effective	197
is normalized	199
is photon based	199
is scaled	200
is tagged	201
join mspct	202
labels	203
Ler leaf.spct	204
Ler leaf rflt.spct	205
Ler leaf trns.spct	206
Ler leaf trns i.spct	207
$\log \ldots \ldots$	208
MathFun	209
merge2object spct	209
merge_attributes	210
minusgeneric spct	211
modgeneric_spct	212
msmsply	212
mspct_classes	213
na.omit	214
net_irradiance	216
normalization	217
normalize	218
normalized_diff_ind	223
normalize_range_arg	225
opaque.spct	226
oper_spectra	226
peaks	228
photodiode.spct	234
photons_energy_ratio	235

photon_irradiance	236
photon_ratio	238
plusgeneric_spct	239
polyester.spct	240
print	240
print.solar_time	241
print.summary_generic_spct	242
print.tod_time	243
print.waveband	243
prod_spectra	244
q2e	245
qe_ratio	246
q_fluence	249
q_irrad	251
q_ratio	254
q_response	257
r4p_pkgs	260
rbindspct	261
reflectance	262
relative AM	265
replace bad pixs	266
response	268
Rfr from n	270
rgb spct	271
rmDerivedMspct	272
rmDerivedSpct	273
round	274
select spct attributes	275
setBSWFUsed	276
setFilterProperties	276
setGenericSpct	278
setHowMeasured	281
setIdFactor	282
setInstrDesc	283
setInstrSettings	283
setMultipleWI	284
setNormalized	285
setResponseType	286
setRfrType	287
setScaled	288
setTfrType	289
setTimeUnit	290
setWhatMeasured	291
setWhenMeasured	292
setWhereMeasured	293
shared member class	295
sign	295
slashgeneric spct	296

smooth_spct	. 296
solar_time	. 299
source_spct	. 300
spct_attr2tb	. 304
spct_classes	. 305
spct_metadata	. 306
spikes	. 307
split2mspct	. 312
split_bands	. 315
split_energy_irradiance	. 316
split_irradiance	. 317
split_photon_irradiance	. 319
spread	. 320
Subset	. 321
subset2mspct	. 322
subt spectra	. 323
summary	. 325
summary spet classes	. 325
sum spectra	. 326
sun daily data	. 327
sun daily spect	328
sundata	. 329
sun snct	. 330
sun angles	. 331
s e irrad2rgb	. 333
s mean	335
s mean se	336
s median	. 338
s prod	340
s range	341
s_range	343
s se	345
s sum	346
s_sum	348
T2A	350
T2A fr	351
12A11	353
thin wl	355
times generic spot	358
transmittance	. 350
Tria	. 550
trimInstrDesc	. 301
trimInstrEattings	262
trim anot	. 303
um_spct	. 303
unin_tails	. 300
	. 30/
unm_wi	. 369
tz_time_diff	. 3/1

uncollect2spct 372
untag 373
unarge enct 374
upgrade_spect
upgrade_spectra
using_111
valleys
verbose_as_default
v_insert_hinges
v_replace_hinges
water_vp_sat
waveband
waveband_ratio
wb2rect_spct
wb2spct
wb2tagged_spct
wb_trim_as_default
white_body.spct
white_led.cps_spct
white_led.raw_spct
white_led.source_spct
wls_at_target
wl max
wl midpoint
wl min
wl range
w] stepsize
w length2rgb 408
w length range?rob 409
vellow gel spct 410
$\begin{array}{c} \text{Ageneric spect} & 100 \\ Ageneric $
.genene_spet
412

Index

photobiology-package photobiology: Photobiological Calculations

Description

Definitions of classes, methods, operators and functions for use in photobiology and radiation meteorology and climatology. Calculation of effective (weighted) and not-weighted irradiances/doses, fluence rates, transmittance, reflectance, absorptance, absorbance and diverse ratios and other derived quantities from spectral data. Local maxima and minima: peaks, valleys and spikes. Conversion between energy-and photon-based units. Wavelength interpolation. Astronomical calculations related solar angles and day length. Colours and vision. This package is part of the 'r4photobiology' suite, Aphalo, P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.

Details

Package 'photobiology' is at the core of a suite of packages for analysis and plotting of data relevant to photobiology (described at https://www.r4photobiology.info/). The accompanying packages (under development) provide data and definitions that are to a large extent application-area specific while the functions in the present package are widely useful in photobiology and radiation quantification in geophysics and meteorology. Package 'photobiology' has its main focus in the characterization of the light environment in a biologically relevant manner and in the manipulation of spectral data to simulate photo-physical, photo-chemical and photo-biological interactions and responses. The focus of package 'pavo' (Maia et al., 2003) is in colour perception by animals and assessment of animal coloration. In spite of the different focus, there is some degree of overlap.

Acknowledgements

This work was funded by the Academy of Finland (decision 252548). COST Action FA9604 'UV4Growth' facilitated discussions and exchanges of ideas that lead to the development of this package. The contributions of Andy McLeod, Lars Olof Björn, Nigel Paul, Lasse Ylianttila, T. Matthew Robson and Titta Kotilainen were specially significant. Tutorials by Hadley Wickham and comments on my presentation at UseR!2015 allowed me to significantly improve the coding and functionality.

Note

Code for some of the astronomical calculations has been adapted from that in package 'pavo'.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

Other contributors:

- Titta K. Kotilainen (ORCID) [contributor]
- Glenn Davis <gdavis@gluonics.com> [contributor]
- Agnese Fazio <agnese.fazio@uni-jena.de> [contributor]

References

Aphalo, P. J., Albert, A., Björn, L. O., McLeod, A. R., Robson, T. M., Rosenqvist, E. (Eds.). (2012). Beyond the Visible: A handbook of best practice in plant UV photobiology (1st ed., p. xx + 174). Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology. ISBN 978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). Open access PDF download available at https://hdl.handle.net/10138/37558

Aphalo, Pedro J. (2015) The r4photobiology suite. UV4Plants Bulletin, 2015:1, 21-29. doi: 10.19232/ uv4pb.2015.1.14.

Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M., Shawkey, M. D. (2013) pavo: an R package for the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution, 4(10):906-913. doi: 10.1111/2041210X.12069.

See Also

Useful links:

- https://docs.r4photobiology.info/photobiology/
- https://github.com/aphalo/photobiology
- Report bugs at https://github.com/aphalo/photobiology/issues

Examples

```
# irradiance of the whole spectrum
irrad(sun.spct)
# photon irradiance 400 nm to 700 nm
q_irrad(sun.spct, waveband(c(400,700)))
# energy irradiance 400 nm to 700 nm
e_irrad(sun.spct, waveband(c(400,700)))
# simulating the effect of a filter on solar irradiance
e_irrad(sun.spct * yellow_gel.spct, waveband(c(400,500)))
e_irrad(sun.spct * yellow_gel.spct, waveband(c(500,700)))
# daylength
sunrise_time(lubridate::today(tzone = "EET"), tz = "EET",
             geocode = data.frame(lat = 60, lon = 25), unit.out = "hour")
day_length(lubridate::today(tzone = "EET"), tz = "EET",
           geocode = data.frame(lat = 60, lon = 25), unit.out = "hour")
# colour as seen by humans
color_of(sun.spct)
color_of(sun.spct * yellow_gel.spct)
# filter transmittance
transmittance(yellow_gel.spct)
transmittance(yellow_gel.spct, waveband(c(400,500)))
transmittance(yellow_gel.spct, waveband(c(500,700)))
```

A.illuminant.spct CIE A illuminant data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 830 nm) and the corresponding spectral energy irradiance normalized to 1 at 560 nm. Spectrum approximates typical, domestic, tungsten-filament lighting and 'corresponds' to a black body a 2856 K. CIE standard illuminant A is intended to represent typical, domestic, tungsten-filament lighting. Original data from http: //files.cie.co.at/204.xls downloaded on 2014-07-25 The variables are as follows:

Usage

```
A.illuminant.spct
```

Format

A source spectrum with 96 rows and 2 variables

A2T

Details

- w.length (nm)
- s.e.irrad (rel. units)

Author(s)

CIE

See Also

Other Spectral data examples: D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct,Ler_leaf_trns_i.spct,black_body.spct,ccd.spct,clear.spct,clear_body.spct, filter_cps.mspct,green_leaf.spct,opaque.spct,photodiode.spct,polyester.spct,sun.daily.data, sun.daily.spct,sun.data,sun.spct,white_body.spct,white_led.cps_spct,white_led.raw_spct, white_led.source_spct,yellow_gel.spct

Examples

A.illuminant.spct

A2T

Convert absorbance into transmittance

Description

Function that converts absorbance (a.u.) into transmittance (fraction).

```
A2T(x, action, byref, ...)
## Default S3 method:
A2T(x, action = NULL, byref = FALSE, ...)
## S3 method for class 'numeric'
A2T(x, action = NULL, byref = FALSE, ...)
## S3 method for class 'filter_spct'
A2T(x, action = "add", byref = FALSE, ...)
## S3 method for class 'filter_mspct'
A2T(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)
```

х	an R object
action	a character string
byref	logical indicating if new object will be created by reference or by copy of x
•••	not used in current version
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with a column Tfr added and A and Afr possibly deleted except for w.length. If action = "replace", in all cases, the additional columns are removed, even if no column needs to be added.

Methods (by class)

- default: Default method for generic function
- numeric: method for numeric vectors
- filter_spct: Method for filter spectra
- filter_mspct: Method for collections of filter spectra

See Also

Other quantity conversion functions: Afr2T(), T2Afr(), T2A(), any2T(), as_quantum(), e2qmol_multipliers(), e2quantum_multipliers(), e2q(), q2e()

absorbance

Absorbance

Description

Function to calculate the mean, total, or other summary of absorbance for spectral data stored in a filter_spct or in an object_spct.

```
absorbance(spct, w.band, quantity, wb.trim, use.hinges, ...)
## Default S3 method:
absorbance(spct, w.band, quantity, wb.trim, use.hinges, ...)
## S3 method for class 'filter_spct'
```

absorbance

```
absorbance(
  spct,
  w.band = NULL,
  quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
 naming = "default",
  . . .
)
## S3 method for class 'object_spct'
absorbance(
  spct,
 w.band = NULL,
  quantity = "average",
  wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
  naming = "default",
  . . .
)
## S3 method for class 'filter_mspct'
absorbance(
  spct,
 w.band = NULL,
  quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
  naming = "default",
  ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'object_mspct'
absorbance(
  spct,
 w.band = NULL,
  quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
  naming = "default",
  ...,
  attr2tb = NULL,
  idx = "spct.idx"
  .parallel = FALSE,
```

```
.paropts = NULL
)
```

spct	an R object.
w.band	waveband or list of waveband objects or a numeric vector of length two. The waveband(s) determine the region(s) of the spectrum that are summarized. If a numeric range is supplied a waveband object is constructed on the fly from it.
quantity	character string One of "average" or "mean", "total", "contribution", "contribu- tion.pc", "relative" or "relative.pc".
wb.trim	logical Flag indicating if wavebands crossing spectral data boundaries are trimmed or ignored.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used.

Methods (by class)

- default: Default for generic function
- filter_spct: Specialization for filter spectra

absorptance

- object_spct: Specialization for object spectra
- filter_mspct: Calculates absorbance from a filter_mspct
- object_mspct: Calculates absorbance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

```
absorbance(polyester.spct, new_waveband(400,700))
absorbance(yellow_gel.spct, new_waveband(400,700))
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3)),
    quantity = "average")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),
    quantity = "total")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),
    quantity = "relative")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),
    quantity = "relative.pc")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),
    quantity = "relative.pc")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),
    quantity = "rontribution")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),
    quantity = "contribution")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),
    quantity = "contribution")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),
    quantity = "contribution.pc")
```

Absorptance

absorptance

Description

Function to calculate the mean, total, or other summary of absorptance for spectral data stored in a filter_spct or in an object_spct. Absorptance is a different quantity than absorbance.

```
absorptance(spct, w.band, quantity, wb.trim, use.hinges, ...)
## Default S3 method:
absorptance(spct, w.band, quantity, wb.trim, use.hinges, ...)
## S3 method for class 'filter_spct'
absorptance(
   spct,
   w.band = NULL,
   quantity = "average",
```

```
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
  naming = "default",
  . . .
)
## S3 method for class 'object_spct'
absorptance(
  spct,
 w.band = NULL,
  quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
  naming = "default",
  . . .
)
## S3 method for class 'filter_mspct'
absorptance(
  spct,
 w.band = NULL,
  quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
 naming = "default",
  ...,
  attr2tb = NULL,
  idx = "spct.idx"
)
## S3 method for class 'object_mspct'
absorptance(
  spct,
 w.band = NULL,
  quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
  naming = "default",
  ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

spct an R object.

w.band	waveband or list of waveband objects or a numeric vector of length two. The waveband(s) determine the region(s) of the spectrum that are summarized. If a numeric range is supplied a waveband object is constructed on the fly from it.
quantity	character string One of "average" or "mean", "total", "contribution", "contribution.pc", "relative" or "relative.pc".
wb.trim	logical Flag, if TRUE wavebands crossing spectral data boundaries are trimmed and otherwise ignored.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used.

Methods (by class)

- default: Default for generic function
- filter_spct: Specialization for filter spectra
- object_spct: Specialization for object spectra
- filter_mspct: Calculates absorptance from a filter_mspct
- object_mspct: Calculates absorptance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

add_attr2tb

```
Copy attributes from members of a generic_mspct
```

Description

Copy metadata attributes from members of a generic_mspct object into a tibble or data.frame.

```
add_attr2tb(
   tb = NULL,
   mspct,
   col.names = NULL,
   idx = "spct.idx",
   unnest = FALSE
)
when_measured2tb(
   mspct,
   tb = NULL,
   col.names = "when.measured",
   idx = "spct.idx"
)
geocode2tb(mspct, tb = NULL, col.names = "geocode", idx = "spct.idx")
```

```
lonlat2tb(mspct, tb = NULL, col.names = c("lon", "lat"), idx = "spct.idx")
lon2tb(mspct, tb = NULL, col.names = "lon", idx = "spct.idx")
lat2tb(mspct, tb = NULL, col.names = "lat", idx = "spct.idx")
address2tb(mspct, tb = NULL, col.names = "address", idx = "spct.idx")
what_measured2tb(
 mspct,
 tb = NULL,
 col.names = "what.measured",
 idx = "spct.idx"
)
how_measured2tb(mspct, tb = NULL, col.names = "how.measured", idx = "spct.idx")
normalized2tb(mspct, tb = NULL, col.names = "normalized", idx = "spct.idx")
scaled2tb(mspct, tb = NULL, col.names = "scaled", idx = "spct.idx")
instr_desc2tb(mspct, tb = NULL, col.names = "instr.desc", idx = "spct.idx")
instr_settings2tb(
 mspct,
 tb = NULL,
 col.names = "instr.settings",
 idx = "spct.idx"
)
BSWF_used2tb(mspct, tb = NULL, col.names = "BSWF.used", idx = "spct.idx")
filter_properties2tb(
 mspct,
  tb = NULL,
 col.names = "filter.properties",
 idx = "spct.idx"
)
Tfr_type2tb(mspct, tb = NULL, col.names = "Tfr.type", idx = "spct.idx")
Rfr_type2tb(mspct, tb = NULL, col.names = "Rfr.type", idx = "spct.idx")
time_unit2tb(mspct, tb = NULL, col.names = "time.unit", idx = "spct.idx")
comment2tb(mspct, tb = NULL, col.names = "comment", idx = "spct.idx")
```

tb	tibble or data.frame to which to add the data (optional).
mspct	generic_mspct Any collection of spectra.
col.names	named character vector Name(s) of metadata attributes to copy, while if named, the names provide the name for the column.
idx	character Name of the column with the names of the members of the collection of spectra.
unnest	logical Flag controlling if metadata attributes that are lists of values should be returned in a list column or in separate columns.

Details

The attributes are copied to a column in a tibble or data frame. If the tb formal parameter receives NULL as argument, a new tibble will be created. If an existing data.frame or tibble is passed as argument, new columns are added to it. However, the number of rows in the argument passed to tb must match the number of spectra in the argument passed to mspct. Only in the case of method add_attr2tb() if the argument to col.names is a named vector, the names of members are used as names for the columns created. This permits setting any valid name for the new columns. If the vector passed to col.names has no names the names of the attributes are used for the new columns. If the fields of the attributes are unnested their names are used as names for the columns.

Valid accepted as argument to col.names are NULL, "lon", "lat", "address", "geocode", "where.measured", "when.measured", "what.measured", "how.measured", "comment", "normalised", "normalized", "scaled", "bswf.used", "instr.desc", "instr.settings", "filter.properties", "Tfr.type", "Rfr.type", "time.unit".

Value

A tibble With the metadata attributes in separate new variables.

Note

The order of the first two arguments is reversed in add_attr2tb() compared to the other functions. This is to allow its use in 'pipes', while the functions for single attributes are expected to be used mostly to create new tibbles.

See Also

```
Other measurement metadata functions: getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured()
```

Examples

library(dplyr)

when_measured2tb(my.mspct)

Afr2T

Convert transmittance into absorptance.

Description

Function that converts transmittance (fraction) into absorptance (fraction). If reflectance (fraction) is available, it allows conversions between internal and total absorptance.

```
Afr2T(x, action, byref, clean, ...)
## Default S3 method:
Afr2T(x, action = NULL, byref = FALSE, clean = FALSE, ...)
## S3 method for class 'numeric'
Afr2T(x, action = NULL, byref = FALSE, clean = FALSE, Rfr = NA_real_, ...)
## S3 method for class 'filter_spct'
Afr2T(x, action = "add", byref = FALSE, clean = FALSE, ...)
## S3 method for class 'object_spct'
Afr2T(x, action = "add", byref = FALSE, clean = FALSE, ...)
## S3 method for class 'filter_mspct'
Afr2T(
 х,
  action = "add",
 byref = FALSE,
  clean = FALSE,
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'object_mspct'
Afr2T(
  х,
  action = "add",
```

```
byref = FALSE,
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL
)
```

х	an R object
action	character Allowed values "replace" and "add"
byref	logical indicating if new object will be created by reference or by copy of x
clean	logical replace off-boundary values before conversion
	not used in current version
Rfr	numeric vector. Spectral reflectance o reflectance factor. Set to zero if x is internal reflectance,
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with a column Tfr added and other columns possibly deleted except for w.length. If action = "replace", in all cases, the additional columns are removed, even if no column needs to be added.

Methods (by class)

- default: Default method for generic function
- numeric: Default method for generic function
- filter_spct: Method for filter spectra
- object_spct: Method for object spectra
- filter_mspct: Method for collections of filter spectra
- object_mspct: Method for collections of object spectra

See Also

Other quantity conversion functions: A2T(), T2Afr(), T2A(), any2T(), as_quantum(), e2qmol_multipliers(), e2quantum_multipliers(), e2q(), q2e()

Examples

T2Afr(Ler_leaf.spct)

any2T

Description

Functions that convert or add related physical quantities to filter_spct or object_spct objects. transmittance (fraction) into absorptance (fraction).

Usage

```
any2T(x, action = "add", clean = FALSE)
any2A(x, action = "add", clean = FALSE)
any2Afr(x, action = "add", clean = FALSE)
```

Arguments

х	an filter_spct or a filter_mspct object.
action	character Allowed values "replace" and "add".
clean	logical replace off-boundary values before conversion

Details

These functions are dispatchers for A2T, Afr2T, T2A, and T2Afr. The dispatch is based on the names of the variables stored in x. They do not support in-place modification of x.

Value

A copy of x with the columns for the different quantities added or replaced. If action = "replace", in all cases, the additional columns are removed, even if no column needs to be added.

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), T2A(), as_quantum(), e2qmol_multipliers(), e2quantum_multipliers(), e2q(), q2e()

Examples

```
any2Afr(Ler_leaf.spct)
any2T(Ler_leaf.spct)
any2T(polyester.spct)
```

as.calibration_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.calibration_mspct(x, ...)
## Default S3 method:
as.calibration_mspct(x, ...)
## S3 method for class 'data.frame'
as.calibration_mspct(x, ...)
## S3 method for class 'calibration_spct'
as.calibration_mspct(x, ...)
## S3 method for class 'list'
as.calibration_mspct(x, ..., ncol = 1, byrow = FALSE)
## S3 method for class 'matrix'
as.calibration_mspct(
 х,
 w.length,
  spct.data.var = "irrad.mult",
 multiplier = 1,
 byrow = NULL,
  spct.names = "spct_",
  . . .
)
```

Arguments

x	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
ncol	integer Number of 'virtual' columns in data
byrow	logical If $ncol > 1$ how to read in the data
w.length	numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
spct.data.var	character The name of the variable that will contain the spectral data. This indi- cates what physical quantity is stored in the matrix and the units of expression used.

multiplier	numeric A multiplier to be applied to the values in ${\sf x}$ to do unit or scale conversion.
spct.names	character Vector of names to be assigned to collection members, either of length 1, or with length equal to the number of spectra.

Value

A copy of x converted into a calibration_mspctt object.

Methods (by class)

- default:
- data.frame:
- calibration_spct:
- list:
- matrix:

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.chroma_mspct(), as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(), as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.calibration_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.calibration_spct(x, ...)
```

```
## Default S3 method:
as.calibration_spct(x, ...)
```

Arguments

x	an R object
	other arguments passed to "set" functions

A copy of x converted into a calibration_spct object.

Methods (by class)

• default:

See Also

setGenericSpct

```
Other constructors of spectral objects: as.chroma_spct(), as.cps_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.source_spct(), source_spct()
```

as.chroma_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.chroma_mspct(x, ...)
## Default S3 method:
as.chroma_mspct(x, ...)
## S3 method for class 'data.frame'
as.chroma_mspct(x, ...)
## S3 method for class 'chroma_spct'
as.chroma_mspct(x, ...)
## S3 method for class 'list'
as.chroma_mspct(x, ..., ncol = 1, byrow = FALSE)
```

Arguments

x	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
ncol	integer Number of 'virtual' columns in data
byrow	logical If $ncol > 1$ how to read in the data

as.chroma_spct

Value

A copy of x converted into a chroma_mspct object.

Methods (by class)

- default:
- data.frame:
- chroma_spct:
- list:

See Also

```
Other Coercion methods for collections of spectra: as.calibration_mspct(), as.cps_mspct(),
as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()
```

as.chroma_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.chroma_spct(x, ...)
## Default S3 method:
as.chroma_spct(x, ...)
```

Arguments

x	an R object
	other arguments passed to "set" functions

Value

A copy of x converted into a chroma_spct object.

Methods (by class)

• default:

See Also

setGenericSpct

```
Other constructors of spectral objects: as.calibration_spct(), as.cps_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.source_spct(), source_spct()
```

as.cps_mspct

Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.cps_mspct(x, ...)
## Default S3 method:
as.cps_mspct(x, ...)
## S3 method for class 'data.frame'
as.cps_mspct(x, ...)
## S3 method for class 'cps_spct'
as.cps_mspct(x, ...)
## S3 method for class 'list'
as.cps_mspct(x, ..., ncol = 1, byrow = FALSE)
## S3 method for class 'matrix'
as.cps_mspct(
 х,
 w.length,
  spct.data.var = "cps",
 multiplier = 1,
 byrow = NULL,
  spct.names = "spct_",
)
```

Arguments

х	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
ncol	integer Number of 'virtual' columns in data

byrow	logical If $ncol > 1$ how to read in the data
w.length	numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
spct.data.var	character The name of the variable that will contain the spectral data. This indi- cates what physical quantity is stored in the matrix and the units of expression used.
multiplier	numeric A multiplier to be applied to the values in x to do unit or scale conversion.
spct.names	character Vector of names to be assigned to collection members, either of length 1, or with length equal to the number of spectra.

Value

A copy of x converted into a cps_mspct object.

Methods (by class)

- default:
- data.frame:
- cps_spct:
- list:
- matrix:

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

```
Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()
```

as.cps_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

```
as.cps_spct(x, ...)
## Default S3 method:
as.cps_spct(x, ...)
```

х	an R object
	other arguments passed to "set" functions

Value

A copy of x converted into a cps_spct object.

Methods (by class)

• default:

See Also

setGenericSpct

```
Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.source_spct(), source_spct()
```

as.filter_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.filter_mspct(x, ...)
## Default S3 method:
as.filter_mspct(x, ...)
## S3 method for class 'data.frame'
as.filter_mspct(x, Tfr.type = c("total", "internal"), strict.range = TRUE, ...)
## S3 method for class 'filter_spct'
as.filter_mspct(x, ...)
## S3 method for class 'list'
as.filter_mspct(
    x,
    Tfr.type = c("total", "internal"),
    strict.range = TRUE,
    ...,
    ncol = 1,
```

as.filter_mspct

```
byrow = FALSE
)
## S3 method for class 'matrix'
as.filter_mspct(
    x,
    w.length,
    spct.data.var = "Tfr",
    multiplier = 1,
    byrow = NULL,
    spct.names = "spct_",
    ...
)
```

Arguments

x	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
Tfr.type	a character string, either "total" or "internal"
strict.range	logical Flag indicating how off-range values are handled
ncol	integer Number of 'virtual' columns in data
byrow	logical If ncol > 1 how to read in the data
w.length	numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
spct.data.var	character The name of the variable that will contain the spectral data. This indi- cates what physical quantity is stored in the matrix and the units of expression used.
multiplier	numeric A multiplier to be applied to the values in x to do unit or scale conversion.
spct.names	character Vector of names to be assigned to collection members, either of length 1, or with length equal to the number of spectra.

Value

A copy of x converted into a filter_mspct object.

Methods (by class)

- default:
- data.frame:
- filter_spct:
- list:
- matrix:

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

```
Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()
```

as.filter_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.filter_spct(x, ...)
## Default S3 method:
as.filter_spct(
    x,
    Tfr.type = c("total", "internal"),
    strict.range = getOption("photobiology.strict.range", default = FALSE),
    ...
)
```

Arguments

х	an R object
	other arguments passed to "set" functions
Tfr.type	a character string, either "total" or "internal"
strict.range	logical Flag indicating whether off-range values result in an error instead of a warning

Value

A copy of x converted into a filter_spct object.

Methods (by class)

• default:

as.generic_mspct

See Also

setGenericSpct

```
Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.source_spct(), source_spct()
```

as.generic_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

```
as.generic_mspct(x, ...)
## Default S3 method:
as.generic_mspct(x, ...)
## S3 method for class 'data.frame'
as.generic_mspct(x, force.spct.class = FALSE, ...)
## S3 method for class 'generic_spct'
as.generic_mspct(x, force.spct.class = FALSE, ...)
## S3 method for class 'list'
as.generic_mspct(x, force.spct.class = FALSE, ..., ncol = 1, byrow = FALSE)
## S3 method for class 'matrix'
as.generic_mspct(
  х,
 w.length,
 member.class,
  spct.data.var,
 multiplier = 1,
  byrow = NULL,
  spct.names = "spct_",
)
mat2mspct(
  х,
  w.length,
  member.class,
  spct.data.var,
```

```
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...
```

X	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
• • •	passed to individual spectrum object constructor
<pre>force.spct.clas</pre>	S
	logical indicating whether to change the class of members to ${\tt generic_spct}$ or retain the existing class.
ncol	integer Number of 'virtual' columns in data
byrow	logical If ncol > 1 how to read in the data
w.length	numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
member.class	character The name of the class of the individual spectra to be constructed.
spct.data.var	character The name of the variable that will contain the spectral data. This indi- cates what physical quantity is stored in the matrix and the units of expression used.
multiplier	numeric A multiplier to be applied to the values in x to do unit or scale conversion.
spct.names	character Vector of names to be assigned to collection members, either of length 1, or with length equal to the number of spectra.

Value

A copy of x converted into a generic_mspct object.

Methods (by class)

- default:
- data.frame:
- generic_spct:
- list:
- matrix:

Note

Members of generic_mspct objects can be heterogeneous: they can belong to any class derived from generic_spct and class is not enforced. When x is a list of data frames force.spct.class = TRUE needs to be supplied. When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should be read. In every case the length of the w.length vector must match one of the dimensions of x.

as.generic_spct

See Also

```
Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()
```

as.generic_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.generic_spct(x, ...)
Default S3 method:
as.generic_spct(x, ...)

Arguments

х	an R object
	other arguments passed to "set" functions

Value

A copy of x converted into a generic_spct object.

Methods (by class)

• default:

See Also

setGenericSpct

```
Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.source_spct(), source_spct()
```

as.matrix-mspct

Description

Convert an object of class generic_mspct or a derived class into an R matrix with wavelengths saved as an attribute and spectral data in rows or columns.

Usage

```
## S3 method for class 'generic_mspct'
as.matrix(x, spct.data.var, byrow = attr(x, "mspct.byrow"), ...)
mspct2mat(x, spct.data.var, byrow = attr(x, "mspct.byrow"), ...)
```

Arguments

х	generic_mspct object.
spct.data.var	character The name of the variable containing the spectral data.
byrow	logical. If FALSE (the default) the matrix is filled with the spectra stored by columns, otherwise the matrix is filled by rows.
	currently ignored.

Warning!

This conversion preserves the spectral data but discards almost all the metadata contained in the spectral objects. In other words a matrix created with this function cannot be used to recreate the original object unless the same metadata is explicitly supplied when converting the matrix into new collection of spectra.

Note

Only collections of spectra containing spectra with exactly the same w.length values can by converted. If needed, the spectra can be re-expressed before attempting the conversion to a matrix.

as.object_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.
as.object_mspct

Usage

```
as.object_mspct(x, ...)
## Default S3 method:
as.object_mspct(x, ...)
## S3 method for class 'data.frame'
as.object_mspct(
 х,
 Tfr.type = c("total", "internal"),
 Rfr.type = c("total", "specular"),
 strict.range = TRUE,
  . . .
)
## S3 method for class 'object_spct'
as.object_mspct(x, ...)
## S3 method for class 'list'
as.object_mspct(
  х,
 Tfr.type = c("total", "internal"),
 Rfr.type = c("total", "specular"),
  strict.range = TRUE,
  . . . ,
 ncol = 1,
 byrow = FALSE
)
```

Arguments

x	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
Tfr.type	a character string, either "total" or "internal"
Rfr.type	a character string, either "total" or "specular"
strict.range	logical Flag indicating how off-range values are handled
ncol	integer Number of 'virtual' columns in data
byrow	logical If $ncol > 1$ how to read in the data

Value

A copy of x converted into a object_mspct object.

Methods (by class)

• default:

- data.frame:
- object_spct:
- list:

See Also

```
Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()
```

as.object_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.object_spct(x, ...)
## Default S3 method:
as.object_spct(
    x,
    Tfr.type = c("total", "internal"),
    Rfr.type = c("total", "specular"),
    strict.range = getOption("photobiology.strict.range", default = FALSE),
    ...
)
```

Arguments

Х	an R object
	other arguments passed to "set" functions
Tfr.type	a character string, either "total" or "internal"
Rfr.type	a character string, either "total" or "specular"
strict.range	logical Flag indicating whether off-range values result in an error instead of a warning

Value

A copy of x converted into a object_spct object.

Methods (by class)

• default:

as.raw_mspct

See Also

setGenericSpct

```
Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.source_spct(), source_spct()
```

as.raw_mspct

Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.raw_mspct(x, ...)
## Default S3 method:
as.raw_mspct(x, ...)
## S3 method for class 'data.frame'
as.raw_mspct(x, ...)
## S3 method for class 'raw_spct'
as.raw_mspct(x, ...)
## S3 method for class 'list'
as.raw_mspct(x, ..., ncol = 1, byrow = FALSE)
## S3 method for class 'matrix'
as.raw_mspct(
 х,
 w.length,
  spct.data.var = "counts",
 multiplier = 1,
 byrow = NULL,
  spct.names = "spct_",
)
```

Arguments

x	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
ncol	integer Number of 'virtual' columns in data

byrow	logical If $ncol > 1$ how to read in the data
w.length	numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
spct.data.var	character The name of the variable that will contain the spectral data. This indi- cates what physical quantity is stored in the matrix and the units of expression used.
multiplier	numeric A multiplier to be applied to the values in x to do unit or scale conversion.
spct.names	character Vector of names to be assigned to collection members, either of length 1, or with length equal to the number of spectra.

Value

A copy of x converted into a raw_mspct object.

Methods (by class)

- default:
- data.frame:
- raw_spct:
- list:
- matrix:

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

```
Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.reflector_mspct(),
as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()
```

as.raw_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.raw_spct(x, ...)
## Default S3 method:
as.raw_spct(x, ...)
```

as.reflector_mspct

Arguments

х	an R object
	other arguments passed to "set" functions

Value

A copy of x converted into a raw_spct object.

Methods (by class)

• default:

See Also

setGenericSpct

```
Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.reflector_spct(), as.response_spct(),
as.source_spct(), source_spct()
```

as.reflector_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.reflector_mspct(x, ...)
## Default S3 method:
as.reflector_mspct(x, ...)
## S3 method for class 'data.frame'
as.reflector_mspct(
    x,
    Rfr.type = c("total", "specular"),
    strict.range = TRUE,
    ...
)
## S3 method for class 'reflector_spct'
as.reflector_mspct(x, ...)
## S3 method for class 'list'
as.reflector_mspct(
```

```
х,
 Rfr.type = c("total", "specular"),
 strict.range = TRUE,
  ...,
 ncol = 1,
 byrow = FALSE
)
## S3 method for class 'matrix'
as.reflector_mspct(
 х,
 w.length,
 spct.data.var = "Rfr",
 multiplier = 1,
 byrow = NULL,
  spct.names = "spct_",
  . . .
)
```

Arguments

X	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
Rfr.type	a character string, either "total" or "specular"
strict.range	logical Flag indicating how off-range values are handled
ncol	integer Number of 'virtual' columns in data
byrow	logical If $ncol > 1$ how to read in the data
w.length	numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
spct.data.var	character The name of the variable that will contain the spectral data. This indi- cates what physical quantity is stored in the matrix and the units of expression used.
multiplier	numeric A multiplier to be applied to the values in x to do unit or scale conversion.
spct.names	character Vector of names to be assigned to collection members, either of length 1, or with length equal to the number of spectra.

Value

A copy of x converted into a reflector_mspct object.

Methods (by class)

- default:
- data.frame:
- reflector_spct:

as.reflector_spct

- list:
- matrix:

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

```
Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()
```

as.reflector_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.reflector_spct(x, ...)
## Default S3 method:
as.reflector_spct(
    x,
    Rfr.type = c("total", "specular"),
    strict.range = getOption("photobiology.strict.range", default = FALSE),
    ...
)
```

Arguments

Х	an R object
	other arguments passed to "set" functions
Rfr.type	a character string, either "total" or "specular"
strict.range	logical Flag indicating whether off-range values result in an error instead of a warning

Value

A copy of x converted into a reflector_spct object.

Methods (by class)

• default:

See Also

```
setGenericSpct
```

```
Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.response_spct(),
as.source_spct(), source_spct()
```

as.response_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.response_mspct(x, ...)
## Default S3 method:
as.response_mspct(x, ...)
## S3 method for class 'data.frame'
as.response_mspct(x, time.unit = "second", ...)
## S3 method for class 'response_spct'
as.response_mspct(x, ...)
## S3 method for class 'list'
as.response_mspct(x, time.unit = "second", ..., ncol = 1, byrow = FALSE)
## S3 method for class 'matrix'
as.response_mspct(
 х,
 w.length,
  spct.data.var = "s.e.response",
 multiplier = 1,
 byrow = NULL,
  spct.names = "spct_",
  . . .
)
```

Arguments

x	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
time.unit	character A string, "second", "day" or "exposure"
ncol	integer Number of 'virtual' columns in data
byrow	logical If ncol > 1 how to read in the data
w.length	numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
spct.data.var	character The name of the variable that will contain the spectral data. This indi- cates what physical quantity is stored in the matrix and the units of expression used.
multiplier	numeric A multiplier to be applied to the values in x to do unit or scale conversion.
spct.names	character Vector of names to be assigned to collection members, either of length 1, or with length equal to the number of spectra.

Value

A copy of x converted into a response_mspct object.

Methods (by class)

- default:
- data.frame:
- response_spct:
- list:
- matrix:

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(), as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(), as.source_mspct(), split2mspct(), subset2mspct() as.response_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.response_spct(x, ...)
## Default S3 method:
as.response_spct(x, time.unit = "second", ...)
```

Arguments

х	an R object
	other arguments passed to "set" functions
time.unit	character string indicating the time unit used for spectral irradiance or exposure ("second", "day" or "exposure") or an object of class duration as defined in package lubridate.

Value

A copy of x converted into a response_spct object.

Methods (by class)

• default:

See Also

setGenericSpct

```
Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.source_spct(), source_spct()
```

as.solar_date

Description

Convert a solar_time object into solar_date object

Usage

```
as.solar_date(x, time)
```

Arguments

х	solar_time object.
time	an R date time object

Value

For method as.solar_date() a date-time object with the class attr set to "solar.time". This is needed only for unambiguous formatting and printing.

See Also

Other Local solar time functions: is.solar_time(), print.solar_time(), solar_time()

as.source_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.source_mspct(x, ...)
## Default S3 method:
as.source_mspct(x, ...)
## S3 method for class 'data.frame'
as.source_mspct(
    x,
    time.unit = c("second", "day", "exposure"),
    bswf.used = c("none", "unknown"),
    strict.range = getOption("photobiology.strict.range", default = FALSE),
```

```
• • •
)
## S3 method for class 'source_spct'
as.source_mspct(x, ...)
## S3 method for class 'list'
as.source_mspct(
 х,
  time.unit = c("second", "day", "exposure"),
 bswf.used = c("none", "unknown"),
 strict.range = getOption("photobiology.strict.range", default = FALSE),
  ...,
 ncol = 1,
 byrow = FALSE
)
## S3 method for class 'matrix'
as.source_mspct(
 х,
 w.length,
 spct.data.var = "s.e.irrad",
 multiplier = 1,
 byrow = NULL,
  spct.names = "spct_",
  . . .
)
```

Arguments

х	a list of spectral objects or a list of objects such as data frames that can be converted into spectral objects.
	passed to individual spectrum object constructor
time.unit	character A string, "second", "day" or "exposure"
bswf.used	character
strict.range	logical Flag indicating how off-range values are handled
ncol	integer Number of 'virtual' columns in data
byrow	logical If ncol > 1 how to read in the data
w.length	numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
spct.data.var	character The name of the variable that will contain the spectral data. This indi- cates what physical quantity is stored in the matrix and the units of expression used.
multiplier	numeric A multiplier to be applied to the values in x to do unit or scale conversion.
spct.names	character Vector of names to be assigned to collection members, either of length 1, or with length equal to the number of spectra.

as.source_spct

Value

A copy of x converted into a source_mspct object.

Methods (by class)

- default:
- data.frame:
- source_spct:
- list:
- matrix:

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(), as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(), as.response_mspct(), split2mspct(), subset2mspct()

as.source_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

```
as.source_spct(x, ...)
## Default S3 method:
as.source_spct(
    x,
    time.unit = c("second", "day", "exposure"),
    bswf.used = c("none", "unknown"),
    strict.range = getOption("photobiology.strict.range", default = FALSE),
    ...
)
```

Arguments

х	an R object
	other arguments passed to "set" functions
time.unit	character string indicating the time unit used for spectral irradiance or exposure ("second", "day" or "exposure") or an object of class duration as defined in package lubridate.
bswf.used	character
strict.range	logical Flag indicating whether off-range values result in an error instead of a warning

Value

A copy of x converted into a source_spct object.

Methods (by class)

• default:

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(), as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(), source_spct()

as_energy

Convert spectral photon irradiance into spectral energy irradiance

Description

Convert a spectral photon irradiance [mol s-1 m-2 nm-1] into a spectral energy irradiance [W m-2 nm-1].

Usage

```
as_energy(w.length, s.qmol.irrad)
```

Arguments

w.length	numeric vector of wavelengths (nm).
s.qmol.irrad	numeric vector of spectral photon irradiance values.

Value

A numeric vector of spectral (energy) irradiances.

as_quantum

See Also

```
Other low-level functions operating on numeric vectors.: as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

with(sun.spct, as_energy(w.length, s.q.irrad))

as_quantum

Convert spectral energy irradiance into spectral photon irradiance

Description

Convert spectral energy irradiance [W m-2 nm-1] into spectral photon irradiance expressed as number of photons [s-1 m-2 nm-1]

Usage

as_quantum(w.length, s.e.irrad)

Arguments

w.length	numeric vector of wavelengths (nm).
s.e.irrad	numeric vector of spectral (energy) irradiance values.

Value

A numeric vector of spectral photon irradiances.

See Also

```
Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), T2A(), any2T(), e2qmol_multipliers(), e2quantum_multipliers(), e2q(), q2e()
```

Examples

with(sun.data, as_quantum(w.length, s.e.irrad))

as_quantum_mol

Description

Convert spectral energy irradiance [W m-2 nm-1] into a spectral photon irradiance expressed in number of molds of photons [mol s-1 m-2 nm-1].

Usage

```
as_quantum_mol(w.length, s.e.irrad)
```

Arguments

w.length	numeric vector of wavelengths (nm).
s.e.irrad	numeric vector of spectral (energy) irradiance values

Value

a numeric vector of spectral photon irradiances.

See Also

```
Other low-level functions operating on numeric vectors:: as_energy(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

with(sun.data, as_quantum_mol(w.length, s.e.irrad))

as_tod

Convert datetime to time-of-day

Description

Convert a datetime into a time of day expressed in hours, minutes or seconds from midnight in local time for a time zone. This conversion is useful when time-series data for different days needs to be compared or plotted based on the local time-of-day.

Usage

as_tod(x, unit.out = "hours", tz = NULL)

average_spct

Arguments

Х	a datetime object accepted by lubridate functions
unit.out	character string, One of "tod_time", "hours", "minutes", or "seconds".
tz	character string indicating time zone to be used in output.

Value

A numeric vector of the same length as x. If unit.out = "tod_time" an object of class "tod_time" which the same as for unit.out = "hours" but with the class attribute set, which dispatches to special format() nad print() methods.

See Also

solar_time

Other Time of day functions: format.tod_time(), print.tod_time()

Examples

```
library(lubridate)
my_instants <- ymd_hms("2020-05-17 12:05:03") + days(c(0, 30))
my_instants
as_tod(my_instants)
as_tod(my_instants, unit.out = "tod_time")</pre>
```

average_spct Average spectral data.

Description

This function gives the result of integrating spectral data over wavelengths and dividing the result by the spread or span of the wavelengths.

Usage

average_spct(spct)

Arguments

spct generic_spct

Value

One or more numeric values with no change in scale factor: e.g. $[W m-2 nm-1] \rightarrow [W m-2 nm-1]$. Each value in the returned vector corresponds to a variable in the spectral object, except for wavelength.

Examples

```
average_spct(sun.spct)
```

beesxyzCMF.spct Honeybee xyz chromaticity colour matching function data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 700 nm) and the corresponding x, y, and z chromaticity coordinates. Original data from XXX.

A chroma_spct object with variables as follows:

Usage

beesxyzCMF.spct

Format

A data frame with 81 rows and 4 variables

Details

- w.length (nm)
- x
- y
- z

See Also

Other Visual response data examples: ciev10.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct, ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

black_body.spct Theoretical black body

Description

A dataset for a hypothetical object with transmittance 0/1 (0%), reflectance 0/1 (0%)

Format

A object_spct object with 4 rows and 3 variables

Details

- w.length (nm)
- Tfr (0..1)
- Rfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

С

Combine collections of spectra

Description

Combine two or more generic_mspct objects into a single object.

Usage

S3 method for class 'generic_mspct'
c(..., recursive = FALSE, ncol = 1, byrow = FALSE)

Arguments

• • •	one or more generic_mspct objects to combine.
recursive	logical ignored as nesting of collections of spectra is not supported.
ncol	numeric Virtual number of columns
byrow	logical When object has two dimensions, how to map member objects to columns and rows.

Value

A collection of spectra object belonging to the most derived class shared among the combined objects.

calc_multipliers Spectral weights

Description

Calculate multipliers for selecting a range of wavelengths and optionally applying a biological spectral weighting function (BSWF) and wavelength normalization. This function returns numeric multipliers that can be used to select a waveband and apply a weight.

Usage

```
calc_multipliers(
  w.length,
  w.band,
  unit.out = "energy",
  unit.in = "energy",
  use.cached.mult = FALSE,
  fill = 0
)
```

Arguments

w.length	numeric vector of wavelengths (nm).
w.band	waveband object.
unit.out	character A string: "photon" or "energy", default is "energy".
unit.in	character A string: "photon" or "energy", default is "energy".
use.cached.mult	
	logical Flag indicating whether multiplier values should be cached between calls.
fill	numeric If fill = NA then values returned for wavelengths outside the range of the waveband are set to NA.

Value

a numeric vector of multipliers of the same length as w.length.

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), div_spectra(),
energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

```
with(sun.data, calc_multipliers(w.length, new_waveband(400,700),"photon"))
with(sun.data, calc_multipliers(w.length, new_waveband(400,700),"photon"), use.cached.mult = TRUE)
```

calc_source_output Scaled and/or interpolated light-source spectral output

Description

Values calculated by interpolation from user-supplied spectral emission data or by name for light source data included in the packages photobiologySun, photobiologyLamps, or photobiologyLEDs, optionally re-scaling the spectral data values.

Usage

```
calc_source_output(
  w.length.out,
  w.length.in,
  s.irrad.in,
  unit.in = "energy",
  scaled = NULL,
  fill = NA,
  ...
)
```

Arguments

w.length.out	numeric vector of wavelengths (nm) for output.
w.length.in	numeric vector of wavelengths (nm) for input.
s.irrad.in	numeric vector of spectral transmittance value (fractions or percent).
unit.in	a character string "energy" or "photon".
scaled	NULL, "peak", "area"; div ignored if !is.null(scaled).
fill	if NA, no extrapolation is done, and NA is returned for wavelengths outside the range of the input. If NULL then the tails are deleted. If 0 then the tails are set to zero.
	Additional arguments passed to spline if called.

Value

a source_spct with three numeric vectors with wavelength values (w.length), scaled and interpolated spectral energy irradiance (s.e.irrad), scaled and interpolated spectral photon irradiance values (s.q.irrad).

Note

This is a convenience function that adds no new functionality but makes it a little easier to plot lamp spectral emission data consistently. It automates interpolation, extrapolation/trimming and scaling.

Examples

ccd.spct

Spectral response of a back-thinned CCD image sensor.

Description

A dataset containing wavelengths at a 1 nm interval and spectral response as quantum efficiency for CCD sensor type S11071/S10420 from Hamamatsu (measured without a quartz window). These vectors are frequently used as sensors in high-UV-sensitivity vector spectrometers. Data digitized from manufacturer's data sheet. The original data is expressed as percent quantum efficiency with a value of 77% at the peak. The data have been re-expressed as fractions of one.

Usage

ccd.spct

Format

A response_spct object with 186 rows and 2 variables

Details

- w.length (nm).
- s.q.response (fractional quantum efficiency)

References

Hamamatsu (2014) Datasheet: CCD Image Sensors S11071/S10420-01 Series. Hamamatsu Photonics KK, Hamamatsu, City. http://www.hamamatsu.com/jp/en/S11071-1004.html. Visited 2017-12-15.

checkTimeUnit

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

ccd.spct

checkTimeUnit Check the "time.unit" attribute of an existing source_spct object

Description

Function to read the "time.unit" attribute

Usage

checkTimeUnit(x)

Arguments

x a source_spct object

Value

x possibly with the time.unit attribute modified

Note

if x is not a source_spct or a response_spct object, NA is returned

See Also

Other time attribute functions: convertTfrType(), convertThickness(), convertTimeUnit(),
getTimeUnit(), setTimeUnit()

check_spct

Description

Check that an R object contains the expected data members.

Usage

```
check_spct(x, byref, strict.range, force = FALSE, ...)
## Default S3 method:
check_spct(x, byref = FALSE, strict.range = NA, force = FALSE, ...)
## S3 method for class 'generic_spct'
check_spct(
  х,
 byref = TRUE,
  strict.range = NA,
  force = FALSE,
 multiple.wl = getMultipleWl(x),
  . . .
)
## S3 method for class 'calibration_spct'
check_spct(
  х,
 byref = TRUE,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
  force = FALSE,
 multiple.wl = getMultipleWl(x),
  . . .
)
## S3 method for class 'raw_spct'
check_spct(
  х,
  byref = TRUE,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
  force = FALSE,
  multiple.wl = getMultipleWl(x),
  . . .
)
## S3 method for class 'cps_spct'
check_spct(
 х,
```

```
byref = TRUE,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
  force = FALSE,
 multiple.wl = getMultipleWl(x),
  • • •
)
## S3 method for class 'filter_spct'
check_spct(
 х,
 byref = TRUE,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
  force = FALSE,
 multiple.wl = getMultipleWl(x),
  . . .
)
## S3 method for class 'reflector_spct'
check_spct(
  х,
 byref = TRUE,
 strict.range = getOption("photobiology.strict.range", default = FALSE),
 force = FALSE,
 multiple.wl = getMultipleWl(x),
  . . .
)
## S3 method for class 'object_spct'
check_spct(
 х,
  byref = TRUE,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
  force = FALSE,
 multiple.wl = getMultipleWl(x),
  • • •
)
## S3 method for class 'response_spct'
check_spct(
 х,
 byref = TRUE,
  strict.range = NA,
 force = FALSE,
 multiple.wl = getMultipleWl(x),
  . . .
)
## S3 method for class 'source_spct'
```

```
check_spct(
  х,
  byref = TRUE,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
  force = FALSE,
 multiple.wl = getMultipleWl(x),
)
## S3 method for class 'chroma_spct'
check_spct(
  х,
  byref = TRUE,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
  force = FALSE,
 multiple.wl = getMultipleWl(x),
  . . .
)
```

Arguments

х	An R object
byref	logical indicating if new object will be created by reference or by copy of x
strict.range	logical indicating whether off-range values result in an error instead of a warn- ing, NA disables the test.
force	logical If TRUE check is done even if checks are disabled.
	additional param possible in derived methods
multiple.wl	numeric Maximum number of repeated w.length entries with same value.

Methods (by class)

- default: Default for generic function.
- generic_spct: Specialization for generic_spct.
- calibration_spct: Specialization for calibration_spct.
- raw_spct: Specialization for raw_spct.
- cps_spct: Specialization for cps_spct.
- filter_spct: Specialization for filter_spct.
- reflector_spct: Specialization for reflector_spct.
- object_spct: Specialization for object_spct.
- response_spct: Specialization for response_spct.
- source_spct: Specialization for source_spct.
- chroma_spct: Specialization for chroma_spct.

See Also

Other data validity check functions: check_spectrum(), check_w.length(), enable_check_spct()

```
62
```

check_spectrum

check_spct(sun.spct)

Examples

```
check_spct(sun.spct)
# try(check_spct(-sun.spct))
# try(check_spct((sun.spct[1, "w.length"] <- 1000)))</pre>
```

check_spectrum Sanity check a spectrum

Description

Checks spectral irradiance data in numeric vectors for compliance with assumptions used in calculations.

Usage

check_spectrum(w.length, s.irrad)

Arguments

w.length	numeric vector of wavelengths (nm).
s.irrad	numeric Corresponding vector of spectral (energy) irradiances (W m-2 nm-1).

Value

A single logical value indicating whether test was passed or not

See Also

Other data validity check functions: check_spct(), check_w.length(), enable_check_spct()

Examples

with(sun.data, check_spectrum(w.length, s.e.irrad))

check_w.length

Description

This function checks a w.length vector for compliance with assumptions used in calculations.

Usage

check_w.length(w.length)

Arguments

w.length numeric array of wavelength (nm)

Value

a single logical value indicating whether test was passed or not

See Also

Other data validity check functions: check_spct(), check_spcttum(), enable_check_spct()

Examples

with(sun.data, photobiology:::check_w.length(w.length))

ciev10.spct

Linear energy CIE 2008 luminous efficiency function 10 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding response values for a 10 degrees target. Original data from http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

- w.length (nm)
- X
- y
- z

Usage

ciev10.spct

ciev2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct, ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciev10.spct

ciev2.spct

Linear energy CIE 2008 luminous efficiency function 2 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding response values for a 2 degrees target. Original data from http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

Usage

ciev2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Details

- w.length (nm)
- X
- y
- z

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciexyzCC10.spct, ciexyzCC2.spct, ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciev2.spct

ciexyzCC10.spct *CIE xyz chromaticity coordinates (CC) 10 deg data*

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x, y, and z chromaticity coordinates. Derived from proposed CIE 2006 standard. Original data from http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

- w.length (nm)
- X
- y
- Z

Usage

```
ciexyzCC10.spct
```

Format

A chroma_spct object with 441 rows and 4 variables

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC2.spct, ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciexyzCC10.spct

ciexyzCC2.spct

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x, y, and z chromaticity coordinates. According to proposed CIE 2006 standard. Original data from http://www.cvrl.org/ downloaded on 2014-04-28 The variables are as follows:

- w.length (nm)
- x
- y
- z

Usage

ciexyzCC2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciexyzCC2.spct

ciexyzCMF10.spct

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x, y, and z 10 degrees CMF values. Derived from proposed CIE 2006 standard. Original data from http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

- w.length (nm)
- X
- y
- z

Usage

ciexyzCMF10.spct

Format

A chroma_spct object with 441 rows and 4 variables

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciexyzCMF10.spct

ciexyzCMF2.spct Linear energy CIE xyz colour matching function (CMF) 2 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x, y, and z 2 degrees CMF values. Derived from proposed CIE 2006 standard. Original data from http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

- w.length (nm)
- x
- y
- z

Usage

ciexyzCMF2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct, ciexyzCMF10.spct, cone_fundamentals10.spct

Examples

ciexyzCMF2.spct

class_spct

Description

Functions to check if an object is a generic spectrum, or coerce it if possible.

Usage

```
class_spct(x)
```

Arguments ×

any R object

Value

class_spct returns a vector containing all matching xxxx.spct classes.

Examples

class_spct(sun.spct)
class(sun.spct)

```
clean
```

Clean (=replace) off-range values in a spectrum

Description

These functions implement the equivalent of replace() but for spectral objects instead of vectors.

Usage

```
clean(x, range, range.s.data, fill, ...)
## Default S3 method:
clean(x, range, range.s.data, fill, ...)
## S3 method for class 'source_spct'
clean(
    x,
    range = x,
    range.s.data = c(0, NA),
    fill = range.s.data,
    unit.out = getOption("photobiology.radiation.unit", default = "energy"),
```

clean

```
. . .
)
## S3 method for class 'filter_spct'
clean(
 х,
 range = x,
 range.s.data = NULL,
 fill = range.s.data,
 qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
  . . .
)
## S3 method for class 'reflector_spct'
clean(x, range = x, range.s.data = c(0, 1), fill = range.s.data, ...)
## S3 method for class 'object_spct'
clean(
 х,
 range = x,
 range.s.data = c(0, 1),
 fill = range.s.data,
 min.Afr = NULL,
  . . .
)
## S3 method for class 'response_spct'
clean(
 х,
 range = x,
 range.s.data = c(0, NA),
 fill = range.s.data,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  • • •
)
## S3 method for class 'cps_spct'
clean(x, range = x, range.s.data = c(0, NA), fill = range.s.data, ...)
## S3 method for class 'raw_spct'
clean(
 х,
 range = x,
 range.s.data = c(NA_real_, NA_real_),
 fill = range.s.data,
  . . .
)
```

```
## S3 method for class 'generic_spct'
clean(
  х,
  range = x,
  range.s.data = c(NA_real_, NA_real_),
  fill = range.s.data,
 col.names,
  . . .
)
## S3 method for class 'source_mspct'
clean(
 х,
  range = NULL,
  range.s.data = c(0, NA),
  fill = range.s.data,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'filter_mspct'
clean(
  х,
 range = NULL,
  range.s.data = NULL,
  fill = range.s.data,
  qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'reflector_mspct'
clean(
 х,
 range = NULL,
 range.s.data = c(0, 1),
 fill = range.s.data,
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'object_mspct'
clean(
  х,
```
```
range = NULL,
  range.s.data = c(0, 1),
  fill = range.s.data,
 min.Afr = NULL,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'response_mspct'
clean(
  х,
  range = NULL,
  range.s.data = c(0, NA),
  fill = range.s.data,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'cps_mspct'
clean(
 х,
 range = NULL,
  range.s.data = c(0, NA),
  fill = range.s.data,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'raw_mspct'
clean(
 х,
 range = NULL,
 range.s.data = c(0, NA),
 fill = range.s.data,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'generic_mspct'
clean(
  х,
  range = x,
  range.s.data = c(NA_real_, NA_real_),
```

```
fill = range.s.data,
  col.names,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

х	an R object
range	numeric vector of wavelengths
range.s.data	numeric vector of length two giving the allowable range for the spectral data.
fill	numeric vector of length 1 or 2, giving the replacement values to use at each extreme of the range.
	currently ignored
unit.out	character string with allowed values "energy", and "photon", or its alias "quantum"
qty.out	character string with allowed values "energy", and "photon", or its alias "quantum"
min.Afr	numeric Gives the minimum value accepted for the computed absorptance. The default NULL sets a valid value (Afr ≥ 0) with a warning. If an integer value is passed to digits values are adjusted silently.
col.names	character The name of the variable to clean
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A copy of x, possibly with some of the spectral data values replaced by the value passed to fill.

Methods (by class)

- default: Default for generic function
- source_spct: Replace off-range values in a source spectrum
- filter_spct: Replace off-range values in a filter spectrum
- reflector_spct: Replace off-range values in a reflector spectrum
- object_spct: Replace off-range values in an object spectrum
- response_spct: Replace off-range values in a response spectrum
- cps_spct: Replace off-range values in a counts per second spectrum
- raw_spct: Replace off-range values in a raw counts spectrum
- generic_spct: Replace off-range values in a generic spectrum

clear.spct

- source_mspct:
- filter_mspct:
- reflector_mspct:
- object_mspct:
- response_mspct:
- cps_mspct:
- raw_mspct:
- generic_mspct:

Note

In the case of object_spct objects, cleaning is done first on the Rfr and Tfr columns and subsequently Afr estimated and if needed half of deviation of Afr from the expected minimum value subtracted from each of Rfr and Tfr.

clear.spct

Theoretical spectrum of a clear material

Description

A dataset for a hypothetical object with transmittance 1/1 (100%)

Usage

clear.spct

Format

A filter_spct object with 4 rows and 2 variables

Details

- w.length (nm).
- Tfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

clear.spct

clear_body.spct

Description

A dataset for a hypothetical object with transmittance 1/1 (100%), reflectance 0/1 (0%)

Format

A object_spct object with 4 rows and 3 variables

Details

- w.length (nm)
- Tfr (0..1)
- Rfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

clip_wl

Clip head and/or tail of a spectrum

Description

Clip head and tail of a spectrum based on wavelength limits, no interpolation used at range boundaries.

Usage

```
clip_wl(x, range, ...)
## Default S3 method:
clip_wl(x, range, ...)
## S3 method for class 'generic_spct'
clip_wl(x, range = NULL, ...)
## S3 method for class 'generic_mspct'
clip_wl(x, range = NULL, ...)
```

```
## S3 method for class 'waveband'
clip_wl(x, range = NULL, ...)
## S3 method for class 'list'
clip_wl(x, range = NULL, ...)
```

Arguments

х	an R object.
range	a numeric vector of length two, or any other object for which function range() will return range of wavelengths expressed in nanometres.
	ignored (possibly used by derived methods).

Value

A copy of x, most frequently of a shorter length, and never longer.

Methods (by class)

- default: Default for generic function
- generic_spct: Clip an object of class "generic_spct" or derived.
- generic_mspct: Clip an object of class "generic_mspct" or derived.
- waveband: Clip an object of class "waveband".
- list: Clip a list (of objects of class "waveband").

Note

The condition tested is wl >= range[1] & wl < (range[2] + 1e-13).

See Also

Other trim functions: trim_spct(), trim_waveband(), trim_wl()

Examples

clip_wl(sun.spct, range = c(400, 500))
clip_wl(sun.spct, range = c(NA, 500))
clip_wl(sun.spct, range = c(400, NA))

collect2mspct

Description

Form a collection of spectra from separate objects in the parent frame of the call.

Usage

```
collect2mspct(
  .list = NULL,
  pattern = "*\\.spct$",
  collection.class = NULL,
  ...
)
```

Arguments

.list	list of R objects
pattern	character an optional regular expression, ignored if .list is not NULL.
collection.	class
	character vector
	additional named arguments passed down to the collection constructor.

Details

This is a convenience function that simplifies the creation of collections from existing objects of class generic_spct or a derived class. A list of objects con be passed as argument, or a search pattern. If a list is passed, no search is done. If collection.class is NULL, then all objects of class generic_spct or of a class derived from it are added to the collection. If objects of only one derived class are to be collected this class or that of the matching collection should be passed as argument to collection.class. Objects of other R classes are silently discarded, which simplifies the specification of search patterns. By default, i.e., if collection.class is NULL, if all the objects collected belong to the same class then the corresponding collection class will be returned, otherwise a generic_mspct object with heterogeneous members will be returned. To force the return of a generic_mspct even when the collected spectra all belong to the same class, pass generic_mspct as argument to collection.class. If the argument to collection.class is a vector containing two of more class names, only the matching spectra will be collected, and a generic_mspct will be returned. The returned object is created with the constructor for the class, and validated.

Value

By default a collection of spectra.

color_of

See Also

Other experimental utility functions: drop_user_cols(), thin_wl(), uncollect2spct()

Examples

```
collect2mspct() # returns empty generic_mspct object
```

```
sun1.spct <- sun.spct
sun2.spct <- sun.spct
kk.spct <- 10:30 # ignored
collect2mspct()
collect2mspct(collection.class = "generic_mspct")
pet1.spct <- polyester.spct
collect2mspct()
collect2mspct(collection.class = "source_mspct")
collect2mspct(collection.class = "filter_mspct")
collect2mspct(collection.class = "response_mspct")
```

color_of

Color of an object

Description

Equivalent RGB color of an object such as a spectrum, wavelength or waveband.

Usage

```
color_of(x, ...)
## Default S3 method:
color_of(x, ...)
## S3 method for class 'numeric'
color_of(x, type = "CMF", chroma.type = type, ...)
## S3 method for class 'list'
color_of(x, short.names = TRUE, type = "CMF", chroma.type = type, ...)
## S3 method for class 'waveband'
color_of(x, short.names = TRUE, type = "CMF", chroma.type = type, ...)
## S3 method for class 'source_spct'
color_of(x, type = "CMF", chroma.type = type, ...)
## S3 method for class 'source_spct'
color_of(x, type = "CMF", chroma.type = type, ...)
## S3 method for class 'source_mspct'
color_of(x, ..., idx = "spct.idx")
```

```
colour_of(x, ...)
color(x, ...)
fast_color_of_wl(x, type = "CMF", ...)
fast_color_of_wb(x, type = "CMF", ...)
```

Arguments

х	an R object.	
	ignored (possibly used by derived methods).	
type, chroma.type		
	character telling whether "CMF", "CC", or "both" should be returned for human vision, or an object of class chroma_spct for any other trichromic visual system.	
short.names	logical indicating whether to use short or long names for wavebands	
idx	character Name of the column with the names of the members of the collection of spectra.	

Value

A color definition in hexadecimal format as a character string of 7 characters, "#" followed by the red, blue, and green values in hexadecimal (scaled to 0 ... 255). In the case of the specialization for list, a list of such definitions is returned. In the case of a collection of spectra, a data.frame with one column with such definitions and by default an additional column with names of the spectra as index. In case of missing input the returned value is NA.

Methods (by class)

- default: Default method (returns always "black").
- numeric: Method that returns Color definitions corresponding to numeric values representing a wavelengths in nm.
- list: Method that returns Color of elements in a list.
- waveband: Color at midpoint of a waveband object.
- source_spct:
- source_mspct:

Deprecated

Use of color() is deprecated as this wrapper function may be removed in future versions of the package because of name clashes. Use color_of() instead.

compare_spct

Note

When x is a list but not a waveband, if a method color_of is not available for the class of each element of the list, then color_of.default will be called.

Function fast_color_of_wl() should be used only when high performance is needed. It speeds up performance by rounding the wavelength values in the numeric vector passed as argument to x and then retrieves the corresponding pre-computed color definitions if type is either "CMF" or "CC". In other cases it falls-back to calling color_of.numeric(). Returned color definitions always have default names irrespective of names of x, which is different from the behavior of color_of() methods.

Function fast_color_of_wb() accepts waveband objects and lists of waveband objects. If all wavebands are narrow, it issues a vectotized call to fast_color_of_wl() with a vector of waveband midpoint wavelengths.

Examples

```
wavelengths <- c(300, 420, 500, 600, NA) # nanometres
color_of(wavelengths)
color_of(waveband(c(300,400)))
color_of(list(blue = waveband(c(400,480)), red = waveband(c(600,700))))
color_of(numeric())
color_of(NA_real_)
```

color_of(sun.spct)

compare_spct Coarse-grained comparison of two spectra

Description

Compare two spectra using a specified summary function pre-applied to wavelength intervals.

Usage

```
compare_spct(
    x,
    w.band = 10,
    .summary.fun = NULL,
    ...,
    .comparison.fun = `/`,
    returned.value = "spectrum",
    use.hinges = FALSE,
    short.names = TRUE
)
```

Arguments

х	A collection of two spectral objects of the same type.	
w.band	waveband object or a numeric stepsize in nanometres.	
.summary.fun	function. The summary function to use. It must be a method accepting object x as first argument.	
	additional named arguments passed down to .summary.fun.	
.comparison.fun		
	function. The comparison function to use.	
returned.value	character One of "data.frame", "spectrum", "tagged.spectrum".	
use.hinges	logical Flag indicating whether to insert "hinges" into the returned spectrum when tagging it.	
short.names	logical Flag indicating whether to use short or long names for wavebands when tagging.	

Details

Summaries are computed for each of the wavebands in w.band by applying function .summary.fun separately to each spectrum, after trimming them to the overlapping wavelength region. Next the matching summaries are compared by means of .comparison.fun. Both the summaries and the result of the comparison are returned. Columns containing summary values are named by concatenating the name each member spectrum with the name of the argument passed to .summary.fun.

Tagging is useful for plotting using wavelength based colours, or when names for wavebands are used as annotations. When tagging is requested, the spectrum is passed to method tag with use.hinges and short.names as additional arguments.

Value

A generic_spct, tagged or not with the wavebdans, or a data.frame object containing the summary values per waveband for each spectrum and the result of applying the comparison function to these summaries.

Examples

head(

```
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),
```

```
returned.value = "data.frame")
)
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),
            returned.value = "tagged.spectrum")
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),
            returned.value = "tagged.spectrum",
            use.hinges = TRUE)
```

cone_fundamentals10.spct

Ten-degree cone fundaamentals

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding response values for a 2 degrees target. Original data from http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

Usage

cone_fundamentals10.spct

cone_fundamentals10.mspct

Format

A chroma_spct object with 440 rows and 4 variables

An object of class response_mspct (inherits from generic_mspct, list) with 3 rows and 1 columns.

Details

- w.length (nm)
- x
- y
- z

Value

A chroma_spct object.

A response_mspct object containing the same data in three response_spct objects.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct, ciexyzCMF10.spct, ciexyzCMF2.spct

Examples

cone_fundamentals10.spct

convertTfrType *Convert the "Tfr.type" attribute*

Description

Function to set the "Tfr.type" attribute and simultaneously converting the spectral data to correspond to the new type.

Usage

```
convertTfrType(x, Tfr.type = NULL)
```

Arguments

Х	a filter_spct, object_spct, filter_mspct or object_mspct object.
Tfr.type	character One of #internal" or "total".

Details

Internal transmittance uses as reference the light entering the object while total transmittance takes the incident light as reference. The conversion is possible only if reflectance is known. Either as spectral data in an object_spct object, or a filter_spct object that is under the hood an object_spct, or if a fixed reflectance factor applicable to all wavelengths is known.

Value

x possibly with the "thickness" field of the "filter.properties" attribute modified

Note

if x is not a filter_spct object, x is returned unchanged. If or x does not have the "filter.properties" attribute set and with no missing data, x is returned with Tfr set to NA values.

See Also

Other time attribute functions: checkTimeUnit(), convertThickness(), convertTimeUnit(),
getTimeUnit(), setTimeUnit()

convertThickness

Examples

convertThickness Convert the "thickness" attribute of an existing filter_spct object.

Description

Function to set the "thickness" attribute and simultaneously converting the spectral data to correspond to the new thickness.

Usage

```
convertThickness(x, thickness = NULL)
```

Arguments

х	a filter_spct, object_spct, filter_mspct or object_mspct object.
thickness	numeric (m)

Details

For spectral transmittance at a different thickness to be exactly computed, it needs to be based on internal transmittance. This function will apply converTfrType() to x if needed, but to succeed metadata should be available. Please, see convertTfrType.

Value

x possibly with the "thickness" field of the "filter.properties" attribute modified

Note

if x is not a filter_spct object, x is returned unchanged. If or x does not have the "filter.properties" attribute set and with no missing data, x is returned with Tfr set to NA values.

See Also

Other time attribute functions: checkTimeUnit(), convertTfrType(), convertTimeUnit(), getTimeUnit(), setTimeUnit()

Examples

```
my.spct <- polyester.spct
filter_properties(my.spct)
convertThickness(my.spct, thickness = 250e-6)</pre>
```

convertTimeUnit Convert the "time.unit" attribute of an existing source_spct object

Description

Function to set the "time.unit" attribute and simultaneously rescaling the spectral data to be expressed using the new time unit as basis of expression. The change is done by reference ('in place').

Usage

```
convertTimeUnit(x, time.unit = NULL, ...)
```

Arguments

х	source_spct or response_spct object
time.unit	a character string, either "second", "hour", "day", "exposure" or "none", or a lubridate::duration
	(currently ignored)

Value

x possibly with the time.unit attribute modified

Note

if x is not a source_spct or a response_spct object, or time.unit is NULL x is returned unchanged, if the existing or new time.unit cannot be converted to a duration, then the returned spectrum will contain NAs.

See Also

Other time attribute functions: checkTimeUnit(), convertTfrType(), convertThickness(),
getTimeUnit(), setTimeUnit()

Examples

```
my.spct <- sun.spct
my.spct
convertTimeUnit(my.spct, "day")
my.spct</pre>
```

convolve_each

Description

Convolve function for collections of spectra which applies an operation on all the individual members of the collection(s) of spectra.

Usage

```
convolve_each(e1, e2, oper = `*`, sep = "_", ...)
```

Arguments

e1	an object of class generic_mspct or generic_scpt or numeric
e2	an object of class generic_mspct or generic_scpt or numeric
oper	function, usually but not necessarily an operator with two arguments.
sep	character Used when pasting the names of members of e1 and e2 to form the names of members of the returned collection of spectra.
	additional arguments passed to oper if present.

Note

At least one of e1 and e2 must be a generic_mspct object or derived.

See Also

Other math operators and functions: MathFun, ^.generic_spct(), div-.generic_spct, log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct, times-.generic_spct

copy_attributes Copy attributes

Description

Copy attributes from x to y. Methods defined for spectral and waveband objects of classes from package 'photobiology'.

Usage

```
copy_attributes(x, y, which, ...)
## Default S3 method:
copy_attributes(x, y, which = NULL, ...)
## S3 method for class 'generic_spct'
copy_attributes(x, y, which = NULL, which.not = NULL, copy.class = FALSE, ...)
## S3 method for class 'generic_mspct'
copy_attributes(x, y, which = NULL, which.not = NULL, copy.class = FALSE, ...)
## S3 method for class 'waveband'
copy_attributes(x, y, which = NULL, ...)
```

Arguments

х, у	R objects
which	character Names of attributes to copy, if NULL all those relevant according to the class of x is used as defaul,
	not used
which.not	character Names of attributes not to be copied. The names passed here are re- moved from the list for which, which is most useful when we want to modify the default.
copy.class	logical If TRUE class attributes are also copied.

Value

A copy of y with additional attributes set.

Methods (by class)

- default: Default for generic function
- generic_spct:
- generic_mspct:
- waveband:

```
cps2irrad
```

Conversion from counts per second to physical quantities

Description

Conversion of spectral data expressed as cps into irradiance, transmittance or reflectance.

Usage

```
cps2irrad(x.sample, pre.fun = NULL, missing.pixs = numeric(0), ...)
cps2Rfr(x.sample, x.white, x.black = NULL, dyn.range = NULL)
cps2Tfr(x.sample, x.clear, x.opaque = NULL, dyn.range = NULL)
```

Arguments

x.sample, x.cl	ear, x.opaque, x.white, x.black
	cps_spct objects.
pre.fun	function A function applied to x.sample before conversion.
missing.pixs	integer Index to positions in the detector array or scan missing in x.sample but present in the embedded calibration data. (Use only for emergency recovery of incomplete data!!)
	Additional arguments passed to pre.fun.
dyn.range	numeric The effective dynamic range of the instrument, if NULL it is automati- cally set based on integration time bracketing.

Value

A source_spct, filter_spct or reflector_spct object containing the spectral values expressed in physical units.

Note

In contrast to other classes defined in package 'photobiology', class "cps_spct" can have more than one column of cps counts in cases where the intention is to merge these values as part of the processing at the time the calibration is applied. However, being these functions the final step in the conversion to physical units, they accept as input only objects with a single "cps" column, as merging is expected to have been already done.

D2.UV586

Data for typical calibration lamps

Description

A dataset containing fitted constants to be used as input for function D2_spectrum.

Format

A polynom: : polynomial object with 6 constants.

Details

An object of class polynom::polynomial.

Author(s)

Lasse Ylianttila (data)

D2.UV653

Data for typical calibration lamps

Description

A dataset containing fitted constants to be used as input for function D2_spectrum.

Format

A polynom::polynomial object with 6 constants.

Details

An object of class polynom::polynomial.

Author(s)

Lasse Ylianttila (data)

D2.UV654

Data for typical calibration lamps

Description

A dataset containing fitted constants to be used as input for function D2_spectrum.

Format

A polynom: : polynomial object with 6 constants.

Details

An object of class polynom: : polynomial.

Author(s)

Lasse Ylianttila (data)

D2_spectrum

Description

Calculate values by means of a nth degree polynomial from user-supplied constants (for example from a lamp calibration certificate).

Usage

```
D2_spectrum(w.length, k = photobiology::D2.UV653, fill = NA_real_)
```

Arguments

w.length	numeric vector of wavelengths (nm) for output
k	a polynom:polynomial object with n constants for the polynomial
fill	if NA, no extrapolation is done, and NA is returned for wavelengths outside the range 190 nm to 450 nm. If NULL then the tails are deleted. If 0 then the tails are set to zero, etc. NA is default.

Value

a dataframe with four numeric vectors with wavelength values (w.length), energy and photon irradiance (s.e.irrad, s.q.irrad) depending on the argument passed to unit.out (s.irrad).

Note

This is function is valid for wavelengths in the range 180 nm to 495 nm, for wavelengths outside this range NAs are returned.

Examples

D2_spectrum(200) D2_spectrum(170:220)

D65.illuminant.spct CIE D65 illuminant data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 830 nm) and the corresponding spectral energy irradiance normalized to 1 at 560 nm. Spectrum approximates the midday solar spectrum at middle latitude as 'corresponds' to the white point of a black body a 6504 K. Original data from http://files.cie.co.at/204.xls downloaded on 2014-07-25 The variables are as follows:

Usage

D65.illuminant.spct

Format

A source spectrum with 107 rows and 2 variables

Details

- w.length (nm)
- s.e.irrad (rel. units)

Author(s)

CIE

See Also

Other Spectral data examples: A.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

D65.illuminant.spct

day_night

Times for sun positions

Description

Functions for calculating the timing of solar positions, given geographical coordinates and dates. They can be also used to find the time for an arbitrary solar elevation between 90 and -90 degrees by supplying "twilight" angle(s) as argument.

Usage

```
day_night(
   date = lubridate::now(tzone = "UTC"),
   tz = lubridate::tz(date),
   geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
   twilight = "none",
   unit.out = "hours"
)
```

```
day_night_fast(date, tz, geocode, twilight, unit.out)
noon_time(
  date = lubridate::today(),
  tz = lubridate::tz(date),
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  twilight = "none",
  unit.out = "datetime"
)
sunrise_time(
  date = lubridate::today(),
  tz = lubridate::tz(date),
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  twilight = "sunlight",
  unit.out = "datetime"
)
sunset_time(
  date = lubridate::today(),
  tz = lubridate::tz(date),
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  twilight = "sunlight",
  unit.out = "datetime"
)
day_length(
  date = lubridate::now(),
  tz = "UTC",
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  twilight = "sunlight",
  unit.out = "hours"
)
night_length(
  date = lubridate::now(),
  tz = "UTC",
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  twilight = "sunlight",
  unit.out = "hours"
)
```

Arguments

date	"vector" of POSIXct times or Date objects, any valid TZ is allowed, default is current date at Greenwich.
tz	character vector indicating time zone to be used in output.

geocode	data frame with one or more rows and variables lon and lat as numeric values (degrees). If present, address will be copied to the output.
twilight	character string, one of "none", "rim", "refraction", "sunlight", "civil", "nauti- cal", "astronomical", or a numeric vector of length one, or two, giving solar elevation angle(s) in degrees (negative if below the horizon).
unit.out	character string, One of "datetime", "day", "hour", "minute", or "second".

Details

Twilight names are interpreted as follows. "none": solar elevation = 0 degrees. "rim": upper rim of solar disk at the horizon or solar elevation = -0.53 / 2. "refraction": solar elevation = 0 degrees + refraction correction. "sunlight": upper rim of solar disk corrected for refraction, which is close to the value used by the online NOAA Solar Calculator. "civil": -6 degrees, "naval": -12 degrees, and "astronomical": -18 degrees. Unit names for output are as follows: "day", "hours", "minutes" and "seconds" times for sunrise and sunset are returned as times-of-day since midnight expressed in the chosen unit. "date" or "datetime" return the same times as datetime objects with TZ set (this is much slower than "hours"). Day length and night length are returned as numeric values expressed in hours when '"datetime"' is passed as argument to unit.out. If twilight is a numeric vector of length two, the element with index 1 is used for sunrise and that with index 2 for sunset.

Value

A tibble with variables day, tz, twilight.rise, twilight.set, longitude, latitude, address, sunrise, noon, sunset, daylength, nightlength or the corresponding individual vectors.

noon_time, sunrise_time and sunset_time return a vector of POSIXct times

day_length and night_length return numeric a vector giving the length in hours

Warning

Be aware that R's Date class does not save time zone metadata. This can lead to ambiguities in the current implementation based on time instants. The argument passed to date should be of class POSIXct, in other words an instant in time, from which the correct date will be computed based on the tz argument.

Note

This function is an implementation of Meeus equations as used in NOAAs on-line web calculator, which are very precise and valid for a very broad range of dates. For sunrise and sunset the times are affected by refraction in the atmosphere, which does in turn depend on weather conditions. The effect of refraction on the apparent position of the sun is only an estimate based on "typical" conditions. The more tangential to the horizon is the path of the sun, the larger the effect of refraction is on the times of visual occlusion of the sun behind the horizon—i.e. the largest timing errors occur at high latitudes. The computation is not defined for latitudes 90 and -90 degrees, i.e. at the poles.

There exists a different R implementation of the same algorithms called "AstroCalcPureR" available as function astrocalc4r in package 'fishmethods'. Although the equations used are almost all the same, the function signatures and which values are returned differ. In particular, the present implementation splits the calculation into two separate functions, one returning angles at given instants in time, and a separate one returning the timing of events for given dates. In 'fishmethods'

defunct

(= 1.11-0) there is a bug in function astrocalc4r() that affects sunrise and sunset times. The times returned by the functions in package 'photobiology' have been validated against the NOAA base implementation.

In the current implementation functions sunrise_time, noon_time, sunset_time and day_length are wrappers on day_night, so if more than one quantity is needed it is preferable to directly call day_night as it will be faster.

night_length returns the length of night-time conditions in one day (00:00:00 to 23:59:59), rather than the length of the night between two consecutive days.

References

The primary source for the algorithm used is the book: Meeus, J. (1998) Astronomical Algorithms, 2 ed., Willmann-Bell, Richmond, VA, USA. ISBN 978-0943396613.

A different implementation is available at https://apps-nefsc.fisheries.noaa.gov/AstroCalc4R/ and in R paclage 'fishmethods'. In 'fishmethods' (= 1.11-0) there is a bug in function astrocalc4r() that affects sunrise and sunset times.

An interactive web page using the same algorithms is available at https://gml.noaa.gov/grad/ solcalc/. There are small differences in the returned times compared to our function that seem to be related to the estimation of atmospheric refraction (about 0.1 degrees).

See Also

sun_angles.

Other astronomy related functions: format.solar_time(), sun_angles()

Examples

```
library(lubridate)
my.geocode <- data.frame(lat = 60, lon = 25)
day_night(ymd("2015-05-30"), geocode = my.geocode)
day_night(ymd("2015-05-30") + days(1:10), geocode = my.geocode, twilight = "civil")
sunrise_time(ymd("2015-05-30"), geocode = my.geocode)
noon_time(ymd("2015-05-30"), geocode = my.geocode)
sunset_time(ymd("2015-05-30"), geocode = my.geocode)
day_length(ymd("2015-05-30"), geocode = my.geocode)
day_length(ymd("2015-05-30"), geocode = my.geocode, unit.out = "day")</pre>
```

defunct

Defunct functions and methods

Description

Functions listed here have been removed or deleted, and temporarily replaced by stubs that report this when they are called.

Usage

```
f_mspct(...)
mutate_mspct(...)
calc_filter_multipliers(...)
T2T(...)
getAfrType(...)
setAfrType(...)
```

Arguments

... ignored

Note

Function f_mspct() has been renamed msdply().
Function mutate_mspct() has been renamed msmsply().
Function calc_filter_multipliers() has been removed.
Function calc_filter_multipliers() has been removed.
Method getAfrType() has been removed.

despike

Remove spikes from spectrum

Description

Function that returns an R object with observations corresponding to spikes replaced by values computed from neighboring pixels. Spikes are values in spectra that are unusually high compared to neighbors. They are usually individual values or very short runs of similar "unusual" values. Spikes caused by cosmic radiation are a frequent problem in Raman spectra. Another source of spikes are "hot pixels" in CCD and diode array detectors.

Usage

```
despike(x, z.threshold, max.spike.width, window.width, method, na.rm, ...)
## Default S3 method:
despike(
    x,
    z.threshold = NA,
```

despike

```
max.spike.width = NA,
 window.width = NA,
 method = "run.mean",
 na.rm = FALSE,
  • • •
)
## S3 method for class 'numeric'
despike(
  х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  . . .
)
## S3 method for class 'data.frame'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  ...,
 y.var.name = NULL,
 var.name = y.var.name
)
## S3 method for class 'generic_spct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  ...,
 y.var.name = NULL,
  var.name = y.var.name
)
## S3 method for class 'source_spct'
despike(
  х,
  z.threshold = 9,
```

```
max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
  na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . .
)
## S3 method for class 'response_spct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
  na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . .
)
## S3 method for class 'filter_spct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
  na.rm = FALSE,
  filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
  . . .
)
## S3 method for class 'reflector_spct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  . . .
)
## S3 method for class 'cps_spct'
despike(
  х,
  z.threshold = 9,
 max.spike.width = 8,
```

despike

```
window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  • • •
)
## S3 method for class 'raw_spct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  . . .
)
## S3 method for class 'generic_mspct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  . . . ,
 y.var.name = NULL,
  var.name = y.var.name,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'source_mspct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'response_mspct'
despike(
```

```
х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'filter_mspct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
 filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'reflector_mspct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'cps_mspct'
despike(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 window.width = 11,
 method = "run.mean",
 na.rm = FALSE,
  . . . ,
```

despike

```
.parallel = FALSE,
.paropts = NULL
)
## S3 method for class 'raw_mspct'
despike(
    x,
    z.threshold = 9,
    max.spike.width = 8,
    window.width = 11,
    method = "run.mean",
    na.rm = FALSE,
    ...,
    .parallel = FALSE,
    ...,
    .paropts = NULL
)
```

Arguments

an R object	
numeric Modified Z values larger than <code>z.threshold</code> are considered to correspond to spikes.	
integer Wider regions with high Z values are not detected as spikes.	
integer. The full width of the window used for the running mean used as replacement.	
character The name of the method: "run.mean" is running mean as described in Whitaker and Hayes (2018); "adj.mean" is mean of adjacent neighbors (iso- lated bad pixels only).	
logical indicating whether NA values should be treated as spikes and replaced.	
Arguments passed by name to find_spikes().	
var.name, y.var.name	
character Names of columns where to look for spikes to remove.	
character One of "energy" or "photon"	
character One of "transmittance" or "absorbance"	
if TRUE, apply function in parallel, using parallel backend provided by foreach	
a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.	

Value

x with rows corresponding to spikes replaced by a local average of adjacent neighbors outside the spike.

despike

Methods (by class)

- default: Default returning always NA.
- numeric: Default function usable on numeric vectors.
- data.frame: Method for "data.frame" objects.
- generic_spct: Method for "generic_spct" objects.
- source_spct: Method for "source_spct" objects.
- response_spct: Method for "response_spct" objects.
- filter_spct: Method for "filter_spct" objects.
- reflector_spct: Method for "reflector_spct" objects.
- cps_spct: Method for "cps_spct" objects.
- raw_spct: Method for "raw_spct" objects.
- generic_mspct: Method for "generic_mspct" objects.
- source_mspct: Method for "source_mspct" objects.
- response_mspct: Method for "cps_mspct" objects.
- filter_mspct: Method for "filter_mspct" objects.
- reflector_mspct: Method for "reflector_mspct" objects.
- cps_mspct: Method for "cps_mspct" objects.
- raw_mspct: Method for "raw_mspct" objects.

Note

Current algorithm misidentifies steep smooth slopes as spikes, so manual inspection is needed together with adjustment by trial and error of a suitable argument value for z.threshold.

See Also

See the documentation for find_spikes and replace_bad_pixs for details of the algorithm and implementation.

Examples

```
white_led.raw_spct[120:125, ]
# find and replace spike at 245.93 nm
despike(white_led.raw_spct,
        z.threshold = 10,
        window.width = 25)[120:125, ]
```

diffraction_single_slit

Diffraction

Description

Diffraction of optical radiation passing through a single slit can be computed with function diffraction_single_slit(), which implements Fraunhofer's equation. Diffraction plus interference for a pair of slits can be computed with diffraction_double_slit().

Usage

```
diffraction_single_slit(w.length, slit.width, angle)
```

diffraction_double_slit(w.length, slit.width, slit.distance, angle)

Arguments

w.length	numeric Wavelength (nm).
slit.width	numeric Width of the slit (m).
angle	numeric vector Angle (radians).
slit.distance	numeric Distance between the centres of the two slits (m).

Value

A numeric vector of the same length as angle, containing relative intensities.

Examples

```
diffraction_single_slit(w.length = 550,
                             slit.width = 1e-5,
                             angle = 0)
# use odd number for length.out so that 0 is in the sequence
angles <- pi * seq(from = -1/2, to = 1/2, length.out = 501)
plot(angles,
     diffraction_single_slit(w.length = 550, # 550 nm
                             slit.width = 6e-6, # 6 um
                             angle = angles),
     type = "1",
     ylab = "Relative irradiance (/1)",
     xlab = "Angle (radian)")
plot(angles,
     diffraction_double_slit(w.length = 550, # 550 nm
                             slit.width = 6e-6, \# 6 um
                             slit.distance = 18e-6, # 18 um
```

```
angle = angles),
type = "1",
ylab = "Relative irradiance (/1)",
xlab = "Angle (radian)")
```

dim.generic_mspct Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

S3 method for class 'generic_mspct'
dim(x)

S3 replacement method for class 'generic_mspct'
dim(x) <- value</pre>

Arguments

Х	A generic_mspct object or of a derived class.
value	Either NULL or a numeric vector, which is coerced to integer (by truncation).

Value

Either NULL or a numeric vector, which is coerced to integer (by truncation).

div-.generic_spct Arithmetic Operators

Description

Integer-division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 %/% e2

Arguments

e1	an object of class "generic_spct"
e2	an object of class "generic_spct"

div_spectra

See Also

```
Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), log(),
minus-.generic_spct,mod-.generic_spct,plus-.generic_spct,round(),sign(),slash-.generic_spct,
times-.generic_spct
```

div_spectra

Divide two spectra, even if the wavelengths values differ

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated by interpolation. After this, the two spectral values at each wavelength are operated upon.

Usage

```
div_spectra(
  w.length1,
  w.length2 = NULL,
  s.irrad1,
  s.irrad2,
  trim = "union",
  na.rm = FALSE
)
```

Arguments

w.length1	numeric vector of wavelength (nm) of denominator.
w.length2	numeric vector of wavelength (nm) of divisor.
s.irrad1	a numeric vector of spectral values of denominator.
s.irrad2	a numeric vector of spectral values of divisor.
trim	a character string with value "union" or "intersection".
na.rm	a logical value, if TRUE, not the default, NAs in the input are replaced with zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at least one of the input spectra, and missing values are set in each input spectrum to zero before addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calculation.

Value

a dataframe with two numeric variables.

- w.lengthA numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and w.length2. w.length contains all the unique vales, sorted in ascending order.
- s.irradA numeric vector with the sum of the two spectral values at each wavelength.

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

```
head(sun.data)
one.data <- with(sun.data, div_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(one.data)
tail(one.data)</pre>
```

drop_user_cols Drop user columns

Description

Remove from spectral object additional columns that are user defined.

Usage

```
drop_user_cols(x, keep.also, ...)
## Default S3 method:
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'generic_spct'
drop_user_cols(x, keep.also, ...)
## S3 method for class 'source_spct'
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'response_spct'
drop_user_cols(x, keep.also = NULL, ...)
```

```
## S3 method for class 'object_spct'
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'filter_spct'
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'reflector_spct'
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'chroma_spct'
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'calibration_spct'
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'cps_spct'
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'raw_spct'
drop_user_cols(x, keep.also = NULL, ...)
## S3 method for class 'generic_mspct'
drop_user_cols(x, keep.also = NULL, ...)
```

Arguments

Х	An R object
keep.also	character Additionlal columns to preserve.
	needed to allow derivation.

Value

A copy of x possibly with some columns removed.

Methods (by class)

- default:
- generic_spct:
- source_spct:
- response_spct:
- object_spct:
- filter_spct:
- reflector_spct:
- chroma_spct:
- calibration_spct:

- cps_spct:
- raw_spct:
- generic_mspct:

See Also

Other experimental utility functions: collect2mspct(), thin_wl(), uncollect2spct()

e2q

Convert energy-based quantities into photon-based quantities.

Description

Function that converts spectral energy irradiance into spectral photon irradiance (molar).

Usage

```
e2q(x, action, byref, ...)
## Default S3 method:
e2q(x, action = "add", byref = FALSE, ...)
## S3 method for class 'source_spct'
e2q(x, action = "add", byref = FALSE, ...)
## S3 method for class 'response_spct'
e2q(x, action = "add", byref = FALSE, ...)
## S3 method for class 'source_mspct'
e2q(x, action = "add", byref = FALSE, ..., parallel = FALSE, .paropts = NULL)
## S3 method for class 'response_mspct'
e2q(x, action = "add", byref = FALSE, ..., parallel = FALSE, .paropts = NULL)
```

Arguments

х	an R object
action	a character string
byref	logical indicating if new object will be created by reference or by copy of x
	not used in current version
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.
Methods (by class)

- default: Default method
- source_spct: Method for spectral irradiance
- response_spct: Method for spectral responsiveness
- source_mspct: Method for collections of (light) source spectra
- response_mspct: Method for collections of response spectra

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), T2A(), any2T(), as_quantum(), e2qmol_multipliers(), e2quantum_multipliers(), q2e()

e2qmol_multipliers Calculate energy to quantum (mol) multipliers

Description

Multipliers as a function of wavelength, for converting from energy to photon (quantum) molar units.

Usage

```
e2qmol_multipliers(w.length)
```

Arguments

w.length numeric Vector of wavelengths (nm)

Value

A numeric vector of multipliers

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), T2A(), any2T(), as_quantum(), e2quantum_multipliers(), e2q(), q2e()

Examples

with(sun.data, e2qmol_multipliers(w.length))

e2quantum_multipliers Calculate energy to quantum multipliers

Description

Gives multipliers as a function of wavelength, for converting from energy to photon (quantum) units (number of photons as default, or moles of photons).

Usage

```
e2quantum_multipliers(w.length, molar = FALSE)
```

Arguments

w.length	numeric Vector of wavelengths (nm)
molar	logical Flag indicating whether output should be in moles or numbers

Value

A numeric vector of multipliers

See Also

```
Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), T2A(), any2T(), as_quantum(), e2qmol_multipliers(), e2q(), q2e()
```

Examples

```
with(sun.data, e2quantum_multipliers(w.length))
with(sun.data, e2quantum_multipliers(w.length, molar = TRUE))
```

enable_check_spct Enable or disable checks

Description

Choose between protection against errors or faster performance by enabling (the default) or disabling data-consistency and sanity checks.

Usage

enable_check_spct()

disable_check_spct()

set_check_spct(x)

х

logical Flag to enable (TRUE), disable (FALSE) or unset (NULL) option.

Value

The previous value of the option, which can be passed as argument to function set_check_spct() to restore the previous state of the option.

See Also

Other data validity check functions: check_spct(), check_spectrum(), check_w.length()

energy_as_default Set spectral-data options

Description

Set spectral-data related options easily.

Usage

energy_as_default()

photon_as_default()

quantum_as_default()

Tfr_as_default()

Afr_as_default()

A_as_default()

unset_radiation_unit_default()

unset_filter_qty_default()

unset_user_defaults()

Value

Previous value of the modified option.

energy_irradiance

Description

Energy irradiance for a waveband from a radiation spectrum, optionally applying a "biological spectral weighting function" or BSWF.

Usage

```
energy_irradiance(
   w.length,
   s.irrad,
   w.band = NULL,
   unit.in = "energy",
   check.spectrum = TRUE,
   use.cached.mult = FALSE,
   use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric vector of wavelength (nm).	
s.irrad	numeric vector of spectral irradiances, by default as energy (W m-2 nm-1).	
w.band	waveband.	
unit.in	a character Allowed values "photon" or "energy", default is "energy".	
check.spectrum	logical Flag indicating whether to sanity check input data, default is TRUE.	
use.cached.mult		
	logical Flag indicating whether multiplier values should be cached between calls.	
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.	

Value

A single numeric value with no change in scale factor: [W m-2 nm-1] -> [W m-2].

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

energy_ratio

Examples

```
with(sun.data, energy_irradiance(w.length, s.e.irrad))
with(sun.data, energy_irradiance(w.length, s.e.irrad, new_waveband(400,700)))
```

energy_ratio Energy:energy ratio

Description

Energy irradiance ratio between two wavebands for a radiation spectrum.

Usage

```
energy_ratio(
  w.length,
  s.irrad,
  w.band.num = NULL,
  w.band.denom = NULL,
  unit.in = "energy",
  check.spectrum = TRUE,
  use.cached.mult = FALSE,
  use.hinges = NULL
)
```

Arguments

w.length	numeric vector of wavelengths (nm).	
s.irrad	numeric vector of spectral (energy) irradiances (W m-2 nm-1).	
w.band.num	waveband object used to compute the numerator of the ratio.	
w.band.denom	waveband object used to compute the denominator of the ratio.	
unit.in	character Allowed values "energy", and "photon", or its alias "quantum".	
check.spectrum	logical Flag indicating whether to sanity check input data, default is TRUE.	
use.cached.mult		
	logical Flag indicating whether multiplier values should be cached between calls.	
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wave-bands.	

Value

a single numeric value giving the unitless ratio.

Note

The default for both w. band parameters is a waveband covering the whole range of w. length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(), div_spectra(), energy_irradiance(), insert_hinges(), integrate_xy(), interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(), split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

```
with(sun.data,
```

```
energy_ratio(w.length, s.e.irrad, new_waveband(400,500), new_waveband(400,700)))
```

eq_ratio

Energy:photon ratio

Description

This function returns the energy to mole of photons ratio for each waveband and a light source spectrum.

Usage

```
eq_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)
## Default S3 method:
eq_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)
## S3 method for class 'source_spct'
eq_ratio(
    spct,
    w.band = NULL,
    scale.factor = 1,
    wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
    use.cached.mult = FALSE,
    use.hinges = NULL,
    naming = "short",
    name.tag = ifelse(naming != "none", "[e:q]", ""),
    ...
)
## S3 method for class 'source_mspct'
```

114

eq_ratio

```
eq_ratio(
  spct,
  w.band = NULL,
  scale.factor = 1,
  wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = FALSE,
  use.hinges = NULL,
  naming = "short",
  name.tag = ifelse(naming != "none", "[e:q]", ""),
   ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

spct	source_spct.
w.band	waveband or list of waveband objects.
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.
use.cached.mult	
	logical Flag telling whether multiplier values should be cached between calls.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
name.tag	character Used to tag the name of the returned values.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

Computed values are ratios between energy irradiance and photon irradiance for a given waveband. A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used, with "e:q" prepended. Units [J mol-1].

Methods (by class)

- default: Default for generic function
- source_spct: Method for source_spct objects
- source_mspct: Calculates energy:photon from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other photon and energy ratio functions: e_ratio(), q_ratio(), qe_ratio()

Examples

eq_ratio(sun.spct, new_waveband(400,700))

ET_ref

Evapotranspiration

Description

Compute an estimate of reference (= potential) evapotranspiration from meteorologial data. Evapotranspiration from vegetation includes transpiration by plants plus evaporation from the soil or other wet surfaces. ET_0 is the reference value assuming no limitation to transpiration due to soil water, similar to potential evapotranspiration (PET). An actual evapotranspiration value ET can be estimated only if additional information on the plants and soil is available.

116

ET_ref

Usage

```
ET_ref(
  temperature,
 water.vp,
 wind.speed,
  net.irradiance,
  nighttime = FALSE,
  atmospheric.pressure = 10.13,
  soil.heat.flux = 0,
 method = "FAO.PM",
  check.range = TRUE
)
ET_ref_day(
  temperature,
 water.vp,
 wind.speed,
  net.radiation,
  atmospheric.pressure = 10.13,
  soil.heat.flux = 0,
 method = "FAO.PM",
  check.range = TRUE
)
```

Arguments

temperature	numeric vector of air temperatures (C) at 2 m height.	
water.vp	numeric vector of water vapour pressure in air (Pa).	
wind.speed	numeric Wind speed (m/s) at 2 m height.	
net.irradiance	numeric Long wave and short wave balance (W/m2).	
nighttime	logical Used only for methods that distinguish between daytime- and nighttime canopy conductances.	
atmospheric.pressure		
	numeric Atmospheric pressure (Pa).	
soil.heat.flux	numeric Soil heat flux (W/m2), positive if soil temperature is increasing.	
method	character The name of an estimation method.	
check.range	logical Flag indicating whether to check or not that arguments for temperature are within range of method. Passed to function calls to water_vp_sat() and water_vp_sat_slope().	
net.radiation	numeric Long wave and short wave balance (J/m2/day).	

Details

Currently three methods, based on the Penmann-Monteith equation formulated as recommended by FAO56 (Allen et al., 1998) as well as modified in 2005 for tall and short vegetation according to

ASCE-EWRI are implemented in function $ET_ref()$. The computations rely on data measured according WHO standards at 2 m above ground level to estimate reference evapotranspiration (ET_0). The formulations are those for ET expressed in mm/h, but modified to use as input flux rates in W/m2 and pressures expressed in Pa.

Value

A numeric vector of reference evapotranspiration estimates expressed in mm/h for ET_ref() and ET_PM() and in mm/d for ET_ref_day().

References

Allen R G, Pereira L S, Raes D, Smith M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: FAO. Allen R G, Pruitt W O, Wright J L, Howell T A, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Yrisarry J, et al. 2006. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management 81.

See Also

Other Evapotranspiration and energy balance related functions.: net_irradiance()

Examples

```
# instantaneous
ET_ref(temperature = 20,
       water.vp = water_RH2vp(relative.humidity = 70,
                              temperature = 20),
       wind.speed = 0,
       net.irradiance = 10)
ET_ref(temperature = c(5, 20, 35),
       water.vp = water_RH2vp(70, c(5, 20, 35)),
       wind.speed = 0,
       net.irradiance = 10)
# Hot and dry air
ET_ref(temperature = 35,
       water.vp = water_RH2vp(10, 35),
       wind.speed = 5,
       net.irradiance = 400)
ET_ref(temperature = 35,
       water.vp = water_RH2vp(10, 35),
       wind.speed = 5,
       net.irradiance = 400,
       method = "FAO.PM")
ET_ref(temperature = 35,
       water.vp = water_RH2vp(10, 35),
       wind.speed = 5,
       net.irradiance = 400,
```

Extract

```
method = "ASCE.PM.short")
ET_ref(temperature = 35,
       water.vp = water_RH2vp(10, 35),
       wind.speed = 5,
       net.irradiance = 400,
       method = "ASCE.PM.tall")
# Low temperature and high humidity
ET_ref(temperature = 5,
       water.vp = water_RH2vp(95, 5),
       wind.speed = 0.5,
       net.irradiance = -10,
       nighttime = TRUE,
       method = "ASCE.PM.short")
ET_ref_day(temperature = 35,
           water.vp = water_RH2vp(10, 35),
           wind.speed = 5,
           net.radiation = 35e6) # 35 MJ / d / m2
```

Extract

Extract or replace parts of a spectrum

Description

Just like extraction and replacement with indexes in base R, but preserving the special attributes used in spectral classes and checking for validity of remaining spectral data.

Usage

```
## S3 method for class 'generic_spct'
x[i, j, drop = NULL]
## S3 method for class 'raw_spct'
x[i, j, drop = NULL]
## S3 method for class 'cps_spct'
x[i, j, drop = NULL]
## S3 method for class 'source_spct'
x[i, j, drop = NULL]
## S3 method for class 'response_spct'
x[i, j, drop = NULL]
## S3 method for class 'filter_spct'
x[i, j, drop = NULL]
```

Extract

```
## S3 method for class 'reflector_spct'
x[i, j, drop = NULL]
## S3 method for class 'object_spct'
x[i, j, drop = NULL]
## S3 method for class 'chroma_spct'
x[i, j, drop = NULL]
## S3 replacement method for class 'generic_spct'
x[i, j] <- value
## S3 replacement method for class 'generic_spct'
x$name <- value</pre>
```

Arguments

x	spectral object from which to extract $element(s)$ or in which to replace $element(s)$
i	index for rows,
j	index for columns, specifying elements to extract or replace. Indices are numeric or character vectors or empty (missing) or NULL. Please, see Extract for more details.
drop	logical. If TRUE the result is coerced to the lowest possible dimension. The default is FALSE unless the result is a single column.
value	A suitable replacement value: it will be repeated a whole number of times if necessary and it may be coerced: see the Coercion section. If NULL, deletes the column if a single column is selected.
name	A literal character string or a name (possibly backtick quoted). For extraction, this is normally (see under 'Environments') partially matched to the names of the object.

Details

These methods are just wrappers on the method for data.frame objects which copy the additional attributes used by these classes, and validate the extracted object as a spectral object. When drop is TRUE and the returned object has only one column, then a vector is returned. If the extracted columns are more than one but do not include w.length, a data frame is returned instead of a spectral object.

Value

An object of the same class as x but containing only the subset of rows and columns that are selected. See details for special cases.

Extract_mspct

Note

If any argument is passed to j, even TRUE, some metadata attributes are removed from the returned object. This is how the extraction operator works with data.frames in R. For the time being we retain this behaviour for spectra, but it may change in the future.

See Also

subset and trim_spct

Examples

```
sun.spct[sun.spct[["w.length"]] > 400, ]
subset(sun.spct, w.length > 400)
tmp.spct <- sun.spct
tmp.spct[tmp.spct[["s.e.irrad"]] < 1e-5 , "s.e.irrad"] <- 0</pre>
```

```
e2q(tmp.spct[ , c("w.length", "s.e.irrad")]) # restore data consistency!
```

Extract_mspct Extract or replace members of a collection of spectra

Description

Just like extraction and replacement with indexes for base R lists, but preserving the special attributes used in spectral classes.

Usage

```
## S3 method for class 'generic_mspct'
x[i, drop = NULL]
## S3 replacement method for class 'generic_mspct'
x[i] <- value
## S3 replacement method for class 'generic_mspct'
x$name <- value
## S3 replacement method for class 'generic_mspct'</pre>
```

```
x[[name]] <- value
```

Arguments

x	Collection of spectra object from which to extract member(s) or in which to replace member(s)
i	Index specifying elements to extract or replace. Indices are numeric or character vectors. Please, see Extract for more details.

drop	If TRUE the result is coerced to the lowest possible dimension (see the examples). This only works for extracting elements, not for the replacement.
value	A suitable replacement value: it will be repeated a whole number of times if necessary and it may be coerced: see the Coercion section. If NULL, deletes the column if a single column is selected.
name	A literal character string or a name (possibly backtick quoted). For extraction, this is normally (see under 'Environments') partially matched to the names of the object.

Details

This method is a wrapper on base R's extract method for lists that sets additional attributes used by these classes.

Value

An object of the same class as x but containing only the subset of members that are selected.

e_fluence	Energy fluence	
-----------	----------------	--

Description

Energy fluence for one or more wavebands of a light source spectrum and a duration of the exposure.

Usage

```
e_fluence(
  spct,
 w.band,
 exposure.time,
 scale.factor,
 wb.trim,
 use.cached.mult,
 use.hinges,
 allow.scaled,
  . . .
)
## Default S3 method:
e_fluence(
  spct,
 w.band,
  exposure.time,
  scale.factor,
 wb.trim,
  use.cached.mult,
```

```
use.hinges,
  allow.scaled,
  . . .
)
## S3 method for class 'source_spct'
e_fluence(
  spct,
 w.band = NULL,
 exposure.time,
  scale.factor = 1,
  wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = FALSE,
  naming = "default",
  . . .
)
## S3 method for class 'source_mspct'
e_fluence(
  spct,
 w.band = NULL,
  exposure.time,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = FALSE,
  ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

spct	an R object
w.band	a list of waveband objects or a waveband object
exposure.time	lubridate::duration object.
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded
use.cached.mult	

logical indicating whether multiplier values should be cached between calls

use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wave- bands.
allow.scaled	logical indicating whether scaled or normalized spectra as argument to spct are flagged as an error
	other arguments (possibly ignored)
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see <pre>add_attr2tb</pre> for the syntax for <pre>attr2tb</pre> passed as is to formal parameter <pre>col.names.</pre>
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the name of each waveband unless a named list is supplied in which case the names of the list elements are used. The exposure time is copied to the output as an attribute. Units are as follows: (J) joules per exposure.

Methods (by class)

- default: Default for generic function
- source_spct: Calculate energy fluence from a source_spct object and the duration of the exposure.
- source_mspct: Calculates energy fluence from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other irradiance functions: e_irrad(), fluence(), irrad(), q_fluence(), q_irrad()

e_irrad

Examples

e_irrad

Energy irradiance

Description

Energy irradiance for one or more wavebands of a light source spectrum.

Usage

```
e_irrad(
  spct,
 w.band,
  quantity,
  time.unit,
  scale.factor,
 wb.trim,
  use.cached.mult,
  use.hinges,
  allow.scaled,
  . . .
)
## Default S3 method:
e_irrad(
  spct,
 w.band,
  quantity,
  time.unit,
  scale.factor,
 wb.trim,
  use.cached.mult,
  use.hinges,
  allow.scaled,
  . . .
)
## S3 method for class 'source_spct'
e_irrad(
  spct,
 w.band = NULL,
  quantity = "total",
```

```
time.unit = NULL,
  scale.factor = 1,
  wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = !quantity %in% c("average", "mean", "total"),
  naming = "default",
  . . .
)
## S3 method for class 'source_mspct'
e_irrad(
  spct,
 w.band = NULL,
  quantity = "total",
  time.unit = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = !quantity %in% c("average", "mean", "total"),
  naming = "default",
  ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

spct	an R object.	
w.band	a list of waveband objects or a waveband object.	
quantity	character string One of "total", "average" or "mean", "contribution", "contribution.pc", "relative" or "relative.pc".	
time.unit	character or lubridate::duration object.	
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.	
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.	
use.cached.mult		
	logical indicating whether multiplier values should be cached between calls.	
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.	
allow.scaled	logical indicating whether scaled or normalized spectra as argument to spct are flagged as an error.	

126

e_irrad

	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used. The time.unit attribute is copied from the spectrum object to the output. Units are as follows: If units are absolute and time.unit is second, [W m-2 nm-1] -> [W m-2] If time.unit is day, [J d-1 m-2 nm-1] -> [J m-2]; if units are relative, fraction of one or percent.

Methods (by class)

- default: Default for generic function
- source_spct: Calculates energy irradiance from a source_spct object.
- source_mspct: Calculates energy irradiance from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), fluence(), irrad(), q_fluence(), q_irrad()

Examples

```
e_irrad(sun.spct, waveband(c(400,700)))
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3))
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),
        quantity = "total")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),
        quantity = "average")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),
        quantity = "relative")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),
        quantity = "relative.pc")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),
        quantity = "contribution")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),
        quantity = "contribution")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),
        quantity = "contribution.pc")
```

```
e_ratio
```

Energy: energy ratio

Description

This function returns the photon ratio for a given pair of wavebands of a light source spectrum.

Usage

```
e_ratio(
  spct,
 w.band.num,
 w.band.denom,
  scale.factor,
 wb.trim,
 use.cached.mult,
 use.hinges,
  . . .
)
## Default S3 method:
e_ratio(
  spct,
 w.band.num,
 w.band.denom,
  scale.factor,
 wb.trim,
  use.cached.mult,
 use.hinges,
  . . .
)
```

128

```
## S3 method for class 'source_spct'
e_ratio(
  spct,
 w.band.num = NULL,
 w.band.denom = NULL,
 scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = FALSE,
 use.hinges = NULL,
 naming = "short",
  name.tag = ifelse(naming != "none", "[e:e]", ""),
  . . .
)
## S3 method for class 'source_mspct'
e_ratio(
  spct,
 w.band.num = NULL,
 w.band.denom = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = FALSE,
  use.hinges = NULL,
 naming = "short",
  name.tag = ifelse(naming != "none", "[e:e]", ""),
  ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

```
)
```

spct	source_spct
w.band.num	waveband object or a list of waveband objects used to compute the numerator(s) of the ratio(s).
w.band.denom	waveband object or a list of waveband objects used to compute the denominator(s) of the ratio(s).
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded
use.cached.mult	

logical Flag telling whether multiplier values should be cached between calls.

use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
name.tag	character Used to tag the name of the returned values.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach.
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

In the case of methods for individual spectra, a numeric vector of adimensional values giving a energy ratio between integrated energy irradiances for pairs of wavebands, with name attribute set to the name of the wavebands unless a named list of wavebands is supplied in which case the names of the list elements are used, with "(e:e)" appended. A data.frame in the case of collections of spectra, containing one column for each ratio definition, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

Ratio definitions are "assembled" from the arguments passed to w.band.num and w.band.denom. If both arguments are of equal length, then the wavebands are paired to obtain as many ratios as the number of wavebands in each list. Recycling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

- default: Default for generic function
- source_spct: Method for source_spct objects
- source_mspct: Calculates energy:energy ratio from a source_mspct object.

Note

Recycling for wavebands takes place when the number of denominator and denominator wavebands differ. The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

e_response

See Also

Other photon and energy ratio functions: eq_ratio(), q_ratio(), qe_ratio()

Examples

```
e_ratio(sun.spct, new_waveband(400,500), new_waveband(400,700))
```

e_response

Energy-based photo-response

Description

This function returns the mean, total, or contribution of response for each waveband and a response spectrum.

Usage

```
e_response(
  spct,
 w.band,
  quantity,
  time.unit,
  scale.factor,
 wb.trim,
  use.hinges,
  . . .
)
## Default S3 method:
e_response(
  spct,
 w.band,
  quantity,
  time.unit,
  scale.factor,
 wb.trim,
  use.hinges,
  . . .
)
## S3 method for class 'response_spct'
e_response(
  spct,
 w.band = NULL,
  quantity = "total",
  time.unit = NULL,
```

```
scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = getOption("photobiology.use.hinges", default = NULL),
  naming = "default",
  • • •
)
## S3 method for class 'response_mspct'
e_response(
 spct,
 w.band = NULL,
  quantity = "total",
  time.unit = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = getOption("photobiology.use.hinges", default = NULL),
 naming = "default",
  ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

spct	an R object.
w.band	waveband or list of waveband objects or a numeric vector of length two. The waveband(s) determine the region(s) of the spectrum that are summarized. If a numeric range is supplied a waveband object is constructed on the fly from it.
quantity	character string One of "total", "average" or "mean", "contribution", "contribution.pc", "relative" or "relative.pc".
time.unit	character or lubridate::duration object.
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see <pre>add_attr2tb</pre> for the syntax for <pre>attr2tb</pre> passed as is to formal parameter <pre>col.names.</pre>

e_response

idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used.

Methods (by class)

- default: Default method for generic function
- response_spct: Method for response spectra.
- response_mspct: Calculates energy response from a response_mspct

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

See Also

Other response functions: q_response(), response()

Examples

```
e_response(ccd.spct, new_waveband(200,300))
e_response(photodiode.spct)
```

FEL.BN.9101.165 Data for typical calibration lamps

Description

A dataset containing fitted constants to be used as input for function FEL_spectrum.

Format

A numeric vector.

Author(s)

Lasse Ylianttila (data)

FEL_spectrum

Incandescent "FEL" lamp emission spectrum

Description

Calculate values by means of a nth degree polynomial from user-supplied constants (for example from a lamp calibration certificate).

Usage

FEL_spectrum(w.length, k = photobiology::FEL.BN.9101.165, fill = NA_real_)

Arguments

w.length	numeric vector of wavelengths (nm) for output
k	a numeric vector with n constants for the function
fill	if NA, no extrapolation is done, and NA is returned for wavelengths outside the range 250 nm to 900 nm. If NULL then the tails are deleted. If 0 then the tails are set to zero, etc. NA is default.

Value

a dataframe with four numeric vectors with wavelength values (w.length), energy and photon irradiance (s.e.irrad, s.q.irrad) depending on the argument passed to unit.out (s.irrad).

Note

This is function is valid for wavelengths in the range 250 nm to 900 nm, for wavelengths outside this range NAs are returned.

findMultipleWl

Examples

```
FEL_spectrum(400)
FEL_spectrum(250:900)
```

findMultipleWl Find repeated w.length values

Description

Find repeated w.length values

Usage

```
findMultipleWl(x, same.wls = TRUE)
```

Arguments

x	a generic_spct object
same.wls	logical If TRUE all spectra spected to share same w.length values

Value

integer Number of spectra, guessed from the number of copies of each individual w.length value.

find_peaks

Find peaks in a spectrum

Description

This function finds all peaks (local maxima) in a spectrum, using a user provided size threshold relative to the tallest peak (global maximum) bellow which found peaks are ignored—i.e., not included in the returned value. This is a wrapper built on top of function peaks() from package 'splus2R'.

Usage

```
find_peaks(x, ignore_threshold = 0, span = 3, strict = TRUE, na.rm = FALSE)
```

Х	numeric vector	
ignore_threshold		
	numeric Value between 0.0 and 1.0 indicating the relative size compared to tallest peak threshold below which peaks will be ignored. Negative values set a threshold so that the tallest peaks are ignored, instead of the shortest.	
span	integer A peak is defined as an element in a sequence which is greater than all other elements within a window of width span centered at that element. Use NULL for the global peak.	
strict	logical If TRUE, an element must be strictly greater than all other values in its window to be considered a peak.	
na.rm	logical indicating whether NA values should be stripped before searching for peaks.	

Value

A logical vector of the same length as x. Values that are TRUE correspond to local peaks in the data.

Note

This function is a wrapper built on function peaks from **splus2R** and handles non-finite (including NA) values differently than splus2R::peaks, instead of giving an error they are replaced with the smallest finite value in x.

See Also

peaks

Other peaks and valleys functions: find_spikes(), get_peaks(), peaks(), replace_bad_pixs(), spikes(), valleys(), wls_at_target()

Examples

with(sun.data, w.length[find_peaks(s.e.irrad)])

find_spikes Find spikes

Description

This function finds spikes in a numeric vector using the algorithm of Whitaker and Hayes (2018). Spikes are values in spectra that are unusually high or low compared to neighbors. They are usually individual values or very short runs of similar "unusual" values. Spikes caused by cosmic radiation are a frequent problem in Raman spectra. Another source of spikes are "hot pixels" in CCD and diode arrays. Other kinds of accidental "outlayers" will be also detected.

find_spikes

Usage

```
find_spikes(
    x,
    x.is.delta = FALSE,
    z.threshold = 9,
    max.spike.width = 8,
    na.rm = FALSE
)
```

Arguments

х	numeric vector containing spectral data.
x.is.delta	logical Flag indicating if x contains already differences.
z.threshold	numeric Modified Z values larger than z.threshold are considered to be spikes.
max.spike.width	
	integer Wider regions with high Z values are not detected as spikes.
na.rm	logical indicating whether NA values should be stripped before searching for spikes.

Details

Spikes are detected based on a modified Z score calculated from the differenced spectrum. The Z threshold used should be adjusted to the characteristics of the input and desired sensitivity. The lower the threshold the more stringent the test becomes, resulting in most cases in more spikes being detected. A modified version of the algorithm is used if a value different from NULL is passed as argument to max.spike.width. In such a case, an additional step filters out broader spikes (or falsely detected steep slopes) from the returned values.

Value

A logical vector of the same length as x. Values that are TRUE correspond to local spikes in the data.

References

Whitaker, D. A.; Hayes, K. (2018) A simple algorithm for despiking Raman spectra. Chemometrics and Intelligent Laboratory Systems, 179, 82-84.

See Also

Other peaks and valleys functions: find_peaks(), get_peaks(), peaks(), replace_bad_pixs(), spikes(), valleys(), wls_at_target()

Examples

find_wls

Description

Find wavelength values corresponding to a target y value in any spectrum. The name of the column of the spectral data to be used to match the target needs to be passed as argument unless the spectrum contains a single numerical variable in addition to "w.length".

Usage

```
find_wls(
    x,
    target = NULL,
    col.name.x = NULL,
    col.name = NULL,
    .fun = `<=`,
    interpolate = FALSE,
    idfactor = FALSE,
    na.rm = FALSE
)</pre>
```

Arguments

х	an R object
target	numeric value indicating the spectral quantity value for which wavelengths are to be searched and interpolated if need. The character strings "half.maximum" and "half.range" are also accepted as arguments.
col.name.x	character The name of the column in which to the independent variable is stored. Defaults to "w.length" for objects of class "generic_spct" or derived.
col.name	character The name of the column in which to search for the target value.
.fun	function A binary comparison function or operator.
interpolate	logical Indicating whether the nearest wavelength value in x should be returned or a value calculated by linear interpolation between wavelength values stradling the target.
idfactor	logical or character Generates an index column of factor type. If idfactor = TRUE then the column is auto named spct.idx. Alternatively the column name can be directly passed as argument to idfactor as a character string.
na.rm	logical indicating whether NA values should be stripped before searching for the target.

Value

A spectrum object of the same class as x with fewer rows, possibly even no rows. If FALSE is passed to interpolate a subset of x is returned, otherwise a new object of the same class containing interpolated wavelenths for the target value is returned.

fit_peaks

Note

This function is used internally by method wls_at_target(), and these methods should be preferred in user code and scripts.

Examples

```
find_wls(white_led.source_spct)
find_wls(white_led.source_spct, target = "half.maximum")
find_wls(white_led.source_spct, target = 0.4)
find_wls(white_led.source_spct, target = 0.4, interpolate = TRUE)
find_wls(white_led.source_spct, target = c(0.3, 0.4))
find_wls(white_led.source_spct, target = c(0.3, 0.4), idfactor = "target")
find_wls(white_led.source_spct, target = c(0.3, 0.4), idfactor = TRUE)
find_wls(white_led.source_spct, target = c("HM", "HR"))
find_wls(white_led.source_spct, target = c("HM", "HR"), interpolate = TRUE)
led.df <- as.data.frame(white_led.source_spct)</pre>
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length")
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",
         target = 0.4)
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",
         target = c(0.3, 0.4)
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",
         target = 0.4, idfactor = "target")
```

fit_peaks

Refine position and value of extremes by fitting

Description

Functions implementing fitting of peaks in a class-agnostic way. The fitting refines the location of peaks and value of peaks based on the location of maxima and minima supplied. This function is to be used together with find_peaks() or find_valleys().

Usage

```
fit_peaks(
    x,
    peaks.idx,
    span,
    x.col.name = NULL,
    y.col.name,
    method,
    max.span = 5L,
    maximum = TRUE,
    keep.cols = NULL
)
```

```
fit_valleys(
    x,
    valleys.idx,
    span,
    x.col.name = NULL,
    y.col.name,
    method,
    max.span = 5L,
    maximum = FALSE,
    keep.cols = NULL
)
```

Х	generic_spct or data.frame object.	
peaks.idx, valleys.idx		
	logical or integer Indexes into x selecting global or local extremes.	
span	odd integer The span used when refining the location of maxima or minima of	
	Х.	
x.col.name, y.col.name		
	character Name of the column of x on which to operate.	
method	character The method to use for the fit.	
max.span	odd integer The maximum number of data points used when when refining the location of maxima and minima.	
maximum	logical A flag indicating whether to search for maxima or minima.	
keep.cols	logical Keep unrecognized columns in data frames	

Value

An R object of the same class as x containing the fitted values for the peaks, and optionally the values for at peaks.idx or valleys.idx for other retained columns.

Note

These functions are not meant for everyday use. Use option refine.wl = TRUE of methods peaks() and valleys() instead.

Examples

140

fluence

Description

Energy or photon fluence for one or more wavebands of a light source spectrum and a duration of exposure.

Usage

```
fluence(
  spct,
 w.band,
 unit.out,
  exposure.time,
  scale.factor,
 wb.trim,
  use.cached.mult,
  use.hinges,
  allow.scaled,
  . . .
)
## Default S3 method:
fluence(
  spct,
 w.band,
  unit.out,
  exposure.time,
  scale.factor,
 wb.trim,
  use.cached.mult,
  use.hinges,
  allow.scaled,
  . . .
)
## S3 method for class 'source_spct'
fluence(
  spct,
 w.band = NULL,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  exposure.time,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
```

```
allow.scaled = FALSE,
 naming = "default",
  . . .
)
## S3 method for class 'source_mspct'
fluence(
  spct,
 w.band = NULL,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
 exposure.time,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = FALSE,
  naming = "default",
  ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

spct	an R object.	
w.band	a list of waveband objects or a waveband object.	
unit.out	character string with allowed values "energy", and "photon", or its alias "quantum".	
exposure.time	lubridate::duration object.	
scale.factor	numeric vector of length 1, or length equal to that of w. band. Numeric multiplier applied to returned values.	
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.	
use.cached.mult		
	logical indicating whether multiplier values should be cached between calls.	
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.	
allow.scaled	logical indicating whether scaled or normalized spectra as argument to spct are flagged as an error.	
	other arguments (possibly used by derived methods).	
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.	

142

fluence

attr2tb	character vector, see <pre>add_attr2tb</pre> for the syntax for attr2tb passed as is to formal parameter <pre>col.names.</pre>
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the name of each waveband unless a named list is supplied in which case the names of the list elements are used. The time.unit attribute is copied from the spectrum object to the output. Units are as follows: If time.unit is second, [W m-2 nm-1] -> [mol s-1 m-2] If time.unit is day, [J d-1 m-2 nm-1] -> [mol d-1 m-2]

Methods (by class)

- default: Default for generic function
- source_spct: Calculate photon fluence from a source_spct object and the duration of the exposure
- source_mspct: Calculates fluence from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), irrad(), q_fluence(), q_irrad()

Examples

```
library(lubridate)
fluence(sun.spct,
    w.band = waveband(c(400,700)),
    exposure.time = lubridate::duration(3, "minutes") )
```

143

format.solar_time Encode in a Common Format

Description

Format a solar_time object for pretty printing

Usage

```
## S3 method for class 'solar_time'
format(x, ..., sep = ":")
```

Arguments

Х	an R object
	ignored
sep	character used as separator

See Also

Other astronomy related functions: day_night(), sun_angles()

format.tod_time Encode in a Common Format

Description

Format a tod_time object for pretty printing

Usage

S3 method for class 'tod_time'
format(x, ..., sep = ":")

Arguments

х	an R object
	ignored
sep	character used as separator

See Also

Other Time of day functions: as_tod(), print.tod_time()
formatted_range Compute range and format it

Description

Compute the range of an R object, and format it as string suitable for printing.

Usage

```
formatted_range(x, na.rm = TRUE, digits = 3, nsmall = 2, collapse = "..")
```

Arguments

Х	an R object
na.rm	logical, indicating if NA's should be omitted.
digits, nsmall	numeric, passed to same name parameters of format().
collapse	character, passed to same name parameter of paste().

See Also

range, format and paste.

Examples

formatted_range(c(1, 3.5, -0.01))

fscale

Rescale a spectrum using a summary function

Description

These methods return a spectral object of the same class as the one supplied as argument but with the spectral data rescaled based on a summary function f applied over a specific range or wavelengths and a target value for the summary value.

Usage

fscale(x, ...)
Default S3 method:
fscale(x, ...)
S3 method for class 'source_spct'
fscale(

```
х,
  range = NULL,
  f = "mean",
  target = 1,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  set.scaled = target == 1,
  . . .
)
## S3 method for class 'response_spct'
fscale(
 х,
 range = NULL,
  f = "mean",
  target = 1,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  set.scaled = target == 1,
  . . .
)
## S3 method for class 'filter_spct'
fscale(
 х,
 range = NULL,
  f = "mean",
  target = 1,
  qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
  set.scaled = target == 1,
  . . .
)
## S3 method for class 'reflector_spct'
fscale(
 х,
 range = NULL,
  f = "mean",
  target = 1,
  qty.out = NULL,
  set.scaled = target == 1,
  . . .
)
## S3 method for class 'raw_spct'
fscale(x, range = NULL, f = "mean", target = 1, set.scaled = target == 1, ...)
## S3 method for class 'cps_spct'
fscale(x, range = NULL, f = "mean", target = 1, set.scaled = target == 1, ...)
```

```
## S3 method for class 'generic_spct'
fscale(
  х,
  range = NULL,
  f = "mean",
  target = 1,
  set.scaled = target == 1,
  col.names,
  . . .
)
## S3 method for class 'source_mspct'
fscale(
 х,
  range = NULL,
  f = "mean",
  target = 1,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  set.scaled = target == 1,
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'response_mspct'
fscale(
  х,
 range = NULL,
  f = "mean",
  target = 1,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  set.scaled = target == 1,
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'filter_mspct'
fscale(
 х,
 range = NULL,
  f = "mean",
  target = 1,
  qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
  set.scaled = target == 1,
  ...,
  .parallel = FALSE,
  .paropts = NULL
```

fscale

```
)
## S3 method for class 'reflector_mspct'
fscale(
 х,
 range = NULL,
 f = "mean",
  target = 1,
 qty.out = NULL,
  set.scaled = target == 1,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'raw_mspct'
fscale(
 х,
 range = NULL,
  f = "mean",
 target = 1,
  set.scaled = target == 1,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'cps_mspct'
fscale(
 х,
 range = NULL,
  f = "mean",
  target = 1,
  set.scaled = target == 1,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'generic_mspct'
fscale(
 х,
 range = NULL,
  f = "mean",
  target = 1,
  set.scaled = target == 1,
  col.names,
```

. . . ,

fscale

```
.parallel = FALSE,
.paropts = NULL
)
```

Arguments

х	An R object
	additional named arguments passed down to f.
range	numeric. An R object on which range() returns a numeric vector of length 2 with the limits of a range of wavelengths in nm, with min and max wavelengths (nm)
f	character string. "mean" or "total" for scaling so that this summary value becomes 1 for the returned object, or the name of a function taking x as first argument and returning a numeric value.
target	numeric A constant used as target value for scaling.
unit.out	character. Allowed values "energy", and "photon", or its alias "quantum".
set.scaled	logical or NULL Flag indicating if the data is to be marked as "scaled" or not.
qty.out	character. Allowed values "transmittance", and "absorbance".
col.names	character vector containing the names of columns or variables to which to apply the scaling.
.parallel	logical if TRUE, apply function in parallel, using parallel backend provided by foreach.
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with the original spectral data values replaced with rescaled values, and the "scaled" attribute set to a list describing the scaling applied.

a new object of the same class as x.

Methods (by class)

- default: Default for generic function
- source_spct:
- response_spct:
- filter_spct:
- reflector_spct:
- raw_spct:
- cps_spct:
- generic_spct:

- source_mspct:
- response_mspct:
- filter_mspct:
- reflector_mspct:
- raw_mspct:
- cps_mspct:
- generic_mspct:

Important changes

Metadata describing the rescaling operation are stored in an attribute only if set.scaled = TRUE is passed to the call. The exact format and data stored in the attribute "scaled" has changed during the development of the package. Spectra re-scaled with earlier versions will lack some information. To obtain the metadata in a consistent format irrespective of this variation use accessor getScaling(), which fills missing fields with NA.

Note

The default for set.scaled **depends dynamically on the passed to** target. Sometimes we rescale a spectrum to a "theoretical" value for the summary, while in other cases we rescale the spectrum to a real-world target value of e.g. a reference energy irradiance. In the first case we say that the data are expressed in relative units, while in the second case we retain actual physical units. To indicate this, this package uses an attribute, which will by default be set assuming the first of these two situations when target == 1 and not set assuming the second situation otherwise. These defaults can be overriden with an explicit logical argument passed to set.scaled.

See Also

Other rescaling functions: fshift(), getNormalized(), getScaled(), is_normalized(), is_scaled(), normalize(), setNormalized(), setScaled()

Examples

fshift

Description

The fshift() methods return a spectral object of the same class as the one supplied as argument but with the spectral data on a zero-shifted scale. A range of wavelengths is taken as a zero reference and the summary calculated with f for this waveband is substracted. This results in a zero shift (= additive correction) to the values in the returned object. Metadata attributes are retained unchanged.

Usage

```
fshift(x, ...)
## Default S3 method:
fshift(x, ...)
## S3 method for class 'source_spct'
fshift(
  х,
  range = c(wl_min(x), wl_min(x) + 10),
  f = "mean",
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
)
## S3 method for class 'response_spct'
fshift(
  х,
  range = c(wl_min(x), wl_min(x) + 10),
  f = "mean",
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . .
)
## S3 method for class 'filter_spct'
fshift(
  х,
  range = c(wl_min(x), wl_min(x) + 10),
  f = "min",
  qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
  . . .
)
## S3 method for class 'reflector_spct'
fshift(x, range = c(wl_min(x), wl_min(x) + 10), f = "min", qty.out = NULL, ...)
```

```
## S3 method for class 'source_mspct'
fshift(
 х,
  range = c(wl_min(x), wl_min(x) + 10),
  f = "mean",
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . .
)
## S3 method for class 'raw_spct'
fshift(
 х,
 range = c(wl_min(x), wl_min(x) + 10),
 f = "mean",
 qty.out = NULL,
  . . .
)
## S3 method for class 'cps_spct'
fshift(
 х,
 range = c(wl_min(x), wl_min(x) + 10),
 f = "mean",
 qty.out = NULL,
  . . .
)
## S3 method for class 'generic_spct'
fshift(x, range = c(wl_min(x), wl_min(x) + 10), f = "mean", col.names, ...)
## S3 method for class 'response_mspct'
fshift(
 х,
 range = c(wl_min(x), wl_min(x) + 10),
  f = "mean",
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'filter_mspct'
fshift(
 х,
 range = c(wl_min(x), wl_min(x) + 10),
  f = "min",
 qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
  ...,
```

```
.parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'reflector_mspct'
fshift(
 х,
 range = c(wl_min(x), wl_min(x) + 10),
 f = "min",
 qty.out = NULL,
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'raw_mspct'
fshift(
 х,
  range = c(wl_min(x), wl_min(x) + 10),
  f = "min",
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'cps_mspct'
fshift(
 х,
 range = c(wl_min(x), wl_min(x) + 10),
 f = "min",
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'generic_mspct'
fshift(
 х,
 range = c(wl_min(x), wl_min(x) + 10),
 f = "min",
 col.names,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments ×

An R object

	additional named arguments passed down to f.
range	An R object on which range() returns a numeric vector of length 2 with the limits of a range of wavelengths in nm, with min and max wavelengths (nm)
f	character string "mean", "min" or "max" for scaling so that this summary value becomes the origin of the spectral data scale in the returned object, or the name of a function taking x as first argument and returning a numeric value.
unit.out	character Allowed values "energy", and "photon", or its alias "quantum"
qty.out	character Allowed values "transmittance", and "absorbance"
col.names	character vector containing the names of columns or variables to which to apply the scale shift.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with the spectral data values replaced with values zero-shifted.

a new object of the same class as x.

Methods (by class)

- default: Default for generic function
- source_spct:
- response_spct:
- filter_spct:
- reflector_spct:
- source_mspct:
- raw_spct:
- cps_spct:
- generic_spct:
- response_mspct:
- filter_mspct:
- reflector_mspct:
- raw_mspct:
- cps_mspct:
- generic_mspct:

See Also

Other rescaling functions: fscale(), getNormalized(), getScaled(), is_normalized(), is_scaled(), normalize(), setNormalized(), setScaled() generic_mspct

Description

Converts a list of spectral objects into a "multi spectrum" object by setting the class attribute of the list of spectra to the corresponding multi-spect class, check that components of the list belong to the expected class.

Usage

```
generic_mspct(
 1 = NULL,
 class = "generic_spct",
 ncol = 1,
 byrow = FALSE,
 dim = c(length(l)%/%ncol, ncol)
)
calibration_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)
raw_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)
cps_mspct(1 = NULL, ncol = 1, byrow = FALSE, ...)
source_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)
filter_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)
reflector_mspct(1 = NULL, ncol = 1, byrow = FALSE, ...)
object_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)
response_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)
chroma_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)
```

Arguments

1	list of generic_spct or derived classes
class	character The multi spectrum object class or the expected class for the elements of l
ncol	integer Number of 'virtual' columns in data
byrow	logical If $ncol > 1$ how to read in the data
dim	integer vector of dimensions
	ignored

Functions

- calibration_mspct: Specialization for collections of calibration_spct objects.
- raw_mspct: Specialization for collections of raw_spct objects.
- cps_mspct: Specialization for collections of cps_spct objects.
- source_mspct: Specialization for collections of source_spct objects.
- filter_mspct: Specialization for collections of filter_spct objects.
- reflector_mspct: Specialization for collections of reflector_spct objects.
- object_mspct: Specialization for collections of object_spct objects.
- response_mspct: Specialization for collections of response_spct objects.
- chroma_mspct: Specialization for collections of chroma_spct objects.

Note

Setting class = source_spct or class = source_mspct makes no difference

Examples

```
filter_mspct(list(polyester.spct, yellow_gel.spct))
```

getBSWFUsed

Get the "bswf.used" attribute

Description

Function to read the "time.unit" attribute of an existing source_spct object

Usage

```
getBSWFUsed(x)
```

Arguments ×

a source_spct object

Value

character string

Note

if x is not a source_spct object, NA is returned

See Also

Other BSWF attribute functions: setBSWFUsed()

getFilterProperties

Examples

getBSWFUsed(sun.spct)

getFilterProperties Get the "filter.properties" attribute

Description

Function to read the "filter.properties" attribute of an existing filter_spct or a filter_mspct.

Usage

```
getFilterProperties(x, return.null, ...)
filter_properties(x, return.null, ...)
## Default S3 method:
getFilterProperties(x, return.null = FALSE, ...)
## S3 method for class 'filter_spct'
getFilterProperties(x, return.null = FALSE, ...)
## S3 method for class 'summary_filter_spct'
getFilterProperties(x, return.null = FALSE, ...)
## S3 method for class 'generic_mspct'
getFilterProperties(x, return.null = FALSE, ..., idx = "spct.idx")
```

Arguments

Х	a filter_spct object
return.null	logical If true, NULL is returned if the attribute is not set, otherwise the expected list is returned with all fields set to NA.
	Allows use of additional arguments in methods for other classes.
idx	character Name of the column with the names of the members of the collection of spectra.

Value

a list with fields named "Rfr.constant", "thickness" and "attenuation.mode". If the attribute is not set, and return.null is FALSE, a list with fields set to NA is returned, otherwise, NULL.

Methods (by class)

- default: default
- filter_spct: generic_spct
- summary_filter_spct: summary_generic_spct
- generic_mspct: filter_mspct

Note

The method for collections of spectra returns the a tibble with a column of lists.

See Also

```
Other measurement metadata functions: add_attr2tb(), getHowMeasured(), getInstrDesc(),
getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(),
isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(),
setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(),
setWhereMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

Examples

filter_properties(polyester.spct)

getHowMeasured Get the "how.measured" attribute

Description

Function to read the "how.measured" attribute of an existing generic_spct or a generic_mspct.

Usage

```
getHowMeasured(x, ...)
how_measured(x, ...)
## Default S3 method:
getHowMeasured(x, ...)
## S3 method for class 'generic_spct'
getHowMeasured(x, ...)
## S3 method for class 'summary_generic_spct'
getHowMeasured(x, ...)
## S3 method for class 'generic_mspct'
getHowMeasured(x, ..., idx = "spct.idx")
```

getIdFactor

Arguments

x	a generic_spct object
	Allows use of additional arguments in methods for other classes.
idx	character Name of the column with the names of the members of the collection of spectra.

Value

character vector An object containing a description of the data.

Methods (by class)

- default: default
- generic_spct: generic_spct
- summary_generic_spct: summary_generic_spct
- generic_mspct: generic_mspct

Note

The method for collections of spectra returns the a tibble with a column of character strings.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

Examples

how_measured(sun.spct)

getIdFactor Get the "idfactor" attribute

Description

Function to read the "idfactor" attribute of an existing generic_spct.

Usage

getIdFactor(x)

getInstrDesc

Arguments

х

a generic_spct object

Value

character

Note

If x is not a generic_spct or an object of a derived class NA is returned.

See Also

Other idfactor attribute functions: setIdFactor()

Examples

getMultipleWl(sun.spct)

getInstrDesc Get the "instr.desc" attribute

Description

Function to read the "instr.desc" attribute of an existing generic_spct object.

Usage

getInstrDesc(x)

Arguments

х

a generic_spct object

Value

list (depends on instrument type)

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

getInstrSettings Get the "instr.settings" attribute

Description

Function to read the "instr.settings" attribute of an existing generic_spct object.

Usage

```
getInstrSettings(x)
```

Arguments

х

a generic_spct object

Value

list

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), set

getMspctVersion Get the "mspct.version" attribute

Description

Function to read the "mspct.version" attribute of an existing generic_mspct object.

Usage

```
getMspctVersion(x)
```

Arguments

x a generic_mspct object

Value

numeric value

Note

if x is not a generic_mspct object, NA is returned, and if it the attribute is missing, zero is returned with a warning.

getMultipleWl

Get the "multiple.wl" attribute

Description

Function to read the "multiple.wl" attribute of an existing generic_spct.

Usage

```
getMultipleWl(x)
```

Arguments

x a generic_spct object

Value

integer

Note

If x is not a generic_spct or an object of a derived class NA is returned.

See Also

Other multiple.wl attribute functions: setMultipleWl()

Examples

```
getMultipleWl(sun.spct)
```

getNormalized Get the "normalized" attribute

Description

Function to read the "normalized" attribute of an existing generic_spct object.

Usage

```
getNormalized(x, .force.numeric = FALSE)
getNormalised(x, .force.numeric = FALSE)
getNormalization(x)
```

getNormalisation(x)

Arguments

x a generic_spct object	
-------------------------	--

.force.numeric logical If TRUE always silently return a numeric value, with FALSE encoded as zero, and character values as NA.

Value

numeric or logical (possibly character for objects created with earlier versions).

Note

if x is not a generic_spct object, NA is returned

getNormalised() is a synonym for this getNormalized() method.

See Also

```
Other rescaling functions: fscale(), fshift(), getScaled(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()
```

Examples

```
sun_norm.spct <- normalize(sun.spct)
getNormalized(sun.spct)</pre>
```

getNormalization(sun.spct)

getResponseType

Description

Function to read the "response.type" attribute of an existing response_spct object.

Usage

getResponseType(x)

Arguments

x a response_spct object

Details

Objects of class response_spct() can contain data for a response spectrum or an action spectrum. Response spectra are measured using the same photon (or energy) irradiance at each wavelength. Action spectra are derived from dose response curves at each wavelength, and responsivity at each wavelength is expressed as the reciprocal of the photon fluence required to obtain a fixed level of response.

Value

character string

Note

If x is not a response_spct object, NA is returned.

Examples

```
getResponseType(ccd.spct)
getResponseType(sun.spct)
```

getRfrType

Description

Function to read the "Rfr.type" attribute of an existing reflector_spct object or object_spct object.

Usage

getRfrType(x)

Arguments ×

a source_spct object

Value

character string

Note

if x is not a filter_spct object, NA is returned

See Also

Other Rfr attribute functions: setRfrType()

getScaled

Get the "scaled" attribute

Description

Function to read the "scaled" attribute of an existing generic_spct object.

Usage

getScaled(x, .force.list = FALSE)

```
getScaling(x)
```

Arguments

х	a generic_spct object
.force.list	logical If TRUE always silently return a list, with FALSE encoded field multiplier
	= 1.

Value

logical

Note

if x is not a filter_spct object, NA is returned

See Also

```
Other rescaling functions: fscale(), fshift(), getNormalized(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()
```

Examples

```
scaled.spct <- fscale(sun.spct)
getScaled(scaled.spct)</pre>
```

getSpctVersion Get the "spct.version" attribute

Description

Function to read the "spct.version" attribute of an existing generic_spct object.

Usage

```
getSpctVersion(x)
```

Arguments

x a generic_spct object

Value

integer value

Note

if x is not a generic_spct object, NA is returned, and if it the attribute is missing, zero is returned with a warning.

getTfrType

Description

Function to read the "Tfr.type" attribute of an existing filter_spct or object_spct object.

Usage

getTfrType(x)

Arguments ×

a filter_spct or object_spct object

Value

character string

Note

If x is not a filter_spct or an object_spct object, NA is returned.

See Also

Other Tfr attribute functions: setTfrType()

Examples

```
getTfrType(polyester.spct)
```

getTimeUnit Get the "time.unit" attribute of an existing source_spct object

Description

Function to read the "time.unit" attribute

Usage

getTimeUnit(x, force.duration = FALSE)

Arguments

xa source_spct objectforce.durationlogical If TRUE a lubridate::duration is returned even if the object attribute is a
character string, if no conversion is possible NA is returned.

Value

character string or a lubridate::duration

Note

if x is not a source_spct or a response_spct object, NA is returned

See Also

Other time attribute functions: checkTimeUnit(), convertTfrType(), convertThickness(), convertTimeUnit(), setTimeUnit()

Examples

getTimeUnit(sun.spct)

getWhatMeasured Get the "what.measured" attribute

Description

Function to read the "what.measured" attribute of an existing generic_spct or a generic_mspct.

Usage

```
getWhatMeasured(x, ...)
what_measured(x, ...)
## Default S3 method:
getWhatMeasured(x, ...)
## S3 method for class 'generic_spct'
getWhatMeasured(x, ...)
## S3 method for class 'summary_generic_spct'
getWhatMeasured(x, ...)
## S3 method for class 'generic_mspct'
getWhatMeasured(x, ..., idx = "spct.idx")
```

Arguments

х	a generic_spct object
	Allows use of additional arguments in methods for other classes.
idx	character Name of the column with the names of the members of the collection
	of spectra.

getWhenMeasured

Value

character vector An object containing a description of the data.

Methods (by class)

- default: default
- generic_spct: generic_spct
- summary_generic_spct: summary_generic_spct
- generic_mspct: generic_mspct

Note

The method for collections of spectra returns the a tibble with a column of character strings.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

Examples

what_measured(sun.spct)

getWhenMeasured Get the "when.measured" attribute

Description

Function to read the "when.measured" attribute of an existing generic_spct or a generic_mspct.

Usage

```
getWhenMeasured(x, ...)
when_measured(x, ...)
## Default S3 method:
getWhenMeasured(x, ...)
## S3 method for class 'generic_spct'
getWhenMeasured(x, ...)
```

```
## S3 method for class 'summary_generic_spct'
getWhenMeasured(x, ...)
## S3 method for class 'generic_mspct'
getWhenMeasured(x, ..., idx = "spct.idx")
```

Arguments

x	a generic_spct object
	Allows use of additional arguments in methods for other classes.
idx	character Name of the column with the names of the members of the collection of spectra.

Value

POSIXct An object with date and time.

Methods (by class)

- default: default
- generic_spct: generic_spct
- summary_generic_spct: summary_generic_spct
- generic_mspct: generic_mspct

Note

If x is not a generic_spct or an object of a derived class NA is returned.

The method for collections of spectra returns the a tibble with the correct times in TZ = "UTC".

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()

Examples

```
when_measured(sun.spct)
```

getWhereMeasured Get the "where.measured" attribute

Description

Function to read the "where.measured" attribute of an existing generic_spct.

Usage

```
getWhereMeasured(x, ...)
where_measured(x, ...)
## Default S3 method:
getWhereMeasured(x, ...)
## S3 method for class 'generic_spct'
getWhereMeasured(x, ...)
## S3 method for class 'summary_generic_spct'
getWhereMeasured(x, ...)
## S3 method for class 'generic_mspct'
getWhereMeasured(x, ..., idx = "spct.idx", .bind.geocodes = TRUE)
```

Arguments

х	a generic_spct object
	Allows use of additional arguments in methods for other classes.
idx	character Name of the column with the names of the members of the collection of spectra.
.bind.geocodes	logical In the case of collections of spectra if .bind.geocodes = TRUE, the de- fault, the returned value is a single geocode with one row for each member spectrum. Otherwise the individual geocode data frames are returned in a list column within a tibble.

Value

a data.frame with a single row and at least columns "lon" and "lat", unless expand is set to FALSE.

Methods (by class)

- default: default
- generic_spct: generic_spct
- summary_generic_spct: summary_generic_spct
- generic_mspct: generic_mspct

Note

If x is not a generic_spct or an object of a derived class NA is returned.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhenMeasured(), setWhenMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

Examples

where_measured(sun.spct)

get_attributes Get the metadata attributes

Description

Method returning attributes of an object of class generic_spct or derived, or of class waveband. Only attributes defined and/or set by package 'photobiology' for objects of the corresponding class are returned. Parameter which can be used to subset the list of attributes.

Usage

```
get_attributes(x, which, ...)
## S3 method for class 'generic_spct'
get_attributes(x, which = NULL, allowed = all.attributes, ...)
## S3 method for class 'source_spct'
get_attributes(x, which = NULL, ...)
## S3 method for class 'filter_spct'
get_attributes(x, which = NULL, ...)
## S3 method for class 'reflector_spct'
get_attributes(x, which = NULL, ...)
## S3 method for class 'object_spct'
get_attributes(x, which = NULL, ...)
## S3 method for class 'object_spct'
get_attributes(x, which = NULL, ...)
## S3 method for class 'waveband'
get_attributes(x, which = NULL, ...)
```

get_attributes

Arguments

x	a generic_spct object.
which	character vector Names of attributes to retrieve.
	currently ignored
allowed	character vector Names of attributes accepted by which.

Details

Vectors of character strings passed as argument to which are parsed so that if the first member string is "-" the remaining members are removed from the allowed; and if it is "=" the remaining members are used if in allowed. If the first member is none of these three strings, the behaviour is the same as if the first string is "=". If which is NULL all the attributes in allowed are used. The string "" means no attributes, and has precedence over any other values in the character vector. The order of the names of annotations has no meaning: the vector is interpreted as a set except for the three possible "operators" at position 1.

Value

Named list of attribute values.

Methods (by class)

- generic_spct: generic_spct
- source_spct: source_spct
- filter_spct: filter_spct
- reflector_spct: reflector_spct
- object_spct: object_spct
- waveband: waveband

See Also

select_spct_attributes

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), s

get_peaks

Description

These functions find peaks (local maxima) or valleys (local minima) in a spectrum, using a user selectable size threshold relative to the tallest peak (global maximum). This a wrapper built on top of function peaks from package splus2R.

Usage

```
get_peaks(
  х,
  у,
  ignore_threshold = 0,
  span = 5,
  strict = TRUE,
  x_unit = "",
  x_digits = 3,
  na.rm = FALSE
)
get_valleys(
  х,
  у,
  ignore_threshold = 0,
  span = 5,
  strict = TRUE,
  x_unit = "",
x_digits = 3,
  na.rm = FALSE
)
```

Arguments

x	numeric		
у	numeric		
ignore_threshold			
	numeric Value between 0.0 and 1.0 indicating the relative size compared to tallest peak threshold below which peaks will be ignored. Negative values set a threshold so that the tallest peaks are ignored, instead of the shortest.		
span	integer A peak is defined as an element in a sequence which is greater than all other elements within a window of width span centered at that element. Use NULL for the global peak.		
strict	logical If TRUE, an element must be strictly greater than all other values in its window to be considered a peak.		

x_unit	character Vector of texts to be pasted at end of labels built from x value at peaks.
x_digits	numeric Number of significant digits in wavelength label.
na.rm	logical indicating whether NA values should be stripped before searching for peaks.

Value

A data frame with variables w.length and s.irrad with their values at the peaks or valleys plus a character variable of labels.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), peaks(), replace_bad_pixs(), spikes(), valleys(), wls_at_target()

Examples

with(sun.spct, get_peaks(w.length, s.e.irrad))
with(sun.spct, get_valleys(w.length, s.e.irrad))

green_leaf.spct Green birch leaf reflectance.

Description

A dataset of spectral reflectance expressed as a fraction of one.

Usage

green_leaf.spct

Format

A reflector_spct object with 226 rows and 2 variables

Details

- w.length (nm)
- Rfr (0..1)

References

Aphalo, P. J. & Lehto, T. Effects of light quality on growth and N accumulation in birch seedlings Tree Physiology, 1997, 17, 125-132

head_tail

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

green_leaf.spct

head_tail

Return the First and Last Part of an Object

Description

Returns the first and last "parts" (rows or members) of a spectrum, dataframe, vector, function, table or ftable. In other words, the combined output from methods head and tail.

Usage

```
head_tail(x, n, ...)
## Default S3 method:
head_tail(x, n = 3L, ...)
## S3 method for class 'data.frame'
head_tail(x, n = 3L, ...)
## S3 method for class 'matrix'
head_tail(x, n = 3L, ...)
## S3 method for class '`function`'
head_tail(x, n = 6L, ...)
## S3 method for class 'table'
head_tail(x, n = 6L, ...)
## S3 method for class 'ftable'
head_tail(x, n = 6L, ...)
```

Arguments ×

an R object.

Details

The value returned by head_tail() is equivalent to row binding the the values returned by head() and tail(), although not implemented in this way. The same specializations as defined in package 'utils' for head() and tail() have been implemented.

Value

An object (usually) like x but smaller, except when n = 0. For ftable objects x, a transformed format(x).

Methods (by class)

- default:
- data.frame:
- matrix:
- function:
- table:
- ftable:

Note

For some types of input, like functions, the output may be confusing, however, we have opted for consistency with existing functions. The code is in part a revision of that of head() and tail() from package 'utils'. I have been missing this method especially when checking spectral data, as both ends are of interest.

head_tail() methods for function, table and ftable classes, are wrappers for head() method.

See Also

head, and compare the examples and the values returned to the examples below.

Examples

```
head_tail(letters)
head_tail(letters, n = -6L)
head_tail(freeny.x, n = 10L)
head_tail(freeny.y)
```

head_tail(stats::ftable(Titanic))

```
insert_hinges
```

Description

Inserting wavelengths values immediately before and after a discontinuity in the SWF, greatly reduces the errors caused by interpolating the weighted irradiance during integration of the effective spectral irradiance. This is specially true when data have a large wavelength step size.

Usage

insert_hinges(x, y, h)

Arguments

х	numeric vector (sorted in increasing order)
У	numeric vector
h	a numeric vector giving the wavelengths at which the y values should be inserted
	by interpolation, no interpolation is indicated by an empty vector (numeric(0))

Value

a data.frame with variables x and y. Unless the hinge values were already present in y, each inserted hinge, expands the vectors returned in the data frame by one value.

Note

Insertion is a costly operation but I have tried to optimize this function as much as possible by avoiding loops. Earlier this function was implemented in C++, but a bug was discovered and I have now rewritten it using R.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(), div_spectra(), energy_irradiance(), energy_ratio(), integrate_xy(), interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(), split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

```
with(sun.data,
    insert_hinges(w.length, s.e.irrad,
        c(399.99, 400.00, 699.99, 700.00)))
```

insert_spct_hinges Insert new wavelength values into a spectrum

Description

Insert new wavelength values into a spectrum interpolating the corresponding spectral data values.

Usage

insert_spct_hinges(spct, hinges = NULL, byref = FALSE)

Arguments

spct	an object of class "generic_spct"
hinges	numeric vector of wavelengths (nm) at which the s.irrad should be inserted by interpolation, no interpolation is indicated by an empty vector $(numeric(0))$
byref	logical indicating if new object will be created by reference or by copy of spct

Value

a generic_spct or a derived type with variables w.length and other numeric variables.

Note

Inserting wavelengths values "hinges" immediately before and after a discontinuity in the SWF, greatly reduces the errors caused by interpolating the weighted irradiance during integration of the effective spectral irradiance. This is specially true when data has a large wavelength step size.

Examples

integrate_spct Integrate spectral data.

Description

This function gives the result of integrating spectral data over wavelengths.

Usage

integrate_spct(spct)

Arguments

spct

generic_spct

Value

One or more numeric values with no change in scale factor: e.g. [W m-2 nm-1] -> [W m-2]. Each value in the returned vector corresponds to a variable in the spectral object, except for wavelength. For non-numeric variables the returned value is NA.

Examples

integrate_spct(sun.spct)

integrate_xy Gives irradiance from spectral irradiance.

Description

This function gives the result of integrating spectral irradiance over wavelengths.

Usage

integrate_xy(x, y)

Arguments

х	numeric vector.
у	numeric vector.

Value

a single numeric value with no change in scale factor: e.g. [W m-2 nm-1] -> [W m-2]

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

with(sun.data, integrate_xy(w.length, s.e.irrad))
interpolate_spct *Map a spectrum to new wavelength values.*

Description

This function gives the result of interpolating spectral data from the original set of wavelengths to a new one.

Usage

```
interpolate_spct(spct, w.length.out = NULL, fill = NA, length.out = NULL)
interpolate_mspct(
    mspct,
    w.length.out = NULL,
    fill = NA,
    length.out = NULL,
    .parallel = FALSE,
    .paropts = NULL
)
```

Arguments

spct	generic_spct
w.length.out	numeric vector of wavelengths (nm)
fill	a value to be assigned to out of range wavelengths
length.out	numeric value
mspct	an object of class "generic_mspct"
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Details

If length.out it is a numeric value, then gives the number of rows in the output, if it is NULL, the values in the numeric vector w.length.out are used. If both are not NULL then the range of w.length.out and length.out are used to generate a vector of wavelength. A value of NULL for fill prevents extrapolation. If both w.length.out and length.out are NULL the input is returned as is. If w.length.out has length equal to zero, zero rows from the input are returned.

Value

A new spectral object of the same class as argument spct.

The default fill = NA fills extrapolated values with NA. Giving NULL as argument for fill deletes wavelengths outside the input data range from the returned spectrum. A numerical value can be also be provided as fill. This function calls interpolate_spectrum for each non-wavelength column in the input spectra object.

Examples

```
interpolate_spct(sun.spct, 400:500, NA)
interpolate_spct(sun.spct, 400:500, NULL)
interpolate_spct(sun.spct, seq(200, 1000, by=0.1), 0)
interpolate_spct(sun.spct, c(400,500), length.out=201)
```

interpolate_spectrum Calculate spectral values at a different set of wavelengths

Description

Interpolate/re-express spectral irradiance (or other spectral quantity) values at new wavelengths values. This is a low-level function operating on numeric vectors and called by higher level functions in the package, such as mathematical operators for classes for spectral data.

Usage

```
interpolate_spectrum(w.length.in, s.irrad, w.length.out, fill = NA, ...)
```

Arguments

w.length.in	numeric vector of wavelengths (nm).
s.irrad	a numeric vector of spectral values.
w.length.out	numeric vector of wavelengths (nm).
fill	a value to be assigned to out of range wavelengths.
	additional arguments passed to spline().

Value

a numeric vector of interpolated spectral values.

Note

The current version of interpolate uses spline if fewer than 25 data points are available. Otherwise it uses approx. In the first case a cubic spline is used, in the second case linear interpolation, which should be faster.

182

Note

interpolate_wl

See Also

splinefun.

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

```
my.w.length <- 300:700
with(sun.data, interpolate_spectrum(w.length, s.e.irrad, my.w.length))</pre>
```

interpolate_wl Map spectra to new wavelength values.

Description

This function returns the result of interpolating spectral data from the original set of wavelengths to a new one.

Usage

```
interpolate_wl(x, w.length.out, fill, length.out, ...)
## Default S3 method:
interpolate_wl(x, w.length.out, fill, length.out, ...)
## S3 method for class 'generic_spct'
interpolate_wl(x, w.length.out = NULL, fill = NA, length.out = NULL, ...)
## S3 method for class 'generic_mspct'
interpolate_wl(
    x,
    w.length.out = NULL,
    fill = NA,
    length.out = NULL,
    ...,
    .parallel = FALSE,
    .paropts = NULL
)
```

Arguments

х	an R object
w.length.out	numeric vector of wavelengths (nm)
fill	a value to be assigned to out of range wavelengths
length.out	numeric value
	not used
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Details

If length.out it is a numeric value, then gives the number of rows in the output, if it is NULL, the values in the numeric vector w.length.out are used. If both are not NULL then the range of w.length.out and length.out are used to generate a vector of wavelength. A value of NULL for fill prevents extrapolation.

Value

A new spectral object of the same class as argument spct.

Methods (by class)

- default: Default for generic function
- generic_spct: Interpolate wavelength in an object of class "generic_spct" or derived.
- generic_mspct: Interpolate wavelength in an object of class "generic_mspct" or derived.

Note

The default fill = NA fills extrapolated values with NA. Giving NULL as argument for fill deletes wavelengths outside the input data range from the returned spectrum. A numerical value can be also be provided as fill. This function calls interpolate_spectrum for each non-wavelength column in the input spectra object.

Examples

```
interpolate_wl(sun.spct, 400:500, NA)
interpolate_wl(sun.spct, 400:500, NULL)
interpolate_wl(sun.spct, seq(200, 1000, by=0.1), 0)
interpolate_wl(sun.spct, c(400,500), length.out=201)
```

irrad

Description

This function returns the irradiance for a given waveband of a light source spectrum.

Usage

```
irrad(
  spct,
 w.band,
 unit.out,
 quantity,
  time.unit,
  scale.factor,
 wb.trim,
 use.cached.mult,
 use.hinges,
 allow.scaled,
  . . .
)
## Default S3 method:
irrad(
  spct,
 w.band,
 unit.out,
 quantity,
  time.unit,
  scale.factor,
 wb.trim,
 use.cached.mult,
 use.hinges,
 allow.scaled,
  . . .
)
## S3 method for class 'source_spct'
irrad(
  spct,
 w.band = NULL,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
 quantity = "total",
  time.unit = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
```

```
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = getOption("photobiology.use.hinges"),
  allow.scaled = !quantity %in% c("average", "mean", "total"),
  naming = "default",
  • • •
)
## S3 method for class 'source_mspct'
irrad(
 spct,
 w.band = NULL,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
 quantity = "total",
  time.unit = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = !quantity %in% c("average", "mean", "total"),
  naming = "default",
  ...,
 attr2tb = NULL,
  idx = "spct.idx"
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

spct	an R object.	
w.band	waveband or list of waveband objects The waveband(s) determine the region(s) of the spectrum that are summarized.	
unit.out	character string with allowed values "energy", and "photon", or its alias "quantum".	
quantity	character string One of "total", "average" or "mean", "contribution", "contribution.pc", "relative" or "relative.pc".	
time.unit	character or lubridate::duration object.	
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.	
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.	
use.cached.mult		
	logical indicating whether multiplier values should be cached between calls.	
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.	

irrad

allow.scaled	logical indicating whether scaled or normalized spectra as argument to spet are flagged as an error.
	other arguments (possibly ignored)
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach.
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra. If naming = "long" the names generated reflect both quantity and waveband, if naming = "short", names are based only on the wavebands, and if naming = "none" the returned vector has no names.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used. The time.unit attribute is copied from the spectrum object to the output. Units are as follows: If time.unit is second, $[W m-2 nm-1] \rightarrow [mol s-1 m-2]$ or $[W m-2 nm-1] \rightarrow [W m-2]$ If time.unit is day, $[J d-1 m-2 nm-1] \rightarrow [mol d-1 m-2]$ or $[J d-1 m-2 nm-1] \rightarrow [J m-2]$

Methods (by class)

- default: Default for generic function
- source_spct: Calculates irradiance from a source_spct object.
- source_mspct: Calculates irradiance from a source_mspct object.

Note

Formal parameter allow.scaled is used internally for calculation of ratios, as rescaling and normalization do not invalidate the calculation of ratios.

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), q_fluence(), q_irrad()

Examples

```
irrad(sun.spct, waveband(c(400,700)))
irrad(sun.spct, waveband(c(400,700)), "energy")
irrad(sun.spct, waveband(c(400,700), "photon")
irrad(sun.spct, split_bands(c(400,700), length.out = 3))
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "total")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "average")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative.pc")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution.pc")
```

irradiance

Photon or energy irradiance from spectral energy or photon irradiance.

Description

Energy or photon irradiance for one or more wavebands of a radiation spectrum.

Usage

```
irradiance(
   w.length,
   s.irrad,
   w.band = NULL,
   unit.out = NULL,
   unit.in = "energy",
   check.spectrum = TRUE,
   use.cached.mult = FALSE,
   use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric Vector of wavelength (nm).
s.irrad	numeric vector of spectral (energy) irradiances (W m-2 nm-1).
w.band	waveband or list of waveband objects The waveband(s) determine the region(s) of the spectrum that are summarized.
unit.out	character Allowed values "energy", and "photon", or its alias "quantum".
unit.in	character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum	logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult	
	logical Flag indicating whether multiplier values should be cached between calls.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.

Value

A single numeric value or a vector of numeric values with no change in scale factor: [W m-2 nm-1] -> [mol s-1 m-2]

Note

The last three parameters control speed optimizations. The defaults should be suitable in most cases. If you set check.spectrum=FALSE then you should call check_spectrum() at least once for your spectrum before using any of the other functions. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector. The is no reason for setting use.cpp.code=FALSE other than for testing the improvement in speed, or in cases where there is no suitable C++ compiler for building the package.

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

with(sun.data, irradiance(w.length, s.e.irrad, new_waveband(400,700), "photon"))

irrad_extraterrestrial

Extraterrestrial irradiance

Description

Estimate of down-welling solar (short wave) irradiance at the top of the atmosphere above a location on Earth, computed based on angles, Sun-Earth distance and the solar constant. Astronomical computations are done with function sun_angles().

Usage

```
irrad_extraterrestrial(
  time = lubridate::now(tzone = "UTC"),
  tz = lubridate::tz(time),
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  solar.constant = "NASA"
)
```

Arguments

time	A "vector" of POSIXct Time, with any valid time zone (TZ) is allowed, default is current time.
tz	character string indicating time zone to be used in output.
geocode	data frame with variables lon and lat as numeric values (degrees), nrow > 1, allowed.
solar.constant	numeric or character If character, "WMO" or "NASA", if numeric, an irradiance value in the same units as the value to be returned.

Value

Numeric vector of extraterrestrial irradiance (in W / m2 if solar constant is a character value).

See Also

Function sun_angles.

Examples

library(lubridate)

```
irrad_extraterrestrial(ymd_hm("2021-06-21 12:00", tz = "UTC"))
irrad_extraterrestrial(ymd_hm("2021-12-21 20:00", tz = "UTC"))
irrad_extraterrestrial(ymd_hm("2021-06-21 00:00", tz = "UTC") + hours(1:23))
```

is.generic_mspct Query class of spectrum objects

Description

Functions to check if an object is of a given type of spectrum, or coerce it if possible.

is.generic_mspct

Usage

```
is.generic_mspct(x)
```

is.calibration_mspct(x)

is.raw_mspct(x)

- is.cps_mspct(x)
- is.source_mspct(x)
- is.response_mspct(x)
- is.filter_mspct(x)
- is.reflector_mspct(x)
- is.object_mspct(x)
- is.chroma_mspct(x)

is.any_mspct(x)

Arguments

x an R object.

Value

These functions return TRUE if its argument is a of the queried type of spectrum and FALSE otherwise.

Note

Derived types also return TRUE for a query for a base type such as generic_mspct.

Examples

```
my.mspct <- filter_mspct(list(polyester.spct, yellow_gel.spct))
is.any_mspct(my.mspct)
is.filter_mspct(my.mspct)
is.source_mspct(my.mspct)</pre>
```

is.generic_spct Query class of spectrum objects

Description

Functions to check if an object is of a given type of spectrum, or coerce it if possible.

Usage

```
is.generic_spct(x)
is.raw_spct(x)
is.calibration_spct(x)
is.cps_spct(x)
is.source_spct(x)
is.response_spct(x)
is.filter_spct(x)
is.reflector_spct(x)
is.object_spct(x)
is.chroma_spct(x)
is.any_spct(x)
```

Arguments ×

an R object.

Value

These functions return TRUE if its argument is a of the queried type of spectrum and FALSE otherwise.

Note

Derived types also return TRUE for a query for a base type such as generic_spct.

Examples

```
is.source_spct(sun.spct)
is.filter_spct(sun.spct)
is.generic_spct(sun.spct)
```

is.old_spct

```
is.generic_spct(sun.spct)
is.source_spct(sun.spct)
is.filter_spct(sun.spct)
is.generic_spct(sun.spct)
is.generic_spct(sun.spct)
```

is.old_spct

Query if an object has old class names

Description

Query if an object has old class names Query if an object has old class names as used in photobiology (>= 0.6.0).

Usage

is.old_spct(object)

Arguments

object an R object

Value

logical

See Also

Other upgrade from earlier versions: upgrade_spct(), upgrade_spectra()

is.solar_time Query class

Description

Query class

Usage

is.solar_time(x)

is.solar_date(x)

Arguments

х

an R object.

See Also

Other Local solar time functions: as.solar_date(), print.solar_time(), solar_time()

is.summary_generic_spct

Query class of spectrum summary objects

Description

Functions to check if an object is of a given type of spectrum, or coerce it if possible.

Usage

```
is.summary_generic_spct(x)
```

- is.summary_raw_spct(x)
- is.summary_cps_spct(x)
- is.summary_source_spct(x)
- is.summary_response_spct(x)
- is.summary_filter_spct(x)
- is.summary_reflector_spct(x)
- is.summary_object_spct(x)
- is.summary_chroma_spct(x)
- is.any_summary_spct(x)

Arguments

x an R object.

Value

These functions return TRUE if its argument is a of the queried type of spectrum and FALSE otherwise.

Note

Derived types also return TRUE for a query for a base type such as generic_spct.

is.waveband

Examples

```
sm <- summary(sun.spct)
is.summary_source_spct(sm)</pre>
```

is.waveband

Query if it is a waveband

Description

Functions to check if an object is waveband.

Usage

is.waveband(x)

Arguments

Х

any R object

Value

is.waveband returns TRUE if its argument is a waveband and FALSE otherwise.

isValidInstrDesc Check the "instr.desc" attribute

Description

Function to validate the "instr.settings" attribute of an existing generic_spct object.

Usage

```
isValidInstrDesc(x)
```

Arguments

х

a generic_spct object

Value

logical TRUE if at least instrument name and serial number is found.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhenMeasured(), setWhenMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

isValidInstrSettings Check the "instr.settings" attribute

Description

Function to validate the "instr.settings" attribute of an existing generic_spct object.

Usage

```
isValidInstrSettings(x)
```

Arguments

х

a generic_spct object

Value

logical TRUE if at least integration time data is found.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhen
```

is_absorbance_based Query if a spectrum contains absorbance or transmittance data

Description

Functions to check if an filter spectrum contains spectral absorbance data or spectral transmittance data.

is_effective

Usage

is_absorbance_based(x)

is_absorptance_based(x)

is_transmittance_based(x)

Arguments

х

an R object

Value

is_absorbance_based returns TRUE if its argument is a filter_spct object that contains spectral absorbance data and FALSE if it does not contain such data, but returns NA for any other R object, including those belonging other generic_spct-derived classes.

is_absorptance_based returns TRUE if its argument is a filter_spct object that contains spectral absorptance and FALSE if it does not contain such data, but returns NA for any other R object, including those belonging other generic_spct-derived classes.

is_transmittance_based returns TRUE if its argument is a filter_spct object that contains spectral transmittance data and FALSE if it does not contain such data, but returns NA for any other R object, including those belonging other generic_spct-derived classes.

See Also

Other query units functions: is_photon_based()

Examples

```
is_absorbance_based(polyester.spct)
my.spct <- T2A(polyester.spct)
is.filter_spct(my.spct)
is_absorbance_based(my.spct)</pre>
```

is_absorptance_based(polyester.spct)

```
is_transmittance_based(polyester.spct)
```

is_effective

Is an R object "effective"

Description

A generic function for querying if a biological spectral weighting function (BSWF) has been applied to an object or is included in its definition.

Usage

```
is_effective(x)
## Default S3 method:
is_effective(x)
## S3 method for class 'waveband'
is_effective(x)
## S3 method for class 'generic_spct'
is_effective(x)
## S3 method for class 'source_spct'
is_effective(x)
## S3 method for class 'summary_generic_spct'
is_effective(x)
## S3 method for class 'summary_source_spct'
is_effective(x)
```

Arguments ×

an R object

Value

A logical.

Methods (by class)

- default: Default method.
- waveband: Is a waveband object defining a method for calculating effective irradiance.
- generic_spct: Does a source_spct object contain effective spectral irradiance values.
- source_spct: Does a source_spct object contain effective spectral irradiance values.
- summary_generic_spct: Method for "summary_generic_spct".
- summary_source_spct: Method for "summary_source_spct".

See Also

Other waveband attributes: labels(), normalization()

Examples

is_effective(summary(sun.spct))

is_normalized

Description

This function tests a generic_spct object for an attribute that signals whether the spectral data has been normalized or not after the object was created.

Usage

```
is_normalized(x)
```

is_normalised(x)

Arguments

х

An R object.

Value

A logical value. If x is not normalized or x is not a generic_spct object the value returned is FALSE.

Note

is_normalised() is a synonym for this is_normalized() method.

See Also

```
Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_scaled(),
normalize(), setNormalized(), setScaled()
```

is_photon_based *Query if a spectrum contains photon- or energy-based data.*

Description

Functions to check if source_spct and response_spct objects contains photon-based or energy-based data.

Usage

is_photon_based(x)

is_energy_based(x)

Arguments

х

any R object

Value

is_photon_based returns TRUE if its argument is a source_spct or a response_spct object that contains photon base data and FALSE if such an object does not contain such data, but returns NA for any other R object, including those belonging other generic_spct-derived classes.

is_energy_based returns TRUE if its argument is a source_spct or a response_spct object that contains energy base data and FALSE if such an object does not contain such data, but returns NA for any other R object, including those belonging other generic_spct-derived classes

See Also

Other query units functions: is_absorbance_based()

Examples

```
colnames(sun.spct)
is_photon_based(sun.spct)
my.spct <- sun.spct[ , c("w.length", "s.e.irrad")]
is.source_spct(my.spct)
is_photon_based(my.spct)
colnames(sun.spct)
is_energy_based(sun.spct)
my.spct <- sun.spct[ , c("w.length", "s.q.irrad")]
is.source_spct(my.spct)
is_energy_based(my.spct)
```

is_scaled

Query whether a generic spectrum has been scaled

Description

This function tests a generic_spct object for an attribute that signals whether the spectral data has been rescaled or not after the object was created.

Usage

is_scaled(x)

Arguments

Х

An R object.

is_tagged

Value

A logical value. If x is not scaled or x is not a generic_spct object the value returned is FALSE.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(), normalize(), setNormalized(), setScaled()

Examples

```
scaled.spct <- fscale(sun.spct)
is_scaled(sun.spct)
is_scaled(scaled.spct)</pre>
```

is_tagged

Query if a spectrum is tagged

Description

Functions to check if an spct object contains tags.

Usage

is_tagged(x)

Arguments

x any R object

Value

is_tagged returns TRUE if its argument is a spectrum that contains tags and FALSE if it is an untagged spectrum, but returns NA for any other R object.

See Also

Other tagging and related functions: tag(), untag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

Examples

is_tagged(sun.spct)

join_mspct

Description

Join all the spectra contained in a homogenous collection, returning a data frame with spectral-data columns named according to the names of the spectra in the collection. By default a full join is done, filling the spectral data for missing wave lengths in individual spectra with NA.

Usage

```
join_mspct(x, type, ...)
## Default S3 method:
join_mspct(x, type = "full", ...)
## S3 method for class 'generic_mspct'
join_mspct(x, type = "full", col.name, ...)
## S3 method for class 'source_mspct'
join_mspct(x, type = "full", unit.out = "energy", ...)
## S3 method for class 'response_mspct'
join_mspct(x, type = "full", unit.out = "energy", ...)
## S3 method for class 'filter_mspct'
join_mspct(x, type = "full", qty.out = "transmittance", ...)
## S3 method for class 'reflector_mspct'
join_mspct(x, type = "full", ...)
## S3 method for class 'reflector_mspct'
join_mspct(x, type = "full", ...)
## S3 method for class 'reflector_mspct'
join_mspct(x, type = "full", ...)
```

Arguments

х	A generic_mspct object, or an object of a class derived from generic_mspct.
type	character Type of join: "left", "right", "inner" or "full" (default). See details for more information.
	ignored (possibly used by derived methods).
col.name	character, name of the column in the spectra to be preserved, in addition to "w.length".
unit.out	character Allowed values "energy", and "photon", or its alias "quantum".
qty.out	character Allowed values "transmittance", and "absorbance".

labels

Value

An object of class dataframe, with the spectra joined by wave length, with rows in addition sorted by wave length (variable w.length).

Methods (by class)

- default:
- generic_mspct:
- source_mspct:
- response_mspct:
- filter_mspct:
- reflector_mspct:
- object_mspct:

Note

Currently only generic_spct, source_mspct, response_mspct, filter_mspct, reflector_mspct and object_mspct classes have this method implemented.

labels

Find labels from "waveband" object

Description

A function to obtain the name and label of objects of class "waveband".

Usage

```
## S3 method for class 'waveband'
labels(object, ...)
```

S3 method for class 'generic_spct'
labels(object, ...)

Arguments

object	an object of class "waveband"
	not used in current version

Methods (by class)

• generic_spct:

See Also

Other waveband attributes: is_effective(), normalization()

Examples

labels(sun.spct)

Ler_leaf.spct Green Arabidopsis leaf reflectance and transmittance.

Description

A dataset of total spectral reflectance and total spectral transmittance expressed as fractions of one from the upper surface of a leaf of an Arabidopsis thaliana 'Ler' rosette.

Usage

Ler_leaf.spct

Format

An object_spct object with 2401 rows and 3 variables

Details

- w.length (nm)
- Rfr (0..1)
- Tfr (0..1)

Note

Measured with a Jaz spectrometer from Ocean Optics (USA) configured with a PX Xenon lamp module and Spectroclip double integrating spheres.

Author(s)

Aphalo, P. J. & Wang, F (unpublished data)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

Ler_leaf.spct

Ler_leaf_rflt.spct Green Arabidopsis leaf spectral reflectance.

Description

A dataset of total spectral reflectance expressed as fractions of one from the upper surface of a leaf of an Arabidopsis thaliana 'Ler' rosette.

Usage

Ler_leaf_rflt.spct

Format

An reflector_spct object with 1750 rows and 2 variables

Details

- w.length (nm)
- Rfr (0..1)

Note

Measured with a Jaz spectrometer from Ocean Optics (USA) configured with a PX Xenon lamp module and Spectroclip double integrating spheres.

Author(s)

Aphalo, P. J. & Wang, F (unpublished data)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

Ler_leaf_rflt.spct

Ler_leaf_trns.spct Green Arabidopsis leaf spectral transmittance.

Description

A dataset of total spectral transmittance expressed as a fraction of one from the upper surface of a leaf of an Arabidopsis thaliana 'Ler' rosette.

Usage

Ler_leaf_trns.spct

Format

An filter_spct object with 1753 rows and 2 variables

Details

- w.length (nm)
- Tfr (0..1)

Note

Measured with a Jaz spectrometer from Ocean Optics (USA) configured with a PX Xenon lamp module and Spectroclip double integrating spheres.

Author(s)

Aphalo, P. J. & Wang, F (unpublished data)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

Ler_leaf_trns.spct

Ler_leaf_trns_i.spct Green Arabidopsis leaf spectral transmittance.

Description

A dataset of internal spectral transmittance expressed as a fraction of one from the upper surface of a leaf of an Arabidopsis thaliana 'Ler' rosette.

Usage

```
Ler_leaf_trns_i.spct
```

Format

An filter_spct object with 2401 rows and 2 variables

Details

- w.length (nm)
- Tfr (0..1)

Note

Measured with a Jaz spectrometer from Ocean Optics (USA) configured with a PX Xenon lamp module and Spectroclip double integrating spheres.

Author(s)

Aphalo, P. J. & Wang, F (unpublished data)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

Ler_leaf_trns_i.spct

Description

Logarithms and Exponentials for Spectra. The functions are applied to the spectral data, not the wavelengths. The quantity in the spectrum to which the function is applied depends on the class of x and the current value of output options

Usage

```
## S3 method for class 'generic_spct'
log(x, base = exp(1))
log2.generic_spct(x)
log10.generic_spct(x)
## S3 method for class 'generic_spct'
exp(x)
```

Arguments

х	an object of class "generic_spct"
base	a positive number: the base with respect to which logarithms are computed. Defaults to $e=exp(1)$.

Value

An object of the same class as x.

Note

In most cases a logarithm of an spectral quantity will yield off-range values. For this reason unless x is an object of base class generic_spct, checks will not be passed, resulting in warnings or errors.

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct, minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct, times-.generic_spct

log

MathFun

Description

abs(x) computes the absolute value of x, sqrt(x) computes the (principal) square root of x. The functions are applied to the spectral data, not the wavelengths. The quantity in the spectrum to which the function is applied depends on the class of x and the current value of output options.

Usage

```
## S3 method for class 'generic_spct'
sqrt(x)
## S3 method for class 'generic_spct'
```

abs(x)

Arguments ×

an object of class "generic_spct"

See Also

```
Other math operators and functions: ^.generic_spct(), convolve_each(), div-.generic_spct, log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct, times-.generic_spct
```

merge2object_spct Merge into object_spct

Description

Merge a filter_spct with a reflector_spct returning an object_spct object, even if wavelength values are mismatched.

Usage

```
merge2object_spct(
    x,
    y,
    by = "w.length",
    ...,
    w.length.out = x[["w.length"]],
    Tfr.type.out = "total"
)
```

Arguments

х,у	a filter_spct object and a reflector_spct object.
by	a vector of shared column names in ${\tt x}$ and ${\tt y}$ to merge on; by defaults to w.length.
	other arguments passed to dplyr::inner_join()
w.length.out	numeric vector of wavelengths to be used for the returned object (nm).
Tfr.type.out	character string indicating whether transmittance values in the returned object should be expressed as "total" or "internal". This applies only to the case when an object_spct is returned.

Value

An object_spct is returned as the result of merging a filter_spct and a reflector_spct object.

Note

If a numeric vector is supplied as argument for w.length.out, the two spectra are interpolated to the new wavelength values before merging. The default argument for w.length.out is x[[w.length]].

See Also

join

merge_attributes Merge and copy attributes

Description

Merge attributes from x and y and copy them to z. Methods defined for spectral objects of classes from package 'photobiology'.

Usage

```
merge_attributes(x, y, z, which, which.not, ...)
## Default S3 method:
merge_attributes(x, y, z, which = NULL, which.not = NULL, ...)
## S3 method for class 'generic_spct'
merge_attributes(
    x,
    y,
    z,
    which = NULL,
    which.not = NULL,
    copy.class = FALSE,
    ...
)
```

Arguments

x, y, z	R objects. Objects x and y must be of the same class, z must be an object with a structure valid for this same class.
which	character Names of attributes to copy, if NULL all those relevant according to the class of x are used as default,
which.not	character Names of attributes not to be copied. The names passed here are re- moved from the list for which, which is most useful when we want to modify the default.
	not used
copy.class	logical If TRUE class attributes are also copied.

Value

A copy of z with additional attributes set.

Methods (by class)

- default: Default for generic function
- generic_spct:

minus-.generic_spct Arithmetic Operators

Description

Subtraction operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 - e2 = NULL

Arguments

e1	an object of class "generic_spct"
e2	an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct, log(), mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct, times-.generic_spct

mod-.generic_spct Arithmetic Operators

Description

Reminder operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 %% e2

Arguments

e1	an object of class "generic_spct"
e2	an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct, log(), minus-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct, times-.generic_spct

msmsply

Multi-spct transform methods

Description

Apply a function or operator to a collection of spectra.

Usage

```
msmsply(mspct, .fun, ..., .parallel = FALSE, .paropts = NULL)
msdply(
   mspct,
    .fun,
    ...,
   idx = NULL,
   col.names = NULL,
   .parallel = FALSE,
   .paropts = NULL
)
mslply(mspct, .fun, ..., .parallel = FALSE, .paropts = NULL)
msaply(mspct, .fun, ..., .drop = TRUE, .parallel = FALSE, .paropts = NULL)
```

mspct_classes

Arguments

mspct	an object of class generic_mspct or a derived class
.fun	a function
	other arguments passed to .fun
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.
idx	character Name of the column with the names of the members of the collection of spectra.
col.names	character Names to be used for data columns.
.drop	should extra dimensions of length 1 in the output be dropped, simplifying the output. Defaults to TRUE

Value

a collection of spectra in the case of msmsply, belonging to a different class than mspct if . fun modifies the class of the member spectra.

a data frame in the case of msdply

a list in the case of mslply

an vector in the case of msaply

mspct_classes

Names of multi-spectra classes

Description

Function that returns a vector containing the names of multi-spectra classes using for collections of spectra.

Usage

```
mspct_classes()
```

Value

A character vector of class names.

Examples

mspct_classes()

```
na.omit
```

Description

These methods are useful for dealing with NAs in e.g., source_spct, response_spct, filter_spct and reflector_spct.

Usage

```
## S3 method for class 'generic_spct'
na.omit(object, na.action = "omit", fill = NULL, target.colnames, ...)
## S3 method for class 'source_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'response_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'filter_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'reflector_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'object_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'cps_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'raw_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'chroma_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'generic_mspct'
na.omit(object, na.action = "omit", fill = NULL, ...)
## S3 method for class 'generic_spct'
na.exclude(object, na.action = "exclude", fill = NULL, target.colnames, ...)
## S3 method for class 'source_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'response_spct'
```

na.omit

```
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'filter_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'reflector_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'object_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'cps_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'raw_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'raw_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'chroma_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'chroma_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
## S3 method for class 'generic_mspct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)
```

Arguments

object	an R object	
na.action	character One of "omit", "exclude" or "replace".	
fill	numeric Value used to replace NAs unless NULL, in which case interpolation i attempted.	
target.colname:	S	
	character Vector of names for the target columns to operate upon, if present in object.	
	further arguments other special methods could require	

Details

If na.omit removes cases, the row numbers of the cases form the "na.action" attribute of the result, of class "omit".

na.exclude differs from na.omit only in the class of the "na.action" attribute of the result, which is "exclude".

Note

na.fail and na.pass do not require a specialisation for spectral objects. R's definitions work as expected with no need to override them. We do not define a method na.replace, just pass "replace" as argument. The current implementation replaces by interpolation only individual NAs which are flanked on both sides by valid data. Runs of multiple NAs con only replaced by a constant value passed through parameter fill.

See Also

na.fail and na.action

Examples

```
my_sun.spct <- sun.spct</pre>
my_sun.spct[3, "s.e.irrad"] <- NA</pre>
my_sun.spct[5, "s.q.irrad"] <- NA</pre>
head(my_sun.spct)
# rows omitted
zo <- na.omit(my_sun.spct)</pre>
head(zo)
na.action(zo)
# rows excluded
ze <- na.exclude(my_sun.spct)</pre>
head(ze)
na.action(ze)
# data in both rows replaced
zr <- na.omit(my_sun.spct, na.action = "replace")</pre>
head(zr)
na.action(zr)
```

net_irradiance Net radiation flux

Description

Estimate net radiation balance expressed as a flux in W/m2. If lw.down.irradiance is passed a value in W / m2 the difference is computed directly and if not an approximate value is estimated, using R_rel = 0.75 which corresponds to clear sky, i.e., uncorrected for cloudiness. This is the approach to estimation is that recommended by FAO for hourly estimates while here we use it for instantaneous or mean flux rates.

Usage

```
net_irradiance(
   temperature,
   sw.down.irradiance,
   lw.down.irradiance = NULL,
   sw.albedo = 0.23,
   lw.emissivity = 0.98,
   water.vp = 0,
   R_rel = 1
)
```
normalization

Arguments

temperature	numeric vector of air temperatures (C) at 2 m height.
<pre>sw.down.irradia</pre>	nce, lw.down.irradiance
	numeric Down-welling short wave and long wave radiation radiation (W/m2).
sw.albedo	numeric Albedo as a fraction of one (/1).
lw.emissivity	numeric Emissivity of the surface (ground or vegetation) for long wave radia- tion.
water.vp	numeric vector of water vapour pressure in air (Pa), ignored if $lw.down.irradiance$ is available.
R_rel	numeric The ratio of actual and clear sky short wave irradiance (/1).

Value

A numeric vector of evapotranspiration estimates expressed as W / m-2.

See Also

Other Evapotranspiration and energy balance related functions.: ET_ref()

normalization Normalization of an R object

Description

Normalization wavelength of an R object, retrieved from the object's attributes.

Usage

```
normalization(x)
```

Default S3 method: normalization(x)

S3 method for class 'waveband'
normalization(x)

Arguments

```
x an R object
```

Methods (by class)

- default: Default methods.
- waveband: Normalization of a waveband object.

See Also

Other waveband attributes: is_effective(), labels()

normalize

Description

This method returns a spectral object of the same class as the one supplied as argument but with the spectral data normalized to 1.0 at a specific wavelength.

```
normalize(x, ...)
normalise(x, ...)
## Default S3 method:
normalize(x, ...)
## S3 method for class 'source_spct'
normalize(
 х,
  ...,
  range = NULL,
  norm = "max",
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  keep.scaling = FALSE,
  na.rm = FALSE
)
## S3 method for class 'response_spct'
normalize(
 х,
  . . . ,
  range = NULL,
  norm = "max",
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  keep.scaling = FALSE,
  na.rm = FALSE
)
## S3 method for class 'filter_spct'
normalize(
  х,
  ...,
  range = NULL,
  norm = "max",
  qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
  keep.scaling = FALSE,
```

normalize

```
na.rm = FALSE
)
## S3 method for class 'reflector_spct'
normalize(
 х,
  ...,
 range = NULL,
 norm = "max",
 qty.out = NULL,
 keep.scaling = FALSE,
 na.rm = FALSE
)
## S3 method for class 'raw_spct'
normalize(
 х,
  ...,
 range = NULL,
 norm = "max",
 keep.scaling = FALSE,
 na.rm = FALSE
)
## S3 method for class 'cps_spct'
normalize(
 х,
 ...,
 range = NULL,
 norm = "max",
 keep.scaling = FALSE,
 na.rm = FALSE
)
## S3 method for class 'generic_spct'
normalize(
 х,
  ...,
 range = NULL,
 norm = "max",
 col.names,
 keep.scaling = FALSE,
 na.rm = FALSE
)
## S3 method for class 'source_mspct'
normalize(
 х,
```

```
. . . ,
  range = NULL,
  norm = "max",
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  keep.scaling = FALSE,
  na.rm = FALSE,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'response_mspct'
normalize(
 х,
  ...,
 range = NULL,
  norm = "max",
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  na.rm = FALSE,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'filter_mspct'
normalize(
 х,
  ...,
  range = NULL,
 norm = "max",
 qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
  na.rm = FALSE,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'reflector_mspct'
normalize(
 х,
  ...,
 range = x,
 norm = "max",
 qty.out = NULL,
 na.rm = FALSE,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'raw_mspct'
normalize(
```

220

normalize

```
х,
  ...,
 range = x,
 norm = "max",
 na.rm = FALSE,
 .parallel = FALSE,
 .paropts = NULL
)
## S3 method for class 'cps_mspct'
normalize(
 х,
 . . . ,
 range = x,
 norm = "max",
 na.rm = FALSE,
 .parallel = FALSE,
 .paropts = NULL
)
```

Arguments

x	An R object
	not used in current version
range	An R object on which range() returns a numeric vector of length 2 with the limits of a range of wavelengths in nm, with min and max wavelengths (nm) used to set boundaries for search for normalization.
norm	numeric Normalization wavelength (nm) or character string "max", or "min" for normalization at the corresponding wavelength, "update" to update the normal- ization after modifying units of expression, quantity or range but respecting the previously used criterion, or "skip" to force return of x unchanged.
unit.out	character Allowed values "energy", and "photon", or its alias "quantum"
keep.scaling	logical Flag to indicate if any existing scaling should be preserved or not. The default, FALSE, preserves the behaviour of versions ($\leq 0.10.9$).
na.rm	logical indicating whether NA values should be stripped before calculating the summary (e.g. "max") used for normalization.
qty.out	character string Allowed values are "transmittance", and "absorbance" indicat- ing on which quantity to apply the normalization.
col.names	character vector containing the names of columns or variables to which to apply the normalization.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Details

By default normalization is done based on the maximum of the spectral data. It is possible to also do the normalization based on a user-supplied wavelength expressed in nanometres or the minimum. It is also possible to update an existing normalization for different units of expression or after a conversion to a related spectral quantity.

By default the function is applied to the whole spectrum, but by passing a range of wavelengths as input, the search can be limited to a region of interest within the spectrum.

In 'photobiology' (>= 0.10.8) detailed information about the normalization is stored in an attribute. In 'photobiology' (>= 0.10.10) applying a new normalization to an already normalized spectrum recomputes the multiplier factors stored in the attributes whenever possible. This ensures that the returned object is identical independently of the previous application of a different normalization.

Value

A copy of x, with spectral data values normalized to one for the criterion specified by the argument passed to norm with information about the normalization applied saved in attributes "normalized" and "normalization".

A copy of x with the values of the spectral quantity rescaled to 1 at the normalization wavelength. If the normalization wavelength is not already present in x, it is added by interpolation—i.e. the returned value may be one row longer than x. Attributes normalized and normalization are set to keep a log of the computations applied.

Methods (by class)

- default: Default for generic function
- source_spct: Normalize a source_spct object.
- response_spct: Normalize a response spectrum.
- filter_spct: Normalize a filter spectrum.
- reflector_spct: Normalize a reflector spectrum.
- raw_spct: Normalize a raw spectrum.
- cps_spct: Normalize a cps spectrum.
- generic_spct: Normalize a raw spectrum.
- source_mspct: Normalize the members of a source_mspct object.
- response_mspct: Normalize the members of a response_mspct object.
- filter_mspct: Normalize the members of a filter_mspct object.
- reflector_mspct: Normalize the members of a reflector_mspct object.
- raw_mspct: Normalize the members of a raw_mspct object.
- cps_mspct: Normalize the members of a cps_mspct object.

222

Note

If the spectrum passed as argument to x has been previously scaled, in 'photobiology' ($\leq 0.10.9$) the scaling attribute was always removed and no normalization factors returned. In 'photobiology' ($\geq 0.10.10$) scaling information can be preserved by passing keep.scaling = TRUE (experimental feature).

normalise() is a synonym for this normalize() method.

1) By default if x contains one or more NA values and the normalization is based on a summary quantity, the returned spectrum will contain only NA values. If na.rm == TRUE then the summary quantity will be calculated after striping NA values, and only the values that were NA in x will be NA values in the returned spectrum.

See Also

```
Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), setNormalized(), setScaled()
```

Examples

```
normalize(sun.spct)
normalise(sun.spct) # equivalent
normalize(sun.spct, norm = "max")
normalize(sun.spct, norm = 400)
```

normalized_diff_ind Calculate a normalized index.

Description

This method returns a normalized difference index value for an arbitrary pair of wavebands. There are many such indexes in use, such as NDVI (normalized difference vegetation index), NDWI (normalized difference water index), NDMI (normalized difference moisture index), etc., the only difference among then is in the wavebands used.

```
normalized_diff_ind(spct, plus.w.band, minus.w.band, f, ...)
normalised_diff_ind(spct, plus.w.band, minus.w.band, f, ...)
NDxI(spct, plus.w.band, minus.w.band, f, ...)
## Default S3 method:
normalized_diff_ind(spct, plus.w.band, minus.w.band, f, ...)
```

```
## S3 method for class 'generic_spct'
normalized_diff_ind(spct, plus.w.band, minus.w.band, f, ...)
## S3 method for class 'generic_mspct'
normalized_diff_ind(spct, plus.w.band, minus.w.band, f, ...)
```

Arguments

spct	an R object
plus.w.band	waveband objects The waveband determine the region of the spectrum used in the calculations
minus.w.band	waveband objects The waveband determine the region of the spectrum used in the calculations
f	function used for integration taking spct as first argument and a list of wavebands as second argument.
	additional arguments passed to f

Details

f is most frequently reflectance, but also transmittance, or even absorbance, response, irradiance or a user-defined function can be used if there is a good reason for it. In every case spct should be of the class expected by f. When using two wavebands of different widths do consider passing to f a suitable quantity argument. Wavebands can describe weighting functions if desired.

Value

A named numeric value for the index, or a tibble depending on whether a spectrum or a collection of spectra is passed as first argument. If the wavelength range of spct does not fully overlap with both wavebands NA is silently returned.

Methods (by class)

- default: default
- generic_spct:
- generic_mspct:

Note

Some NDxI indexes are directly based on satellite instrument data, such as those in the Landsat satellites. To simulate such indexes using spectral reflectance as input, waveband definitions provided by package 'photobiologyWavebands' can be used.

normalised_diff_ind() is a synonym for normalized_diff_ind().

NDxI() is a shorthand for normalized_diff_ind().

normalize_range_arg Normalize a range argument into a true numeric range

Description

Several functions in this package and the suite accept a range argument with a flexible syntax. To ensure that all functions and methods behave in the same way this code has been factored out into a separate function.

Usage

```
normalize_range_arg(arg.range, wl.range, trim = TRUE)
```

Arguments

arg.range	a numeric vector of length two, or any other object for which function range() will return a range of wavelengths (nm).
wl.range	a numeric vector of length two, or any other object for which function range() will return a range of wavelengths (nm), missing values are not allowed.
trim	logical If TRUE the range returned is bound within wl.range while if FALSE it can be broader.

Details

The arg.range argument can contain NAs which are replaced by the value at the same position in wl.range. In addition a NULL argument for range is converted into wl.range. The wl.range is also the limit to which the returned value is trimmed if trim == TRUE. The idea is that the value supplied as wl.range is the wavelength range of the data.

Value

a numeric vector of length two, guaranteed not to have missing values.

Examples

```
normalize_range_arg(c(NA, 500), range(sun.spct))
normalize_range_arg(c(300, NA), range(sun.spct))
normalize_range_arg(c(100, 5000), range(sun.spct), FALSE)
normalize_range_arg(c(NA, NA), range(sun.spct))
normalize_range_arg(c(NA, NA), sun.spct)
```

opaque.spct

Description

A dataset for a hypothetical object with transmittance 0/1 (0%)

Usage

opaque.spct

Format

A filter_spct object with 4 rows and 2 variables

Details

- w.length (nm).
- Tfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

opaque.spct

oper_spectra

Binary operation on two spectra, even if the wavelengths values differ

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated by interpolation. After this, the two spectral values at each wavelength are added.

oper_spectra

Usage

```
oper_spectra(
  w.length1,
  w.length2 = NULL,
  s.irrad1,
  s.irrad2,
  trim = "union",
  na.rm = FALSE,
  bin.oper = NULL,
  ...
)
```

Arguments

w.length1	numeric vector of wavelength (nm)
w.length2	numeric vector of wavelength (nm)
s.irrad1	a numeric vector of spectral values
s.irrad2	a numeric vector of spectral values
trim	a character string with value "union" or "intersection"
na.rm	a logical value, if TRUE, not the default, NAs in the input are replaced with zeros
bin.oper	a function defining a binary operator (for the usual math operators enclose argument in backticks)
	additional arguments (by name) passed to bin.oper

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at least one of the input spectra, and missing values are set in each input spectrum to zero before addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calculation.

Value

a dataframe with two numeric variables

w.length	A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
	w.length2. w.length contains all the unique vales, sorted in ascending order.
s.irrad	A numeric vector with the sum of the two spectral values at each wavelength.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(), div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(), irradiance(), l_insert_hinges(), photon_irradiance(), photon_ratio(),

peaks

```
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

```
head(sun.data)
result.data <-
    with(sun.data,
        oper_spectra(w.length, w.length, s.e.irrad, s.e.irrad, bin.oper=`+`))
head(result.data)
tail(result.data)
my_fun <- function(e1, e2, k) {return((e1 + e2) / k)}
result.data <-
    with(sun.data,
        oper_spectra(w.length, w.length, s.e.irrad, s.e.irrad, bin.oper=my_fun, k=2))
head(result.data)
tail(result.data)</pre>
```

peaks

Peaks or local maxima

Description

Function that returns a subset of an R object with observations corresponding to local maxima.

```
peaks(x, span, ignore_threshold, strict, na.rm, ...)
## Default S3 method:
peaks(x, span = NA, ignore_threshold = NA, strict = NA, na.rm = FALSE, ...)
## S3 method for class 'numeric'
peaks(x, span = 5, ignore_threshold = NA, strict = TRUE, na.rm = FALSE, ...)
## S3 method for class 'data.frame'
peaks(
    x,
    span = 5,
    ignore_threshold = 0,
    strict = TRUE,
    na.rm = FALSE,
    x.var.name = NULL,
    y.var.name = NULL,
    var.name = y.var.name,
```

peaks

```
refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'generic_spct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
 var.name = NULL,
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'source_spct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
 refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'response_spct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'filter_spct'
peaks(
 х,
  span = 5,
```

```
ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'reflector_spct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'cps_spct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
 var.name = "cps",
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'raw_spct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
 strict = TRUE,
 na.rm = FALSE,
 var.name = "counts",
 refine.wl = FALSE,
 method = "spline",
  • • •
)
```

S3 method for class 'generic_mspct'

230

peaks

```
peaks(
  х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
 var.name = NULL,
  refine.wl = FALSE,
 method = "spline",
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'source_mspct'
peaks(
  х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  refine.wl = FALSE,
 method = "spline",
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'response_mspct'
peaks(
  х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  refine.wl = FALSE,
 method = "spline",
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'filter_mspct'
peaks(
  х,
  span = 5,
```

```
ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
  refine.wl = FALSE,
 method = "spline",
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'reflector_mspct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  refine.wl = FALSE,
 method = "spline",
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'cps_mspct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  var.name = "cps",
  refine.wl = FALSE,
 method = "spline",
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'raw_mspct'
peaks(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  var.name = "counts",
```

232

peaks

```
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL
```

Arguments

)

х	an R object	
span	integer A peak is defined as an element in a sequence which is greater than all other elements within a window of width span centered at that element. Use NULL for the global peak.	
ignore_threshol	d	
	numeric Value between 0.0 and 1.0 indicating the relative size compared to tallest peak threshold below which peaks will be ignored. Negative values set a threshold so that the tallest peaks are ignored, instead of the shortest.	
strict	logical If TRUE, an element must be strictly greater than all other values in its window to be considered a peak.	
na.rm	logical indicating whether NA values should be stripped before searching for peaks.	
	ignored	
var.name, x.var.	name, y.var.name	
	character Name of column where to look for peaks.	
refine.wl	logical Flag indicating if peak location should be refined by fitting a function.	
method	character String with the name of a method. Currently only spline interpolation is implemented.	
unit.out	character One of "energy" or "photon"	
filter.qty	character One of "transmittance" or "absorbance"	
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach	
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.	

Value

A subset of x with rows corresponding to local maxima.

Methods (by class)

- default: Default returning always NA.
- numeric: Default function usable on numeric vectors.
- data.frame: Method for "data.frame" objects.
- generic_spct: Method for "generic_spct" objects.

- source_spct: Method for "source_spct" objects.
- response_spct: Method for "response_spct" objects.
- filter_spct: Method for "filter_spct" objects.
- reflector_spct: Method for "reflector_spct" objects.
- cps_spct: Method for "cps_spct" objects.
- raw_spct: Method for "raw_spct" objects.
- generic_mspct: Method for "generic_mspct" objects.
- source_mspct: Method for "source_mspct" objects.
- response_mspct: Method for "cps_mspct" objects.
- filter_mspct: Method for "filter_mspct" objects.
- reflector_mspct: Method for "reflector_mspct" objects.
- cps_mspct: Method for "cps_mspct" objects.
- raw_mspct: Method for "raw_mspct" objects.

Note

Thresholds for ignoring peaks are applied after peaks are searched for, and negative threshold values can in some cases result in no peaks being returned.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), replace_bad_pixs(), spikes(), valleys(), wls_at_target()

Examples

peaks(sun.spct, span = 51)
peaks(sun.spct, span = NULL)
peaks(sun.spct, span = 51, refine.wl = TRUE)

peaks(sun.spct)

photodiode.spct Spectral response of a GaAsP photodiode

Description

A dataset containing wavelengths at a 1 nm interval and spectral response as A/(W/nm) for GaAsP photodiode type G6262 from Hamamatsu. Data digitized from manufacturer's data sheet. The value at the peak is 0.19 A/W.

Usage

photodiode.spct

Format

A response_spct object with 94 rows and 2 variables

Details

- w.length (nm).
- s.e.response (A/W)

References

Hamamatsu (2011) Datasheet: GaAsP Photodiodes G5645 G5842 G6262. Hamamatsu Photonics KK, Hamamatsu, City. http://www.hamamatsu.com/jp/en/G6262.html. Visited 2017-12-15.

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

photodiode.spct

photons_energy_ratio Photon:energy ratio

Description

This function gives the photons: energy ratio between for one given waveband of a radiation spectrum.

```
photons_energy_ratio(
    w.length,
    s.irrad,
    w.band = NULL,
    unit.in = "energy",
    check.spectrum = TRUE,
    use.cached.mult = FALSE,
    use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric vector of wavelength (nm).	
s.irrad	numeric vector of spectral (energy) irradiances (W m-2 nm-1).	
w.band	waveband object.	
unit.in	character Allowed values "energy", and "photon", or its alias "quantum".	
check.spectrum	logical Flag telling whether to sanity check input data, default is TRUE.	
use.cached.mult		
	logical Flag telling whether multiplier values should be cached between calls.	
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wave-bands.	

Value

A single numeric value giving the ratio moles-photons per Joule.

Note

The default for the w.band parameter is a waveband covering the whole range of w.length.

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(), split_photon_irradiance(),
subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()
```

Examples

```
# photons:energy ratio
with(sun.data, photons_energy_ratio(w.length, s.e.irrad, new_waveband(400,500)))
# photons:energy ratio for whole spectrum
with(sun.data, photons_energy_ratio(w.length, s.e.irrad))
```

photon_irradiance Photon irradiance

Description

This function returns the photon irradiance for a given waveband of a radiation spectrum, optionally applies a BSWF.

photon_irradiance

Usage

```
photon_irradiance(
   w.length,
   s.irrad,
   w.band = NULL,
   unit.in = "energy",
   check.spectrum = TRUE,
   use.cached.mult = FALSE,
   use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric vector of wavelength (nm).	
s.irrad	numeric vector of spectral irradiances, by default as energy (W m-2 nm-1).	
w.band	waveband.	
unit.in	character Values recognized "photon" or "energy".	
check.spectrum	logical Flag telling whether to sanity check input data, default is TRUE.	
use.cached.mult		
	logical Flag telling whether multiplier values should be cached between calls.	
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wave-bands.	

Value

A single numeric value with no change in scale factor: [mol s-1 m-2 nm-1] -> [mol s-1 m-2].

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

```
with(sun.data, photon_irradiance(w.length, s.e.irrad))
with(sun.data, photon_irradiance(w.length, s.e.irrad, new_waveband(400,700)))
```

photon_ratio

Description

This function gives the photon ratio between two given wavebands of a radiation spectrum.

Usage

```
photon_ratio(
    w.length,
    s.irrad,
    w.band.num = NULL,
    w.band.denom = NULL,
    unit.in = "energy",
    check.spectrum = TRUE,
    use.cached.mult = FALSE,
    use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric vector of wavelength (nm).	
s.irrad	numeric vector of spectral (energy or photon) irradiances (W m-2 nm-1) or (mo s-1 m-2 nm-1).	
w.band.num	waveband object used to compute the numerator of the ratio.	
w.band.denom	waveband object used to compute the denominator of the ratio.	
unit.in	character Allowed values "energy", and "photon", or its alias "quantum".	
check.spectrum	logical Flag telling whether to sanity check input data, default is TRUE.	
use.cached.mult		
	logical Flag telling whether multiplier values should be cached between calls.	
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.	

Value

a single numeric value giving the unitless ratio.

Note

The default for both w.band parameters is a waveband covering the whole range of w.length.

plus-.generic_spct

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

```
with(sun.data,
```

photon_ratio(w.length, s.e.irrad, new_waveband(400,500), new_waveband(400,700)))

plus-.generic_spct Arithmetic Operators

Description

Division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 + e2 = NULL

Arguments

e1	an object of class "generic_spo	ct"
e2	an object of class "generic_spo	ct"

See Also

```
Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct, log(), minus-.generic_spct, mod-.generic_spct, round(), sign(), slash-.generic_spct, times-.generic_spct
```

polyester.spct

Description

A dataset containing the wavelengths at a 1 nm interval and fractional total transmittance for polyester film.

Usage

polyester.spct

Format

A filter_spct object with 611 rows and 2 variables

Details

- w.length (nm).
- Tfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

polyester.spct

print

Print a spectral object

Description

Print method for objects of spectral classes.

```
## S3 method for class 'generic_spct'
print(x, ..., n = NULL, width = NULL)
## S3 method for class 'generic_mspct'
print(x, ..., n = NULL, width = NULL, n.members = 10)
```

print.solar_time

Arguments

x	An object of one of the summary classes for spectra
	not used in current version
n	Number of rows to show. If NULL, the default, will print all rows if less than option dplyr.print_max. Otherwise, will print dplyr.print_min
width	Width of text output to generate. This defaults to NULL, which means use getOption("width") and only display the columns that fit on one screen. You can also set option(dplyr.width = Inf) to override this default and always print all columns.
n.members	numeric Number of members of the collection to print.

Value

Returns x invisibly.

Methods (by class)

• generic_mspct:

Note

This is simply a wrapper on the print method for tibbles, with additional information in the header. Curently, width applies only to the table of data.

Examples

```
print(sun.spct)
print(sun.spct, n = 5)
```

print.solar_time Print solar time and solar date objects

Description

Print solar time and solar date objects

```
## S3 method for class 'solar_time'
print(x, ...)
## S3 method for class 'solar_date'
print(x, ...)
```

Arguments

х	an R object
	passed to format method

Note

Default is to print the underlying POSIXct as a solar time.

See Also

Other Local solar time functions: as.solar_date(), is.solar_time(), solar_time()

Description

A function to nicely print objects of classes "summary...spct".

Usage

```
## S3 method for class 'summary_generic_spct'
print(x, ...)
```

Arguments

х	An object of one of the summary classes for spectra
	not used in current version

Examples

```
print(summary(sun.spct))
```

242

print.tod_time Print time-of-day objects

Description

Print time-of-day objects

Usage

S3 method for class 'tod_time'
print(x, ...)

Arguments

х	an R object
	passed to format method

Note

Default is to print the underlying numeric vector as a solar time.

See Also

Other Time of day functions: as_tod(), format.tod_time()

print.waveband Print a "waveband" object

Description

A function to more nicely print objects of class "waveband".

Usage

S3 method for class 'waveband'
print(x, ...)

Arguments

х	an object of class "waveband"
	not used in current version

prod_spectra

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated by interpolation. After this, the two spectral values at each wavelength are added.

Usage

```
prod_spectra(
  w.length1,
  w.length2 = NULL,
  s.irrad1,
  s.irrad2,
  trim = "union",
  na.rm = FALSE
)
```

Arguments

w.length1	numeric vector of wavelength (nm).
w.length2	numeric vector of wavelength (nm).
s.irrad1	a numeric vector of spectral values.
s.irrad2	a numeric vector of spectral values.
trim	a character string with value "union" or "intersection".
na.rm	a logical value, if TRUE, not the default, NAs in the input are replaced with zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at least one of the input spectra, and missing values are set in each input spectrum to zero before addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calculation.

Value

a dataframe with two numeric variables

w.length	A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
	w.iengin2. w.iengin contains all the unique vales, sorted in ascending order.
s.irrad	A numeric vector with the sum of the two spectral values at each wavelength.

q2e

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

Examples

```
head(sun.data)
square.sun.data <-
with(sun.data, prod_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(square.sun.data)
tail(square.sun.data)</pre>
```

q2e

Convert photon-based quantities into energy-based quantities

Description

Function that converts spectral photon irradiance (molar) into spectral energy irradiance.

```
q2e(x, action, byref, ...)
## Default S3 method:
q2e(x, action = "add", byref = FALSE, ...)
## S3 method for class 'source_spct'
q2e(x, action = "add", byref = FALSE, ...)
## S3 method for class 'response_spct'
q2e(x, action = "add", byref = FALSE, ...)
## S3 method for class 'source_mspct'
q2e(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)
## S3 method for class 'response_mspct'
q2e(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)
```

Arguments

Х	an R object
action	a character string
byref	logical indicating if new object will be created by reference or by copy of x
	not used in current version
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Methods (by class)

- default: Default method
- source_spct: Method for spectral irradiance
- response_spct: Method for spectral responsiveness
- source_mspct: Method for collections of (light) source spectra
- response_mspct: Method for collections of response spectra

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), T2A(), any2T(), as_quantum(), e2qmol_multipliers(), e2quantum_multipliers(), e2q()

ac	ratio	
ye		

Photon:energy ratio

Description

This function returns the photon to energy ratio for each waveband of a light source spectrum.

```
qe_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)
## Default S3 method:
qe_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)
## S3 method for class 'source_spct'
qe_ratio(
    spct,
    w.band = NULL,
    scale.factor = 1,
    wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
```

qe_ratio

```
use.cached.mult = FALSE,
 use.hinges = NULL,
 naming = "short",
 name.tag = ifelse(naming != "none", "[q:e]", ""),
  • • •
)
## S3 method for class 'source_mspct'
qe_ratio(
 spct,
 w.band = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.cached.mult = FALSE,
 use.hinges = NULL,
  naming = "short",
 name.tag = ifelse(naming != "none", "[q:e]", ""),
  ...,
 attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

spct	source_spct.
w.band	waveband or list of waveband objects.
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.
use.cached.mult	
	logical Flag telling whether multiplier values should be cached between calls.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
name.tag	character Used to tag the name of the returned values.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach

. paropts a list of additional options passed into the foreach function when parallel computation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

Computed values are ratios between photon irradiance and energy irradiance for a given waveband. A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used, with "q:e" prepended. Units [mol J-1].

Methods (by class)

- default: Default for generic function
- source_spct: Method for source_spct objects
- source_mspct: Calculates photon:energy ratio from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other photon and energy ratio functions: e_ratio(), eq_ratio(), q_ratio()

Examples

qe_ratio(sun.spct, new_waveband(400,700))

q_fluence

Description

Photon irradiance (i.e. quantum irradiance) for one or more waveband of a light source spectrum.

```
q_fluence(
  spct,
 w.band,
  exposure.time,
  scale.factor,
 wb.trim,
  use.cached.mult,
  use.hinges,
  allow.scaled,
  . . .
)
## Default S3 method:
q_fluence(
  spct,
 w.band,
  exposure.time,
  scale.factor,
 wb.trim,
  use.cached.mult,
  use.hinges,
  allow.scaled,
  . . .
)
## S3 method for class 'source_spct'
q_fluence(
  spct,
 w.band = NULL,
  exposure.time,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = FALSE,
  naming = "default",
  . . .
)
```

```
## S3 method for class 'source_mspct'
q_fluence(
  spct,
 w.band = NULL,
 exposure.time,
 scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
 use.hinges = NULL,
 allow.scaled = FALSE,
 naming = "default",
  ...,
 attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

spct	an R object.
w.band	a list of waveband objects or a waveband object
exposure.time	lubridate::duration object.
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.
use.cached.mult	
	logical indicating whether multiplier values should be cached between calls.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
allow.scaled	logical indicating whether scaled or normalized spectra as argument to spct are flagged as an error.
	other arguments (possibly ignored).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

250

q_irrad

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the name of each waveband unless a named list is supplied in which case the names of the list elements are used. The exposure time is copied from the spectrum object to the output as an attribute. Units are as follows: moles of photons per exposure.

Methods (by class)

- default: Default for generic function
- source_spct: Calculate photon fluence from a source_spct object and the duration of the exposure
- source_mspct: Calculates photon (quantum) fluence from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), irrad(), q_irrad()

Examples

q_irrad

Photon irradiance

Description

Photon irradiance (i.e. quantum irradiance) for one or more wavebands of a light source spectrum.

```
q_irrad(
   spct,
   w.band,
   quantity,
   time.unit,
```

q_irrad

```
scale.factor,
  wb.trim,
  use.cached.mult,
  use.hinges,
  allow.scaled,
  . . .
)
## Default S3 method:
q_irrad(
  spct,
 w.band,
  quantity,
  time.unit,
  scale.factor,
  wb.trim,
  use.cached.mult,
  use.hinges,
  allow.scaled,
  . . .
)
## S3 method for class 'source_spct'
q_irrad(
  spct,
 w.band = NULL,
  quantity = "total",
  time.unit = NULL,
  scale.factor = 1,
  wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = !quantity %in% c("average", "mean", "total"),
  naming = "default",
  • • •
)
## S3 method for class 'source_mspct'
q_irrad(
  spct,
 w.band = NULL,
  quantity = "total",
  time.unit = NULL,
  scale.factor = 1,
  wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
  use.hinges = NULL,
  allow.scaled = !quantity %in% c("average", "mean", "total"),
```

252
q_irrad

```
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL
)
```

Arguments

spct	an R object.
w.band	a list of waveband objects or a waveband object.
quantity	character string One of "total", "average" or "mean", "contribution", "contribu- tion.pc", "relative" or "relative.pc".
time.unit	character or lubridate::duration object.
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.
use.cached.mult	
	logical indicating whether multiplier values should be cached between calls.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
allow.scaled	logical indicating whether scaled or normalized spectra as argument to spct are flagged as an error.
	other arguments (possibly ignored).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see <pre>add_attr2tb</pre> for the syntax for <pre>attr2tb</pre> passed as is to formal parameter <pre>col.names.</pre>
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and

optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used. The time.unit attribute is copied from the spectrum object to the output. Units are as follows: If time.unit is second, [W m-2 nm-1] -> [mol s-1 m-2] If time.unit is day, [J d-1 m-2 nm-1] -> [mol d-1 m-2]

Methods (by class)

- default: Default for generic function
- source_spct: Calculates photon irradiance from a source_spct object.
- source_mspct: Calculates photon (quantum) irradiance from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), irrad(), q_fluence()

Examples

```
q_irrad(sun.spct, waveband(c(400,700)))
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3))
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "total")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "average")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative.pc")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative.pc")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution")
```

q_ratio

Photon:photon ratio

Description

This function returns the photon ratio for a given pair of wavebands of a light source spectrum.

q_ratio

Usage

```
q_ratio(
  spct,
 w.band.num,
 w.band.denom,
  scale.factor,
 wb.trim,
  use.cached.mult,
  use.hinges,
  . . .
)
## Default S3 method:
q_ratio(
  spct,
 w.band.num,
 w.band.denom,
  scale.factor,
 wb.trim,
  use.cached.mult,
 use.hinges,
  . . .
)
## S3 method for class 'source_spct'
q_ratio(
  spct,
 w.band.num = NULL,
 w.band.denom = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = FALSE,
  use.hinges = NULL,
  naming = "short",
  name.tag = ifelse(naming != "none", "[q:q]", ""),
  . . .
)
## S3 method for class 'source_mspct'
q_ratio(
  spct,
 w.band.num = NULL,
 w.band.denom = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.cached.mult = FALSE,
  use.hinges = NULL,
  naming = "short",
```

```
name.tag = ifelse(naming != "none", "[q:q]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL
```

Arguments

spct	an object of class "source_spct".
w.band.num	waveband object or a list of waveband objects used to compute the numerator(s) of the ratio(s).
w.band.denom	waveband object or a list of waveband objects used to compute the denominator(s) of the ratio(s).
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded
use.cached.mult	
	logical indicating whether multiplier values should be cached between calls
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly ignored)
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
name.tag	character Used to tag the name of the returned values.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

In the case of methods for individual spectra, a numeric vector of adimensional values giving a photon ratio between integrated photon irradiances for pairs of wavebands, with name attribute set to the name of the wavebands unless a named list of wavebands is supplied in which case the names of the list elements are used, with "(q:q)" appended. A data.frame in the case of collections of spectra, containing one column for each ratio definition, an index column with the names of the

q_response

spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

Ratio definitions are "assembled" from the arguments passed to w.band.num and w.band.denom. If both arguments are of equal length, then the wavebands are paired to obtain as many ratios as the number of wavebands in each list. Recycling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

- default: Default for generic function
- source_spct: Method for source_spct objects
- source_mspct: Calculates photon:photon from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other photon and energy ratio functions: e_ratio(), eq_ratio(), qe_ratio()

Examples

q_ratio(sun.spct, new_waveband(400,500), new_waveband(400,700))

q_response

Photon-based photo-response

Description

This function returns the mean response for a given waveband and a response spectrum.

Usage

```
q_response(
   spct,
   w.band,
   quantity,
   time.unit,
   scale.factor,
   wb.trim,
   use.hinges,
```

```
• • •
)
## Default S3 method:
q_response(
 spct,
 w.band,
 quantity,
 time.unit,
 scale.factor,
 wb.trim,
 use.hinges,
  . . .
)
## S3 method for class 'response_spct'
q_response(
  spct,
 w.band = NULL,
 quantity = "total",
 time.unit = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = getOption("photobiology.use.hinges", default = NULL),
 naming = "default",
  . . .
)
## S3 method for class 'response_mspct'
q_response(
  spct,
 w.band = NULL,
 quantity = "total",
  time.unit = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = getOption("photobiology.use.hinges", default = NULL),
 naming = "default",
  . . . ,
 attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

spct an R object.

w.band	waveband or list of waveband objects or a numeric vector of length two. The waveband(s) determine the region(s) of the spectrum that are summarized. If a numeric range is supplied a waveband object is constructed on the fly from it.
quantity	character string One of "total", "average" or "mean", "contribution", "contribu- tion.pc", "relative" or "relative.pc".
time.unit	character or lubridate::duration object.
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical if TRUE wavebands crossing spectral data boundaries are trimmed, if FALSE, they are discarded.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used.

Methods (by class)

- default: Default method for generic function
- response_spct: Method for response spectra.
- response_mspct: Calculates photon (quantum) response from a response_mspct

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

See Also

Other response functions: e_response(), response()

Examples

q_response(ccd.spct, new_waveband(200,300))
q_response(photodiode.spct)

r4p_pkgs

Packages in R for Photobiology suite

Description

A dataset containing the names of all the packages in this suite.

Usage

r4p_pkgs

Format

A character vector.

Details

A character vector.

Examples

r4p_pkgs

rbindspct

Description

A wrapper on dplyr::rbind_fill that preserves class and other attributes of spectral objects.

Usage

```
rbindspct(
    l,
    use.names = TRUE,
    fill = TRUE,
    idfactor = TRUE,
    attrs.source = NULL
)
```

Arguments

1	A source_mspct, filter_mspct, reflector_mspct, response_mspct, chroma_mspct, cps_mspct, generic_mspct object or a list containing source_spct, filter_spct, reflector_spct, response_spct, chroma_spct, cps_spct, or generic_spct objects.
use.names	logical If TRUE items will be bound by matching column names. By default TRUE for rbindspct. Columns with duplicate names are bound in the order of occurrence, similar to base. When TRUE, at least one item of the input list has to have non-null column names.
fill	logical If TRUE fills missing columns with NAs. By default TRUE. When TRUE, use.names has also to be TRUE, and all items of the input list have to have non-null column names.
idfactor	logical or character Generates an index column of factor type. Default is (idfactor=TRUE) for both lists and _mspct objects. If idfactor=TRUE then the column is auto named spct.idx. Alternatively the column name can be directly provided to idfactor as a character string.
attrs.source	integer Index into the members of the list from which attributes should be copied. If NULL, all attributes are merged.

Details

Each item of 1 should be a spectrum, including NULL (skipped) or an empty object (0 rows). rbindspc is most useful when there are a variable number of (potentially many) objects to stack. rbindspct always returns at least a generic_spct as long as all elements in l are spectra.

Value

An spectral object of a type common to all bound items containing a concatenation of all the items passed in. If the argument 'idfactor' is TRUE, then a factor 'spct.idx' will be added to the returned spectral object.

Note

Note that any additional 'user added' attributes that might exist on individual items of the input list will not be preserved in the result. The attributes used by the photobiology package are preserved, and if they are not consistent across the bound spectral objects, a warning is issued.

dplyr::rbind_fill is called internally and the result returned is the highest class in the inheritance hierarchy which is common to all elements in the list. If not all members of the list belong to one of the _spct classes, an error is triggered. The function sets all data in source_spct and response_spct objects supplied as arguments into energy-based quantities, and all data in filter_spct objects into transmittance before the row binding is done. If any member spectrum is tagged, it is untagged before row binding.

Examples

```
# default, adds factor 'spct.idx' with letters as levels
spct <- rbindspct(list(sun.spct, sun.spct))</pre>
spct
class(spct)
# adds factor 'spct.idx' with letters as levels
spct <- rbindspct(list(sun.spct, sun.spct), idfactor = TRUE)</pre>
head(spct)
class(spct)
# adds factor 'spct.idx' with the names given to the spectra in the list
# supplied as formal argument 'l' as levels
spct <- rbindspct(list(one = sun.spct, two = sun.spct), idfactor = TRUE)</pre>
head(spct)
class(spct)
# adds factor 'ID' with the names given to the spectra in the list
# supplied as formal argument 'l' as levels
spct <- rbindspct(list(one = sun.spct, two = sun.spct),</pre>
                  idfactor = "ID")
head(spct)
class(spct)
```

Reflectance

reflectance

reflectance

Description

Function to calculate the mean, total, or other summary of reflectance for spectral data stored in a reflector_spct or in an object_spct.

Usage

```
reflectance(spct, w.band, quantity, wb.trim, use.hinges, ...)
## Default S3 method:
reflectance(spct, w.band, quantity, wb.trim, use.hinges, ...)
## S3 method for class 'reflector_spct'
reflectance(
  spct,
 w.band = NULL,
 quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = NULL,
 naming = "default",
  . . .
)
## S3 method for class 'object_spct'
reflectance(
  spct,
 w.band = NULL,
 quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = NULL,
 naming = "default",
  . . .
)
## S3 method for class 'reflector_mspct'
reflectance(
  spct,
 w.band = NULL,
 quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = NULL,
  naming = "default",
  ...,
  attr2tb = NULL,
  idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

reflectance

```
## S3 method for class 'object_mspct'
reflectance(
    spct,
    w.band = NULL,
    quantity = "average",
    wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
    use.hinges = NULL,
    naming = "default",
    ...,
    attr2tb = NULL,
    idx = "spct.idx",
    .parallel = FALSE,
    .paropts = NULL
)
```

Arguments

spct	an R object
w.band	waveband or list of waveband objects or a numeric vector of length two. The waveband(s) determine the region(s) of the spectrum that are summarized. If a numeric range is supplied a waveband object is constructed on the fly from it.
quantity	character string One of "total", "average" or "mean", "contribution", "contribution.pc", "relative" or "relative.pc"
wb.trim	logical Flag telling if wavebands crossing spectral data boundaries are trimmed or ignored
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see <pre>add_attr2tb</pre> for the syntax for <pre>attr2tb</pre> passed as is to formal parameter <pre>col.names.</pre>
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and

optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used.

Methods (by class)

- default: Default for generic function
- reflector_spct: Specialization for reflector_spct
- object_spct: Specialization for object_spct
- reflector_mspct: Calculates reflectance from a reflector_mspct
- object_mspct: Calculates reflectance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

```
reflectance(black_body.spct, waveband(c(400,700)))
reflectance(white_body.spct, waveband(c(400,700)))
```

relative_AM

Description

Approximate relative air mass (AM) from sun elevation or sun zenith angle.

Relative Air Mass (AM)

Usage

```
relative_AM(elevation.angle = NULL, zenith.angle = NULL, occluded.value = NA)
```

Arguments

```
elevation.angle, zenith.angle
    numeric vector Angle in degrees for the sun position. An argument should be
    passed to one and only one of elevation_angle or zenith_angle.
    occluded.value numeric Value to return when elevation angle is negative (sun below the hori-
    zon).
```

Details

This is an implementation of equation (3) in Kasten and Young (1989). This equation is only an approximation to the tabulated values in the same paper. Returned values are rounded to three significant digits.

Note

Although relative air mass is not defined when the sun is not visible, returning a value different from the default NA might be useful in some cases.

References

F. Kasten, A. T. Young (1989) Revised optical air mass tables and approximation formula. Applied Optics, 28, 4735-. doi:10.1364/ao.28.004735.

Examples

```
relative_AM(c(90, 60, 30, 1, -10))
relative_AM(c(90, 60, 30, 1, -10), occluded.value = Inf)
relative_AM(zenith.angle = 0)
```

replace_bad_pixs Replace bad pixels in a spectrum

Description

This function replaces data for bad pixels by a local estimate, by either simple interpolation or using the algorithm of Whitaker and Hayes (2018).

Usage

```
replace_bad_pixs(
    x,
    bad.pix.idx = FALSE,
    window.width = 11,
    method = "run.mean",
    na.rm = TRUE
)
```

Arguments

х	numeric vector containing spectral data.	
bad.pix.idx	logical vector or integer. Index into bad pixels in x.	
window.width	integer. The full width of the window used for the running mean.	

method	character The name of the method: "run.mean" is running mean as described in Whitaker and Hayes (2018); "adj.mean" is mean of adjacent neighbors (iso- lated bad pixels only).
na.rm	logical Treat NA values as additional bad pixels and replace them.

Details

Simple interpolation replaces values of isolated bad pixels by the mean of their two closest neighbors. The running mean approach allows the replacement of short runs of bad pixels by the running mean of neighboring pixels within a window of user-specified width. The first approach works well for spectra from array spectrometers to correct for hot and dead pixels in an instrument. The second approach is most suitable for Raman spectra in which spikes triggered by radiation are wider than a single pixel but usually not more than five pixels wide.

Value

A logical vector of the same length as x. Values that are TRUE correspond to local spikes in the data.

Note

In the current implementation NA values are not removed, and if they are in the neighborhood of bad pixels, they will result in the generation of additional NAs during their replacement.

References

Whitaker, D. A.; Hayes, K. (2018) A simple algorithm for despiking Raman spectra. Chemometrics and Intelligent Laboratory Systems, 179, 82-84.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), spikes(), valleys(), wls_at_target()

Examples

```
# in a vector
replace_bad_pixs(c(1, 1, 45, 1, 1), bad.pix.idx = 3)
```

```
# before replacement
white_led.raw_spct$counts_3[120:125]
```

response

Description

Calculate average photon- or energy-based photo-response.

Usage

```
response(
  spct,
 w.band,
 unit.out,
 quantity,
  time.unit,
  scale.factor,
 wb.trim,
  use.hinges,
  . . .
)
## Default S3 method:
response(
  spct,
 w.band,
  unit.out,
  quantity,
  time.unit,
  scale.factor,
 wb.trim,
  use.hinges,
  . . .
)
## S3 method for class 'response_spct'
response(
  spct,
 w.band = NULL,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  quantity = "total",
  time.unit = NULL,
  scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = getOption("photobiology.use.hinges", default = NULL),
 naming = "default",
  . . .
)
```

```
## S3 method for class 'response_mspct'
response(
  spct,
 w.band = NULL,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
 quantity = "total",
 time.unit = NULL,
 scale.factor = 1,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = getOption("photobiology.use.hinges", default = NULL),
 naming = "default",
  ...,
 attr2tb = NULL,
 idx = "spct.idx",
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

spct	an R object of class "generic_spct".
w.band	waveband or list of waveband objects or a numeric vector of length two. The waveband(s) determine the region(s) of the spectrum that are summarized. If a numeric range is supplied a waveband object is constructed on the fly from it.
unit.out	character Allowed values "energy", and "photon", or its alias "quantum".
quantity	character string One of "total", "average" or "mean", "contribution", "contribu- tion.pc", "relative" or "relative.pc".
time.unit	character or lubridate::duration object.
scale.factor	numeric vector of length 1, or length equal to that of w.band. Numeric multiplier applied to returned values.
wb.trim	logical Flag telling if wavebands crossing spectral data boundaries are trimmed or ignored.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	other arguments (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see <pre>add_attr2tb</pre> for the syntax for <pre>attr2tb</pre> passed as is to formal parameter <pre>col.names.</pre>
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel computation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

Whether returned values are expressed in energy-based or photon-based units depends on unit.out. By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used.

Methods (by class)

- default: Default for generic function
- response_spct: Method for response spectra.
- response_mspct: Calculates response from a response_mspct

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

See Also

Other response functions: e_response(), q_response()

Rfr_from_n

Reflectance at a planar boundary

Description

The reflectance at the planar boundary between two media, or interface, can be computed from the relative refractive index. Reflectance depends on polarization, and the process of reflection can generate polarized light through selective reflection of s and p components. A perfectly flat (i.e., polished) interface creates specular reflection, and this is the case that these functions describe. These function describe a single interface, and for example in a glass pane, a light beam will cross two air-glass interfaces.

rgb_spct

Usage

```
Rfr_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5, p_fraction = 0.5)
Rfr_p_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5)
Rfr_s_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5)
```

Arguments

angle_deg, angle	
	numeric vector Angle of incidence of the light beam, in degrees or radians. If both are supplied, radians take precedence.
n	numeric vector, or generic_spct object Relative refractive index. The default 1.5 is suitable for crown glass or acrylic interacting with visible light. n depends on wavelength, more or less strongly depending on the material.
p_fraction	numeric in range 0 to 1. Polarization, defaults to 0.5 assuming light that is not polarized.

Details

These functions implement Fresnel's formulae. All parameters accept vectors as arguments. If both n and angle are vectors with length different from one, they should both have the same length. Reflectance depends on polarization, the s and p components need to be computed separately and added up. $Rfr_from_n()$ is for non-polarized light, i.e., with equal contribution of the two components.

Value

If n is a numeric vector the returned value is a vector of reflectances, while if n is a generic_spct object the returned value is a reflector_spct object.

Examples

```
Rfr_from_n(0:90)
Rfr_from_n(0:90, p_fraction = 1)
Rfr_from_n(0:90, n = 1.333) # water
```

rgb_spct

RGB color values

Description

This function returns the RGB values for a source spectrum.

Usage

```
rgb_spct(spct, sens = photobiology::ciexyzCMF2.spct, color.name = NULL)
```

Arguments

spct	an object of class "source_spct"
sens	a chroma_spct object with variables w.length, x, y, and z, giving the CC or CMF definition (default is the proposed human CMF according to CIE 2006.)
color.name	character string for naming the rgb color definition

Value

A color defined using rgb(). The numeric values of the RGB components can be obtained

See Also

Other color functions: w_length2rgb(), w_length_range2rgb()

Examples

rgb_spct(sun.spct)

rmDerivedMspct Remove "generic_mspct" and derived class attributes.

Description

Removes from a spectrum object the class attributes "generic_mspct" and any derived class attribute such as "source_mspct". **This operation is done by reference!**

Usage

rmDerivedMspct(x)

Arguments ×

an R object.

Value

A character vector containing the removed class attribute values. This is different to the behaviour of function unlist in base R!

Note

If x is an object of any of the multi spectral classes defined in this package, this function changes by reference the multi spectrum object into the underlying list object. Otherwise, it just leaves x unchanged. The modified x is also returned invisibly.

rmDerivedSpct

See Also

Other set and unset 'multi spectral' class functions: shared_member_class()

rmDerivedSpct Remove "generic_spct" and derived class attributes.

Description

Removes from a spectrum object the class attributes "generic_spct" and any derived class attribute such as "source_spct". **This operation is done by reference!**

Usage

```
rmDerivedSpct(x, keep.classes = NULL)
```

Arguments

х	an R object.	
keep.classes	character vector Names of classes to keep. "generic_spct".	Can be used to retain base class

Value

A character vector containing the removed class attribute values. This is different to the behaviour of function unlist in base R!

Note

If x is an object of any of the spectral classes defined in this package, this function changes by reference the spectrum object into the underlying data.frame object. Otherwise, it just leaves x unchanged.

This function alters x itself by reference. If x is not a generic_spct object, x is not modified.

See Also

Other set and unset spectral class functions: setGenericSpct()

Examples

```
my.spct <- sun.spct
removed <- rmDerivedSpct(my.spct)
removed
class(sun.spct)
class(my.spct)</pre>
```

round

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the smallest integers not less than the corresponding elements of x. floor takes a single numeric argument x and returns a numeric vector containing the largest integers not greater than the corresponding elements of x. trunc takes a single numeric argument x and returns a numeric vector containing the integers formed by truncating the values in x toward 0. round rounds the values in its first argument to the specified number of decimal places (default 0). signif rounds the values in its first argument to the specified number of significant digits. The functions are applied to the spectral data, not the wavelengths. The quantity in the spectrum to which the function is applied depends on the class of x and the current value of output options.

Usage

```
## S3 method for class 'generic_spct'
round(x, digits = 0)
## S3 method for class 'generic_spct'
signif(x, digits = 6)
## S3 method for class 'generic_spct'
ceiling(x)
## S3 method for class 'generic_spct'
floor(x)
## S3 method for class 'generic_spct'
trunc(x, ...)
```

Arguments

х	an object of class "generic_spct" or a derived class.
digits	integer indicating the number of decimal places (round) or significant digits (sig- nif) to be used. Negative values are allowed (see 'Details').
	arguments to be passed to methods.

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct, log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, sign(), slash-.generic_spct, times-.generic_spct

select_spct_attributes

Merge user supplied attribute names with default ones

Description

Allow users to add and subract from default attributes in addition to providing a given set of attributes.

Usage

```
select_spct_attributes(attributes, attributes.default = spct_attributes())
```

```
spct_attributes(.class = "all", attributes = "*")
```

Arguments

attributes, a	ttributes.default
	character vector or a list of character vectors.
.class	character Name of spectral class.

Details

Vectors of character strings passed as argument to attributes are parsed so that if the first member string is "+", the remaining members are added to those in attributes.default; if it is "-" the remaining members are removed from in attributes.default; and if it is "=" the remaining members replace those in in attributes.default. If the first member is none of these three strings, the behaviour is the same as when the first string is "=". If attributes is NULL all the attributes.default are used and if it is "" no attribute names are returned, "" has precedence over other member values. The order of the names of annotations has no meaning: the vector is interpreted as a set except for the three possible "operators" at position 1.

Value

A character vector of attribute names.

See Also

get_attributes

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMe
```

setBSWFUsed

Description

Function to set by reference the "time.unit" attribute of an existing source_spct object

Usage

```
setBSWFUsed(x, bswf.used = c("none", "unknown"))
```

Arguments

х	a source_spct object
bswf.used	a character string, either "none" or the name of a BSWF

Value

х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a source_spct, x is not modified. The behaviour of this function is 'unusual' in that the default for parameter bswf.used is used only if x does not already have this attribute set. time.unit = "hour" is currently not fully supported.

See Also

Other BSWF attribute functions: getBSWFUsed()

setFilterProperties Set the "filter.properties" attribute

Description

Function to set by reference the "filter.properties" attribute of an existing filter_spct object.

setFilterProperties

Usage

```
setFilterProperties(
    x,
    filter.properties = NULL,
    pass.null = FALSE,
    Rfr.constant = NA_real_,
    thickness = NA_real_,
    attenuation.mode = NA_character_
)
```

filter_properties(x) <- value</pre>

Arguments

Х	a filter_spct object
filter.properties, value	
	a list with fields named "Rfr.constant", "thickness" and "attenuation.mode".
pass.null	logical If TRUE, the parameters to the next three parameters will be always ignored, otherwise they will be used to build an object of class "filter.properties" when the argument to filter.properties is NULL.
Rfr.constant	numeric The value of the reflection factor (/1).
thickness	numeric The thickness of the material.
attenuation.mode	
	character One of "reflection", "absorption", "absorption.layer" or "mixed".

Details

Storing filter properties allows inter-conversion between internal and total transmittance, as well as computation of transmittance for arbitrary thickness of the material. Whether computations are valid depend on the homogeneity of the material. The parameter pass.null makes it possible to remove the attribute.

Value

Х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a filter_spct object, x is not modified.

The values of 'attenuation.mode' "reflection" and "absorption" should be used when one of these processes is clearly the main one; "mixed" is for cases when they both play a role, i.e., when a simple correction using a single value of Rfr across wavelengths is not possible; "absorption.layer" is for cases when a thin absorbing layer is deposited on the surface of a transparent support or enclosed between two sheets of glass or other transparent material. If in doubt, set this to NA to ensure that computation of spectra for other thicknesses remains disabled.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), getWhereMeasured(), getWhereMeasured(), setInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhereMeasured(), setWhenMeasured(), setWhe
```

Examples

setGenericSpct Convert an R object into a spectrum object.

Description

Sets the class attribute of a data.frame or an object of a derived class to "generic_spct".

Usage

```
setGenericSpct(x, multiple.wl = 1L, idfactor = NULL)
setCalibrationSpct(
    x,
    strict.range = getOption("photobiology.strict.range", default = FALSE),
    multiple.wl = 1L,
    idfactor = NULL
)
setRawSpct(
    x,
    strict.range = getOption("photobiology.strict.range", default = FALSE),
    multiple.wl = 1L,
    idfactor = NULL
)
setCpsSpct(
    x,
```

```
time.unit = "second",
  strict.range = getOption("photobiology.strict.range", default = FALSE),
 multiple.wl = 1L,
 idfactor = NULL
)
setFilterSpct(
  х,
 Tfr.type = c("total", "internal"),
 Rfr.constant = NA_real_,
  thickness = NA_real_,
  attenuation.mode = NA,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
 multiple.wl = 1L,
 idfactor = NULL
)
setReflectorSpct(
 х,
 Rfr.type = c("total", "specular"),
  strict.range = getOption("photobiology.strict.range", default = FALSE),
 multiple.wl = 1L,
 idfactor = NULL
)
setObjectSpct(
 х,
 Tfr.type = c("total", "internal"),
 Rfr.type = c("total", "specular"),
 strict.range = getOption("photobiology.strict.range", default = FALSE),
 multiple.wl = 1L,
  idfactor = NULL
)
setResponseSpct(
  х,
  time.unit = "second",
 response.type = "response",
 multiple.wl = 1L,
 idfactor = NULL
)
setSourceSpct(
  х,
  time.unit = "second",
 bswf.used = c("none", "unknown"),
  strict.range = getOption("photobiology.strict.range", default = FALSE),
 multiple.wl = 1L,
```

```
idfactor = NULL
)
```

setChromaSpct(x, multiple.wl = 1L, idfactor = NULL)

Arguments

х	data.frame, list or generic_spct and derived classes
multiple.wl	numeric Maximum number of repeated w.length entries with same value.
idfactor	character Name of factor distinguishing multiple spectra when stored logitudinally (required if multiple.wl > 1).
strict.range	logical Flag indicating whether off-range values result in an error instead of a warning.
time.unit	character string indicating the time unit used for spectral irradiance or exposure ("second", "day" or "exposure") or an object of class duration as defined in package lubridate.
Tfr.type	character A string, either "total" or "internal".
Rfr.constant	numeric The value of the reflection factor (/1).
thickness attenuation.mo	numeric The thickness of the material. de
	character One of "reflection", "absorption" or "mixed".
Rfr.type	character A string, either "total" or "specular".
response.type	a character string, either "response" or "action".
bswf.used	character A string, either "none" or the name of a BSWF.

Value

х

Functions

- setCalibrationSpct: Set class of a an object to "calibration_spct".
- setRawSpct: Set class of a an object to "raw_spct".
- setCpsSpct: Set class of a an object to "cps_spct".
- setFilterSpct: Set class of an object to "filter_spct".
- setReflectorSpct: Set class of a an object to "reflector_spct".
- setObjectSpct: Set class of an object to "object_spct".
- setResponseSpct: Set class of an object to "response_spct".
- setSourceSpct: Set class of an object to "source_spct".
- setChromaSpct: Set class of an object to "chroma_spct".

Note

This method alters x itself by reference and in addition returns x invisibly.

For non-diffusing materials like glass an approximate Rfr.constant value can be used to interconvert "total" and "internal" transmittance values. Use NA if not known, or not applicable, e.g., for materials subject to internal scattering.

See Also

Other set and unset spectral class functions: rmDerivedSpct()

Examples

```
my.df <- data.frame(w.length = 300:309, s.e.irrad = rep(100, 10))
is.source_spct(my.df)
setSourceSpct(my.df)
is.source_spct(my.df)</pre>
```

setHowMeasured Set the "how.measured" attribute

Description

Function to set by reference the "how.measured" attribute of an existing generic_spct or derivedclass object.

Usage

```
setHowMeasured(x, how.measured)
```

how_measured(x) <- value</pre>

Arguments

x a generic_spct object how.measured, value a list

Value

х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct object, x is not modified.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

Examples

```
my.spct <- sun.spct
how_measured(my.spct)
how_measured(my.spct) <- "simulated with a radiation transfer model"
how_measured(my.spct)
```

setIdFactor

Set the "idfactor" attribute

Description

Function to set by reference the "idfactor" attribute of an existing generic_spct or an object of a class derived from generic_spct.

Usage

```
setIdFactor(x, idfactor)
```

Arguments

х	a generic_spct object
idfactor	character The name of a factor identifying multiple spectra stored longitudinally

Value

х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct or an object of a class derived from generic_spct, x is not modified.

See Also

Other idfactor attribute functions: getIdFactor()

setInstrDesc Set the "

Set the "instr.desc" attribute

Description

Function to set by reference the "instr.desc" attribute of an existing generic_spct or derived-class object.

Usage

setInstrDesc(x, instr.desc)

Arguments

x a generic_spct object instr.desc a list

Value

х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct object, x is not modified.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

setInstrSettings Set the "instr.settings" attribute

Description

Function to set by reference the "what.measured" attribute of an existing generic_spct or derivedclass object.

Usage

setInstrSettings(x, instr.settings)

Arguments

x a generic_spct object instr.settings a list

Value

х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct object, x is not modified.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhereMeasured(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

|--|--|

Description

Function to set by reference the "multiple.wl" attribute of an existing generic_spct or an object of a class derived from generic_spct.

Usage

```
setMultipleWl(x, multiple.wl = NULL)
```

Arguments

х	a generic_spct object
multiple.wl	numeric >= 1 If multiple.wl is NULL, the default, the attribute is not modified
	if it is already present and valid, and set to 1 otherwise.

Value

х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct or an object of a class derived from generic_spct, x is not modified. If multiple.wl

setNormalized

See Also

Other multiple.wl attribute functions: getMultipleWl()

setNormalized Set the "normalized" and "normalization" attributes

Description

Function to write the "normalized" attribute of an existing generic_spct object.

Usage

```
setNormalized(
 х,
 norm = FALSE,
 norm.type = NA_character_,
 norm.factors = NA_real_,
 norm.cols = NA_character_,
 norm.range = rep(NA_real_, 2)
)
setNormalised(
 х,
 norm = FALSE,
 norm.type = NA_character_,
 norm.factors = NA_real_,
 norm.cols = NA_character_,
 norm.range = rep(NA_real_, 2)
)
```

Arguments

Х	a generic_spct object.
norm	numeric (or logical) Normalization wavelength (nanometres).
norm.type	character Type of normalization applied.
norm.factors	numeric The scaling factor(s) so that dividing the spectral values by this factor reverts the normalization.
norm.cols	character The name(s) of the data columns normalized.
norm.range	numeric The wavelength range used for normalization (nm).

Note

If x is not a generic_spct object, x is not modified. Passing a logical as argument to norm is deprecated but kept for backwards compatibility.

setNormalised() is a synonym for this setNormalized() method.

See Also

```
Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), normalize(), setScaled()
```

setResponseType Set the "response.type" attribute

Description

Function to set by reference the "response.type" attribute of an existing response_spct object.

Usage

```
setResponseType(x, response.type = c("response", "action"))
```

Arguments

х	a response_spct object
response.type	a character string, either "response" or "action"

Details

Objects of class response_spct() can contain data for a response spectrum or an action spectrum. Response spectra are measured using the same photon (or energy) irradiance at each wavelength. Action spectra are derived from dose response curves at each wavelength, and responsivity at each wavelength is expressed as the reciprocal of the photon fluence required to obtain a fixed level of response.

Value

Х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a response_spct object, x is not modified The behaviour of this function is 'unusual' in that the default for parameter response.type is used only if x does not already have this attribute set.

Examples

```
my.spct <- ccd.spct
setResponseType(my.spct, "action")</pre>
```

setRfrType

Description

Function to set by reference the "Rfr.type" attribute of an existing reflector_spct or object_spct object.

Usage

```
setRfrType(x, Rfr.type = c("total", "specular"))
```

Arguments

х	a reflector_spct or an object_spct object
Rfr.type	a character string, either "total" or "specular"

Value

Х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a reflector_spct or object_spct object, x is not modified. The behaviour of this function is 'unusual' in that the default for parameter Rfr.type is used only if x does not already have this attribute set.

See Also

Other Rfr attribute functions: getRfrType()

Examples

```
my.spct <- reflector_spct(w.length = 400:409, Rfr = 0.1)
getRfrType(my.spct)
setRfrType(my.spct, "specular")
getRfrType(my.spct)</pre>
```

setScaled

Description

Function to write the "scaled" attribute of an existing generic_spct object.

Usage

```
setScaled(x, ...)
## Default S3 method:
setScaled(x, ...)
## S3 method for class 'generic_spct'
setScaled(x, ..., scaled = FALSE)
## S3 method for class 'summary_generic_spct'
setScaled(x, ..., scaled = FALSE)
## S3 method for class 'generic_mspct'
setScaled(x, ..., scaled = FALSE)
```

Arguments

х	a generic_spct object.
	currently ignored.
scaled	logical with FALSE meaning that values are expressed in absolute physical units and TRUE meaning that relative units are used. If NULL the attribute is not modified.

Value

a new object of the same class as x.

- a new object of the same class as x.
- a new object of the same class as x.
- a new object of the same class as x.

Methods (by class)

- default: Default for generic function
- generic_spct: Specialization for generic_spct
- summary_generic_spct: Specialization for summary_generic_spct
- generic_mspct: Specialization for generic_mspct
setTfrType

Note

if x is not a generic_spct object, x is not modified.

See Also

```
Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), normalize(), setNormalized()
```

setTfrType Set the "Tfr.type" attribute

Description

Function to set by reference the "Tfr.type" attribute of an existing filter_spct or object_spct object

Usage

```
setTfrType(x, Tfr.type = c("total", "internal"))
```

Arguments

х	a filter_spct or an object_spct object
Tfr.type	a character string, either "total" or "internal"

Value

х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a filter_spct or an object_spct object, x is not modified The behaviour of this function is 'unusual' in that the default for parameter Tfr.type is used only if x does not already have this attribute set.

See Also

Other Tfr attribute functions: getTfrType()

```
my.spct <- polyester.spct
getTfrType(my.spct)
setTfrType(my.spct, "internal")
getTfrType(my.spct)</pre>
```

setTimeUnit

Description

Function to set by reference the "time.unit" attribute

Usage

```
setTimeUnit(
    x,
    time.unit = c("second", "hour", "day", "exposure", "none"),
    override.ok = FALSE
)
```

Arguments

х	a source_spct object
time.unit	character string indicating the time unit used for spectral irradiance or exposure ("second", "day" or "exposure") or an object of class duration as defined in package lubridate.
override.ok	logical Flag that can be used to silence warning when overwriting an existing attribute value (used internally)

Value

Х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a source_spct or response_spct object, x is not modified. The behaviour of this function is 'unusual' in that the default for parameter time.unit is used only if x does not already have this attribute set. time.unit = "hour" is currently not fully supported.

See Also

Other time attribute functions: checkTimeUnit(), convertTfrType(), convertThickness(), convertTimeUnit(), getTimeUnit()

```
my.spct <- sun.spct
setTimeUnit(my.spct, time.unit = "second")
setTimeUnit(my.spct, time.unit = lubridate::duration(1, "seconds"))</pre>
```

Description

Function to set by reference the "what.measured" attribute of an existing generic_spct or derivedclass object.

Usage

```
setWhatMeasured(x, what.measured)
```

what_measured(x) <- value</pre>

Arguments

Value

Х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct object, x is not modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhenMeasured(), setWhereMeasured(), setWhereMeasured(), spct_metadata(), trimInstrDesc(), trimInstrSettings()

```
my.spct <- sun.spct
what_measured(my.spct)
what_measured(my.spct) <- "Sun"
what_measured(my.spct)</pre>
```

setWhenMeasured

Description

Function to set by reference the "when" attribute of an existing generic_spct or an object of a class derived from generic_spct.

Usage

```
setWhenMeasured(x, when.measured, ...)
when_measured(x) <- value
## Default S3 method:
setWhenMeasured(x, when.measured, ...)
## S3 method for class 'generic_spct'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)
## S3 method for class 'summary_generic_spct'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)
## S3 method for class 'generic_mspct'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)</pre>
```

Arguments

х	a generic_spct object
when.measured,	value
	POSIXct to add as attribute, or a list of POSIXct.
	Allows use of additional arguments in methods for other classes.

Value

Х

Methods (by class)

- default: default
- generic_spct: generic_spct
- summary_generic_spct: summary_generic_spct
- generic_mspct: generic_mspct

setWhereMeasured

Note

This method alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct or an object of a class derived from generic_spct, x is not modified. If when is not a POSIXct object or NULL an error is triggered. A POSIXct describes an instant in time (date plus time-of-day plus time zone).

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), trimInstrDesc(), trimInstrSettings()
```

Examples

```
my.spct <- sun.spct
when_measured(my.spct)
when_measured(my.spct) <- lubridate::ymd_hms("2020-01-01 08:00:00")
when_measured(my.spct)
```

setWhereMeasured Set the "where.measured" attribute

Description

Function to set by reference the "where.measured" attribute of an existing generic_spct or an object of a class derived from generic_spct.

```
setWhereMeasured(x, where.measured, lat, lon, address, ...)
where_measured(x) <- value
## Default S3 method:
setWhereMeasured(x, where.measured, lat, lon, address, ...)
## S3 method for class 'generic_spct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)
## S3 method for class 'summary_generic_spct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)
## S3 method for class 'generic_mspct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)</pre>
```

Arguments

х	a generic_spct object
where.measured,	value
	A one row data.frame such as returned by function geocode from package
	'ggmap' for a location search.
lat	numeric Latitude in decimal degrees North
lon	numeric Longitude in decimal degrees West
address	character Human readable address
	Allows use of additional arguments in methods for other classes.

Value

Х

Methods (by class)

- default: default
- generic_spct: generic_spct
- summary_generic_spct: summary_generic_spct
- generic_mspct: generic_mspct

Note

This method alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct or an object of a class derived from generic_spct, x is not modified. If where is not a POSIXct object or NULL an error is triggered. A POSIXct describes an instant in time (date plus time-of-day plus time zone). As expected passing NULL as argument for where.measured unsets the attribute.

Method for collections of spectra recycles the location information only if it is of length one.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhatMeasured(), se
```

```
my.spct <- sun.spct
where_measured(my.spct)
where_measured(my.spct) <- data.frame(lon = 0, lat = -60)
where_measured(my.spct)
```

shared_member_class Classes common to all collection members.

Description

Finds the set intersection among the class attributes of all collection member as a target set of class names.

Usage

```
shared_member_class(1, target.set = spct_classes())
```

Arguments

1	a list or a generic_mspct object or of a derived class.
target.set	character The target set of classes within which to search for classes common to
	all members.

Value

A character vector containing the class attribute values.

See Also

Other set and unset 'multi spectral' class functions: rmDerivedMspct()

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real number is 1, 0, or -1 if the number is positive, zero, or negative, respectively).

Usage

```
## S3 method for class 'generic_spct'
sign(x)
```

Arguments

x an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct, log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), slash-.generic_spct, times-.generic_spct

Description

Division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 / e2

Arguments

e1	an object of class "generic_spct"
e2	an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct, log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), times-.generic_spct

n	Smooth a spectrum	<pre>smooth_spct</pre>
---	-------------------	------------------------

Description

These functions implement one original methods and acts as a wrapper for other common R smoothing functions. The advantage of using this function for smoothing spectral objects is that it simplifies the user interface and sets, when needed, defaults suitable for spectral data.

```
smooth_spct(x, method, strength, wl.range, ...)
## Default S3 method:
smooth_spct(x, method, strength, wl.range, ...)
## S3 method for class 'source_spct'
smooth_spct(
    x,
    method = "custom",
    strength = 1,
    wl.range = NULL,
```

```
na.rm = FALSE,
  . . .
)
## S3 method for class 'filter_spct'
smooth_spct(
 х,
 method = "custom",
 strength = 1,
 wl.range = NULL,
 na.rm = FALSE,
  . . .
)
## S3 method for class 'reflector_spct'
smooth_spct(
 х,
 method = "custom",
 strength = 1,
 wl.range = NULL,
 na.rm = FALSE,
  • • •
)
## S3 method for class 'response_spct'
smooth_spct(
 х,
 method = "custom",
 strength = 1,
 wl.range = NULL,
 na.rm = FALSE,
  . . .
)
## S3 method for class 'generic_mspct'
smooth_spct(
 х,
 method = "custom",
 strength = 1,
 wl.range = NULL,
 na.rm = FALSE,
  . . .
)
```

Arguments

х	an R object.
method	a character string "custom", "lowess", "supsmu" or "skip"

strength	numeric value to adjust the degree of smoothing. Ignored if method-specific parameters are passed through \ldots
wl.range	any R object on which applying the method range() yields a vector of two numeric values, describing a range of wavelengths (nm) within which spectral data is to be smoothed. NA is interpreted as the min or max value of $x[[w.length]]$.
	other parameters passed to the underlying smoothing functions.
na.rm	logical A flag indicating whether NA values should be stripped before the computation proceeds.

Value

A copy of x with spectral data values replaced by smoothed ones.

Methods (by class)

- default: Default for generic function
- source_spct: Smooth a source spectrum
- filter_spct: Smooth a filter spectrum
- reflector_spct: Smooth a reflector spectrum
- response_spct: Smooth a response spectrum
- generic_mspct:

Note

Method "custom" is our home-brewed method which applies strong smoothing to low signal regions of the spectral data, and weaker or no smoothing to the high signal areas. Values very close to zero are set to zero with a limit which depends on the local variation. This method is an ad-hock method suitable for smoothing spectral data obtained with spectrometers. In the cased of methods "lowess" and "supsmu" the current function behaves like a wrapper of the functions of the same names from base R. Method "skip" returns x unchanged.

```
my.spct <- clip_wl(sun.spct, c(400, 500))
smooth_spct(my.spct)
smooth_spct(my.spct, method = "custom", strength = 1)
smooth_spct(my.spct, method = "custom", strength = 4)
smooth_spct(my.spct, method = "supsmu", strength = 4)</pre>
```

solar_time

Description

solar_time() computes the time of day expressed in seconds since the astronomical midnight using and instant in time and a geocode as input. Solar time is useful when we want to plot data according to the local solar time rather than the local time in use at a time zone. How the returned instant in time is expressed depends on the argument passed to unit.out.

Usage

```
solar_time(
  time = lubridate::now(),
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  unit.out = "time"
)
```

Arguments

time	POSIXct Time, any valid time zone (TZ) is allowed, default is current time
geocode	data frame with variables lon and lat as numeric values (degrees).
unit.out	character string, One of "datetime", "time", "hour", "minute", or "second".

Details

Solar time is determined by the position of the sun in the sky and it almost always differs from the time expressed in the local time coordinates in use. The differences can vary from a few minutes up to a couple of hours depending on the exact location within the time zone and the use or not of daylight saving time.

Value

In all cases solar time is expressed as time since local astronomical midnight and, thus, lacks date information. If unit.out = "time", a numeric value in seconds with an additional class attribute "solar_time"; if unit.out = "datetime", a "POSIXct" value in seconds from midnight but with an additional class attribute "solar_date"; if unit.out = "hour" or unit.out = "minute" or unit.out = "second", a numeric value.

Warning!

Returned values are computed based on the time zone of the argument for parameter time. In the case of solar time, this timezone does not affect the result. However, in the case of solar dates the date part may be off by one day, if the time zone does not match the coordinates of the geocode value provided as argument.

Note

The algorithm is approximate, it calculates the difference between local solar noon and noon in the time zone of time and uses this value for the whole day when converting times into solar time. Days are not exactly 24 h long. Between successive days the shift is only a few seconds, and this leads to a small jump at midnight.

See Also

as_tod

Other Local solar time functions: as.solar_date(), is.solar_time(), print.solar_time()

Examples

source	spct	
--------	------	--

Spectral-object constructor

Description

These functions can be used to create spectral objects derived from generic_spct. They take as arguments numeric vectors for the data character scalars for attributes, and a logical flag.

Usage

```
source_spct(
  w.length = NULL,
  s.e.irrad = NULL,
  s.q.irrad = NULL,
  time.unit = c("second", "day", "exposure"),
  bswf.used = c("none", "unknown"),
  comment = NULL,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
  multiple.wl = 1L,
  idfactor = NULL,
  ...
```

source_spct

```
)
calibration_spct(
 w.length = NULL,
  irrad.mult = NA_real_,
  comment = NULL,
  instr.desc = NA,
 multiple.wl = 1L,
  idfactor = NULL,
  . . .
)
raw_spct(
 w.length = NULL,
  counts = NA_real_,
  comment = NULL,
  instr.desc = NA,
  instr.settings = NA,
 multiple.wl = 1L,
  idfactor = NULL,
  . . .
)
cps_spct(
 w.length = NULL,
  cps = NA_real_,
  comment = NULL,
  instr.desc = NA,
  instr.settings = NA,
 multiple.wl = 1L,
  idfactor = NULL,
  . . .
)
generic_spct(
 w.length = NULL,
 comment = NULL,
 multiple.wl = 1L,
 idfactor = NULL,
  . . .
)
response_spct(
 w.length = NULL,
  s.e.response = NULL,
  s.q.response = NULL,
  time.unit = c("second", "day", "exposure"),
  response.type = c("response", "action"),
```

```
comment = NULL,
 multiple.wl = 1L,
  idfactor = NULL,
  • • •
)
filter_spct(
 w.length = NULL,
 Tfr = NULL,
 Tpc = NULL,
 Afr = NULL,
  A = NULL,
 Tfr.type = c("total", "internal"),
  comment = NULL,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
 multiple.wl = 1L,
  idfactor = NULL,
  . . .
)
reflector_spct(
 w.length = NULL,
 Rfr = NULL,
 Rpc = NULL,
 Rfr.type = c("total", "specular"),
  comment = NULL,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
 multiple.wl = 1L,
  idfactor = NULL,
  . . .
)
object_spct(
 w.length = NULL,
 Rfr = NULL,
 Tfr = NULL,
 Afr = NULL,
  Tfr.type = c("total", "internal"),
 Rfr.type = c("total", "specular"),
  comment = NULL,
  strict.range = getOption("photobiology.strict.range", default = FALSE),
 multiple.wl = 1L,
 idfactor = NULL,
  . . .
)
chroma_spct(
 w.length = NULL,
```

source_spct

```
x,
y,
z,
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL,
...
```

Arguments

)

w.length	numeric vector with wavelengths in nanometres		
s.e.irrad	numeric vector with spectral energy irradiance in [W m-2 nm-1] or [J d-1 m-2 nm-1]		
s.q.irrad	numeric A vector with spectral photon irradiance in [mol s-1 m-2 nm-1] or [mol d-1 m-2 nm-1].		
time.unit	character string indicating the time unit used for spectral irradiance or exposure ("second", "day" or "exposure") or an object of class duration as defined in package lubridate.		
bswf.used	character A string indicating the BSWF used, if any, for spectral effective irradiance or exposure ("none" or the name of the BSWF).		
comment	character A string to be added as a comment attribute to the object created.		
strict.range	logical Flag indicating whether off-range values result in an error instead of a warning.		
multiple.wl	numeric Maximum number of repeated w.length entries with same value.		
idfactor	character Name of factor distinguishing multiple spectra when stored logitudinally (required if multiple.wl > 1).		
	other arguments passed to tibble()		
irrad.mult	numeric vector with multipliers for each detector pixel.		
instr.desc	a list		
counts	numeric vector with raw counts expressed per scan		
instr.settings	a list		
cps	numeric vector with linearized raw counts expressed per second		
s.e.response	numeric vector with spectral energy irradiance in W m-2 nm-1 or J d-1 m-2 nm-1 $$		
s.q.response	numeric vector with spectral photon irradiance in mol s-1 m-2 nm-1 or mol d-1 m-2 nm-1		
response.type	a character string, either "response" or "action".		
Tfr	numeric vector with spectral transmittance as fraction of one		
Трс	numeric vector with spectral transmittance as percent values		
Afr	numeric vector of absorptance as fraction of one		

A	numeric vector of absorbance values (log10 based a.u.)
Tfr.type	character string indicating whether transmittance and absorptance values are "to-tal" or "internal" values
Rfr	numeric vector with spectral reflectance as fraction of one
Rpc	numeric vector with spectral reflectance as percent values
Rfr.type	character A string, either "total" or "specular".
x, y, z	numeric colour coordinates

Value

A object of class generic_spct or a class derived from it, depending on the function used. In other words an object of a class with the same name as the constructor function.

Note

The functions can be used to add only one spectral quantity to a spectral object. Some of the functions have different arguments, for the same quantity expressed in different units. An actual parameter can be supplied to only one of these formal parameters in a given call to any of these functions.

"internal" transmittance is defined as the transmittance of the material body itself, while "total" transmittance includes the effects of surface reflectance on the amount of light transmitted.

See Also

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(), as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(), as.source_spct()

spct_attr2tb

Copy attributes into a tibble

Description

Method returning attributes of an object of class generic_spct or derived, or of class waveband. Only attributes defined and/or set by package 'photobiology' for objects of the corresponding class are returned.

```
spct_attr2tb(
    x,
    which = c("-", "names", "row.names", "spct.tags", "spct.version", "comment"),
    ...
)
```

spct_classes

Arguments

x	a generic_spct object.
which	character vector Names of attributes to retrieve.
	currently ignored

Value

A tibble with the values stored in the attributes whose names were selected through the argument to which if present in x.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhenMeasured(), trimInstrSettings() and the setWhenMeasured(), trimInstrSettings() and the setWhenMeasured(), trimInstrSettings(), setWhenMeasured(), trimInstrSettings(), trimInstrSettings() and the setWhenMeasured(), trimInstrSettings() and the setWhenMeasured() and the setWhenMeasured(), trimInstrSetTings() and the setWhenMeasured() and the se
```

spct_classes

Function that returns a vector containing the names of spectra classes.

Description

Function that returns a vector containing the names of spectra classes.

Usage

spct_classes()

Value

A character vector of class names.

Examples

spct_classes()

spct_metadata Access metadata

Description

Return metadata attributes from a single spectrum or a collection of spectra as a tibble.

Usage

```
spct_metadata(
    x,
    col.names = NULL,
    idx = "spct.idx",
    na.rm = is.null(col.names),
    unnest = TRUE
)
```

Arguments

х	generic_mspct or generic_spct Any collection of spectra or spectrum.	
col.names	named character vector Name(s) of column(s) to create.	
idx	character Name of the column with the names of the members of the collection of spectra.	
na.rm	logical Flag controlling deletion of columns containing only NA values.	
unnest	logical Flag controlling if metadata attributes that are lists of values should be returned in a list column or in separate columns.	

Details

Attributes are returned as columns in a tibble. If the argument to col.names is a named vector, with the names of members matching the names of attributes, then the values are used as names for the columns created. This permits setting any valid name for the new columns. If the vector passed to col.names has no names, then the values are interpreted as the names of the attributes to add, and also used as names for the new columns.

Some metadata values are stored in lists or data frames, these can be returned as a list columns or the individual fields unnested into separate columns.

Value

A tibble With the metadata attributes and an index column.

spikes

See Also

add_attr2tb for more details.

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhenMeasured(), trimInstrDesc(), trimInstrSettings()
```

Examples

```
my.mspct <- source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2))
spct_metadata(my.mspct)
spct_metadata(sun.spct)
spct_metadata(my.mspct, na.rm = TRUE)
spct_metadata(sun.spct, na.rm = TRUE)
spct_metadata(my.mspct, col.names = c(geocode = "geo", "instr.desc"))
spct_metadata(sun.spct, col.names = c(geocode = "geo", "instr.desc"))
spct_metadata(sun.spct, col.names = "where.measured")$where.measured</pre>
```

spikes

Spikes

Description

Function that returns a subset of an R object with observations corresponding to spikes. Spikes are values in spectra that are unusually high compared to neighbors. They are usually individual values or very short runs of similar "unusual" values. Spikes caused by cosmic radiation are a frequent problem in Raman spectra. Another source of spikes are "hot pixels" in CCD and diode arrays.

Usage

```
spikes(x, z.threshold, max.spike.width, na.rm, ...)
## Default S3 method:
spikes(x, z.threshold = NA, max.spike.width = 8, na.rm = FALSE, ...)
## S3 method for class 'numeric'
spikes(x, z.threshold = NA, max.spike.width = 8, na.rm = FALSE, ...)
```

```
## S3 method for class 'data.frame'
spikes(
  х,
  z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
  ...,
 y.var.name = NULL,
  var.name = y.var.name
)
## S3 method for class 'generic_spct'
spikes(
 х,
  z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
  ...,
  var.name = NULL
)
## S3 method for class 'source_spct'
spikes(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . .
)
## S3 method for class 'response_spct'
spikes(
 х,
  z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . .
)
## S3 method for class 'filter_spct'
spikes(
 х,
  z.threshold = 9,
 max.spike.width = 8,
  na.rm = FALSE,
  filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
```

spikes

```
. . .
)
## S3 method for class 'reflector_spct'
spikes(x, z.threshold = 9, max.spike.width = 8, na.rm = FALSE, ...)
## S3 method for class 'cps_spct'
spikes(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
  ...,
 var.name = "cps"
)
## S3 method for class 'raw_spct'
spikes(
 х,
  z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
  ...,
  var.name = "counts"
)
## S3 method for class 'generic_mspct'
spikes(
 х,
  z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
  . . . ,
  var.name = NULL,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'source_mspct'
spikes(
  х,
 z.threshold = 9,
 max.spike.width = 8,
  na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  ...,
  .parallel = FALSE,
  .paropts = NULL
```

```
## S3 method for class 'response_mspct'
spikes(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'filter_mspct'
spikes(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
 filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'reflector_mspct'
spikes(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'cps_mspct'
spikes(
 х,
 z.threshold = 9,
 max.spike.width = 8,
 na.rm = FALSE,
  ...,
 var.name = "cps",
  .parallel = FALSE,
  .paropts = NULL
)
```

310

)

spikes

```
## S3 method for class 'raw_mspct'
spikes(
    x,
    z.threshold = 9,
    max.spike.width = 8,
    na.rm = FALSE,
    ...,
    var.name = "counts",
    .parallel = FALSE,
    .paropts = NULL
)
```

Arguments

х	an R object			
z.threshold	numeric Modified Z values larger than z.threshold are considered to correspond to spikes.			
<pre>max.spike.width</pre>				
	integer Wider regions with high Z values are not detected as spikes.			
na.rm	logical indicating whether NA values should be stripped before searching for spikes.			
	ignored			
<pre>var.name, y.var</pre>	.name			
	character Name of column where to look for spikes.			
unit.out	character One of "energy" or "photon"			
filter.qty	character One of "transmittance" or "absorbance"			
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach			
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.			

Value

A subset of x with rows corresponding to spikes.

Methods (by class)

- default: Default returning always NA.
- numeric: Default function usable on numeric vectors.
- data.frame: Method for "data.frame" objects.
- generic_spct: Method for "generic_spct" objects.
- source_spct: Method for "source_spct" objects.
- response_spct: Method for "response_spct" objects.

split2mspct

- filter_spct: Method for "filter_spct" objects.
- reflector_spct: Method for "reflector_spct" objects.
- cps_spct: Method for "cps_spct" objects.
- raw_spct: Method for "raw_spct" objects.
- generic_mspct: Method for "generic_mspct" objects.
- source_mspct: Method for "source_mspct" objects.
- response_mspct: Method for "cps_mspct" objects.
- filter_mspct: Method for "filter_mspct" objects.
- reflector_mspct: Method for "reflector_mspct" objects.
- cps_mspct: Method for "cps_mspct" objects.
- raw_mspct: Method for "raw_mspct" objects.

See Also

See the documentation for find_spikes for details of the algorithm and implementation.

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(), valleys(), wls_at_target()

Examples

spikes(sun.spct)

split2mspct	Convert a	'wide'	' or untidy	data frame	into a	collection	of spectra
			•	~			v .

Description

Convert a data frame object into a "multi spectrum" object by constructing a an object of a multi-spet class, converting numeric columns other than wavelength into individual spet objects.

```
split2mspct(
    x,
    member.class = NULL,
    spct.data.var = NULL,
    w.length.var = "w.length",
    idx.var = NULL,
    ncol = 1,
    byrow = FALSE,
    ...
)
```

```
split2source_mspct(
 х,
  spct.data.var = "s.e.irrad",
 w.length.var = "w.length",
 idx.var = NULL,
 ncol = 1,
 byrow = FALSE,
  . . .
)
split2response_mspct(
 х,
 spct.data.var = "s.e.response",
 w.length.var = "w.length",
 idx.var = NULL,
 ncol = 1,
 byrow = FALSE,
  . . .
)
split2filter_mspct(
 х,
 spct.data.var = "Tfr",
 w.length.var = "w.length",
 idx.var = NULL,
 ncol = 1,
 byrow = FALSE,
  . . .
)
split2reflector_mspct(
 х,
  spct.data.var = "Rfr",
 w.length.var = "w.length",
 idx.var = NULL,
 ncol = 1,
 byrow = FALSE,
  . . .
)
split2cps_mspct(
 х,
 spct.data.var = "cps",
 w.length.var = "w.length",
 idx.var = NULL,
  ncol = 1,
  byrow = FALSE,
  . . .
```

```
)
split2raw_mspct(
  х,
  spct.data.var = "count",
 w.length.var = "w.length",
 idx.var = NULL,
  ncol = 1,
 byrow = FALSE,
  . . .
)
split2calibration_mspct(
 х,
  spct.data.var = "irrad.mult",
 w.length.var = "w.length",
  idx.var = NULL,
  ncol = 1,
  byrow = FALSE,
  . . .
)
```

Arguments

х	data frame	
member.class	character Class of the collection members	
spct.data.var	character Name of the spectral data argument in the object constructor for member.class	
w.length.var	character Name of column containing wavelength data in nanometres	
idx.var	character Name of column containing data to be copied unchanged to each spct object	
ncol	integer Number of 'virtual' columns in data	
byrow	logical If ncol > 1 how to read in the data	
	additional named arguments passed to the member constructor function.	

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(), as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(), as.response_mspct(), as.source_mspct(), subset2mspct()

split_bands

Description

Build a list of unweighted "waveband" objects that can be used as input when calculating irradiances.

Usage

```
split_bands(
    x,
    list.names = NULL,
    short.names = is.null(list.names),
    length.out = NULL
)
```

Arguments

x	a numeric vector of wavelengths to split at (nm), or a range of wavelengths or a generic_spct or a waveband.
list.names	character vector with names for the component wavebands in the returned list (in order of increasing wavelength)
short.names	logical indicating whether to use short or long names for wavebands
length.out	numeric giving the number of regions to split the range into (ignored if w.length is not numeric).

Value

an un-named list of waveband objects

Note

list.names is used to assign names to the elements of the list, while the waveband objects themselves always retain their wb.label and wb.name as generated during their creation.

See Also

Other waveband constructors: waveband()

```
split_bands(c(400,500,600))
split_bands(list(c(400,500),c(550,650)))
split_bands(list(A=c(400,500),B=c(550,650)))
split_bands(c(400,500,600), short.names=FALSE)
split_bands(c(400,500,600), list.names=c("a","b"))
```

```
split_bands(c(400,700), length.out=6)
split_bands(400:700, length.out=3)
split_bands(sun.spct, length.out=10)
split_bands(waveband(c(400,700)), length.out=5)
```

split_energy_irradiance

Energy irradiance for split spectrum regions

Description

This function returns the energy irradiance for a series of contiguous wavebands from a radiationsource spectrum. The returned values can be either absolute or relative to their sum.

Usage

```
split_energy_irradiance(
   w.length,
   s.irrad,
   cut.w.length = range(w.length),
   unit.in = "energy",
   scale = "absolute",
   check.spectrum = TRUE,
   use.cached.mult = FALSE,
   use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric vector of wavelengths (nm).
s.irrad	numeric vector of spectral (energy or photon) irradiance values (W m-2 nm-1) or (mol s-1 m-2 nm-1).
cut.w.length	numeric vector of wavelengths (nm).
unit.in	character string with allowed values "energy", and "photon", or its alias "quantum".
scale	character string indicating the scale used for the returned values ("absolute", "relative", "percent").
check.spectrum	logical indicating whether to sanity check input data, default is TRUE.
use.cached.mult	
	logical Flag indicating whether multiplier values should be cached between calls.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.

split_irradiance

Value

a numeric vector of irradiances with no change in scale factor: [W m-2 nm-1] -> [W m-2] or [mol s-1 m-2] -> [W m-2] or relative values (fraction of one) if scale = "relative" or scale = "percent".

Note

The last three parameters control speed optimizations. The defaults should be suitable in most cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for your spectrum before using any of the other functions. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(), div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

split_irradiance Energy or photon irradiance for split spectrum regions

Description

This function returns the energy or photon irradiance for a series of contiguous wavebands from a radiation spectrum. The returned values can be either absolute or relative to their sum.

```
split_irradiance(
    w.length,
    s.irrad,
    cut.w.length = range(w.length),
    unit.out = getOption("photobiology.base.unit", default = "energy"),
    unit.in = "energy",
    scale = "absolute",
    check.spectrum = TRUE,
    use.cached.mult = FALSE,
    use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric Vector of wavelengths (nm).		
s.irrad	numeric vector of spectral (energy or photon) irradiances (W m-2 nm-1) or (mol s-1 m-2 nm-1).		
cut.w.length	numeric Vector of wavelengths (nm).		
unit.out	character Allowed values "energy", and "photon", or its alias "quantum".		
unit.in	character Allowed values "energy", and "photon", or its alias "quantum".		
scale	a character A string indicating the scale used for the returned values ("absolute", "relative", "percent").		
check.spectrum	logical Flag indicating whether to sanity check input data, default is TRUE.		
use.cached.mult			
	logical Flag indicating whether multiplier values should be cached between calls.		
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.		

Value

A numeric vector of irradiances with no change in scale factor: [W m-2 nm-1] -> [mol s-1 m-2] or [mol s-1 m-2 nm-1] -> [mol s-1 m-2] or relative values (as fraction of one if scale == "relative" or percentages if scale == "percent".

Note

The last three parameters control speed optimizations. The defaults should be suitable in most cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for your spectrum before using any of the other functions. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

```
with(sun.data,
    split_irradiance(w.length, s.e.irrad,
        cut.w.length = c(300, 400, 500, 600, 700),
        unit.out = "photon"))
```

split_photon_irradiance

Photon irradiance for split spectrum regions

Description

This function returns the photon irradiance for a series of contiguous wavebands from a radiation spectrum. The returned values can be either absolute or relative to their sum.

Usage

```
split_photon_irradiance(
   w.length,
   s.irrad,
   cut.w.length = range(w.length),
   unit.in = "energy",
   scale = "absolute",
   check.spectrum = TRUE,
   use.cached.mult = FALSE,
   use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric vector of wavelengths (nm).		
s.irrad	numeric vector of spectral (energy or photon) irradiance values (W m-2 nm-1).		
cut.w.length	numeric vector of wavelengths (nm).		
unit.in	character Allowed values "energy", and "photon", or its alias "quantum".		
scale	a character A string indicating the scale used for the returned values ("absolute" "relative", "percent").		
check.spectrum	logical Flag indicating whether to sanity check input data, default is TRUE.		
use.cached.mult			
	logical Flag indicating whether multiplier values should be cached between calls.		
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wave-bands.		

Value

a numeric vector of photon irradiances with no change in scale factor: [W m-2 nm-1] -> [mol s-1 m-2], [mol s-1 m-2 nm-1] -> [mol s-1 m-2] or relative values (fraction of one based on photon units) if scale = "relative" or scale = "percent".

Note

The last three parameters control speed optimizations. The defaults should be suitable in most cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for your spectrum before using any of the other functions. If you will use repeatedly the same SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()
```

Examples

```
with(sun.data,
    split_photon_irradiance(w.length, s.e.irrad,
        cut.w.length = c(300, 400, 500, 600, 700)))
with(sun.data,
    split_photon_irradiance(w.length, s.e.irrad))
```

spread

Expanse

Description

A function that returns the expanse (max(x) - min(x)) for R objects.

Usage

```
spread(x, ...)
wl_expanse(x, ...)
expanse(x, ...)
## Default S3 method:
expanse(x, ...)
## S3 method for class 'numeric'
expanse(x, ...)
## S3 method for class 'waveband'
```

Subset

```
expanse(x, ...)
## S3 method for class 'generic_spct'
expanse(x, ...)
## S3 method for class 'generic_mspct'
expanse(x, ..., idx = "spct.idx")
```

Arguments

х	an R object
	not used in current version
idx	character Name of the column with the names of the members of the collection of spectra.

Value

A numeric value equal to max(x) - min(x). In the case of spectral objects wavelength difference in nm. For any other R object, according to available definitions of min and max.

Methods (by class)

- default: Default method for generic function
- numeric: Method for "numeric"
- waveband: Method for "waveband"
- generic_spct: Method for "generic_spct"
- generic_mspct: Method for "generic_mspct" objects.

Examples

```
expanse(10:20)
expanse(sun.spct)
wl_expanse(sun.spct)
```

expanse(sun.spct)

Subset

Subsetting spectra

Description

Return subsets of spectra stored in class generic_spct or derived from it.

```
## S3 method for class 'generic_spct'
subset(x, subset, select, drop = FALSE, ...)
```

Arguments

х	object to be subsetted.
subset	logical expression indicating elements or rows to keep: missing values are taken as false.
select	expression, indicating columns to select from a spectrum.
drop	passed on to [indexing operator.
	further arguments to be passed to or from other methods.

Value

An object similar to x containing just the selected rows and columns. Depending on the columns remaining after subsetting the class of the object will be simplified to the most derived parent class.

Note

This method is copied from base::subset.data.frame() but ensures that all metadata stored in attributes of spectral objects are copied to the returned value.

Examples

subset(sun.spct, w.length > 400)

subset2mspct

Convert 'long' or tidy spectral data into a collection of spectra

Description

Convert a data frame object or spectral object into a collection of spectra object of the corresponding class. For data frames converting numeric columns other than wavelength into individual spet objects.

```
subset2mspct(
    x,
    member.class = NULL,
    idx.var = attr(x, "idfactor"),
    drop.idx = TRUE,
    ncol = 1,
    byrow = FALSE,
    ...
)
```

subt_spectra

Arguments

Х	a generic_spct object or a derived class, or a data frame
member.class	character string
idx.var	character Name of column containing data to be copied unchanged to each spct object
drop.idx	logical Flag indicating whether to drop or keep idx.var in the collection members.
ncol	integer Number of 'virtual' columns in data
byrow	logical If ncol > 1 how to read in the data
	additional named arguments passed to the member constructor function.

Value

A collection of spectral objects, each with attributes set if x is a spectral object in long form with metadata attributes. If this object was created by row binding with 'photobiology' 0.9.14 or later then all metadata for each individual spectrum will be preserved, except for comments which are merged.

Note

A non-null value for member.class is mandatory only when x is a data frame.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(), as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(), as.response_mspct(), as.source_mspct(), split2mspct()

subt_spectra Subtract two spectra

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated by interpolation. After this, the two spectral values at each wavelength are added. This is 'parallel' operation between two spectra.

```
subt_spectra(
  w.length1,
  w.length2 = NULL,
  s.irrad1,
  s.irrad2,
  trim = "union",
  na.rm = FALSE
)
```

Arguments

w.length1	numeric vector of wavelength (nm).
w.length2	numeric vector of wavelength (nm).
s.irrad1	a numeric vector of spectral values.
s.irrad2	a numeric vector of spectral values.
trim	a character string with value "union" or "intersection".
na.rm	a logical value, if TRUE, not the default, NAs in the input are replaced with zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at least one of the input spectra, and missing values are set in each input spectrum to zero before addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calculation.

Value

a data frame with two numeric variables

w.length	A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and w.length2. w.length contains all the unique vales, sorted in ascending order.
s.irrad	A numeric vector with the sum of the two spectral values at each wavelength.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(), div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(), split_photon_irradiance(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

```
head(sun.data)
zero.data <- with(sun.data, subt_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(zero.data)
tail(zero.data)</pre>
```
summary

Description

Methods of generic function summary for objects of spectral classes.

Usage

```
## S3 method for class 'generic_spct'
summary(object, maxsum = 7, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

object	An object of one of the spectral classes for which a summary is desired
maxsum	integer Indicates how many levels should be shown for factors.
digits	integer Used for number formatting with format().
	additional arguments affecting the summary produced, ignored in current ver-
	sion

Value

A summary object matching the class of object.

Examples

summary(sun.spct)

summary_spct_classes Function that returns a vector containing the names of spectral summary classes.

Description

Function that returns a vector containing the names of spectral summary classes.

Usage

```
summary_spct_classes()
```

Value

A character vector of class names.

sum_spectra

Description

Merge wavelength vectors of two spectra are merged, and the missing spectral values are calculated by interpolation. After this, the two spectral values at each wavelength are added. This is a 'parallel' operation between two spectra.

Usage

```
sum_spectra(
  w.length1,
  w.length2 = NULL,
  s.irrad1,
  s.irrad2,
  trim = "union",
  na.rm = FALSE
)
```

Arguments

w.length1	numeric vector of wavelength (nm).
w.length2	numeric vector of wavelength (nm).
s.irrad1	a numeric vector of spectral values.
s.irrad2	a numeric vector of spectral values.
trim	a character string with value "union" or "intersection".
na.rm	a logical value, if TRUE, not the default, NAs in the input are replaced with zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at least one of the input spectra, and missing values are set in each input spectrum to zero before addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calculation.

Value

a dataframe with two numeric variables

w.length	A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
	w.length2. w.length contains all the unique vales, sorted in ascending order.
s.irrad	A numeric vector with the sum of the two spectral values at each wavelength.

sun.daily.data

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()
```

Examples

```
head(sun.data)
twice.sun.data <- with(sun.data, sum_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(twice.sun.data)
tail(twice.sun.data)</pre>
```

sun.daily.data

Daily solar spectral irradiance (simulated)

Description

A dataset containing the wavelengths at a 1 nm interval and the corresponding spectral (energy) irradiance. Values simulated for 2 June 2012, at Helsinki, under clear sky conditions. The variables are as follows:

Usage

sun.daily.data

Format

A data.frame object with 511 rows and 3 variables

Details

- w.length (nm), range 290 to 800 nm.
- s.e.irrad (J d-1 m-2 nm-1)
- s.q.irrad (mol d-1 m-2 nm-1)

Author(s)

Anders K. Lindfors (data)

References

Lindfors, A.; Heikkilä, A.; Kaurola, J.; Koskela, T. & Lakkala, K. (2009) Reconstruction of Solar Spectral Surface UV Irradiances Using Radiative Transfer Simulations. Photochemistry and Photobiology, 85: 1233-1239

sun.daily.spct

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

sun.daily.spct

sun.daily.spct Daily solar spectral irradiance (simulated)

Description

A dataset containing the wavelengths at a 1 nm interval and the corresponding spectral (energy) irradiance. Values simulated for 2 June 2012, at Helsinki, under clear sky conditions. The variables are as follows:

Usage

sun.daily.spct

Format

A source_spct object with 511 rows and 3 variables

Details

- w.length (nm), range 290 to 800 nm.
- s.e.irrad (J d-1 m-2 nm-1)
- s.q.irrad (mol d-1 m-2 nm-1)

Note

The simulations are based on libRadTran using hourly mean global radiation measurements to estimate cloud cover. The simulations were for each hour and the results integrated for the whole day.

Author(s)

Anders K. Lindfors (data)

sun.data

References

Lindfors, A.; Heikkilä, A.; Kaurola, J.; Koskela, T. & Lakkala, K. (2009) Reconstruction of Solar Spectral Surface UV Irradiances Using Radiative Transfer Simulations. Photochemistry and Photobiology, 85: 1233-1239

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

sun.daily.spct

sun.data

Solar spectral irradiance (simulated)

Description

A dataset containing the wavelengths at a 1 nm interval and the corresponding spectral (energy) irradiance and spectral photon irradiance. Values simulated for 22 June 2010, near midday, at Helsinki, under partly cloudy conditions. The variables are as follows:

Usage

sun.data

Format

A data.frame object with 508 rows and 3 variables

Details

- w.length (nm), range 293 to 800 nm.
- s.e.irrad (W m-2 nm-1)
- s.q.irrad (mol m-2 nm-1)

Author(s)

Anders K. Lindfors (data)

References

Lindfors, A.; Heikkilä, A.; Kaurola, J.; Koskela, T. & Lakkala, K. (2009) Reconstruction of Solar Spectral Surface UV Irradiances Using Radiative Transfer Simulations. Photochemistry and Photobiology, 85: 1233-1239

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

sun.data

sun.spct

Solar spectral irradiance (simulated)

Description

A dataset containing the wavelengths at a 1 nm interval and the corresponding spectral (energy) irradiance and spectral photon irradiance. Values simulated for 22 June 2010, near midday, at Helsinki, under partly cloudy conditions. The variables are as follows:

Usage

sun.spct

Format

A source_spct object with 508 rows and 3 variables

Details

- w.length (nm), range 293 to 800 nm.
- s.e.irrad (W m-2 nm-1)
- s.q.irrad (mol m-2 nm-1)

Author(s)

Anders K. Lindfors (data)

sun_angles

References

Lindfors, A.; Heikkilä, A.; Kaurola, J.; Koskela, T. & Lakkala, K. (2009) Reconstruction of Solar Spectral Surface UV Irradiances Using Radiative Transfer Simulations. Photochemistry and Photobiology, 85: 1233-1239

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

sun.spct

sun_angles

Solar angles

Description

Function sun_angles() returns the solar angles and Sun to Earth relative distance for given times and locations using a very precise algorithm. Convenience functions sun_azimuth(), sun_elevation(), sun_zenith_angle() and distance_to_sun() are wrappers on sun_angles() that return individual vectors.

Usage

```
sun_angles(
   time = lubridate::now(tzone = "UTC"),
   tz = lubridate::tz(time),
   geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
   use.refraction = FALSE
)
sun_angles_fast(time, tz, geocode, use.refraction)
sun_elevation(
   time = lubridate::now(),
   tz = lubridate::tz(time),
   geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
   use.refraction = FALSE
)
sun_zenith_angle(
```

```
time = lubridate::now(),
  tz = lubridate::tz(time),
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  use.refraction = FALSE
)
sun_azimuth(
  time = lubridate::now(),
  tz = lubridate::tz(time),
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  use.refraction = FALSE
)
distance_to_sun(
  time = lubridate::now(),
  tz = lubridate::tz(time),
  geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
  use.refraction = FALSE
)
```

Arguments

time	A "vector" of POSIXct Time, with any valid time zone (TZ) is allowed, default is current time.
tz	character string indicating time zone to be used in output.
geocode	data frame with variables lon and lat as numeric values (degrees), nrow > 1, allowed.
use.refraction	logical Flag indicating whether to correct for fraction in the atmosphere.

Details

This function is an implementation of Meeus equations as used in NOAAs on-line web calculator, which are precise and valid for a very broad range of dates (years -1000 to 3000 at least). The apparent solar elevations near sunrise and sunset are affected by refraction in the atmosphere, which does in turn depend on weather conditions. The effect of refraction on the apparent position of the sun is only an estimate based on "typical" conditions for the atmosphere. The computation is not defined for latitudes 90 and -90 degrees, i.e. exactly at the poles. The function is vectorized and in particular passing a vector of times for a single geocode enhances performance very much as the equation of time, the most time consuming step, is computed only once.

For improved performance, if more than one angle is needed it is preferable to directly call sun_angles instead of the wrapper functions as this avoids the unnecesary recalculation.

Value

A data.frame with variables time (in same TZ as input), TZ, solartime, longitude, latitude, address, azimuth, elevation, declination, eq.of.time, hour.angle, and distance. If a data frame with multiple rows is passed to geocode and a vector of times longer than one is passed to time, sun position for all combinations of locations and times are returned by sun_angles. Angles

s_e_irrad2rgb

are expressed in degrees, solartime is a vector of class "solar.time", distance is expressed in relative sun units.

Note

There exists a different R implementation of the same algorithms called "AstroCalcPureR" available as function astrocalc4r in package 'fishmethods'. Although the equations used are almost all the same, the function signatures and which values are returned differ. In particular, the present implementation splits the calculation into two separate functions, one returning angles at given instants in time, and a separate one returning the timing of events for given dates.

References

The primary source for the algorithm used is the book: Meeus, J. (1998) Astronomical Algorithms, 2 ed., Willmann-Bell, Richmond, VA, USA. ISBN 978-0943396613.

A different implementation is available at https://apps-nefsc.fisheries.noaa.gov/AstroCalc4R/.

An interactive web page using the same algorithms is available at https://gml.noaa.gov/grad/ solcalc/. There are small differences in the returned times compared to our function that seem to be related to the estimation of atmospheric refraction (about 0.1 degrees).

See Also

Other astronomy related functions: day_night(), format.solar_time()

Examples

s_e_irrad2rgb Spectral irradiance to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions (CMF) or chromaticity coordinates (CC). A CMF takes into account luminous sensitivity, while a CC only the color hue. This function, in contrast to that in package pavo does not normalize the values to equal luminosity, so using a CMF as input gives the expected result. Another difference is that it allows the user to choose the chromaticity data to be used. The data used by default is different, and it corresponds to the whole range of CIE standard, rather than the reduced range 400 nm to 700 nm. The wavelength

limits are not hard coded, so the function could be used to simulate vision in other organisms as long as pseudo CMF or CC data are available for the simulation.

Usage

```
s_e_irrad2rgb(
  w.length,
   s.e.irrad,
  sens = photobiology::ciexyzCMF2.spct,
   color.name = NULL,
   check = TRUE
)
```

Arguments

w.length	numeric vector of wavelengths (nm).
s.e.irrad	numeric vector of spectral irradiance values.
sens	a chroma_spct object with variables w.length, x, y, and z, giving the CC or CMF definition (default is the proposed human CMF according to CIE 2006.).
color.name	character string for naming the rgb color definition.
check	logical indicating whether to check or not spectral data.

Value

A color defined using rgb. The numeric values of the RGB components can be obtained using function col2rgb.

Note

Very heavily modified from Chad Eliason's <cme16@zips.uakron.edu> spec2rgb function in package Pavo.

References

CIE(1932). Commission Internationale de l'Eclairage Proceedings, 1931. Cambridge: Cambridge University Press.

Color matching functions obtained from Colour and Vision Research Laboratory online data repository at http://www.cvrl.org/.

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()
```

s_mean

Examples

```
my.color <-
    with(sun.data,
        s_e_irrad2rgb(w.length, s.e.irrad, color.name = "sunWhite"))
col2rgb(my.color)</pre>
```

s_mean

Mean from collection of spectra

Description

A method to compute the mean of values across members of a collections of spectra. Computes the mean at each wavelength across all the spectra in the collection returning a spectral object.

Usage

```
s_mean(x, trim, na.rm, ...)
## Default S3 method:
s_mean(x, trim = 0, na.rm = FALSE, ...)
## S3 method for class 'source_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)
## S3 method for class 'response_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)
## S3 method for class 'filter_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)
## S3 method for class 'reflector_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)
## S3 method for class 'calibration_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)
## S3 method for class 'cps_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)
## S3 method for class 'raw_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)
```

Arguments

An R object Currently this package defines methods for collections of spectral objects.

trim	numeric The fraction $(0 \text{ to } 0.5)$ of observations to be trimmed from each end of x before the mean is computed. Values of trim outside that range are taken as the nearest endpoint.
na.rm	logical A value indicating whether NA values should be stripped before the computation proceeds.
	Further arguments passed to or from other methods.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of same class as the members of the collection, such as "filter_spct", containing the mean spectrum.

Methods (by class)

- default:
- source_mspct:
- response_mspct:
- filter_mspct:
- reflector_mspct:
- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Trimming of extreme values and omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

See Also

See mean for the mean() method used for the computations.

s_mean_se

Mean and standard error from collection of spectra

Description

A method to compute the mean of values across members of a collections of spectra. Computes the mean at each wavelength across all the spectra in the collection returning a spectral object.

s_mean_se

Usage

```
s_mean_se(x, na.rm, mult, ...)
## Default S3 method:
s_mean_se(x, na.rm = FALSE, mult = 1, ...)
## S3 method for class 'filter_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)
## S3 method for class 'source_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)
## S3 method for class 'response_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)
## S3 method for class 'reflector_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)
## S3 method for class 'calibration_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)
## S3 method for class 'cps_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)
## S3 method for class 'raw_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)
```

Arguments

x	An R object. Currently this package defines methods for collections of spectral objects.
na.rm	logical. A value indicating whether NA values should be stripped before the computation proceeds.
mult	numeric number of multiples of standard error
	Further arguments passed to or from other methods.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of same class as the members of the collection, such as "filter_spct", containing the mean spectrum.

Methods (by class)

- default:
- filter_mspct:
- source_mspct:
- response_mspct:

s_median

- reflector_mspct:
- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Trimming of extreme values and omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

See Also

See mean for the mean() method used for the computations.

s_median

Median of a collection of spectra

Description

A method to compute the median of values across members of a collections of spectra. Computes the median at each wavelength across all the spectra in the collection returning a spectral object.

Usage

```
s_median(x, na.rm, ...)
## Default S3 method:
s_median(x, na.rm = FALSE, ...)
## S3 method for class 'source_mspct'
s_median(x, na.rm = FALSE, ...)
## S3 method for class 'response_mspct'
s_median(x, na.rm = FALSE, ...)
## S3 method for class 'filter_mspct'
s_median(x, na.rm = FALSE, ...)
## S3 method for class 'reflector_mspct'
s_median(x, na.rm = FALSE, ...)
## S3 method for class 'calibration_mspct'
s_median(x, na.rm = FALSE, ...)
```

```
## S3 method for class 'cps_mspct'
s_median(x, na.rm = FALSE, ...)
## S3 method for class 'raw_mspct'
s_median(x, na.rm = FALSE, ...)
```

Arguments

x	An R object. Currently this package defines methods for collections of spectral objects.
na.rm	logical. A value indicating whether NA values should be stripped before the computation proceeds.
	Further arguments passed to or from other methods.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of same class as the members of the collection, such as "filter_spct", containing the median spectrum.

Methods (by class)

- default:
- source_mspct:
- response_mspct:
- filter_mspct:
- reflector_mspct:
- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

See Also

See median for the median() method used for the computations.

s_prod

Description

A method to compute the product of values across members of a collections of spectra. Computes the product at each wavelength across all the spectra in the collection returning a spectral object.

Usage

```
s_prod(x, na.rm, ...)
## Default S3 method:
s_prod(x, na.rm = FALSE, ...)
## S3 method for class 'source_mspct'
s_prod(x, na.rm = FALSE, ...)
## S3 method for class 'response_mspct'
s_prod(x, na.rm = FALSE, ...)
## S3 method for class 'filter_mspct'
s_prod(x, na.rm = FALSE, ...)
## S3 method for class 'reflector_mspct'
s_prod(x, na.rm = FALSE, ...)
## S3 method for class 'calibration_mspct'
s_prod(x, na.rm = FALSE, ...)
## S3 method for class 'cps_mspct'
s_prod(x, na.rm = FALSE, ...)
## S3 method for class 'raw_mspct'
s_prod(x, na.rm = FALSE, ...)
```

Arguments

X	An R object. Currently this package defines methods for collections of spectral objects.
na.rm	logical. A value indicating whether NA values should be stripped before the computation proceeds.
	Further arguments passed to or from other methods.

s_range

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of same class as the members of the collection, such as "filter_spct", containing the product of the spectra.

Methods (by class)

- default:
- source_mspct:
- response_mspct:
- filter_mspct:
- reflector_mspct:
- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

A product of spectral irradiance or spectral response is no longer a well defined physical quantity, and these product operations return an object of class generic_spct.

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

See Also

See prod for the prod() method used for the computations.

s_range

Range of a collection of spectra

Description

A method to compute the range of values across members of a collections of spectra. Computes the max and min at each wavelength across all the spectra in the collection returning a spectral object.

Usage

```
s_range(x, na.rm, ...)
## Default S3 method:
s_range(x, na.rm = FALSE, ...)
## S3 method for class 'filter_mspct'
s_range(x, na.rm = FALSE, ...)
## S3 method for class 'source_mspct'
s_range(x, na.rm = FALSE, ...)
## S3 method for class 'response_mspct'
s_range(x, na.rm = FALSE, ...)
## S3 method for class 'reflector_mspct'
s_range(x, na.rm = FALSE, ...)
## S3 method for class 'calibration_mspct'
s_range(x, na.rm = FALSE, ...)
## S3 method for class 'cps_mspct'
s_range(x, na.rm = FALSE, ...)
## S3 method for class 'raw_mspct'
s_range(x, na.rm = FALSE, ...)
```

Arguments

x	An R object. Currently this package defines methods for collections of spectral objects.
na.rm	logical. A value indicating whether NA values should be stripped before the computation proceeds.
	Further arguments passed to or from other methods.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of same class as the members of the collection, such as "filter_spct", containing the mean spectrum.

Methods (by class)

- default:
- filter_mspct:
- source_mspct:
- response_mspct:
- reflector_mspct:

- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Trimming of extreme values and omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

See Also

See Extremes details on the min() and max() methods used for the computations.

s_sd

Standard Deviation of a collection of spectra

Description

A method to compute the standard deviation of values across members of a collections of spectra. Computes the standard deviation at each wavelength across all the spectra in the collection returning a spectral object.

Usage

```
s_sd(x, na.rm, ...)
## Default S3 method:
s_sd(x, na.rm = FALSE, ...)
## S3 method for class 'filter_mspct'
s_sd(x, na.rm = FALSE, ...)
## S3 method for class 'source_mspct'
s_sd(x, na.rm = FALSE, ...)
## S3 method for class 'response_mspct'
s_sd(x, na.rm = FALSE, ...)
## S3 method for class 'reflector_mspct'
s_sd(x, na.rm = FALSE, ...)
## S3 method for class 'calibration_mspct'
s_sd(x, na.rm = FALSE, ...)
```

```
## S3 method for class 'cps_mspct'
s_sd(x, na.rm = FALSE, ...)
## S3 method for class 'raw_mspct'
s_sd(x, na.rm = FALSE, ...)
```

Arguments

x	An R object. Currently this package defines methods for collections of spectral objects.
na.rm	logical. A value indicating whether NA values should be stripped before the computation proceeds.
	Further arguments passed to or from other methods.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of class "generic_spct", containing the standard deviation among the spectra at each wavelength in a column with name ending in ".sd".

Methods (by class)

- default:
- filter_mspct:
- source_mspct:
- response_mspct:
- reflector_mspct:
- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

See Also

See sd for details about sd() methods for other classes.

Description

A method to compute the standard error of values across members of a collections of spectra. Computes the standard error at each wavelength across all the spectra in the collection returning a spectral object.

Usage

```
s_se(x, na.rm, ...)
## Default S3 method:
s_se(x, na.rm = FALSE, ...)
## S3 method for class 'source_mspct'
s_se(x, na.rm = FALSE, ...)
## S3 method for class 'response_mspct'
s_se(x, na.rm = FALSE, ...)
## S3 method for class 'filter_mspct'
s_se(x, na.rm = FALSE, ...)
## S3 method for class 'reflector_mspct'
s_se(x, na.rm = FALSE, ...)
## S3 method for class 'calibration_mspct'
s_se(x, na.rm = FALSE, ...)
## S3 method for class 'cps_mspct'
s_se(x, na.rm = FALSE, ...)
## S3 method for class 'raw_mspct'
s_se(x, na.rm = FALSE, ...)
```

Arguments

x	An R object. Currently this package defines methods for collections of spectral objects.
na.rm	logical. A value indicating whether NA values should be stripped before the computation proceeds.
	Further arguments passed to or from other methods.

s_se

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of class "generic_spct", containing the standard error among the spectra at each wavelength in a column with name ending in ".se".

Methods (by class)

- default:
- source_mspct:
- response_mspct:
- filter_mspct:
- reflector_mspct:
- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

s_sum

Sum from collection of spectra

Description

A method to compute the sum of values across members of a collections of spectra. Computes the sum at each wavelength across all the spectra in the collection returning a spectral object.

Usage

```
s_sum(x, na.rm, ...)
## Default S3 method:
s_sum(x, na.rm = FALSE, ...)
## S3 method for class 'filter_mspct'
s_sum(x, na.rm = FALSE, ...)
## S3 method for class 'source_mspct'
s_sum(x, na.rm = FALSE, ...)
```

s_sum

```
## S3 method for class 'response_mspct'
s_sum(x, na.rm = FALSE, ...)
## S3 method for class 'reflector_mspct'
s_sum(x, na.rm = FALSE, ...)
## S3 method for class 'calibration_mspct'
s_sum(x, na.rm = FALSE, ...)
## S3 method for class 'cps_mspct'
s_sum(x, na.rm = FALSE, ...)
## S3 method for class 'raw_mspct'
s_sum(x, na.rm = FALSE, ...)
```

Arguments

х	An R object. Currently this package defines methods for collections of spectral objects.
na.rm	logical. A value indicating whether NA values should be stripped before the computation proceeds.
	Further arguments passed to or from other methods.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of same class as the members of the collection, such as "filter_spct", containing the sum of the spectra.

Methods (by class)

- default:
- filter_mspct:
- source_mspct:
- response_mspct:
- reflector_mspct:
- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

A sum of transmitances or reflectances is no longer a well defined physical quantity, and these sum operations return an object of class generic_spct.

348

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

See Also

See sum for the sum() method used for the computations.

s_var

Variance of a collection of spectra

Description

A method to compute the variance of values across members of a collections of spectra. Computes the variance at each wavelength across all the spectra in the collection returning a spectral object.

Usage

```
s_var(x, na.rm, ...)
## Default S3 method:
s_var(x, na.rm = FALSE, ...)
## S3 method for class 'filter_mspct'
s_var(x, na.rm = FALSE, ...)
## S3 method for class 'source_mspct'
s_var(x, na.rm = FALSE, ...)
## S3 method for class 'response_mspct'
s_var(x, na.rm = FALSE, ...)
## S3 method for class 'reflector_mspct'
s_var(x, na.rm = FALSE, ...)
## S3 method for class 'calibration_mspct'
s_var(x, na.rm = FALSE, ...)
## S3 method for class 'cps_mspct'
s_var(x, na.rm = FALSE, ...)
## S3 method for class 'raw_mspct'
s_var(x, na.rm = FALSE, ...)
```

s_var

Arguments

x	An R object. Currently this package defines methods for collections of spectral objects.
na.rm	logical. A value indicating whether NA values should be stripped before the computation proceeds.
	Further arguments passed to or from other methods.

Details

Variance method for collections of spectra. Computes the variance at each wavelength across all the spectra in the collection.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is of class "generic_spct", containing the variance among the spectra at each wavelength in a column with name ending in ".var".

Methods (by class)

- default:
- filter_mspct:
- source_mspct:
- response_mspct:
- reflector_mspct:
- calibration_mspct:
- cps_mspct:
- raw_mspct:

Note

Omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of wavelengths.

Objects of classes raw_spct and cps_spct can contain data from multiple scans. This functions are implemented for these classes only for the case when all member spectra contain data for a single scan, or spliced into a single column in the case of cps_spct members.

See Also

See cor for details about var(), which is used for the computations.

Description

Function that converts transmittance (fraction) into absorbance (a.u.).

Usage

```
T2A(x, action, byref, clean, ...)
## Default S3 method:
T2A(x, action = NULL, byref = FALSE, ...)
## S3 method for class 'numeric'
T2A(x, action = NULL, byref = FALSE, clean = TRUE, ...)
## S3 method for class 'filter_spct'
T2A(x, action = "add", byref = FALSE, clean = TRUE, ...)
## S3 method for class 'filter_mspct'
T2A(
  х,
  action = "add",
  byref = FALSE,
  clean = TRUE,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

х	an R object
action	character Allowed values "replace" and "add"
byref	logical indicating if new object will be created by reference or by copy of x
clean	logical replace off-boundary values before conversion
	not used in current version
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

T2A

T2Afr

Value

A copy of x with a column A added and other columns possibly deleted except for w.length. If action = "replace", in all cases, the additional columns are removed, even if no column needs to be added.

Methods (by class)

- default: Default method for generic function
- numeric: Method for numeric vectors
- filter_spct: Method for filter spectra
- filter_mspct: Method for collections of filter spectra

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), any2T(), as_quantum(), e2qmol_multipliers(), e2quantum_multipliers(), e2q(), q2e()

T2Afr

Convert transmittance into absorptance.

Description

Function that converts transmittance (fraction) into absorptance (fraction). If reflectance (fraction) is available, it allows conversions between internal and total absorptance.

Usage

```
T2Afr(x, action, byref, clean, ...)
## Default S3 method:
T2Afr(x, action = NULL, byref = FALSE, clean = FALSE, ...)
## S3 method for class 'numeric'
T2Afr(x, action = NULL, byref = FALSE, clean = FALSE, Rfr = NA_real_, ...)
## S3 method for class 'filter_spct'
T2Afr(x, action = "add", byref = FALSE, clean = FALSE, ...)
## S3 method for class 'object_spct'
T2Afr(x, action = "add", byref = FALSE, clean = FALSE, ...)
## S3 method for class 'filter_mspct'
T2Afr(x, action = "add", byref = FALSE, clean = FALSE, ...)
## S3 method for class 'filter_mspct'
T2Afr(x, action = "add", byref = FALSE, clean = FALSE, ...)
```

```
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL
)
## S3 method for class 'object_mspct'
T2Afr(
    x,
    action = "add",
    byref = FALSE,
    clean = FALSE,
    ...,
    .parallel = FALSE,
    .paropts = NULL
)
```

Arguments

х	an R object	
action	character Allowed values "replace" and "add"	
byref	logical indicating if new object will be created by reference or by copy of x	
clean	logical replace off-boundary values before conversion	
•••	not used in current version	
Rfr	numeric vector. Spectral reflectance o reflectance factor. Set to zero if x is internal reflectance,	
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach	
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on externa data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.	

Value

A copy of x with a column Afr added and other columns possibly deleted except for w.length. If action = "replace", in all cases, the additional columns are removed, even if no column needs to be added.

Methods (by class)

- default: Default method for generic function
- numeric: Default method for generic function
- filter_spct: Method for filter spectra
- object_spct: Method for object spectra
- filter_mspct: Method for collections of filter spectra
- object_mspct: Method for collections of object spectra

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), any2T(), as_quantum(), e2qmol_multipliers(), e2quantum_multipliers(), e2q(), q2e()

Examples

T2Afr(Ler_leaf.spct)

tag

Tag a spectrum

Description

Spectra are tagged by adding variables and attributes containing color definitions, labels, and a factor following the wavebands given in w.band. This methods are most useful for plotting realistic computed colors from spectral data.

Usage

```
tag(x, ...)
## Default S3 method:
tag(x, ...)
## S3 method for class 'generic_spct'
tag(
 х,
 w.band = NULL,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = TRUE,
  short.names = TRUE,
 chroma.type = "CMF",
 byref = FALSE,
  . . .
)
## S3 method for class 'generic_mspct'
tag(
 х,
 w.band = NULL,
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = TRUE,
  short.names = TRUE,
  chroma.type = "CMF",
 byref = FALSE,
  . . . ,
```

```
.parallel = FALSE,
.paropts = NULL
)
```

Arguments

х	an R object.
•••	ignored (possibly used by derived methods).
w.band	waveband or list of waveband objects. The waveband(s) determine the region(s) of the spectrum that are tagged
wb.trim	logical Flag telling if wavebands crossing spectral data boundaries are trimmed or ignored
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
short.names	logical Flag indicating whether to use short or long names for wavebands
chroma.type	character telling whether "CMF", "CC", or "both" should be returned for human vision, or an object of class chroma_spct for any other trichromic visual system.
byref	logical Flag indicating if new object will be created by reference or by copy of x
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A copy of x expanded with additional columns with color-related information.

Methods (by class)

- default: Default method for generic
- generic_spct: Tag one of generic_spct, and derived classes including source_spct, filter_spct, reflector_spct, object_spct, and response_spct.
- generic_mspct: Tag one of generic_mspct, and derived classes including source_mspct, filter_mspct, reflector_mspct, object_mspct, and response_mspct.

Note

NULL as w. band argument does not add any new tags, instead it removes existing tags if present. NA, the default, as w. band argument removes existing waveband tags if present and sets the wl.color variable. If a waveband object or a list of wavebands is supplied as argument then tagging is based on them, and wl.color is also set.

See Also

Other tagging and related functions: is_tagged(), untag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

thin_wl

Examples

```
tag(sun.spct)
tag(sun.spct, list(A = waveband(c(300,3005))))
```

```
thin_wl
```

Thin the density of wavelength values

Description

Increase the wavelength step in stored spectral data in featureless regions to save storage space.

Usage

```
thin_wl(x, ...)
## Default S3 method:
thin_wl(x, ...)
## S3 method for class 'generic_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, col.names, ...)
## S3 method for class 'source_spct'
thin_wl(
 х,
 max.wl.step = 10,
 max.slope.delta = 0.001,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
)
## S3 method for class 'response_spct'
thin_wl(
 х,
 max.wl.step = 10,
 max.slope.delta = 0.001,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
)
## S3 method for class 'filter_spct'
thin_wl(
 х,
 max.wl.step = 10,
 max.slope.delta = 0.001,
 qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
```

```
• • •
)
## S3 method for class 'reflector_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, ...)
## S3 method for class 'raw_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, col.names, ...)
## S3 method for class 'cps_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, col.names, ...)
## S3 method for class 'object_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, col.names, ...)
## S3 method for class 'chroma_spct'
thin_wl(x, ...)
## S3 method for class 'calibration_spct'
thin_wl(x, ...)
## S3 method for class 'generic_mspct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, ...)
## S3 method for class 'chroma_mspct'
thin_wl(x, ...)
## S3 method for class 'calibration_mspct'
thin_wl(x, ...)
```

Arguments

х	An R object	
	additional named arguments passed down to f.	
max.wl.step	numeric. Largest allowed wavelength difference between adjacent spectral values in nanometres (nm).	
max.slope.delta		
	numeric in 0 to 1. Largest allowed change in relative slope of the spectral quantity per nm betweem adjacent pairs of values.	
col.names	character. Name of the column of x containing the spectral data to check against $max.slope.delta$. Currently only one column supported.	
unit.out	character Allowed values "energy", and "photon", or its alias "quantum".	
qty.out	character Allowed values "transmittance", and "absorbance".	

Details

The algorithm used for spectra is "naive" in an effort to keep it efficient. It works by iteratively attempting to delete every other observation along wavelengths, based on the criteria for maximum

thin_wl

wavelength step and maximum relative step in the spectral variable between adjacent data values.

Value

An object of the same class as x but with a reduced density of wavelength values in those regions were slope is shallow and featureless.

Methods (by class)

- default: Default for generic function
- generic_spct:
- source_spct:
- response_spct:
- filter_spct:
- reflector_spct:
- raw_spct:
- cps_spct:
- object_spct:
- chroma_spct:
- calibration_spct:
- generic_mspct:
- chroma_mspct:
- calibration_mspct:

Note

The value of max.slope.delta is expressed as relative change in the slope of spectral variable per nanometre. This means that values between 0.0005 and 0.005 tend to work reasonably well. The best value will depend on the wavelength step of the input and noise in data. A moderate smoothing before thinning can sometimes help in the case of noisy data. The amount of thinning is almost always less than the value of criteria passed as argument as it is based on existing wavelength values. For example if we start with a spectrum with a uniform wavelength step of 1 nm, possible steps in the thinned spectrum are 2, 4, 8, 16, 32, etc. nm. The algorithm, does work with any step sizes, regular or variable in the input. Thinning is most effective for spectra with large "featureless" regions as the algorithm attempts not to discard information, contrary to smoothing or interpolation.

See Also

Other experimental utility functions: collect2mspct(), drop_user_cols(), uncollect2spct()

transmittance

Examples

```
nrow(yellow_gel.spct)
wl_stepsize(yellow_gel.spct)
thinned.spct <- thin_wl(yellow_gel.spct)
nrow(thinned.spct)
wl_stepsize(thinned.spct)</pre>
```

times-.generic_spct Arithmetic Operators

Description

Multiplication operator for spectra.

Usage

S3 method for class 'generic_spct'
e1 * e2

Arguments

e1	an object of class "generic_spct"
e2	an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct, log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct

transmittance Transmittance

Description

Summary transmittance for supplied wavebands from filter or object spectrum.

transmittance

Usage

```
transmittance(spct, w.band, quantity, wb.trim, use.hinges, ...)
## Default S3 method:
transmittance(spct, w.band, quantity, wb.trim, use.hinges, ...)
## S3 method for class 'filter_spct'
transmittance(
  spct.
 w.band = NULL,
  quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = NULL,
 naming = "default",
  . . .
)
## S3 method for class 'object_spct'
transmittance(
  spct,
 w.band = NULL,
 quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = NULL,
 naming = "default",
  . . .
)
## S3 method for class 'filter_mspct'
transmittance(
  spct,
 w.band = NULL,
 quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
 use.hinges = getOption("photobiology.use.hinges", default = NULL),
 naming = "default",
  . . . ,
 attr2tb = NULL,
  idx = "spct.idx"
)
## S3 method for class 'object_mspct'
transmittance(
  spct,
 w.band = NULL,
 quantity = "average",
 wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
  use.hinges = getOption("photobiology.use.hinges", default = NULL),
```

```
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL
)
```

Arguments

spct	an R object.
w.band	waveband or list of waveband objects or a numeric vector of length two. The waveband(s) determine the region(s) of the spectrum that are summarized. If a numeric range is supplied a waveband object is constructed on the fly from it.
quantity	character string One of "total", "average" or "mean", "contribution", "contribu- tion.pc", "relative" or "relative.pc".
wb.trim	logical Flag indicating if wavebands crossing spectral data boundaries are trimmed or ignored.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
	ignored (possibly used by derived methods).
naming	character one of "long", "default", "short" or "none". Used to select the type of names to assign to returned value.
attr2tb	character vector, see add_attr2tb for the syntax for attr2tb passed as is to formal parameter col.names.
idx	character Name of the column with the names of the members of the collection of spectra.
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each waveband passed to parameter w.band. A data.frame in the case of collections of spectra, containing one column for each waveband object, an index column with the names of the spectra, and optionally additional columns with metadata values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity they can be re-expressed as relative fractions or percentages. In the case of vector output, names attribute is set to the name of the corresponding waveband unless a named list is supplied in which case the names of the list members are used.
Methods (by class)

- default: Default method
- filter_spct: Method for filter spectra
- object_spct: Method for object spectra
- filter_mspct: Calculates transmittance from a filter_mspct
- object_mspct: Calculates transmittance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

```
transmittance(polyester.spct, waveband(c(280, 315)))
transmittance(polyester.spct, waveband(c(315, 400)))
transmittance(polyester.spct, waveband(c(400, 700)))
```

Trig

Trigonometric Functions

Description

Trigonometric functions for object of generic_spct and derived classes. $\$ The functions are applied to the spectral data, not the wavelengths. The quantity in the spectrum to which the function is applied depends on the class of x and the current value of output options.

Usage

```
## S3 method for class 'generic_spct'
cos(x)
## S3 method for class 'generic_spct'
sin(x)
## S3 method for class 'generic_spct'
tan(x)
## S3 method for class 'generic_spct'
acos(x)
## S3 method for class 'generic_spct'
asin(x)
## S3 method for class 'generic_spct'
atan(x)
```

Arguments

х

an object of class "generic_spct" or a derived class.

trimInstrDesc Trim the "instr.desc" attribute

Description

Function to trim the "instr.desc" attribute of an existing generic_spct object, discarding all fields except for 'spectrometer.name', 'spectrometer.sn', 'bench.grating', 'bench.slit', and calibration name.

Usage

```
trimInstrDesc(
    x,
    fields = c("time", "spectrometer.name", "spectrometer.sn", "bench.grating",
        "bench.slit")
)
```

Arguments

х	a generic_spct object
fields	a character vector with the names of the fields to keep, or if first member is ""-"', the names of fields to delete; "*" as first member of the vector makes the
	function a no-op, leaving the spectrum object unaltered.

Value

Х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct object, x is not modified.

See Also

```
Other measurement metadata functions: add_attr2tb(),getFilterProperties(),getHowMeasured(),
getInstrDesc(),getInstrSettings(),getWhatMeasured(),getWhenMeasured(),getWhereMeasured(),
get_attributes(),isValidInstrDesc(),isValidInstrSettings(),select_spct_attributes(),
setFilterProperties(),setHowMeasured(),setInstrDesc(),setInstrSettings(),setWhatMeasured(),
setWhenMeasured(),setWhereMeasured(),spct_attr2tb(),spct_metadata(),trimInstrSettings()
```

Description

Function to trim the "instr.settings" attribute of an existing generic_spct object, by discarding some fields.

Usage

trimInstrSettings(x, fields = "*")

Arguments

х	a generic_spct object
fields	a character vector with the names of the fields to keep, or if first member is ""-"', the names of fields to delete; "*" as first member of the vector makes the function a no-op, leaving the spectrum object unaltered.

Value

Х

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct object, x is not modified.

See Also

```
Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(), getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(), setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(), setWhenMeasured(), setWhenMeasured(), setWhenMeasured(), trimInstrDesc()
```

	•		
tr	ъm	cn	c +
		~	
U 1	±	_ 2 12	
	_		

Trim (or expand) head and/or tail of a spectrum

Description

Trim head and tail of a spectrum based on wavelength limits, interpolating the values at the boundaries of the range. Trimming is needed for example to remove short wavelength noise when the measured spectrum extends beyond the known emission spectrum of the measured light source. Occasionally one may want also to expand the wavelength range.

Usage

```
trim_spct(
  spct,
  range = NULL,
  low.limit = NULL,
  high.limit = NULL,
  use.hinges = TRUE,
  fill = NULL,
 byref = FALSE,
  verbose = getOption("photobiology.verbose")
)
trim_mspct(
  mspct,
  range = NULL,
  low.limit = NULL,
  high.limit = NULL,
  use.hinges = TRUE,
  fill = NULL,
  byref = FALSE,
  verbose = getOption("photobiology.verbose"),
  .parallel = FALSE,
  .paropts = NULL
)
trim2overlap(
 mspct,
  use.hinges = TRUE,
  verbose = getOption("photobiology.verbose"),
  .parallel = FALSE,
  .paropts = NULL
)
extend2extremes(
 mspct,
  use.hinges = TRUE,
  fill = NA,
  verbose = getOption("photobiology.verbose"),
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

spct	an object of class "generic_spct".
range	a numeric vector of length two, or any other object for which method range() will return a numeric vector of length two.
low.limit	shortest wavelength to be kept (defaults to shortest w.length value).

high.limit	longest wavelength to be kept (defaults to longest w.length value).
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
fill	if fill==NULL then tails are deleted, otherwise tails or s.irrad are filled with the value of fill.
byref	logical indicating if new object will be created by reference or by copy of spct.
verbose	logical.
mspct	an object of class "generic_mspct"
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

a spectrum of same class as input with its tails trimmed or expanded.

Note

When expanding a spectrum, if fill==NULL, then expansion is not performed. Range can be "waveband" object, a numeric vector or a list of numeric vectors, or any other user-defined or built-in object for which range() returns a numeric vector of length two, that can be interpreted as wavelengths expressed in nm.

See Also

Other trim functions: clip_wl(), trim_waveband(), trim_wl()

Examples

```
trim_spct(sun.spct, low.limit=300)
trim_spct(sun.spct, low.limit=300, fill=NULL)
trim_spct(sun.spct, low.limit=300, fill=0.0)
trim_spct(sun.spct, range = c(300, 400))
trim_spct(sun.spct, range = c(300, NA))
trim_spct(sun.spct, range = c(NA, 400))
```

```
trim_tails
```

Description

Trim tails of a spectrum based on wavelength limits, interpolating the values at the boundaries. Trimming is needed for example to remove short wavelength noise when the measured spectrum extends beyond the known emission spectrum of the measured light source. Occasionally one may want also to expand the wavelength range.

Usage

```
trim_tails(
    x,
    y,
    low.limit = min(x),
    high.limit = max(x),
    use.hinges = TRUE,
    fill = NULL,
    verbose = TRUE
)
```

Arguments

х	numeric vector of wavelengths.
У	numeric vector of values for a spectral quantity.
low.limit	smallest x-value to be kept (defaults to smallest x-value in input).
high.limit	largest x-value to be kept (defaults to largest x-value in input).
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wave-bands.
fill	if fill == NULL then tails are deleted, otherwise tails of y are filled with the value of fill.
verbose	logical Use to suppress warnings.

Value

A data.frame with variables x and y.

Note

When expanding a spectrum, if fill == NULL, expansion is not performed with a warning.

trim_waveband

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), v_insert_hinges(), v_replace_hinges()
```

Examples

```
head(sun.data)
head(with(sun.data,
    trim_tails(w.length, s.e.irrad, low.limit=300)))
head(with(sun.data,
    trim_tails(w.length, s.e.irrad, low.limit=300, fill=NULL)))
```

trim_waveband

Trim (or expand) head and/or tail

Description

Trimming of waveband boundaries can be needed when the spectral data do not cover the whole waveband, or wavebands may have to be removed altogether.

Usage

```
trim_waveband(
    w.band,
    range = NULL,
    low.limit = 0,
    high.limit = Inf,
    trim = getOption("photobiology.waveband.trim", default = TRUE),
    use.hinges = TRUE,
    trunc.labels = getOption("photobiology.brief.trunc.names", default = c("]", "["))
)
```

Arguments

w.band	an object of class "waveband" or a list of such objects.
range	a numeric vector of length two, or any other object for which function range() will return a numeric vector of two wavelengths (nm).
low.limit	shortest wavelength to be kept (defaults to 0 nm).
high.limit	longest wavelength to be kept (defaults to Inf nm).
trim	logical (default is TRUE which trims the wavebands at the boundary, while FALSE discards wavebands that are partly off-boundary).

use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wave-bands.
trunc.labels	character vector of length one or two. The first string will be prepended to the waveband name and label on left truncation and the second appended on right truncation. If the vector is of length one, the same string will be used in both cases.

Details

This function will accept both individual wavebands or list of wavebands. When the input is a list, wavebands outside the range of the range will be removed from the list, and those partly outside the target range either "trimmed" to this edge truncated if trim = TRUE is passed or excluded if trim = FALSE). Waveband objects contain a name and a label that are used to label the returned values of calculations that make use of them. When a waveband object is truncated so that the definition changes, the name and label are also modified so that the change is visible when they are used. The name and label have a string prepended or appended, and what strings are used can be set with an R option.

Value

The returned value is a waveband object or a list of waveband objects depending on whether a single waveband object or a list of waveband objects was supplied as argument to formal parameter w.band. If no waveband is retained, in the first case, a NULL waveband object is returned, and in the second case, a list of length zero is returned. If the input is a named, list, names are preserved in the returned list.

Note

Modification of the name and label stored in the wavebands passed as input is done so that summaries produced with the modified objects can be recognized as different from those computed using the original definitions when the waveband objects are used. When the input is a named list, the names of the retained members of the list are not modified as these are not part of the definitions.

See Also

Other trim functions: clip_wl(), trim_spct(), trim_wl()

Examples

```
VIS <- waveband(c(380, 760)) # manometers
```

```
trim_waveband(VIS, c(400,700))
trim_waveband(VIS, low.limit = 400)
trim_waveband(VIS, high.limit = 700)
trim_waveband(VIS, c(400,700), trunc.labels = c(">", "<"))</pre>
trim_waveband(VIS, c(400,700), trunc.labels = "!")
```

369

trim_wl

Description

Trim head and tail of a spectrum based on wavelength limits, with interpolation at range boundaries used by default. Expansion is also possible.

Usage

```
trim_wl(x, range, use.hinges, fill, ...)
## Default S3 method:
trim_wl(x, range, use.hinges, fill, ...)
## S3 method for class 'generic_spct'
trim_wl(x, range = NULL, use.hinges = TRUE, fill = NULL, ...)
## S3 method for class 'generic_mspct'
trim_wl(
  х,
  range = NULL,
  use.hinges = TRUE,
 fill = NULL,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'waveband'
trim_wl(
  х,
  range = NULL,
 use.hinges = TRUE,
 fill = NULL,
  trim = getOption("photobiology.waveband.trim", default = TRUE),
)
## S3 method for class 'list'
trim_wl(
 х,
 range = NULL,
 use.hinges = TRUE,
  fill = NULL,
  trim = getOption("photobiology.waveband.trim", default = TRUE),
  . . .
```

)

Arguments

x	an R object.
range	a numeric vector of length two, or any other object for which function range() will return two.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
fill	if fill == NULL then tails are deleted, otherwise tails are filled with the value of fill.
	ignored (possibly used by derived methods).
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.
trim	logical (default is TRUE which trims the wavebands at the boundary, while FALSE discards wavebands that are partly off-boundary).

Value

A copy of x, usually trimmed or expanded to a different length, either shorter or longer. Possibly with some of the original spectral data values replaced with fill.

Methods (by class)

- default: Default for generic function
- generic_spct: Trim an object of class "generic_spct" or derived.
- generic_mspct: Trim an object of class "generic_mspct" or derived.
- waveband: Trim an object of class "waveband".
- list: Trim a list (of "waveband" objects).

Note

By default the w.length values for the first and last rows in the returned object are the values supplied as range.

trim_wl when applied to waveband objects always inserts hinges when trimming.

trim_wl when applied to waveband objects always inserts hinges when trimming.

See Also

Other trim functions: clip_wl(), trim_spct(), trim_waveband()

tz_time_diff

Examples

```
trim_wl(sun.spct, range = c(400, 500))
trim_wl(sun.spct, range = c(NA, 500))
trim_wl(sun.spct, range = c(400, NA))
```

tz_time_diff

Time difference between two time zones

Description

Returns the difference in local time expressed in hours between two time zones at a given instant in time. The difference due to daylight saving time or Summer and Winter time as well as historical changes in time zones are taken into account.

Usage

```
tz_time_diff(
  when = lubridate::now(),
  tz.target = lubridate::tz(when),
  tz.reference = "UTC"
)
```

Arguments

Value

A numeric value.

Note

This function is implemented using functions from package 'lubridate'. For details on the handling of time zones, please, consult the documentation for Sys.timezone about system differences in time zone names and handling.

uncollect2spct

Description

Extract all members from a collection into separate objects in the parent frame of the call.

Usage

```
uncollect2spct(x, ...)
## Default S3 method:
uncollect2spct(x, ...)
## S3 method for class 'generic_mspct'
uncollect2spct(
    x,
    name.tag = ".spct",
    ignore.case = FALSE,
    check.names = TRUE,
    check.overwrite = TRUE,
    ...
)
```

Arguments

х	An R object
	additional named arguments passed down to f.
name.tag	character. A string used as tag for the names of the objects. If of length zero, names of members are used as named of objects. Otherwise the tag is appended, unless already present in the member name.
ignore.case	logical. If FALSE, the pattern matching used for name.tag is case sensitive and if TRUE, case is ignored during matching.
check.names	logical. If TRUE then the names of the objects created are checked to ensure that they are syntactically valid variable names and unique. If necessary they are adjusted (by make.names) so that they are, and if FALSE names are used as is.
check.overwrite	
	logical. If TRUE trigger an error if an exisitng object would be overwritten, and if FALSE silently overwrite objects.

Value

Utility used for its side effects, invisibly returns a character vector with the names of the objects created.

untag

Methods (by class)

- default: Default for generic function
- generic_mspct:

See Also

Other experimental utility functions: collect2mspct(), drop_user_cols(), thin_wl()

Examples

```
my.mscpt <- source_mspct(list(sun1.spct = sun.spct, sun2.spct = sun.spct))
uncollect2spct(my.mscpt)
ls(pattern = "*.spct")</pre>
```

untag

Remove tags

Description

Remove tags from an R object if present, otherwise return the object unchanged.

Usage

```
untag(x, ...)
## Default S3 method:
untag(x, ...)
## S3 method for class 'generic_spct'
untag(x, byref = FALSE, ...)
## S3 method for class 'generic_mspct'
untag(x, byref = FALSE, ...)
```

Arguments

Х	an R object.
	ignored (possibly used by derived methods).
byref	logical indicating if new object will be created by reference or by copy of x

Value

if x contains tag data they are removed and the "spct.tags" attribute is set to NA, while if x has no tags, it is not modified. In either case, the byref argument is respected: in all cases if byref = FALSE a copy of x is returned.

Methods (by class)

- default: Default for generic function
- generic_spct: Specialization for generic_spct
- generic_mspct: Specialization for generic_spct

See Also

Other tagging and related functions: is_tagged(), tag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

upgrade_spct Upgrade one spectral object

Description

Update the spectral class names of objects to those used in photobiology (>= 0.6.0) and add 'version' attribute as used in photobiology (>= 0.70).

Usage

```
upgrade_spct(object)
```

Arguments

object generic.spct A single object to upgrade

Value

```
The modified object (invisibly).
```

Note

The object is modified by reference. The class names with ending ".spct" replaced by their new equivalents ending in "_spct".

See Also

Other upgrade from earlier versions: is.old_spct(), upgrade_spectra()

upgrade_spectra Upgrade one or more spectral objects

Description

Update the spectral class names of objects to those used in photobiology ($\geq 0.6.0$).

Usage

upgrade_spectra(obj.names = ls(parent.frame()))

Arguments

obj.names char Names of objects to upgrade as a vector of character strings

Value

The modified object (invisibly).

Note

The objects are modified by reference. The class names with ending ".spct" are replaced by their new equivalents ending in "_spct". object.names can safely include names of any R object. Names of objects which do not belong to any the old .spct classes are ignored. This makes it possible to supply as argument the output from ls, the default, or its equivalent objects.

See Also

Other upgrade from earlier versions: is.old_spct(), upgrade_spct()

using_Tfr

Use photobiology options

Description

Execute an R expression, possibly compound, using a certain setting for spectral data related options.

Usage

using_Tfr(expr)

```
using_Afr(expr)
```

using_A(expr)

using_energy(expr)

using_photon(expr)

using_quantum(expr)

Arguments

expr an R expression to execute.

Value

The value returned by the execution of expression.

References

Based on withOptions() as offered by Thomas Lumley, and listed in https://www.burns-stat. com/the-options-mechanism-in-r/, section Deep End, of "The Options mechanism in R" by Patrick Burns.

validate_geocode Validate a geocode

Description

Test validity of a geocode or ensure that a geocode is valid.

Usage

validate_geocode(geocode)

is_valid_geocode(geocode)

length_geocode(geocode)

na_geocode()

Arguments

geocode data.frame with geocode data in columns "lat", "lon", and possibly also "address".

valleys

Details

validate_geocode Converts to tibble, checks data bounds, converts address to character if it is not already a character vector, or add character NAs if the address column is missing.

is_valid_geocode Checks if a geocode is valid, returning 0L if not, and the number of row otherwise.

Value

A valid geocode stored in a tibble.

FALSE for invalid, TRUE for valid.

FALSE for invalid, number of rows for valid.

A geo_code tibble with all fields set to suitable NAs.

Examples

```
validate_geocode(NA)
validate_geocode(data.frame(lon = -25, lat = 66))
is_valid_geocode(NA)
is_valid_geocode(1L)
is_valid_geocode(data.frame(lon = -25, lat = 66))
```

na_geocode()

valleys

Valleys or local minima

Description

Function that returns a subset of an R object with observations corresponding to local maxima.

Usage

```
valleys(x, span, ignore_threshold, strict, ...)
## Default S3 method:
valleys(x, span = NA, ignore_threshold = NA, strict = NA, na.rm = FALSE, ...)
## Default S3 method:
valleys(x, span = NA, ignore_threshold = NA, strict = NA, na.rm = FALSE, ...)
## S3 method for class 'numeric'
valleys(x, span = 5, ignore_threshold, strict = TRUE, na.rm = FALSE, ...)
```

```
## S3 method for class 'data.frame'
valleys(
  х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
 x.var.name = NULL,
 y.var.name = NULL,
 var.name = y.var.name,
 refine.wl = FALSE,
 method = "spline",
  • • •
)
## S3 method for class 'generic_spct'
valleys(
  х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
 var.name = NULL,
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'source_spct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'response_spct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
```

```
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  refine.wl = FALSE,
 method = "spline",
  • • •
)
## S3 method for class 'filter_spct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
  filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'reflector_spct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
 strict = TRUE,
 na.rm = FALSE,
 refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'cps_spct'
valleys(
 х,
  span = 5,
 ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
 refine.wl = FALSE,
 method = "spline",
  • • •
)
## S3 method for class 'raw_spct'
valleys(
  х,
  span = 5,
  ignore_threshold = 0,
```

valleys

```
strict = TRUE,
 na.rm = FALSE,
  var.name = "counts",
  refine.wl = FALSE,
 method = "spline",
  . . .
)
## S3 method for class 'generic_mspct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  var.name = NULL,
  refine.wl = FALSE,
 method = "spline",
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'source_mspct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  refine.wl = FALSE,
 method = "spline",
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'response_mspct'
valleys(
  х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  refine.wl = FALSE,
 method = "spline",
```

```
...,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'filter_mspct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
  na.rm = FALSE,
  filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
  refine.wl = FALSE,
 method = "spline",
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'reflector_mspct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
 strict = TRUE,
 na.rm = FALSE,
  refine.wl = FALSE,
 method = "spline",
  . . . ,
  .parallel = FALSE,
  .paropts = NULL
)
## S3 method for class 'cps_mspct'
valleys(
 х,
  span = 5,
  ignore_threshold = 0,
  strict = TRUE,
 na.rm = FALSE,
  var.name = "cps",
  refine.wl = FALSE,
 method = "spline",
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
```

```
## S3 method for class 'raw_mspct'
valleys(
    x,
    span = 5,
    ignore_threshold = 0,
    strict = TRUE,
    na.rm = FALSE,
    var.name = "counts",
    refine.wl = FALSE,
    method = "spline",
    ...,
    .parallel = FALSE,
    .paropts = NULL
)
```

Arguments

х	an R object
span	integer A valley is defined as an element in a sequence which is smaller than all other elements within a window of width span centered at that element. Use NULL for the global peak.
ignore_threshol	.d
	numeric Value between 0.0 and 1.0 indicating the relative size compared to tallest peak threshold below which peaks will be ignored. Negative values set a threshold so that the tallest peaks are ignored, instead of the shortest.
strict	logical If TRUE, an element must be strictly greater than all other values in its window to be considered a peak.
	ignored
na.rm	logical indicating whether NA values should be stripped before searching for peaks.
var.name, x.var	.name, y.var.name
	character Name of column where to look for valleys.
refine.wl	logical Flag indicating if valley location should be refined by fitting a function.
method	character String with the name of a method. Currently only spline interpolation is implemented.
unit.out	character One of "energy" or "photon"
filter.qty	character One of "transmittance" or "absorbance"
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts	a list of additional options passed into the foreach function when parallel compu- tation is enabled. This is important if (for example) your code relies on external data or packages: use the .export and .packages arguments to supply them so that all cluster nodes have the correct environment set up for computing.

Value

A subset of x with rows corresponding to local minima.

Methods (by class)

- default: Default function usable on numeric vectors.
- default: Default returning always NA.
- numeric: Default function usable on numeric vectors.
- data.frame: Method for "data.frame" objects.
- generic_spct: Method for "generic_spct" objects.
- source_spct: Method for "source_spct" objects.
- response_spct: Method for "response_spct" objects.
- filter_spct: Method for "filter_spct" objects.
- reflector_spct: Method for "reflector_spct".
- cps_spct: Method for "cps_spct" objects.
- raw_spct: Method for "raw_spct" objects.
- generic_mspct: Method for "generic_mspct" objects.
- source_mspct: Method for "source_mspct" objects.
- response_mspct: Method for "cps_mspct" objects.
- filter_mspct: Method for "filter_mspct" objects.
- reflector_mspct: Method for "reflector_mspct" objects.
- cps_mspct: Method for "cps_mspct" objects.
- raw_mspct: Method for "raw_mspct" objects.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(), spikes(), wls_at_target()

Examples

valleys(sun.spct, span = 50)

valleys(sun.spct)

verbose_as_default Set error reporting options

Description

Set error reporting related options easily.

Usage

```
verbose_as_default(flag = TRUE)
```

```
strict_range_as_default(flag = TRUE)
```

Arguments

flag logical.

Value

Previous value of the modified option.

v_insert_hinges

Insert spectral data values at new wavelength values.

Description

Inserting wavelengths values immediately before and after a discontinuity in the SWF, greatly reduces the errors caused by interpolating the weighted irradiance during integration of the effective spectral irradiance. This is specially true when data have a relatively large wavelength step size and/or when the weighting function used has discontinuities in its value or slope. This function differs from insert_hinges() in that it returns a vector of y values instead of a tibble.

Usage

v_insert_hinges(x, y, h)

Arguments

х	numeric vector (sorted in increasing order).
У	numeric vector.
h	a numeric vector giving the wavelengths at which the y values should be in- serted by interpolation, no interpolation is indicated by an empty numeric vector (numeric(0)).

Value

A numeric vector with the numeric values of y, but longer. Unless the hinge values were already present in y, each inserted hinge, expands the vector by two values.

See Also

```
Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_replace_hinges()
```

v_replace_hinges Overwrit

Description

Overwriting spectral data with interpolated values at wavelengths values containing bad data is needed when cleaning spectral data. This function differs from insert_hinges() in that it returns a vector of y values instead of a tibble.

Usage

v_replace_hinges(x, y, h)

Arguments

х	numeric vector (sorted in increasing order).
У	numeric vector.
h	a numeric vector giving the wavelengths at which the y values should be replaced by interpolation, no interpolation is indicated by an empty numeric vector $(numeric(0))$.

Value

A numeric vector with the numeric values of y with values at the hinges replaced by interpolation of neighbours.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(), div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(), split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges()

water_vp_sat

Description

Approximate water pressure in air as a function of temperature, and its inverse the calculation of dewpoint.

Water vapour pressure

Usage

```
water_vp_sat(
  temperature,
  over.ice = FALSE,
 method = "tetens",
  check.range = TRUE
)
water_dp(water.vp, over.ice = FALSE, method = "tetens", check.range = TRUE)
water_fp(water.vp, over.ice = TRUE, method = "tetens", check.range = TRUE)
water_vp2mvc(water.vp, temperature)
water_mvc2vp(water.mvc, temperature)
water_vp2RH(
 water.vp,
  temperature,
 over.ice = FALSE,
 method = "tetens",
 pc = TRUE,
 check.range = TRUE
)
water_RH2vp(
  relative.humidity,
  temperature,
  over.ice = FALSE,
 method = "tetens",
 pc = TRUE,
  check.range = TRUE
)
water_vp_sat_slope(
  temperature,
  over.ice = FALSE,
 method = "tetens",
  check.range = TRUE,
  temperature.step = 0.1
)
```

```
psychrometric_constant(atmospheric.pressure = 101325)
```

Arguments

temperature	numeric vector of air temperatures (C).
over.ice	logical vector Is the estimate for equilibrium with liquid water or with ice.

water_vp_sat

method	character Currently "tetens", modified "magnus", "wexler" and "goff.gratch" equations are supported.
check.range	logical Flag indicating whether to check or not that arguments for temperature are within the range of validity of the method used.
water.vp	numeric vector of water vapour pressure in air (Pa).
water.mvc	numeric vector of water vapour concnetration as mass per volume (gm^{-3}) .
рс	logical flag for result returned as percent or not.
relative.humidity	
	numeric Relative humidity as fraction of 1.
temperature.step	
	numeric Delta or step used to estimate the slope as a finite difference (C).
atmospheric.pressure	
	numeric Atmospheric pressure (Pa).

Details

Function water_vp_sat() provides implementations of several well known equations for the estimation of saturation vapor pressure in air. Functions water_dp() and water_fp() use the inverse of these equations to compute the dew point or frost point from water vapour pressure in air. The inverse functions are either analytical solutions or fitted approximations. None of these functions are solved numerically by iteration.

Method "tetens" implements Tetens' (1930) equation for the cases of equilibrium with a water and an ice surface. Method "magnus" implements the modified Magnus equations of Alduchov and Eskridge (1996, eqs. 21 and 23). Method "wexler" implements the equations proposed by Wexler (1976, 1977), and their inverse according to Hardy (1998). Method "goff.gratch" implements the equations of Groff and Gratch (1946) with the minor updates of Groff (1956).

The equations are approximations, and in spite of their different names, Tetens' and Magnus' equations have the same form with the only difference in the values of the parameters. However, the modified Magnus equation is more accurate as Tetens equation suffers from some bias errors at extreme low temperatures (< -40 C). In contrast Magnus equations with recently fitted values for the parameters are usable for temperatures from -80 C to +50 C over water and -80 C to 0 C over ice. The Groff Gratch equation is more complex and is frequently used as a reference in comparison as it is considered reliable over a broad range of temperatures. Wexler's equations are computationally simpler and fitted to relatively recent data. There is little difference at temperatures in the range -20 C to +50 C, and differences become large at extreme temperatures. Temperatures outside the range where estimations are highly reliable for each equation return NA, unless extrapolation is enabled by passing FALSE as argument to parameter check.range.

The switch between equations for ice or water cannot be based on air temperature, as it depends on the presence or not of a surface of liquid water. It must be set by passing an argument to parameter over.ice which defaults to FALSE.

Tetens equation is still very frequently used, and is for example the one recommended by FAO for computing potential evapotranspiration. For this reason it is used as default here.

Value

A numeric vector of partial pressures in pascal (Pa) for water_vp_sat() and water_mvc2vp(), a numeric vector of dew point temperatures (C) for water_dp() and numeric vector of mass per volume concentrations (gm^{-3}) for water_vp2mvc(). water_vp_sat() and psychrometric_constant() both return numeric vectors of pressure per degree of temperature (PaC^{-1})

Note

The inverse of the Groff Gratch equation has yet to be implemented.

References

Tetens, O., 1930. Uber einige meteorologische Begriffe. Zeitschrift fur Geophysik, Vol. 6:297.

Goff, J. A., and S. Gratch (1946) Low-pressure properties of water from -160 to 212 F, in Transactions of the American Society of Heating and Ventilating Engineers, pp 95-122, presented at the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, 1946.

Wexler, A. (1976) Vapor Pressure Formulation for Water in Range 0 to 100°C. A Revision, Journal of Research of the National Bureau of Standards: A. Physics and Chemistry, September-December 1976, Vol. 80A, Nos.5 and 6, 775-785

Wexler, A., (1977) Vapor Pressure Formulation for Ice, Journal of Research of the National Bureau of Standards - A. Physics and Chemistry, Vol. 81A, No. 1, 5-19

Alduchov, O. A., Eskridge, R. E., 1996. Improved Magnus Form Approximation of Saturation Vapor Pressure. Journal of Applied Meteorology, 35: 601-609.

Hardy, Bob (1998) ITS-90 formulations for vapor pressure, frostpoint temperature, dewpoint temperature, andenhancement factors in the range -100 TO +100 C. The Proceedings of the Third International Symposium on Humidity & Moisture, Teddington, London, England, April 1998. https://www.decatur.de/javascript/dew/resources/its90formulas.pdf

Monteith, J., Unsworth, M. (2008) Principles of Environmental Physics. Academic Press, Amsterdam.

Allen R G, Pereira L S, Raes D, Smith M. (1998) Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Rome: FAO.

[Equations describing the physical properties of moist air](http://www.conservationphysics.org/atmcalc/atmoclc2.pdf)

Examples

```
water_vp_sat(20) # C -> Pa
water_vp_sat(temperature = c(0, 10, 20, 30, 40)) # C -> Pa
water_vp_sat(temperature = -10) # over water!!
water_vp_sat(temperature = -10, over.ice = TRUE)
water_vp_sat(temperature = 20) / 100 # C -> mbar
water_vp_sat(temperature = 20, method = "magnus") # C -> Pa
water_vp_sat(temperature = 20, method = "tetens") # C -> Pa
water_vp_sat(temperature = 20, method = "wexler") # C -> Pa
water_vp_sat(temperature = 20, method = "goff.gratch") # C -> Pa
```

waveband

```
water_vp_sat(temperature = -20, over.ice = TRUE, method = "magnus") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "tetens") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "wexler") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "goff.gratch") # C -> Pa
water_dp(water.vp = 1000) # Pa -> C
water_dp(water.vp = 1000, method = "magnus") # Pa -> C
water_dp(water.vp = 1000, method = "wexler") # Pa -> C
water_dp(water.vp = 500, over.ice = TRUE) # Pa -> C
water_dp(water.vp = 500, method = "wexler", over.ice = TRUE) # Pa -> C
water_fp(water.vp = 300) # Pa -> C
water_dp(water.vp = 300, over.ice = TRUE) # Pa -> C
water_vp2RH(water.vp = 1500, temperature = 20) # Pa, C -> RH %
water_vp2RH(water.vp = 1500, temperature = c(20, 30)) # Pa, C -> RH %
water_vp2RH(water.vp = c(600, 1500), temperature = 20) # Pa, C -> RH %
water_vp2mvc(water.vp = 1000, temperature = 20) # Pa -> g m-3
water_mvc2vp(water.mvc = 30, temperature = 40) # g m-3 -> Pa
water_dp(water.vp = water_mvc2vp(water.mvc = 10, temperature = 30)) # g m-3 -> C
water_vp_sat_slope(temperature = 20) # C -> Pa / C
psychrometric_constant(atmospheric.pressure = 81.8e3) # Pa -> Pa / C
```

waveband

Waveband constructor method

Description

Constructor for "waveband" objects that can be used as input when calculating irradiances.

Usage

```
waveband(
  x = NULL,
  weight = NULL,
  SWF.e.fun = NULL,
  SWF.q.fun = NULL,
  norm = NULL,
  SWF.norm = NULL,
  hinges = NULL,
  wb.name = NULL,
  wb.label = wb.name
```

waveband

```
new_waveband(
  w.low,
  w.high,
  weight = NULL,
  SWF.e.fun = NULL,
  SWF.q.fun = NULL,
  norm = NULL,
  SWF.norm = NULL,
  hinges = NULL,
  wb.name = NULL,
  wb.label = wb.name
)
```

Arguments

x	any R object on which applying the function range yields an vector of two numeric values, describing a range of wavelengths (nm)
weight	a character string "SWF" or "BSWF", use NULL (the default) to indicate no weighting used when calculating irradiance
SWF.e.fun	a function giving multipliers for a spectral weighting function (energy) as a func- tion of wavelength (nm)
SWF.q.fun	a function giving multipliers for a spectral weighting function (quantum) as a function of wavelength (nm)
norm	a single numeric value indicating the wavelength at which the SWF should be normalized to 1.0, in nm. "NULL" means no normalization.
SWF.norm	a numeric value giving the native normalization wavelength (nm) used by SWF.e.fun and SWF.q.fun $% \mathcal{W}(m)$
hinges	a numeric vector giving the wavelengths at which the s.irrad should be inserted by interpolation, no interpolation is indicated by an empty vector (numeric(0)), if NULL then interpolation will take place at both ends of the band.
wb.name	character string giving the name for the waveband defined, default is NULL
wb.label	character string giving the label of the waveband to be used for plotting, default is wb.name
w.low	numeric value, wavelength at the short end of the band (nm)
w.high	numeric value, wavelength at the long end of the band (nm)

Value

a waveband object

Functions

• new_waveband: A less flexible variant

390

)

waveband_ratio

See Also

Other waveband constructors: split_bands()

Examples

waveband(c(400,700))

new_waveband(400,700)

waveband_ratio Photon or energy ratio

Description

This function gives the (energy or photon) irradiance ratio between two given wavebands of a radiation spectrum.

Usage

```
waveband_ratio(
    w.length,
    s.irrad,
    w.band.num = NULL,
    w.band.denom = NULL,
    unit.out.num = NULL,
    unit.out.denom = unit.out.num,
    unit.in = "energy",
    check.spectrum = TRUE,
    use.cached.mult = FALSE,
    use.hinges = getOption("photobiology.use.hinges", default = NULL)
)
```

Arguments

w.length	numeric Vector of wavelengths (nm)
s.irrad	numeric vector of spectral (energy or photon) irradiances (W m-2 nm-1) or (mol s-1 m-2 nm-1).
w.band.num	waveband object used to compute the numerator of the ratio.
w.band.denom	waveband object used to compute the denominator of the ratio.
unit.out.num	character Allowed values "energy", and "photon", or its alias "quantum".
unit.out.denom	character Allowed values "energy", and "photon", or its alias "quantum".
unit.in	character Allowed values "energy", and "photon", or its alias "quantum".
check.spectrum	logical Flag indicating whether to sanity check input data, default is TRUE.

use.cached.mult	
	logical Flag indicating whether multiplier values should be cached between calls.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wave-bands.

Value

a single numeric value giving the ratio

Note

The default for both w.band parameters is a waveband covering the whole range of w.length. From version 9.19 onwards use of this default does not trigger a warning, but instead is used silently.

Examples

```
# photon:photon ratio
with(sun.data,
     waveband_ratio(w.length, s.e.irrad,
                    new_waveband(400,500),
                    new_waveband(400,700), "photon"))
# energy:energy ratio
with(sun.data,
     waveband_ratio(w.length, s.e.irrad,
                   new_waveband(400,500),
                    new_waveband(400,700), "energy"))
# energy:photon ratio
with(sun.data,
     waveband_ratio(w.length, s.e.irrad,
                    new_waveband(400,700),
                    new_waveband(400,700),
                    "energy", "photon"))
# photon:photon ratio waveband : whole spectrum
with(sun.data,
     waveband_ratio(w.length, s.e.irrad,
                    new_waveband(400,500),
                    unit.out.num="photon"))
# photon:photon ratio of whole spectrum should be equal to 1.0
with(sun.data,
     waveband_ratio(w.length, s.e.irrad,
     unit.out.num="photon"))
```

Description

Create a generic_spct object with wavelengths from the range of wavebands in a list. The spectrum is suitable for plotting labels, symbols, rectangles or similar, as the midpoint of each waveband is added to the spectrum.

Usage

```
wb2rect_spct(w.band, short.names = TRUE, chroma.type = "CMF")
fast_wb2rect_spct(w.band, chroma.type = "CMF", simplify = TRUE)
```

Arguments

w.band	waveband or list of waveband objects The waveband(s) determine the wavelengths in variable w.length of the returned spectrum
short.names	logical Flag indicating whether to use short or long names for wavebands
chroma.type	character telling whether "CMF", "CC", or "both" should be returned for human vision, or an object of class chroma_spct for any other trichromic visual system.
simplify	logical Flag indicating whether to merge neighboring rectangles of equal color. Simplification is done only for narrow wavebands.

Value

A generic.spectrum object, with columns w.length, wl.low, wl.hi, wl.color, wb.color and wb.name. The w.length values are the midpoint of the wavebands, wl.low and wl.high give the boundaries of the wavebands, wl.color the color definition corresponding to the wavelength at the center of the waveband and wb.color the color of the waveband as a whole (assuming a flat energy irradiance spectrum). Different spectral data variables are set to zero and added making the returned value compatible with classes derived from generic_spct.

Note

Function fast_wb2rect_spct() differs from wb2rect_spct() in that it computes colors for narrow wavebands based on the midpoint wavelength and uses vectorization when possible. It always returns color definitions with short names, which are also used as waveband names for narrow wavebands and merged wavebands. The purpose of merging of rectangles is to speed up rendering and to reduce the size of vector graphics output. This function should be used with care as the color definitions returned are only approximate and original waveband names can be lost.

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2spct(), wb2tagged_spct()

wb2spct

Description

Create a generic_spct object with wavelengths from wavebands in a list.

Usage

wb2spct(w.band)

Arguments

w.band

waveband or list of waveband objects The waveband(s) determine the wavelengths in variable w. length of the returned spectrum

Value

A generic.spectrum object, with columns w.length set to the *union* of all boundaries and hinges defined in the waveband(s). Different spectral data variables are set to zero and added making the returned value compatible with classes derived from generic_spct.

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2rect_spct(), wb2tagged_spct()

wb2tagged_spct Create tagged spectrum from wavebands

Description

Create a tagged generic_spct object with wavelengths from the range of wavebands in a list, and names of the same bands as factor levels, and corresponding color definitions. The spectrum is not suitable for plotting labels, symbols, rectangles or similar, as the midpoint of each waveband is not added to the spectrum.

Usage

```
wb2tagged_spct(
  w.band,
  use.hinges = TRUE,
  short.names = TRUE,
  chroma.type = "CMF",
   ...
)
```

Arguments

w.band	waveband or list of waveband objects The waveband(s) determine the region(s) of the spectrum that are tagged and the wavelengths returned in variable w.length.
use.hinges	logical Flag indicating whether to insert "hinges" into the spectral data before integration so as to reduce interpolation errors at the boundaries of the wavebands.
short.names	logical Flag indicating whether to use short or long names for wavebands.
chroma.type	character telling whether "CMF", "CC", or "both" should be returned for human vision, or an object of class chroma_spct for any other trichromic visual system.
	ignored (possibly used by derived methods).

Value

A spectrum as returned by wb2spct but additionally tagged using function tag

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2rect_spct(), wb2spct()

wb_trim_as_default Set computation options

Description

Set computation related options easily.

Usage

```
wb_trim_as_default(flag = TRUE)
```

use_cached_mult_as_default(flag = TRUE)

Arguments

flag logical.

Value

Previous value of the modified option.

white_body.spct Theorem

Theoretical white body

Description

A dataset for a hypothetical object with transmittance 0/1 (0%), reflectance 1/1 (100%)

Format

A object_spct object with 4 rows and 3 variables

Details

- w.length (nm)
- Tfr (0..1)
- Rfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

white_led.cps_spct White led bulb spectrum

Description

A dataset containing wavelengths and the corresponding spectral data as counts per second for an Osram warm white led lamp:

Usage

```
white_led.cps_spct
```

Format

A data.frame object with 2068 rows and 2 variables

Details

- w.length (nm), range 188 to 1117 nm.
- cps
white_led.raw_spct

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.raw_spct, white_led.source_spct, yellow_gel.spct

Examples

white_led.cps_spct

white_led.raw_spct White led bulb spectrum

Description

A dataset containing wavelengths and the corresponding spectral data as raw instrument counts for an Osram warm white led lamp, for three different integration times:

Usage

white_led.raw_spct

Format

An object of class raw_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with 2068 rows and 4 columns.

Details

- w.length (nm), range 188 to 1117 nm.
- counts_1
- counts_2
- counts_3
- w.length (nm), range 188 to 1117 nm.
- cps

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.source_spct, yellow_gel.spct

Examples

white_led.raw_spct

white_led.source_spct White led bulb spectrum

Description

A dataset containing wavelengths and the corresponding spectral irradiance data for an Osram warm white led lamp:

Usage

white_led.source_spct

Format

A source_spct object with 1421 rows and 2 variables

Details

- w.length (nm), range 250 to 900 nm.
- s.e.irrad (W m-2 nm-1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, yellow_gel.spct

Examples

white_led.source_spct

Description

Find wavelength values corresponding to a target spectral value in a spectrum. The name of the column of the spectral data to be used is inferred from the class of x and the argument passed to unit.out or filter.qty or their defaults that depend on R options set.

Usage

```
wls_at_target(
  х,
  target = NULL,
  interpolate = FALSE,
  idfactor = FALSE,
  na.rm = FALSE,
  . . .
)
## Default S3 method:
wls_at_target(
  х,
  target = NULL,
  interpolate = FALSE,
  idfactor = FALSE,
  na.rm = FALSE,
)
## S3 method for class 'data.frame'
wls_at_target(
  х,
  target = "half.maximum",
  interpolate = FALSE,
  idfactor = FALSE,
  na.rm = FALSE,
  x.var.name = NULL,
  y.var.name = NULL,
  . . .
)
## S3 method for class 'generic_spct'
wls_at_target(
  х,
  target = "half.maximum",
  interpolate = FALSE,
```

```
idfactor = FALSE,
  na.rm = FALSE,
  col.name = NULL,
  y.var.name = col.name,
  . . .
)
## S3 method for class 'source_spct'
wls_at_target(
 х,
  target = "half.maximum",
  interpolate = FALSE,
  idfactor = FALSE,
  na.rm = FALSE,
 unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . .
)
## S3 method for class 'response_spct'
wls_at_target(
 х,
 target = "half.maximum",
  interpolate = FALSE,
 idfactor = FALSE,
 na.rm = FALSE,
  unit.out = getOption("photobiology.radiation.unit", default = "energy"),
  . . .
)
## S3 method for class 'filter_spct'
wls_at_target(
 х,
  target = "half.maximum",
  interpolate = FALSE,
  idfactor = FALSE,
  na.rm = FALSE,
  filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
  . . .
)
## S3 method for class 'reflector_spct'
wls_at_target(
 х,
  target = "half.maximum",
  interpolate = FALSE,
  idfactor = FALSE,
  na.rm = FALSE,
  . . .
```

```
)
## S3 method for class 'cps_spct'
wls_at_target(
  х,
  target = "half.maximum",
  interpolate = FALSE,
  idfactor = FALSE,
  na.rm = FALSE,
  . . .
)
## S3 method for class 'generic_mspct'
wls_at_target(
  х,
  target = "half.maximum",
  interpolate = FALSE,
  idfactor = FALSE,
  na.rm = FALSE,
  ...,
  .parallel = FALSE,
  .paropts = NULL
)
```

Arguments

х	data.frame or spectrum object.	
target	numeric value indicating the spectral quantity value for which wavelengths are to be searched and interpolated if need. The character string "half.maximum" is also accepted as argument.	
interpolate	logical Indicating whether the nearest wavelength value in x should be returned or a value calculated by linear interpolation between wavelength values strad- dling the target.	
idfactor	logical or character Generates an index column of factor type. If idfactor = TRUE then the column is auto named spct.idx. Alternatively the column name can be directly passed as argument to idfactor as a character string.	
na.rm	logical indicating whether NA values should be stripped before searching for the target.	
	currently ignored.	
x.var.name, y.var.name, col.name		
	character The name of the columns in which to search for the target value. Use of col.name is deprecated, and is a synonym for y.var.name.	
unit.out	character One of "energy" or "photon"	
filter.qty	character One of "transmittance" or "absorbance"	
.parallel	if TRUE, apply function in parallel, using parallel backend provided by foreach	

paropts	a list of additional options passed into the foreach function when parallel compu-
	tation is enabled. This is important if (for example) your code relies on external
	data or packages: use the .export and .packages arguments to supply them so
	that all cluster nodes have the correct environment set up for computing.

Value

A data.frame or a spectrum object of the same class as x with fewer rows, possibly even no rows. If FALSE is passed to interpolate a subset of x is returned, otherwise a new object of the same class containing interpolated wavelengths for the target value is returned.

Methods (by class)

- default: Default returning always an empty object of the same class as x.
- data.frame: Method for "data.frame" objects.
- generic_spct: Method for "generic_spct" objects.
- source_spct: Method for "source_spct" objects.
- response_spct: Method for "response_spct" objects.
- filter_spct: Method for "filter_spct" objects.
- reflector_spct: Method for "reflector_spct" objects.
- cps_spct: Method for "cps_spct" objects.
- generic_mspct: Method for "generic_mspct" objects.

Note

When interpolation is used, only column w.length and the column against which the target value was compared are included in the returned object, otherwise, all columns in x are returned. We implement support for data.frame to simplify the coding of 'ggplot2' stats using this function.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(), spikes(), valleys()

Examples

```
wls_at_target(sun.spct, target = 0.1)
wls_at_target(sun.spct, target = 2e-6, unit.out = "photon")
wls_at_target(polyester.spct, target = "HM")
wls_at_target(polyester.spct, target = "HM", interpolate = TRUE)
wls_at_target(polyester.spct, target = "HM", filter.qty = "absorbance")
```

wl_max

Description

A method specialization that returns the wavelength maximum from objects of classes "waveband" or of class "generic_spct" or derived.

Usage

```
wl_max(x, na.rm = FALSE)
## S3 method for class 'waveband'
max(..., na.rm = FALSE)
## S3 method for class 'generic_spct'
max(..., na.rm = FALSE)
## S3 method for class 'generic_mspct'
max(..., na.rm = FALSE, idx = "spct.idx")
```

Arguments

х	generic_spct, generic_mspct or waveband object.
na.rm	ignored
•••	not used in current version
idx	character Name of the column with the names of the members of the collection of spectra.

Methods (by class)

- generic_spct:
- generic_mspct:

Examples

max(sun.spct)
wl_max(sun.spct)

wl_midpoint

Description

A function that returns the wavelength (or value) at the center of the of the wavelength range of a waveband or spectrum object (or numeric vector).

Usage

```
wl_midpoint(x, ...)
midpoint(x, ...)
## Default S3 method:
midpoint(x, ...)
## S3 method for class 'numeric'
midpoint(x, ...)
## S3 method for class 'waveband'
midpoint(x, ...)
## S3 method for class 'generic_spct'
midpoint(x, ...)
## S3 method for class 'generic_mspct'
midpoint(x, ...)
```

Arguments

х	an R object
	not used in current version
idx	character Name of the column with the names of the members of the collection of spectra.

Value

A numeric value equal to $(\max(x) - \min(x)) / 2$. In the case of spectral objects a wavelength in nm. For any other R object, according to available definitions of min and max.

Methods (by class)

- default: Default method for generic function
- numeric: Default method for generic function
- waveband: Wavelength at center of a "waveband".

wl_min

- generic_spct: Method for "generic_spct".
- generic_mspct: Method for "generic_mspct" objects.

See Also

Other wavelength summaries: wl_min(), wl_range(), wl_stepsize() Other wavelength summaries: wl_min(), wl_range(), wl_stepsize() Other wavelength summaries: wl_min(), wl_range(), wl_stepsize()

Examples

```
midpoint(10:20)
midpoint(sun.spct)
wl_midpoint(sun.spct)
```

midpoint(sun.spct)

wl_min

Wavelength minimum

Description

A method specialization that returns the wavelength minimum from objects of classes "waveband" or of class "generic_spct" or derived.

Usage

```
wl_min(x, na.rm = FALSE)
## S3 method for class 'waveband'
min(..., na.rm = FALSE)
## S3 method for class 'generic_spct'
min(..., na.rm = FALSE)
## S3 method for class 'generic_mspct'
min(..., na.rm = FALSE, idx = "spct.idx")
```

Arguments

х	generic_spct, generic_mspct or waveband object.
na.rm	ignored
	not used in current version
idx	character Name of the column with the names of the members of the collection of spectra.

Methods (by class)

- generic_spct:
- generic_mspct:

See Also

Other wavelength summaries: wl_midpoint(), wl_range(), wl_stepsize()

Examples

min(sun.spct)
wl_min(sun.spct)

wl_range

Wavelength range

Description

A method specialization that returns the wavelength range from objects of classes "waveband" or of class "generic_spct" or derived.

Usage

```
wl_range(x, na.rm = FALSE)
## S3 method for class 'waveband'
range(..., na.rm = FALSE)
## S3 method for class 'generic_spct'
range(..., na.rm = FALSE)
## S3 method for class 'generic_mspct'
range(..., na.rm = FALSE, idx = "spct.idx")
```

Arguments

х	generic_spct, generic_mspct or waveband object.
na.rm	ignored
	a single R object
idx	character Name of the column with the names of the members of the collection of spectra.

Methods (by class)

- generic_spct:
- generic_mspct:

wl_stepsize

See Also

Other wavelength summaries: wl_midpoint(), wl_min(), wl_stepsize()

Examples

```
range(sun.spct)
wl_range(sun.spct)
```

range(sun.spct)

wl_stepsize Stepsize

Description

Function that returns the range of step sizes in an object. Range of differences between successive sorted values.

Usage

```
wl_stepsize(x, ...)
stepsize(x, ...)
## Default S3 method:
stepsize(x, ...)
## S3 method for class 'numeric'
stepsize(x, ...)
## S3 method for class 'generic_spct'
stepsize(x, ...)
## S3 method for class 'generic_mspct'
stepsize(x, ..., idx = "spct.idx")
```

Arguments

х	an R object
	not used in current version
idx	character Name of the column with the names of the members of the collection of spectra.

Value

A numeric vector of length 2 with min and maximum stepsize values.

Methods (by class)

- default: Default function usable on numeric vectors.
- numeric: Method for numeric vectors.
- generic_spct: Method for "generic_spct" objects.
- generic_mspct: Method for "generic_mspct" objects.

See Also

Other wavelength summaries: wl_midpoint(), wl_min(), wl_range()

Examples

```
stepsize(sun.spct)
wl_stepsize(sun.spct)
```

stepsize(sun.spct)

w_length2rgb Wavelength to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions

Usage

```
w_length2rgb(w.length, sens = photobiology::ciexyzCMF2.spct, color.name = NULL)
```

Arguments

w.length	numeric Vector of wavelengths (nm)
sens	chroma_spct Used as chromaticity definition
color.name	character Used for naming the rgb color definition

Value

A vector of colors defined using rgb(). The numeric values of the RGB components can be obtained using function col2rgb().

See Also

Other color functions: rgb_spct(), w_length_range2rgb()

w_length_range2rgb

Examples

```
col2rgb(w_length2rgb(580))
col2rgb(w_length2rgb(c(400, 500, 600, 700)))
col2rgb(w_length2rgb(c(400, 500, 600, 700), color.name=c("a","b","c","d")))
col2rgb(w_length2rgb(c(400, 500, 600, 700), color.name="a"))
```

w_length_range2rgb Wavelength range to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions

Usage

```
w_length_range2rgb(
   w.length,
   sens = photobiology::ciexyzCMF2.spct,
   color.name = NULL
)
```

Arguments

w.length	numeric vector of wavelengths (nm) of length 2. If longer, its range is used
sens	chroma_spct Used as the chromaticity definition.
color.name	character Used for naming the rgb color definition(s) returned.

Value

A vector of colors defined using rgb(). The numeric values of the RGB components can be obtained by calling function col2rgb.

See Also

Other color functions: rgb_spct(), w_length2rgb()

Examples

```
col2rgb(w_length_range2rgb(c(500,600)))
col2rgb(w_length_range2rgb(550))
col2rgb(w_length_range2rgb(500:600))
```

yellow_gel.spct

Description

A dataset containing the wavelengths at a 1 nm interval and fractional total transmittance for polyester film.

Usage

yellow_gel.spct

Format

A filter_spct object with 611 rows and 2 variables

Details

- w.length (nm).
- Tfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, Ler_leaf_rflt.spct, Ler_leaf_trns.spct, Ler_leaf_trns_i.spct, black_body.spct, ccd.spct, clear.spct, clear_body.spct, filter_cps.mspct, green_leaf.spct, opaque.spct, photodiode.spct, polyester.spct, sun.daily.data, sun.daily.spct, sun.data, sun.spct, white_body.spct, white_led.cps_spct, white_led.raw_spct, white_led.source_spct

Examples

yellow_gel.spct

^.generic_spct Arithmetic Operators

Description

Power operator for spectra.

Usage

S3 method for class 'generic_spct'
e1 ^ e2

^.generic_spct

Arguments

e1	an object of class "generic_spct"
e2	a numeric vector. possibly of length one.

See Also

Other math operators and functions: MathFun, convolve_each(), div-.generic_spct, log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct, times-.generic_spct

Index

*** BSWF attribute functions** getBSWFUsed, 156 setBSWFUsed, 276 * Coercion methods for collections of spectra as.calibration_mspct, 24 as.chroma_mspct, 26 as.cps_mspct, 28 as.filter_mspct, 30 as.generic_mspct, 33 as.object_mspct, 36 as.raw_mspct, 39 as.reflector_mspct, 41 as.response_mspct, 44 as.source_mspct, 47 split2mspct, 312 subset2mspct, 322 * Evapotranspiration and energy balance related functions. ET_ref, 116 net_irradiance, 216 * Local solar time functions as.solar_date, 47 is.solar_time, 193 print.solar_time, 241 solar_time, 299 * Rfr attribute functions getRfrType, 165 setRfrType, 287 * Spectral data examples A.illuminant.spct, 10 black_body.spct, 55 ccd.spct, 58 clear.spct, 75 clear_body.spct, 76 D65.illuminant.spct, 91 green_leaf.spct, 175 Ler_leaf.spct, 204 Ler_leaf_rflt.spct, 205

Ler_leaf_trns.spct, 206 Ler_leaf_trns_i.spct, 207 opaque.spct, 226 photodiode.spct, 234 polyester.spct, 240 sun.daily.data, 327 sun.daily.spct, 328 sun.data, 329 sun.spct, 330 white_body.spct, 396 white_led.cps_spct, 396 white_led.raw_spct, 397 white_led.source_spct, 398 yellow_gel.spct, 410 * Tfr attribute functions getTfrType, 167 setTfrType, 289 * Time of day functions as_tod, 52 format.tod_time, 144 print.tod_time, 243 * Visual response data examples beesxyzCMF.spct, 54 ciev10.spct, 64 ciev2.spct, 65 ciexyzCC10.spct, 66 ciexyzCC2.spct, 67 ciexyzCMF10.spct, 68 ciexyzCMF2.spct, 69 cone_fundamentals10.spct, 83 * astronomy related functions day_night, 92 format.solar_time, 144 sun_angles, 331 * auxiliary functions normalize_range_arg, 225 * collections of spectra classes family generic_mspct, 155 * color functions

rgb_spct, 271 w_length2rgb, 408 w_length_range2rgb, 409 * constructors of spectral objects as.calibration_spct, 25 as.chroma_spct, 27 as.cps_spct, 29 as.filter_spct, 32 as.generic_spct, 35 as.object_spct, 38 as.raw_spct, 40 as.reflector_spct, 43 as.response_spct, 46 as.source_spct, 49 source_spct, 300 * conversion of collections of spectra join_mspct, 202 * data validity check functions check_spct, 60 check_spectrum, 63 check w.length.64 enable_check_spct, 110 * datasets A.illuminant.spct, 10 beesxyzCMF.spct, 54 black_body.spct, 55 ccd.spct, 58 ciev10.spct, 64 ciev2.spct, 65 ciexyzCC10.spct, 66 ciexyzCC2.spct, 67 ciexyzCMF10.spct, 68 ciexyzCMF2.spct, 69 clear.spct, 75 clear_body.spct, 76 cone_fundamentals10.spct, 83 D2.UV586,89 D2.UV653,90 D2.UV654,90 D65.illuminant.spct, 91 FEL.BN.9101.165, 134 green_leaf.spct, 175 Ler_leaf.spct, 204 Ler_leaf_rflt.spct, 205 Ler_leaf_trns.spct, 206 Ler_leaf_trns_i.spct, 207 opaque.spct, 226 photodiode.spct, 234

polyester.spct, 240 r4p_pkgs, 260 sun.daily.data, 327 sun.daily.spct, 328 sun.data, 329 sun.spct, 330 white_body.spct, 396 white_led.cps_spct, 396 white_led.raw_spct, 397 white_led.source_spct, 398 yellow_gel.spct, 410 * despike and valleys functions despike, 96 * experimental utility functions collect2mspct, 78 drop user cols. 106 thin_w1, 355 uncollect2spct, 372 * idfactor attribute functions getIdFactor, 159 setIdFactor, 282 * internal. v_insert_hinges, 384 v_replace_hinges, 385 * interpolate functions interpolate_wl, 183 * irradiance functions e_fluence, 122 e_irrad, 125 fluence, 141 irrad, 185 q_fluence, 249 q_irrad, 251 * low-level functions operating on numeric vectors. as_energy, 50 as_quantum_mol, 52 calc_multipliers, 56 div_spectra, 105 energy_irradiance, 112 energy_ratio, 113 insert_hinges, 178 integrate_xy, 180 interpolate_spectrum, 182 irradiance, 188 oper_spectra, 226 photon_irradiance, 236 photon_ratio, 238

```
photons_energy_ratio, 235
    prod_spectra, 244
    s_e_irrad2rgb, 333
    split_energy_irradiance, 316
    split_photon_irradiance, 319
    subt_spectra, 323
    sum_spectra, 326
    trim_tails, 366
    v_insert_hinges, 384
    v_replace_hinges, 385
* math operators and functions
    ^.generic_spct, 410
    convolve_each, 87
    div-.generic_spct, 104
    log, 208
    MathFun. 209
    minus-.generic_spct, 211
    mod-.generic_spct, 212
    plus-.generic_spct, 239
    round, 274
    sign. 295
    slash-.generic_spct, 296
    times-.generic_spct, 358
* measurement metadata functions
    add_attr2tb, 18
    get_attributes, 172
    getFilterProperties, 157
    getHowMeasured, 158
    getInstrDesc, 160
    getInstrSettings, 161
    getWhatMeasured, 168
    getWhenMeasured, 169
    getWhereMeasured, 171
    isValidInstrDesc, 195
    isValidInstrSettings, 196
    select_spct_attributes, 275
    setFilterProperties, 276
    setHowMeasured, 281
    setInstrDesc, 283
    setInstrSettings, 283
    setWhatMeasured, 291
    setWhenMeasured, 292
    setWhereMeasured, 293
    spct_attr2tb, 304
    spct_metadata, 306
    trimInstrDesc, 362
    trimInstrSettings, 363
* multiple.wl attribute functions
```

```
getMultipleWl, 162
    setMultipleWl, 284
* peaks and valleys functions
    find_peaks, 135
    find_spikes, 136
    get_peaks, 174
    peaks, 228
    replace_bad_pixs, 266
    spikes, 307
    valleys, 377
    wls_at_target, 399
* photon and energy ratio functions
    e_ratio, 128
    eq_ratio, 114
    q_ratio, 254
    de ratio. 246
* quantity conversion functions
    A2T, 11
    Afr2T, 21
    any2T, 23
    as_quantum, 51
    e2q, 108
    e2qmol_multipliers, 109
    e2quantum_multipliers, 110
    q2e, 245
    T2A. 350
    T2Afr, 351
* query units functions
    is_absorbance_based, 196
    is_photon_based, 199
* rescaling functions
    fscale, 145
    fshift, 151
    getNormalized, 163
    getScaled, 165
    is_normalized, 199
    is_scaled, 200
    normalize, 218
    setNormalized, 285
    setScaled, 288
* response functions
    e_response, 131
    q_response, 257
    response, 268
* response type attribute functions
    setResponseType, 286
* response.type attribute functions
    getResponseType, 164
```

INDEX

* set and unset 'multi spectral' class functions rmDerivedMspct, 272 shared_member_class, 295 * set and unset spectral class functions rmDerivedSpct, 273 setGenericSpct, 278 * split a spectrum into regions functions split_irradiance, 317 * tagging and related functions is_tagged, 201 tag, 353 untag, 373 wb2rect_spct, 392 wb2spct, 394 wb2tagged_spct, 394 * time attribute functions checkTimeUnit, 59 convertTfrType, 84 convertThickness, 85 convertTimeUnit. 86 getTimeUnit, 167 setTimeUnit, 290 * trim functions clip_wl, 76 trim_spct, 363 trim_waveband, 367 trim_w1, 369 * upgrade from earlier versions is.old_spct, 193 upgrade_spct, 374 upgrade_spectra, 375 * waveband attributes is_effective, 197 labels, 203 normalization, 217 *** waveband constructors** split_bands, 315 waveband, 389 * wavelength summaries wl_midpoint, 404 wl_min, 405 wl_range, 406 wl_stepsize, 407 *.generic_spct(times-.generic_spct), 358 +.generic_spct (plus-.generic_spct), 239

-.generic_spct(minus-.generic_spct),

211 /.generic_spct (slash-.generic_spct), 296 [.chroma_spct (Extract), 119 [.cps_spct (Extract), 119 [.filter_spct (Extract), 119 [.generic_mspct (Extract_mspct), 121 [.generic_spct (Extract), 119 [.object_spct (Extract), 119 [.raw_spct (Extract), 119 [.reflector_spct (Extract), 119 [.response_spct (Extract), 119 [.source_spct (Extract), 119 [<-.generic_mspct(Extract_mspct), 121</pre> [<-.generic_spct (Extract), 119 [[<-.generic_mspct (Extract_mspct), 121</pre> \$<-.generic_mspct(Extract_mspct), 121</pre> \$<-.generic_spct (Extract), 119</pre> %/%.generic_spct(div-.generic_spct), 104 %%.generic_spct(mod-.generic_spct), 212 ^.generic_spct, 87, 105, 208, 209, 211, 212, 239, 274, 295, 296, 358, 410 A.illuminant.spct, 10, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 328-331, 396-398, 410 A2T, 11, 22, 23, 51, 109, 110, 246, 351, 353 A_as_default (energy_as_default), 111 abs.generic_spct(MathFun), 209 absorbance, 12, 224 absorptance, 15 acos.generic_spct(Trig), 361 add_attr2tb, 14, 17, 18, 115, 124, 127, 130, 132, 143, 158–161, 169, 170, 172, 173, 187, 196, 247, 250, 253, 256, 259, 264, 269, 275, 278, 282-284, 291, 293, 294, 305, 307, 360, 362, 363 address2tb (add_attr2tb), 18 Afr2T, 12, 21, 23, 51, 109, 110, 246, 351, 353 Afr_as_default (energy_as_default), 111 any2A (any2T), 23 any2Afr (any2T), 23 any2T, 12, 22, 23, 51, 109, 110, 246, 351, 353 as.calibration_mspct, 24, 27, 29, 32, 35, 38, 40, 43, 45, 49, 314, 323 as.calibration_spct, 25, 28, 30, 33, 35, 39, 41, 44, 46, 50, 304

239, 245, 317, 320, 324, 327, 334,

as.chroma_mspct, 25, 26, 29, 32, 35, 38, 40, 43, 45, 49, 314, 323 as.chroma_spct, 26, 27, 30, 33, 35, 39, 41, 44, 46, 50, 304 as.cps_mspct, 25, 27, 28, 32, 35, 38, 40, 43, 45, 49, 314, 323 as.cps_spct, 26, 28, 29, 33, 35, 39, 41, 44, 46.50.304 as.filter_mspct, 25, 27, 29, 30, 35, 38, 40, 43, 45, 49, 314, 323 as.filter_spct, 26, 28, 30, 32, 35, 39, 41, 44, 46, 50, 304 as.generic_mspct, 25, 27, 29, 32, 33, 38, 40, 43, 45, 49, 314, 323 as.generic_spct, 26, 28, 30, 33, 35, 39, 41, 44, 46, 50, 304 as.matrix-mspct, 36 as.matrix.generic_mspct (as.matrix-mspct), 36 as.object_mspct, 25, 27, 29, 32, 35, 36, 40, 43, 45, 49, 314, 323 as.object_spct, 26, 28, 30, 33, 35, 38, 41, 44, 46, 50, 304 as.raw_mspct, 25, 27, 29, 32, 35, 38, 39, 43, 45, 49, 314, 323 as.raw_spct, 26, 28, 30, 33, 35, 39, 40, 44, 46, 50, 304 as.reflector_mspct, 25, 27, 29, 32, 35, 38, 40, 41, 45, 49, 314, 323 as.reflector_spct, 26, 28, 30, 33, 35, 39, 41, 43, 46, 50, 304 as.response_mspct, 25, 27, 29, 32, 35, 38, 40, 43, 44, 49, 314, 323 as.response_spct, 26, 28, 30, 33, 35, 39, 41, 44, 46, 50, 304 as.solar_date, 47, 194, 242, 300 as.source_mspct, 25, 27, 29, 32, 35, 38, 40, 43, 45, 47, 314, 323 as.source_spct, 26, 28, 30, 33, 35, 39, 41, 44, 46, 49, 304 as_energy, 50, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 as_quantum, 12, 22, 23, 51, 109, 110, 246, 351.353 as_guantum_mol, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 237,

367, 384, 385 as_tod, 52, 144, 243, 300 asin.generic_spct(Trig), 361 atan.generic_spct (Trig), 361 average_spct, 53 beesxyzCMF.spct, 54, 65-69, 84 black_body.spct, 11, 55, 59, 75, 76, 92, 176, 204-207, 226, 235, 240, 328-331, 396-398, 410 BSWF_used2tb (add_attr2tb), 18 c, 55 calc_filter_multipliers (defunct), 95 calc_multipliers, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 calc_source_output, 57 calibration_mspct(generic_mspct), 155 calibration_spct (source_spct), 300 ccd.spct, 11, 55, 58, 75, 76, 92, 176, 204-207, 226, 235, 240, 328-331, 396–398, 410 ceiling.generic_spct (round), 274 check_spct, 60, 63, 64, 111 check_spectrum, 62, 63, 64, 111, 317, 318, 320 check_w.length, 62, 63, 64, 111 checkTimeUnit, 59, 84-86, 168, 290 chroma_mspct(generic_mspct), 155 chroma_spct (source_spct), 300 ciev10.spct, 54, 64, 66-69, 84 ciev2.spct, 54, 65, 65, 66-69, 84 ciexyzCC10.spct, 54, 65, 66, 66, 67-69, 84 ciexyzCC2.spct, 54, 65, 66, 67, 68, 69, 84 ciexyzCMF10.spct, 54, 65-67, 68, 69, 84 ciexyzCMF2.spct, 54, 65-68, 69, 84 class_spct, 70 clean, 70 clear.spct, 11, 55, 59, 75, 76, 92, 176, 204-207, 226, 235, 240, 328-331, 396-398,410 clear_body.spct, 11, 55, 59, 75, 76, 92, 176, 204-207, 226, 235, 240, 328-331, 396-398, 410

clip_wl, 76, 365, 368, 370

col2rgb, *334*, *409*

INDEX

collect2mspct, 78, 108, 357, 373 color (color_of), 79 color_of, 79 colour_of (color_of), 79 comment2tb (add_attr2tb), 18 compare_spct, 81 cone_fundamentals10.mspct (cone_fundamentals10.spct), 83 cone_fundamentals10.spct, 54, 65-69, 83 convertTfrType, 59, 84, 85, 86, 168, 290 convertThickness, 59, 84, 85, 86, 168, 290 convertTimeUnit, 59, 84, 85, 86, 168, 290 convolve_each, 87, 105, 208, 209, 211, 212, 239, 274, 295, 296, 358, 411 copy_attributes, 87 cor, 349 cos.generic_spct (Trig), 361 cps2irrad, 88 cps2Rfr (cps2irrad), 88 cps2Tfr (cps2irrad), 88 cps_mspct (generic_mspct), 155 cps_spct (source_spct), 300 D2.UV586,89 D2.UV653, 90 D2.UV654,90 D2_spectrum, 91 D65.illuminant.spct, 11, 55, 59, 75, 76, 91, 176, 204–207, 226, 235, 240, 328–331, 396–398, 410 day_length (day_night), 92 day_night, 92, 144, 333 day_night_fast (day_night), 92 defunct, 95 despike, 96 diffraction_double_slit (diffraction_single_slit), 103 diffraction_single_slit, 103 dim.generic_mspct, 104 dim<-.generic_mspct</pre> (dim.generic_mspct), 104 disable_check_spct (enable_check_spct), 110 distance_to_sun (sun_angles), 331 div-.generic_spct, 104 div_spectra, 51, 52, 56, 105, 112, 114, 178, 180, 183, 189, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385

drop_user_cols, 79, 106, 357, 373 e2q, 12, 22, 23, 51, 108, 109, 110, 246, 351, 353 e2qmol_multipliers, 12, 22, 23, 51, 109, 109, 110, 246, 351, 353 e2quantum_multipliers, 12, 22, 23, 51, 109, 110, 246, 351, 353 e_fluence, 122, 127, 143, 188, 251, 254 e_irrad, 124, 125, 143, 188, 251, 254 e_ratio, 116, 128, 248, 257 e_response, 131, 260, 270 enable_check_spct, 62-64, 110 energy_as_default, 111 energy_irradiance, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 energy_ratio, 51, 52, 56, 106, 112, 113, 178, 180, 183, 189, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 eq_ratio, 114, 131, 248, 257 ET_ref, 116, 217 ET_ref_day (ET_ref), 116 exp.generic_spct (log), 208 expanse (spread), 320 extend2extremes (trim_spct), 363 Extract, 119, 120, 121 Extract_mspct, 121 Extremes, 343

f_mspct (defunct), 95 fast_color_of_wb (color_of), 79 fast_color_of_wl (color_of), 79 fast_wb2rect_spct (wb2rect_spct), 392 FEL.BN.9101.165, 134 FEL_spectrum, 134 filter_cps.mspct, 11, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 328-331, 396-398, 410 filter_mspct (generic_mspct), 155 filter_properties (getFilterProperties), 157 filter_properties2tb (add_attr2tb), 18 filter_properties<-(setFilterProperties), 276 filter_spct (source_spct), 300

find_peaks, 135, 137, 175, 234, 267, 312, 383.402 find_spikes, 102, 136, 136, 175, 234, 267, 312, 383, 402 find_wls, 138 findMultipleWl, 135 fit_peaks, 139 fit_valleys (fit_peaks), 139 floor.generic_spct (round), 274 fluence, 124, 127, 141, 188, 251, 254 format, 145, 325 format.solar_time, 95, 144, 333 format.tod_time, 53, 144, 243 formatted_range, 145 fscale, 145, 154, 163, 166, 199, 201, 223, 286, 289 fshift, 150, 151, 163, 166, 199, 201, 223, 286, 289 generic_mspct, 155 generic_spct (source_spct), 300 geocode2tb (add_attr2tb), 18 get_attributes, 20, 158-161, 169, 170, 172, 172, 196, 275, 278, 282–284, 291, 293, 294, 305, 307, 362, 363 get_peaks, 136, 137, 174, 234, 267, 312, 383, 402 get_valleys (get_peaks), 174 getAfrType (defunct), 95 getBSWFUsed, 156, 276 getFilterProperties, 20, 157, 159-161, 169, 170, 172, 173, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 getHowMeasured, 20, 158, 158, 160, 161, 169, 170, 172, 173, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 getIdFactor, 159, 282 getInstrDesc, 20, 158, 159, 160, 161, 169, 170, 172, 173, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 getInstrSettings, 20, 158-160, 161, 169, 170, 172, 173, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 getMspctVersion, 161 getMultipleWl, 162, 285

getNormalisation (getNormalized), 163 getNormalised (getNormalized), 163 getNormalization (getNormalized), 163 getNormalized, 150, 154, 163, 166, 199, 201, 223, 286, 289 getResponseType, 164 getRfrType, 165, 287 getScaled, 150, 154, 163, 165, 199, 201, 223, 286.289 getScaling (getScaled), 165 getSpctVersion, 166 getTfrType, 167, 289 getTimeUnit, 59, 84-86, 167, 290 getWhatMeasured, 20, 158-161, 168, 170, 172, 173, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 getWhenMeasured, 20, 158-161, 169, 169, 172, 173, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 getWhereMeasured, 20, 158-161, 169, 170, 171, 173, 196, 275, 278, 282–284, 291, 293, 294, 305, 307, 362, 363 green_leaf.spct, 11, 55, 59, 75, 76, 92, 175, 204-207, 226, 235, 240, 328-331, 396-398,410

head, 177 head_tail, 176 how_measured (getHowMeasured), 158 how_measured2tb (add_attr2tb), 18 how_measured<- (setHowMeasured), 281 insert_hinges, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 insert_spct_hinges, 179 instr_desc2tb (add_attr2tb), 18 instr_settings2tb (add_attr2tb), 18 integrate_spct, 179 integrate_xy, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 interpolate_mspct(interpolate_spct), 181 interpolate_spct, 181 interpolate_spectrum, 51, 52, 56, 106, 112, 114, 178, 180, 182, 189, 227, 236,

237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 interpolate_wl, 183 irrad, 124, 127, 143, 185, 251, 254 irrad_extraterrestrial, 189 irradiance, 51, 52, 56, 106, 112, 114, 178, 180, 183, 188, 224, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 is.any_mspct(is.generic_mspct), 190 is.any_spct(is.generic_spct), 192 is.any_summary_spct (is.summary_generic_spct), 194 is.calibration_mspct (is.generic_mspct), 190 is.calibration_spct(is.generic_spct), 192 is.chroma_mspct(is.generic_mspct), 190 is.chroma_spct(is.generic_spct), 192 is.cps_mspct(is.generic_mspct), 190 is.cps_spct(is.generic_spct), 192 is.filter_mspct(is.generic_mspct), 190 is.filter_spct(is.generic_spct), 192 is.generic_mspct, 190 is.generic_spct, 192 is.object_mspct(is.generic_mspct), 190 is.object_spct(is.generic_spct), 192 is.old_spct, 193, 374, 375 is.raw_mspct(is.generic_mspct), 190 is.raw_spct(is.generic_spct), 192 is.reflector_mspct(is.generic_mspct), 190 is.reflector_spct (is.generic_spct), 192 is.response_mspct(is.generic_mspct), 190 is.response_spct(is.generic_spct), 192 is.solar_date(is.solar_time), 193 is.solar_time, 47, 193, 242, 300 is.source_mspct(is.generic_mspct), 190 is.source_spct(is.generic_spct), 192 is.summary_chroma_spct (is.summary_generic_spct), 194 is.summary_cps_spct (is.summary_generic_spct), 194 is.summary_filter_spct (is.summary_generic_spct), 194 is.summary_generic_spct, 194 is.summary_object_spct

(is.summary_generic_spct), 194 is.summary_raw_spct (is.summary_generic_spct), 194 is.summary_reflector_spct (is.summary_generic_spct), 194 is.summary_response_spct (is.summary_generic_spct), 194 is.summary_source_spct (is.summary_generic_spct), 194 is.waveband, 195 is_absorbance_based, 196, 200 is_absorptance_based (is_absorbance_based), 196 is_effective, 197, 203, 217 is_energy_based (is_photon_based), 199 is_normalised (is_normalized), 199 is_normalized, 150, 154, 163, 166, 199, 201, 223, 286, 289 is_photon_based, 197, 199 is_scaled, 150, 154, 163, 166, 199, 200, 223, 286, 289 is_tagged, 201, 354, 374, 393-395 is_transmittance_based (is_absorbance_based), 196 is_valid_geocode (validate_geocode), 376 isValidInstrDesc, 20, 158-161, 169, 170, 172, 173, 195, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 isValidInstrSettings, 20, 158–161, 169, 170, 172, 173, 196, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 join, 210 join_mspct, 202 l_insert_hinges, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 labels, 198, 203, 217 lat2tb (add_attr2tb), 18 length_geocode (validate_geocode), 376 Ler_leaf.spct, 11, 55, 59, 75, 76, 92, 176, 204, 205–207, 226, 235, 240, 328–331, 396–398, 410 Ler_leaf_rflt.spct, 11, 55, 59, 75, 76, 92, 176, 204, 205, 206, 207, 226, 235,

240, 328–331, 396–398, 410 Ler_leaf_trns.spct, 11, 55, 59, 75, 76, 92, 176, 204, 205, 206, 207, 226, 235, 240, 328–331, 396–398, 410 Ler_leaf_trns_i.spct, 11, 55, 59, 75, 76, 92, 176, 204–206, 207, 226, 235, 240, 328-331, 396-398, 410 log, 87, 105, 208, 209, 211, 212, 239, 274, 295, 296, 358, 411 log10.generic_spct(log), 208 log2.generic_spct(log), 208 lon2tb (add_attr2tb), 18 lonlat2tb (add_attr2tb), 18 mat2mspct(as.generic_mspct), 33 MathFun, 87, 105, 208, 209, 211, 212, 239, 274, 295, 296, 358, 411 max, 321, 404 max (wl_max), 403 mean, 336, 338 median, 339 merge2object_spct, 209 merge_attributes, 210 midpoint (wl_midpoint), 404 min, 321, 404 min (wl_min), 405 minus-.generic_spct, 211 mod-.generic_spct, 212 msaply (msmsply), 212 msdply (msmsply), 212 mslply (msmsply), 212 msmsply, 212 mspct2mat(as.matrix-mspct), 36 mspct_classes, 213

NA, 145

mutate_mspct (defunct), 95

na.action, 216 na.exclude.chroma_spct(na.omit), 214 na.exclude.cps_spct(na.omit), 214 na.exclude.filter_spct(na.omit), 214 na.exclude.generic_mspct(na.omit), 214 na.exclude.generic_spct(na.omit), 214 na.exclude.object_spct(na.omit), 214 na.exclude.raw_spct(na.omit), 214 na.exclude.reflector_spct(na.omit), 214 na.exclude.response_spct(na.omit), 214 na.exclude.source_spct(na.omit), 214 na.exclude.source_spct(na.omit), 214 na.exclude.source_spct(na.omit), 214

na.omit, 214 na_geocode (validate_geocode), 376 NDxI (normalized_diff_ind), 223 net_irradiance, 118, 216 new_waveband (waveband), 389 night_length (day_night), 92 noon_time (day_night), 92 normalise (normalize), 218 normalised_diff_ind (normalized_diff_ind), 223 normalization, 198, 203, 217 normalize, 150, 154, 163, 166, 199, 201, 218, 286, 289 normalize_range_arg, 225 normalized2tb(add_attr2tb), 18 normalized_diff_ind, 223 object_mspct (generic_mspct), 155 object_spct (source_spct), 300 opaque.spct, 11, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 328–331, 396–398, 410 oper_spectra, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 226, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385

paste, 145 peaks, 136, 137, 175, 228, 267, 312, 383, 402 photobiology (photobiology-package), 8 photobiology-package, 8 photodiode.spct, 11, 55, 59, 75, 76, 92, 176, 204-207, 226, 234, 240, 328-331, 396-398, 410 photon_as_default (energy_as_default), 111 photon_irradiance, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 236, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 photon_ratio, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 227, 236, 237, 238, 245, 317, 320, 324, 327, 334, 367, 384, 385 photons_energy_ratio, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 235, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 plus-.generic_spct, 239

INDEX

polyester.spct, 11, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 328–331, 396-398.410 print, 240 print.solar_date(print.solar_time), 241 print.solar_time, 47, 194, 241, 300 print.summary_generic_spct, 242 print.tod_time, 53, 144, 243 print.waveband, 243 prod, 341 prod_spectra, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 244, 317, 320, 324, 327, 334, 367, 384.385 psychrometric_constant (water_vp_sat), 385 q2e, 12, 22, 23, 51, 109, 110, 245, 351, 353 q_fluence, 124, 127, 143, 188, 249, 254 q_irrad, 124, 127, 143, 188, 251, 251 q_ratio, 116, 131, 248, 254 q_response, *133*, 257, 270 qe_ratio, 116, 131, 246, 257 quantum_as_default (energy_as_default), 111 r4p_pkgs, 260 range, 145 range (wl_range), 406 raw_mspct (generic_mspct), 155 raw_spct (source_spct), 300 rbindspct, 261 reflectance, 224, 262 reflector_mspct (generic_mspct), 155 reflector_spct (source_spct), 300 relative_AM, 265 replace_bad_pixs, 102, 136, 137, 175, 234, 266, 312, 383, 402 response, 133, 224, 260, 268 response_mspct (generic_mspct), 155 response_spct (source_spct), 300 Rfr_from_n, 270 Rfr_p_from_n (Rfr_from_n), 270 Rfr_s_from_n (Rfr_from_n), 270 Rfr_type2tb (add_attr2tb), 18 rgb, 334 rgb_spct, 271, 408, 409 rmDerivedMspct, 272, 295 rmDerivedSpct, 273, 281

round, 87, 105, 208, 209, 211, 212, 239, 274, 295, 296, 358, 411 s_e_irrad2rgb, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 245, 317, 320, 324, 327, 333, 367, 384, 385 s_mean, 335 s_mean_se, 336 s_median, 338 s_prod, 340 s_range, 341 s_sd, 343 s_se, 345 s_sum, 346 s_var, 348 scaled2tb(add_attr2tb), 18 sd, *344* select_spct_attributes, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 set_check_spct (enable_check_spct), 110 setAfrType (defunct), 95 setBSWFUsed, 156, 276 setCalibrationSpct(setGenericSpct), 278 setChromaSpct(setGenericSpct), 278 setCpsSpct (setGenericSpct), 278 setFilterProperties, 20, 158-161, 169, 170, 172, 173, 196, 275, 276, 282-284, 291, 293, 294, 305, 307, 362, 363 setFilterSpct (setGenericSpct), 278 setGenericSpct, 26, 28, 30, 33, 35, 39, 41, 44, 46, 50, 273, 278 setHowMeasured, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 281, 283, 284, 291, 293, 294, 305, 307, 362, 363 setIdFactor, *160*, 282 setInstrDesc, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282, 283, 284, 291, 293, 294, 305, 307, 362, 363 setInstrSettings, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282, 283, 283, 291, 293, 294, 305, 307, 362, 363 setMultipleWl, 162, 284 setNormalised (setNormalized), 285

setNormalized, 150, 154, 163, 166, 199, 201, 223, 285, 289 setObjectSpct (setGenericSpct), 278 setRawSpct (setGenericSpct), 278 setReflectorSpct (setGenericSpct), 278 setResponseSpct (setGenericSpct), 278 setResponseType, 286 setRfrType, 165, 287 setScaled, 150, 154, 163, 166, 199, 201, 223, 286, 288 setSourceSpct (setGenericSpct), 278 setTfrType, 167, 289 setTimeUnit, 59, 84-86, 168, 290 setWhatMeasured, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282–284, 291, 293, 294, 305, 307, 362, 363 setWhenMeasured, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282-284, 291, 292, 294, 305, 307, 362, 363 setWhereMeasured, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282-284, 291, 293, 293, 305, 307, 362, 363 shared_member_class, 273, 295 sign, 87, 105, 208, 209, 211, 212, 239, 274, 295, 296, 358, 411 signif.generic_spct(round), 274 sin.generic_spct (Trig), 361 slash-.generic_spct, 296 smooth_spct, 296 solar_time, 47, 53, 194, 242, 299 source_mspct (generic_mspct), 155 source_spct, 26, 28, 30, 33, 35, 39, 41, 44, 46, 50, 300 spct_attr2tb, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282–284, 291, 293, 294, 304, 307, 362, 363 spct_attributes (select_spct_attributes), 275 spct_classes, 305 spct_metadata, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282–284, 291, 293, 294, 305, 306, 362, 363 spikes, 136, 137, 175, 234, 267, 307, 383, 402 splinefun, 183 split2calibration_mspct(split2mspct), 312 split2cps_mspct (split2mspct), 312 split2filter_mspct(split2mspct), 312

split2mspct, 25, 27, 29, 32, 35, 38, 40, 43, 45, 49, 312, 323 split2raw_mspct(split2mspct), 312 split2reflector_mspct(split2mspct), 312 split2response_mspct(split2mspct), 312 split2source_mspct(split2mspct), 312 split_bands, 315, 391 split_energy_irradiance, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 245, 316, 320, 324, 327, 334, 367, 384, 385 split_irradiance, 317 split_photon_irradiance, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 245, 317, 319, 324, 327, 334, 367, 384, 385 spread, 320 sqrt.generic_spct (MathFun), 209 stepsize(wl_stepsize), 407 strict_range_as_default (verbose_as_default), 383 Subset, 321 subset, *121* subset.generic_spct(Subset), 321 subset2mspct, 25, 27, 29, 32, 35, 38, 40, 43, 45, 49, 314, 322 subt_spectra, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 245, 317, 320, 323, 327, 334, 367, 384, 385 sum, 348 sum_spectra, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 245, 317, 320, 324, 326, 334, 367, 384, 385 summary, 325 summary_spct_classes, 325 sun.daily.data, 11, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 327, 329-331, 396-398, 410 sun.daily.spct, 11, 55, 59, 75, 76, 92, 176, 204-207, 226, 235, 240, 328, 328, 330, 331, 396-398, 410 sun.data, 11, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 328, 329, 329, 331, 396–398, 410 sun.spct, 11, 55, 59, 75, 76, 92, 176, 204-207, 226, 235, 240, 328-330,

330, 396-398, 410 sun_angles, 95, 144, 190, 331 sun_angles_fast (sun_angles), 331 sun_azimuth (sun_angles), 331 sun_elevation (sun_angles), 331 sun_zenith_angle (sun_angles), 331 sunrise_time (day_night), 92 sunset_time (day_night), 92 Sys.timezone, 371 T2A, 12, 22, 23, 51, 109, 110, 246, 350, 353 T2Afr, 12, 22, 23, 51, 109, 110, 246, 351, 351 T2T (defunct), 95 tag, 82, 201, 353, 374, 393-395 tan.generic_spct(Trig), 361 Tfr_as_default (energy_as_default), 111 Tfr_type2tb (add_attr2tb), 18 thin_wl, 79, 108, 355, 373 time_unit2tb(add_attr2tb), 18 times-.generic_spct, 358 transmittance, 224, 358 Trig, 361 trim2overlap(trim_spct), 363 trim_mspct(trim_spct), 363 trim_spct, 77, 121, 363, 368, 370 trim_tails, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 245, 317, 320, 324, 327, 334, 366, 384, 385 trim_waveband, 77, 365, 367, 370 trim_wl, 77, 365, 368, 369 trimInstrDesc, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282–284, 291, 293, 294, 305, 307, 362, 363 trimInstrSettings, 20, 158-161, 169, 170, 172, 173, 196, 275, 278, 282-284, 291, 293, 294, 305, 307, 362, 363 trunc.generic_spct (round), 274 tz_time_diff, 371 uncollect2spct, 79, 108, 357, 372 unset_filter_qty_default (energy_as_default), 111 unset_radiation_unit_default (energy_as_default), 111 unset_user_defaults (energy_as_default), 111

untag, 201, 354, 373, 393–395 upgrade_spct, 193, 374, 375

upgrade_spectra, 193, 374, 375 use_cached_mult_as_default (wb_trim_as_default), 395 using_A (using_Tfr), 375 using_Afr (using_Tfr), 375 using_energy (using_Tfr), 375 using_photon (using_Tfr), 375 using_quantum (using_Tfr), 375 using_Tfr, 375 v_insert_hinges, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 v_replace_hinges, 51, 52, 56, 106, 112, 114, 178, 180, 183, 189, 228, 236, 237, 239, 245, 317, 320, 324, 327, 334, 367, 384, 385 validate_geocode, 376 valleys, 136, 137, 175, 234, 267, 312, 377, 402 verbose_as_default, 383 w_length2rgb, 272, 408, 409 w_length_range2rgb, 272, 408, 409 water_dp (water_vp_sat), 385 water_fp (water_vp_sat), 385

water_mvc2vp (water_vp_sat), 385 water_RH2vp (water_vp_sat), 385 water_vp2mvc (water_vp_sat), 385 water_vp2RH (water_vp_sat), 385 water_vp_sat, 385 water_vp_sat_slope (water_vp_sat), 385 waveband, 80, 217, 315, 389 waveband_ratio, 391 wb2rect_spct, 201, 354, 374, 392, 394, 395 wb2spct, 201, 354, 374, 393, 394, 395 wb2tagged_spct, 201, 354, 374, 393, 394, 394 wb_trim_as_default, 395 what_measured (getWhatMeasured), 168 what_measured2tb (add_attr2tb), 18 what_measured<- (setWhatMeasured), 291</pre> when_measured (getWhenMeasured), 169 when_measured2tb (add_attr2tb), 18 when_measured<- (setWhenMeasured), 292 where_measured (getWhereMeasured), 171 where_measured<- (setWhereMeasured), 293 white_body.spct, 11, 55, 59, 75, 76, 92, 176, 204-207, 226, 235, 240, 328-331,

396, 397, 398, 410 white_led.cps_spct, 11, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 328–331, 396, 396, 397, 398, 410 white_led.raw_spct, 11, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 328–331, 396, 397, 397, 398, 410 white_led.source_spct, 11, 55, 59, 75, 76, 92, 176, 204–207, 226, 235, 240, 328–331, 396, 397, 398, 410 wl_expanse (spread), 320 wl_max, 403 wl_midpoint, 404, 406-408 wl_min, 405, 405, 407, 408 wl_range, 405, 406, 406, 408 wl_stepsize, 405-407, 407 wls_at_target, 136, 137, 175, 234, 267, 312, 383, 399

yellow_gel.spct, *11*, *55*, *59*, *75*, *76*, *92*, *176*, 204–207, 226, 235, 240, 328–331, 396–398, 410