Package ‘piggyback’

September 9, 2021
Version 0.1.1
Title Managing Larger Data on a GitHub Repository

Description Because larger (> 50 MB) data files cannot easily be committed to git,
a different approach is required to manage data associated with an analysis in a
GitHub repository. This package provides a simple work-around by allowing larger
(up to 2 GB) data files to piggyback on a repository as assets attached to individual
GitHub releases. These files are not handled by git in any way, but instead are
uploaded, downloaded, or edited directly by calls through the GitHub API. These
data files can be versioned manually by creating different releases. This approach
works equally well with public or private repositories. Data can be uploaded
and downloaded programmatically from scripts. No authentication is required to
download data from public repositories.

URL https://github.com/ropensci/piggyback

BugReports https://github.com/ropensci/piggyback/issues
License GPL-3

Encoding UTF-8

ByteCompile true

Imports gh, httr, jsonlite, s, crayon, clisymbols, lubridate, memoise

Suggests spelling, readr, covr, testthat, gert, datasets, knitr,
rmarkdown, usethis, magrittr

VignetteBuilder knitr
RoxygenNote 7.1.1
Language en-US
NeedsCompilation no

Author Carl Boettiger [aut, cre, cph]
(<https://orcid.org/0000-0002-1642-628X>),
Mark Padgham [ctb] (<https://orcid.org/0000-0003-2172-5265>),
Jeffrey O Hanson [ctb] (<https://orcid.org/0000-0002-4716-6134>),
Kevin Kuo [ctb] (<https://orcid.org/0000-0001-7803-7901>)

Maintainer Carl Boettiger <cboettig@gmail.com>
Repository CRAN
Date/Publication 2021-09-09 04:40:02 UTC

https://github.com/ropensci/piggyback
https://github.com/ropensci/piggyback/issues
https://orcid.org/0000-0002-1642-628X
https://orcid.org/0000-0003-2172-5265
https://orcid.org/0000-0002-4716-6134
https://orcid.org/0000-0001-7803-7901

2 piggyback-package

R topics documented:

piggyback-package 2
pb_delete 3
pb_download 4
pb_download_url 5
Ph_list . . . 6
pb_new_release e e e e e 7
pb_upload e 8
Index 9
piggyback-package piggyback: Managing Larger Data on a GitHub Repository
Description

Because larger (> 50 MB) data files cannot easily be committed to git, a different approach is
required to manage data associated with an analysis in a GitHub repository. This package provides
a simple work-around by allowing larger (up to 2 GB) data files to piggyback on a repository as
assets attached to individual GitHub releases. These files are not handled by git in any way, but
instead are uploaded, downloaded, or edited directly by calls through the GitHub API. These data
files can be versioned manually by creating different releases. This approach works equally well
with public or private repositories. Data can be uploaded and downloaded programmatically from
scripts. No authentication is required to download data from public repositories.

Details
It has two main modes or workflows:
* pb_upload() / pb_download(): Upload and download individual files to/from the desired
release of the specified repository

Author(s)

Maintainer: Carl Boettiger <cboettig@gmail.com> (ORCID) [copyright holder]

Other contributors:

e Mark Padgham (ORCID) [contributor]
* Jeffrey O Hanson (ORCID) [contributor]
¢ Kevin Kuo (ORCID) [contributor]

See Also
Useful links:

e https://github.com/ropensci/piggyback
* Report bugs at https://github.com/ropensci/piggyback/issues

https://orcid.org/0000-0002-1642-628X
https://orcid.org/0000-0003-2172-5265
https://orcid.org/0000-0002-4716-6134
https://orcid.org/0000-0001-7803-7901
https://github.com/ropensci/piggyback
https://github.com/ropensci/piggyback/issues

pb_delete 3

pb_delete Delete an asset attached to a release

Description

Delete an asset attached to a release

Usage

pb_delete(
file = NULL,
repo = guess_repo(),
tag = "latest”,
.token = get_token()

)
Arguments
file file(s) to be deleted from the release. If NULL (default when argument is omitted),
function will delete all attachments to the release. delete
repo Repository name in format "owner/repo". Will guess the current repo if not
specified.
tag tag for the GitHub release to which this data should be attached.
.token GitHub authentication token, see [gh::gh_token()]
Value

TRUE (invisibly) if a file is found and deleted. Otherwise, returns NULL (invisibly) if no file matching
the name was found.

Examples

Not run:
readr::write_tsv(mtcars, "mtcars.tsv.gz")
Upload
pb_upload("mtcars.tsv.gz",
repo = "cboettig/piggyback-tests”,
overwrite = TRUE)
pb_delete("mtcars.tsv.gz",
repo = "cboettig/piggyback-tests”,
tag = "v0.0.1")

End(Not run)

pb_download

pb_download

Download data from an existing release

Description

Download data from an existing release

Usage

pb_download(
file = NULL,

dest = ".",
repo =

guess_repo(),

tag = "latest”,

overwrite =
ignore =

use_timestamps =
show_progress
get_token()

.token =

Arguments

file

dest

repo

tag
overwrite
ignore
use_timestamps
show_progress

.token

Examples

Not run:

TRUE,
"manifest. json",

TRUE,
= TRUE,

name or vector of names of files to be downloaded. If NULL, all assets attached

to the release will be downloaded.

name of vector of names of where file should be downloaded. Can be a directory
or a list of filenames the same length as file vector. Any directories in the path

provided must already exist.

Repository name in format "owner/repo"”. Will guess the current repo if not

specified.
tag for the GitHub release to which this data should be attached.

Should any local files of the same name be overwritten? default TRUE.

a list of files to ignore (if downloading "all" because file=NULL).

DEPRECATED.

logical, show a progress bar be shown for uploading? Defaults to TRUE.

GitHub authentication token, see [gh::gh_token()]

Download a specific file.
(dest can be omitted when run inside and R project)
piggyback: :pb_download("iris.tsv.gz",

"cboettig/piggyback-tests”,
tempdir())

repo
dest =

pb_download_url 5

End(Not run)

Not run:

Download all files

piggyback: :pb_download(repo = "cboettig/piggyback-tests”,
dest = tempdir())

End(Not run)

pb_download_url Get the download url of a given file

Description

Returns the URL download for a public file. This can be useful when writing scripts that may want
to download the file directly without introducing any dependency on piggyback or authentication
steps.

Usage

pb_download_url(
file = NULL,
repo = guess_repo(),
tag = "latest”,
.token = get_token()

)
Arguments
file name or vector of names of files to be downloaded. If NULL, all assets attached
to the release will be downloaded.
repo Repository name in format "owner/repo”. Will guess the current repo if not
specified.
tag tag for the GitHub release to which this data should be attached.
. token GitHub authentication token, see [gh::gh_token()]
Value
the URL to download a file
Examples
Not run:

pb_download_url("iris.tsv.xz",
repo = "cboettig/piggyback-tests”,
tag = "v0.0.1")

6 pb_list
End(Not run)
pb_list List all assets attached to a release
Description
List all assets attached to a release
Usage
pb_list(
repo = guess_repo(),
tag = NULL,
ignore = "manifest. json"”,
.token = get_token()
)
Arguments
repo Repository name in format "owner/repo". Will guess the current repo if not
specified.
tag which release tag do we want information for? If NULL (default), will return a
table for all available release tags.
ignore a list of files to ignore (if downloading "all" because file=NULL).
.token GitHub authentication token, see [gh::gh_token()]
Details
To preserve path information, local path delimiters are converted to .2f when files are uploaded as
assets. Listing will display the local filename, with asset names converting the .2f escape code back
to the system delimiter.
Value
a data.frame of release asset names, (normalized to local paths), release tag, timestamp, owner, and
repo.
Examples
Not run:

pb_list("cboettig/piggyback-tests")

End(Not run)

pb_new_release 7

pb_new_release Create a new release on GitHub repo

Description

Create a new release on GitHub repo

Usage

pb_new_release(
repo = guess_repo(),

tag,
commit = NULL,
name = tag,

body = "Data release”,
draft = FALSE,
prerelease = FALSE,
.token = get_token()

)
Arguments
repo Repository name in format "owner/repo”. Will guess the current repo if not
specified.
tag tag to create for this release
commit Specifies the commit-ish value that determines where the Git tag is created from.
Can be any branch or commit SHA. Unused if the git tag already exists. Default:
the repository’s default branch (usually master).
name The name of the release. Defaults to tag.
body Text describing the contents of the tag. default text is "Data release".
draft default FALSE. Set to TRUE to create a draft (unpublished) release.
prerelease default FALSE. Set to TRUE to identify the release as a pre-release.
.token GitHub authentication token, see [gh::gh_token()]
Examples
Not run:

pb_new_release("cboettig/piggyback-tests”, "v0.0.5")

End(Not run)

8 pb_upload
pb_upload Upload data to an existing release
Description
NOTE: you must first create a release if one does not already exists.
Usage
pb_upload(
file,
repo = guess_repo(),
tag = "latest”,
name = NULL,
overwrite = "use_timestamps”,
use_timestamps = NULL,
show_progress = TRUE,
.token = get_token(),
dir = "."
)
Arguments
file path to file to be uploaded
repo Repository name in format "owner/repo"”. Will guess the current repo if not
specified.
tag tag for the GitHub release to which this data should be attached.
name name for uploaded file. If not provided will use the basename of file (i.e.
filename without directory)
overwrite overwrite any existing file with the same name already attached to the on re-
lease? Default behavior is based on timestamps, only overwriting those files
which are older.
use_timestamps DEPRECATED.
show_progress logical, show a progress bar be shown for uploading? Defaults to TRUE.
.token GitHub authentication token, see [gh::gh_token()]
dir directory relative to which file names should be based.
Examples
Not run:

Needs your real token to run

readr::write_tsv(mtcars, "mtcars.tsv.xz")
pb_upload("mtcars.tsv.xz", "cboettig/piggyback-tests")

End(Not run)

Index

pb_delete, 3

pb_download, 4

pb_download(), 2
pb_download_url, 5

pb_list, 6

pb_new_release, 7

pb_upload, 8

pb_upload(), 2

piggyback (piggyback-package), 2
piggyback-package, 2

	piggyback-package
	pb_delete
	pb_download
	pb_download_url
	pb_list
	pb_new_release
	pb_upload
	Index

