
Package ‘pillar’
February 1, 2022

Title Coloured Formatting for Columns

Version 1.7.0

Description Provides 'pillar' and 'colonnade' generics designed
for formatting columns of data using the full range of colours
provided by modern terminals.

License MIT + file LICENSE

URL https://pillar.r-lib.org/, https://github.com/r-lib/pillar

BugReports https://github.com/r-lib/pillar/issues

Imports cli (>= 2.3.0), crayon (>= 1.3.4), ellipsis (>= 0.3.2), fansi,
glue, lifecycle, rlang (>= 0.3.0), utf8 (>= 1.1.0), utils,
vctrs (>= 0.3.8)

Suggests bit64, debugme, DiagrammeR, dplyr, formattable, ggplot2,
knitr, lubridate, nanotime, nycflights13, palmerpenguins,
rmarkdown, scales, stringi, survival, testthat (>= 3.1.1),
tibble, units (>= 0.7.2), vdiffr, withr

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first format_multi_fuzz, format_multi_fuzz_2,
format_multi, ctl_colonnade, ctl_colonnade_1, ctl_colonnade_2

Config/autostyle/scope line_breaks

Config/autostyle/strict true

Config/gha/extra-packages DiagrammeR=?ignore-before-r=3.5.0

NeedsCompilation no

Author Kirill Müller [aut, cre],
Hadley Wickham [aut],
RStudio [cph]

Maintainer Kirill Müller <krlmlr+r@mailbox.org>

1

https://pillar.r-lib.org/
https://github.com/r-lib/pillar
https://github.com/r-lib/pillar/issues

2 pillar-package

Repository CRAN

Date/Publication 2022-02-01 08:30:02 UTC

R topics documented:
pillar-package . 2
align . 3
ctl_new_pillar . 4
dim_desc . 6
format_glimpse . 6
format_type_sum . 7
get_extent . 8
glimpse . 9
new_ornament . 10
new_pillar . 10
new_pillar_component . 11
new_pillar_shaft . 12
new_pillar_title . 14
new_pillar_type . 14
pillar . 15
pillar_options . 16
pillar_shaft . 17
style_num . 19
tbl_format_body . 20
tbl_format_footer . 21
tbl_format_header . 22
tbl_format_setup . 23
tbl_sum . 24

Index 26

pillar-package pillar: Coloured Formatting for Columns

Description

[Stable]
Formats tabular data in columns or rows using the full range of colours provided by modern termi-
nals. Provides various generics for making every aspect of the display customizable.

Author(s)

Maintainer: Kirill Müller <krlmlr+r@mailbox.org>

Authors:

• Hadley Wickham

align 3

Other contributors:

• RStudio [copyright holder]

See Also

• pillar() for formatting a single column,

• print.tbl() for formatting data-frame-like objects,

• pillar_options for a list of package options.

Examples

pillar(1:3)
pillar(c(1, 2, 3))
pillar(factor(letters[1:3]), title = "letters")
tbl_format_setup(tibble::as_tibble(mtcars), width = 60)

align Alignment helper

Description

Facilitates easy alignment of strings within a character vector. Designed to help implementers of
formatters for custom data types.

Usage

align(x, width = NULL, align = c("left", "right"), space = " ")

Arguments

x A character vector

width The width that each string is padded to. If NULL, the maximum display width of
the character vector is used (see get_max_extent()).

align How should strings be aligned? If align = left then padding appears on the
right, and vice versa.

space What character should be used for the padding?

Examples

align(c("abc", "de"), align = "left")
align(c("abc", "de"), align = "right")

4 ctl_new_pillar

ctl_new_pillar Customize your tibble subclass

Description

Gain full control over the appearance of the pillars of your tibble subclass in its body. These methods
are intended for implementers of subclasses of the "tbl" class. Users will rarely need them.

Usage

ctl_new_pillar(controller, x, width, ..., title = NULL)

ctl_new_pillar_list(
controller,
x,
width,
...,
title = NULL,
first_pillar = NULL

)

Arguments

controller The object of class "tbl" currently printed.

x A vector, can also be a data frame, array or matrix. in ctl_new_pillar_list().

width The available width, can be a vector for multiple tiers. If NULL, compute only
the first pillar.

... These dots are for future extensions and must be empty.

title The title, derived from the name of the column in the data.

first_pillar Can be passed to this method if the first pillar for a compound pillar (or the pillar
itself for a simple pillar) has been computed already.

Details

ctl_new_pillar() is called to construct pillars for regular (one-dimensional) vectors. The default
implementation returns an object constructed with pillar(). Extend this method to tweak pillar
components returned from the default implementation. Override this method to completely change
the appearance of the pillars.

ctl_new_pillar_list() is called to construct a list of pillars. It also works for compound pil-
lars: columns that are data frames, matrices or arrays. This method is also called to initiate the
construction of all pillars in the tibble to be printed. If called for a regular one-dimensional vector,
it returns a list of length one. In any case, all pillars in the returned list of pillars represent only
the first column in case of compound columns. This ensures that only those pillars that are shown
are constructed. To print all columns of a packed data frame, ctl_new_pillar_list() eventually
calls itself recursively. Users will only rarely need to override this method if ever.

ctl_new_pillar 5

All components must be of the same height. This restriction may be levied in the future.

Implementations should return NULL if none of the data fits the available width.

Examples

Create pillar objects
ctl_new_pillar(

palmerpenguins::penguins,
palmerpenguins::penguins$species[1:3],
width = 60

)
ctl_new_pillar(

palmerpenguins::penguins,
palmerpenguins::penguins$bill_length_mm[1:3],
width = 60

)

Packed data frame
ctl_new_pillar_list(

tibble::tibble(),
palmerpenguins::penguins,
width = 60

)

Packed matrix
ctl_new_pillar_list(tibble::tibble(), matrix(1:6, ncol = 2), width = 60)

Packed array
ctl_new_pillar_list(tibble::tibble(), Titanic, width = 60)

Customize output
lines <- function(char = "-") {

stopifnot(nchar(char) == 1)
structure(char, class = "lines")

}

format.lines <- function(x, width, ...) {
paste(rep(x, width), collapse = "")

}

ctl_new_pillar.line_tbl <- function(controller, x, width, ..., title = NULL) {
out <- NextMethod()
new_pillar(list(
title = out$title,
type = out$type,
lines = new_pillar_component(list(lines("=")), width = 1),
data = out$data

))
}

6 format_glimpse

vctrs::new_data_frame(
list(a = 1:3, b = letters[1:3]),
class = c("line_tbl", "tbl")

)

dim_desc Format dimensions

Description

Multi-dimensional objects are formatted as a x b x ..., for vectors the length is returned.

Usage

dim_desc(x)

Arguments

x The object to format the dimensions for

Examples

dim_desc(1:10)
dim_desc(Titanic)

format_glimpse Format a vector for horizontal printing

Description

[Experimental]
This generic provides the logic for printing vectors in glimpse().

The output strives to be as unambiguous as possible, without compromising on readability. In a
list, to distinguish between vectors and nested lists, the latter are surrounded by [] brackets. Empty
lists are shown as []. Vectors inside lists, of length not equal to one, are surrounded by <> angle
brackets. Empty vectors are shown as <>.

Usage

format_glimpse(x, ...)

Arguments

x A vector.

... Arguments passed to methods.

format_type_sum 7

Value

A character vector of the same length as x.

Examples

format_glimpse(1:3)

Lists use [], vectors inside lists use <>
format_glimpse(list(1:3))
format_glimpse(list(1, 2:3))
format_glimpse(list(list(1), list(2:3)))
format_glimpse(list(as.list(1), as.list(2:3)))
format_glimpse(list(character()))
format_glimpse(list(NULL))

Character strings are always quoted
writeLines(format_glimpse(letters[1:3]))
writeLines(format_glimpse(c("A", "B, C")))

Factors are quoted only when needed
writeLines(format_glimpse(factor(letters[1:3])))
writeLines(format_glimpse(factor(c("A", "B, C"))))

format_type_sum Format a type summary

Description

Called on values returned from type_sum() for defining the description in the capital.

Usage

format_type_sum(x, width, ...)

Default S3 method:
format_type_sum(x, width, ...)

S3 method for class 'AsIs'
format_type_sum(x, width, ...)

Arguments

x A return value from type_sum()

width The desired total width. If the returned string still is wider, it will be trimmed.
Can be NULL.

... Arguments passed to methods.

8 get_extent

Details

Two methods are implemented by default for this generic: the default method, and the method for
the "AsIs" class. Return I("type") from your type_sum() implementation to format the type
without angle brackets. For even more control over the formatting, implement your own method.

Examples

Default method: show the type with angle brackets
format_type_sum(1, NULL)
pillar(1)

AsIs method: show the type without angle brackets
type_sum.accel <- function(x) {

I("kg m/s^2")
}

accel <- structure(9.81, class = "accel")
pillar(accel)

get_extent Calculate display width

Description

get_extent() calculates the display width for each string in a character vector.

get_max_extent() calculates the maximum display width of all strings in a character vector, zero
for empty vectors.

Usage

get_extent(x)

get_max_extent(x)

Arguments

x A character vector.

Examples

get_extent(c("abc", "de"))
get_extent("\u904b\u6c23")
get_max_extent(c("abc", "de"))

glimpse 9

glimpse Get a glimpse of your data

Description

glimpse() is like a transposed version of print(): columns run down the page, and data runs
across. This makes it possible to see every column in a data frame. It’s a little like str() applied to
a data frame but it tries to show you as much data as possible. (And it always shows the underlying
data, even when applied to a remote data source.)

See format_glimpse() for details on the formatting.

Usage

glimpse(x, width = NULL, ...)

Arguments

x An object to glimpse at.

width Width of output: defaults to the setting of the width option (if finite) or the
width of the console.

... Unused, for extensibility.

Value

x original x is (invisibly) returned, allowing glimpse() to be used within a data pipe line.

S3 methods

glimpse is an S3 generic with a customised method for tbls and data.frames, and a default
method that calls str().

Examples

glimpse(mtcars)

glimpse(nycflights13::flights)

10 new_pillar

new_ornament Helper to define the contents of a pillar

Description

This function is useful if your data renders differently depending on the available width. In this
case, implement the pillar_shaft() method for your class to return a subclass of "pillar_shaft"
and have the format() method for this subclass call new_ornament(). See the implementation of
pillar_shaft.numeric() and format.pillar_shaft_decimal() for an example.

Usage

new_ornament(x, width = NULL, align = NULL)

Arguments

x A character vector with formatting, can use ANYI styles e.g provided by the cli
package.

width An optional width of the resulting pillar, computed from x if missing

align Alignment, one of "left" or "right"

Examples

new_ornament(c("abc", "de"), align = "right")

new_pillar Construct a custom pillar object

Description

[Experimental]
new_pillar() is the low-level constructor for pillar objects. It supports arbitrary components. See
pillar() for the high-level constructor with default components.

Usage

new_pillar(components, ..., width = NULL, class = NULL, extra = deprecated())

Arguments

components A named list of components constructed with pillar_component().

... These dots are for future extensions and must be empty.

width Default width, optional.

class Name of subclass.

extra Deprecated.

new_pillar_component 11

Details

Arbitrary components are supported. If your tibble subclass needs more or different components in
its pillars, override or extend ctl_new_pillar() and perhaps ctl_new_pillar_list().

Examples

lines <- function(char = "-") {
stopifnot(nchar(char) == 1)
structure(char, class = "lines")

}

format.lines <- function(x, width, ...) {
paste(rep(x, width), collapse = "")

}

new_pillar(list(
title = pillar_component(new_ornament(c("abc", "de"), align = "right")),
lines = new_pillar_component(list(lines("=")), width = 1)

))

new_pillar_component Components of a pillar

Description

new_pillar_component() constructs an object of class "pillar_component".

pillar_component() is a convenience helper that wraps the input in a list and extracts width and
minimum width.

Usage

new_pillar_component(x, ..., width, min_width = NULL)

pillar_component(x)

Arguments

x A bare list (for new_pillar_component()), or an object with attributes "width"
and "min_width" attributes (for pillar_component()).

... These dots are for future extensions and must be empty.

width, min_width

Width and minimum width for the new component. If min_width is NULL, it is
assumed to match width.

12 new_pillar_shaft

Details

Objects of class "pillar" are internally a named lists of their components. The default components
are title (may be missing), type, and data. Each component is a "pillar_component".

This class captures contents that can be fitted in a rectangle. Each component consists of one or
multiple cells that are aligned horizontally (with one space in between) when printed. Each cell has
a maximum (i.e., desired) width and may have a minimum width if the contents are compressible.
The component object stores the width of the cells as an attribute.

Examples

new_pillar_component(list(letters[1:3]), width = 1)
pillar_component(new_pillar_title("letters"))
pillar_component(new_pillar_type(letters))
pillar_component(pillar_shaft(letters[1:3]))

new_pillar_shaft Constructor for column data

Description

The new_pillar_shaft() constructor creates objects of the "pillar_shaft" class. This is a
virtual or abstract class, you must specify the class argument. By convention, this should be a
string that starts with "pillar_shaft_". See vignette("extending",package = "tibble") for
usage examples.

This method accepts a vector of arbitrary length and is expected to return an S3 object with the
following properties:

• It has an attribute "width"

• It can have an attribute "min_width", if missing, "width" is used

• It must implement a method format(x,width,...) that can be called with any value between
min_width and width

• This method must return an object that inherits from character and has attributes "align"
(with supported values "left", "right", and "center") and "width"

The function new_pillar_shaft() returns such an object, and also correctly formats NA val-
ues. In many cases, the implementation of pillar_shaft.your_class_name() will format the
data as a character vector (using color for emphasis) and simply call new_pillar_shaft(). See
pillar:::pillar_shaft.numeric for a code that allows changing the display depending on the
available width.

new_pillar_shaft_simple() provides an implementation of the pillar_shaft class suitable for
output that has a fixed formatting, which will be truncated with a continuation character (ellipsis or
~) if it doesn’t fit the available width. By default, the required width is computed from the natural
width of the formatted argument.

new_pillar_shaft 13

Usage

new_pillar_shaft(
x,
...,
width = NULL,
min_width = width,
type_sum = NULL,
class = NULL,
subclass = NULL

)

new_pillar_shaft_simple(
formatted,
...,
width = NULL,
align = "left",
min_width = NULL,
na = NULL,
na_indent = 0L,
shorten = c("back", "front", "mid", "abbreviate"),
short_formatted = NULL

)

Arguments

x An object

... Passed on to new_pillar_shaft().

width The maximum column width.

min_width The minimum allowed column width, width if omitted.

type_sum [Experimental]
Override the type summary displayed at the top of the data. This argument, if
given, takes precedence over the type summary provided by type_sum().

class The name of the subclass.

subclass Deprecated, pass the class argument instead.

formatted The data to show, an object coercible to character.

align Alignment of the column.

na String to use as NA value, defaults to "NA" styled with style_na() with fallback
if color is not available.

na_indent Indentation of NA values.

shorten How to abbreviate the data if necessary:

• "back" (default): add an ellipsis at the end
• "front": add an ellipsis at the front
• "mid": add an ellipsis in the middle
• "abbreviate": use abbreviate()

14 new_pillar_type

short_formatted

If provided, a character vector of the same length as formatted, to be used when
the available width is insufficient to show the full output.

Details

The formatted argument may also contain ANSI escapes to change color or other attributes of the
text, provided e.g. by the cli package.

new_pillar_title Prepare a column title for formatting

Description

Call format() on the result to render column titles.

Usage

new_pillar_title(x, ...)

Arguments

x A character vector of column titles.
... These dots are for future extensions and must be empty.

Examples

format(new_pillar_title(names(trees)))

new_pillar_type Prepare a column type for formatting

Description

Calls type_sum() to format the type. Call format() on the result to render column types.

Usage

new_pillar_type(x, ...)

Arguments

x A vector for which the type is to be retrieved.
... These dots are for future extensions and must be empty.

Examples

format(new_pillar_type("a"))
format(new_pillar_type(factor("a")))

pillar 15

pillar Object for formatting a vector suitable for tabular display

Description

pillar() creates an object that formats a vector. The output uses one row for a title (if given), one
row for the type, and vec_size(x) rows for the data.

Usage

pillar(x, title = NULL, width = NULL, ...)

Arguments

x A vector to format.

title An optional title for the column. The title will be used "as is", no quoting will
be applied.

width Default width, optional.

... Passed on to pillar_shaft().

Details

A pillar consists of arbitrary components. The pillar() constructor uses title, type, and data.

• title via new_pillar_title()

• type via new_pillar_type(), which calls type_sum() internally

• data via pillar_shaft()

All components are formatted via format() when displaying the pillar. A width argument is passed
to each format() call.

As of pillar 1.5.0, pillar() returns NULL if the width is insufficient to display the data.

Examples

x <- 123456789 * (10^c(-1, -3, -5, NA, -8, -10))
pillar(x)
pillar(-x)
pillar(runif(10))
pillar(rcauchy(20))

Special values are highlighted
pillar(c(runif(5), NA, NaN, Inf, -Inf))

Very wide ranges will be displayed in scientific format
pillar(c(1e10, 1e-10), width = 20)
pillar(c(1e10, 1e-10))

16 pillar_options

x <- c(FALSE, NA, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE)
pillar(x)

x <- c("This is string is rather long", NA, "?", "Short")
pillar(x)
pillar(x, width = 30)
pillar(x, width = 5)

date <- as.Date("2017-05-15")
pillar(date + c(1, NA, 3:5))
pillar(as.POSIXct(date) + c(30, NA, 600, 3600, 86400))

pillar_options Package options

Description

Options that affect display of tibble-like output.

Usage

pillar_options

Details

These options can be set via options() and queried via getOption(). For this, add a pillar. pre-
fix (the package name and a dot) to the option name. Example: for an option foo, use options(pillar.foo
= value) to set it and getOption("pillar.foo") to retrieve the current value. An option value of
NULL means that the default is used.

Options for the pillar package

• print_max: Maximum number of rows printed, default: 20. Set to Inf to always print all
rows. For compatibility reasons, getOption("tibble.print_max") and getOption("dplyr.print_max")
are also consulted, this will be soft-deprecated in pillar v2.0.0.

• print_min: Number of rows printed if the table has more than print_max rows, default: 10.
For compatibility reasons, getOption("tibble.print_min") and getOption("dplyr.print_min")
are also consulted, this will be soft-deprecated in pillar v2.0.0.

• width: Output width. Default: NULL (use getOption("width")). This can be larger than
getOption("width"), in this case the output of the table’s body is distributed over mul-
tiple tiers for wide tibbles. For compatibility reasons, getOption("tibble.width") and
getOption("dplyr.width") are also consulted, this will be soft-deprecated in pillar v2.0.0.

• max_footer_lines: The maximum number of lines in the footer, default: 7. Set to Inf to turn
off truncation of footer lines. The max_extra_cols option still limits the number of columns
printed.

• max_extra_cols: The maximum number of columns printed in the footer, default: 100. Set to
Inf to show all columns. Set the more predictable max_footer_lines to control the number
of footer lines instead.

pillar_shaft 17

• bold: Use bold font, e.g. for column headers? This currently defaults to FALSE, because many
terminal fonts have poor support for bold fonts.

• subtle: Use subtle style, e.g. for row numbers and data types? Default: TRUE.

• subtle_num: Use subtle style for insignificant digits? Default: FALSE, is also affected by the
subtle option.

• neg: Highlight negative numbers? Default: TRUE.

• sigfig: The number of significant digits that will be printed and highlighted, default: 3. Set
the subtle option to FALSE to turn off highlighting of significant digits.

• min_title_chars: The minimum number of characters for the column title, default: 15.
Column titles may be truncated up to that width to save horizontal space. Set to Inf to turn
off truncation of column titles.

• min_chars: The minimum number of characters wide to display character columns, default:
3. Character columns may be truncated up to that width to save horizontal space. Set to Inf
to turn off truncation of character columns.

• max_dec_width: The maximum allowed width for decimal notation, default: 13.

• bidi: Set to TRUE for experimental support for bidirectional scripts. Default: FALSE. When
this option is set, "left right override" and "first strong isolate" Unicode controls are inserted
to ensure that text appears in its intended direction and that the column headings correspond
to the correct columns.

Examples

Default setting:
getOption("pillar.sigfig")
pillar(1.234567)

Change for the duration of the session:
old <- options(pillar.sigfig = 6)
pillar(1.234567)

Change back to the original value:
options(old)
pillar(1.234567)

Local scope:
local({

rlang::local_options(pillar.sigfig = 6)
pillar(1.234567)

})
pillar(1.234567)

pillar_shaft Column data

https://www.w3.org/International/questions/qa-bidi-unicode-controls

18 pillar_shaft

Description

Internal class for formatting the data for a column. pillar_shaft() is a coercion method that must
be implemented for your data type to display it in a tibble.

This class comes with a default method for print() that calls format(). If print() is called
without width argument, the natural width will be used when calling format(). Usually there’s no
need to implement this method for your subclass.

Your subclass must implement format(), the default implementation just raises an error. Your
format() method can assume a valid value for the width argument.

Usage

pillar_shaft(x, ...)

S3 method for class 'pillar_shaft'
print(x, width = NULL, ...)

S3 method for class 'pillar_shaft'
format(x, width, ...)

S3 method for class 'logical'
pillar_shaft(x, ...)

S3 method for class 'numeric'
pillar_shaft(x, ..., sigfig = NULL)

S3 method for class 'Date'
pillar_shaft(x, ...)

S3 method for class 'POSIXt'
pillar_shaft(x, ...)

S3 method for class 'character'
pillar_shaft(x, ..., min_width = NULL)

S3 method for class 'glue'
pillar_shaft(x, ..., min_width = NULL, na_indent = 0L, shorten = NULL)

S3 method for class 'list'
pillar_shaft(x, ...)

S3 method for class 'factor'
pillar_shaft(x, ...)

S3 method for class 'AsIs'
pillar_shaft(x, ...)

Default S3 method:
pillar_shaft(x, ...)

style_num 19

Arguments

x A vector to format

... Arguments passed to methods.

width Width for printing and formatting.

sigfig Deprecated, use num() or set_num_opts() on the data instead.

min_width Deprecated, use char() or set_char_opts() on the data instead.

na_indent Indentation of NA values.

shorten How to abbreviate the data if necessary:

• "back" (default): add an ellipsis at the end
• "front": add an ellipsis at the front
• "mid": add an ellipsis in the middle
• "abbreviate": use abbreviate()

Details

The default method will currently format via format(), but you should not rely on this behavior.

Examples

pillar_shaft(1:3)
pillar_shaft(1.5:3.5)
pillar_shaft(NA)
pillar_shaft(c(1:3, NA))

style_num Styling helpers

Description

Functions that allow implementers of formatters for custom data types to maintain a consistent style
with the default data types.

Usage

style_num(x, negative, significant = rep_along(x, TRUE))

style_subtle(x)

style_subtle_num(x, negative)

style_bold(x)

style_na(x)

style_neg(x)

20 tbl_format_body

Arguments

x The character vector to style.
negative, significant

Logical vector the same length as x that indicate if the values are negative and
significant, respectively

Details

style_subtle() is affected by the subtle option.

style_subtle_num() is affected by the subtle_num option, which is FALSE by default.

style_bold() is affected by the bold option, which is FALSE by default.

style_neg() is affected by the pillar.neg option.

See Also

pillar_options for a list of options

Examples

style_num(
c("123", "456"),
negative = c(TRUE, FALSE)

)
style_num(

c("123", "456"),
negative = c(TRUE, FALSE),
significant = c(FALSE, FALSE)

)
style_subtle("text")
style_subtle_num(0.01 * 1:3, c(TRUE, FALSE, TRUE))
style_bold("Petal.Width")
style_na("NA")
style_neg("123")

tbl_format_body Format the body of a tibble

Description

[Experimental]

For easier customization, the formatting of a tibble is split into three components: header, body, and
footer. The tbl_format_body() method is responsible for formatting the body of a tibble.

Override this method if you need to change the appearance of all parts of the body. If you only
need to change the appearance of a single data type, override vctrs::vec_ptype_abbr() and
pillar_shaft() for this data type.

tbl_format_footer 21

Usage

tbl_format_body(x, setup, ...)

Arguments

x A tibble-like object.

setup A setup object returned from tbl_format_setup().

... These dots are for future extensions and must be empty.

Value

A character vector.

Examples

setup <- tbl_format_setup(palmerpenguins::penguins)
tbl_format_body(palmerpenguins::penguins, setup)

Shortcut for debugging
tbl_format_body(setup)

tbl_format_footer Format the footer of a tibble

Description

[Experimental]
For easier customization, the formatting of a tibble is split into three components: header, body, and
footer. The tbl_format_footer() method is responsible for formatting the footer of a tibble.

Override or extend this method if you need to change the appearance of the footer. The default
implementation adds information about rows and columns that are not shown in the body.

Usage

tbl_format_footer(x, setup, ...)

Arguments

x A tibble-like object.

setup A setup object returned from tbl_format_setup().

... These dots are for future extensions and must be empty.

Value

A character vector.

22 tbl_format_header

Examples

setup <- tbl_format_setup(palmerpenguins::penguins)
tbl_format_footer(palmerpenguins::penguins, setup)

Shortcut for debugging
tbl_format_footer(setup)

tbl_format_header Format the header of a tibble

Description

[Experimental]

For easier customization, the formatting of a tibble is split into three components: header, body, and
footer. The tbl_format_header() method is responsible for formatting the header of a tibble.

Override this method if you need to change the appearance of the entire header. If you only need to
change or extend the components shown in the header, override or extend tbl_sum() for your class
which is called by the default method.

Usage

tbl_format_header(x, setup, ...)

Arguments

x A tibble-like object.

setup A setup object returned from tbl_format_setup().

... These dots are for future extensions and must be empty.

Value

A character vector.

Examples

setup <- tbl_format_setup(palmerpenguins::penguins)
tbl_format_header(palmerpenguins::penguins, setup)

Shortcut for debugging
tbl_format_header(setup)

tbl_format_setup 23

tbl_format_setup Set up formatting

Description

tbl_format_setup() is called by format.tbl(). This method collects information that is com-
mon to the header, body, and footer parts of a tibble. Examples:

• the dimensions sometimes are reported both in the header and (implicitly) in the footer of a
tibble;

• the columns shown in the body decide which columns are shown in the footer.

This information is computed once in tbl_format_setup(). The result is passed on to the tbl_format_header(),
tbl_format_body(), and tbl_format_footer() methods. If you need to customize parts of the
printed output independently, override these methods instead.

Usage

tbl_format_setup(
x,
width = NULL,
...,
n = NULL,
max_extra_cols = NULL,
max_footer_lines = NULL,
focus = NULL

)

S3 method for class 'tbl'
tbl_format_setup(x, width, ..., n, max_extra_cols, max_footer_lines, focus)

Arguments

x An object.
width Actual width for printing, a numeric greater than zero. This argument is manda-

tory for all implementations of this method.
... Extra arguments to print.tbl() or format.tbl().
n Actual number of rows to print. No options should be considered by implemen-

tations of this method.
max_extra_cols Number of columns to print abbreviated information for, if the width is too small

for the entire tibble. No options should be considered by implementations of this
method.

max_footer_lines

Maximum number of lines for the footer. No options should be considered by
implementations of this method.

focus [Experimental]
Names of columns to show preferentially if space is tight.

24 tbl_sum

Details

Extend this method to prepare information that is used in several parts of the printed output of a
tibble-like object, or to collect additional arguments passed via ... to print.tbl() or format.tbl().

We expect that tbl_format_setup() is extended only rarely, and overridden only in exceptional
circumstances, if at all. If you override this method, you must also implement tbl_format_header(),
tbl_format_body(), and tbl_format_footer() for your class.

Implementing a method allows to override printing and formatting of the entire object without
overriding the print() and format() methods directly. This allows to keep the logic of the width
and n arguments.

The default method for the "tbl" class collects information for standard printing for tibbles. See
new_tbl_format_setup() for details on the returned object.

Value

An object that can be passed as setup argument to tbl_format_header(), tbl_format_body(),
and tbl_format_footer().

Examples

tbl_format_setup(palmerpenguins::penguins)

tbl_sum Provide a succinct summary of an object

Description

tbl_sum() gives a brief textual description of a table-like object, which should include the dimen-
sions and the data source in the first element, and additional information in the other elements (such
as grouping for dplyr). The default implementation forwards to obj_sum().

Usage

tbl_sum(x)

Arguments

x Object to summarise.

Details

This generic will be moved to pillar, and reexported from there as soon as it becomes available.

Value

A named character vector, describing the dimensions in the first element and the data source in the
name of the first element.

tbl_sum 25

See Also

type_sum()

Index

∗ datasets
pillar_options, 16

abbreviate(), 13, 19
align, 3

char(), 19
character, 13
ctl_new_pillar, 4
ctl_new_pillar(), 11
ctl_new_pillar_list (ctl_new_pillar), 4
ctl_new_pillar_list(), 11

dim_desc, 6

format(), 10, 14, 15, 18, 19, 24
format.pillar_shaft (pillar_shaft), 17
format.tbl(), 23, 24
format_glimpse, 6
format_glimpse(), 9
format_type_sum, 7

get_extent, 8
get_max_extent (get_extent), 8
get_max_extent(), 3
getOption(), 16
glimpse, 9
glimpse(), 6

new_ornament, 10
new_pillar, 10
new_pillar_component, 11
new_pillar_shaft, 12
new_pillar_shaft(), 12, 13
new_pillar_shaft_simple

(new_pillar_shaft), 12
new_pillar_title, 14
new_pillar_title(), 15
new_pillar_type, 14
new_pillar_type(), 15
new_tbl_format_setup(), 24

num(), 19

obj_sum(), 24
option, 9, 20
options, 23
options(), 16

pillar, 15
pillar(), 3, 4, 10
pillar-package, 2
pillar_component

(new_pillar_component), 11
pillar_component(), 10
pillar_options, 3, 16, 20
pillar_shaft, 17
pillar_shaft(), 10, 15, 20
print(), 18, 24
print.pillar_shaft (pillar_shaft), 17
print.tbl(), 3, 23, 24

set_char_opts(), 19
set_num_opts(), 19
str(), 9
style_bold (style_num), 19
style_na (style_num), 19
style_na(), 13
style_neg (style_num), 19
style_num, 19
style_subtle (style_num), 19
style_subtle_num (style_num), 19

tbl_format_body, 20
tbl_format_body(), 23, 24
tbl_format_footer, 21
tbl_format_footer(), 23, 24
tbl_format_header, 22
tbl_format_header(), 23, 24
tbl_format_setup, 23
tbl_format_setup(), 21, 22
tbl_sum, 24

26

INDEX 27

tbl_sum(), 22
type_sum(), 7, 8, 13–15, 25

vctrs::vec_ptype_abbr(), 20

	pillar-package
	align
	ctl_new_pillar
	dim_desc
	format_glimpse
	format_type_sum
	get_extent
	glimpse
	new_ornament
	new_pillar
	new_pillar_component
	new_pillar_shaft
	new_pillar_title
	new_pillar_type
	pillar
	pillar_options
	pillar_shaft
	style_num
	tbl_format_body
	tbl_format_footer
	tbl_format_header
	tbl_format_setup
	tbl_sum
	Index

