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pnmtrem Probit-Normal Marginalized Transition Random Effects Models

Description

Fits Probit-Normal Marginalized Transition Random Effects Models which is proposed for model-
ing multivariate longitudinal binary data by

Asar, O., Ilk, O., Sezer, A. D. (2013). A marginalized multilevel model for analyzing multivariate
longitudinal binary data. Submitted.
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Details

Package: pnmtrem
Type: Package
Version: 1.3
Date: 2013-05-19
License: GPL (>=2)

pnmtrem1 Function to fit first-order Probit-Normal Marginalized Transition Ran-
dom Effects Models, PNMTREM(1)

Description

Fits PNMTREM(1) via maximum likelihood estimation with Fisher-Scoring Algorithm.

Usage

pnmtrem1(covmat1, covmat2, respmat1, respmat2, z, nsubj, nresp, param01,
param02, beta0, alpha0, tol1 = 1e-04, tol2 = 1e-04, maxiter1 = 50,
maxiter2 = 50, tun1 = 1,tun2 = 1, x01 = 0, eps1 = 10^-10, x02 = 0,
eps2 = 10^-10, silent = TRUE, delta.print = FALSE, deltastar.print = FALSE)

Arguments

covmat1 a (p1 + 1)×N × k matrix or data frame, which has the design matrix form, for
the baseline time point (t = 1). Here, p1 is the number of independent variables
included in the baseline model, N is the number of subjects and k is the number
of multiple responses.

covmat2 a (p2 + 1)×N ×k× (T − 1) matrix or data frame, which has the design matrix
form, for t ≥ 2. Here, p2 is the number of independent variables included in the
t ≥ 2 model, N is the number of subjects, k is the number of multiple responses
and T is the number of repeated measurements per subject.

respmat1 an (N ∗ k) × 1 matrix or data frame for the multiple responses at baseline.
The general form of it can be depicted as Respmat1=(Y.11, . . . , Y.1k)T where
Y.1j = (Y11j , . . . , YN1j).

respmat2 an (N ∗ k ∗ T ) × 1 matrix or data frame for the multiple responses for t ≥ 1.
The general form of it can be illustrated as
Respmat2 = (Y.11, . . . , Y.1k, . . . , Y.T1, . . . , Y.Tk)T where Y.tj = (Y1tj , . . . , YNtj).

z a (p3 + 1)×N × k× (T − 1) matrix or data frame to be included in the second
level of the t ≥ 2 model. z typically includes a subset of covariates.

nsubj an integer which defines the number of subjects in the study.
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nresp an integer which defines the number of multiple binary responses.

param01 a length of [(p1 + 1) + (k− 1) + 1] vector where p1 is the number of covariates
included in the baseline model and k is number of multiple responses. param01
is used to start the Fisher-Scoring (FS) algorithm for the baseline model. The
general form of it can be given as param01 = (β∗, λ∗j , c1), where j = 2, . . . , k
and c1=log(σ1).

param02 a length of [(p2 + 1) + (p3 + 1) ∗ (T − 1) + (k − 1) + (T − 1)] vector where
p2 is the number of covariates included in the first level of t ≥ 2 model, p3
is the number of covariates included in the second level of it, k is the num-
ber of multiple responses and T is the number of repeated measurements per
subject. param02 is used to start the FS algorithm for the t ≥ 2 model. The
general form of it can be given as param02 = (β, αt,1, λj , ct), where αt,1 =
(α21,1, . . . , α2p3,1, . . . , αT1,1, . . . , αTp3,1) and j = 2, . . . , k and t = 2, . . . , T
and ct = log(σt).

beta0 a (p2 + 1) × 1 matrix for which all the elements are set to 0. It corresponds to
the β0 component of the Implicit Function Theorem (IFT) point, P0.

alpha0 a (p3+1)×(T −1) matrix for which all the elements are set to 0. It corresponds
to the αt,10 component of the P0.

tol1 the amount of tolerance for the convergence of the FS algorithm for baseline
model. The default is set to 0.0001.

tol2 the amount of tolerance for the convergence of the FS algorithm for t ≥ 2 model.
The default is set to 0.0001.

maxiter1 the maximum number of iterations expected to be consumed by the FS algorithm
for baseline model. The default is set to 50.

maxiter2 the maximum number of iterations expected to be consumed by the FS algorithm
for t ≥ 2 model. The default is set to 50.

tun1 the tuning parameter for baseline model need to be chosen preferably as integer
to decrease the FS steps in each iteration in cases where the algorithm might
miss the convergence of the parameters. The default is set to 1.

tun2 the tuning parameter for t ≥ 2 model to decrease the FS steps in each iteration
as in the case of tun1. The default is set to 1.

x01 an integer defined for the initial values of the Newton-Raphson (N-R) algorithm
to obtain ∆i2j0. The default is set to 0.

eps1 the amount of tolerance for the convergence of N-R algorithm to obtain ∆i2j0.
The default is set to 10−10.

x02 an integer defined for the initial values of the Newton-Raphson (N-R) algorithm
to obtain the empirical Bayesian estimates of the individual characteristics, ẑi.
The default is set to 0.

eps2 the tolerance defined for the convergence of N-R algorithm to obtain ẑi. The
default is set to 10−10.

silent a logical statement to decide whether the details of the FS algorithm details for
both the baseline and t ≥ 2 models to be printed. The default is set to TRUE
which means not printing these details.
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delta.print a logical statement to decide the print of the estimates of ∆itj where t =
2, . . . , T together with the modeling outputs. The default is set to FALSE which
means not printing these estimates.

deltastar.print

a logical statement to decide the print of the estimates of ∆∗
itj where t =

1, . . . , T together with the modeling outputs. The default is set to FALSE which
means not printing these estimates.

Details

The modeling framework assumes two different models: 1) a model for baseline time point (base-
line model), a two-level one, and 2) a model for later time points (t ≥ 2 model), a three-level one.
These two models are linked to each other via a marginal constraint equation. Both of them are
marginalized models and capture marginal effect of independent variables on the mean responses
in their first levels. While the former captures the multivariate response dependence in its second
level, the latter captures this dependence in its third level. Furthermore, the t ≥ 2 model cap-
tures the serial dependence in its second level. Implicit function theorem, specifically first-order
implicit differentiation was used to explicitly link first and second level of the t ≥ 2 model. All
the integrals are approximated via 20-point Gauss-Hermite Qudratures. Logarithm of the standard
deviation parameters of random effects distributions are modeled. A detailed example in terms of
data preparation, initial obtaining and setting is provided below.

Value

pnmtrem1 returns the modeling output of baseline and t ≥ 2 models and the associated maximized
log-likelihood values. Additionally, it automatically prints the empirical Bayesian estimates of the
individual characteristics, ẑi. The order of these estimates are in subject order. The estimates of
∆itj (for t = 2, ..., T ) and ∆∗

itj (for t = 1, ..., T ) are in the same order of the responses and
covariates.

Note

Version 1.3.

Author(s)

Ozgur Asar, Ozlem Ilk

References

Asar, O., Ilk, O., Sezer, A. D. (2013). A marginalized multilevel model for analyzing multivariate
longitudinal binary data. Submitted.

Examples

## Not run:
## loading a simulated bivariate longitudinal binary data with 500 subjects
## and 4 time points
data(pnmtrem1.sim.data1)
data(pnmtrem1.sim.data2)
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## number of subjects, multiple responses and time points
nsubj<-500
nresp<-2
ntime<-4

## sepearating the portion of data which pnmtrem1 function will use
covmat1<-as.matrix(pnmtrem1.sim.data1[,5:6])
covmat<-as.matrix(pnmtrem1.sim.data2[,5:7])
mresp1<-as.matrix(pnmtrem1.sim.data1[,4])
mresp<-as.matrix(c(pnmtrem1.sim.data1[,4],pnmtrem1.sim.data2[,4]))

## obtaining initials for \beta^*
glm1<-glm(mresp1~-1+covmat1,family=binomial(link=probit))
bsinit<-glm1$coef;names(bsinit)<-NULL

## initials for parameters in the baseline model, i.e. \beta^*, \lambda^*, c_1
param01<-c(bsinit,1,log(0.5))

## obtaining initials of \beta
# preparing data to be analyzed by mmm2
mresp.mmm<-as.matrix(pnmtrem1.sim.data2[,4])
id<-as.matrix(rep(seq(1:nsubj),((ntime-1)*nresp)))
time<-as.matrix(c(rep(2,nsubj*nresp),rep(3,nsubj*nresp),rep(4,nsubj*nresp)))
data<-cbind(id,time,mresp.mmm,covmat)

# ordering data by subject ID
data2<-NULL
for (i in 1:nsubj){
data.id<-data[data[,1]==i,]
data2<-rbind(data2,data.id)
}
# subsetting data by response type (6th column of data2)
data.resp1<-data2[data2[,6]==1,]
data.resp2<-data2[data2[,6]==0,]
data.mmm<-cbind(data.resp1[,1],data.resp1[,3],data.resp2[,3],data.resp1[,5])
library(mmm2)
mmm2.fit<-mmm2(data=data.mmm,nresp=2,family=binomial(link=probit),
corstr = "exchangeable")
binit<-coef(mmm2.fit)

## obtaining initials of \alpha
glm3<-glm(mresp[(nsubj*nresp+1):(2*nsubj*nresp),]~-1+mresp1,family=binomial(link=probit))
glm4<-glm(mresp[(2*nsubj*nresp+1):(3*nsubj*nresp),]~-1+
mresp[(nsubj*nresp+1):(2*nsubj*nresp),],family=binomial(link=probit))
glm5<-glm(mresp[(3*nsubj*nresp+1):(4*nsubj*nresp),]~-1+
mresp[(2*nsubj*nresp+1):(3*nsubj*nresp),],family=binomial(link=probit))
alpinit<-c(glm3$coef[1],glm4$coef[1],glm5$coef[1]);names(alpinit)<-NULL

## initials for parameters in the t \geq 2 model, i.e. \beta, \alpha, \lambda, c_2, c_3, c_4
param02<-c(binit,alpinit,1,log(0.5),log(0.5),log(0.5))

## implicit function initials, \beta_0 and \alpha_0
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beta0<-matrix(c(0,0,0),ncol=1)
alpha0<-matrix(c(0,0,0),ncol=1)

## covariate set to be interacted with the response history
z<-matrix(rep(1,3*nsubj*nresp),ncol=1)

fit<-pnmtrem1(covmat1=covmat1,covmat2=covmat,respmat1=mresp1,respmat2=mresp,z=z,
nsubj=500,nresp=2,param01=param01,param02=param02,beta0=beta0,alpha0=alpha0,
tol1=0.0001,tol2=0.0001,maxiter1=50,maxiter2=50,tun1=1,tun2=1,x01=0,eps1=10^-10,
x02=0,eps2=10^-10,silent=FALSE,delta.print=TRUE,deltastar.print=TRUE)

## manipulation of the output
fit
fit$output1
fit$maxloglik1
fit$output2
fit$maxloglik2
fit$delta
fit$delstar
fit$empbayes
## End(Not run)

pnmtrem1.sim.data1 A portion of a simulated dataset, for the baseline time point (t=1), from
a first-order Probit-Normal Marginalized Transition Random Effects
Models for 500 subjects with 4 follow-ups

Description

The dataset includes randomly generated bivariate longitudinal binary responses and an associated
covariate which has a standard uniform distribution, U(0,1). The assumed parameters to generate
the data are: β∗ = (β∗

0 , β
∗
1) = (−1, 1.9), λj = (λ∗1, λ

∗
2) = (1, 1.07) and bi1 ∼ N(0, σ2

1), σ1 = 0.7.
It is assumed that there are 500 subjects. The data include no missing value.

Usage

data(pnmtrem1.sim.data1)

Format

A data frame with 1000 observations on the following 6 variables.

time a numeric vector for the time information at which data is available

response a numeric vector with the response information for which data is available

subject a numeric vector for subject id

y a numeric vector for bivariate longitudinal binary responses

ones a numeric vector for which all the elements are 1

x a numeric vector for the covariate
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Details

When one carefully investigates the time, response and subject orders, s/he can easily understand
the data structure which the model accepts. Baseline and later time points of the data may include
different number of independent variables. Therefore, datasets for t = 1 and t ≥ 2 are presented in
different data objects, pnmtrem1.sim.data1 and pnmtrem1.sim.data2, respectively.

Examples

data(pnmtrem1.sim.data1)
head(pnmtrem1.sim.data1)
str(pnmtrem1.sim.data1)

pnmtrem1.sim.data2 A portion of a simulated dataset, for t ≥ 2 period, from a first-order
Probit-Normal Marginalized Transition Random Effects Models for
500 subjects with 4 follow-ups

Description

The dataset includes bivariate longitudinal binary responses and two associated covariates. The
first covariate, X1 is a time-independent one which means it takes same values at t=1, 2, 3, 4.
For the details of X1, see pnmtrem1.sim.data1. The second covariate, X2 is a response type in-
dicator variable which takes 1 for the first response, and takes 0 for the second one. The assumed
parameters to generate the data are: β = (β0, β1, β2) = (−1, 2, 0.2), αt,1 = (α21,1, α31,1, α41,1) =
(0.5, 0.7, 0.9), λj = (λ1, λ2) = (1, 1.05) and bit ∼ N(0, σ2

t ), σt = (σ2, σ3, σ4) = (0.66, 0.63, 0.60).
It is assumed that there 500 subjects. The dataset has no missing value.

Usage

data(pnmtrem1.sim.data2)

Format

A data frame with 3000 observations on the following 7 variables.

time a numeric vector for the time information at which data is available

response a numeric vector with the response information for which data is available

subject a numeric vector for subject id

y a numeric vector for bivariate longitudinal binary responses

ones a numeric vector for which all the elements are 1

x1 a numeric vector for the first covariate, X1

x2 a numeric vector for the second covariate, X2
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Details

When one carefully investigates the time, response and subject orders, s/he can easily understand
the data structure which the model accepts. Baseline and later time points of the data may include
different number of independent variables. Therefore, datasets for t = 1 and t ≥ 2 are presented in
different data objects, pnmtrem1.sim.data1 and pnmtrem1.sim.data2, respectively.

Examples

data(pnmtrem1.sim.data2)
head(pnmtrem1.sim.data2)
str(pnmtrem1.sim.data2)
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