Package ‘pointblank’

January 23, 2022

Type Package
Version 0.10.0

Title Data Validation and Organization of Metadata for Local and
Remote Tables

Description Validate data in data frames, 'tibble’ objects, 'Spark’
'DataFrames', and database tables. Validation pipelines can be made using
easily-readable, consecutive validation steps. Upon execution of the
validation plan, several reporting options are available. User-defined
thresholds for failure rates allow for the determination of appropriate
reporting actions. Many other workflows are available including an
information management workflow, where the aim is to record, collect, and
generate useful information on data tables.

License MIT + file LICENSE

URL https://rich-iannone.github.io/pointblank/,
https://github.com/rich-iannone/pointblank

BugReports https://github.com/rich-iannone/pointblank/issues

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.1.2

Depends R (>=3.5.0)

Imports base6denc (>= 0.1-3), blastula (>= 0.3.2), cli (>=2.5.0), DBI
(>=1.1.0), digest (>= 0.6.27), dplyr (>= 1.0.6), dbplyr (>=
2.1.1), fs (>=1.5.0), glue (>=1.4.2), gt >=0.3.0),
htmltools (>= 0.5.1.1), knitr (>= 1.30), rlang (>= 0.4.11),
magrittr, scales (>= 1.1.1), testthat (>= 2.3.2), tibble (>=
3.1.2), tidyr (>= 1.1.3), tidyselect (>=1.1.1), yaml (>=
2.2.1)

Suggests arrow, covr, crayon, data.table, duckdb, ggforce, ggplot2,
jsonlite, log4r, lubridate, RSQLite, RMySQL, RPostgres, readr,
rmarkdown, sparklyr, dittodb, odbc

https://rich-iannone.github.io/pointblank/
https://github.com/rich-iannone/pointblank
https://github.com/rich-iannone/pointblank/issues

2 R topics documented:

NeedsCompilation no

Author Richard Iannone [aut, cre] (<https://orcid.org/0000-0003-3925-190X>),
Mauricio Vargas [aut] (<https://orcid.org/0000-0003-1017-7574>)

Maintainer Richard Iannone <riannone@me.com>
Repository CRAN
Date/Publication 2022-01-23 20:12:41 UTC

R topics documented:

action_levels L e 4
ACHIVALE_SIEPS « « . v v v e e e e e e e e e e e 8
affix_date e e e e e 9
affix_datetime e 11
all_passed e e 14
COLEXISIS . . v v ot e e e e e e e e e e e e e e e e 15
colis_character e 20
colis_date e 24
colis_factor e e e e e e 28
col_is_integer e 33
col_is_logical e 37
COLIS_NUMETIC e e e e e e e e e e e e 42
COLIS_POSIX o o 46
col_schema e 51
col_schema_match 53
col_vals_between e 58
col_vals_decreasing e e e 66
col_vals_equal 73
col_vals_expr 79
col_vals_gt e e e 85
col_vals_gte 92
col_vals_increasing 99
colvals_In_Set e 106
colvals_It e 112
colvals_Ite e 118
col_vals_make_Set e 124
col_vals_make_subset 131
col_vals_not_between e 137
col_vals_not_equal 144
col_vals_not_in_set e e e 151
col_vals_not_null e 157
col_vals_null e e 163
col_vals_Tegex e e 169
col_vals_within_spec 175
conjointly e e e 182
Create_agent v it i e e e e e e e e e e e e e e e e e 189

create_informant L e 195

https://orcid.org/0000-0003-3925-190X
https://orcid.org/0000-0003-1017-7574

R topics documented: 3

create_multiagent L e e e e e 199
db_tbl e e e e 202
deactivate_Steps oo i e e e e e e 205
draft_validation e e 207
email_blast e e 209
email create L e s e 212
13-4 1) L H (=) 01) 215
file_tbl e e e e e 218
from_github 222
GAME_TEVENUE v o v v et v et e e e e e e e e e e e e e e e e 224
game_revenue_info L. 225
GeL_agent_TEePOTL v v v v e e e e e e e e e e e e e e e 226
get_agent_X_list L 230
get_data_extracts e e 232
get_informant_report e e e e e e e 234
get_multiagent report L. e 236
get_sundered_data 240
L tE_PAram e e e e e e e e e e e e e e e 243
has_columns 244
INCOTPOTALE o v vt it it e e e e e e 246
info_columns e 248
info_columns_from_tbl 252
INfO_SECHioN e e 254
info_snippet 258
info_tabular e 261
INMEITOZALE o v vt it e e e e e e e e e e e e e e e e e e 264
Logdr_Step o o e 266
read_disk_multiagento 268
TEMOVE_SIEPS « & v v v v v e e e e e e e e e e e e e e e e e e e 269
TOWS_COMPIELe o o e e e 270
rows_diStINCt e e 276
row_count_match e 282
scan_data e e e e 288
serially L 290
set_thl . . . oL e 296
small_table e e e 298
small_table_sqlite L 299
snip_highest L. 300
SMP_LiSt L e e e e 301
SNIp_lOWeSt L e e e e 303
SIIP_SEALS e e e e 304
specially e e e e 306
specifications L e e e e e e 312
stock_msg_body 313
stock_msg_footer 314
stop_if_ not e e 314
tblget e 315

tbl_match e 317

4 action_levels

tblsource e 323
tblStore e s 325
tt_string_info L. 329
t_SUMMAry_Statso e e e e e e e e 330
tt_tbl_colnames e e 332
tttbl_dims e e e e e e e 334
tt_time _shift e 335
tt_time_SliCe e e e e e e e e e e 336
validate_rmd e 338
write_testthat_file 339
x_read_disko e 343
x_write_disk e 345
yaml_agent_interrogateo e e e e e 350
yaml_agent_ShOW_eXprs e 353
yaml_agent_sString L. e e 354
VaAMI_EXEC v o e e e e e e e e e e e 356
yaml_informant_incorporate L. 359
yaml _read_agent e 361
yaml_read_informanto 364
vaml_Write e e 367
Index 371
action_levels Set action levels: failure thresholds and functions to invoke
Description

The action_levels() function works with the actions argument that is present in the create_agent ()
function and in every validation step function (which also has an actions argument). With it, we
can provide threshold fail levels for any combination of warn, stop, or notify states.

We can react to any entrance of a state by supplying corresponding functions to the fns argu-
ment. They will undergo evaluation at the time when the matching state is entered. If provided to
create_agent () then the policies will be applied to every validation step, acting as a default for
the validation as a whole.

Calls of action_levels() could also be applied directly to any validation step and this will act
as an override if set also in create_agent(). Usage of action_levels() is required to have
any useful side effects (i.e., warnings, throwing errors) in the case of validation functions oper-
ating directly on data (e.g., mtcars %>% col_vals_l1t("mpg",35)). There are two helper func-
tions that are convenient when using validation functions directly on data (the agent-less work-
flow): warn_on_fail() and stop_on_fail(). These helpers either warn or stop (default fail-
ure threshold for each is set to 1), and, they do so with informative warning or error messages.
The stop_on_fail() helper is applied by default when using validation functions directly on data
(more information on this is provided in Details).

action_levels 5

Usage

action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)

D)

warn_on_fail(warn_at

stop_on_fail(stop_at = 1)

Arguments

warn_at, stop_at, notify_at

The threshold number or fraction of test units that can provide a fail result be-
fore entering the warn, stop, or notify failure states. If this a decimal value
between @ and 1 then it’s a proportional failure threshold (e.g., @.15 indicates
that if 15% percent of the test units are found to fail, then the designated fail-
ure state is entered). Absolute values starting from 1 can be used instead, and
this constitutes an absolute failure threshold (e.g., 10 means that if 10 of the test
units are found to fail, the failure state is entered).

fns A named list of functions that is to be paired with the appropriate failure states.
The syntax for this list involves using failure state names from the set of warn,
stop, and notify. The functions corresponding to the failure states are pro-
vided as formulas (e.g., list(warn = ~warning("Too many failures.")). A
series of expressions for each named state can be used by enclosing the set of
statements with { }.

Details

The output of the action_levels() call in actions will be interpreted slightly differently if using
an agent or using validation functions directly on a data table. For convenience, when working
directly on data, any values supplied to warn_at or stop_at will be automatically given a stock
warning() or stop() function. For example using small_table %>% col_is_integer("date")
will provide a detailed stop message by default, indicating the reason for the failure. If you were to
supply the fns for stop or warn manually then the stock functions would be overridden. Further-
more, if actions is NULL in this workflow (the default), pointblank will use a stop_at value of 1
(providing a detailed, context-specific error message if there are any fail units). We can absolutely
suppress this automatic stopping behavior by at each validation step by setting active = FALSE. In
this interactive data case, there is no stock function given for notify_at. The notify failure state
is less commonly used in this workflow as it is in the agent-based one.

When using an agent, we often opt to not use any functions in fns as the warn, stop, and notify
failure states will be reported on when using create_agent_report() (and, usually that’s suffi-
cient). Instead, using the end_fns argument is a better choice since that scheme provides useful
data on the entire interrogation, allowing for finer control on side effects and reducing potential for
duplicating any side effects.

Function ID

1-5

6 action_levels

See Also

Other Planning and Prep: create_agent(), create_informant (), db_tb1(),draft_validation(),
file_tb1(), scan_data(), thl_get(), tbl_source(), thl_store(), validate_rmd()

Examples

For these examples, we will use the
included ‘small_table‘ dataset
small_table

Create an ‘action_levels®' object
with fractional values for the
‘warn®, ‘stop‘, and ‘notify‘ states
al <-
action_levels(
warn_at = 0.2,
stop_at = 0.8,
notify_at = 0.5
)

A summary of settings for the ‘al®
object is shown by printing it
al

Create a pointblank agent and
apply the ‘al‘ object to ‘actions‘;
add two validation steps and
interrogate the ‘small_table®
agent_1 <-
create_agent(
tbl = small_table,
actions = al
) %%
col_vals_gt(

vars(a), value = 2
) %%
col_vals_1t(
vars(d), value = 20000
) %%
interrogate()
The report from the agent will show
that the ‘warn‘ state has been entered
for the first validation step but not
the second one; we can confirm this
in the console by inspecting the
‘warn® component in the agent's x-list
x_list <- get_agent_x_list(agent_1)

x_list$warn

Applying the ‘action_levels® object

action_levels

to the agent means that all validation
steps will inherit these settings but
we can override this by applying
another such object to the validation
step instead (this time using the
warn_on_fail() shorthand)
agent_2 <-
create_agent(

tbl = small_table,

actions = al
) %%
col_vals_gt(

vars(a), value = 2,

actions = warn_on_fail(warn_at = 0.5)
) %%
col_vals_1t(

vars(d), value = 20000
) %%
interrogate()

E T T S

In this case, the first validation
step has a less stringent failure
threshold for the ‘warn‘ state and it's
high enough that the condition is not
entered; this can be confirmed in the
console through inspection of the
x-list ‘warn‘ component
_list <- get_agent_x_list(agent_2)
x_list$warn

X d O o O

if (interactive()) {

In the context of using validation
functions directly on data (i.e., no
involvement of an agent) we want to
trigger warnings and raise errors; the
following will yield a warning if
it is executed (returning the
‘small_table® data)
small_table %>%
col_vals_gt(

vars(a), value = 2,

actions = warn_on_fail(warn_at = 2)

T R R

With the same pipeline, not supplying
anything for ‘actions® (it's ‘NULL‘ by
default) will have the same effect as
using ‘stop_on_fail(stop_at = 1)°
small_table %>%

col_vals_gt(vars(a), value = 2)

small_table %>%

8 activate_steps

col_vals_gt(
vars(a), value = 2,
actions = stop_on_fail(stop_at = 1)

)

This is because the ‘stop_on_fail()*
call is auto-injected in the default
case (when operating on data) for your
convenience; behind the scenes a
'secret agent' uses 'covert actions':
all so you can type less

Hod o O o

activate_steps Activate one or more of an agent’s validation steps

Description

If certain validation steps need to be activated after the creation of the validation plan for an agent,
use the activate_steps() function. This is equivalent to using the active = TRUE for the selected
validation steps (active is an argument in all validation functions). This will replace any function
that may have been defined for the active argument during creation of the targeted validation steps.

Usage

activate_steps(agent, i = NULL)

Arguments
agent An agent object of class ptblank_agent.
i The validation step number, which is assigned to each validation step in the
order of definition.
Value

A ptblank_agent object.

Function ID
9-5

See Also

For the opposite behavior, use the deactivate_steps() function.

Other Object Ops: deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()

affix_date 9

Examples

Create an agent that has the
‘small_table® object as the
target table, add a few inactive
validation steps, and then use
‘interrogate()*
agent_1 <-
create_agent(

tbl = small_table,

tbl_name = "small_table”,

o o

label = "An example.”
) %%
col_exists(

vars(date),

active = FALSE
) %%

col_vals_regex(
vars(b), regex = "[0-9]-[a-z]1{3}-[0-91{3}",
active = FALSE

) %%

interrogate()

In the above, the data is
not actually interrogated
because the ‘active‘ setting
was ‘FALSE' in all steps; we
can selectively change this
with ‘activate_steps()*
agent_2 <-

agent_1 %>%

activate_steps(i = 1) %>%
interrogate()

% o H W

affix_date Put the current date into a file name

Description

This function helps to affix the current date to a filename. This is useful when writing agent and/or
informant objects to disk as part of a continuous process. The date can be in terms of UTC time
or the local system time. The date can be affixed either to the end of the filename (before the file
extension) or at the beginning with a customizable delimiter.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to disk.
Furthermore the log4r_step() function has the append_to argument that accepts filenames, and,
it’s reasonable that a series of log files could be differentiated by a date component in the naming
scheme. The modification of the filename string takes effect immediately but not at the time of
writing a file to disk. In most cases, especially when using affix_date() with the aforementioned
file-writing functions, the file timestamps should approximate the time components affixed to the
filenames.

10 affix_date

Usage
affix_date(
filename,
position = c("end", "start"),
format = "%Y-%m-%d",
delimiter = "_",
utc_time = TRUE
)
Arguments
filename The filename to modify.
position Where to place the formatted date. This could either be at the "end” of the
filename (the default) or at the "start”.
format A base: :strptime() format string for formatting the date. By default, this is
"%Y-%m-%d" which expresses the date according to the ISO 8601 standard (as
YYYY-MM-DD). Refer to the documentation on base: : strptime () for conversion
specifications if planning to use a different format string.
delimiter The delimiter characters to use for separating the date string from the original
file name.
utc_time An option for whether to use the current UTC time to establish the date (the
default, with TRUE), or, use the system’s local time (FALSE).
Value

A character vector.

Function ID

13-3

See Also

The affix_datetime() function provides the same features except it produces a date-time string
by default.

Other Utility and Helper Functions: affix_datetime(), col_schema(), from_github(), has_columns(),
stop_if_not()

Examples

Taking the generic ‘pb_file‘ name for
a file, we add the current date to it
as a suffix

affix_date(filename = "pb_file")

File extensions won't get in the way:
affix_date(filename = "pb_file.rds")

affix_datetime 11

The date can be used as a prefix
affix_date(

filename = "pb_file",

position = "start”

)

The date pattern can be changed and so
can the delimiter
affix_date(

filename = "pb_file.yml",

format = "%Y%m%d",

delimiter = "-"

if (interactive()) {

We can use a file-naming convention
involving dates when writing output
files immediately after interrogating;
useful when interrogating directly
from YAML in a scheduled process
yaml_agent_interrogate(
filename = system.file(
"yaml"”, "agent-small_table.yml",
package = "pointblank”
)
) %>%
x_write_disk(
filename = affix_date(
filename = "small_table_agent.rds”,
delimiter = "-"
),
keep_tbl = TRUE,
keep_extracts = TRUE

affix_datetime Put the current date-time into a file name

Description

This function helps to affix the current date-time to a filename. This is useful when writing agent
and/or informant objects to disk as part of a continuous process. The date-time string can be based
on the current UTC time or the local system time. The date-time can be affixed either to the end of
the filename (before the file extension) or at the beginning with a customizable delimiter. Optionally,
the time zone information can be included. If the date-time is based on the local system time, the

12

affix_datetime

user system time zone is shown with the format <time>(+/-)hhmm. If using UTC time, then the

<time>Z format is

The x_write_dis

adopted.

k(), yaml_write() functions allow for the writing of pointblank objects to

disk. The modification of the filename string takes effect immediately but not at the time of writing
a file to disk. In most cases, especially when using affix_datetime() with the aforementioned
file-writing functions, the file timestamps should approximate the time components affixed to the

filenames.

Usage

affix_datetime(
filename,
position = c(
format = "%Y-
delimiter = "
utc_time = TR
add_tz = FALS

Arguments

filename

position

format

delimiter

utc_time

add_tz

Value

A character vector.

Function ID

13-4

nendn , ustartn) ,
%m=%d_%H-%M-%S"

n
-

UE,
E

The filename to modify.

Where to place the formatted date-time. This could either be at the "end” of the
filename (the default) or at the "start".

A base::strptime() format string for formatting the date-time. By default,
this is "%Y-%m-%dT%H:%M: %S" which expresses the date according to the ISO
8601 standard. For example, if the current date-time is 2020-12-04 13:11:23,
the formatted string would become "2020-12-04T13:11:23". Refer to the doc-
umentation on base: :strptime() for conversion specifications if planning to
use a different format string.

The delimiter characters to use for separating the date-time string from the orig-
inal file name.

An option for whether to use the current UTC time to establish the date-time
(the default, with TRUE), or, use the system’s local time (FALSE).

Should the time zone (as an offset from UTC) be provided? If TRUE then
the UTC offset will be either provided as <time>Z (if utc_time = TRUE) or
<time>(+/-)hhmm. By default, this is FALSE.

affix_datetime 13

See Also

The affix_date() function provides the same features except it produces a date string by default.

Other Utility and Helper Functions: affix_date(), col_schema(), from_github(), has_columns(),
stop_if_not()

Examples

Taking the generic ‘pb_file‘ name for

a file, we add the current date-time to it
as a suffix

affix_datetime(filename = "pb_file")

File extensions won't get in the way:
affix_datetime(filename = "pb_file.rds")

The date-time can be used as a prefix
affix_datetime(

filename = "pb_file",

position = "start”

)

The date-time pattern can be changed and so
can the delimiter
affix_datetime(

filename = "pb_file.yml",

format = "%Y%m%d_%H%M%S" ,

delimiter = "-"

)

Time zone information can be included
affix_datetime(

filename = "pb_file.yml",

add_tz = TRUE
)

if (interactive()) {

We can use a file-naming convention
involving date-times when writing output
files immediately after interrogating;
useful when interrogating directly
from YAML in a scheduled process
yaml_agent_interrogate(
filename = system.file(
"yaml", "agent-small_table.yml"”,
package = "pointblank”
)
) %>%
x_write_disk(
filename = affix_datetime(
filename = "small_table_agent.rds”,
delimiter = "-"

14 all_passed

),
keep_tbl = TRUE,
keep_extracts = TRUE

)

all_passed Did all of the validations fully pass?

Description

Given an agent’s validation plan that had undergone interrogation via interrogate(), did every
single validation step result in zero failing test units? Using the all_passed() function will let us
know whether that’s TRUE or not.

Usage
all_passed(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.

i A vector of validation step numbers. These values are assigned to each vali-
dation step by pointblank in the order of definition. If NULL (the default), all
validation steps will be used for the evaluation of complete passing.

Details

The all_passed() function provides a single logical value based on an interrogation performed in
the agent-based workflow. For very large-scale validation (where data quality is a known issue, and
is perhaps something to be tamed over time) this function is likely to be less useful since it is quite
stringent (all test units must pass across all validation steps).

Should there be a requirement for logical values produced from validation, a more flexible alterna-
tive is in using the test (test_*()) variants of the validation functions. Each of those produce a single
logical value and each and have a threshold option for failure levels. Another option is to utilize
post-interrogation objects within the agent’s x-list (obtained by using the get_agent_x_list()
function). This allows for many possibilities in producing a single logical value from an interroga-
tion.

Value

A logical value.

Function ID

8-4

col_exists 15

See Also

Other Post-interrogation: get_agent_x_list(), get_data_extracts(), get_sundered_data(),
write_testthat_file()

Examples

Create a simple table with
a column of numerical values
tbl <-
dplyr::tibble(a = c(4, 5, 7, 8))

Validate that values in column

‘a‘ are always greater than 4

agent <-
create_agent(tbl = tbl) %>%
col_vals_gt(vars(a), value = 3) %>%
col_vals_lte(vars(a), value = 10) %>%
col_vals_increasing(vars(a)) %>%
interrogate()

Determine if these column

validations have all passed by
using ‘all_passed()‘ (they do)
all_passed(agent = agent)

col_exists Do one or more columns actually exist?

Description

The col_exists() validation function, the expect_col_exists() expectation function, and the
test_col_exists() test function all check whether one or more columns exist in the target table.
The only requirement is specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. The types of data tables that can be
used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark).
Each validation step or expectation will operate over a single test unit, which is whether the column
exists or not.

Usage

col_exists(
X,
columns,
actions = NULL,
step_id = NULL,
label = NULL,

16

brief = NULL,
active = TRUE
)

col_exists

expect_col_exists(object, columns, threshold = 1)

test_col_exists(object, columns, threshold = 1)

Arguments

X

columns

actions

step_id

label

brief

active

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

One or more columns from the table in focus. This can be provided as a vector
of column names using c() or bare column names enclosed in vars().

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

col_exists 17

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_exists() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_exists() as a validation step is expressed in R
code and in the corresponding YAML representation.

18 col_exists

R statement
agent %>%
col_exists(
vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_exists()" step.”,
active = FALSE
)

YAML representation
steps:
- col_exists:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_exists()‘ step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

2-29

See Also

Other validation functions: col_is_character(), col_is_date(), col_is_factor(),col_is_integer(),
col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),
col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all examples here, we'll use
a simple table with two columns:
*a‘ and ‘b"
tbl <-
dplyr::tibble(
a=c(,7,6,5, 8,7,
b =c(7, 1,0, 0 0, 3)
)

col_exists

A: Using an ‘agent® with validation

functions and then ‘interrogate()‘

Validate that columns ‘a‘ and ‘b*
exist in the ‘tbl‘ table; this
makes two distinct validation
steps since two columns were
provided to ‘vars()®

agent <-

create_agent(tbl) %>%
col_exists(vars(a, b)) %>%
interrogate()

% ¥ B

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl"' object directly
with ‘get_agent_report(agent)*

* % R

ES

B: Using the validation function
directly on the data (no ‘agent*‘)

H

through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
tbl %>% col_exists(vars(a, b))

od o W

C: Using the expectation function

With the ‘expect_x()‘ form, we need
to be more exacting and provide one
column at a time; this is primarily
used in testthat tests
expect_col_exists(tbl, vars(a))
expect_col_exists(tbl, vars(b))

D: Using the test function
With the ‘test_x()‘ form, we should

get a single logical value returned
to us (even if there are multiple

columns tested, as is the case below)

tbl %>% test_col_exists(vars(a, b))

This way of using validation functions
acts as a data filter: data is passed

19

20 col_is_character

col_is_character Do the columns contain character/string data?

Description

The col_is_character() validation function, the expect_col_is_character () expectation func-
tion, and the test_col_is_character() test function all check whether one or more columns in
a table is of the character type. Like many of the col_is_*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tb1_spark). Each
validation step or expectation will operate over a single test unit, which is whether the column is a
character-type column or not.

Usage

col_is_character(
X)
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_is_character(object, columns, threshold = 1)

test_col_is_character(object, columns, threshold = 1)

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

step_id One or more optional identifiers for the single or multiple validation steps gen-

erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number

col_is_character 21

of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

22 col_is_character

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_character() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_is_character() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_is_character(

vars(a),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_character()" step.”,

active = FALSE

)

YAML representation
steps:
- col_is_character:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_character()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also

col_is_character 23

possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

2-22

See Also

Other validation functions: col_exists(), col_is_date(), col_is_factor(), col_is_integer(),
col_is_logical(),col_is_numeric(), col_is_posix(),col_schema_match(),col_vals_between(),
col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(),col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all examples here, we'll use
a simple table with a numeric column
(*a‘) and a character column (*b")
tbl <-
dplyr::tibble(
a=c(,7,6,5, 8,7,
b = LETTERS[1:6]
)

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()*

Validate that column ‘b‘ has the

“character® class

agent <-
create_agent(tbl) %>%
col_is_character(vars(b)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)*

T

ETS

B: Using the validation function
directly on the data (no ‘agent‘)

This way of using validation functions
acts as a data filter: data is passed

24 col _is date

through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be

customized with the ‘actions‘ option
tbl %>% col_is_character(vars(b))

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_is_character(tbl, vars(b))

D: Using the test function

With the ‘test_*()‘ form, we should
get a single logical value returned
to us

tbl %>% test_col_is_character(vars(b))

col_is_date Do the columns contain R Date objects?

Description

The col_is_date() validation function, the expect_col_is_date() expectation function, and
the test_col_is_date() test function all check whether one or more columns in a table is of the
R Date type. Like many of the col_is_*()-type functions in peintblank, the only requirement is
a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation
step or expectation will operate over a single test unit, which is whether the column is a Date-type
column or not.

Usage

col_is_date(
X,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

col_is_date

25

expect_col_is_date(object, columns, threshold = 1)

test_col_is_date(object, columns, threshold = 1)

Arguments

X

columns

actions

step_id

label

brief

active

object

threshold

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent ().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any

26

col _is date

single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_date() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_is_date() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%

col_is_date 27

col_is_date(
vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_date()" step.”,
active = FALSE

YAML representation
steps:
- col_is_date:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_date()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID
2-26

See Also

Other validation functions: col_exists(), col_is_character(), col_is_factor(), col_is_integer(),
col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal (), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘small_table‘ dataset in the
package has a ‘date‘ column; the
following examples will validate
that that column is of the ‘Date"
class

o o

ES

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()"

Validate that the column ‘date‘ has
the ‘Date‘ class

28

agent <-
create_agent(small_table) %>%
col_is_date(vars(date)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

ETgE

H

B: Using the validation function
directly on the data (no ‘agent‘)

H+

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
small_table %>%

col_is_date(vars(date)) %>%
dplyr::slice(1:5)

od ¥ o H o

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_date(

small_table, vars(date)
)

D: Using the test function

With the “test_*()‘ form, we should

get a single logical value returned

to us

small_table %>%
test_col_is_date(vars(date))

col_is_factor

col_is_factor Do the columns contain R factor objects?

col_is_factor 29

Description

The col_is_factor() validation function, the expect_col_is_factor() expectation function,
and the test_col_is_factor() test function all check whether one or more columns in a table is
of the factor type. Like many of the col_is_*()-type functions in pointblank, the only requirement
is a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation
step or expectation will operate over a single test unit, which is whether the column is a factor-type
column or not.

Usage

col_is_factor(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_is_factor(object, columns, threshold = 1)

test_col_is_factor(object, columns, threshold = 1)

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent ().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

30

col_is_factor

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level

col_is_factor 31

(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_factor() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_factor() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement
agent %>%
col_is_factor(
vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_factor()" step.”,
active = FALSE
)

YAML representation
steps:
- col_is_factor:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_factor()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID
2-28

32 col_is_factor

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_integer(),
col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),
col_vals_in_set(),col_vals_increasing(), col_vals_lte(), col_vals_1t(), col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

Let's modify the ‘f* column in the
“small_table' dataset so that the
values are factors instead of having
the ‘character® class; the following
examples will validate that the ‘f*
column was successfully mutated and
now consists of factors
tbl <-

small_table %>%

dplyr::mutate(f = factor(f))

A: Using an ‘agent® with validation
functions and then ‘interrogate()‘

Validate that the column ‘f* in the
“tbl‘ object is of the ‘factor‘ class
agent <-
create_agent(tbl) %>%
col_is_factor(vars(f)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

* od o H

H

B: Using the validation function
directly on the data (no ‘agent‘)

ETS

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
tbl %>%

od o

col_is_integer

col_is_factor(vars(f)) %>%
dplyr::slice(1:5)

C: Using the expectation function

With the ‘expect_x()* form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_is_factor(tbl, vars(f))

D: Using the test function

With the “test_*()* form, we should
get a single logical value returned
to us

tbl %>% test_col_is_factor(vars(f))

33

col_is_integer Do the columns contain integer values?

Description

The col_is_integer () validation function, the expect_col_is_integer () expectation function,
and the test_col_is_integer() test function all check whether one or more columns in a table is
of the integer type. Like many of the col_is_*()-type functions in pointblank, the only requirement
is a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation
step or expectation will operate over a single test unit, which is whether the column is an integer-

type column or not.

Usage

col_is_integer(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

expect_col_is_integer(object, columns, threshold = 1)

test_col_is_integer(object, columns, threshold = 1)

34

Arguments

X

columns

actions

step_id

label

brief

active

object

threshold

col_is_integer

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

col_is_integer 35

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_integer() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_integer() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%
col_is_integer(
vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_integer()" step.”,
active = FALSE

36 col_is_integer

YAML representation
steps:
- col_is_integer:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_integer()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

224

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(),col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all examples here, we'll use
a simple table with a character
column (‘a‘) and a integer column
(b)
tbl <-
dplyr::tibble(
a = letters[1:6],
b=2:7
)

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

Validate that column ‘b‘ has the
‘integer® class
agent <-
create_agent(tbl) %>%
col_is_integer(vars(b)) %>%

col_is_logical 37

interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

ETSE

H

B: Using the validation function
directly on the data (no ‘agent‘)

H+

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>% col_is_integer(vars(b))

od ¥ o

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_is_integer(tbl, vars(b))

D: Using the test function

With the ‘test_x()‘ form, we should
get a single logical value returned
to us

tbl %>% test_col_is_integer(vars(b))

col_is_logical Do the columns contain logical values?

Description

The col_is_logical() validation function, the expect_col_is_logical() expectation function,
and the test_col_is_logical() test function all check whether one or more columns in a table
is of the logical (TRUE/FALSE) type. Like many of the col_is_*()-type functions in pointblank,
the only requirement is a specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. The types of data tables that can be
used include data frames, tibbles, database tables (tb1l_dbi), and Spark DataFrames (tb1_spark).

38 col_is_logical

Each validation step or expectation will operate over a single test unit, which is whether the column
is an logical-type column or not.

Usage

col_is_logical(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_is_logical(object, columns, threshold = 1)

test_col_is_logical(object, columns, threshold = 1)

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent ().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

col_is_logical 39

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

40 col_is_logical

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_logical() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_logical() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%
col_is_logical(
vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_logical()"* step.”,
active = FALSE
)

YAML representation
steps:
- col_is_logical:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_logical()"® step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

2-25

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),

col_is_integer(),col_is_numeric(),col_is_posix(), col_schema_match(), col_vals_between(),

col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),

col_is_logical 41

col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘small_table‘ dataset in the

package has an ‘e‘ column which has

logical values; the following examples
will validate that that column is of
the ‘logical‘ class

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

Validate that the column ‘e‘ has the

“logical® class

agent <-
create_agent(small_table) %>%
col_is_logical(vars(e)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling ‘agent' in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

o o R

H+

B: Using the validation function
directly on the data (no ‘agent*‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
small_table %>%

col_is_logical(vars(e)) %>%
dplyr::slice(1:5)

% o H W

C: Using the expectation function

With the ‘expect_*()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests

expect_col_is_logical(

42 col_is_numeric

small_table, vars(e)

)
D: Using the test function

With the “test_*()* form, we should

get a single logical value returned

to us

small_table %>%
test_col_is_logical(vars(e))

col_is_numeric Do the columns contain numeric values?

Description

The col_is_numeric() validation function, the expect_col_is_numeric() expectation function,
and the test_col_is_numeric() test function all check whether one or more columns in a table is
of the numeric type. Like many of the col_is_*()-type functions in pointblank, the only requirement
is a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation
step or expectation will operate over a single test unit, which is whether the column is a numeric-
type column or not.

Usage

col_is_numeric(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

expect_col_is_numeric(object, columns, threshold = 1)
test_col_is_numeric(object, columns, threshold = 1)

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

col_is_numeric

columns

actions

step_id

label

brief

active

object

threshold

43

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

44 col_is_numeric

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_numeric() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_numeric() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%
col_is_numeric(

vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_numeric()" step.”,

active = FALSE

col_is_numeric 45

YAML representation
steps:
- col_is_numeric:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘“col_is_numeric()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

2-23

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(),col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘small_table‘ dataset in the
package has a ‘d‘ column that is
known to be numeric; the following
examples will validate that that
column is indeed of the ‘numeric®
class

N

ETS

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()*

H

Validate that the column ‘d‘ has

the ‘numeric‘ class

agent <-
create_agent(small_table) %>%
col_is_numeric(vars(d)) %>%
interrogate()

Determine if this validation

46 col_is_posix

had no failing test units (1)
all_passed(agent)

Calling ‘agent in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)"

ETRE

H

B: Using the validation function
directly on the data (no ‘agent‘)

ETS

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
small_table %>%

col_is_numeric(vars(d)) %>%
dplyr::slice(1:5)

N

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_numeric(

small_table, vars(d)
)

D: Using the test function

With the “test_x()* form, we should

get a single logical value returned

to us

small_table %>%
test_col_is_numeric(vars(d))

col_is_posix Do the columns contain POSIXct dates?

Description

The col_is_posix() validation function, the expect_col_is_posix() expectation function, and
the test_col_is_posix() test function all check whether one or more columns in a table is of
the R POSIXct date-time type. Like many of the col_is_*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation

col_is_posix

47

and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tb1_spark). Each
validation step or expectation will operate over a single test unit, which is whether the column is a
POSIXct-type column or not.

Usage

col_is_posix(

X,

columns
actions
step_id
label =
brief =
active

)

’

= NULL,
= NULL,

NULL,
NULL,
TRUE

expect_col_is_posix(object, columns, threshold = 1)

test_col_is_posix(object, columns, threshold = 1)

Arguments

X

columns

actions

step_id

label

brief

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

48

col_is_posix

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

col_is_posix 49

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_posix() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_is_posix () as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%
col_is_posix(
vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_posix()"* step.”,
active = FALSE
)

YAML representation
steps:
- col_is_posix:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_posix()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

2-27

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(), col_schema_match(), col_vals_between(),
col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),

50 col_is_posix

col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘small_table‘ dataset in the

package has a ‘date_time‘ column;

the following examples will validate
that that column is of the ‘POSIXct"
and ‘POSIXt‘ classes

H+

A: Using an ‘“agent® with validation
functions and then ‘interrogate()*

H+

Validate that the column ‘date_time"*

is indeed a date-time column

agent <-
create_agent(small_table) %>%
col_is_posix(vars(date_time)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling ‘agent' in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

o o R

H+

B: Using the validation function
directly on the data (no ‘agent*‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
small_table %>%
col_is_posix(vars(date_time)) %>%
dplyr::slice(1:5)

% o H W

C: Using the expectation function

With the ‘expect_*()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests

expect_col_is_posix(

col _schema 51

small_table, vars(date_time)

)
D: Using the test function

With the “test_*()* form, we should

get a single logical value returned

to us

small_table %>%
test_col_is_posix(vars(date_time))

col_schema Generate a table column schema manually or with a reference table

Description

A table column schema object, as can be created by col_schema(), is necessary when using
the col_schema_match() validation function (which checks whether the table object under study
matches a known column schema). The col_schema object can be made by carefully supplying
the column names and their types as a set of named arguments, or, we could provide a table object,
which could be of the data. frame, tbl_df, tbl_dbi, or tbl_spark varieties. There’s an additional
option, which is just for validating the schema of a tbl_dbi or tbl_spark object: we can validate
the schema based on R column types (e.g., "numeric”, "character”, etc.), SQL column types
(e.g., "double”, "varchar”, etc.), or Spark SQL column types ("DoubleType”, "StringType”,
etc.). This is great if we want to validate table column schemas both on the server side and when
tabular data is collected and loaded into R.

Usage
col_schema(..., .tbl = NULL, .db_col_types = c("r", "sql"))
Arguments
A set of named arguments where the names refer to column names and the values
are one or more column types.
.tbl An option to use a table object to define the schema. If this is provided then

any values provided to ... will be ignored. This can either be a table object,
a table-prep formula.This can be a table object such as a data frame, a tibble,
a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula
(~ <table reading code>) or a function (function() <table reading code>) can be
used to lazily read in the table at interrogation time.

.db_col_types Determines whether the column types refer to R column types ("r") or SQL
column types ("sql").

Function ID

13-1

52 col _schema

See Also

Other Utility and Helper Functions: affix_datetime(), affix_date(), from_github(), has_columns(),
stop_if_not()

Examples

Create a simple table with two
columns: one ‘integer* and the
other ‘character®

tbl <-
dplyr::tibble(
a=1:5,

b = letters[1:5]
)

Create a column schema object
that describes the columns and
their types (in the expected
order)
schema_obj <-
col_schema(
a = "integer"”,
b = "character”

Validate that the schema object

“schema_obj‘ exactly defines

the column names and column types

of the “tbl‘ table

agent <-
create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate()

Determine if this validation step
passed by using ‘all_passed()*
all_passed(agent)

We can alternatively create
a column schema object from a
“tbl_df* object
schema_obj <-
col_schema(
.tbl = dplyr::tibble(
a = integer(0),
b = character(9)
)
)

This should provide the same
interrogation results as in the
previous example

col_schema match 53

create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate() %>%
all_passed()

col_schema_match Do columns in the table (and their types) match a predefined schema?

Description

The col_schema_match() validation function, the expect_col_schema_match() expectation func-
tion, and the test_col_schema_match() test function all work in conjunction with a col_schema

object (generated through the col_schema() function) to determine whether the expected schema

matches that of the target table. The validation function can be used directly on a data table or with

an agent object (technically, a ptblank_agent object) whereas the expectation and test functions

can only be used with a data table. The types of data tables that can be used include data frames,

tibbles, database tables (tbl_dbi), and Spark DataFrames (tb1l_spark).

The validation step or expectation operates over a single test unit, which is whether the schema
matches that of the table (within the constraints enforced by the complete, in_order, and is_exact
options). If the target table is a tb1_dbi or a tbl_spark object, we can choose to validate the col-

n o on

umn schema that is based on R column types (e.g., "numeric”, "character”, etc.), SQL column

types (e.g., "double”, "varchar”, etc.), or Spark SQL types (e.g,. "DoubleType"”, "StringType"”,
etc.). That option is defined in the col_schema() function (it is the .db_col_types argument).

There are options to make schema checking less stringent (by default, this validation operates with
highest level of strictness). With the complete option set to FALSE, we can supply a col_schema
object with a partial inclusion of columns. Using in_order set to FALSE means that there is no
requirement for the columns defined in the schema object to be in the same order as in the target
table. Finally, the is_exact option set to FALSE means that all column classes/types don’t have to
be provided for a particular column. It can even be NULL, skipping the check of the column type.

Usage
col_schema_match(
X,
schema,
complete = TRUE,
in_order = TRUE,

is_exact = TRUE,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)

expect_col_schema_match(

54 col _schema_match

object,
schema,
complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
threshold = 1
)
test_col_schema_match(
object,
schema,

complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
threshold = 1

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

schema A table schema of type col_schema which can be generated using the col_schema()
function.

complete A requirement to account for all table columns in the provided schema. By
default, this is TRUE and so that all column names in the target table must be
present in the schema object. This restriction can be relaxed by using FALSE,
where we can provide a subset of table columns in the schema.

in_order A stringent requirement for enforcing the order of columns in the provided
schema. By default, this is TRUE and the order of columns in both the schema and
the target table must match. By setting to FALSE, this strict order requirement is
removed.

is_exact Determines whether the check for column types should be exact or even per-
formed at all. For example, columns in R data frames may have multiple classes
(e.g., adate-time column can have both the "POSIXct"” and the "POSIXt" classes).
If using is_exact == FALSE, the column type in the user-defined schema for a
date-time value can be set as either "POSIXct"” or "POSIXt" and pass validation
(with this column, at least). This can be taken a step further and using NULL
for a column type in the user-defined schema will skip the validation check of a
column type. By default, is_exact is set to TRUE.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step

col_schema match

label

brief

active

object

threshold

Value

55

index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold

56 col _schema_ match

level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_schema_match() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_schema_match() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_schema_match(
schema = col_schema(
a = "integer",
b = "character”
),
complete = FALSE,
in_order FALSE,
is_exact = FALSE,
actions = action_levels(stop_at = 1),
label = "The ‘col_schema_match()" step."”,
active = FALSE

)

YAML representation
steps:
- col_schema_match:
schema:
a: integer
b: character
complete: false
in_order: false
is_exact: false
actions:
stop_count: 1.0
label: The ‘col_schema_match()" step.
active: false

col_schema match 57

In practice, both of these will often be shorter as only the schema argument requires a value. Ar-
guments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

2-30

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_vals_between(),
col_vals_decreasing(), col_vals_equal (), col_vals_expr(),col_vals_gte(), col_vals_gt(),
col_vals_in_set(),col_vals_increasing(), col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(),col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples
For all examples here, we'll use
a simple table with two columns:
one ‘integer‘ (‘a‘) and the other
“character® (*b"); the following
examples will validate that the
table columns abides match a schema
object as created by ‘col_schema()*
tbl <-
dplyr::tibble(
a=1:5,
b = letters[1:5]
)
tbl

Create a column schema object with
the helper function ‘col_schema()"
that describes the columns and
their types (in the expected order)
schema_obj <-
col_schema(
a = "integer",
b = "character”

)

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

Validate that the schema object
‘schema_obj‘ exactly defines

58 col vals_between

the column names and column types
agent <-
create_agent(tbl) %>%
col_schema_match(schema_obj) %>%
interrogate()

Determine if this validation

had no failing test units (there is
a single test unit governed by
whether there is a match)
all_passed(agent)

#
#
#
#

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

ETRE g

H

B: Using the validation function
directly on the data (no ‘agent‘)

ETS

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>% col_schema_match(schema_obj)

od ¥ o

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_schema_match(tbl, schema_obj)

D: Using the test function

With the ‘test_x()‘ form, we should

get a single logical value returned

to us

tbl %>% test_col_schema_match(schema_obj)

col_vals_between Do column data lie between two specified values or data in other
columns?

Description

The col_vals_between() validation function, the expect_col_vals_between() expectation func-
tion, and the test_col_vals_between() test function all check whether column values in a table

col_vals_between 59

fall within a range. The range specified with three arguments: left, right, and inclusive. The
left and right values specify the lower and upper bounds. The bounds can be specified as single,
literal values or as column names given in vars(). The inclusive argument, as a vector of two
logical values relating to left and right, states whether each bound is inclusive or not. The default
is ¢(TRUE, TRUE), where both endpoints are inclusive (i.e., [left, right]). For partially-unbounded
versions of this function, we can use the col_vals_1t(), col_vals_lte(), col_vals_gt(), or
col_vals_gte() validation functions. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation
step or expectation will operate over the number of test units that is equal to the number of rows in
the table (after any preconditions have been applied).

Usage

col_vals_between(
X,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_between(

object,

columns,

left,

right,

inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,

60

preconditions

threshold =

Arguments

X

columns

left

right

inclusive

na_pass

preconditions

segments

actions

step_id

label

col vals_between

= NULL,

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

The lower bound for the range. The validation includes this bound value (if the
first element in inclusive is TRUE) in addition to values greater than left. This
can be a single value or a compatible column given in vars().

The upper bound for the range. The validation includes this bound value (if the
second element in inclusive is TRUE) in addition to values lower than right.
This can be a single value or a compatible column given in vars().

A two-element logical value that indicates whether the left and right bounds
should be inclusive. By default, both bounds are inclusive.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

col _vals_between 61

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

62 col vals_between

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) oraction_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

col _vals_between

Briefs

63

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_between() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_between() as a validation step is

expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_between(

)

columns = vars(a),

left =1,

right = 2,

inclusive = c(TRUE, FALSE),

na_pass = TRUE,

preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),

label = "The ‘col_vals_between()" step.”,
active = FALSE

YAML representation
steps:
- col_vals_between:

columns: vars(a)
left: 1.0
right: 2.0
inclusive:
- true
- false
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_between()" step.
active: false

64 col vals_between

In practice, both of these will often be shorter as only the columns, left, and right arguments re-
quire values. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Function ID

2-7

See Also

The analogue to this function: col_vals_not_between().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),col_vals_gt(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal (), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘small_table‘ dataset in the
package has a column of numeric
values in ‘c¢‘ (there are a few NAs
in that column); the following
examples will validate the values
in that numeric column

od o o

H+

A: Using an ‘“agent® with validation
functions and then ‘interrogate()*

H+

[NPRRN

Validate that values in column ‘c
are all between ‘1% and ‘9%; because
there are NA values, we'll choose to
let those pass validation by setting
“na_pass = TRUE®
agent <-

create_agent(small_table) %>%

col_vals_between(

vars(c), 1, 9, na_pass = TRUE
) 5%
interrogate()

Determine if this validation

had no failing test units (there

are 13 test units, one for each row)
all_passed(agent)

Calling ‘agent‘ in the console

col _vals_between

prints the agent's report; but we
can get a ‘gt_tbl® object directly
with ‘get_agent_report(agent)*

ES

B: Using the validation function
directly on the data (no ‘agent‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
small_table %>%
col_vals_between(

vars(c), 1, 9, na_pass = TRUE
) %%
dplyr::pull(c)

% o H W

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_between(

small_table, vars(c), 1, 9,

na_pass = TRUE
)

D: Using the test function

With the ‘test_x()‘ form, we should
get a single logical value returned
to us
small_table %>%
test_col_vals_between(
vars(c), 1, 9,
na_pass = TRUE
)

An additional note on the bounds for
this function: they are inclusive by
default (i.e., values of exactly 1
and 9 will pass); we can modify the
inclusiveness of the upper and lower
bounds with the ‘inclusive‘ option,
which is a length-2 logical vector

% T o H R

Testing with the upper bound being
non-inclusive, we get ‘FALSE" since
two values are ‘9 and they now fall
outside of the upper (or right) bound

o o R

65

66

small_table %>%

test_col_vals_between(
vars(c), 1, 9,
inclusive = c(TRUE, FALSE),
na_pass = TRUE

)

col_vals_decreasing

col_vals_decreasing

Are column data decreasing by row?

Description

Usage

col_vals_decreasing(

X,

columns,
allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE

expect_col_vals_decreasing(

object,

columns,

allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,

The col_vals_decreasing() validation function, the expect_col_vals_decreasing() expec-
tation function, and the test_col_vals_decreasing() test function all check whether column
values in a table are decreasing when moving down a table. There are options for allowing NA
values in the target column, allowing stationary phases (where consecutive values don’t change),
and even on for allowing increasing movements up to a certain threshold. The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. The types of data ta-
bles that can be used include data frames, tibbles, database tables (tb1_dbi), and Spark DataFrames
(tbl_spark). Each validation step or expectation will operate over the number of test units that is
equal to the number of rows in the table (after any preconditions have been applied).

col_vals_decreasing

67

preconditions = NULL,

threshold = 1

)

test_col_vals_decreasing(

object,
columns,

allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,

preconditions
threshold = 1
)
Arguments
X
columns

= NULL,

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

allow_stationary

increasing_tol

na_pass

preconditions

segments

actions

An option to allow pauses in decreasing values. For example if the values for
the test units are [85, 82, 82, 80, 77] then the third unit (82, appearing a sec-
ond time) would be marked with fail when allow_stationary is FALSE (the
default). Using allow_stationary = TRUE will result in all the test units in
[85, 82, 82, 80, 77] to be marked with pass.

An optional threshold value that allows for movement of numerical values in
the positive direction. By default this is NULL but using a numerical value with
set the absolute threshold of positive travel allowed across numerical test units.
Note that setting a value here also has the effect of setting allow_stationary
to TRUE.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

68 col_vals_decreasing

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

col_vals_decreasing 69

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation

70 col_vals_decreasing

using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_decreasing() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_decreasing() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_decreasing(
columns = vars(a),
allow_stationary = TRUE,
increasing_tol = 0.5,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_decreasing()" step.",
active = FALSE
) %>% yaml_agent_string()

YAML representation

steps:

- col_vals_decreasing:
columns: vars(a)

col_vals_decreasing 71

allow_stationary: true
increasing_tol: 0.5
na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_decreasing()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID
2-14

See Also

The analogous function that moves in the opposite direction: col_vals_increasing().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(),col_vals_gte(), col_vals_gt(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal (), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘game_revenue' dataset in
the package has the column
‘session_start®, which contains
date-time values; let's create
a column of difftime values (in
‘time_left‘) that describes the
time remaining in the month
relative to the session start
game_revenue_2 <-
game_revenue %>%
dplyr: :mutate(
time_left =
lubridate: :ymd_hms(
"2015-02-01 00:00:00"
) - session_start

T E EEEE

72

Let's ensure that the difftime
values in the new ‘time_left®
column has values that are
decreasing from top to bottom

ETE T

ETS

A: Using an ‘agent® with validation
functions and then ‘interrogate()"

ES

Validate that all difftime values

in the column ‘time_left® are

decreasing, and, allow for repeating

values (‘allow_stationary' will be

set to ‘TRUE')

agent <-

create_agent(game_revenue_2) %>%

col_vals_decreasing(
vars(time_left),
allow_stationary = TRUE

) %%

interrogate()

% ¥ B

Determine if this validation

had no failing test units (there
are 2000 test units)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly

#
#
#
with ‘get_agent_report(agent)®

H+

B: Using the validation function
directly on the data (no ‘agent‘)

ETS

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
game_revenue_2 %>%
col_vals_decreasing(

vars(time_left),

allow_stationary = TRUE
) %>%
dplyr::select(time_left) %>%
dplyr::distinct() %>%
dplyr::count()

#
#
#
#
#
#

C: Using the expectation function

With the ‘expect_x()‘ form, we would

col_vals_decreasing

col_vals_equal

typically perform one validation at a
time; this is primarily used in

testthat tests

expect_col_vals_decreasing(

game_revenue_2,
vars(time_left),

allow_stationary = TRUE

)

D: Using the test function

With the “test_*()* form, we should
get a single logical value returned

to us
game_revenue_2 %>%

test_col_vals_decreasing(

vars(time_left),

allow_stationary = TRUE

)

73

col_vals_equal

Are column data equal to a fixed value or data in another column?

Description

The col_vals_equal () validation function, the expect_col_vals_equal() expectation function,
and the test_col_vals_equal() test function all check whether column values in a table are equal
to a specified value. The value can be specified as a single, literal value or as a column name given
in vars(). The validation function can be used directly on a data table or with an agent object
(technically, a ptblank_agent object) whereas the expectation and test functions can only be used
with a data table. The types of data tables that can be used include data frames, tibbles, database
tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expectation will
operate over the number of test units that is equal to the number of rows in the table (after any
preconditions have been applied).

Usage
col_vals_equal(
X’
columns,
value,
na_pass = FALSE,
preconditions =

segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,

NULL,

74

)

active = TRUE

expect_col_vals_equal(

object,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

col_vals_equal

)

test_col_vals_equal(

object,
columns,
value,

na_pass = FALSE,

preconditions

threshold =

Arguments

X

columns

value

na_pass

preconditions

segments

actions

step_id

= NULL,

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A value used for this test of equality. This can be a single value or a compatible
column given in vars (). Any column values equal to what is specified here will
pass validation.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-

col_vals_equal 75

guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation

76 col_vals_equal

steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

col_vals_equal 77

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) oraction_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_equal() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_equal() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_equal(
columns = vars(a),
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_equal()" step.”,
active = FALSE
)

YAML representation
steps:
- col_vals_equal:
columns: vars(a)
value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")

78 col_vals_equal

actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_equal()" step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Function ID

2-3

See Also

The analogue to this function: col_vals_not_equal().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(),col_vals_increasing(), col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (*a‘, ‘b‘, and ‘c‘) and three
character columns (*d‘, ‘e‘, and ‘f%)
tbl <-
dplyr::tibble(
a=c(, 5 5,5, 5,5,

b=c@1, 1,1, 2,2, 2)),
c=c(1, 1,1, 2,2, 2)),
d = LETTERS[c(1:3, 5:7)1,
e = LETTERS[c(1:6)],
f = LETTERS[c(1:6)]
)
tbl

A: Using an ‘agent® with validation
functions and then ‘interrogate()"

[NPRRN

Validate that values in column ‘a
are all equal to the value of ‘5°
agent <-

col_vals_expr 79

create_agent(tbl) %>%
col_vals_equal(vars(a), 5) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 6 test units, one for each row)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

ETgE

H

B: Using the validation function
directly on the data (no ‘agent‘)

H+

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%

col_vals_equal(vars(a), 5) %>%

dplyr: :pull(a)

od ¥ o H o

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_vals_equal(tbhl, vars(a), 5)

D: Using the test function

With the “test_*()* form, we should
get a single logical value returned
to us

test_col_vals_equal(tbl, vars(a), 5)

col_vals_expr Do column data agree with a predicate expression?

Description

The col_vals_expr() validation function, the expect_col_vals_expr() expectation function,
and the test_col_vals_expr() test function all check whether column values in a table agree

80 col_vals_expr

with a user-defined predicate expression. The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation
step or expectation will operate over the number of test units that is equal to the number of rows in
the table (after any preconditions have been applied).

Usage

col_vals_expr(
X,
expr,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

test_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

Arguments
X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().
expr An expression to use for this validation. This can either be in the form of a call

made with the expr () function or as a one-sided R formula (using a leading ~).

preconditions An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

segments An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying

col_vals_expr

label

brief

active

object

threshold

Value

81

a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated

82 col_vals_expr

column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) oraction_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

col_vals_expr 83

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_expr() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_expr() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_expr(
expr = ~a %61 ==20,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_expr()"‘ step.”,
active = FALSE
)

YAML representation

steps:

- col_vals_expr:
expr: ~a%sl == 0@

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The “col_vals_expr()" step.
active: false

In practice, both of these will often be shorter as only the expr argument requires a value. Ar-
guments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

2-19

84 col_vals_expr

See Also

These reexported functions (from rlang and dplyr) work nicely within col_vals_expr() and its
variants: rlang: :expr(), dplyr: :between(), and dplyr: :case_when().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(), col_is_posix(),col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_gte(),col_vals_gt(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (*a‘, ‘b*, and ‘c) and three
character columns (‘d‘, ‘e‘, and ‘f‘)
tbl <-

dplyr::tibble(

a = C(1’ 2’ 1’ 7’ 8’ 6)’
b=C(0, 0: 0: 1: 1’ 1)7
c =c(0.5 0.3, 0.8, 1.4, 1.9, 1.2),
)
thl

A: Using an ‘agent® with validation

functions and then ‘interrogate()*

Validate that values in column ‘a®

are integer-like by using the R modulo

operator and expecting ‘0°

agent <-
create_agent(tbl) %>%
col_vals_expr(expr(a %% 1 == 0)) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 6 test units, one for each row)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly

#
#
#
with ‘get_agent_report(agent)"®

H

B: Using the validation function
directly on the data (no ‘agent‘)

H

This way of using validation functions

col_vals_gt

acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions" option
tbl %>%

col_vals_expr(expr(a %% 1 == 0)) %>%
dplyr::pull(a)

% ¥ o

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_vals_expr(tbl, ~ a %% 1 == 0)

D: Using the test function

With the “test_*()‘ form, we should
get a single logical value returned
to us

test_col_vals_expr(tbl, ~ a %% 1 == 0)

Variations

We can do more complex things by
taking advantage of the ‘case_when()*
and ‘between()‘ functions (available
for use in the pointblank package)
tbl %>%
test_col_vals_expr(~ case_when(
b ==0 ~ a %% between(@, 5) & c < 1,
b==1~a>58&c>1
D)

If you only want to test a subset of

rows, then the ‘case_when()‘ statement

doesn't need to be exhaustive; any

rows that don't fall into the cases

will be pruned (giving us less test

units overall)

tbl %>%

test_col_vals_expr(~ case_when(
b==1~a>5&c>1

BN

)

col_vals_gt Are column data greater than a fixed value or data in another column?

86

Description

col_vals_gt

The col_vals_gt() validation function, the expect_col_vals_gt() expectation function, and
the test_col_vals_gt() test function all check whether column values in a table are greater than
a specified value (the exact comparison used in this function is col_val >value). The value
can be specified as a single, literal value or as a column name given in vars(). The validation
function can be used directly on a data table or with an agent object (technically, a ptblank_agent
object) whereas the expectation and test functions can only be used with a data table. The types
of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark
DataFrames (tb1l_spark). Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_gt(

)

X,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

expect_col_vals_gt(

)

object,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

test_col_vals_gt(

object,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

col_vals_gt

Arguments

X

columns

value

na_pass

preconditions

segments

actions

step_id

label

brief

active

87

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values greater than what is specified here
will pass validation.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent

88

col_vals_gt

involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R

col_vals_gt 89

formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

90

YAML

col_vals_gt

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_gt() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_gt() as a validation step is expressed
in R code and in the corresponding YAML representation.

R

statement

agent %>%
col_vals_gt(

)

columns = vars(a),

value = 1,

na_pass = TRUE,

preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),

label = "The ‘col_vals_gt()" step.”,
active = FALSE

YAML representation
steps:
- col_vals_gt:

columns: vars(a)
value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_gt()" step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Function ID

2-6

See Also

The analogous function with a left-closed bound: col_vals_gte().

col_vals_gt 91

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all of the examples here, we'll

use a simple table with three numeric
columns (*a‘, ‘b‘, and ‘c‘) and three
character columns (‘d‘, ‘e‘, and ‘f%)

tbl <-
dplyr::tibble(
a=c(, 5, 5, 5,5, 5)),
b=c@1, 1,1, 2, 2, 2),
c=c(1, 1,1, 2, 3, 4),
d = LETTERS[al],
e = LETTERS[b],
f = LETTERS[c]
)
tbl

A: Using an ‘agent" with validation
functions and then ‘interrogate()*

[NPREN

Validate that values in column ‘a
are all greater than the value of ‘4%
agent <-
create_agent(tbl) %>%
col_vals_gt(vars(a), value = 4) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 6 test units, one for each row)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl‘ object directly
with ‘get_agent_report(agent)"

ETE T

ETS

B: Using the validation function
directly on the data (no ‘agent‘)

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there

ES

92 col_vals_gte

is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%
col_vals_gt(vars(a), value = 4) %>%
dplyr::pull(a)

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_gt(

tbl, vars(a),

value = 4

)
D: Using the test function

With the “test_x()‘ form, we should
get a single logical value returned
to us
test_col_vals_gt(

tbl, vars(a),

value = 4
)
col_vals_gte Are column data greater than or equal to a fixed value or data in an-
other column?
Description

The col_vals_gte() validation function, the expect_col_vals_gte() expectation function, and
the test_col_vals_gte() test function all check whether column values in a table are greater than
or equal to a specified value (the exact comparison used in this function is col_val >= value). The
value can be specified as a single, literal value or as a column name given in vars(). The validation
function can be used directly on a data table or with an agent object (technically, a ptblank_agent
object) whereas the expectation and test functions can only be used with a data table. The types
of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark
DataFrames (tb1l_spark). Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_gte(
X,

col_vals_gte

columns,

value,

na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_gte(
object,
columns,
value,

)

na_pass = FALSE,
preconditions = NULL,
threshold = 1

test_col_vals_gte(

object,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

93

Arguments

X
columns

value

na_pass

preconditions

segments

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values greater than or equal to what is
specified here will pass validation.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two

94

actions

step_id

label

brief

active

object

threshold

col_vals_gte

ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

col_vals_gte 95

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the

96

col_vals_gte

other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) oraction_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_gte() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_gte() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_gte(
columns = vars(a),
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_gte()" step.”,
active = FALSE

col_vals_gte 97

YAML representation

steps:

- col_vals_gte:
columns: vars(a)

value: 1.0

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_gte()" step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function

Function ID

2-5

See Also

The analogous function with a left-open bound: col_vals_gt().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_in_set(),col_vals_increasing(),col_vals_lte(), col_vals_1t(),col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal (), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (*a‘, ‘b‘, and ‘c‘) and three
character columns (‘d‘, ‘e‘, and ‘f%)
tbl <-

dplyr::tibble(
=c(5, 5,5,5,5
=c(, 1,1, 2, 2,
=c(1, 1,1, 2, 3, 4
LETTERS[a],
= LETTERS[b],
= LETTERS[c]

(&

’ ’

)
),
)

’

N

’

- ® Q. O T O
1

98

tbl

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()"
Validate that values in column ‘a‘
are all greater than or equal to the
value of ‘5°
agent <-
create_agent(tbl) %>%
col_vals_gte(vars(a), 5) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 6 test units, one for each row)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl"' object directly
with ‘get_agent_report(agent)®

* % R

E™S

B: Using the validation function
directly on the data (no ‘agent‘)

H+

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
tbl %>%

col_vals_gte(vars(a), 5) %>%
dplyr::pull(a)

*od o o

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_vals_gte(tbl, vars(a), 5)

D: Using the test function

With the “test_*() form, we should
get a single logical value returned
to us

test_col_vals_gte(tbl, vars(a), 5)

col_vals_gte

col_vals_increasing 99

col_vals_increasing Are column data increasing by row?

Description

The col_vals_increasing() validation function, the expect_col_vals_increasing() expec-
tation function, and the test_col_vals_increasing() test function all check whether column
values in a table are increasing when moving down a table. There are options for allowing NA
values in the target column, allowing stationary phases (where consecutive values don’t change),
and even on for allowing decreasing movements up to a certain threshold. The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. The types of data ta-
bles that can be used include data frames, tibbles, database tables (tb1_dbi), and Spark DataFrames
(tbl_spark). Each validation step or expectation will operate over the number of test units that is
equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_increasing(
X,
columns,
allow_stationary = FALSE,
decreasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_increasing(
object,
columns,

allow_stationary = FALSE,
decreasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_increasing(
object,
columns,
allow_stationary = FALSE,

100

col_vals_increasing

decreasing_tol = NULL,
na_pass = FALSE,

preconditions
threshold = 1

Arguments

X

columns

= NULL,

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

allow_stationary

decreasing_tol

na_pass

preconditions

segments

actions

step_id

An option to allow pauses in decreasing values. For example if the values for
the test units are [80, 82, 82, 85, 88] then the third unit (82, appearing a sec-
ond time) would be marked with fail when allow_stationary is FALSE (the
default). Using allow_stationary = TRUE will result in all the test units in
[80, 82, 82, 85, 88] to be marked with pass.

An optional threshold value that allows for movement of numerical values in
the negative direction. By default this is NULL but using a numerical value with
set the absolute threshold of negative travel allowed across numerical test units.
Note that setting a value here also has the effect of setting allow_stationary
to TRUE.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)

col_vals_increasing

label

brief

active

object

threshold

Value

101

be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and

everything().

102 col_vals_increasing

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()

col_vals_increasing 103

function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_increasing() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_increasing() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_increasing(
columns = vars(a),
allow_stationary = TRUE,
decreasing_tol = 0.5,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_increasing()" step.”,
active = FALSE
)

YAML representation

steps:

- col_vals_increasing:
columns: vars(a)
allow_stationary: true
decreasing_tol: 0.5
na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

104 col_vals_increasing

stop_fraction: 0.2
label: The ‘col_vals_increasing()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID
2-13

See Also

The analogous function that moves in the opposite direction: col_vals_decreasing().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_lte(),col_vals_l1t(), col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘game_revenue' dataset in

the package has the column
‘session_start®, which contains
date-time values; let's ensure
that this column has values that
are increasing from top to bottom

o o oH H

H+

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()*

H

Validate that all date-time values

in the column ‘session_start‘ are

increasing, and, allow for repeating

values (‘allow_stationary® will be

set to ‘TRUE')

agent <-

create_agent(game_revenue) %>%

col_vals_increasing(
vars(session_start),
allow_stationary = TRUE

) %%

interrogate()

o o

Determine if this validation

col_vals_increasing 105

had no failing test units (there
are 2000 test units)
all_passed(agent)

Calling ‘agent‘ in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly
with ‘get_agent_report(agent)®

ETE T

ETS

B: Using the validation function
directly on the data (no ‘agent‘)

ES

This way of using validation functions

acts as a data filter: data is passed

through but should ‘stop()‘ if there

is a single test unit failing; the

behavior of side effects can be

customized with the ‘actions option

game_revenue %>%

col_vals_increasing(
vars(session_start),
allow_stationary = TRUE

) %%

dplyr::select(session_start) %>%

dplyr::distinct() %>%

dplyr::count()

o o oH H W

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_increasing(

game_revenue,

vars(session_start),

allow_stationary = TRUE
)

#
#
#
#

D: Using the test function

With the ‘test_x()‘ form, we should
get a single logical value returned
to us
game_revenue %>%
test_col_vals_increasing(
vars(session_start),
allow_stationary = TRUE
)

106

col_vals_in_set

col_vals_in_set

Are column data part of a specified set of values?

Description

The col_vals_in_set() validation function, the expect_col_vals_in_set() expectation func-
tion, and the test_col_vals_in_set() test function all check whether column values in a table
are part of a specified set of values. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation
step or expectation will operate over the number of test units that is equal to the number of rows in
the table (after any preconditions have been applied).

Usage

col_vals_in_set(
X,
columns,
set,
preconditions =
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

NULL,

expect_col_vals_in_set(

object,
columns,

set,
preconditions =
threshold = 1

)

NULL,

test_col_vals_in_set(object, columns, set, preconditions = NULL, threshold = 1)

Arguments
X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.
set A vector of numeric or string-based elements, where column values found within

this set will be considered as passing.

col_vals_in_set

preconditions

segments

actions

step_id

label

brief

active

object

threshold

107

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any

108 col_vals_in_set

single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where

col_vals_in_set 109

one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_in_set() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_in_set() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_in_set(
columns = vars(a),
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_in_set()" step.”,
active = FALSE

110 col_vals_in_set

YAML representation

steps:

- col_vals_in_set:
columns: vars(a)
set:

w N =
[N

- 4.
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_in_set()" step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function

Function ID

2-9

See Also

The analogue to this function: col_vals_not_in_set().

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_increasing(), col_vals_lte(),col_vals_1t(), col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘small_table" dataset in the
package will be used to validate that
column values are part of a given set

ES

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()"

H

ES

Validate that values in column ‘f*
are all part of the set of values

H

col_vals_in_set

containing ‘low‘, ‘mid‘, and ‘high®
agent <-
create_agent(small_table) %>%
col_vals_in_set(
vars(f), c("low", "mid", "high")
) %%
interrogate()

Determine if this validation

had no failing test units (there

are 13 test units, one for each row)
all_passed(agent)

Calling ‘agent‘ in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly
with ‘get_agent_report(agent)®

ETE e

ETS

B: Using the validation function
directly on the data (no ‘agent‘)

ES

acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
small_table %>%
col_vals_in_set(

vars(f), c("low”, "mid"”, "high")
) %>%
dplyr::pull(f) %>%
unique()

Y

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_in_set(

small_table,

vars(f), c("low”, "mid", "high")
)

D: Using the test function

With the ‘test_x()‘ form, we should
get a single logical value returned
to us
small_table %>%
test_col_vals_in_set(
vars(f), c("low”, "mid", "high")

This way of using validation functions

111

112

col vals It

col_vals_1t

Are column data less than a fixed value or data in another column?

Description

The col_vals_1t() validation function, the expect_col_vals_1t() expectation function, and
the test_col_vals_1t() test function all check whether column values in a table are less than
a specified value (the exact comparison used in this function is col_val <value). The value
can be specified as a single, literal value or as a column name given in vars(). The validation
function can be used directly on a data table or with an agent object (technically, a ptblank_agent
object) whereas the expectation and test functions can only be used with a data table. The types
of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark
DataFrames (tb1l_spark). Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_1t(

)

X)

columns,

value,

na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

expect_col_vals_1t(

)

object,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

test_col_vals_1t(

object,
columns,
value,

col vals It

113

na_pass = FALSE,
preconditions = NULL,

threshold = 1

Arguments

X
columns

value

na_pass

preconditions

segments

actions

step_id

label

brief

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values less than what is specified here
will pass validation.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

114 col vals It

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

col vals It 115

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

116

YAML

col vals It

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_1t() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_1t() as a validation step is expressed
in R code and in the corresponding YAML representation.

R

statement

agent %>%
col_vals_1t(

)

columns = vars(a),

value = 1,

na_pass = TRUE,

preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),

label = "The ‘col_vals_1t()" step.”,
active = FALSE

YAML representation
steps:
- col_vals_lt:

columns: vars(a)
value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_1t()" step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Function ID

2-1

See Also

The analogous function with a right-closed bound: col_vals_lte().

col vals It 117

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all of the examples here, we'll

use a simple table with three numeric
columns (*a‘, ‘b‘, and ‘c‘) and three
character columns (‘d‘, ‘e‘, and ‘f%)

tbl <-
dplyr::tibble(
a=c(5, 5 5,5, 5,5),
b=c@1, 1,1, 2, 2, 2),
c=c(1, 1,1, 2, 3, 4,
d = LETTERS[al,
e = LETTERS[b],
f = LETTERS[c]
)
tbl

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

[NPREN

Validate that values in column ‘c
are all less than the value of ‘5%
agent <-
create_agent(tbl) %>%
col_vals_lt(vars(c), 5) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 6 test units, one for each row)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl‘ object directly

#
#
#
with ‘get_agent_report(agent)"

ETS

B: Using the validation function
directly on the data (no ‘agent‘)

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there

ES

118 col vals_lIte

is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%
col_vals_lt(vars(c), 5) %>%
dplyr::pull(c)

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_vals_l1t(tbl, vars(c), 5)

D: Using the test function

With the “test_*()* form, we should
get a single logical value returned
to us

test_col_vals_lt(tbl, vars(c), 5)

col_vals_lte Are column data less than or equal to a fixed value or data in another
column?

Description

The col_vals_1te() validation function, the expect_col_vals_lte() expectation function, and
the test_col_vals_lte() test function all check whether column values in a table are less than or
equal to a specified value (the exact comparison used in this function is col_val <= value). The
value can be specified as a single, literal value or as a column name given in vars(). The validation
function can be used directly on a data table or with an agent object (technically, a ptblank_agent
object) whereas the expectation and test functions can only be used with a data table. The types
of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark
DataFrames (tb1l_spark). Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_lte(
XI
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,

col vals_lIte

)

step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

expect_col_vals_lte(

object,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

119

)

test_col_vals_lte(

object,
columns,
value,

na_pass = FALSE,

preconditions
threshold = 1

Arguments

X
columns

value

na_pass

preconditions

segments

actions

= NULL,

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A value used for this comparison. This can be a single value or a compatible col-
umn given in vars(). Any column values less than or equal to what is specified
here will pass validation.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

120 col vals_lIte

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

col vals_lIte 121

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation

122 col vals_lIte

using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_lte() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_1te() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_1te(
columns = vars(a),
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_lte()"® step.”,
active = FALSE
)

YAML representation

steps:

- col_vals_lte:
columns: vars(a)
value: 1.0

col vals_lIte 123

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_lte()‘ step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function

Function ID

2-2

See Also

The analogous function with a right-open bound: col_vals_1t().

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(), col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all of the examples here, we'll

use a simple table with three numeric
columns (*a‘, ‘b‘, and ‘c‘) and three
character columns (‘d‘, ‘e‘, and ‘f%)

thl <-
dplyr::tibble(
a=c(, 5 5,5, 5, 5),
b=c@1, 1,1, 2, 2, 2),
c=c(1, 1,1, 2, 3, 4,
d = LETTERS[al,
e = LETTERS[b],
f = LETTERS[c]
)
tbl

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

124 col vals make set

N AN

Validate that values in column ‘c
are all less than or equal to the
value of ‘4°
agent <-
create_agent(tbl) %>%
col_vals_lte(vars(c), 4) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 6 test units, one for each row)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)*

* % R

ES

B: Using the validation function
directly on the data (no ‘agent‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
tbl %>%

col_vals_lte(vars(c), 4) %>%
dplyr::pull(c)

% o H W

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_vals_lte(tbl, vars(c), 4)

D: Using the test function

With the “test_*() form, we should
get a single logical value returned
to us

test_col_vals_lte(tbl, vars(c), 4)

col_vals_make_set Is a set of values entirely accounted for in a column of values?

col vals _make_set 125

Description

The col_vals_make_set() validation function, the expect_col_vals_make_set() expectation
function, and the test_col_vals_make_set() test function all check whether set values are all
seen at least once in a table column. A necessary criterion here is that no additional values (outside
those definied in the set) should be seen (this requirement is relaxed in the col_vals_make_subset ()
validation function and in its expectation and test variants). The validation function can be used di-
rectly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. The types of data tables that can be
used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark).
Each validation step or expectation will operate over the number of test units that is equal to the
number of elements in the set plus a test unit reserved for detecting column values outside of the
set (any outside value seen will make this additional test unit fail).

Usage

col_vals_make_set(
X,
columns,
set,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_make_set(

object,

columns,

set,

preconditions = NULL,
threshold = 1

)

test_col_vals_make_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

126

columns

set

preconditions

segments

actions

step_id

label

brief

active

col vals make set

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A vector of elements that is expected to be equal to the set of unique values in
the target column.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

col vals _make_set 127

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great

128 col vals make set

if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_make_set() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_make_set() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_make_set(
columns = vars(a),
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),

col_vals_make_set 129

segments = b ~ c("group_1", "group_2"),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_make_set()"‘ step.”,

active = FALSE

)

YAML representation

steps:

- col_vals_make_set:
columns: vars(a)
set:

w N =
[N

- 4.
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_make_set()" step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function

Function ID
2-11

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘small_table‘ dataset in the
package will be used to validate that
column values are part of a given set

A: Using an ‘agent® with validation

130

functions and then ‘interrogate()*

Validate that values in column “f*
comprise the values of ‘low‘, ‘mid*,
and ‘high‘, and, no other values
agent <-

create_agent(small_table) %>%

col_vals_make_set(

vars(f), c("low”, "mid", "high")
) %%
interrogate()

Determine if this validation

had no failing test units (there
are 4 test units)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

ETE T

ES

B: Using the validation function
directly on the data (no ‘agent‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
small_table %>%
col_vals_make_set(

vars(f), c("low”, "mid"”, "high")
) %%
dplyr::pull(f) %>%
unique()

od o o W

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_make_set(

small_table,

vars(f), c("low”, "mid", "high")
)

D: Using the test function

With the ‘test_x()‘ form, we should
get a single logical value returned

col vals make set

col _vals _make_ subset

to us
small_table %>%
test_col_vals_make_set(

vars(f), c("low”, "mid", "high")

)

131

col_vals_make_subset Is a set of values a subset of a column of values?

Description

The col_vals_make_subset() validation function, the expect_col_vals_make_subset() ex-
pectation function, and the test_col_vals_make_subset() test function all check whether all
set values are seen at least once in a table column. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, database tables (tb1_dbi), and Spark DataFrames (tbl_spark). Each
validation step or expectation will operate over the number of test units that is equal to the number

of elements in the set.

Usage

col_vals_make_subset(
X,
columns,
set,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_make_subset(

object,

columns,

set,

preconditions = NULL,
threshold = 1

test_col_vals_make_subset(

object,
columns,

132

set,

col vals _make subset

preconditions = NULL,

threshold = 1

Arguments

X

columns

set

preconditions

segments

actions

step_id

label

brief

active

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A vector of elements that is expected to be a subset of the unique values in the
target column.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr: :mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation

col _vals _make_ subset 133

step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

134 col vals _make subset

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_make_subset() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation

col _vals _make_ subset 135

function. Here is an example of how a complex call of col_vals_make_subset() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_make_subset(
columns = vars(a),
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_make_subset()" step.”,
active = FALSE
)

YAML representation

steps:

- col_vals_make_subset:
columns: vars(a)
set:

w N =
(SR IN

- 4.
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_make_subset()" step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Function ID
2-12

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),

136 col_vals_make_subset

col_vals_not_null(), col_vals_null(),col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘small_table‘ dataset in the
package will be used to validate that
column values are part of a given set

ETS

A: Using an ‘agent® with validation
functions and then ‘interrogate()‘

**

Validate that the distinct set of values
in column “f* contains at least the
subset defined as ‘low‘ and ‘high‘ (the
column actually has both of those and
some ‘mid‘ values)
agent <-
create_agent(small_table) %>%
col_vals_make_subset(

vars(f), c("low”, "high")

E T T

) %>%

interrogate()
Determine if this validation
had no failing test units (there
are 2 test units, one per element
in the ‘set‘)

all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly
with ‘get_agent_report(agent)"

ETE TS

H+

B: Using the validation function
directly on the data (no ‘agent‘)

H+

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions option
small_table %>%
col_vals_make_subset(

vars(f), c("low”, "high")

o o oH H

) 5%
dplyr::pull(f) %>%
unique()

C: Using the expectation function

col_vals_not_between 137

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_make_subset(
small_table,
vars(f), c("low”, "high")
)

D: Using the test function

With the “test_*()* form, we should
get a single logical value returned
to us
small_table %>%
test_col_vals_make_subset(
vars(f), c("low”, "high")
)

col_vals_not_between Do column data lie outside of two specified values or data in other
columns?

Description

The col_vals_not_between() validation function, the expect_col_vals_not_between() ex-
pectation function, and the test_col_vals_not_between() test function all check whether col-
umn values in a table do not fall within a range. The range specified with three arguments:
left, right, and inclusive. The left and right values specify the lower and upper bounds.
The bounds can be specified as single, literal values or as column names given in vars(). The
inclusive argument, as a vector of two logical values relating to left and right, states whether
each bound is inclusive or not. The default is c(TRUE, TRUE), where both endpoints are inclusive
(i.e., [left, right]). For partially-unbounded versions of this function, we can use the col_vals_1t(),
col_vals_lte(), col_vals_gt(), or col_vals_gte() validation functions. The validation func-
tion can be used directly on a data table or with an agent object (technically, a ptblank_agent
object) whereas the expectation and test functions can only be used with a data table. The types
of data tables that can be used include data frames, tibbles, database tables (tb1_dbi), and Spark
DataFrames (tb1l_spark). Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_not_between(
X,
columns,
left,
right,
inclusive = c(TRUE, TRUE),

col _vals not_between

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this

The lower (or left) and upper (or right) boundary values for the range. These
can be expressed as single values, compatible columns given in vars(), or a
combination of both. By default, any column values greater than or equal to
left and less than or equal to right will fail validation. The inclusivity of the
bounds can be modified by the inclusive option.

A two-element logical value that indicates whether the left and right bounds
should be inclusive. By default, both bounds are inclusive.

138

na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments
X
columns
validation should be applied.

left, right

inclusive

na_pass

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

col_vals_not_between

preconditions

segments

actions

step_id

label

brief

active

object

threshold

139

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any

140 col _vals not_between

single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

col_vals_not_between 141

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_between() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_between() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_not_between(
columns = vars(a),

142 col _vals not_between

left =1,

right = 2,

inclusive = c(TRUE, FALSE),

na_pass = TRUE,

preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_not_between()‘ step.”,

active = FALSE

)

YAML representation
steps:
- col_vals_not_between:
columns: vars(a)
left: 1.0
right: 2.9
inclusive:
- true
- false
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_not_between()" step.
active: false

In practice, both of these will often be shorter as only the columns, left, and right arguments re-
quire values. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Function ID

2-8

See Also

The analogue to this function: col_vals_between().

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(),col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_equal(),col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

col_vals_not_between 143

Examples

The ‘“small_table' dataset in the
package has a column of numeric
values in ‘c* (there are a few NAs
in that column); the following
examples will validate the values
in that numeric column

N I

H+

A: Using an ‘agent® with validation
functions and then ‘interrogate()‘

**

[NPREN

Validate that values in column ‘c
are all between ‘10" and ‘20‘; because
there are NA values, we'll choose to
let those pass validation by setting
‘na_pass = TRUE®
agent <-
create_agent(small_table) %>%
col_vals_not_between(

vars(c), 10, 20, na_pass = TRUE
) %>%
interrogate()

T

Determine if this validation

had no failing test units (there

are 13 test units, one for each row)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

* od

H

B: Using the validation function
directly on the data (no ‘agent‘)

H+

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
small_table %>%
col_vals_not_between(

vars(c), 10, 20, na_pass = TRUE
) %%
dplyr::pull(c)

ETE N

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a

144 col_vals_not_equal

time; this is primarily used in

testthat tests

expect_col_vals_not_between(
small_table, vars(c), 10, 20,
na_pass = TRUE

)

D: Using the test function

With the “test_x()‘ form, we should
get a single logical value returned
to us
small_table %>%
test_col_vals_not_between(
vars(c), 10, 20,
na_pass = TRUE
)

An additional note on the bounds for
this function: they are inclusive by
default; we can modify the
inclusiveness of the upper and lower
bounds with the ‘inclusive‘ option,
which is a length-2 logical vector
In changing the lower bound to be
9% and making it non-inclusive, we
get ‘TRUE® since although two values
are ‘9" and they fall outside of the
lower (or left) bound (and any values
'not between' count as passing test
units)
small_table %>%
test_col_vals_not_between(
vars(c), 9, 20,
inclusive = c(FALSE, TRUE),
na_pass = TRUE
)

col_vals_not_equal Are column data not equal to a fixed value or data in another column?

Description

The col_vals_not_equal() validation function, the expect_col_vals_not_equal() expecta-
tion function, and the test_col_vals_not_equal() test function all check whether column val-
ues in a table are not equal to a specified value. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used

col_vals_not_equal 145

include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tb1_spark). Each
validation step or expectation will operate over the number of test units that is equal to the number
of rows in the table (after any preconditions have been applied).

Usage

col_vals_not_equal(
X)
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_not_equal(

object,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)
Arguments
X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().
columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.
value A value used for this test of inequality. This can be a single value or a compatible

column given in vars(). Any column values not equal to what is specified here
will pass validation.

146

na_pass

preconditions

segments

actions

step_id

label

brief

active

object

col_vals_not_equal

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

col_vals_not_equal 147

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column

148 col_vals_not_equal

names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_equal() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_equal() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%

col_vals_not_equal 149

col_vals_not_equal(
columns = vars(a),
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_not_equal()" step.”,
active = FALSE
)

YAML representation

steps:

- col_vals_not_equal:
columns: vars(a)

value: 1.0

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_not_equal()" step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function

Function ID

2-4

See Also

The analogue to this function: col_vals_equal().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(),col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all of the examples here, we'll

150

use a simple table with three numeric
columns (*a‘, ‘b‘, and ‘c‘) and three
character columns (*d‘, ‘e‘, and ‘f%)
tbl <-
dplyr::tibble(

a=c(, 5,5, 5,5, 5),
b=c@, 1,1, 2,2, 2),
c=c(, 1,1, 2,2, 2),
d = LETTERS[c(1:3, 5:7)1,
e = LETTERSLc(1:6)1,
f = LETTERS[c(1:6)]
)
tbl

A: Using an ‘agent® with validation
functions and then ‘interrogate()"

[NPRRN

Validate that values in column

are all *not* equal to the value

of ‘6"

agent <-
create_agent(tbl) %>%
col_vals_not_equal(vars(a), 6) %>%
interrogate()

a

Determine if this validation

had no failing test units (there

are 6 test units, one for each row)
all_passed(agent)

Calling ‘agent‘ in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly

#
#
#
with ‘get_agent_report(agent)*

H*

B: Using the validation function
directly on the data (no ‘agent‘)

**

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%

col_vals_not_equal(vars(a), 6) %>%
dplyr::pull(a)

#
#
#
#
#
#

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a

col_vals_not_equal

col vals not _in_set 151

time; this is primarily used in
testthat tests
expect_col_vals_not_equal(tbl, vars(a), 6)

D: Using the test function

With the ‘test_x()‘ form, we should

get a single logical value returned

to us

test_col_vals_not_equal(tbl, vars(a), 6)

col_vals_not_in_set Are data not part of a specified set of values?

Description

The col_vals_not_in_set() validation function, the expect_col_vals_not_in_set() expec-
tation function, and the test_col_vals_not_in_set() test function all check whether column
values in a table are not part of a specified set of values. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. The types of data tables that can be
used include data frames, tibbles, database tables (tb1l_dbi), and Spark DataFrames (tb1l_spark).
Each validation step or expectation will operate over the number of test units that is equal to the
number of rows in the table (after any preconditions have been applied).

Usage

col_vals_not_in_set(
X,
columns,
set,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_not_in_set(

object,

columns,

set,

preconditions = NULL,
threshold = 1

152

col_vals_not_in_set

test_col_vals_not_in_set(

object,
columns,
set,

preconditions
threshold =

Arguments

X

columns

set

preconditions

segments

actions

step_id

label

brief

= NULL,

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A vector of numeric or string-based elements, where column values found within
this set will be considered as failing.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred

col vals not _in_set 153

option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R

154 col_vals_not_in_set

formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

col vals not _in_set 155

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_in_set() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_in_set() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_not_in_set(
columns = vars(a),
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_not_in_set()" step.",
active = FALSE
)

YAML representation

steps:

- col_vals_not_in_set:
columns: vars(a)
set:

w N =
(SR IN

- 4.
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_not_in_set()" step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function

Function ID

2-10

156 col_vals_not_in_set

See Also

The analogue to this function: col_vals_in_set().

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘“small_table® dataset in the
package will be used to validate that
column values are not part of a

#
#
#
given set

H

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()*

H+

Validate that values in column *f*
contain none of the values ‘lows‘,
‘mids‘, and ‘highs®
agent <-
create_agent(small_table) %>%
col_vals_not_in_set(
vars(f), c("lows"”, "mids", "highs")
) %%
interrogate()

Determine if this validation

had no failing test units (there

are 13 test units, one for each row)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)*

* o o R

H*

B: Using the validation function
directly on the data (no ‘agent‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
small_table %>%

col_vals_not_in_set(

% o H W

col vals not _null 157

vars(f), c("lows”, "mids"”, "highs")

) %>%
dplyr::pull(f) %>%
unique()

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_not_in_set(
small_table,

vars(f), c("lows”, "mids", "highs")

)

#
#
#
#

D: Using the test function

With the “test_x()‘ form, we should
get a single logical value returned
to us
small_table %>%
test_col_vals_not_in_set(
vars(f), c("lows”, "mids”, "highs")

)

col_vals_not_null Are column data not NULL/NA?

Description

The col_vals_not_null() validation function, the expect_col_vals_not_null() expectation
function, and the test_col_vals_not_null() test function all check whether column values in a
table are not NA values or, in the database context, not NULL values. The validation function can be
used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas
the expectation and test functions can only be used with a data table. The types of data tables
that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames
(tbl_spark). Each validation step or expectation will operate over the number of test units that is
equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_not_null(
X)
columns,
preconditions = NULL,
segments = NULL,
actions = NULL,

158

col _vals _not_null

step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)

expect_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

Arguments

X

columns

preconditions

segments

actions

step_id

label

brief

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

col vals not _null 159

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

160 col _vals _not_null

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_null() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation

col vals not _null 161

function. Here is an example of how a complex call of col_vals_not_null() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_not_null(
vars(a),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_not_null()" step.",
active = FALSE

)

YAML representation

steps:

- col_vals_not_null:
columns: vars(a)

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_not_null()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID

2-16

See Also

The analogue to this function: col_vals_null().

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(),col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

162 col_vals_not_null

Examples

For all examples here, we'll use
a simple table with four columns:
a, ‘b, ‘c', and ‘d°
tbl <-
dplyr::tibble(
a=c(5, 7, 6, 5, 8),
b=cC7, 1, 0, 0, 0,
c = c(NA, NA, NA, NA, NA),
d = c(35, 23, NA, NA, NA)
)

tbl

A: Using an ‘agent® with validation
functions and then ‘interrogate()"

Validate that all values in column

‘b are *notx NA (they would be

non-NULL in a database context, which

isn't the case here)

agent <-
create_agent(tbl) %>%
col_vals_not_null(vars(b)) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 5 test units, one for each row)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

* od o H

H

B: Using the validation function
directly on the data (no ‘agent‘)

H+

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
tbl %>%

col_vals_not_null(vars(b)) %>%
dplyr::pull(b)

od o o o

C: Using the expectation function

With the ‘expect_x()* form, we would

col_vals_null 163

typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_vals_not_null(tbl, vars(b))

D: Using the test function

With the “test_*()‘ form, we should
get a single logical value returned
to us

tbl %>% test_col_vals_not_null(vars(b))

col_vals_null Are column data NULL/NA?

Description

The col_vals_null() validation function, the expect_col_vals_null() expectation function,
and the test_col_vals_null() test function all check whether column values in a table are NA
values or, in the database context, NULL values. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tb1_spark). Each
validation step or expectation will operate over the number of test units that is equal to the number
of rows in the table (after any preconditions have been applied).

Usage

col_vals_null(
X,
columns,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

expect_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent ().

164

columns

preconditions

segments

actions

step_id

label

brief

active

object

col_vals_null

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

col_vals_null 165

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 19)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

166 col_vals_null

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_null() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_null() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_null(
vars(a),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_null()‘ step.",
active = FALSE

col_vals_null 167

)

YAML representation

steps:

- col_vals_null:
columns: vars(a)

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_null()"® step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Function ID
2-15

See Also

The analogue to this function: col_vals_not_null().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

Examples

For all examples here, we'll use
a simple table with four columns:
“a%, ‘bY, ‘¢, and ‘d°
tbl <-
dplyr::tibble(

a=c(5, 7, 6, 5, 8),

b=cC7, 1, 0o, 0, 0),

c = c(NA, NA, NA, NA, NA),

d = c(35, 23, NA, NA, NA)

tbl

168

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()*

Validate that all values in column
‘¢ are NA (they would be NULL in a
database context, which isn't the
case here)
agent <-
create_agent(tbl) %>%
col_vals_null(vars(c)) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 5 test units, one for each row)
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

ETRE T

H

B: Using the validation function
directly on the data (no ‘agent‘)

H+

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%

col_vals_null(vars(c)) %>%
dplyr::pull(c)

N

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests
expect_col_vals_null(tbl, vars(c))

D: Using the test function

With the “test_*()* form, we should
get a single logical value returned
to us

tbl %>% test_col_vals_null(vars(c))

col_vals_null

col_vals_regex 169

col_vals_regex Do strings in column data match a regex pattern?

Description

The col_vals_regex() validation function, the expect_col_vals_regex() expectation function,
and the test_col_vals_regex() test function all check whether column values in a table corre-
spond to a regex matching expression. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation
step or expectation will operate over the number of test units that is equal to the number of rows in
the table (after any preconditions have been applied).

Usage

col_vals_regex(
X,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_regex(

object,

columns,

regex,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_regex(
object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

170

Arguments

X

columns

regex

na_pass

preconditions

segments

actions

step_id

label

brief

active

col_vals_regex

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A regular expression pattern to test for a match to the target column. Any regex
matches to values in the target columns will pass validation.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data

col_vals_regex 171

through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be

172 col_vals_regex

transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) oraction_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via

col_vals_regex 173

yaml_agent_interrogate()). When col_vals_regex() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_regex() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_regex(
columns = vars(a),
regex = "[0-9]-[a-z1{3}-[0-91{3}",
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_regex()* step.”,
active = FALSE
)

YAML representation

steps:

- col_vals_regex:
columns: vars(a)
regex: '[0-9]-[a-z]{3}-[0-91{3}'
na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_regex()* step.
active: false

In practice, both of these will often be shorter as only the columns and regex arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Function ID
2-17

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal (), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),

174 col_vals_regex

col_vals_not_in_set(), col_vals_not_null(),col_vals_null(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()

Examples

The ‘small_table‘ dataset in the
package has a character-based ‘b*
column with values that adhere to
a very particular pattern; the
following examples will validate
that that column abides by a regex
pattern

small_table

T

This is the regex pattern that will
be used throughout
pattern <- "[0-9]-[a-z]{3}-[0-91{3}"

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

Validate that all values in column

b match the regex ‘pattern®

agent <-
create_agent(small_table) %>%
col_vals_regex(vars(b), pattern) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 13 test units, one for each row)
all_passed(agent)

Calling ‘agent‘ in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

o o R

ETS

B: Using the validation function
directly on the data (no ‘agent*‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
small_table %>%

col_vals_regex(vars(b), pattern) %>%
dplyr::slice(1:5)

% o H W

C: Using the expectation function

col_vals_within_spec 175

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_regex(

small_table,

vars(b), pattern

)

D: Using the test function

With the ‘test_x()‘ form, we should
get a single logical value returned
to us
small_table %>%
test_col_vals_regex(
vars(b), pattern

)

col_vals_within_spec Do values in column data fit within a specification?

Description

The col_vals_within_spec() validation function, the expect_col_vals_within_spec() ex-
pectation function, and the test_col_vals_within_spec() test function all check whether col-
umn values in a table correspond to a specification (spec) type (details of which are available in the
Specifications section). The validation function can be used directly on a data table or with an agent
object (technically, a ptblank_agent object) whereas the expectation and test functions can only
be used with a data table. The types of data tables that can be used include data frames, tibbles,
database tables (tbl_dbi), and Spark DataFrames (tbl_spark). Each validation step or expecta-
tion will operate over the number of test units that is equal to the number of rows in the table (after
any preconditions have been applied).

Usage

col_vals_within_spec(
X7
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,

176

active = TRUE
)

col_vals_within_spec

expect_col_vals_within_spec(

object,
columns,
spec,

na_pass = FALSE,

preconditions
threshold = 1

)

= NULL,

test_col_vals_within_spec(

object,
columns,
spec,

na_pass = FALSE,

preconditions
threshold = 1

Arguments
X
columns
spec
na_pass

preconditions

segments

actions

step_id

= NULL,

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

A specification string. Examples are "email”, "url”, and "postal[USA]". All
options are explained in the Specifications section.

Should any encountered NA values be considered as passing test units? This is
by default FALSE. Set to TRUE to give NAs a pass.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying

col_vals_within_spec 177

a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Specifications

A specification type must be used with the spec argument. This is a character-based keyword that
corresponds to the type of data in the specified columns. The following keywords can be used:

178 col_vals_within_spec

e "isbn": The International Standard Book Number (ISBN) is a unique numerical identifier
for books, pamphletes, educational kits, microforms, and digital/electronic publications. The
specification has been formalized in ISO 2108. This keyword can be used to validate 10- or
13-digit ISBNs.

e "VIN": A vehicle identification number (VIN) is a unique code (which includes a serial num-
ber) used by the automotive industry to identify individual motor vehicles, motorcycles, scoot-
ers, and mopeds as stipulated by ISO 3779 and ISO 4030.

* "postal_code[<country_code>]": A postal code (also known as postcodes, PIN, or ZIP
codes, depending on region) is a series of letters, digits, or both (sometimes including spaces/punctuation)
included in a postal address to aid in sorting mail. Because the coding varies by coun-
try, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3)
formats needs to be supplied along with the keywords (e.g., for postal codes in Germany,
"postal_code[DE]" or "postal_code[DEU]" can be used). The keyword alias "zip" can be
used for US ZIP codes.

e "credit_card"”: A credit card number can be validated and this check works across a large
variety of credit type issuers (where card numbers are allocated in accordance with ISO/IEC
7812). Numbers can be of various lengths (typically, they are of 14-19 digits) and the key
validation performed here is the usage of the Luhn algorithm.

* "iban[<country_code>]": The International Bank Account Number (IBAN) is a system of
identifying bank accounts across different countries for the purpose of improving cross-border
transactions. IBAN values are validated through conversion to integer values and performing
a basic mod-97 operation (as described in ISO 7064) on them. Because the length and coding
varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1
alpha-3) formats needs to be supplied along with the keywords (e.g., for IBANs in Germany,
"iban[DE]" or "iban[DEU]" can be used).

e "swift": Business Identifier Codes (also known as SWIFT-BIC, BIC, or SWIFT code) are
defined in a standard format as described by ISO 9362. These codes are unique identifiers
for both financial and non-financial institutions. SWIFT stands for the Society for Worldwide
Interbank Financial Telecommunication. These numbers are used when transferring money
between banks, especially important for international wire transfers.

non

e "phone”, "email”, "url”, "ipv4", "ipv6", "mac"”: Phone numbers, email addresses, Internet
URLSs, IPv4 or IPv6 addresses, and MAC addresses can be validated with their respective
keywords. These validations use regex-based matching to determine validity.

Only a single spec value should be provided per function call.

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default

col_vals_within_spec 179

of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) or action_levels(stop_at

180 col_vals_within_spec

=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_within_spec() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_within_spec() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
col_vals_within_spec(
columns = vars(a),
spec = "email”,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(b < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_within_spec()" step.”,
active = FALSE
)

YAML representation

steps:

- col_vals_within_spec:
columns: vars(a)
spec: email
na_pass: true

preconditions: ~. %>% dplyr::filter(b < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_within_spec()" step.
active: false

In practice, both of these will often be shorter as only the columns and spec arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It

col_vals_within_spec 181

is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Function ID

2-18

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(), col_is_posix(),col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

The ‘specifications® dataset in the
package has columns of character data
that correspond to each of the
specifications that can be tested;

the following examples will validate
that the ‘email_addresses‘ column

has 5 correct values (this is true if
we get a subset of the data: the first
five rows)

spec_slice <- specifications[1:5,]

e E E E N

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

Validate that all values in the column
‘email_addresses® are correct
agent <-
create_agent(spec_slice) %>%
col_vals_within_spec(
vars(email_addresses),

spec = "email”
) 5%
interrogate()

Determine if this validation

had no failing test units (there

are 5 test units, one for each row)
all_passed(agent)

Calling ‘agent‘ in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)"

182 conjointly

ES

B: Using the validation function
directly on the data (no ‘agent‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
spec_slice %>%
col_vals_within_spec(
vars(email_addresses),
spec = "email”
) %%
dplyr::select(email_addresses)

% o H W

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_within_spec(
spec_slice,
vars(email_addresses),
spec = "email”

)
D: Using the test function

With the “test_*()‘ form, we should
get a single logical value returned
to us
spec_slice %>%
test_col_vals_within_spec(
vars(email_addresses),
spec = "email”

)

conjointly Perform multiple rowwise validations for joint validity

Description

The conjointly() validation function, the expect_conjointly() expectation function, and the
test_conjointly() test function all check whether test units at each index (typically each row) all
pass multiple validations. We can use validation functions that validate row units (the col_vals_*()
series), check for column existence (col_exists()), or validate column type (the col_is_*() series).

conjointly 183

Because of the imposed constraint on the allowed validation functions, the ensemble of test units
are either comprised rows of the table (after any common preconditions have been applied) or
are single test units (for those functions that validate columns).

Each of the functions used in a conjointly() validation step (composed using multiple validation
function calls) ultimately perform a rowwise test of whether all sub-validations reported a pass
for the same test units. In practice, an example of a joint validation is testing whether values for
column a are greater than a specific value while adjacent values in column b lie within a specified
range. The validation functions to be part of the conjoint validation are to be supplied as one-sided
R formulas (using a leading ~, and having a . stand in as the data object). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table.

Usage

conjointly(
X,

.list = list2(...),
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)

expect_conjointly(
object,

.list = list2(...),
preconditions = NULL,
threshold = 1

)

test_conjointly(
object,
.list = list2(...),
preconditions = NULL,
threshold = 1

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

A collection one-sided formulas that consist of validation functions that validate

184 conjointly

row units (the col_vals_*() series), column existence (col_exists()), or col-
umn type (the col_is_*() series). An example of this is ~ col_vals_gte(., vars(a), 5.5), ~ col_vals_not_null(

.list Allows for the use of a list as an input alternative to

preconditions An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

segments An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

conjointly 185

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names in any of the supplied validation steps, the result will be an
expansion of sub-validation steps to that number of column names. Aside from column names in
quotes and in vars(), tidyselect helper functions are available for specifying columns. They are:
starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where

186 conjointly

one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When conjointly() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of conjointly() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement
agent %>%
conjointly(
~ col_vals_1t(., vars(a), 8),
~ col_vals_gt(., vars(c), vars(a)),
~ col_vals_not_null(., vars(b)),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘conjointly()‘ step.”,
active = FALSE

conjointly 187

)
YAML representation
steps:
- conjointly:
fns:
- ~col_vals_1t(., vars(a), 8)
- ~col_vals_gt(., vars(c), vars(a))
- ~col_vals_not_null(., vars(b))
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘conjointly()‘ step.
active: false

In practice, both of these will often be shorter as only the expressions for validation steps are
necessary. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Function ID
2-33

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

For all examples here, we'll use
a simple table with three numeric
columns (‘a‘, ‘b%, and ‘c'); this is
a very basic table but it'll be more
useful when explaining things later
tbl <-
dplyr::tibble(

a = c(5, 2, 6),

b =c(3, 4, 6),

c=c(9, 8, 7)

tbl

A: Using an ‘agent® with validation
functions and then ‘interrogate()"

Validate a number of things on a
row-by-row basis using validation
functions of the ‘col_vals*‘ type
(all have the same number of test
units): (1) values in ‘a‘ are less
than *8%, (2) values in ‘c‘ are
greater than the adjacent values in
*aY, and (3) there aren't any NA
values in ‘b*
agent <-
create_agent(tbl = tbl) %>%
conjointly(

~ col_vals_lt(., vars(a), value

ET T TR T T S

8,

~ col_vals_gt(., vars(c), value = vars(a)),

~ col_vals_not_null(., vars(b))
) %>%
interrogate()

Determine if this validation

had no failing test units (there

are 3 test units, one for each row)
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)*

* oH R

What's going on? Think of there being
three parallel validations, each
producing a column of ‘TRUE‘ or ‘FALSE"

up side-by-side, any rows with any
‘FALSE" values results in a conjoint
‘fail® test unit

N

H+

B: Using the validation function
directly on the data (no ‘agent‘)

H

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%

conjointly(

% o H W

values (‘pass’ or ‘fail‘) and line them

conjointly

create_agent 189

~ col_vals_lt(., vars(a), value
~ col_vals_gt(., vars(c), value
~ col_vals_not_null(., vars(b))

)

8),
vars(a)),

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_conjointly(
tbl,
~ col_vals_1t(., vars(a), value
~ col_vals_gt(., vars(c), value
~ col_vals_not_null(., vars(b))

)

8)'
vars(a)),

D: Using the test function

With the “test_x()‘ form, we should
get a single logical value returned
to us
tbl %>%
test_conjointly(
~ col_vals_1t(., vars(a), value = 8),
~ col_vals_gt(., vars(c), value = vars(a)),
~ col_vals_not_null(., vars(b))

)

create_agent Create a pointblank agent object

Description

The create_agent() function creates an agent object, which is used in a data quality reporting
workflow. The overall aim of this workflow is to generate useful reporting information for assessing
the level of data quality for the target table. We can supply as many validation functions as the user
wishes to write, thereby increasing the level of validation coverage for that table. The agent assigned
by the create_agent () call takes validation functions, which expand to validation steps (each one
is numbered). This process is known as developing a validation plan.

The validation functions, when called on an agent, are merely instructions up to the point the
interrogate() function is called. That kicks off the process of the agent acting on the valida-
tion plan and getting results for each step. Once the interrogation process is complete, we can say
that the agent has intel. Calling the agent itself will result in a reporting table. This reporting of the
interrogation can also be accessed with the get_agent_report() function, where there are more
reporting options.

190

Usage

create_agent(
tbl = NULL,

create_agent

tbl_name = NULL,

label = NULL,

actions = NULL,
end_fns = NULL,

embed_report
lang = NULL,

= FALSE,

locale = NULL,
read_fn = NULL

Arguments

tbl

tbl_name

label

actions

end_fns

embed_report

lang

The input table. This can be a data frame, a tibble, a tbl_dbi object, or a
tbl_spark object. Alternatively, an expression can be supplied to serve as in-
structions on how to retrieve the target table at interrogation-time. There are
two ways to specify an association to a target table: (1) as a table-prep formula,
which is a right-hand side (RHS) formula expression (e.g., ~ { <table read-
ing code>}), or (2) as a function (e.g., function() { <table reading code>}).

A optional name to assign to the input table object. If no value is provided,
a name will be generated based on whatever information is available. This ta-
ble name will be displayed in the header area of the agent report generated by
printing the agent or calling get_agent_report().

An optional label for the validation plan. If no value is provided, a label will
be generated based on the current system time. Markdown can be used here to
make the label more visually appealing (it will appear in the header area of the
agent report).

A option to include a list with threshold levels so that all validation steps can
react accordingly when exceeding the set levels. This is to be created with the
action_levels() helper function. Should an action levels list be used for a
specific validation step, the default set specified here will be overridden.

A list of expressions that should be invoked at the end of an interrogation.
Each expression should be in the form of a one-sided R formula, so overall
this construction should be used: end_fns = list(~ <R statements>, ~ <R state-
ments>, ...). An example of a function included in pointblank that can be sensi-
bly used here is email_blast(), which sends an email of the validation report
(based on a sending condition).

An option to embed a gt-based validation report into the ptblank_agent object.
If FALSE (the default) then the table object will be not generated and available
with the agent upon returning from the interrogation.

The language to use for automatic creation of briefs (short descriptions for
each validation step) and for the agent report (a summary table that provides
the validation plan and the results from the interrogation. By default, NULL
will create English ("en") text. Other options include French ("fr"), German

create_agent 191

("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl1").

locale An optional locale ID to use for formatting values in the agent report sum-
mary table according the locale’s rules. Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES").

read_fn The read_fn argument is deprecated. Instead, supply a table-prep formula or
function to tbl.

Value

A ptblank_agent object.

Data Products Obtained from an Agent

A very detailed list object, known as an x-list, can be obtained by using the get_agent_x_list()
function on the agent. This font of information can be taken as a whole, or, broken down by the
step number (with the i argument).

Sometimes it is useful to see which rows were the failing ones. By using the get_data_extracts()
function on the agent, we either get a list of tibbles (for those steps that have data extracts) or one
tibble if the validation step is specified with the i argument.

The target data can be split into pieces that represent the ’pass’ and *fail” portions with the get_sundered_data()
function. A primary requirement is an agent that has had interrogate() called on it. In addition,
the validation steps considered for this data splitting need to be those that operate on values down a
column (e.g., the col_vals_*() functions or conjointly()). With these in-consideration validation
steps, rows with no failing test units across all validation steps comprise the ’pass’ data piece, and
rows with at least one failing test unit across the same series of validations constitute the *fail” piece.

If we just need to know whether all validations completely passed (i.e., all steps had no failing test
units), the all_passed() function could be used on the agent. However, in practice, it’s not often
the case that all data validation steps are free from any failing units.

While printing an agent will display the agent report in the Viewer, we can alternatively use the
get_agent_report() to take advantage of other options (e.g., overriding the language, modifying
the arrangement of report rows, etc.), and to return the report as independent objects. For example,
with the display_table = TRUE option (the default), get_agent_report() will return a gt table
object ("gt_tbl"). If display_table is set to FALSE, we’ll get a data frame back instead.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). Here is an example of how a complex call of create_agent()
is expressed in R code and in the corresponding YAML representation.

R statement
create_agent(

192 create_agent

tbl = ~ small_table,
tbl_name = "small_table",
label = "An example.",
actions = action_levels(

warn_at = 0.10,

stop_at = 0.25,

notify_at = .35
),

end_fns = list(
~ beepr::beep(2),
~ Sys.sleep(1)

),

embed_report = TRUE,
lang = "fr",

locale = "fr_CA"

)

YAML representation

type: agent

tbl: ~small_table

tbl_name: small_table

label: An example.

lang: fr

locale: fr_CA

actions:
warn_fraction: 0.1

stop_fraction: 0.25

notify_fraction: 0.35

end_fns:

- ~beepr: :beep(2)

- ~Sys.sleep(1)

embed_report: true

In practice, this block of YAML will be shorter since arguments with default values won’t be writ-
ten to YAML when using yaml_write() (though it is acceptable to include them with their default
when generating the YAML by other means). The only requirement for writing the YAML repre-
sentation of an agent is having tbl specified as table-prep formula.

What typically follows this chunk of YAML is a steps part, and that corresponds to the addition
of validation steps via validation functions. Help articles for each validation function have a YAML
section that describes how a given validation function is translated to YAML.

Should you need to preview the transformation of an agent to YAML (without any committing
anything to disk), use the yaml_agent_string() function. If you already have a .yml file that
holds an agent, you can get a glimpse of the R expressions that are used to regenerate that agent
with yaml_agent_show_exprs()

Writing an Agent to Disk

An agent object can be written to disk with the x_write_disk() function. This can be useful for
keeping a history of validations and generating views of data quality over time. Agents are stored

create_agent 193

in the serialized RDS format and can be easily retrieved with the x_read_disk() function.

It’s recommended that table-prep formulas are supplied to the tbl argument of create_agent().
In this way, when an agent is read from disk through x_read_disk(), it can be reused to access the
target table (which may change, hence the need to use an expression for this).

Combining Several Agents in a multiagent Object

Multiple agent objects can be part of a multiagent object, and two functions can be used for this:
create_multiagent() and read_disk_multiagent(). By gathering multiple agents that have
performed interrogations in the past, we can get a multiagent report showing how data quality
evolved over time. This use case is interesting for data quality monitoring and management, and,
the reporting (which can be customized with get_multiagent_report())is robust against changes
in validation steps for a given target table.

Figures

Function ID
1-2

See Also

Other Planning and Prep: action_levels(), create_informant(), db_tbl(),draft_validation(),
file_tb1(), scan_data(), thl_get(), tbl_source(), thl_store(), validate_rmd()

Examples

Let's walk through a data quality

analysis of an extremely small table;
it's actually called ‘small_table‘ and
we can find it as a dataset in this

package

small_table

We ought to think about what's
tolerable in terms of data quality so
let's designate proportional failure
thresholds to the ‘warn‘, ‘stop‘, and
‘notify" states using ‘action_levels()*
al <-
action_levels(
warn_at = 0.10,
stop_at
notify_at
)

1 n
[N
w N
[0,

Now create a pointblank ‘agent‘ object
and give it the ‘al‘ object (which
serves as a default for all validation

194

steps which can be overridden); the
static thresholds provided by ‘al® will
make the reporting a bit more useful;
we also provide a target table and we'll
use ‘pointblank::small_table"
agent <-
create_agent(

tbl = pointblank::small_table,

tbl_name = "small_table”,

label = "An example.”,

actions = al

)

Then, as with any ‘agent‘ object, we
can add steps to the validation plan by
using as many validation functions as we
want; then, we use ‘interrogate()‘ to
physically perform the validations and
gather intel
agent <-
agent %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(

vars(b),

regex = "[0-9]-[a-z]{3}-[0-91{3}"
) %%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5) %>%
col_vals_equal(

vars(d), value = vars(d),

na_pass = TRUE
) %%
col_vals_between(

vars(c),

left = vars(a), right = vars(d),

na_pass = TRUE
) %%
interrogate()

#
#
#
#
#
#

Calling ‘agent‘ in the console

prints the agent's report; but we
can get a ‘gt_tbl* object directly
with ‘get_agent_report(agent)*
report <- get_agent_report(agent)
class(report)

What can you do with the report object?
Print it from an R Markdown code

chunk, use it in a **blastulax* email,
put it in a webpage, etc.

From the report we know that Step

create_agent

create_informant 195

4 had two test units (rows, really)
that failed; we can see those rows
with ‘get_data_extracts()®

agent %>% get_data_extracts(i = 4)

We can get an x-list for the whole
validation (8 steps), or, just for
the 4th step with ‘get_agent_x_list()"
x1_step_4 <-
agent %>% get_agent_x_list(i = 4)

And then we can peruse the different
parts of the list; let's get the

fraction of test units that failed
x1_step_4$f_failed

Just printing the x-list will tell
us what's available therein
x1_step_4

An x-list not specific to any step

will have way more information and a
slightly different structure; see

“help(get_agent_x_list)" for more info
get_agent_x_list(agent)

create_informant Create a pointblank informant object

Description

The create_informant() function creates an informant object, which is used in an information
management workflow. The overall aim of this workflow is to record, collect, and generate useful
information on data tables. We can supply any information that is useful for describing a particular
data table. The informant object created by the create_informant () function takes information-
focused functions: info_columns(), info_tabular(), info_section(), and info_snippet().

The info_*() series of functions allows for a progressive build up of information about the target
table. The info_columns() and info_tabular() functions facilitate the entry of info fext that con-
cerns the table columns and the table proper; the info_section() function allows for the creation
of arbitrary sections that can have multiple subsections full of additional info text. The system al-
lows for dynamic values culled from the target table by way of info_snippet (), for getting named
text extracts from queries, and the use of {<snippet_name>} in the info text. To make the use of
info_snippet() more convenient for common queries, a set of snip_*() functions are provided
in the package (snip_list(), snip_stats(), snip_lowest(), and snip_highest()) though you
are free to use your own expressions.

Because snippets need to query the target table to return fragments of info text, the incorporate()
function needs to be used to initiate this action. This is also necessary for the informant to up-
date other metadata elements such as row and column counts. Once the incorporation process is

196

create_informant

complete, snippets and other metadata will be updated. Calling the informant itself will result in a
reporting table. This reporting can also be accessed with the get_informant_report() function,
where there are more reporting options.

Usage

create_informant(

tbl = NULL,

tbl_name = NULL,

label = NULL,
agent = NULL,
lang = NULL,

NULL,

locale

read_fn = NULL

Arguments

tbl

tbl_name

label

agent

lang

locale

read_fn

The input table. This can be a data frame, a tibble, a tbl_dbi object, or a
tbl_spark object. Alternatively, an expression can be supplied to serve as in-
structions on how to retrieve the target table at incorporation-time. There are
two ways to specify an association to a target table: (1) as a table-prep formula,
which is a right-hand side (RHS) formula expression (e.g., ~ { <table read-
ing code>}), or (2) as a function (e.g., function() { <table reading code>}).

A optional name to assign to the input table object. If no value is provided, a
name will be generated based on whatever information is available.

An optional label for the information report. If no value is provided, a label will
be generated based on the current system time. Markdown can be used here to
make the label more visually appealing (it will appear in the header area of the
information report).

A pointblank agent object. The table from this object can be extracted and used
in the new informant instead of supplying a table in tb1l.

The language to use for the information report (a summary table that provides
all of the available information for the table. By default, NULL will create
English ("en") text. Other options include French ("fr"), German ("de"),
Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese
("zh™), Russian ("ru"), Polish ("pl"”), Danish ("da"), Swedish ("sv"), and
Dutch ("nl").

An optional locale ID to use for formatting values in the information report
according the locale’s rules. Examples include "en_US" for English (United
States) and "fr_FR" for French (France); more simply, this can be a language
identifier without a country designation, like "es" for Spanish (Spain, same as
"es_ES").

The read_fn argument is deprecated. Instead, supply a table-prep formula or
function to tbl.

create_informant 197

Value

A ptblank_informant object.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). Here is an example of how
a complex call of create_informant() is expressed in R code and in the corresponding YAML
representation.

R statement
create_informant(
tbl = ~ small_table,
tbl_name = "small_table”,

label = "An example.",
lang = "fr”,
locale = "fr_CA"

)

YAML representation
type: informant
tbl: ~small_table
tbl_name: small_table
info_label: An example.
lang: fr
locale: fr_CA
table:
name: small_table
_columns: 8

_rows: 13.0
_type: tbl_df
columns:

date_time:

_type: POSIXct, POSIXt
date:

_type: Date
a:

_type: integer
b:

_type: character
c:

_type: numeric
d:

_type: numeric
e:

_type: logical
f:

198 create_informant

_type: character

The generated YAML includes some top-level keys where type and tbl are mandatory, and, two
metadata sections: table and columns. Keys that begin with an underscore character are those
that are updated whenever incorporate() is called on an informant. The table metadata section
can have multiple subsections with info text. The columns metadata section can similarly have
have multiple subsections, so long as they are children to each of the column keys (in the above
YAML example, date_time and date are column keys and they match the table’s column names).
Additional sections can be added but they must have key names on the top level that don’t duplicate
the default set (i.e., type, table, columns, etc. are treated as reserved keys).

Writing an Informant to Disk

An informant object can be written to disk with the x_write_disk() function. Informants are
stored in the serialized RDS format and can be easily retrieved with the x_read_disk() function.

It’s recommended that table-prep formulas are supplied to the tb1l argument of create_informant().
In this way, when an informant is read from disk through x_read_disk(), it can be reused to access
the target table (which may changed, hence the need to use an expression for this).

Figures

Function ID
1-3

See Also

Other Planning and Prep: action_levels(), create_agent(), db_tbl(), draft_validation(),
file_tb1l(), scan_data(), thl_get(), tbl_source(), thl_store(), validate_rmd()

Examples

Let's walk through how we can

generate some useful information for a
really small table; it's actually
called ‘small_table‘ and we can find
it as a dataset in this package
small_table

o O

Create a pointblank ‘informant®
object with ‘create_informant()*
and the ‘small_table‘ dataset
informant <-
create_informant(

tbl = pointblank::small_table,

tbl_name = "small_table”,

label = "An example."”

)

create_multiagent

This function c
without any ext
the supplied ta
the sections: (
(2) 'columns' a
object to see t

E T T S

199

reates some information
ra help by profiling
ble object; it adds

1) 'table' and

nd we can print the

he information report

Alternatively, we can get the same report

by using ‘get_i
report <- get_inf
class(report)

nformant_report()*
ormant_report(informant)

create_multiagent

Create a pointblank multiagent object

Description

Multiple agents can be part of a single object called the multiagent. This can be useful when

gathering multiple
with x_write_dis
quality evolved ov

agents that have performed interrogations in the past (perhaps saved to disk
k()). When be part of a multiagent, we can get a report that shows how data
er time. This can be of interest when it’s important to monitor data quality

and even the evolution of the validation plan itself. The reporting table, generated by printing
a ptblank_multiagent object or by using the get_multiagent_report() function, is, by de-

fault, organized by

the interrogation time and it automatically recognizes which validation steps are

equivalent across interrogations.

Usage
create_multiagent(..., lang = NULL, locale = NULL)
Arguments
e One or more pointblank agent objects.
lang The language to use for any reporting that will be generated from the multia-
gent. (e.g., individual agent reports, multiagent reports, etc.). By default, NULL
will create English ("en") text. Other options include French ("fr"), German
("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl1").
locale An optional locale ID to use for formatting values in the reporting outputs
according the locale’s rules. Examples include "en_US" for English (United
States) and "fr_FR" for French (France); more simply, this can be a language
identifier without a country designation, like "es" for Spanish (Spain, same as
"es_ES").
Value

A ptblank_multiagent object.

200

Figures

Function ID

10-1

See Also

Other The multiagent: get_multiagent_report(), read_disk_multiagent()

Examples

if (interactive()) {

Let's walk through several theoretical
data quality analyses of an extremely
small table; that table is called
‘small_table® and we can find it as a
dataset in this package

small_table

* % o H

To set failure limits and signal
conditions, we designate proportional
failure thresholds to the ‘warn‘, ‘stop‘,
and ‘notify‘ states using ‘action_levels()*®
al <-
action_levels(
warn_at = 0.05,
stop_at = 0.10,
notify_at = 0.20
)

We will create four different agents
and have slightly different validation
steps in each of them; in the first,
tagent_1%, eight different validation
steps are created and the agent will
interrogate the ‘small_table®
agent_1 <-
create_agent(

tbl = small_table,

od o

label = "An example.”,
actions = al
) %>%

col_vals_gt(
vars(date_time),
value = vars(date),
na_pass = TRUE

) 5%

col_vals_gt(
vars(b),

create_multiagent

create_multiagent

value = vars(g),
na_pass = TRUE
) %%
rows_distinct() %>%
col_vals_equal(
vars(d),
value = vars(d),
na_pass = TRUE
) %%
col_vals_between(
vars(c),
left = vars(a), right = vars(d)
) %%
col_vals_not_between(
vars(c),
left = 10, right = 20,
na_pass = TRUE
) %%
rows_distinct(vars(d, e, f)) %>%
col_is_integer(vars(a)) %>%
interrogate()

The second agent, ‘agent_2‘, retains
all of the steps of ‘agent_1‘ and adds
two more (the last of which is inactive)
agent_2 <-
agent_1 %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
vars(b),
regex = "[0-9]-[a-z1{3}-[0-91{3}",
active = FALSE
) %%
interrogate()

The third agent, ‘agent_3", adds a single

validation step, removes the fifth one,
and deactivates the first
agent_3 <-

agent_2 %>%

col_vals_in_set(

vars(f),
set = c("low”, "mid", "high")
) %>%

remove_steps(i = 5) %>%
deactivate_steps(i = 1) %>%
interrogate()

The fourth and final agent, ‘agent_4°,
reactivates steps 1 and 10, and removes
the sixth step
agent_4 <-

agent_3 %>%

201

202 db_tbl

activate_steps(i = 1) %>%
activate_steps(i = 10) %>%
remove_steps(i = 6) %>%
interrogate()

While all the agents are slightly
different from each other, we can still
get a combined report of them by
creating a 'multiagent'’
multiagent <-
create_multiagent(

agent_1, agent_2, agent_3, agent_4
)

#
#
#
#

Calling ‘multiagent® in the console

prints the multiagent report; but we

can get a ‘gt_tbl' object with the

‘get_multiagent_report()* function
report <- get_multiagent_report(multiagent)

class(report)

}

db_tbl Get a table from a database

Description

If your target table is in a database, the db_tbl () function is a handy way of accessing it. This
function simplifies the process of getting a tbl_dbi object, which usually involves a combination
of building a connection to a database and using the dplyr::tb1l() function with the connection
and the table name (or a reference to a table in a schema). You can use db_tb1l() as the basis
for obtaining a database table for the tbl parameter in create_agent() or create_informant().
Another great option is supplying a table-prep formula involving db_tb1 () to tbl_store() so that
you have access to database tables though single names via a table store.

The username and password are supplied though environment variable names. If desired, values for
the username and password can be supplied directly by enclosing such values in I().

Usage

db_tb1(
table,
dbname,
dbtype,
host = NULL,
port = NULL,
user NULL,

db_tbl 203

password = NULL

)
Arguments

table The name of the table, or, a reference to a table in a schema (two-element vector
with the names of schema and table). Alternatively, this can be supplied as a
data table to copy into an in-memory database connection. This only works if:
(1) the db is chosen as either "sqlite” or "duckdb”, (2) the dbname was is set
to ":memory:", and (3) the object supplied to table is a data frame or a tibble
object.

dbname The database name.

dbtype Either an appropriate driver function (e.g., RPostgres: :Postgres()) or a short-
name for the database type. Valid names are: "postgresql”, "postgres”,
or "pgsql” (PostgreSQL, using the RPostgres: :Postgres() driver function);
"mysql” (MySQL, using RMySQL : :MySQL ()); "duckdb"” (DuckDB, using duckdb: : duckdb());
and "sqlite” (SQLite, using RSQLite: :SQLite()).

host, port The database host and optional port number.

user, password The environment variables used to access the username and password for the
database.
Value

A tbl_dbi object.

Function ID
1-6

See Also
Other Planning and Prep: action_levels(), create_agent(), create_informant(),draft_validation(),
file_tb1l(), scan_data(), thl_get(), tbl_source(), thl_store(), validate_rmd()

Examples

You can use an in-memory database
table and supply an in-memory table

to it too:
small_table_duckdb <-
db_tb1(
table = small_table,
dbname = ":memory:",
dbtype = "duckdb”
)

if (interactive()) {

It's also possible to obtain a remote
file and shove it into an in-memory

204 db_tbl

database; use the all-powerful
“file_tbl1()® + “db_tbl()" combo
all_revenue_large_duckdb <-
db_tb1(
table = file_tbl(
file = from_github(

file = "all_revenue_large.rds",
repo = "rich-iannone/intendo”,
subdir = "data-large”
)
),
dbname = ":memory:",
dbtype = "duckdb”

)

For remote databases, it's much the
same; here's an example that accesses
the ‘rna‘ table (in the RNA Central

public database) using ‘db_tb1()*®

rna_db_tbl <-
db_tb1(
table = "rna”,
dbname = "pfmegrnargs”,

dbtype = "postgres”,
host = "hh-pgsql-public.ebi.ac.uk”,
port = 5432,
user = I("reader"),
password = I("NWDMCE5xdipIjRrp")
)

Using *I()" for the user name and
password means that you're passing in
the actual values but, normally, you
would want use the names of environment
variables (envvars) to securely access
the appropriate username and password
values when connecting to a DB:
example_db_tbl <-
db_tb1(

table = "<table_name>",

dbname = "<database_name>",

dbtype = "<database_type_shortname>",

host = "<connection_url>",

port = "<connection_port>",

user = "<DB_USER_NAME>",

password = "<DB_PASSWORD>"

% ¥ oM H HE

)

Environment variables can be created

by editing the user ‘.Renviron‘ file and
the ‘usethis::edit_r_environ()"* function
makes this pretty easy to do

deactivate_steps 205

Storing table-prep formulas in a table
store makes it easier to work with DB
tables in pointblank; here's how to
generate a table store with two named
entries for table preparations
tbls <-
tbl_store(
small_table_duck ~ db_tbl(
table = pointblank::small_table,
dbname = ":memory:",
dbtype = "duckdb”
),
small_high_duck ~ db_tbl(
table = pointblank::small_table,

dbname = ":memory:",
dbtype = "duckdb”
) %%

dplyr::filter(f == "high")
)

Now it's easy to access either of these
tables (the second is a mutated version)
via the “tbl_get()" function
tbl_get("small_table_duck”, store = tbls)
tbl_get("small_high_duck”, store = tbls)

The table-prep formulas in ‘tbls®

could also be used in functions with
the ‘“tbl‘ argument; this is thanks

to the “tbl_source()‘ function

agent <-
create_agent(
thbl = ~ tbl_source(

"small_table_duck”,
store = tbls
)
)

informant <-
create_informant(
tbl = ~ tbl_source(
"small_high_duck”,
store = tbls

deactivate_steps Deactivate one or more of an agent’s validation steps

206 deactivate_steps

Description

Should the deactivation of one or more validation steps be necessary after creation of the validation
plan for an agent, the deactivate_steps() function will be helpful for that. This has the same
effect as using the active = FALSE option (active is an argument in all validation functions) for
the selected validation steps. Please note that this directly edits the validation step, wiping out any
function that may have been defined for whether the step should be active or not.

Usage

deactivate_steps(agent, i = NULL)

Arguments
agent An agent object of class ptblank_agent.
i The validation step number, which is assigned to each validation step in the
order of definition.
Value

A ptblank_agent object.

Function ID

9-6

See Also

For the opposite behavior, use the activate_steps() function.

Other Object Ops: activate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()

Examples

Create an agent that has the
‘small_table® object as the
target table, add a few
validation steps, and then use
‘interrogate()"
agent_1 <-
create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”
) %%
col_exists(vars(date)) %>%
col_vals_regex(
vars(b),
regex = "[0-9]-[a-z]{3}-[0-9]1"
) %%
interrogate()

T

draft_validation 207

The second validation step is
now being reconsidered and may
be either phased out or improved
upon; in the interim period it
was decided that the step should
be deactivated for now

agent_2 <-

agent_1 %>%

deactivate_steps(i = 2) %>%
interrogate()

% o H W

draft_validation Draft a starter pointblank validation .R/.Rmd file with a data table

Description

Generate a draft validation plan in a new .R or .Rmd file using an input data table. Using this
workflow, the data table will be scanned to learn about its column data and a set of starter validation
steps (constituting a validation plan) will be written. It’s best to use a data extract that contains at
least 1000 rows and is relatively free of spurious data.

Once in the file, it’s possible to tweak the validation steps to better fit the expectations to the particu-
lar domain. While column inference is used to generate reasonable validation plans, it is difficult to
infer the acceptable values without domain expertise. However, using draft_validation() could
get you started on floor 10 of tackling data quality issues and is in any case better than starting with
an empty code editor view.

Usage

draft_validation(
tbl,
tbl_name = NULL,
file_name = tbl_name,
path = NULL,
lang = NULL,
output_type = c("R", "Rmd"),
add_comments = TRUE,
overwrite = FALSE,
quiet = FALSE

Arguments

tbl The input table. This can be a data frame, tibble, a tb1_dbi object, ora tb1l_spark
object.

208

tbl_name

file_name

path

lang

output_type

add_comments

overwrite

quiet

Value

draft_validation

A optional name to assign to the input table object. If no value is provided,
a name will be generated based on whatever information is available. This ta-
ble name will be displayed in the header area of the agent report generated by
printing the agent or calling get_agent_report().

An optional name for the .R or .Rmd file. This should be a name without an
extension. By default, this is taken from the tb1_name but if nothing is supplied
for that, the name will contain the text "draft_validation_" followed by the
current date and time.

A path can be specified here if there shouldn’t be an attempt to place the gener-
ated file in the working directory.

The language to use when creating comments for the automatically- generated
validation steps. By default, NULL will create English ("en") text. Other options
include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Por-
tuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"),
Danish ("da"), Swedish ("sv"), and Dutch ("nl1").

An option for choosing what type of output should be generated. By default, this
is an .R script ("R") but this could alternatively be an R Markdown document
(n Rmd n) .

Should there be comments that explain the features of the validation plan in the
generated document? By default, this is TRUE.

Should a file of the same name be overwritten? By default, this is FALSE.

Should the function not inform when the file is written? By default this is FALSE.

Invisibly returns TRUE if the file has been written.

Function ID
1-11

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tb1(),
file_tb1l(), scan_data(), thl_get(), tbl_source(), thl_store(), validate_rmd()

Examples

if (interactive()) {

Draft validation plan for the
“dplyr::storms® dataset
draft_validation(tbl = dplyr::storms)

}

email_blast 209

email_blast Send email at a validation step or at the end of an interrogation

Description

The email_blast() function is useful for sending an email message that explains the result of a
pointblank validation. It is powered by the blastula and glue packages. This function should
be invoked as part of the end_fns argument of create_agent(). It’s also possible to invoke
email_blast() as part of the fns argument of the action_levels() function (i.e., to send multi-
ple email messages at the granularity of different validation steps exceeding failure thresholds).

To better get a handle on emailing with email_blast(), the analogous email_create() function
can be used with a pointblank agent object or an x-list obtained from using the get_agent_x_list()
function.

Usage

email_blast(
X,
to,
from,
credentials = NULL,
msg_subject = NULL,
msg_header = NULL,
msg_body = stock_msg_body(),
msg_footer = stock_msg_footer(),
send_condition = ~TRUE %in% x$notify

)
Arguments
X A reference to the x-list object prepared internally by the agent. This version of
the x-list is the same as that generated via get_agent_x_list(<agent>) except this
version is internally generated and hence only available in an internal evaluation
context.
to, from The email addresses for the recipients and of the sender.

credentials A credentials list object that is produced by either of the blastula: :creds(),
blastula::creds_anonymous(), blastula: :creds_key(), orblastula::creds_file()
functions. Please refer to the blastula documentation for information on how to
use these functions.

msg_subject The subject line of the email message.

msg_header, msg_body, msg_footer
Content for the header, body, and footer components of the HTML email mes-
sage.

210

send_condition An expression that should evaluate to a logical vector of length 1. If evaluated
as TRUE then the email will be sent, if FALSE then that won’t happen. The ex-
pression can use x-list variables (e.g., x$notify, x$type, etc.) and all of those
variables can be explored using the get_agent_x_list() function. The de-
fault expression is ~TRUE %in% x$notify, which results in TRUE if there are any
TRUE values in the x$notify logical vector (i.e., any validation step results in a

‘notify’ condition).

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). Here is an example of how the use of email_blast() inside the
end_fns argument of create_agent() is expressed in R code and in the corresponding YAML
representation.

R statement
create_agent(

tbl = ~ small_table,
tbl_name = "small_table”,
label = "An example.",

actions = al,
end_fns = 1list(
~ email_blast(

X’
to = "joe_public@example.com”,
from = "pb_notif@example.com”,

msg_subject = "Table Validation”,
credentials = blastula::creds_key(
id = "smtp2go”
),
)
)
%>%
col_vals_gt(vars(a), 1) %>%
col_vals_lt(vars(a), 7)

YAML representation
type: agent

tbl: ~small_table
tbl_name: small_table
label: An example.
lang: en

locale: en

actions:

warn_count: 1.0
notify_count: 2.0

end_fns: ~email_blast(x, to = "joe_public@example.com”,
from = "pb_notif@example.com”, msg_subject = "Table Validation”,

email_blast 211

credentials = blastula::creds_key(id = "smtp2go"),
)
embed_report: true
steps:
- col_vals_gt:
columns: vars(a)
value: 1.0
- col_vals_1t:
columns: vars(a)
value: 7.0

Function ID
4-1

See Also

Other Emailing: email_create(), stock_msg_body(), stock_msg_footer()

Examples

Create an ‘action_levels()‘ list
with absolute values for the
‘warn®, and ‘notify‘ states (with
thresholds of 1 and 2 'fail' units)
al <-
action_levels(
warn_at = 1,
notify_at = 2
)

if (interactive()) {

Validate that values in column
*at from ‘small_tbl‘ are always > 1
and that they are always < 7; first,
apply the ‘actions_levels()*
directive to ‘actions‘ and set up
an ‘email_blast()‘ as one of the
‘end_fns® (by default, the email
will be sent if there is a single
'notify' state across all
validation steps)
agent <-
create_agent(

tbl = small_table,

tbl_name = "small_table”,

label = "An example.”,

actions = al,

end_fns = list(

~ email_blast(
X,

e E E E EE N

212 email create

to = "joe_public@example.com”,
from = "pb_notif@example.com”,
msg_subject = "Table Validation”,
credentials = blastula::creds_key(
id = "smtp2go”
),
)
)
) %%
col_vals_gt(vars(a), value = 1) %>%
col_vals_lt(vars(a), value = 7) %>%
interrogate()

The above example was intentionally
not run because email credentials
aren't available and the ‘to*

and ‘from‘ email addresses are
nonexistent

B

To get a blastula email object
instead of eagerly sending the
message, we can use the
‘email_create()" function
email_object <-
create_agent(

tbl = small_table,

tbl_name = "small_table”,

ETRE T

label = "An example.”,
actions = al
) %>%

col_vals_gt(vars(a), value = 5) %>%
col_vals_lt(vars(a), value = 7) %>%
interrogate() %>%

email_create()

email_create Create an email object from a pointblank agent or informant

Description

The email_create() function produces an email message object that could be sent using the blas-
tula package. The x that we need for this could either be a pointblank agent, the agent x-list
(produced from the agent with the get_agent_x_list() function), or a pointblank informant. In
all cases, the email message will appear in the Viewer and a blastula email_message object will
be returned.

email_create 213

Usage

email_create(
X,
msg_header = NULL,
msg_body = stock_msg_body(),
msg_footer = stock_msg_footer()

Arguments

X A pointblank agent, an agent x-list, or a pointblank informant. The x-list ob-
ject can be created with the get_agent_x_list() function. It is recommended
that the option i = NULL be used with get_agent_x_list() if supplying an x-
list as x. Furthermore, The option generate_report = TRUE could be used with
create_agent() so that the agent report is available within the email.

msg_header, msg_body, msg_footer

Content for the header, body, and footer components of the HTML email mes-
sage.

Value

A blastula email_message object.

Function ID

4-2

See Also

Other Emailing: email_blast(), stock_msg_body(), stock_msg_footer()

Examples

if (interactive()) {

Create an ‘action_levels()‘ list
with absolute values for the
‘warn‘, and ‘notify‘ states (with
thresholds of 1 and 2 'fail' units)
al <-
action_levels(
warn_at = 1,
notify_at = 2
)

In a workflow that involves an

‘agent® object, we can make use of
the ‘end_fns‘ argument and

programmatically email the report

with the ‘email_blast()* function,

214

#
#

to send outside of the pointblank API;

#
#

however, an alternate workflow is to
produce the email object and choose

the ‘email_create()" function lets
us do this with an ‘agent‘ object

email_object_1 <-

#
#
#

create_agent(
tbl = small_table,
tbl_name = "small_table”,

label = "An example.”,
actions = al
) %%

col_vals_gt(vars(a), value = 1) %>%
col_vals_lt(vars(a), value = 7) %>%
interrogate() %>%

email_create()

We can view the HTML email just
by printing ‘email_object®‘; it
should appear in the Viewer

The ‘email_create()" function can
also be used on an agent x-list to
get the same email message object

email_object_2 <-

#
#
#
#
#

create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”,
actions = al
) %>%
col_vals_gt(vars(a), value
col_vals_lt(vars(b), value
interrogate() %>%
get_agent_x_list() %>%
email_create()

5) %%
5) %>%

An information report that's
produced by the informant can
made into an email message object;
let's create an informant and use
‘email_create()*

email_object_3 <-

create_informant(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”
) %>%
info_tabular(
info = "A simple table in the
Examples section of the function
called ‘email_create()"."
) %%

email_create

export_report 215

info_columns(
columns = vars(a),
info = "Numbers. On the high side.”
) %%
info_columns(
columns = vars(b),
info = "Lower numbers. Zeroes, even."
) %%
incorporate() %>%
email_create()

export_report Export an agent, informant, multiagent, or table scan to HTML

Description

The agent, informant, multiagent, and the table scan object can be easily written as HTML with
export_report(). Furthermore, any report objects from the agent, informant, and multiagent (gen-
erated using get_agent_report(), get_informant_report(), and get_multiagent_report())
can be provided here for HTML export. Each HTML document written to disk is self-contained
and easily viewable in a web browser.

Usage

export_report(x, filename, path = NULL, quiet = FALSE)

Arguments
X An agent object of class ptblank_agent, an informant of class ptblank_informant,
amultiagent of class ptblank_multiagent, atable scan of class ptblank_tbl_scan,
or, customized reporting objects (ptblank_agent_report, ptblank_informant_report,
ptblank_multiagent_report.wide, ptblank_multiagent_report.long).
filename The filename to create on disk for the HTML export of the object provided. It’s
recommended that the extension ”.html" is included.
path An optional path to which the file should be saved (this is automatically com-
bined with filename).
quiet Should the function not inform when the file is written? By default this is FALSE.
Value

Invisibly returns TRUE if the file has been written.

Function ID

9-3

216 export_report

See Also

Other Object Ops: activate_steps(), deactivate_steps(), remove_steps(), set_tb1l(), x_read_disk(),
x_write_disk()

Examples

if (interactive()) {
A: Writing an agent report as HTML

Let's go through the process of (1)

developing an agent with a validation

plan (to be used for the data quality

analysis of the ‘small_table‘ dataset),

(2) interrogating the agent with the

‘interrogate()" function, and (3) writing
the agent and all its intel to a file

Creating an ‘action_levels‘ object is a
common workflow step when creating a
pointblank agent; we designate failure
thresholds to the ‘warn‘, ‘stop‘, and
“notify" states using ‘action_levels()*
al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35
)

Now create a pointblank ‘agent‘ object
and give it the ‘al‘ object (which
serves as a default for all validation
steps which can be overridden); the
data will be referenced in ‘tbl‘
agent <-
create_agent(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "‘“export_report()*",

actions = al

T T

)

Then, as with any agent object, we
can add steps to the validation plan by
using as many validation functions as we
want; then, we ‘interrogate()"®
agent <-
agent %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
vars(b), regex = "[0-9]-[a-z]{3}-[0-91{3}"

export_report 217

) %%

rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5) %>%
interrogate()

The agent report can be written to an
HTML file with ‘export_report()*
export_report(

agent,

filename = "agent-small_table.html”

If you're consistently writing agent
reports when periodically checking data,
we could make use of ‘affix_date()‘ or
‘affix_datetime()" depending on the
granularity you need; here's an example
that writes the file with the format:
'agent-small_table-YYYY-mm-dd_HH-MM-SS.html'
export_report(

agent,

filename = affix_datetime(

"agent-small_table.html”
)

ETS

B: Writing an informant report as HTML

Let's go through the process of (1)

creating an informant object that

minimally describes the ‘small_table®
dataset, (2) ensuring that data is

captured from the target table using
the ‘incorporate()‘ function, and (3)
writing the informant report to HTML

Create a pointblank ‘informant®
object with ‘create_informant()*
and the ‘small_table‘ dataset;
‘incorporate()' so that info snippets
are integrated into the text
informant <-
create_informant(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "“export_report()*"

) %>%
info_snippet(

snippet_name = "high_a",

fn = snip_highest(column = "a")
) %>%

info_snippet(

218 file_tbl
snippet_name = "low_a",
fn = snip_lowest(column = "a")
) %%
info_columns(
columns = vars(a),
info = "From {low_a} to {high_a}."
) %%
info_columns(
columns = starts_with("date"),
info = "Time-based values."
) %%
info_columns(
columns = "date",
info = "The date part of ‘date_time“.”
) %%
incorporate()
The informant report can be written
to an HTML file with ‘export_report()";
let's do this with ‘affix_date()" so
the filename has a datestamp
export_report(
informant,
filename = affix_date(
"informant-small_table.html”
)
)
C: Writing a table scan as HTML
We can get an report that describes all
of the data in the ‘storms® dataset
tbl_scan <- scan_data(tbl = dplyr::storms)
The table scan object can be written
to an HTML file with ‘export_report()"*
export_report(
tbl_scan,
filename = "tbl_scan-storms.html”
)
3
file_tbl Get a table from a local or remote file
Description

If your target table is in a file, stored either locally or remotely, the file_tbl() function can make
it possible to access it in a single function call. Compatible file types for this function are: CSV

file_tbl

219

(.csv), TSV (.tsv), RDA (.rda), and RDS (.rds) files. This function generates an in-memory
tb1l_df object, which can be used as a target table for create_agent() and create_informant().
Another great option is supplying a table-prep formula involving file_tb1() to tbl_store() so
that you have access to tables based on flat files though single names via a table store.

In the remote data use case, we can specify a URL starting with http://, https://, etc., and ending
with the file containing the data table. If data files are available in a GitHub repository then we can
use the from_github() function to specify the name and location of the table data in a repository.

Usage

file_tbl(file,

Arguments

file

type

keep

verify

Value

A tbl_df object.

Function ID

1-7

See Also

type = NULL, ..., keep = FALSE, verify = TRUE)

The complete file path leading to a compatible data table either in the user sys-
tem or at a http://, https://, ftp://, or ftps:// URL. For a file hosted in a GitHub
repository, a call to the from_github() function can be used here.

The file type. This is normally inferred by file extension and is by default NULL to
indicate that the extension will dictate the type of file reading that is performed
internally. However, if there is no extension (and valid extensions are .csv,
.tsv, .rda, and .rds), we can provide the type as either of csv, tsv, rda, or
rds.

Options passed to readr’s read_csv () or read_tsv() function. Both functions
have the same arguments and one or the other will be used internally based on
the file extension or an explicit value given to type.

In the case of a downloaded file, should it be stored in the working directory
(keep = TRUE) or should it be downloaded to a temporary directory? By default,
this is FALSE.

If TRUE (the default) then a verification of the data object having the data. frame
class will be carried out.

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tb1(),
draft_validation(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

220

Examples

A local CSV file can be obtained as
a tbl object by supplying a path to
the file and some CSV reading options

to the “file_tb1()" function; for
this example we could obtain a path
to a CSV file in the pointblank
package with ‘system.file()‘:
csv_path <-
system.file(
"data_files”, "small_table.csv"”,
package = "pointblank”

#
#
#
#
#
#
#
#

)

Then use that path in ‘file_tbl1 ()"
with the option to specify the column
types in that CSV
tbl <-
file_tbl(
file = csv_path,
col_types = "TDdcddlc”
)

Now that we have a “tbl‘ object that
is a tibble, it can be introduced to
‘create_agent()" for validation
agent <- create_agent(tbl = tbl)

A different strategy is to provide
the data-reading function call
directly to ‘create_agent()*:
agent <-
create_agent(
tbl = ~ file_tbl(
file = system.file(

"data_files"”, "small_table.csv",
package = "pointblank”
)!
col_types = "TDdcddlc”
)
) %%

col_vals_gt(vars(a), value = 0)

All of the file-reading instructions
are encapsulated in the “tbl®
expression so the agent will always
obtain the most recent version of
the table (and the logic can be
translated to YAML, for later use)

% o H W

if (interactive()) {

(the ones used by ‘readr::read_csv()")

file_tbl

file_tbl 221

A CSV can be obtained from a public
GitHub repo by using the ‘from_github()*
helper function; let's create an agent
a supply a table-prep formula that
gets the same CSV file from the GitHub
repository for the pointblank package
agent <-
create_agent(
tbl = ~ file_tbl(
file = from_github(
file = "inst/data_files/small_table.csv"”,

repo = "rich-iannone/pointblank”
),
col_types = "TDdcddlc”
)
) %>%
col_vals_gt(vars(a), value = 0) %>%
interrogate()

This interrogated the data that was

obtained from the remote source file,
and, there's nothing to clean up (by

default, the downloaded file goes into
a system temp directory)

Storing table-prep formulas in a table
store makes it easier to work with
tabular data originating from files;
here's how to generate a table store
with two named entries for table
preparations
tbls <-
tbl_store(
small_table_file ~ file_tbl(
file = system.file(
"data_files"”, "small_table.csv"”,
package = "pointblank”
),
col_types = "TDdcddlc”
),
small_high_file ~ file_tbl(
file = system.file(
"data_files"”, "small_table.csv",
package = "pointblank”
),
col_types = "TDdcddlc”
) %>%
dplyr::filter(f == "high")

#
#
#
#
#
#

)

Now it's easy to access either of these
tables (the second is a mutated version)

222 from_github

via the “tbl_get()" function
tbl_get("small_table_file", store = tbls)
tbl_get(”"small_high_file"”, store = tbls)

The table-prep formulas in ‘tbls®
could also be used in functions with
the “tbl‘ argument; this is thanks
to the “tbl_source()‘ function
agent <-
create_agent(
thl = ~ tbl_source(
"small_table_file”,
store = tbls
)
)

informant <-
create_informant(

tbl = ~ tbl_source(
"small_high_file",
store = tbls

)

)
3
from_github Specify a file for download from GitHub
Description

The from_github() function is helpful for generating a valid URL that points to a data file in
a public GitHub repository. This function can be used in the file argument of the file_tbl()
function or anywhere else where GitHub URLSs for raw user content are needed.

Usage
from_github(file, repo, subdir = NULL, default_branch = "main")

Arguments
file The name of the file to target in a GitHub repository. This can be a path leading
to and including the file. This is combined with any path given in subdir.
repo The GitHub repository address in the format username/repo[/subdir][@refl#pulll @ *release].
subdir A path string representing a subdirectory in the GitHub repository. This is com-

bined with any path components included in file.

default_branch The name of the default branch for the repo. This is usually "main"” (the default
used here).

from_github 223

Value

A character vector of length 1 that contains a URL.

Function ID
13-6

See Also

Other Utility and Helper Functions: affix_datetime(), affix_date(), col_schema(), has_columns(),
stop_if_not()

Examples

A valid URL to a data file in GitHub can be
obtained from the HEAD of the default branch
from_github(
file = "inst/data_files/small_table.csv",
repo = "rich-iannone/pointblank”
#)
The path to the file location can be supplied
fully or partially to ‘subdir®
from_github(

file = "small_table.csv”,

repo = "rich-iannone/pointblank”,

subdir = "inst/data_files”

)

e T RN

We can use the first call in combination with
‘file_tbl1()* and ‘create_agent()‘; this
supplies a table-prep formula that gets
a CSV file from the GitHub repository for the
pointblank package
agent <-
create_agent(
tbl = ~ file_tbl(
file = from_github(
file = "inst/data_files/small_table.csv”,
repo = "rich-iannone/pointblank”
),
col_types = "TDdcddlc”
)
) %>%
col_vals_gt(vars(a), 0) %>%
interrogate()

S N e E E E E E E E E

ETS

The “from_github()* helper function is
pretty powerful and can get at lots of
different files in a repository

H

H

A data file from GitHub can be obtained from

224 game_revenue

a commit at release time

from_github(

file = "inst/extdata/small_table.csv"”,
repo = "rich-iannone/pointblank@ve.2.1"
#

)

A file may also be obtained from a repo at the
point in time of a specific commit (partial or
full SHA-1 hash for the commit can be used)
from_github(

file = "data-raw/small_table.csv",

repo = "rich-iannone/pointblank@e@4a71”

)

T EEEE

A file may also be obtained from an
open pull request
from_github(
file = "data-raw/small_table.csv”,
repo = "rich-iannone/pointblank#248"

)

E A N

game_revenue A table with game revenue data

Description

This table is a subset of the sj_all_revenue table from the intendo data package. It’s the first
2,000 rows from that table where revenue records range from 2015-01-01 to 2015-01-21.

Usage

game_revenue

Format

A tibble with 2,000 rows and 11 variables:

player_id A character column with unique identifiers for each user/player.
session_id A character column that contains unique identifiers for each player session.

session_start A date-time column that indicates when the session (containing the revenue event)
started.

time A date-time column that indicates exactly when the player purchase (or revenue event) oc-
curred.

item_type A character column that provides the class of the item purchased.
item_name A character column that provides the name of the item purchased.

item_revenue A numeric column with the revenue amounts per item purchased.

game_revenue_info 225

session_duration A numeric column that states the length of the session (in minutes) for which
the purchase occurred.

start_day A Date column that provides the date of first login for the player making a purchase.
acquisition A character column that provides the method of acquisition for the player.

country A character column that provides the probable country of residence for the player.

Function ID

14-4

See Also

Other Datasets: game_revenue_info, small_table_sqlite(), small_table, specifications

Examples

Here is a glimpse at the data
available in ‘game_revenue®
dplyr::glimpse(game_revenue)

game_revenue_info A table with metadata for the game_revenue dataset

Description

This table contains metadata for the game_revenue table. The first column (named column) pro-

vides the column names from game_revenue. The second column (info) contains descriptions for

each of the columns in that dataset. This table is in the correct format for use in the info_columns_from_tb1 ()
function.

Usage

game_revenue_info

Format
A tibble with 11 rows and 2 variables:
column A character column with unique identifiers for each user/player.

info A character column that contains unique identifiers for each player session.

Function ID

14-5

226

See Also

get_agent_report

Other Datasets: game_revenue, small_table_sqlite(), small_table, specifications

Examples

Here is a glimpse at the data
available in ‘game_revenue_info*
dplyr::glimpse(game_revenue_info)

get_agent_report Get a summary report from an agent

Description

We can get an informative summary table from an agent by using the get_agent_report() func-

tion.

The table can be provided in two substantially different forms: as a gt based display table

(the default), or, as a tibble. The amount of fields with intel is different depending on whether
or not the agent performed an interrogation (with the interrogate() function). Basically, before
interrogate() is called, the agent will contain just the validation plan (however many rows it has
depends on how many validation functions were supplied a part of that plan). Post-interrogation,
information on the passing and failing test units is provided, along with indicators on whether cer-
tain failure states were entered (provided they were set through actions). The display table variant
of the agent report, the default form, will have the following columns:

i (unlabeled): the validation step number.
STEP: the name of the validation function used for the validation step,
COLUMNS: the names of the target columns used in the validation step (if applicable).

VALUES: the values used in the validation step, where applicable; this could be as literal
values, as column names, an expression, etc.

TBL: indicates whether any there were any changes to the target table just prior to interroga-
tion. A rightward arrow from a small circle indicates that there was no mutation of the table.
An arrow from a circle to a purple square indicates that preconditions were used to modify
the target table. An arrow from a circle to a half-filled circle indicates that the target table has
been segmented.

EVAL: a symbol that denotes the success of interrogation evaluation for each step. A check-
mark indicates no issues with evaluation. A warning sign indicates that a warning occurred
during evaluation. An explosion symbol indicates that evaluation failed due to an error. Hover
over the symbol for details on each condition.

UNITS: the total number of test units for the validation step

PASS: on top is the absolute number of passing test units and below that is the fraction of
passing test units over the total number of test units.

FAIL: on top is the absolute number of failing test units and below that is the fraction of failing
test units over the total number of test units.

get_agent_report 227

* W, S, N: indicators that show whether the warn, stop, or notify states were entered; unset
states appear as dashes, states that are set with thresholds appear as unfilled circles when not
entered and filled when thresholds are exceeded (colors for W, S, and N are amber, red, and
blue)

* EXT: a column that provides buttons to download data extracts as CSV files for row-based
validation steps having failing test units. Buttons only appear when there is data to collect.

The small version of the display table (obtained using size = "small") omits the COLUMNS, TBL,
and EXT columns. The width of the small table is 575px; the standard table is 875px wide.

The ptblank_agent_report can be exported to a standalone HTML document with the export_report()
function.

If choosing to get a tibble (with display_table = FALSE), it will have the following columns:

* i: the validation step number.
* type: the name of the validation function used for the validation step.
e columns: the names of the target columns used in the validation step (if applicable).

* values: the values used in the validation step, where applicable; for a conjointly() validation
step, this is a listing of all sub-validations.

 precon: indicates whether any there are any preconditions to apply before interrogation and,
if so, the number of statements used.

* active: a logical value that indicates whether a validation step is set to "active” during an
interrogation.

* eval: a character value that denotes the success of interrogation evaluation for each step. A
value of "OK" indicates no issues with evaluation. The "WARNING" value indicates a warning
occurred during evaluation. The "ERROR” VALUES indicates that evaluation failed due to an
error. With "W+E" both warnings and an error occurred during evaluation.

* units: the total number of test units for the validation step.
e n_pass: the number of passing test units.
 f_pass: the fraction of passing test units.

* W, S, N: logical value stating whether the warn, stop, or notify states were entered. Will be
NA for states that are unset.

* extract: an integer value that indicates the number of rows available in a data extract. Will be
NA if no extract is available.

Usage
get_agent_report(
agent,
arrange_by = c("i", "severity"),

keep = c("all”, "fail_states"),
display_table = TRUE,

size = "standard”,
title = ":default:”,
lang = NULL,

locale = NULL

228

Arguments

agent

arrange_by

keep

display_table

size

title

lang

locale

Value

get_agent_report

An agent object of class ptblank_agent.

A choice to arrange the report table rows by the validation step number (1", the
default), or, to arrange in descending order by severity of the failure state (with
"severity").

An option to keep "all” of the report’s table rows (the default), or, keep only
those rows that reflect one or more "fail_states”.

Should a display table be generated? If TRUE (the default), and if the gt package
is installed, a display table for the report will be shown in the Viewer. If FALSE,
or if gt is not available, then a tibble will be returned.

The size of the display table, which can be either "standard” (the default) or
"small"”. This only applies to a display table (where display_table = TRUE).

Options for customizing the title of the report. The default is the keyword
":default:"” which produces generic title text that refers to the pointblank
package in the language governed by the lang option. Another keyword option
is ":tbl_name:", and that presents the name of the table as the title for the re-
port. If no title is wanted, then the " : none: " keyword option can be used. Aside
from keyword options, text can be provided for the title and glue: : glue () calls
can be used to construct the text string. If providing text, it will be interpreted
as Markdown text and transformed internally to HTML. To circumvent such a
transformation, use text in I() to explicitly state that the supplied text should
not be transformed.

The language to use for automatic creation of briefs (short descriptions for
each validation step) and for the agent report (a summary table that provides
the validation plan and the results from the interrogation. By default, NULL
will create English ("en") text. Other options include French ("fr"), German
("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"),
and Dutch ("nl1"). This lang option will override any previously set language
setting (e.g., by the create_agent() call).

An optional locale ID to use for formatting values in the agent report sum-
mary table according the locale’s rules. Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES"). This locale option will override any previously set locale
value (e.g., by the create_agent() call).

A ptblank_agent_report objectif display_table = TRUE or a tibble if display_table = FALSE.

Function ID

6-2

get_agent_report 229

See Also

Other Interrogate and Report: interrogate()

Examples

Create a simple table with a
column of numerical values
tbl <-
dplyr::tibble(a = c(5, 7, 8, 5))

Validate that values in column

“a‘ are always greater than 4

agent <-
create_agent(tbl = tbl) %>%
col_vals_gt(vars(a), value = 4) %>%
interrogate()

Get a tibble-based report from the
agent by using ‘get_agent_report()*
with “display_table = FALSE"
agent %>%
get_agent_report(display_table = FALSE)

View a the report by printing the
‘agent® object anytime, but, return a
gt table object by using this with
‘display_table = TRUE' (the default)
report <- get_agent_report(agent)
class(report)

#
#
#
#

What can you do with the report?
Print it from an R Markdown code,
use it in an email, put it in a

webpage, or further modify it with
the *xgt*x package

The agent report as a **gtx* display
table comes in two sizes: "standard”
(the default) and "small”
small_report <-
get_agent_report(
agent = agent,
size = "small”

class(small_report)

The standard report is 875px wide
the small one is 575px wide

230

get_agent_x_list

get_agent_x_list Get the agent’s x-list

Description

The agent’s x-list is a record of information that the agent possesses at any given time. The x-list
will contain the most complete information after an interrogation has taken place (before then, the
data largely reflects the validation plan). The x-list can be constrained to a particular validation step
(by supplying the step number to the i argument), or, we can get the information for all validation
steps by leaving i unspecified. The x-list is indeed an R list object that contains a veritable
cornucopia of information.

For an x-list obtained with i specified for a validation step, the following components are available:

time_start: the time at which the interrogation began (POSIXct [0 or 1])
time_end: the time at which the interrogation ended (POSIXct [0 or 1])
label: the optional label given to the agent (chr [1])

tb1l_name: the name of the table object, if available (chr [1])

tbl_src: the type of table used in the validation (chr [1])

tbl_src_details: if the table is a database table, this provides further details for the DB
table (chr [1])

tbl: the table object itself

col_names: the table’s column names (chr [ncol(tbl)])

col_types: the table’s column types (chr [ncol(tbl)])

i: the validation step index (int [1])

type: the type of validation, value is validation function name (chr [1])

columns: the columns specified for the validation function (chr [variable length])
values: the values specified for the validation function (mixed types [variable length])
briefs: the brief for the validation step in the specified 1ang (chr [1])

eval_error, eval_warning: indicates whether the evaluation of the step function, during
interrogation, resulted in an error or a warning (1gl [1])

capture_stack: alist of captured errors or warnings during step-function evaluation at inter-
rogation time (list [1])

n: the number of test units for the validation step (num [1])

n_passed, n_failed: the number of passing and failing test units for the validation step (num

(1D
f_passed: the fraction of passing test units for the validation step, n_passed /n (num [1])
f_failed: the fraction of failing test units for the validation step, n_failed/n (num [1])

warn, stop, notify: a logical value indicating whether the level of failing test units caused
the corresponding conditions to be entered (1gl [1])

get_agent_x_list 231

* lang: the two-letter language code that indicates which language should be used for all briefs,
the agent report, and the reporting generated by the scan_data() function (chr [1])

If i is unspecified (i.e., not constrained to a specific validation step) then certain length-one com-
ponents in the x-list will be expanded to the total number of validation steps (these are: i, type,
columns, values, briefs, eval_error, eval_warning, capture_stack, n, n_passed, n_failed,
f_passed, f_failed, warn, stop, and notify). The x-list will also have additional components
when i is NULL, which are:

* report_object: a gt table object, which is also presented as the default print method for a
ptblank_agent
* email_object: a blastula email_message object with a default set of components

* report_html: the HTML source for the report_object, provided as a length-one character
vector

e report_html_small: the HTML source for a narrower, more condensed version of report_object,
provided as a length-one character vector; The HTML has inlined styles, making it more suit-
able for email message bodies
Usage

get_agent_x_list(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.

i The validation step number, which is assigned to each validation step in the
order of invocation. If NULL (the default), the x-list will provide information
for all validation steps. If a valid step number is provided then x-list will have
information pertaining only to that step.

Value

A list object.

Function ID

8-1

See Also

Other Post-interrogation: all_passed(), get_data_extracts(), get_sundered_data(),write_testthat_file()

Examples

Create a simple data frame with
a column of numerical values
tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

Create an ‘action_levels()‘ list
with fractional values for the

232 get_data_extracts

‘warn‘, ‘stop‘, and ‘notify‘ states
al <-
action_levels(

warn_at = 0.2,
stop_at = 0.8,
notify_at = 0.345

)

Create an agent (giving it the
“tbl' and the ‘al‘ objects),
supply two validation step
functions, then interrogate
agent <-
create_agent(
tbl = tbl,
actions = al
) %%
col_vals_gt(vars(a), value = 7) %>%
col_is_numeric(vars(a)) %>%
interrogate()

Get the agent x-list
x <- get_agent_x_list(agent)

[NRRN

Print the x-list object ‘x

Get the ‘f_passed‘ component
of the x-list
x$f_passed

get_data_extracts Collect data extracts from a validation step

Description

In an agent-based workflow (i.e., initiating with create_agent()), after interrogation with interrogate(),
we can extract the row data that didn’t pass row-based validation steps with the get_data_extracts()
function. There is one discrete extract per row-based validation step and the amount of data avail-

able in a particular extract depends on both the fraction of test units that didn’t pass the validation

step and the level of sampling or explicit collection from that set of units. These extracts can

be collected programmatically through get_data_extracts() but they may also be downloaded

as CSV files from the HTML report generated by the agent’s print method or through the use of
get_agent_report().

The availability of data extracts for each row-based validation step depends on whether extract_failed
is set to TRUE within the interrogate() call (it is by default). The amount of fail rows extracted
depends on the collection parameters in interrogate(), and the default behavior is to collect up

to the first 5000 fail rows.

get_data_extracts 233

Row-based validation steps are based on those validation functions of the form col_vals_*() and also
include conjointly () and rows_distinct(). Only functions from that combined set of validation
functions can yield data extracts.

Usage

get_data_extracts(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent. It should have had interrogate()
called on it, such that the validation steps were carried out and any sample rows
from non-passing validations could potentially be available in the object.

i The validation step number, which is assigned to each validation step by point-
blank in the order of definition. If NULL (the default), all data extract tables will
be provided in a list object.

Value

A list of tables if i is not provided, or, a standalone table if i is given.

Function ID

8-2

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_sundered_data(),write_testthat_file()

Examples

Create a series of two validation
steps focused on testing row values
for part of the ‘small_table‘ object;
‘interrogate()‘ immediately
agent <-
create_agent(
tbl = small_table %>%
dplyr::select(a:f),
label = "‘get_data_extracts()‘"
) %%
col_vals_gt(vars(d), value = 1000) %>%
col_vals_between(
vars(c),
left = vars(a), right = vars(d),
na_pass = TRUE
) %%
interrogate()

Using ‘get_data_extracts()" with its
defaults returns of a list of tables,

234 get_informant_report

where each table is named after the
validation step that has an extract
available

agent %>% get_data_extracts()

We can get an extract for a specific
step by specifying it in the ‘i®

argument; let's get the failing rows
from the first validation step

(“col_vals_gt*)

agent %>% get_data_extracts(i = 1)

get_informant_report Get a table information report from an informant object

Description

We can get a table information report from an informant object that’s generated by the create_informant()

function. The report is provided as a gt based display table. The amount of information shown de-

pends on the extent of that added via the use of the info_*() functions or through direct editing of a

pointblank YAML file (an informant can be written to pointblank YAML with yaml_write(informant = <informant>, ...)).

Usage
get_informant_report(
informant,
size = "standard”,
title = ":default:”,
lang = NULL,
locale = NULL
)
Arguments
informant An informant object of class ptblank_informant.
size The size of the display table, which can be either "standard” (the default, with
a width of 875px) or "small” (width of 575px).
title Options for customizing the title of the report. The default is the keyword

":default:"” which produces generic title text that refers to the pointblank
package in the language governed by the lang option. Another keyword option
is ":tbl_name:", and that presents the name of the table as the title for the re-
port. If no title is wanted, then the " : none: " keyword option can be used. Aside
from keyword options, text can be provided for the title and glue: : glue () calls
can be used to construct the text string. If providing text, it will be interpreted
as Markdown text and transformed internally to HTML. To circumvent such a
transformation, use text in I() to explicitly state that the supplied text should
not be transformed.

get_informant_report

lang

locale

Value

A gt table object.

Function ID

7-2

See Also

235

The language to use for the information report. By default, NULL will create
English ("en") text. Other options include French ("fr"), German ("de"),
Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese
("zh™), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl1"). This lang option will override any previously set language set-
ting (e.g., by the create_informant () call).

An optional locale ID to use for formatting values in the information report sum-
mary table according the locale’s rules. Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES"). This locale option will override any previously set locale
value (e.g., by the create_informant() call).

Other Incorporate and Report: incorporate()

Examples

Generate an informant object using
the ‘small_table‘ dataset
informant <- create_informant(small_table)

the sections

Hod o O o

This function creates some information
without any extra help by profiling
the supplied table object; it adds
"table' and columns' and
we can print the object to see the
table information report

Alternatively, we can get the same report
by using ‘get_informant_report()"
report <- get_informant_report(informant)

class(report)

236 get_multiagent_report

get_multiagent_report Get a summary report using multiple agents

Description

We can get an informative summary table from a collective of agents by using the get_multiagent_report()
function. Information from multiple agent can be provided in three very forms: (1) the Long Display
(stacked reports), (2) the Wide Display (a comparison report), (3) as a tibble with packed columns.

Usage

get_multiagent_report(
multiagent,
display_table = TRUE,
display_mode = c("long”, "wide"),
title = ":default:"”,
lang = NULL,
locale = NULL

Arguments

multiagent A multiagent object of class ptblank_multiagent.

display_table Should a display table be generated? If TRUE (the default) a display table for the
report will be shown in the Viewer. If FALSE then a tibble will be returned.

display_mode If we are getting a display table, should the agent data be presented in a "long”
or "wide" form? The defaultis "long" but when comparing multiple runs where
the target table is the same it might be preferable to choose "wide".

title Options for customizing the title of the report when display_table = TRUE.
The default is the keyword ":default:" which produces generic title text. If
no title is wanted, then the ":none:" keyword option can be used. Another
keyword option is " : tb1_name: ", and that presents the name of the table as the
title for the report (this can only be used when display_mode = "long"). Aside
from keyword options, text can be provided for the title and glue: : glue () calls
can be used to construct the text string. If providing text, it will be interpreted
as Markdown text and transformed internally to HTML. To circumvent such a
transformation, use text in I() to explicitly state that the supplied text should
not be transformed.

lang The language to use for the long or wide report forms. By default, NULL will
preserve any language set in the component reports. The following options will
force the same language across all component reports: English ("en"), French
("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turk-
ish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl1"), Danish ("da"), Swedish
("sv"), and Dutch ("n1").

get_multiagent_report 237

locale An optional locale ID to use for formatting values in the long or wide report
forms (according the locale’s rules). Examples include "en_US" for English
(United States) and "fr_FR"” for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES"). This locale option will override any previously set locale
values.

Value

A gt table object if display_table = TRUE or a tibble if display_table = FALSE.

The Long Display

When displayed as "long" the multiagent report will stack individual agent reports in a single
document in the order of the agents in the multiagent object.

Each validation plan (possibly with interrogation info) will be provided and the output for each is
equivalent to calling get_agent_report() on each of the agents within the multiagent object.

The Wide Display

When displayed as "wide” the multiagent report will show data from individual agents as columns,
with rows standing as validation steps common across the agents.

Each validation step is represented with an icon (standing in for the name of the validation function)
and the associated SHA1 hash. This is a highly trustworthy way for ascertaining which validation
steps are effectively identical across interrogations. This way of organizing the report is beneficial
because different agents may have used different steps and we want to track the validation results
where the validation step doesn’t change but the target table does (i.e., new rows are added, existing
rows are updated, etc.).

The single table from this display mode will have the following columns:

* STEP: the SHA1 hash for the validation step, possibly shared among several interrogations.

* subsequent columns: each column beyond STEP represents a separate interrogation from an
agent object. The time stamp for the completion of each interrogation is shown as the column
label.

Function ID

10-3

See Also

Other The multiagent: create_multiagent(), read_disk_multiagent()
Examples
if (interactive()) {

Let's walk through several theoretical
data quality analyses of an extremely

238

small table; that table is called

‘small_table‘ and we can find it as a
dataset in this package

small_table

To set failure limits and signal
conditions, we designate proportional
failure thresholds to the ‘warn‘, ‘stop‘,
and ‘notify‘ states using ‘action_levels()®
al <-
action_levels(
warn_at = 0.05,
stop_at = 0.10,
notify_at = 0.20
)

We will create four different agents
and have slightly different validation
steps in each of them; in the first,
‘agent_1%, eight different validation
steps are created and the agent will
interrogate the ‘small_table®
agent_1 <-
create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "‘“get_multiagent_report()*",
actions = al
) %%
col_vals_gt(
vars(date_time),
value = vars(date),
na_pass = TRUE
) %>%
col_vals_gt(
vars(b),
value = vars(g),
na_pass = TRUE
) %%
rows_distinct() %>%
col_vals_equal(
vars(d),
value = vars(d),
na_pass = TRUE
) %>%
col_vals_between(
vars(c),
left = vars(a), right = vars(d)
) %>%
col_vals_not_between(
vars(c),
left = 10, right = 20,
na_pass = TRUE

% o W

get_multiagent_report

get_multiagent_report 239

) %%

rows_distinct(vars(d, e, f)) %>%
col_is_integer(vars(a)) %>%
interrogate()

The second agent, ‘agent_2‘, retains
all of the steps of ‘agent_1‘ and adds
two more (the last of which is inactive)
agent_2 <-
agent_1 %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
vars(b),
regex = "[0-9]-[a-z]{3}-[0-91{3}",
active = FALSE
) %%
interrogate()

The third agent, ‘agent_3‘, adds a single
validation step, removes the fifth one,
and deactivates the first
agent_3 <-
agent_2 %>%
col_vals_in_set(

vars(f),
set = c("low”, "mid"”, "high")
) %%

remove_steps(i = 5) %>%
deactivate_steps(i = 1) %>%
interrogate()

The fourth and final agent, ‘agent_4°,
reactivates steps 1 and 10, and removes
the sixth step
agent_4 <-
agent_3 %>%
activate_steps(i = 1) %>%
activate_steps(i = 10) %>%
remove_steps(i = 6) %>%
interrogate()

While all the agents are slightly
different from each other, we can still
get a combined report of them by
creating a 'multiagent'’
multiagent <-
create_multiagent(

agent_1, agent_2, agent_3, agent_4
)

#
#
#
#

Calling “multiagent® in the console
prints the multiagent report; but we
can use some non-default option with

240 get_sundered_data

the ‘get_multiagent_report()" function

By default, ‘get_multiagent_report()"

gives you a tall report with agent

reports being stacked

report_1 <-
get_multiagent_report(multiagent)

We can modify the title with that's
more suitable or use a keyword like
‘:tbl_name:‘ to give us the target
table name in each section

report_2 <-
get_multiagent_report(
multiagent,
title = ":tbl_name:"
)

We can opt for a wide display of
the reporting info, and this is
great when reporting on multiple
validations of the same target

table
report_3 <-
get_multiagent_report(
multiagent,
display_mode = "wide"
)
3
get_sundered_data Sunder the data, splitting it into ’pass’ and ’fail’ pieces
Description

Validation of the data is one thing but, sometimes, you want to use the best part of the input dataset
for something else. The get_sundered_data() function works with an agent object that has intel
(i.e., post interrogate()) and gets either the 'pass’ data piece (rows with no failing test units
across all row-based validation functions), or, the ’fail’ data piece (rows with at least one failing
test unit across the same series of validations). As a final option, we can have emit all the data with
a new column (called . pb_combined) which labels each row as passing or failing across validation
steps. These labels are "pass” and "fail” by default but their values can be easily customized.

Usage

get_sundered_data(
agent,
type = c("pass”, "fail”, "combined"),

get_sundered_data 241

pass_fail = c("pass", "fail"),
id_cols = NULL

Arguments

agent An agent object of class ptblank_agent. It should have had interrogate()
called on it, such that the validation steps were actually carried out.

type The desired piece of data resulting from the splitting. Options for returning a
single table are "pass” (the default) and "fail”. Each of these options return
a single table with, in the "pass” case, only the rows that passed across all
validation steps (i.e., had no failing test units in any part of a row for any vali-
dation step), or, the complementary set of rows in the "fail” case. Providing
NULL returns both of the split data tables in a list (with the names of "pass” and
"fail"). The option "combined"” applies a categorical (pass/fail) label (settable
in the pass_fail argument) in a new . pb_combined flag column. For this case
the ordering of rows is fully retained from the input table.

pass_fail A vector for encoding the flag column with *pass’ and ’fail’ values when type
="combined"”. The default is c("pass”,"fail”) but other options could be
c(TRUE, FALSE), c(1,0), or c(1L,0L).

id_cols An optional specification of one or more identifying columns. When taken to-
gether, we can count on this single column or grouping of columns to distin-
guish rows. If the table undergoing validation is not a data frame or tibble, then
columns need to be specified for id_cols.

Details

There are some caveats to sundering. The validation steps considered for this splitting has to be of
the row-based variety (e.g., the col_vals_*() functions or conjointly (), but not rows_distinct()).
Furthermore, validation steps that experienced evaluation issues during interrogation are not consid-
ered, and, validation steps where active = FALSE will be disregarded. The collection of validation
steps that fulfill the above requirements for sundering are termed in-consideration validation steps.

If using any preconditions for validation steps, we must ensure that all in-consideration validation
steps use the same specified preconditions function. Put another way, we cannot split the target
table using a collection of in-consideration validation steps that use different forms of the input
table.

Value

A list of table objects if type is NULL, or, a single table if a type is given.

Function ID

8-3

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts(),write_testthat_file()

242 get_sundered_data

Examples

Create a series of two validation
steps focused on testing row values
for part of the ‘small_table‘ object;
“interrogate()' immediately
agent <-
create_agent(
tbl = small_table %>%
dplyr::select(a:f),
label = "‘get_sundered_data()‘"
) %%
col_vals_gt(vars(d), value = 1000) %>%
col_vals_between(
vars(c),
left = vars(a), right = vars(d),
na_pass = TRUE
) %%
interrogate()

Get the sundered data piece that
contains only rows that passed both
validation steps (the default piece);
this yields 5 of 13 total rows

agent %>% get_sundered_data()

#
#
#
#

Get the complementary data piece:
all of those rows that failed either
of the two validation steps;
this yields 8 of 13 total rows
agent %>%
get_sundered_data(type = "fail")

We can get all of the input data
returned with a flag column (called
.pb_combined); this is done by
using ‘type = "combined”‘ and that
rightmost column will contain ‘"pass"®
and ‘"fail”" values

agent %>%

get_sundered_data(type = "combined”)

*o% o H W

\

We can change the ‘"pass”"‘ or ‘“"fail"*®
text values to another type of coding
with the ‘pass_fail‘ argument; one
possibility is TRUE/FALSE
agent %>%
get_sundered_data(
type = "combined”,
pass_fail = c(TRUE, FALSE)
)

...and using ‘@' and ‘1% might be

get_tt_param 243

worthwhile in some situations
agent %>%
get_sundered_data(
type = "combined”,
pass_fail = @:1
)

get_tt_param Get a parameter value from a summary table

Description

The get_tt_param() function can help you to obtain a single parameter value from a summary ta-
ble generated by the tt_*() functions tt_summary_stats(), tt_string_info(), tt_tbl_dims(),
or tt_tbl_colnames(). The following parameters are to be used depending on the input tb1l:

e from tt_summary_stats(): "min”, "p@5"”, "q_1", "med”, "q_3", "p95", "max", "iqr",
"range”
e from tt_string_info(): "length_mean”, "length_min", "length_max"
e from tt_tbl_dims(): "rows"”, "columns”
e from tt_tbl_colnames(): any integer present in the . param. column
The tt_summary_stats() and tt_string_info() functions will generate summary tables with

columns that mirror the numeric and character columns in their input tables, respectively. For that
reason, a column name must be supplied to the column argument in get_tt_param().

Usage

get_tt_param(tbl, param, column = NULL)

Arguments

tbl A summary table generated by either of the tt_summary_stats(), tt_string_info(),
tt_tbl_dims(), or tt_tbl_colnames() functions.

param The parameter name associated to the value that is to be gotten. These param-
eter names are always available in the first column (.param.) of a summary
table obtained by tt_summary_stats(), tt_string_info(), tt_tbl_dims(),
or tt_tbl_colnames().

column The column in the summary table for which the data value should be obtained.

This must be supplied for summary tables generated by tt_summary_stats()
and tt_string_info() (the tt_tbl_dims() and tt_tbl_colnames() func-
tions will always generate a two-column summary table).

Function ID

12-7

244 has_columns

See Also

Other Table Transformers: tt_string_info(), tt_summary_stats(), tt_tbl_colnames(), tt_tbl_dims(),
tt_time_shift(), tt_time_slice()

Examples

Get summary statistics for the

first quarter of the ‘game_revenue®

dataset that's included in the package

stat_tbl <-
game_revenue %>%
tt_time_slice(slice_point = 0.25) %>%
tt_summary_stats()

Based on player behavior for the first
quarter of the year, test whether the
maximum session duration during the
rest of the year is never higher
game_revenue %>%
tt_time_slice(

slice_point = 0.25,

keep = "right”
) %%
test_col_vals_lte(

columns = vars(session_duration),

value = get_tt_param(

tbl = stat_tbl,

#
#
#
#

param = "max",
column = "session_duration”
)
)
has_columns Determine if one or more columns exist in a table
Description

This utility function can help you easily determine whether a column of a specified name is present

in a table object. This function works well enough on a table object but it can also be used as part of a

formula in any validation function’s active argument. Using active = ~ . %>% has_columns("column_1")

means that the validation step will be inactive if the target table doesn’t contain a column named

column_1. We can also use multiple columns in vars() so having active = ~ . %>% has_columns(vars(column_1,column
in a validation step will make it inactive at interrogate() time unless the columns column_1 and

column_2 are both present.

Usage

has_columns(x, columns)

has_columns 245

Arguments

X The table object.

columns One or more column names that are to be checked for existence in the table x.
Value

A length-1 logical vector.

Function ID

13-2

See Also

Other Utility and Helper Functions: affix_datetime(), affix_date(), col_schema(), from_github(),
stop_if_not()

Examples

The ‘small_table‘ dataset in the

package has the columns ‘date_time",
“date‘, and the ‘a‘ through ‘f*

columns

small_table

With “has_columns()‘ we can check for
column existence by using it directly
on the table; a column name can be

verified as present by using it in

double quotes

small_table %>% has_columns("date")

Multiple column names can be supplied;
this is ‘TRUE' because both columns are
present in ‘small_table®

small_table %>% has_columns(c("a", "b"))

It's possible to supply column names
in ‘vars()' as well
small_table %>% has_columns(vars(a, b))

Because column ‘*h" isn't present, this
returns ‘FALSE" (all specified columns
need to be present to obtain ‘TRUE')
small_table %>% has_columns(vars(a, h))

The ‘has_columns()‘ function can be

useful in expressions that involve the
target table, especially if it is

uncertain that the table will contain

a column that's involved in a validation

246 incorporate

In the following agent-based validation,
the first two steps will be 'active'
because all columns checked for in the
expressions are present; the third step
is inactive because column ‘j‘ isn't
there (without the ‘active‘ statement we
would get an evaluation failure in the
agent report)
agent <-
create_agent(
tbl = small_table,
tbl_name = "small_table”
) %%
col_vals_gt(
vars(c), value = vars(a),
active = ~ . %>% has_columns(vars(a, c))
) %%
col_vals_1t(
vars(h), value = vars(d),
preconditions = ~ . %>% dplyr::mutate(h = d - a),
active = ~ . %>% has_columns(vars(a, d))
) %%
col_is_character(
vars(j),
active = ~ . %>% has_columns("j")
) %%
interrogate()

#
#
#
#
#
#
#
#

incorporate Given an informant object, update and incorporate table snippets

Description

When the informant object has a number of snippets available (by using info_snippet()) and
the strings to use them (by using the info_*() functions and {<snippet_name>} in the text ele-
ments), the process of incorporating aspects of the table into the info text can occur by using the
incorporate() function. After that, the information will be fully updated (getting the current state
of table dimensions, re-rendering the info text, etc.) and we can print the informant object or use
the get_informant_report() function to see the information report.

Usage

incorporate(informant)

Arguments

informant An informant object of class ptblank_informant.

incorporate 247

Value

A ptblank_informant object.

Function ID

7-1

See Also

Other Incorporate and Report: get_informant_report()

Examples

if (interactive()) {

Take the ‘small_table‘ and

assign it to ‘test_table™; we'll
modify it later

test_table <- small_table

Generate an informant object, add
two snippets with “info_snippet()*,
add information with some other
Yinfo_x()" functions and then
‘incorporate()" the snippets into
the info text

informant <-

create_informant(

% o H W

thl = ~ test_table,
tbl_name = "test_table”

) %%

info_snippet(
snippet_name = "row_count”,
fn =~ . %% nrow()

) %%

info_snippet(
snippet_name = "col_count”,
fn =~ . %% ncol()

) %%

info_columns(

columns = vars(a),

info = "In the range of 1 to 10. (SIMPLE)"
) %>%
info_columns(

columns = starts_with("date"),

info = "Time-based values (e.g., ‘Sys.time()‘).”
) %%
info_columns(

columns = "date"”,

info = "The date part of ‘date_time‘. (CALC)"
) %%

info_section(

248 info_columns

section_name = "rows"”,

row_count = "There are {row_count} rows available.”
) %%
incorporate()

We can print the ‘informant® object
to see the information report

Let's modify ‘test_table' to give

it more rows and an extra column

test_table <-
dplyr::bind_rows(test_table, test_table) %>%
dplyr::mutate(h = a + ¢)

Using “incorporate()* will cause
the snippets to be reprocessed, and,
the strings to be updated
informant <-
informant %>% incorporate()

When printed again, we'll see that the
row and column counts in the header

have been updated to reflect the

changed ‘test_table®

info_columns Add information that focuses on aspects of a data table’s columns

Description

Upon creation of an informant object (with the create_informant() function), there are two sec-
tions containing properties: (1) ’table’ and (2) ’columns’. The ’columns’ section is initialized with
the table’s column names and their types (as _type). Beyond that, it is useful to provide details about
the nature of each column and we can do that with the info_columns() function. A single column
(or multiple columns) is targeted, and then a series of named arguments (in the form entry_name =
"The xinfo text*.") serves as additional information for the column or columns.

Usage
info_columns(x, columns, ..., .add = TRUE)
Arguments
X An informant object of class ptblank_informant.
columns The column or set of columns to focus on. Can be defined as a column name

in quotes (e.g., "<column_name>"), one or more column names in vars() (e.g.,
vars(<column_name>)), or with a select helper (e.g., starts_with("date")).

info_columns 249

Information entries as a series of named arguments. The names refer to sub-
section titles within COLUMN -> <COLUMN_NAME> and the RHS contains the
info text (informational text that can be written as Markdown and further styled
with Text Tricks).

.add Should new text be added to existing text? This is TRUE by default; setting to
FALSE replaces any existing text for a property.

Value

A ptblank_informant object.

Info Text

The info text that’s used for any of the info_*() functions readily accepts Markdown formatting,
and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links
written as < link url > or [link text]J(link url) will get nicely-styled links. Any dates expressed
in the ISO-8601 standard with parentheses, " (2004-12-01)", will be styled with a font variation
(monospaced) and underlined in purple. Spans of text can be converted to label-style text by us-
ing: (1) double parentheses around text for a rectangular border as in ((label text)), or (2) triple
parentheses around text for a rounded-rectangular border like (((label text))).

CSS style rules can be applied to spans of info text with the following form:
[[info text]]<< CSS style rules >>

As an example of this in practice suppose you’d like to change the color of some text to red and
make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."
The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

e color: <a color value>; (text color)

* background-color: <a color value>; (the text’s background color)

e text-decoration: (overline | line-through | underline);

e text-transform: (uppercase | lowercase | capitalize);

* letter-spacing: <a +/- length value>;

» word-spacing: <a +/- length value>;

e font-style: (normal | italic | oblique);

e font-weight: (normal | bold | 100-900);

e font-variant: (normal | bold | 100-900);

* border: <a color value> <a length value> (solid | dashed | dotted);

In the above examples, ’length value’ refers to a CSS length which can be expressed in different
units of measure (e.g., 12px, lem, etc.). Some lengths can be expressed as positive or negative
values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common
being in the form of hexadecimal color values or as CSS color names.

250 info_columns

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). The way that information on
table columns is represented in YAML works like this: info fext goes into subsections of YAML
keys named for the columns, which are themselves part of the top-level columns key. Here is
an example of how several calls of info_columns() are expressed in R code and how the result
corresponds to the YAML representation.

R statement
informant %>%
info_columns(
columns = "date_time",
info = "xinfo textx 1."
) %%
info_columns(
columns = "date",
info = "xinfo textx 2."
) %>%
info_columns(
columns = "item_count”,
info = "xinfo textx 3. Statistics: {snippet_13}."
) %%
info_columns(
columns = vars(date, date_time),
info = "UTC time."”

YAML representation
columns:
date_time:
_type: POSIXct, POSIXt
info: '*info textx 1. UTC time.'

date:

_type: Date

info: '*info text* 2. UTC time.'
item_count:

_type: integer
info: '*info textx 3. Statistics: {snippet_1}.'

Subsections represented as column names are automatically generated when creating an informant.
Within these, there can be multiple subsections used for holding info text on each column. The
subsections used across the different columns needn’t be the same either, the only commonality that
should be enforced is the presence of the _type key (automatically updated at every incorporate()
invocation).

It’s safest to use single quotation marks around any info text if directly editing it in a YAML file.
Note that Markdown formatting and info snippet placeholders (shown here as {snippet_13}, see
info_snippet() for more information) are preserved in the YAML. The Markdown to HTML

info_columns 251

conversion is done when printing an informant (or invoking get_informant_report() on an infor-
mant) and the processing of snippets (generation and insertion) is done when using the incorporate()
function. Thus, the source text is always maintained in the YAML representation and is never writ-
ten in processed form.

Figures

Function ID

3-2

See Also

Other Information Functions: info_columns_from_tbl(), info_section(), info_snippet(),
info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

Examples

Create a pointblank ‘informant®
object with ‘create_informant()";
we can specify a ‘tbl‘ with the
~ followed by a statement that
gets the ‘small_table‘ dataset
informant <-
create_informant(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "An example.”

ER T T T

)

We can add *info text* to describe
the columns in the table with multiple
‘info_columns()" calls; the xinfo textx
calls are additive to existing content
in subsections
informant <-
informant %>%
info_columns(
columns = vars(a),
info = "In the range of 1 to 10. (SIMPLE)"
) %%
info_columns(
columns = starts_with("date"),
info = "Time-based values (e.g., ‘Sys.time()‘).”
) 5%
info_columns(
columns = "date"”,
info = "The date part of ‘date_time‘. (CALC)"

o o o

)

252 info_columns_from_tbl

Upon printing the ‘informant‘ object, we see
the additions made to the 'Columns' section

if (interactive()) {

The ‘informant® object can be written to
a YAML file with the ‘yaml_write()®
function; then, information can
be directly edited or modified
yaml_write(

informant = informant,

filename = "informant.yml”

)

The YAML file can then be read back
into an informant object with the
‘yaml_read_informant()" function
informant <-
yaml_read_informant
filename = "informant.yml"”

)

info_columns_from_tbl Add column information from another data table

Description

The info_columns_from_tbl() function is a wrapper around the info_columns() function and
is useful if you wish to apply info text to columns where that information already exists in a data
frame (or in some form that can readily be coaxed into a data frame). The form of the input tbl
(the one that contains column metadata) has a few basic requirements:

* the data frame must have two columns

* both columns must be of class character

¢ the first column should contain column names and the second should contain the info text

Each column that matches across tables (i.e., the tbl and the target table of the informant) will have
a new entry for the "info" property. Empty or missing info text will be pruned from tbl.

Usage

info_columns_from_tbl(x, tbl, .add = TRUE)

info_columns_tfrom_tbl 253

Arguments
X An informant object of class ptblank_informant.
tbl The two-column data frame which contains metadata about the target table in
the informant object.
.add Should new text be added to existing text? This is TRUE by default; setting to
FALSE replaces any existing text for the "info" property.
Value

A ptblank_informant object.

Function ID

3-3

See Also

The info_columns() function, which allows for manual entry of info text.

Other Information Functions: info_columns(), info_section(), info_snippet(), info_tabular(),
snip_highest(), snip_list(), snip_lowest(), snip_stats()

Examples

Create a pointblank ‘informant®
object with ‘create_informant()";
we can specify a ‘tbl* with the
*~' followed by a statement that
gets the ‘game_revenue' dataset
informant <-

create_informant(

% ¥ o

tbl = ~ game_revenue,
tbl_name = "game_revenue”,
label = "An example.”

)

We can add xinfo text* to describe
the columns in the table by using
information in another table; the
‘game_revenue_info' dataset contains
metadata for ‘game_revenue®

A

game_revenue_info

The ‘info_columns_from_tbl1 ()"
function takes a table object
where the first column has the
column names and the second
contains the *info textx
informant <-

informant %>%

254 info_section

info_columns_from_tbl(
tbl = game_revenue_info

)

We can continue to add more *info
text* since the process is additive;
the ‘info_columns_from_tbl()"
function populates the ‘info"
subsection
informant <-
informant %>%
info_columns(
columns = "item_revenue”,
info = "Revenue reported in USD."
) %%
info_columns(
columns = "acquisition”,
“top list® = "{top5_aq}”
) %%
info_snippet(
snippet_name = "top5_aq”,
fn = snip_list(column = "acquisition”)
) %%
incorporate()

info_section Add information that focuses on some key aspect of the data table

Description

While the info_tabular() and info_columns() functions allow us to add/modify info text for
specific sections, the info_section() makes it possible to add sections of our own choosing and
the information that make sense for those sections. Define a section_name and provide a series
of named arguments (in the form entry_name = "The *info text.") to build the informational
content for that section.

Usage
info_section(x, section_name, ...)
Arguments
X An informant object of class ptblank_informant.

section_name The name of the section for which this information pertains.

Information entries as a series of named arguments. The names refer to subsec-
tion titles within the section defined as section_name and the RHS is the info
text (informational text that can be written as Markdown and further styled with
Text Tricks).

info_section 255

Value

A ptblank_informant object.

Info Text

The info text that’s used for any of the info_*() functions readily accepts Markdown formatting,
and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links
written as < link url > or [link text]J(link url) will get nicely-styled links. Any dates expressed
in the ISO-8601 standard with parentheses, " (2004-12-01)", will be styled with a font variation
(monospaced) and underlined in purple. Spans of text can be converted to label-style text by us-
ing: (1) double parentheses around text for a rectangular border as in ((label text)), or (2) triple
parentheses around text for a rounded-rectangular border like (((label text))).

CSS style rules can be applied to spans of info text with the following form:
[[info text]]<< CSS style rules >>

As an example of this in practice suppose you’d like to change the color of some text to red and
make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

e color: <a color value>; (text color)
* background-color: <a color value>; (the text’s background color)

e text-decoration: (overline | line-through | underline);

e text-transform: (uppercase | lowercase | capitalize);
* letter-spacing: <a +/- length value>;
» word-spacing: <a +/- length value>;

e font-style: (normal | italic | oblique);
e font-weight: (normal | bold | 100-900);

e font-variant: (normal | bold | 100-900);
* border: <a color value> <a length value> (solid | dashed | dotted);

In the above examples, ’length value’ refers to a CSS length which can be expressed in different
units of measure (e.g., 12px, lem, etc.). Some lengths can be expressed as positive or negative
values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common
being in the form of hexadecimal color values or as CSS color names.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). Extra sections (i.e., neither
the table nor the columns sections) can be generated and filled with info text by using one or
more calls of info_section(). This is how it is expressed in both R code and in the YAML
representation.

256 info_section

R statement
informant %>%
info_section(
section_name = "History",
Changes ="
- Change 1
- Change 2
- Change 3",
‘Last Update® = "(2020-10-23) at 3:28 PM."
) %%
info_section(
section_name = "Additional Notes"”,
*Notes 1% = "Notes with a {snippet}.”,
*Notes 2 = "**Bold notesxx."

YAML representation
History:
Changes: |2-

- Change 1
- Change 2
- Change 3
Last Update: (2020-10-23) at 3:28 PM.
Additional Notes:
Notes 1: Notes with a {snippet}.
Notes 2: '#x*Bold notes*x*.'

Subsections represented as column names are automatically generated when creating an informant.
Within each of the top-level sections (i.e., History and Additional Notes) there can be multiple
subsections used for holding info text.

It’s safest to use single quotation marks around any info fext if directly editing it in a YAML
file. Note that Markdown formatting and info snippet placeholders (shown here as {snippet},
see info_snippet () for more information) are preserved in the YAML. The Markdown to HTML
conversion is done when printing an informant (or invoking get_informant_report() on an infor-
mant) and the processing of snippets (generation and insertion) is done when using the incorporate()
function. Thus, the source text is always maintained in the YAML representation and is never writ-
ten in processed form.

Figures

Function ID

3-4

info_section 257

See Also

Other Information Functions: info_columns_from_tb1(), info_columns(), info_snippet(),
info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

Examples

Create a pointblank ‘informant®
object with ‘create_informant()";
we can specify a “tbl* with the
*~% followed by a statement that
gets the ‘small_table® dataset
informant <-
create_informant(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "An example.”

)

EE

The ‘informant® object has the 'table'
and 'columns' sections; we can create
entirely different sections with their
own properties using ‘info_section()*
informant <-
informant %>%
info_section(
section_name = "Notes”,
creation = "Dataset generated on (2020-01-15).",
usage = "‘small_table %>% dplyr::glimpse()""
) %%
incorporate()

Upon printing the ‘informant‘ object, we see
the addition of the 'Notes' section and its
own information

if (interactive()) {

The ‘informant‘ object can be written to
a YAML file with the ‘yaml_write()®
function; then, information can
be directly edited or modified
yaml_write(

informant = informant,

filename = "informant.yml"”

The YAML file can then be read back
into an informant object with the
‘yaml_read_informant()" function
informant <-
yaml_read_informant
filename = "informant.yml"”

258 info_snippet

info_snippet Generate a useful text ’snippet’ from the target table

Description

Getting little snippets of information from a table goes hand-in-hand with mixing those bits of
info with your table info. Call info_snippet () to define a snippet and how you’ll get that from the
target table. The snippet definition is supplied either with a formula, or, with a pointblank-supplied
snip_*() function. So long as you know how to interact with a table and extract information, you
can easily define snippets for a informant object. And once those snippets are defined, you can
insert them into the info fext as defined through the other info_*() functions (info_tabular(),
info_columns(), and info_section()). Use curly braces with just the snippet_name inside
(e.g., "This column has {n_cat} categories.").

Usage

info_snippet(x, snippet_name, fn)

Arguments

X An informant object of class ptblank_informant.

snippet_name The name for snippet, which is used for interpolating the result of the snippet
formula into info text defined by an info_*() function.

fn A formula that obtains a snippet of data from the target table. It’s best to use a
leading dot (.) that stands for the table itself and use pipes to construct a series of
operations to be performed on the table (e.g., ~ . %>% dplyr: :pull(column_2)
%>% max(na.rm=TRUE)). So long as the result is a length-1 vector, it’ll likely
be valid for insertion into some info text. Alternatively, a snip_*() function can
be used here (these functions always return a formula that’s suitable for all types
of data sources).

Value

A ptblank_informant object.

Snip functions provided in pointblank

For convenience, there are several snip_*() functions provided in the package that work on column
data from the informant’s target table. These are:

e snip_list(): get a list of column categories

* snip_stats(): get an inline statistical summary

info_snippet 259

e snip_lowest(): get the lowest value from a column

* snip_highest() : get the highest value from a column

As it’s understood what the target table is, only the column in each of these functions is necessary
for obtaining the resultant text.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). Snippets are stored in the
YAML representation and here is is how they are expressed in both R code and in the YAML output
(showing both the meta_snippets and columns keys to demonstrate their relationship here).

R statement
informant %>%
info_columns(

columns = "date_time",

‘Latest Date® = "The latest date is {latest_date}.”
) %>%
info_snippet(

snippet_name = "latest_date”,

fn =~ . %>% dplyr::pull(date) %>% max(na.rm = TRUE)
) %>%
incorporate()

YAML representation
meta_snippets:
latest_date: ~. %>% dplyr::pull(date) %>% max(na.rm = TRUE)
columns:
date_time:
_type: POSIXct, POSIXt

Latest Date: The latest date is {latest_date}.
date:

_type: Date
item_count:

_type: integer

Figures

Function ID

3-5

260 info_snippet

See Also

Other Information Functions: info_columns_from_tb1(), info_columns(), info_section(),
info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

Examples

Take the ‘small_table‘ and

assign it to ‘test_table™; we'll
modify it later

test_table <- small_table

Generate an informant object, add
two snippets with “info_snippet()",
add information with some other
Yinfo_x()" functions and then
‘incorporate()" the snippets into
the info text

informant <-

create_informant(

N

thl = ~ test_table,
tbl_name = "test_table”,
label = "An example.”
) %>%
info_snippet(
snippet_name = "row_count”,
fn =~ . %% nrow()
) %>%
info_snippet(
snippet_name = "max_a",
fn = snip_highest(column = "a")
) %%

info_columns(

columns = vars(a),

info = "In the range of 1 to {max_a}. (SIMPLE)"
) 5%
info_columns(

columns = starts_with("date"),

info = "Time-based values (e.g., ‘Sys.time()‘).”
) %%
info_columns(

columns = "date"”,

info = "The date part of ‘date_time‘. (CALC)"
) %%
info_section(

section_name = "rows",

row_count = "There are {row_count} rows available.”
) 5%
incorporate()

We can print the ‘informant® object
to see the information report

info_tabular 261

Let's modify ‘test_table‘ to give

it more rows and an extra column

test_table <-
dplyr::bind_rows(test_table, test_table) %>%
dplyr::mutate(h = a + ¢)

Using ‘incorporate()" will cause
the snippets to be reprocessed, and,
the info text to be updated
informant <-

informant %>% incorporate()

info_tabular Add information that focuses on aspects of the data table as a whole

Description

When an informant object is created with the create_informant() function, it has two starter
sections: (1) ’table’ and (2) ’columns’. The ’table’ section should contain a few properties upon
creation, such as the supplied table name (name) and table dimensions (as _columns and _rows). We
can add more table-based properties with the info_tabular() function. By providing a series of
named arguments (in the form entry_name = "The *info text=."), we can add more information
that makes sense for describing the table as a whole.

Usage
info_tabular(x, ...)
Arguments
X An informant object of class ptblank_informant.
Information entries as a series of named arguments. The names refer to subsec-
tion titles within the TABLE section and the RHS is the info fext (informational
text that can be written as Markdown and further styled with Text Tricks).
Value

A ptblank_informant object.

Info Text

The info text that’s used for any of the info_*() functions readily accepts Markdown formatting,
and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links
written as < link url > or [link text](link url) will get nicely-styled links. Any dates expressed
in the ISO-8601 standard with parentheses, " (2004-12-01)", will be styled with a font variation
(monospaced) and underlined in purple. Spans of text can be converted to label-style text by us-
ing: (1) double parentheses around text for a rectangular border as in ((label text)), or (2) triple
parentheses around text for a rounded-rectangular border like (((label text))).

262 info_tabular

CSS style rules can be applied to spans of info text with the following form:
[[info text J]<< CSS style rules >>

As an example of this in practice suppose you’d like to change the color of some text to red and
make the font appear somewhat thinner. A variation on the following might be used:

"This is a [[factor]]<<color: red; font-weight: 300;>>value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

« color: <a color value>; (text color)
 background-color: <a color value>; (the text’s background color)

e text-decoration: (overline | line-through | underline);

e text-transform: (uppercase | lowercase | capitalize);
* letter-spacing: <a +/- length value>;
» word-spacing: <a +/- length value>;

e font-style: (normal | italic | oblique);
e font-weight: (normal | bold | 100-900);

e font-variant: (normal | bold | 100-900);
* border: <a color value> <a length value> (solid | dashed | dotted);

In the above examples, ’length value’ refers to a CSS length which can be expressed in different
units of measure (e.g., 12px, lem, etc.). Some lengths can be expressed as positive or negative
values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common
being in the form of hexadecimal color values or as CSS color names.

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). When info_tabular() is
represented in YAML, info text goes into subsections of the top-level table key. Here is an ex-
ample of how a call of info_tabular() is expressed in R code and in the corresponding YAML
representation.

R statement
informant %>%
info_tabular(
section_1 = "xinfo text* 1.",
‘section 2% = "xinfo textx 2 and {snippet_13}"

)

YAML representation
table:
_columns: 23
_rows: 205.90
_type: tbl_df
section_1: 'xinfo textx 1.'
section 2: 'xinfo text* 2 and {snippet_1}'

info_tabular 263

Subsection titles as defined in info_tabular() can be set in backticks if they are not syntactically
correct as an argument name without them (e.g., when using spaces, hyphens, etc.).

It’s safest to use single quotation marks around any info text if directly editing it in a YAML file.
Note that Markdown formatting and info snippet placeholders (shown here as {snippet_13}, see
info_snippet() for more information) are preserved in the YAML. The Markdown to HTML
conversion is done when printing an informant (or invoking get_informant_report() on an infor-
mant) and the processing of snippets (generation and insertion) is done when using the incorporate()
function. Thus, the source text is always maintained in the YAML representation and is never writ-
ten in processed form.

Figures

Function ID
3-1

See Also

Other Information Functions: info_columns_from_tb1(), info_columns(), info_section(),
info_snippet(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

Examples

Create a pointblank ‘informant®
object with ‘create_informant()*;
we can specify a ‘tbl‘ with the
>~ followed by a statement that
gets the ‘small_table dataset
informant <-
create_informant(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "An example.”

)

We can add *info textx to describe
the table with ‘info_tabular()*
informant <-
informant %>%
info_tabular(
*Row Definition® = "A row has randomized values.",
Source = c(
"~ From the **pointblankx* package."”,
"- [https://rich-iannone.github.io/pointblank/1()"
)
)

Upon printing the ‘informant‘ object, we see
the additions made to the 'Table' section

264 interrogate

if (interactive()) {

The ‘informant‘ object can be written to
a YAML file with the ‘yaml_write()®
function; then information can
be directly edited or modified
yaml_write(

informant = informant,

filename = "informant.yml”

)

The YAML file can then be read back
into an informant object with the
‘yaml_read_informant()" function
informant <-

yaml_read_informant(

filename = "informant.yml”
)
}
interrogate Given an agent that has a validation plan, perform an interrogation
Description

When the agent has all the information on what to do (i.e., a validation plan which is a series of
validation steps), the interrogation process can occur according its plan. After that, the agent will
have gathered intel, and we can use functions like get_agent_report() and all_passed() to
understand how the interrogation went down.

Usage

interrogate(
agent,
extract_failed = TRUE,
get_first_n = NULL,
sample_n = NULL,
sample_frac = NULL,
sample_limit = 5000

Arguments

agent An agent object of class ptblank_agent that is created with create_agent().

extract_failed An option to collect rows that didn’t pass a particular validation step. The default
is TRUE and further options allow for fine control of how these rows are collected.

interrogate

get_first_n

sample_n

sample_frac

sample_limit

Value

265

If the option to collect non-passing rows is chosen, there is the option here to
collect the first n rows here. Supply the number of rows to extract from the top
of the non-passing rows table (the ordering of data from the original table is
retained).

If the option to collect non-passing rows is chosen, this option allows for the
sampling of n rows. Supply the number of rows to sample from the non-passing
rows table. If n is greater than the number of non-passing rows, then all the rows
will be returned.

If the option to collect non-passing rows is chosen, this option allows for the
sampling of a fraction of those rows. Provide a number in the range of @ and
1. The number of rows to return may be extremely large (and this is especially
when querying remote databases), however, the sample_limit option will apply
a hard limit to the returned rows.

A value that limits the possible number of rows returned when sampling non-
passing rows using the sample_frac option.

A ptblank_agent object.

Function ID

6-1

See Also

Other Interrogate and Report: get_agent_report()

Examples

if (interactive()) {

Create a simple table with two
columns of numerical values

tbl <-
dplyr::tibble(

a=c(,7,6,5, 8,7,
b=c(7, 1, 0, 0, 0, 3)
)

Validate that values in column
a from ‘tbl‘ are always > 5,
using ‘interrogate()‘ carries out
the validation plan and completes
the whole process
agent <-

create_agent(tbl = tbl) %>%
col_vals_gt(vars(a), value = 5) %>%

interrogate()

266 log4r_step

log4r_step Enable logging of failure conditions at the validation step level

Description

The log4r_step() function can be used as an action in the action_levels() function (as a list
component for the fns list). Place a call to this function in every failure condition that should
produce a log (i.e., warn, stop, notify). Only the failure condition with the highest severity for a
given validation step will produce a log entry (skipping failure conditions with lower severity) so
long as the call to log4r_step() is present.

Usage

logdr_step(x, message = NULL, append_to = "pb_log_file")

Arguments

X A reference to the x-list object prepared by the agent. This version of the x-list
is the same as that generated via get_agent_x_list(<agent>, i = <step>) except
this version is internally generated and hence only available in an internal eval-
uation context.

message The message to use for the log entry. When not provided, a default glue string is
used for the messaging. This is dynamic since the internal glue: :glue() call
occurs in the same environment as X, the x-list that’s constrained to the validation
step. The default message, used when message = NULL is the glue string "Step
{x$i} exceeded the {level} failure threshold (f_failed = {x$f_failed?})
['{x$type}']". As can be seen, a custom message can be crafted that uses
other elements of the x-list with the {x$<component>} construction.

append_to The file to which log entries at the warn level are appended. This can alterna-
tively be one or more logdr appenders.

Value

Nothing is returned however log files may be written in very specific conditions.

Function ID

5-1

log4r_step 267

Examples

We can create an ‘action_levels®
object that has a threshold for
the ‘warn‘ state, and, an
associated function that should
be invoked whenever the ‘warn®
state is entered. Here, the
function call with ‘“log4r_step()*®
will be invoked whenever there
is one failing test unit. It's
important to match things up here;
notice that ‘warn_at‘ is given a
threshold and the list of functions
given to ‘fns‘ has a ‘warn‘ component
al <-
action_levels(

warn_at = 1,

N E E E E E

fns = list(
warn = ~ logdr_step(
X, append_to = "example_log”
)
)

)

Printing ‘al‘ will show us the
settings for the

“action_levels" object:

al

Let's create an agent with
‘small_table‘ as the target
table, apply the ‘action_levels®
object created above as ‘al‘,
add two validation steps, and
then “interrogate()* the data
agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table”,
actions = al
) %%
col_vals_gt(vars(d), 300) %>%
col_vals_in_set(
vars(f), c("low”, "high")
) %%
interrogate()

*o% o H W

From the agent report, we can
see that both steps have yielded
warnings upon interrogation
(i.e., filled yellow circles

in the ‘W' column).

o o

268 read_disk_multiagent

We can see this more directly

by inspecting the ‘warn®

component of the agent's x-list:
get_agent_x_list(agent)$warn

Upon entering the ‘warn‘ state

in each validation step during
interrogation, the ‘logd4r_step()"
function call was invoked! This
will generate an ‘"example_log
file in the working directory
and log entries will be appended
to the file

[T

T R

if (file.exists("example_log")) {
file.remove("example_log")

}

read_disk_multiagent Read pointblank agents stored on disk as a multiagent

Description

An agent or informant can be written to disk with the x_write_disk() function. While useful
for later retrieving the stored agent with x_read_disk() it’s also possible to read a series of on-
disk agents with the read_disk_multiagent() function, which creates a ptblank_multiagent
object. A multiagent object can also be generated via the create_multiagent() function but is
less convenient to use if one is just using agents that have been previous written to disk.

Usage

read_disk_multiagent(filenames = NULL, pattern = NULL, path = NULL)

Arguments
filenames The names of files (holding agent objects) that were previously written by x_write_disk().
pattern A regex pattern for accessing saved-to-disk agent files located in a directory
(specified in the path argument).
path A path to a collection of files. This is either optional in the case that files are
specified in filenames (the path combined with all filenames), or, required
when providing a pattern for file names.
Value

A ptblank_multiagent object.

remove_steps 269

Function ID

10-2

See Also

Other The multiagent: create_multiagent(), get_multiagent_report()

remove_steps Remove one or more of an agent’s validation steps

Description

Validation steps can be removed from an agent object through use of the remove_steps () function.
This is useful, for instance, when getting an agent from disk (via the x_read_disk() function)
and omitting one or more steps from the agent’s validation plan. Please note that when removing
validation steps all stored data extracts will be removed from the agent.

Usage

remove_steps(agent, i = NULL)

Arguments
agent An agent object of class ptblank_agent.
i The validation step number, which is assigned to each validation step in the order
of definition. If NULL (the default) then step removal won’t occur by index.
Value

A ptblank_agent object.
A ptblank_agent object.

Function ID

9-7

See Also

Instead of removal, the deactivate_steps() function will simply change the active status of one
or more validation steps to FALSE (and activate_steps() will do the opposite).

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), set_tbl(),
x_read_disk(), x_write_disk()

270 rows_complete

Examples
Create an agent that has the
‘small_table® object as the
target table, add a few
validation steps, and then use
‘interrogate()®

agent_1 <-
create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”
) %%
col_exists(vars(date)) %>%
col_vals_regex(
vars(b), regex = "[0-9]1-[a-z]{3}-[0-9]1"
) 5%
interrogate()

The second validation step has
been determined to be unneeded and
is to be removed; this can be done
by using ‘remove_steps()‘ with the
agent object

agent_2 <-

agent_1 %>%

remove_steps(i = 2) %>%
interrogate()

% ¥ B

rows_complete Are row data complete?

Description

The rows_complete() validation function, the expect_rows_complete() expectation function,
and the test_rows_complete() test function all check whether rows contain any NA/NULL values
(optionally constrained to a selection of specified columns). The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. The types of data tables that can be
used include data frames, tibbles, database tables (tb1_dbi), and Spark DataFrames (tbl_spark).
As a validation step or as an expectation, this will operate over the number of test units that is equal
to the number of rows in the table (after any preconditions have been applied).

We can specify the constraining column names in quotes, in vars(), and with the following tidyse-
lect helper functions: starts_with(), ends_with(), contains(), matches(), and everything().

Usage

rows_complete(

rows_complete

X’

271

columns = NULL,

preconditions

= NULL,

segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)

expect_rows_complete(

object,

columns = NULL,

preconditions
threshold = 1

)

= NULL,

test_rows_complete(object, columns = NULL, preconditions = NULL, threshold = 1)

Arguments

X

columns

preconditions

segments

actions

step_id

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)

272

rows_complete

be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary

rows_complete 273

(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. This is especially true when x is a table object because, otherwise, nothing
happens. Using action_levels(warn_at = 0.25) or action_levels(stop_at = @.25) are good
choices depending on the situation (the first produces a warning when a quarter of the total test units
fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via

274 rows_complete

yaml_agent_interrogate()). When rows_complete() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of rows_complete() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement
agent %>%
rows_complete(
columns = vars(a, b),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘rows_complete()"‘ step.”,
active = FALSE

)

YAML representation

steps:

- rows_complete:
columns: vars(a, b)

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘rows_complete()* step.
active: false

In practice, both of these will often be shorter. A value for columns is only necessary if checking
for unique values across a subset of columns. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Function ID

2-21

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set (), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_distinct(), serially(), specially(), tbl_match()

rows_complete

Examples

Create a simple table with three
columns of numerical values

tbl <-
dplyr::tibble(
a=c(,7,6,5, 8,7,
b =c(, 1, 0, 0, 8, 3),
c=c(, 1,1, 3, 3, 3)
)
tbl

A: Using an ‘agent‘ with validation
functions and then ‘interrogate()*

Validate that when considering only
data in columns ‘a‘ and ‘b‘, there
are only complete rows (i.e., all
rows have no ‘NA‘ values)
agent <-
create_agent(tbl = tbl) %>%
rows_complete(vars(a, b)) %%
interrogate()

Determine if this validation passed
by using ‘all_passed()"
all_passed(agent)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent)®

ETgE T

H

B: Using the validation function
directly on the data (no ‘agent‘)

H+

acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
tbl %>%

rows_complete(vars(a, b)) %>%
dplyr::pull(a)

od o o

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

testthat tests

This way of using validation functions

275

276 rows_distinct

expect_rows_complete(
tbl, vars(a, b)
)

D: Using the test function

With the ‘test_x()‘ form, we should
get a single logical value returned
to us
test_rows_complete(

tbl, vars(a, b)
)

rows_distinct Are row data distinct?

Description

The rows_distinct() validation function, the expect_rows_distinct() expectation function,
and the test_rows_distinct() test function all check whether row values (optionally constrained
to a selection of specified columns) are, when taken as a complete unit, distinct from all other units
in the table. The validation function can be used directly on a data table or with an agent object
(technically, a ptblank_agent object) whereas the expectation and test functions can only be used
with a data table. The types of data tables that can be used include data frames, tibbles, database
tables (tbl_dbi), and Spark DataFrames (tbl_spark). As a validation step or as an expectation,
this will operate over the number of test units that is equal to the number of rows in the table (after
any preconditions have been applied).

We can specify the constraining column names in quotes, in vars(), and with the following tidyse-
lect helper functions: starts_with(), ends_with(), contains(), matches(), and everything().

Usage

rows_distinct(
X,
columns = NULL,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

expect_rows_distinct(
object,
columns = NULL,

rows_distinct

preconditions

threshold =
)

277

= NULL,

test_rows_distinct(object, columns = NULL, preconditions = NULL, threshold = 1)

Arguments

X

columns

preconditions

segments

actions

step_id

label

brief

active

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent

278

rows_distinct

involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great

rows_distinct 279

if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. This is especially true when x is a table object because, otherwise, nothing
happens. Using action_levels(warn_at =@.25) or action_levels(stop_at = @.25) are good
choices depending on the situation (the first produces a warning when a quarter of the total test units
fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When rows_distinct() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of rows_distinct() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement
agent %>%
rows_distinct(
columns = vars(a, b),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘rows_distinct()"‘ step.”,
active = FALSE

280 rows_distinct

)

YAML representation

steps:

- rows_distinct:
columns: vars(a, b)

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘rows_distinct()® step.
active: false

In practice, both of these will often be shorter. A value for columns is only necessary if checking
for unique values across a subset of columns. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Function ID
2-20

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(), col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), serially(), specially(), tbl_match()

Examples

Create a simple table with three
columns of numerical values

tbl <-
dplyr::tibble(
a=c(,7,6,5, 8,7,
b =c(, 1, 0, 0, 8, 3),
c=c(, 1,1, 3, 3, 3)
)
tbl

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

rows_distinct

Validate that when considering only
data in columns ‘a‘ and ‘b‘, there
are no duplicate rows (i.e., all
rows are distinct)
agent <-
create_agent(tbl = tbl) %>%
rows_distinct(vars(a, b)) %>%
interrogate()

Determine if this validation passed
by using ‘all_passed()*
all_passed(agent)

Calling ‘agent‘ in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly
with ‘get_agent_report(agent)®

ETE Y

ETS

B: Using the validation function
directly on the data (no ‘agent‘)

ES

through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%

rows_distinct(vars(a, b)) %>%
dplyr::pull(a)

Y

C: Using the expectation function

With the ‘expect_x()‘ form, we would

typically perform one validation at a

time; this is primarily used in
testthat tests
expect_rows_distinct(

tbl, vars(a, b)
)

D: Using the test function

With the “test_*()* form, we should
get a single logical value returned
to us
test_rows_distinct(

tbl, vars(a, b)
)

This way of using validation functions
acts as a data filter: data is passed

281

282

row_count_match

row_count_match

Does the row count match that of a different table?

Description

The row_count_match() validation function, the expect_row_count_match() expectation func-
tion, and the test_row_count_match() test function all check whether the row count in the target
table matches that of a comparison table. The validation function can be used directly on a data ta-
ble or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl_spark). As a validation
step or as an expectation, there is a single test unit that hinges on whether the row counts for the

two tables are the same (after any preconditions have been applied).

Usage

row_count_match(
X,
tbl_compare,
preconditions
segments = NUL
actions = NULL
step_id = NULL
label = NULL,
brief = NULL,
active = TRUE

)

expect_row_count
object,
tbl_compare,
preconditions
threshold = 1
)

test_row_count_match(object, tbl_compare, preconditions

= NULL,
L,

’

’

_match(

= NULL,

NULL, threshold = 1)

Arguments
X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().
tbl_compare A table to compare against the target table in terms of row count values. This

can either be a table object, a table-prep formula.This can be a table object
such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Al-
ternatively, a table-prep formula (~ <table reading code>) or a function (func-
tion() <table reading code>) can be used to lazily read in the table at interroga-
tion time.

row_count_match

preconditions

segments

actions

step_id

label

brief

active

object

threshold

283

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any

284

row_count_match

single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that this particular validation requires some
operation on the target table before the row count comparison takes place. Using preconditions
can be useful at times since since we can develop a large validation plan with a single target table
and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

row_count_match 285

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When row_count_match() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of row_count_match() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement
agent %>%
row_count_match(

tbl_compare = ~ file_tbl(
file = from_github(
file = "all_revenue_large.rds"”,
repo = "rich-iannone/intendo”,
subdir = "data-large”
)
),
preconditions = ~ . %>% dplyr::filter(a < 10),

segments = b ~ c("group_1", "group_2"),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘row_count_match()‘ step.”,

active = FALSE

)

YAML representation
steps:
- row_count_match:
tbl_compare: ~ file_tbl(
file = from_github(
file = "all_revenue_large.rds”,

286 row_count_match

repo = "rich-iannone/intendo”,
subdir = "data-large”
)
)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘row_count_match()‘ step.
active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Function ID

2-31

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Examples

Create a simple table with three
columns and four rows of values
tbl <-
dplyr::tibble(
a=c(,17,6,5)),
b=c, 1, 0,0,
c=cC, 1,1, 3)
)

tbl

Create a second table which is
quite different but has the
same number of rows as ‘tbl®
tbl_2 <-
dplyr::tibble(
e = c("a", NA, "a", "c"),
f =c(2.6, 1.2, 0, NA)

row_count_match 287

)

A: Using an ‘agent® with validation
functions and then ‘interrogate()*

Validate that the count of rows

in the target table (“tbl‘) matches

that of the comparison table

(“tbl_2%)

agent <-
create_agent(tbl = tbl) %>%
row_count_match(tbl_compare = tbl_2) %>%
interrogate()

Determine if this validation passed
by using ‘all_passed()*
all_passed(agent)

Calling ‘agent" in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly
with ‘get_agent_report(agent)®

ETSE T

H

B: Using the validation function
directly on the data (no ‘agent‘)

ETS

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%

row_count_match(tbl_compare = tbl_2)

N

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_row_count_match(

tbl, tbl_compare = tbhl_2
)

D: Using the test function

With the ‘test_x()‘ form, we should
get a single logical value returned
to us
tbl %>%
row_count_match(
tbl_compare = tbl_2

288 scan_data

scan_data Thoroughly scan a table to better understand it

Description

Generate an HTML report that scours the input table data. Before calling up an agent to validate the
data, it’s a good idea to understand the data with some level of precision. Make this the initial step
of a well-balanced data quality reporting workflow. The reporting output contains several sections
to make everything more digestible, and these are:

Overview Table dimensions, duplicate row counts, column types, and reproducibility information

Variables A summary for each table variable and further statistics and summaries depending on
the variable type

Interactions A matrix plot that shows interactions between variables
Correlations A set of correlation matrix plots for numerical variables
Missing Values A summary figure that shows the degree of missingness across variables

Sample A table that provides the head and tail rows of the dataset

The output HTML report will appear in the RStudio Viewer and can also be integrated in R Mark-
down HTML output. If you need the output HTML as a string, it’s possible to get that by using
as.character() (e.g., scan_data(tbl =mtcars) %>% as.character()). The resulting HTML
string is a complete HTML document where Bootstrap and jQuery are embedded within.

Usage

scan_data(
tbl,
sections = "QVICMS",
navbar = TRUE,

width = NULL,
lang = NULL,
locale = NULL

)

Arguments
tbl The input table. This can be a data frame, tibble, a tb1_dbi object, or a tbl_spark
object.
sections The sections to include in the finalized Table Scan report. A string with key

characters representing section names is required here. The default string is
"OVICMS" wherein each letter stands for the following sections in their default
order: "0": "overview"”; "V": "variables"”; "I": "interactions”; "C":
"correlations”; "M": "missing"”; and "S": "sample"”. This string can be

scan_data

navbar

width

lang

locale

Figures

Function ID

1-1

See Also

289

comprised of less characters and the order can be changed to suit the desired
layout of the report. For tbl_dbi and tbl_spark objects supplied to tbl, the
"interactions” and "correlations” sections are currently excluded.

Should there be a navigation bar anchored to the top of the report page? By
default this is TRUE.

An optional fixed width (in pixels) for the HTML report. By default, no fixed
width is applied.

The language to use for label text in the report. By default, NULL will cre-
ate English ("en") text. Other options include French ("fr"), German ("de"),
Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese
("zh™), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl1").

An optional locale ID to use for formatting values in the report according the lo-
cale’s rules. Examples include "en_US" for English (United States) and "fr_FR"
for French (France); more simply, this can be a language identifier without a
country designation, like "es"” for Spanish (Spain, same as "es_ES").

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tb1(),
draft_validation(), file_tbl(), tbl_get(), tbl_source(), thl_store(), validate_rmd()

Examples

if (interactive()) {

Get an HTML document that describes all of
the data in the ‘dplyr::storms‘ dataset
tbl_scan <- scan_data(tbl = dplyr::storms)

3

290 serially

serially Run several tests and a final validation in a serial manner

Description

The serially() validation function allows for a series of tests to run in sequence before either
culminating in a final validation step or simply exiting the series. This construction allows for pre-
testing that may make sense before a validation step. For example, there may be situations where it’s
vital to check a column type before performing a validation on the same column (since having the
wrong type can result in an evaluation error for the subsequent validation). Another serial workflow
might entail having a bundle of checks in a prescribed order and, if all pass, then the goal of this
testing has been achieved (e.g., checking if a table matches another through a series of increasingly
specific tests).

A series as specified inside serially() is composed with a listing of calls, and we would draw
upon test functions (T) to describe tests and optionally provide a finalizing call with a validation
function (V). The following constraints apply:

* there must be at least one test function in the series (T -> V is good, V is not)

* there can only be one validation function call, V; it’s optional but, if included, it must be
placed at the end (T -> T -> V is good, these sequences are bad: (1) T->V->T, 2) T ->T
>V ->V)

* a validation function call (V), if included, mustn’t itself yield multiple validation steps (this
may happen when providing multiple columns or any segments)

Here’s an example of how to arrange expressions:

~ test_col_exists(., columns = vars(count)),
~ test_col_is_numeric(., columns = vars(count)),
~ col_vals_gt(., columns = vars(count), value = 2)

This series concentrates on the column called count and first checks whether the column exists,
then checks if that column is numeric, and then finally validates whether all values in the column
are greater than 2.

Note that in the above listing of calls, the . stands in for the target table and is always necessary
here. Also important is that all test_*() functions have a threshold argument that is set to 1 by
default. Should you need to bump up the threshold value it can be changed to a different integer
value (as an absolute threshold of failing test units) or a decimal value between @ and 1 (serving as
a fractional threshold of failing test units).

Usage
serially(

X’

.list = list2(...),
preconditions = NULL,

serially 291

actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)

expect_serially(
object,

.list = list2(...),
preconditions = NULL,
threshold = 1

)

test_serially(
object,
.list = list2(...),
preconditions = NULL,
threshold = 1

Arguments

X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

A collection one-sided formulas that consist of test_*() function calls (e.g.,
test_col_vals_between(), etc.) arranged in sequence of intended interro-
gation order. Typically, validations up until the final one would have some
threshold value set (default is 1) for short circuiting within the series. A finish-
ing validation function call (e.g., col_vals_increasing(), etc.) can optionally
be inserted at the end of the series, serving as a validation step that only un-
dergoes interrogation if the prior tests adequately pass. An example of this is
~ test_column_exists(., vars(a)), ~ col_vals_not_null(., vars(a))).

.list Allows for the use of a list as an input alternative to

preconditions An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying

292 serially

a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

brief An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

active A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Column Names

If providing multiple column names in any of the supplied validation steps, the result will be an
expansion of sub-validation steps to that number of column names. Aside from column names in

serially 293

quotes and in vars(), tidyselect helper functions are available for specifying columns. They are:
starts_with(), ends_with(), contains(), matches(), and everything().

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b=col_a+ 10)).

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When serially() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of serially() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement
agent %>%
serially(
~ col_vals_lt(., vars(a), 8),

294 serially

~ col_vals_gt(., vars(c), vars(a)),

~ col_vals_not_null(., vars(b)),

preconditions = ~ . %>% dplyr::filter(a < 10),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘serially()‘ step.",

active = FALSE

)
YAML representation
steps:
- serially:
fns:
- ~col_vals_1t(., vars(a), 8)
- ~col_vals_gt(., vars(c), vars(a))
- ~col_vals_not_null(., vars(b))
preconditions: ~. %>% dplyr::filter(a < 10)
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘serially()‘ step.
active: false

In practice, both of these will often be shorter as only the expressions for validation steps are
necessary. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Function ID

2-34

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), specially(), tbl_match()

Examples

For all examples here, we'll use

a simple table with three numeric

columns (*a‘, ‘b‘, and ‘c‘); this is
a very basic table but it'll be more
useful when explaining things later
tbl <-

serially 295

dplyr::tibble(
a=c(5, 2, 6),
b = c(6, 4, 9),
c=c(1, 2, 3)

)

tbl

H

A: Using an ‘“agent‘ with validation
functions and then ‘interrogate()*

ETS

The ‘serially()" function can be set
up to perform a series of tests and
then perform a validation (only if
all tests pass); here, we are going
to (1) test whether columns ‘a‘ and
‘b are numeric, (2) check that both
don't have any “NA‘ values, and (3)
perform a finalizing validation that
checks whether values in ‘b* are
greater than values in ‘a‘
agent_1 <-
create_agent(tbl = tbl) %>%
serially(

~ test_col_is_numeric(., vars(a, b)),

~ test_col_vals_not_null(., vars(a, b)),

~ col_vals_gt(., vars(b), vars(a))

) %%
interrogate()

ET T T T T S

Determine if this validation

had no failing test units (there are
4 tests and a final validation)
all_passed(agent_1)

Calling ‘agent® in the console
prints the agent's report; but we
can get a ‘gt_tbl' object directly
with ‘get_agent_report(agent_1)"

* %

What's going on? All four of the tests
passed and so the final validation
occurred; there were no failing test
units in that either!

o o R

The final validation is optional; here
is a different agent where only the
serial tests are performed
agent_2 <-
create_agent(tbl = tbl) %>%
serially(
~ test_col_is_numeric(., vars(a, b)),
~ test_col_vals_not_null(., vars(a, b))

296

) %%
interrogate()

Everything is good here too:
all_passed(agent_2)

ETS

B: Using the validation function
directly on the data (no ‘agent‘)

ES

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions‘ option
tbl %>%
serially(
~ test_col_is_numeric(., vars(a, b)),
~ test_col_vals_not_null(., vars(a, b)),
~ col_vals_gt(., vars(b), vars(a))

Y

)

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_serially(
tbl,
~ test_col_is_numeric(., vars(a, b)),
~ test_col_vals_not_null(., vars(a, b)),
~ col_vals_gt(., vars(b), vars(a))

)
D: Using the test function

With the “test_*()* form, we should
get a single logical value returned
to us
tbl %>%
test_serially(
~ test_col_is_numeric(., vars(a, b)),
~ test_col_vals_not_null(., vars(a, b)),
~ col_vals_gt(., vars(b), vars(a))

)

set_tbl

set_tbl

Set a data table to an agent or an informant

set_tbl 297

Description
Setting a data table to an agent or an informant with set_tbl() replaces any associated table (a
data frame, a tibble, objects of class tbl_dbi or tbl_spark).

Usage
set_tbl(x, tbl, tbl_name = NULL, label = NULL)

Arguments

X An agent object of class ptblank_agent, or, an informant of class ptblank_informant.

tbl The input table for the agent or the informant. This can be a data frame, a
tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression
can be supplied to serve as instructions on how to retrieve the target table at
interrogation- or incorporation-time. There are two ways to specify an associ-
ation to a target table: (1) as a table-prep formula, which is a right-hand side
(RHS) formula expression (e.g., ~ { <table reading code>}), or (2) as a function
(e.g., function() { <table reading code>}).

tbl_name A optional name to assign to the new input table object. If no value is provided,
a name will be generated based on whatever information is available.

label An optional label for the validation plan. If no value is provided then any exist-

ing label will be retained.

Function ID

9-4

See Also

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(),
x_read_disk(), x_write_disk()

Examples

Set proportional failure thresholds
to the ‘warn‘, ‘stop‘, and ‘notify®
states using ‘action_levels()*
al <-
action_levels(
warn_at = 0.10,
stop_at
notify_at = 0.35
)

I
[
N
;]

Create an agent that has
‘small_table® set as the target
table via ‘tbl‘; apply the actions,
add some validation steps and then
interrogate the data

o o

298 small_table

agent_1 <-
create_agent(
tbl = small_table,
tbl_name = "small_table”,

label = "An example.”,
actions = al
) %%

col_exists(vars(date, date_time)) %>%
col_vals_regex(

vars(b), "[0-9]-[a-z]{3}-[0-91{3}"
) %%
rows_distinct() %>%
interrogate()

Replace the agent's association to
“small_table‘ with a mutated version
of it (one that removes duplicate rows);
then, interrogate the new target table
agent_2 <-

agent_1 %>%

set_tbl(

tbl = small_table %>% dplyr::distinct()
) %%
interrogate()

small_table A small table that is useful for testing

Description

This is a small table with a few different types of columns. It’s probably just useful when testing
the functions from pointblank. Rows 9 and 10 are exact duplicates. The ¢ column contains two NA
values.

Usage

small_table

Format

A tibble with 13 rows and 8 variables:

date_time A date-time column (of the POSIXct class) with dates that correspond exactly to those
in the date column. Time values are somewhat randomized but all ’seconds’ values are 00.

date A Date column with dates from 2016-01-04 to 2016-01-30.

a An integer column with values ranging from 1 to 8.

b A character column with values that adhere to a common pattern.

small_table_sqlite 299

¢ An integer column with values ranging from 2 to 9. Contains two NA values.
d A numeric column with values ranging from 108 to 10000.
e A logical column.

n o n

f A character column with "low”, "mid”, and "high" values.

Function ID
14-1

See Also

Other Datasets: game_revenue_info, game_revenue, small_table_sqlite(), specifications

Examples

Here is a glimpse at the data
available in ‘small_table®
dplyr::glimpse(small_table)

small_table_sqlite An SQLite version of the small_table dataset

Description

The small_table_sqlite() function creates an SQLite, tbl_dbi version of the small_table
dataset. A requirement is the availability of the DBI and RSQLite packages. These packages can
be installed by using install.packages("DBI") and install.packages("RSQLite").

Usage
small_table_sqglite()

Function ID

14-2

See Also

Other Datasets: game_revenue_info, game_revenue, small_table, specifications

Examples

Use ‘small_table_sqlite()" to

create an SQLite version of the

‘small_table* table

#

small_table_sqlite <- small_table_sqlite()

300 snip_highest

snip_highest A fn for info_snippet(): get the highest value from a column

Description
The snip_highest() function can be used as an info_snippet() function (i.e., provided to fn)
to get the highest numerical, time value, or alphabetical value from a column in the target table.
Usage

snip_highest(column)

Arguments

column The name of the column that contains the target values.

Value

A formula needed for info_snippet()’s fn argument.

Function ID

3-9

See Also

Other Information Functions: info_columns_from_tbl1(), info_columns(), info_section(),
info_snippet (), info_tabular(), snip_list(), snip_lowest(), snip_stats()

Examples
Generate an informant object, add
a snippet with ‘info_snippet()*
and ‘snip_highest()" (giving us a
method to get the highest value in
column ‘a‘); define a location for
the snippet result in *{ }‘ and
then “incorporate()‘ the snippet
into the info text

informant <-
create_informant(
thl = ~ small_table,
tbl_name = "small_table”,
label = "An example."”
) %%
info_columns(
columns = "a",
‘Highest Value‘ = "Highest value is {highest_a}."
) %%

snip_list 301

info_snippet(

snippet_name = "highest_a",

fn = snip_highest(column = "a")
) %%
incorporate()

We can print the ‘informant® object
to see the information report

snip_list A fn for info_snippet(): get a list of column categories

Description

The snip_list() function can be used as an info_snippet () function (i.e., provided to fn) to get
a catalog list from a table column. You can limit the of items in that list with the 1imit value.

Usage

snip_list(
column,
limit = 5,
sorting = c("inorder”, "infreq"”, "inseq"),
reverse = FALSE,
sep = ",",
and_or = NULL,
oxford = TRUE,
as_code = TRUE,
quot_str = NULL,

lang = NULL
)
Arguments

column The name of the column that contains the target values.

limit A limit of items put into the generated list. The returned text will state the
remaining number of items beyond the 1imit. By default, the limit is 5.

sorting A keyword used to designate the type of sorting to use for the list. The three
options are "inorder” (the default), "infreq"”, and "inseq"”. With "inorder"”,
distinct items are listed in the order in which they first appear. Using "infreq"
orders the items by the decreasing frequency of each item. The "inseq” option
applies an alphanumeric sorting to the distinct list items.

reverse An option to reverse the ordering of list items. By default, this is FALSE but

using TRUE will reverse the items before applying the 1imit.

sep The separator to use between list items. By default, this is a comma.

302

and_or

oxford

as_code

quot_str

lang

Value

snip_list

The type of conjunction to use between the final and penultimate list items
(should the item length be below the 1imit value). If NULL (the default) is used,
then the ’and’ conjunction will be used. Alternatively, the following keywords
can be used: "and”, "or", or an empty string (for no conjunction at all).

Whether to use an Oxford comma under certain conditions. By default, this is
TRUE.

Should each list item appear in a ’code font’ (i.e., as monospaced text)? By
default this is TRUE. Using FALSE keeps all list items in the same font as the rest
of the information report.

An option for whether list items should be set in double quotes. If NULL (the
default), the quotation marks are mainly associated with list items derived from
character or factor values; numbers, dates, and logical values won’t have
quotation marks. We can explicitly use quotations (or not) with either TRUE or
FALSE here.

The language to use for any joining words (from the and_or option) or addi-
tional words in the generated list string. By default, NULL will use whichever
lang setting is available in the parent informant object (this is settable in the
create_informant() lang argument). If specified here as an override, the lan-
guage options are English ("en"”), French ("fr"), German ("de"), Italian ("it"),
Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian
("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("n1").

A formula needed for info_snippet()’s fn argument.

Function ID

3-6

See Also

Other Information Functions: info_columns_from_tb1(), info_columns(), info_section(),
info_snippet(), info_tabular(), snip_highest(), snip_lowest(), snip_stats()

Generate an informant object, add
a snippet with “info_snippet()*
and ‘snip_list()" (giving us a
method to get a distinct list of
column values for column “f‘);
define a location for the snippet

‘incorporate()" the snippet into

Examples

#

#

#

#

#

#

result in *{ }‘ and then
#

the info text

informant <-

create_informant(
tbl = ~ small_table,

snip_lowest 303

tbl_name = "small_table”,
label = "An example.”
) %%
info_columns(
columns = "f",
*Items® = "This column contains {values_f}."
) %%
info_snippet(
snippet_name = "values_f",
fn = snip_list(column = "f")
) %%
incorporate()

We can print the ‘informant‘ object
to see the information report

snip_lowest A fn for info_snippet(): get the lowest value from a column

Description
The snip_lowest() function can be used as an info_snippet () function (i.e., provided to fn) to
get the lowest numerical, time value, or alphabetical value from a column in the target table.
Usage

snip_lowest(column)

Arguments

column The name of the column that contains the target values.

Value

A formula needed for info_snippet()’s fn argument.

Function ID

3-8

See Also

Other Information Functions: info_columns_from_tbl(), info_columns(), info_section(),
info_snippet(), info_tabular(), snip_highest(), snip_list(), snip_stats()

304 snip_stats

Examples

Generate an informant object, add
a snippet with ‘info_snippet()*
and ‘snip_lowest()‘ (giving us a
method to get the lowest value in
column ‘a‘); define a location for
the snippet result in “{ }' and
then ‘incorporate()" the snippet
into the info text
informant <-
create_informant(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "An example.”
) %%
info_columns(

columns = "a",

‘Lowest Value‘ = "Lowest value is {lowest_a}.”
) %%
info_snippet(

snippet_name = "lowest_a",

fn = snip_lowest(column = "a")
) %>%
incorporate()

T R

We can print the ‘informant® object
to see the information report

snip_stats A fn for info_snippet(): get an inline statistical summary

Description

The snip_stats() function can be used as an info_snippet() function (i.e., provided to fn) to
produce a five- or seven-number statistical summary. This inline summary works well within a
paragraph of text and can help in describing the distribution of numerical values in a column.

For a given column, three different types of inline statistical summaries can be provided:

1. a five-number summary ("5num”): minimum, Q1, median, Q3, maximum
2. aseven-number summary ("7num”): P2, P9, Q1, median, Q3, P91, P98

3. Bowley’s seven-figure summary ("bowley"”): minimum, P10, Q1, median, Q3, P90, maximum

Usage

snip_stats(column, type = c("5num”, "7num”, "bowley"))

snip_stats 305

Arguments
column The name of the column that contains the target values.
type The type of summary. By default, the "5num” keyword is used to generate a five-
number summary. Two other options provide seven-number summaries: "7num”
and "bowley"”.
Value

A formula needed for info_snippet()’s fn argument.

Function ID

3-7

See Also

Other Information Functions: info_columns_from_tbl(), info_columns(), info_section(),
info_snippet(), info_tabular(), snip_highest(), snip_list(), snip_lowest()

Examples

Generate an informant object, add
a snippet with ‘“info_snippet()*
and ‘snip_stats()* (giving us a
method to get some summary stats for
column ‘a‘); define a location for
the snippet result in “{ }‘ and
then ‘incorporate()" the snippet
into the info text
informant <-
create_informant(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "An example.”
) %%
info_columns(

columns = "a",

*Stats' = "Stats (fivenum): {stats_a}."”
) %%
info_snippet(

snippet_name = "stats_a",

fn = snip_stats(column = "a")
) %>%
incorporate()

T R

We can print the ‘informant® object
to see the information report

306 specially

specially Perform a specialized validation with a user-defined function

Description

The specially() validation function allows for custom validation with a function that you provide.
The major proviso for the provided function is that it must either return a logical vector or a table
where the final column is logical. The function will operate on the table object, or, because you can
do whatever you like, it could also operate on other types of objects. To do this, you can transform
the input table in preconditions or inject an entirely different object there. During interrogation,
there won’t be any checks to ensure that the data is a table object.

Usage

specially(
X,
fn,
preconditions = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)

expect_specially(object, fn, preconditions = NULL, threshold = 1)

test_specially(object, fn, preconditions = NULL, threshold = 1)

Arguments
X A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().
fn A function that performs the specialized validation on the data. It must either

return a logical vector or a table where the last column is a logical column.

preconditions An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr: :mutate(x,col = col + 10). See the Preconditions sec-
tion for more information.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

step_id One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying

specially

label

brief

active

object

threshold

Value

307

a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated

308 specially

column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way. Within specially(),
because this function is special, there won’t be internal checking as to whether the preconditions-
based output is a table.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x,col_b =col_a + 10)).

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = @.25) oraction_levels(stop_at
=0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When specially() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of specially() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement
agent %>%
specially(
fn = function(x) { ... 3},
preconditions = ~ . %>% dplyr::filter(a < 10),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘specially()" step.”,
active = FALSE

specially 309

YAML representation

steps:

- specially:
fn: function(x) { ... }
preconditions: ~. %>% dplyr::filter(a < 10)
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘specially()‘ step.
active: false

In practice, both of these will often be shorter as only the expressions for validation steps are
necessary. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Function ID

2-35

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_1lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), tbl_match()

Examples

For all examples here, we'll use
a simple table with three numeric
columns (*a‘, ‘b', and ‘c‘); this is
a very basic table but it'll be more
useful when explaining things later
tbl <-
dplyr::tibble(
a =c(5, 2, 6),
b =c(3, 4, 6),
c=c(9, 8,7
)

tbl

A: Using an ‘agent® with validation
functions and then ‘interrogate()"

310

Validate that the target table has
exactly three rows; this single
validation with ‘specially()* has
1 test unit since the function
executed on ‘x‘ (the target table)
results in a logical vector with a
length of 1
agent <-
create_agent(tbl = tbl) %>%

specially(

fn = function(x) nrow(x) ==
) %%
interrogate()

od o H

Determine if this validation

had no failing test units (there
is 1 test unit)
all_passed(agent)

Calling ‘agent‘ in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly
with ‘get_agent_report(agent)®

ETE TN

H+

B: Using the validation function
directly on the data (no ‘agent‘)

E™S

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%
specially(

fn = function(x) nrow(x) ==

P Y

)
C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_specially(

tbl,

fn = function(x) nrow(x) ==

)

D: Using the test function

With the “test_x()‘ form, we should
get a single logical value returned

specially

specially 311

to us
tbl %>%
test_specially(
fn = function(x) nrow(x) ==

)
Variations

We can do more complex things with
‘specially()" and its variants

tbl %>% test_specially(
fn = function(x) {
inherits(x, "data.frame”)
}
)

Check that the number of rows in the
target table is less than ‘small_table®
tbl %>% test_specially(
fn = function(x) {
nrow(x) < nrow(small_table)
}
)

Check that all numbers across all
numeric column are less than ‘10"
tbl %>% test_specially(

fn = function(x) {

(x %>%
dplyr::select(where(is.numeric)) %>%
unlist()

) < 10

}

Check that all values in column
‘c' are greater than b and greater
than “a‘ (in each row) and always
less than 10; this creates a table
with the new column ‘d‘ which is
a logical column (that is used as
the evaluation of test units)
tbl %>% test_specially(
fn = function(x) {
X %>%
dplyr: :mutate(
d=c>b&c>a&c<10

3
)

Check that the ‘game_revenue®

312 specifications

table (which is not the target
table) has exactly 2000 rows
tbl %>% test_specially(

fn = function(x) {

nrow(game_revenue) == 2000
}
)
specifications A table containing data pertaining to various specifications
Description

The specifications dataset is useful for testing the col_vals_within_spec(), test_col_vals_within_spec(),
and expect_col_vals_within_spec() functions. For each column, holding character values for

different specifications, rows 1-5 contain valid values, the 6th row is an NA value, and the final two

values (rows 7 and 8) are invalid. Different specification (spec) keywords apply to each of columns

when validating with any of the aforementioned functions.

Usage

specifications

Format

A tibble with 8 rows and 12 variables:

isbn_numbers ISBN-13 numbers; can be validated with the "isbn" specification.

vin_numbers VIN numbers (identifiers for motor vehicles); can be validated with the "vin"” spec-
ification.

zip_codes Postal codes for the U.S.; can be validated with the "postal[USA]" specification or its
"zip" alias.

credit_card_numbers Credit card numbers; can be validated with the "credit_card” specifica-
tion or the "cc" alias.

iban_austria IBAN numbers for Austrian accounts; can be validated with the "iban[AUT]" spec-
ification.

swift_numbers Swift-BIC numbers; can be validated with the "swift" specification.
phone_numbers Phone numbers; can be validated with the "phone” specification.
email_addresses Email addresses; can be validated with the "email” specification.
urls URLs; can be validated with the "url” specification.

ipv4_addresses IPv4 addresses; can be validated with the "ipv4" specification
ipv6_addresses IPv6 addresses; can be validated with the "ipv6" specification

mac_addresses MAC addresses; can be validated with the "mac” specification

stock_msg_body 313

Function ID

14-3

See Also

Other Datasets: game_revenue_info, game_revenue, small_table_sqlite(), small_table

Examples

Here is a glimpse at the data
available in ‘specifications®
dplyr::glimpse(specifications)

stock_msg_body Provide simple email message body components: body

Description

The stock_msg_body() function simply provides some stock text for an email message sent via
email_blast() or obtained as a standalone object through email_create().

Usage

stock_msg_body ()

Value

Text suitable for the msg_body argument of email_blast() and email_create().

Function ID

43

See Also

Other Emailing: email_blast(), email_create(), stock_msg_footer()

314 stop_if_not

stock_msg_footer Provide simple email message body components: footer

Description
The stock_msg_footer() function simply provides some stock text for an email message sent via
email_blast() or obtained as a standalone object through email_create().

Usage

stock_msg_footer()

Value

Text suitable for the msg_footer argument of email_blast() and email_create().

Function ID
4-4

See Also

Other Emailing: email_blast(), email_create(), stock_msg_body ()

stop_if_not The next generation of stopifnot()-type functions: stop_if_not()

Description

This is stopifnot() but with a twist: it works well as a standalone, replacement for stopifnot()
but is also customized for use in validation checks in R Markdown documents where pointblank is
loaded. Using stop_if_not() in a code chunk where the validate = TRUE option is set will yield
the correct reporting of successes and failures whereas stopifnot() does not.

Usage

stop_if_not(...)

Arguments

R expressions that should each evaluate to (a logical vector of all) TRUE.

Value

NULL if all statements in . .. are TRUE.

tbl_get 315

Function ID

13-5

See Also

Other Utility and Helper Functions: affix_datetime(), affix_date(), col_schema(), from_github(),
has_columns()

Examples

This checks whether the number of
rows in ‘small_table‘ is greater
than “10°

stop_if_not(nrow(small_table) > 10)

This will stop for sure: there

isn't a “time® column in ‘small_table®

(but there are the ‘date_time‘ and

‘date‘ columns)

stop_if_not("time"” %in% colnames(small_table))

You're not bound to using tabular

data here, any statements that

evaluate to logical vectors will work
stop_if_not(1 < 20:25 - 18)

tbl_get Obtain a materialized table via a table store

Description

The tbl_get () function gives us the means to materialize a table that has an entry in a table store
(i.e., has a table-prep formula with a unique name). The table store that is used for this can be
in the form of a tbl_store object (created with the tbl_store() function) or an on-disk YAML
representation of a table store (created by using yaml_write() with a tbl_store object).

Should you want a table-prep formula from a table store to use as a value for tbl (in create_agent(),
create_informant(), or set_tb1l()), then have a look at the tb1_source() function.

Usage

tbl_get(tbl, store = NULL)

316 tbl_get

Arguments
tbl The table to retrieve from a table store. This table could be identified by its
name (e.g., tbl = "large_table”) or by supplying a reference using a subset
(with $) of the tbl_store object (e.g., tbl = store$large_table). If using
the latter method then nothing needs to be supplied to store.
store Either a table store object created by the tbl_store() function or a path to a
table store YAML file created by yaml_write().
Value
A table object.

Function ID

1-10

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tb1(),
draft_validation(), file_tb1(), scan_data(), tbl_source(), thl_store(), validate_rmd()

Examples

if (interactive()) {

Define a ‘tbl_store‘ object by adding
table-prep formulas in ‘tbl_store()*
tbls <-
tbl_store(
small_table_duck ~ db_tbl(

table = small_table,

dbname = ":memory:",

dbtype = "duckdb”

),
~ db_tb1(
table = "rna”,
dbname = "pfmegrnargs”,
dbtype = "postgres”,
host = "hh-pgsql-public.ebi.ac.uk”,
port = 5432,
user = I("reader"),
password = I("NWDMCE5xdipIjRrp")
),

all_revenue ~ db_tbl(
table = file_tbl(
file = from_github(

file = "all_revenue_large.rds",
repo = "rich-iannone/intendo”,
subdir = "data-large”

)
)’

tbl_match 317

dbname = ":memory:",
dbtype = "duckdb”
)7
sml_table ~ pointblank::small_table
)

Once this object is available, you can
check that the table of interest is
produced to your specification

tbl_get(
tbl = "small_table_duck”,
store = tbls

)

An alternative method for getting the

same table materialized is by using ‘$*®
to get the formula of choice from “tbls®
tbls$small_table_duck %>% tbl_get()

}

tbl_match Does the target table match a comparison table?

Description

The tbl_match() validation function, the expect_tbl_match() expectation function, and the
test_tbl_match() test function all check whether the target table’s composition matches that of
a comparison table. The validation function can be used directly on a data table or with an agent
object (technically, a ptblank_agent object) whereas the expectation and test functions can only
be used with a data table. The types of data tables that can be used include data frames, tibbles,
database tables (tbl_dbi), and Spark DataFrames (tbl_spark). As a validation step or as an ex-
pectation, there is a single test unit that hinges on whether the two tables are the same (after any
preconditions have been applied).

Usage

tbl_match(
X)
tbl_compare,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

318

tbl _match

expect_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

test_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

Arguments

X

tbl_compare

preconditions

segments

actions

step_id

label

brief

active

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent ().

A table to compare against the target table. This can either be a table object,
a table-prep formula. This can be a table object such as a data frame, a tibble,
a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula
(~ <table reading code>) or a function (function() <table reading code>) can be
used to lazily read in the table at interrogation time.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x,col =col +10). See the Preconditions sec-
tion for more information.

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation

tbl_match 319

step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step

active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d,e))). The default for active is TRUE.
object A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.

threshold A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1T meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that this particular validation requires some
operation on the target table before the comparison takes place. Using preconditions can be
useful at times since since we can develop a large validation plan with a single target table and
make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great

320 tbl _match

if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1","group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When tbl_match() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of tbl_match() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement
agent %>%

tbl_match(
tbl_compare = ~ file_tbl(

file = from_github(
file = "all_revenue_large.rds”,
repo = "rich-iannone/intendo”,
subdir = "data-large”
)

),

preconditions = ~ . %>% dplyr::filter(a < 10),

tbl_match 321

segments = b ~ c("group_1", "group_2"),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘“tbl_match()‘ step.”,

active = FALSE

)
YAML representation
steps:
- tbl_match:

tbl_compare: ~ file_tbl(
file = from_github(

file = "all_revenue_large.rds”,

repo = "rich-iannone/intendo”,

subdir = "data-large”

)

)

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘“tbl_match()‘ step.
active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Function ID

2-32

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially()

Examples

Create a simple table with three
columns and four rows of values
tbl <-
dplyr::tibble(
a=c,7,6,5),

322

c(7, 1, 0, 9),
c(1, 1, 1, 3)

)

tbl

Create a second table which is
the same as ‘tbl®
tbl_2 <-
dplyr::tibble(
a=c(5, 7, 6, 5,
b =c(7, 1, 0, 0),
c=cC, 1,1, 3)
)

A: Using an ‘agent® with validation
functions and then ‘interrogate()‘

Validate that the target table

(“tbl') and the comparison table

(“tbl_2%) are equivalent in terms

of content

agent <-
create_agent(tbl = tbl) %>%
tbl_match(tbl_compare = tbl_2) %>%
interrogate()

Determine if this validation passed
by using ‘all_passed()*
all_passed(agent)

Calling ‘agent‘ in the console
prints the agent's report; but we
can get a ‘gt_tbl® object directly
with ‘get_agent_report(agent)®

H oH H H

ES

B: Using the validation function
directly on the data (no ‘agent‘)

**

This way of using validation functions
acts as a data filter: data is passed
through but should ‘stop()‘ if there
is a single test unit failing; the
behavior of side effects can be
customized with the ‘actions® option
tbl %>%

tbl_match(tbl_compare = tbl_2)

BN

C: Using the expectation function

With the ‘expect_x()‘ form, we would
typically perform one validation at a
time; this is primarily used in

tbl _match

tbl_source 323

testthat tests
expect_tbl_match(

tbl, tbl_compare = tbl_2
)

D: Using the test function

With the “test_*()‘ form, we should
get a single logical value returned
to us
tbl %>%
tbl_match(
tbl_compare = tbl_2
)

tbl_source Obtain a table-prep formula from a table store

Description

The tbl_source() function provides a convenient means to access a table-prep formula from either
a tbl_store object or a table store YAML file (which can be created with the yaml_write() func-
tion). A call to tbl_source() is most useful as an input to the tbl argument of create_agent(),
create_informant(), or set_tb1().

Should you need to obtain the table itself (that is generated via the table-prep formula), then the
tbl_get () function should be used for that.

Usage

tbl_source(tbl, store = NULL)

Arguments
tbl The table name associated with a table-prep formula. This is part of the table
store. This table could be identified by its name (e.g., tbl = "large_table")
or by supplying a reference using a subset (with $) of the tbl_store object (e.g.,
tbl = store$large_table). If using the latter method then nothing needs to be
supplied to store.
store Either a table store object created by the tbl_store() function or a path to a
table store YAML file created by yaml_write().
Value

A table-prep formula.

Function ID

1-9

324

See Also

tbl_source

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tb1(),
draft_validation(), file_tbl(), scan_data(), thl_get(), tbl_store(), validate_rmd()

Examples

if (interactive()) {

#
#
#

Let's create a ‘tbl_store‘ object by
giving two table-prep formulas to
“tbl_store()*

tbls <-

#
#
#

tbl_store(
small_table_duck ~ db_tbl(
table = small_table,
dbname = ":memory:",
dbtype = "duckdb”
),
sml_table ~ pointblank::small_table
)

We can pass a table-prep formula
to ‘create_agent()' and interrogate
the table shortly thereafter

agent <-

#
#
#

create_agent(
thl = ~ tbl_source(”sml_table"”, tbls),
label = "An example that uses a table store.”,
actions = action_levels(warn_at = 0.10)
) %>%
col_exists(vars(date, date_time)) %>%
interrogate()

Both the ‘tbl_store‘ object and the
‘agent® can be transformed to YAML with
the ‘yaml_write()* function

This writes the “tbl_store.yml‘ file
by default (but a different name
could be used)

yaml_write(tbls)

#
#
#
#

Let's modify the agent's target
to point to the table labeled as
“"sml_table”" in the YAML
representation of the “tbl_store®

agent <-

agent %>%
set_tbl(
~ tbl_source(
tbl = "sml_table",
store = "tbl_store.yml”

tbl_store 325

)

Then we can write agent to a YAML

file (writes to ‘agent-sml_table.yml®
by default)

yaml_write(agent)

Now that both are in this on-disk format
an interrogation can be done by accessing
the agent YAML

agent <-
yaml_agent_interrogate(
filename = "agent-sml_table.yml”
)
3
tbl_store Define a store of tables with table-prep formulas: a table store
Description

It can be useful to set up all the data sources you need and just draw from them when necessary. This
upfront configuration with tbl_store() lets us define the methods for obtaining tabular data from
mixed sources (e.g., database tables, tables generated from flat files, etc.) and provide names for
these data preparation procedures. Then we have a convenient way to access the materialized tables
with tbl_get(), or, the table-prep formulas with tbl_source(). Table-prep formulas can be as
simple as getting a table from a location, or, it can involve as much mutation as is necessary (imag-
ine procuring several mutated variations of the same source table, generating a table from multiple
sources, or pre-filtering a database table according to the system time). Another nice aspect of orga-
nizing table-prep formulas in a single object is supplying it to the tb1 argument of create_agent ()
or create_informant() via $ notation (e.g, create_agent(tbl = <tbl_store>$<name>)) or with
tbl_source() (e.g., create_agent(tbl = ~ tbl_source("<name>", <tbl_store>))).

Usage

tbl_store(..., .list = list2(...))

Arguments

Expressions that contain table-prep formulas and table names for data retrieval.
Two-sided formulas (e.g, <LHS> ~ <RHS>) are to be used, where the left-hand
side is a given name and the right-hand is the portion that is is used to obtain the
table.

.list Allows for the use of a list as an input alternative to

326 tbl_store

Value

A tbl_store object that contains table-prep formulas.

YAML

A pointblank table store can be written to YAML with yaml_write() and the resulting YAML

can be used in several ways. The ideal scenario is to have pointblank agents and informants

also in YAML form. This way the agent and informant can refer to the table store YAML (via

tbl_source()), and, the processing of both agents and informants can be performed with yaml_agent_interrogate()
and yaml_informant_incorporate(). With the following R code, a table store with two table-

prep formulas is generated and written to YAML (if no filename is given then the YAML is written

to "tbl_store.yml").

R statement for generating the "tbl_store.yml” file

tbl_store(
tbl_duckdb ~ db_tbl(small_table, dbname = ":memory:", dbtype = "duckdb"),
sml_table_high ~ small_table %>% dplyr::filter(f == "high")

) %%
yaml_write()

YAML representation ("tbl_store.yml")

tbls:
tbl_duckdb: ~ db_tbl(small_table, dbname = ":memory:", dbtype = "duckdb")
sml_table_high: ~ small_table %>% dplyr::filter(f == "high")

This is useful when you want to get fresh pulls of prepared data from a source materialized in an R
session (with the tb1l_get () function. For example, the sm1_table_high table can be obtained by
using tbl_get("sml_table_high”,"tbl_store.yml"”). To get an agent to check this prepared
data periodically, then the following example with tb1l_source() will be useful:

Generate agent that checks ‘sml_table_high®, write it to YAML
create_agent(

tbl = ~ tbl_source(”sml_table_high”, "tbl_store.yml"),
label = "An example that uses a table store.”,
actions = action_levels(warn_at = 0.10)

) %%

col_exists(vars(date, date_time)) %>%
write_yaml()

YAML representation ("agent-sml_table_high.yml")
tbl: ~ tbl_source("sml_table_high”, "tbl_store.yml")
tbl_name: sml_table_high

label: An example that uses a table store.

actions:
warn_fraction: 0.1

locale: en

steps:

- col_exists:
columns: vars(date, date_time)

tbl_store 327

Now, whenever the sm1_table_high table needs to be validated, it can be done with yaml_agent_interrogate()
(e.g., yaml_agent_interrogate("agent-sml_table_high.yml")).

Function ID

1-8

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tb1(),
draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), validate_rmd()

Examples

if (interactive()) {

Define a ‘tbl_store‘ object by adding
table-prep formulas inside the
“tbl_store()" call
tbls <-
tbl_store(
small_table_duck ~ db_tbl(

table = small_table,

dbname = ":memory:",

dbtype = "duckdb”

),
~ db_tb1(
table = "rna”,
dbname = "pfmegrnargs”,

dbtype = "postgres”,
host = "hh-pgsql-public.ebi.ac.uk”,

port = 5432,
user = I("reader"),
password = I("NWDMCE5xdipIjRrp")

),
all_revenue ~ db_tbl(
table = file_tbl(
file = from_github(

file = "all_revenue_large.rds"”,
repo = "rich-iannone/intendo”,
subdir = "data-large”
)
),
dbname = ":memory:",
dbtype = "duckdb”
),
sml_table ~ pointblank::small_table

)

Once this object is available, you
can check that the table of interest
is produced to your specification with

328 tbl_store

the “tbl_get()‘ function

tbl_get(
tbl = "small_table_duck”,
store = tbls

)

Another simpler way to get the same

table materialized is by using “$° to
get the entry of choice for “tbl_get()*
tbls$small_table_duck %>% tbl_get()

Creating an agent is easy when all
table-prep formulas are encapsulated
in a “tbl_store" object; use ‘$*
notation to pass the appropriate
procedure for reading a table to the
“tbl' argument
agent_1 <-
create_agent(

tbl = tbls$small_table_duck

hod ¥ O O

)

There are other ways to use the

table store to assign a target table
to an agent, like using the

“tbl_source()* function

agent_2 <-
create_agent(
tbl = ~ tbl_source(
tbl = "small_table_duck”,
store = tbls
)
)

The table store can be moved to

YAML with ‘yaml_write‘ and the

“tbl_source()" call could then

refer to that on-disk table store;
let's do that YAML conversion
yaml_write(tbls)

The above writes the “tbl_store.yml®
file (by not providing a ‘filename®
this default filename is chosen);
next, modify the ‘tbl_source()*
so that ‘store‘ refer to the YAML
file
agent_3 <-
create_agent(
tbl = ~ tbl_source(
tbl = "small_table_duck”,
store = "tbl_store.yml”

)

N T

tt_string_info 329

tt_string_info Table Transformer: obtain a summary table for string columns

Description

With any table object, you can produce a summary table that is scoped to string-based columns.
The output summary table will have a leading column called " . param."” with labels for each of the
three rows, each corresponding to the following pieces of information pertaining to string length:

1. Mean String Length ("1length_mean")
2. Minimum String Length ("length_min")

3. Maximum String Length ("1length_max")

Only string data from the input table will generate columns in the output table. Column names from
the input will be used in the output, preserving order as well.

Usage

tt_string_info(tbl)

Arguments
tbl A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tb1_dbi object, or a tb1l_spark object.
Value

A tibble object.

Function ID

12-2

See Also

Other Table Transformers: get_tt_param(), tt_summary_stats(), tt_tbl_colnames(), tt_tbl_dims(),
tt_time_shift(), tt_time_slice()

330 tt_summary_stats

Examples

Get string information for the
string-based columns in the

‘game_revenue' dataset
tt_string_info(game_revenue)

Ensure that ‘player_id‘ and
‘session_id‘ values always have
the same number of characters
throughout the table
tt_string_info(game_revenue) %>%
col_vals_equal(
columns = vars(player_id),
value = 15
) %%
col_vals_equal(
columns = vars(session_id),
value = 24

)

Check that the maximum string
length in column “f‘ of the
“small_table' dataset is no
greater than “4°
tt_string_info(small_table) %>%
test_col_vals_lte(
columns = vars(f),

value = 4
)
tt_summary_stats Table Transformer: obtain a summary stats table for numeric columns
Description

With any table object, you can produce a summary table that is scoped to the numeric column
values. The output summary table will have a leading column called ".param."” with labels for
each of the nine rows, each corresponding to the following summary statistics:

. Minimum ("min")

. 5th Percentile ("p05")

. 1st Quartile ("g_1")

. Median ("med")

. 3rd Quartile ("q_3")

. 95th Percentile ("p95")

. Maximum ("max")

~N O L AW

tt_summary_stats 331

8. Interquartile Range ("iqr")
9. Range ("range")

Only numerical data from the input table will generate columns in the output table. Column names
from the input will be used in the output, preserving order as well.

Usage

tt_summary_stats(tbl)

Arguments
tbl A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tb1_dbi object, or a tb1l_spark object.
Value

A tibble object.

Function ID

12-1

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_tbl_colnames(), tt_tbl_dims(),
tt_time_shift(), tt_time_slice()

Examples

Get summary statistics for the
‘game_revenue' dataset that is
included in the package
tt_summary_stats(game_revenue)

Ensure that the maximum revenue
for individual purchases in the
“game_revenue' table is less than
$150
tt_summary_stats(game_revenue) %>%
col_vals_1t(

columns = vars(item_revenue),

value = 150,

segments = .param. ~ "max”

)

For in-app purchases in the

‘game_revenue' table, check that

median revenue is somewhere

between $8 and $12

game_revenue %>%
dplyr::filter(item_type == "iap") %>%

332

tt_summary_stats() %>%

col_vals_between(
columns = vars(item_revenue),
left = 8, right = 12,

segments =

)

od B o H O o H W

agent <-
create_agent(

tbl = game_revenue,
"game_revenue",

.param.

~ "med”

While performing validations of the
‘game_revenue' table with an agent

we can include the same revenue

check by using “tt_summary_stats()*
in the ‘preconditions® argument (this
will transform the target table for
the validation step); we also need

to get just a segment of that table
(the row with the median values)

tbl_name =

label = "An example.”,

actions = action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35

)

) %>%

rows_complete()
rows_distinct() %>%
col_vals_between(
columns = vars(item_revenue),
left = 8, right = 12,
preconditions
dplyr::filter(item_type == "iap") %>%
tt_summary_stats(),
segments = .param. ~ "med”

) %>%
interrogate()

%>%

. %>%

This should all pass but let's check:
all_passed(agent)

tt_tbl colnames

tt_tbl_colnames

Table Transformer: get a table’s column names

Description

With any table object, you can produce a summary table that contains table’s column names. The
output summary table will have two columns and as many rows as there are columns in the input

tt_tbl _colnames 333

table. The first column is the ".param."” column, which is an integer-based column containing the
indices of the columns from the input table. The second column, "value”, contains the column
names from the input table.

Usage

tt_tbl_colnames(tbl)

Arguments
tbl A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tb1_dbi object, or a tb1l_spark object.
Value

A tibble object.

Function ID
12-4

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_dims(),
tt_time_shift(), tt_time_slice()

Examples

Get the column names of the
‘game_revenue‘ dataset that's
included in the package
tt_tbl_colnames(game_revenue)

This output table is useful when
you want to validate the
column names of the table; here,
we check that ‘game_revenue‘ has
certain column names present
tt_tbl_colnames(game_revenue) %>%
test_col_vals_make_subset(
columns = vars(value),
set = c("acquisition”, "country")

)

We can check to see whether the

column names in the ‘specifications

table are all less than 15

characters in length

specifications %>%
tt_tbl_colnames() %>%
tt_string_info() %>%
test_col_vals_1t(

\

334 tt_tbl dims

columns = vars(value),
value = 15

tt_tbl_dims Table Transformer: get the dimensions of a table

Description

With any table object, you can produce a summary table that contains nothing more than the table’s
dimensions: the number of rows and the number of columns. The output summary table will
have two columns and two rows. The first is the ".param." column with the labels "rows” and
"columns”; the second column, "value”, contains the row and column counts.

Usage
tt_tbl_dims(tbl)

Arguments
tbl A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tb1_dbi object, or a tb1l_spark object.
Value

A tibble object.

Function ID

12-3

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_colnames(),
tt_time_shift(), tt_time_slice()

Examples

Get the dimensions of the

‘game_revenue‘ dataset that's
included in the package
tt_tbl_dims(game_revenue)

This output table is useful when
you want to validate the

dimensions of the table; here,

we check that ‘game_revenue‘ has
at least 1500 rows

tt_time_shift 335

tt_tbl_dims(game_revenue) %>%
dplyr::filter(.param. == "rows") %>%
test_col_vals_gt(
columns = vars(value),
value = 1500
)

We can check ‘small_table" for
an exact number of columns (‘8%)
tt_tbl_dims(small_table) %>%
dplyr::filter(.param. == "columns") %>%
test_col_vals_equal(
columns = vars(value),

value = 8
)
tt_time_shift Table Transformer: shift the times of a table
Description

With any table object containing date or date-time columns, these values can be precisely shifted
with tt_time_shift() and specification of the time shift. We can either provide a string with the
time shift components and the shift direction (like "-4y 10d") or a difftime object (which can be
created via lubridate expressions or by using the base: :difftime() function).

Usage
tt_time_shift(tbl, time_shift = "Q@y om @d ©@H oM @S")

Arguments
tbl A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tb1_dbi object, or a tb1l_spark object.
time_shift Either a character-based representation that specifies the time difference by which
all time values in time-based columns will be shifted, or, a difftime object. The
character string is constructed in the format "@y @m @d @H @M @S" and individual
time components can be omitted (i.e., "1y 5d" is a valid specification of shifting
time values ahead one year and five days). Adding a "-" at the beginning of the
string (e.g., "-2y") will shift time values back.
Details

The time_shift specification cannot have a higher time granularity than the least granular time
column in the input table. Put in simpler terms, if there are any date-based based columns (or
just a single date-based column) then the time shifting can only be in terms of years, months, and
days. Using a time_shift specification of "2@d 6H" in the presence of any dates will result in
a truncation to "20d"”. Similarly, a difftime object will be altered in the same circumstances,
however, the object will resolved to an exact number of days through rounding.

336 tt_time_slice

Value

A data frame, a tibble, a tb1_dbi object, or a tb1l_spark object depending on what was provided
as tbl.

Function ID

12-5

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_colnames(),
tt_tbl_dims(), tt_time_slice()

Examples

With the ‘game_revenue' dataset,
which has entries in the first
21 days of 2015, move all of the
date and date-time values to the
beginning of 2021
tt_time_shift(

tbl = game_revenue,

time_shift = "6y"
)

Keeping only the ‘date_time" and

a-*f* columns of ‘small_table",

shift the times back 2 days and

12 hours

small_table %>%
dplyr::select(-date) %>%
tt_time_shift("-2d 12H")

tt_time_slice Table Transformer: slice a table with a slice point on a time column

Description

With any table object containing date, date-time columns, or a mixture thereof, any one of those
columns can be used to effectively slice the data table in two with a slice_point: and you get to
choose which of those slices you want to keep. The slice point can be defined in several ways. One
method involves using a decimal value between @ and 1, which defines the slice point as the time
instant somewhere between the earliest time value (at @) and the latest time value (at 1). Another
way of defining the slice point is by supplying a time value, and the following input types are
accepted: (1) an ISO 8601 formatted time string (as a date or a date-time), (2) a POSIXct time, or
(3) a Date object.

tt_time_slice 337

Usage

tt_time_slice(
tbl,
time_column = NULL,
slice_point = 0,
keep = c("left”, "right"),
arrange = FALSE

)
Arguments
tbl A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tb1_dbi object, or a tb1l_spark object.
time_column The time-based column that will be used as a basis for the slicing. If no time
column is provided then the first one found will be used.
slice_point The location on the time_column where the slicing will occur. This can either
be a decimal value from @ to 1, an ISO 8601 formatted time string (as a date or
a date-time), a POSIXct time, or a Date object.
keep Which slice should be kept? The "left” side (the default) contains data rows
that are earlier than the slice_point and the "right” side will have rows that
are later.
arrange Should the slice be arranged by the time_column? This may be useful if the
input tb1 isn’t ordered by the time_column. By default, this is FALSE and the
original ordering is retained.
Details

There is the option to arrange the table by the date or date-time values in the time_column. This
ordering is always done in an ascending manner. Any NA/NULL values in the time_column will
result in the corresponding rows can being removed (no matter which slice is retained).

Value
A data frame, a tibble, a tb1_dbi object, or a tb1l_spark object depending on what was provided
as tbl.

Function ID

12-6

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_colnames(),
tt_tbl_dims(), tt_time_shift()

338 validate_rmd

Examples
With the ‘game_revenue‘ dataset,
which has entries in the first
21 days of 2015, elect to get all
of the records where the ‘time"
values are strictly for the first
15 days of 2015

tt_time_slice(
tbl = game_revenue,

time_column = "time",
slice_point = "2015-01-16"
)
Omit the first 25% of records
from ‘small_table‘ on the basis
of a timeline that begins at
°2016-01-04 11:00:00" and
ends at ‘2016-01-30 11:23:00"

small_table %>%
tt_time_slice(
slice_point = 0.25,
keep = "right”
)

validate_rmd Perform pointblank validation testing within R Markdown documents

Description

The validate_rmd() function sets up a framework for validation testing within specialized valida-
tion code chunks inside an R Markdown document. To enable this functionality, validate_rmd()
should be called early within an R Markdown document code chunk (preferably in the setup chunk)
to signal that validation should occur within specific code chunks. The validation code chunks re-
quire the validate = TRUE option to be set. Using pointblank validation functions on data in these
marked code chunks will flag overall failure if the stop threshold is exceeded anywhere. All errors
are reported in the validation code chunk after rendering the document to HTML, where a centered
status button either indicates success or the number of overall failures. Clicking the button reveals
the otherwise hidden validation statements and their error messages (if any).

Usage

validate_rmd(summary = TRUE, log_to_file = NULL)

Arguments

summary If TRUE (the default), then there will be a leading summary of all validations in
the rendered R Markdown document. With FALSE, this element is not shown.

write_testthat_file 339

log_to_file An option to log errors to a text file. By default, no logging is done but TRUE
will write log entries to "validation_errors.log” in the working directory.
To both enable logging and to specify a file name, include a path to a log file of
the desired name.

Function ID

1-4

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tb1(),
draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store()

write_testthat_file Transform a pointblank agent to a testthat zest file

Description

With a pointblank agent, we can write a testthat test file and opt to place it in the testthat/tests
if it is available in the project path (we can specify an alternate path as well). This works by trans-
forming the validation steps to a series of expect_*() calls inside individual testthat: :test_that()
statements.

A major requirement for using write_testthat_file() on an agent is the presence of an expres-
sion that can retrieve the target table. Typically, we might supply a table-prep formula, which is a
formula that can be invoked to obtain the target table (e.g., tbl = ~ pointblank::small_table).
This user-supplied statement will be used by write_testthat_file() to generate a table-loading
statement at the top of the new testthat test file so that the target table is available for each of the
testthat::test_that() statements that follow. If an agent was not created using a table-prep
formula set for the tb1, it can be modified via the set_tb1() function.

Thresholds will be obtained from those applied for the stop state. This can be set up for a point-
blank agent by passing an action_levels object to the actions argument of create_agent() or
the same argument of any included validation function. If stop thresholds are not available, then a
threshold value of 1 will be used for each generated expect_*() statement in the resulting testthat
test file.

There is no requirement that the agent first undergo interrogation with interrogate(). However,
it may be useful as a dry run to interactively perform an interrogation on the target data before
generating the testthat test file.

Usage
write_testthat_file(
agent,
name = NULL,
path = NULL,

overwrite = FALSE,

340 write_testthat_file

skips = NULL,
quiet = FALSE
)
Arguments

agent An agent object of class ptblank_agent.

name An optional name for for the testhat test file. This should be a name without
extension and without the leading "test-" text. If nothing is supplied, the name
will be derived from the tb1l_name in the agent. If that’s not present, a generic
name will be used.

path A path can be specified here if there shouldn’t be an attempt to place the file in
testthat/tests.

overwrite Should a testthat file of the same name be overwritten? By default, this is
FALSE.

skips This is an optional vector of test-skipping keywords modeled after the test-
that skip_on_*() functions. The following keywords can be used to include
skip_on_*() statements: "cran” (testthat::skip_on_cran()), "travis” (testthat: :skip_on_trav:
"appveyor" (testthat: :skip_on_appveyor()), "ci” (testthat: :skip_on_ci()),
"covr"” (testthat::skip_on_covr()), "bioc” (testthat::skip_on_bioc()).
There are keywords for skipping tests on certain operating systems and all of
them will insert a specific testthat: : skip_on_os() call. These are "windows"
(skip_on_os("windows")), "mac"” (skip_on_os("mac")), "linux” (skip_on_os("1linux")),
and "solaris” (skip_on_os("solaris")). These calls will be placed at the
top of the generated testthat test file.

quiet Should the function not inform when the file is written? By default this is FALSE.

Details

Tests for inactive validation steps will be skipped with a clear message indicating that the reason
for skipping was due to the test not being active. Any inactive validation steps can be forced into
an active state by using the activate_steps() on an agent (the opposite is possible with the
deactivate_steps() function).

The testthat package comes with a series of skip_on_*() functions which conveniently cause the
test file to be skipped entirely if certain conditions are met. We can quickly set any number of
these at the top of the testthat test file by supplying keywords as a vector to the skips option of
write_testthat_file(). For instance, setting skips = c¢("cran", "windows) will add the testthat
skip_on_cran() and skip_on_os("windows") statements, meaning that the generated test file
won’t run on a CRAN system or if the system OS is Windows.

Here is an example of testthat test file output:
test-small_table.R

Generated by pointblank
tbl <- small_table

test_that("column ‘date_time‘ exists”, {

write_testthat_file 341

expect_col_exists(
tbl,
columns = vars(date_time),
threshold = 1
)
1))

test_that("values in ‘c’ should be <= 5", {

expect_col_vals_lte(

tbl,
columns = vars(c),
value = 5,
threshold = 0.25
)
D

This was generated by the following set of statements:

library(pointblank)

agent <-
create_agent(
tbl = ~ small_table,
actions = action_levels(stop_at = 0.25)
) %>%
col_exists(vars(date_time)) %>%
col_vals_lte(vars(c), value = 5)

write_testthat_file(
agent = agent,
name = "small_table",

non

Value

Invisibly returns TRUE if the testthat file has been written.

Function ID

8-5

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts(), get_sundered_data()

342

Examples

if (interactive()) {

Creating an ‘action_levels" object is a
common workflow step when creating a
pointblank agent; we designate failure
thresholds to the ‘warn‘, ‘stop‘, and
‘notify" states using ‘action_levels()*®
al <-
action_levels(

warn_at = 0.10,

stop_at = 0.25,

notify_at = 0.35

ENE

)

A pointblank ‘agent® object is now
created and the ‘al‘ object is provided
to the agent; the static thresholds
provided by ‘al‘ make reports a bit
more useful after interrogation
agent <-

create_agent(

tbl = ~ small_table,

label = "An example.”,
actions = al
) %%

col_exists(vars(date, date_time)) %>%
col_vals_regex(

vars(b),

regex = "[0-9]1-[a-z]1{3}-[0-91{3}"
) %%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5) %>%
interrogate()

This agent and all of the checks can

be transformed into a testthat file
with ‘write_testthat_file()"; the ‘stop®
thresholds will be ported over
write_testthat_file(

agent = agent,

#
#
#
#

name = "small_table”,

path = ".”
)
The above code will generate a file with
the name ‘test-small_table.R‘; the path
was specified with *"."" but, by default,
the function will place the file in the
“tests/testthat® folder if it's available

An agent on disk as a YAML file can be

write_testthat_file

x_read_disk 343

made into a testthat file; the
'agent-small_table.yml' file is
available in the package through
‘system.file()*
yml_file <-
system.file(
"yaml", "agent-small_table.yml"”,
package = "pointblank”
)

#
#
#
#

Writing the testthat file into the
working directory is much the same
as before but we're reading the
agent from disk this time
write_testthat_file(

agent = yaml_read_agent(yml_file),

name = "from_agent_yaml”,
path = ".”
)
3
x_read_disk Read an agent, informant, multiagent, or table scan from disk
Description

An agent, informant, multiagent, or table scan that has been written to disk (with x_write_disk())

can be read back into memory with the x_read_disk() function. For an agent or an informant

object that has been generated in this way, it may not have a data table associated with it (de-

pending on whether the keep_tbl option was TRUE or FALSE when writing to disk) but it should

still be able to produce reporting (by printing the agent or informant to the console or using
get_agent_report()/get_informant_report()). Anagent will return an x-list with get_agent_x_list()
and yield any available data extracts with get_data_extracts(). Furthermore, all of an agent’s
validation steps will still be present (along with results from the last interrogation).

Usage

x_read_disk(filename, path = NULL, quiet = FALSE)

Arguments
filename The name of a file that was previously written by x_write_disk().
path An optional path to the file (combined with filename).

quiet Should the function not inform when the file is read? By default this is FALSE.

344 x_read_disk

Details

Should a written-to-disk agent or informant possess a table-prep formula or a specific in-memory
tablewe could use the interrogate() or incorporate() function again. For a data quality re-
porting workflow, it is useful to interrogate() target tables that evolve over time. While the same
validation steps will be used, more can be added before calling interrogate (). For an information
management workflow with an informant object, using incorporate() will update aspects of the
reporting such as table dimensions, and info snippets/text will be regenerated.

Value

Either a ptblank_agent, ptblank_informant, or a ptblank_tbl_scan object.

Function ID

9-2

See Also

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(),
set_tbl(), x_write_disk()

Examples

if (interactive()) {
A: Reading an agent from disk

The process of developing an agent

and writing it to disk with the
x_write_disk() function is explained
in that function's documentation;

but suppose we have such a written file
that's named "agent-small_table.rds”,
we could read that to a new agent
object with “x_read_disk()"*

agent <-
x_read_disk("agent-small_table.rds")

#
#
#
#
#
#
#
#

B: Reading an informant from disk

If there is an informant written

to disk via ‘x_write_disk()" and it's

named "informant-small_table.rds”,

we could read that to a new informant

object with “x_read_disk()*

informant <-
x_read_disk("informant-small_table.rds")

C: Reading a multiagent from disk

The process of creating a multiagent

x_write_disk 345

and writing it to disk with the

‘x_write_disk()" function is shown

in that function's documentation;

but should we have such a written file

called "multiagent-small_table.rds”,

we could read that to a new multiagent

object with ‘x_read_disk()*

multiagent <-
x_read_disk("multiagent-small_table.rds")

D: Reading a table scan from disk

If there is a table scan written

to disk via ‘x_write_disk()" and it's

named "tbl_scan-storms.rds"”, we could

read it back into R with ‘x_read_disk()*

tbl_scan <-
x_read_disk("tbl_scan-storms.rds")

x_write_disk Write an agent, informant, multiagent, or table scan to disk

Description

Writing an agent, informant, multiagent, or even a table scan to disk with x_write_disk() can be
useful for keeping data validation intel or table information close at hand for later retrieval (with
x_read_disk()). By default, any data table that the agent or informant may have held before being
committed to disk will be expunged (not applicable to any table scan since they never hold a table
object). This behavior can be changed by setting keep_tb1l to TRUE but this only works in the case
where the table is not of the tb1_dbi or the tb1l_spark class.

Usage

x_write_disk(
X,
filename,
path = NULL,
keep_tbl = FALSE,
keep_extracts = FALSE,
quiet = FALSE

Arguments

X An agent object of class ptblank_agent, an informant of class ptblank_informant,
or an table scan of class ptblank_tbl_scan.

346 x_write_disk

filename The filename to create on disk for the agent, informant, or table scan.

path An optional path to which the file should be saved (this is automatically com-
bined with filename).

keep_tbl An option to keep a data table that is associated with the agent or informant
(which is the case when the agent, for example, is created using create_agent(tbl = <data ta-
ble, ...)). The default is FALSE where the data table is removed before writing
to disk. For database tables of the class tbl_dbi and for Spark DataFrames
(tbl_spark) the table is always removed (even if keep_tbl is set to TRUE).

keep_extracts An option to keep any collected extract data for failing rows. Only applies to
agent objects. By default, this is FALSE (i.e., extract data is removed).

quiet Should the function not inform when the file is written? By default this is FALSE.

Details

It is recommended to set up a table-prep formula so that the agent and informant can access re-
freshed data after being read from disk through x_read_disk(). This can be done initially with
the tbl argument of create_agent()/create_informant() by passing in a table-prep formula or
a function that can obtain the target table when invoked. Alternatively, we can use the set_tb1()
with a similarly crafted tb1l expression to ensure that an agent or informant can retrieve a table at a
later time.

Value

Invisibly returns TRUE if the file has been written.

Function ID
9-1

See Also

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(),
set_tbl(), x_read_disk()

Examples

if (interactive()) {
A: Writing an ‘agent‘ to disk

Let's go through the process of (1)
developing an agent with a validation
plan (to be used for the data quality
analysis of the ‘small_table‘ dataset),
(2) interrogating the agent with the
‘interrogate()" function, and (3) writing
the agent and all its intel to a file

T T RN

ES

Creating an ‘action_levels"' object is a
common workflow step when creating a

x_write_disk 347

pointblank agent; we designate failure
thresholds to the ‘warn‘, ‘stop‘, and
‘notify" states using ‘action_levels()*
al <-
action_levels(

warn_at = 0.10,

stop_at = 0.25,

notify_at = 0.35

N o

)

Now create a pointblank ‘agent‘ object
and give it the ‘al® object (which
serves as a default for all validation
steps which can be overridden); the
data will be referenced in “tbl®
agent <-
create_agent(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "“x_write_disk()‘",

actions = al

Then, as with any ‘agent® object, we
can add steps to the validation plan by
using as many validation functions as we
want; then, we ‘interrogate()"
agent <-
agent %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
vars(b), regex = "[0-9]-[a-z]1{3}-[0-91{3}"
) %%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5) %>%
interrogate()

The ‘agent‘ can be written to a file with
the “x_write_disk()" function
x_write_disk(

agent,

filename = "agent-small_table.rds

)

"

We can read the file back as an agent

with the ‘x_read_disk()" function and

we'll get all of the intel along with the
restored agent

If you're consistently writing agent
reports when periodically checking data,
we could make use of the ‘affix_date()*

348

or ‘affix_datetime()" depending on the
granularity you need; here's an example
that writes the file with the format:
'agent-small_table-YYYY-mm-dd_HH-MM-SS.rds'
x_write_disk(
agent,
filename = affix_datetime(
"agent-small_table.rds”
)
)

B: Writing an ‘“informant® to disk

Let's go through the process of (1)

creating an informant object that

minimally describes the ‘small_table®
dataset, (2) ensuring that data is

captured from the target table using
the ‘incorporate()‘ function, and (3)
writing the informant to a file

Create a pointblank ‘informant®
object with ‘create_informant()*
and the ‘small_table‘ dataset; use
“incorporate()‘ so that info snippets
are integrated into the text
informant <-
create_informant(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "“x_write_disk()‘"

) %%
info_snippet(

snippet_name = "high_a",

fn = snip_highest(column = "a")
) %%
info_snippet(

snippet_name = "low_a",

fn = snip_lowest(column = "a")
) %>%

info_columns(
columns = vars(a),
info = "From {low_a} to {high_a}."
) %%
info_columns(
columns = starts_with("date"),
info = "Time-based values."
) %>%
info_columns(
columns = "date",
info = "The date part of ‘date_time".”
) %>%
incorporate()

x_write_disk

x_write_disk

The ‘informant‘ can be written to a
file with “x_write_disk()"; let's do
this with ‘affix_date()" so that the
filename has a datestamp
x_write_disk(

informant,

filename = affix_date(

"informant-small_table.rds”

We can read the file back into a

new informant object (in the same

state as when it was saved) by using
“x_read_disk()*

C: Writing a multiagent to disk

Let's create one more pointblank
agent object, provide it with some
validation steps, and ‘interrogate()*
agent_b <-
create_agent(
thl = ~ small_table,
tbl_name = "small_table”,
label = "*x_write_disk()"",
actions = al
) %%
col_vals_gt(
vars(b), vars(g), na_pass = TRUE,
label = "b > g"

) %>%
col_is_character(
vars(b, f),
label = "Verifying character-type columns”
) %>%
interrogate()

Now we can combine the earlier ‘agent®
object with the newer ‘agent_b‘ to
create a ‘multiagent®
multiagent <-
create_multiagent(agent, agent_b)

The ‘multiagent® can be written to
a file with the “x_write_disk()" function
x_write_disk(

multiagent,

filename = "multiagent-small_table.rds"

We can read the file back as a multiagent

349

350 yaml_agent_interrogate

with the ‘x_read_disk()‘ function and
we'll get all of the constituent agents
and their associated intel back as well

ETS

D: Writing a table scan to disk

We can get an report that describes all
of the data in the ‘storms® dataset
tbl_scan <- scan_data(tbl = dplyr::storms)

The table scan object can be written
to a file with “x_write_disk()*
x_write_disk(

tbl_scan,

filename = "tbl_scan-storms.rds”

)
3

yaml_agent_interrogate
Get an agent from pointblank YAML and interrogate()

Description

The yaml_agent_interrogate() function operates much like the yaml_read_agent() function
(reading a pointblank YAML file and generating an agent with a validation plan in place). The
key difference is that this function takes things a step further and interrogates the target table (de-
fined by table-prep formula that is required in the YAML file). The additional auto-invocation of
interrogate() uses the default options of that function. As with yaml_read_agent() the agent
is returned except, this time, it has intel from the interrogation.

Usage

yaml_agent_interrogate(filename, path = NULL)

Arguments
filename The name of the YAML file that contains fields related to an agent.
path An optional path to the YAML file (combined with filename).
Value

A ptblank_agent object.

Function ID

11-4

yaml_agent_interrogate 351

See Also

Other pointblank YAML: yaml_agent_show_exprs(), yaml_agent_string(), yaml_exec(), yaml_informant_incorpor
yaml_read_agent (), yaml_read_informant(), yaml_write()

Examples

if (interactive()) {

Let's go through the process of
developing an agent with a validation
plan (to be used for the data quality
analysis of the ‘small_table‘ dataset),
and then offloading that validation

plan to a pointblank YAML file; this

will later be read in as a new agent and
the target data will be interrogated

(one step) with ‘yaml_agent_interrogate()"

N E R

Creating an ‘action_levels‘ object is a
common workflow step when creating a
pointblank agent; we designate failure
thresholds to the ‘warn‘, ‘stop‘, and
“notify" states using ‘action_levels()*
al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35
)

Now create a pointblank ‘agent‘ object
and give it the ‘al‘ object (which
serves as a default for all validation
steps which can be overridden); the
data will be referenced in ‘tbl‘
(a requirement for writing to YAML)
agent <-
create_agent(

tbl = ~ small_table,

tbl_name = "small_table”,

label = "A simple example with the ‘small_table‘.",

actions = al

od o

)

Then, as with any ‘agent‘ object, we
can add steps to the validation plan by
using as many validation functions as we
want
agent <-
agent %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(

352

vars(b),

regex = "[0-9]-[a-z]{3}-[0-91{3}"
) %%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5)

The agent can be written to a pointblank
YAML file with ‘yaml_write()®
yaml_write(

agent = agent,

filename = "agent-small_table.yml”

The 'agent-small_table.yml' file is
available in the package through ‘system.file()"
yml_file <-
system.file(
"yaml", "agent-small_table.yml"”,
package = "pointblank”
)

We can view the YAML file in the console
with the ‘yaml_agent_string()‘ function
yaml_agent_string(filename = yml_file)

The YAML can also be printed in the console
by supplying the agent as the input
yaml_agent_string(agent = agent)

We can interrogate the data (which
is accessible through “tbl*‘)
through direct use of the YAML file
with ‘yaml_agent_interrogate()"
agent <-
yaml_agent_interrogate(filename = yml_file)

class(agent)

If it's desired to only create a new
agent with the validation plan in place
(stopping short of interrogating the data),
then the ‘yaml_read_agent()‘ function
will be useful
agent <-
yaml_read_agent(filename = yml_file)
class(agent)

yaml_agent_interrogate

yaml_agent_show_exprs 353

yaml_agent_show_exprs Display validation expressions using pointblank YAML

Description

The yaml_agent_show_exprs() function follows the specifications of a pointblank YAML file to
generate and show the pointblank expressions for generating the described validation plan. The
expressions are shown in the console, providing an opportunity to copy the statements and extend
as needed. A pointblank YAML file can itself be generated by using the yaml_write() function
with a pre-existing agent, or, it can be carefully written by hand.

Usage

yaml_agent_show_exprs(filename, path = NULL)

Arguments

filename The name of the YAML file that contains fields related to an agent.
path An optional path to the YAML file (combined with filename).

Function ID
11-6

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_string(), yaml_exec(),
yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant(), yaml_write()

Examples

if (interactive()) {

Let's create a validation plan for the
data quality analysis of the ‘small_table®
dataset; we need an agent and its
table-prep formula enables retrieval
of the target table
agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table”,
label = "A simple example with the ‘small_table*.",
actions = action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35
)
) %>%

354 yaml_agent_string

col_exists(vars(date, date_time)) %>%
col_vals_regex(

vars(b),

regex = "[0-9]-[a-z]{3}-[0-91{3}"
) %%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5)

The agent can be written to a pointblank
YAML file with ‘yaml_write()*
yaml_write(

agent = agent,

filename = "agent-small_table.yml”

)

The 'agent-small_table.yml' file is
available in the package through
‘system.file()*®
yml_file <-
system.file(
"yaml", "agent-small_table.yml"”,
package = "pointblank”
)

At a later time, the YAML file can
be read into a new agent with the
“yaml_read_agent()" function
agent <-
yaml_read_agent(filename = yml_file)

class(agent)
To get a sense of which expressions are
being used to generate the new agent, we

can use ‘yaml_agent_show_exprs()*
yaml_agent_show_exprs(filename = yml_file)

3

yaml_agent_string Display pointblank YAML using an agent or a YAML file

Description

With pointblank YAML, we can serialize an agent’s validation plan (with yaml_write()), read it
back later with a new agent (with yaml_read_agent()), or perform an interrogation on the target
data table directly with the YAML file (with yaml_agent_interrogate()). The yaml_agent_string()
function allows us to inspect the YAML generated by yaml_write() in the console, giving us a look

yaml_agent_string 355

at the YAML without needing to open the file directly. Alternatively, we can provide an agent to the
yaml_agent_string() and view the YAML representation of the validation plan without needing
to write the YAML to disk beforehand.

Usage

yaml_agent_string(agent = NULL, filename = NULL, path = NULL, expanded = FALSE)

Arguments
agent An agent object of class ptblank_agent. If an object is provided here, then
filename must not be provided.
filename The name of the YAML file that contains fields related to an agent. If a file name
is provided here, then agent object must not be provided in agent.
path An optional path to the YAML file (combined with filename).
expanded Should the written validation expressions for an agent be expanded such that
tidyselect and vars() expressions for columns are evaluated, yielding a valida-
tion function per column? By default, this is FALSE so expressions as written
will be retained in the YAML representation.
Function ID
11-5
See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_exec(),
yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant(), yaml_write()

Examples

if (interactive()) {

Let's create a validation plan for the
data quality analysis of the ‘small_table"
dataset; we need an agent and its
table-prep formula enables retrieval
of the target table
agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table”,
label = "A simple example with the ‘small_table*.",
actions = action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35
)
) %>%
col_exists(vars(date, date_time)) %>%

356

col_vals_regex(

vars(b),

regex = "[0-9]1-[a-z]{3}-[0-91{3}"
) 5%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5)

We can view the YAML file in the console

with the ‘yaml_agent_string()‘ function,

providing the ‘agent‘ object as the input
yaml_agent_string(agent = agent)

The agent can be written to a pointblank
YAML file with ‘yaml_write()®
yaml_write(

agent = agent,

filename = "agent-small_table.yml"”

)

There's a similar file in the package
('agent-small_table.yml') and it's
accessible with ‘system.file()®
yml_file <-
system. file(
"yaml", "agent-small_table.yml",
package = "pointblank”
)

The ‘yaml_agent_string()‘ function can
be used with the YAML file as well,

use the ‘filename‘ argument instead
yaml_agent_string(filename = yml_file)

At some later time, the YAML file can
be read as a new agent with the
“yaml_read_agent()" function

agent <- yaml_read_agent(filename = yml_file)

class(agent)

yaml_exec

yaml_exec Execute all agent and informant YAML tasks

Description

The yaml_exec() function takes all relevant pointblank YAML files in a directory and executes
them. Execution involves interrogation of agents for YAML agents and incorporation of informants

yaml_exec 357

for YAML informants. Under the hood, this uses yaml_agent_interrogate() and yaml_informant_incorporate()
and then x_write_disk() to save the processed objects to an output directory. These written arti-

facts can be read in at any later time with the x_read_disk() function or the read_disk_multiagent()

function. This is useful when data in the target tables are changing and the periodic testing of such

tables is part of a data quality monitoring plan.

The output RDS files are named according to the object type processed, the target table, and the date-
time of processing. For convenience and modularity, this setup is ideal when a table store YAML
file (typically named "tbl_store.yml” and produced via the tbl_store() and yaml_write()
workflow) is available in the directory, and when table-prep formulas are accessed by name through
tbl_source().

A typical directory of files set up for execution in this way might have the following contents:
* a"tbl_store.yml” file for holding table-prep formulas (created with tbl_store() and writ-
ten to YAML with yaml_write())
* one or more YAML agent files to validate tables (ideally using tbl_source())

* one or more YAML informant files to provide refreshed metadata on tables (again, using
tbl_source() to reference table preparations is ideal)

 an output folder (default is "output”) to save serialized versions of processed agents and

informants

Minimal example files of the aforementioned types can be found in the pointblank package through
the following system.file() calls:

e system.file("yaml","agent-small_table.yml"”, package = "pointblank")
e system.file("yaml"”,"informant-small_table.yml"”,6 package = "pointblank")
e system.file("yaml”,"tbl_store.yml", 6 package = "pointblank™)

The directory itself can be accessed using system.file("yaml",package = "pointblank”).

Usage
yaml_exec(
path = NULL,
files = NULL,

write_to_disk = TRUE,

output_path = file.path(path, "output”),
keep_tbl = FALSE,

keep_extracts = FALSE

)
Arguments
path The path that contains the YAML files for agents and informants.
files A vector of YAML files to use in the execution workflow. By default, yaml_exec()

will attempt to process every valid YAML file in path but supplying a vector
here limits the scope to the specified files.

358 yaml_exec

write_to_disk Should the execution workflow include a step that writes output files to disk?
This internally calls x_write_disk() to write RDS files and uses the base file-
name of the agent/informant YAML file as part of the output filename, append-
ing the date-time to the basename.

output_path The output path for any generated output files. By default, this will be a subdi-
rectory of the provided path called "output”.

keep_tbl, keep_extracts
For agents, the table may be kept if it is a data frame object (databases tables will
never be pulled for storage) and extracts, collections of table rows that failed a

validation step, may also be stored. By default, both of these options are set to
FALSE.

Value

Invisibly returns a named vector of file paths for the input files that were processed; file output paths
(for wherever writing occurred) are given as the names.

Function ID

11-8

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant(), yaml_write()

Examples

if (interactive()) {

The 'yaml' directory that is
accessible in the package through
‘system.file()" contains the files
1. ‘agent-small_table.yml®

2. ‘informant-small_table.yml®

3. “tbl_store.yml®

T N

H+

There are references in YAML files
1 & 2 to the table store YAML file,
so, they all work together cohesively

* 3

Let's process the agent and the
informant YAML files with ‘yaml_exec()‘;
and we'll specify the working directory
as the place where the output RDS files
are written

* % o o

output_dir <- getwd()

yaml_exec(
path = system.file(

yaml_informant_incorporate 359

"yaml", package = "pointblank”

),

output = output_dir
)
This generates two RDS files in the
working directory: one for the agent
and the other for the informant; each
of them are automatically time-stamped
so that periodic execution can be
safely carried out without risk of
overwriting

yaml_informant_incorporate
Get an informant from pointblank YAML and incorporate()

Description

The yaml_informant_incorporate() function operates much like the yaml_read_informant()
function (reading a pointblank YAML file and generating an informant with all information in
place). The key difference is that this function takes things a step further and incorporates aspects
from the the target table (defined by table-prep formula that is required in the YAML file). The
additional auto-invocation of incorporate() uses the default options of that function. As with
yaml_read_informant () the informant is returned except, this time, it has been updated with the
latest information from the target table.

Usage

yaml_informant_incorporate(filename, path = NULL)

Arguments
filename The name of the YAML file that contains fields related to an informant.
path An optional path to the YAML file (combined with filename).

Value

A ptblank_informant object.

Function ID

11-7

360 yaml_informant_incorporate

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_read_agent(), yaml_read_informant(), yaml_write()

Examples

if (interactive()) {

Let's go through the process of
developing an informant with information
about the ‘small_table‘ dataset and then
move all that to a pointblank YAML

file; this will later be read in as a
new informant and the target data will
be incorporated into the info text

(in one step) with
‘yaml_informant_incorporate()*

T T R

Now create a pointblank ‘informant®
object; the data will be referenced
to “tbl® with a table-prep formula
(a requirement for writing to YAML)
informant <-
create_informant(
tbl = ~ small_table,
label = "A simple example with the ‘small_table*."
)

N

Then, as with any ‘informant‘ object, we
can add information by using as many
“info_x()" functions as we want
informant <-
informant %>%
info_columns(
columns = vars(a),
info = "In the range of 1 to 10. (SIMPLE)"
) %%
info_columns(
columns = starts_with("date"),
info = "Time-based values (e.g., ‘Sys.time()‘)."”
) 5%
info_columns(
columns = "date"”,
info = "The date part of ‘date_time‘. (CALC)"
) %%
info_section(
section_name = "rows"”,
row_count = "There are {row_count} rows available.”
) %%
info_snippet(
snippet_name = "row_count”,
fn =~ . %% nrow()

yaml_read_agent 361

) %%
incorporate()

The informant can be written to a pointblank
YAML file with ‘yaml_write()*
yaml_write(

informant = informant,

filename = "informant-small_table.yml”

)

The 'informant-small_table.yml' file
is available in the package through
“system.file()*®

yml_file <-
system.file(
"yaml", "informant-small_table.yml”,
package = "pointblank”
)

We can incorporate the data (which
is accessible through the table-prep
formula) into the info text through
direct use of the YAML file with
“yaml_informant_incorporate()"*
informant <-
yaml_informant_incorporate(filename = yml_file)

class(informant)

If it's desired to only create a new
informant with the information in place
(stopping short of processing), then the
“yaml_read_informant()‘ function will
be useful
informant <-

yaml_read_informant(filename = yml_file)

class(informant)

}

yaml_read_agent Read a pointblank YAML file to create an agent object

Description

With yaml_read_agent () we can read a pointblank YAML file that describes a validation plan
to be carried out by an agent (typically generated by the yaml_write() function. What’s returned
is a new agent with that validation plan, ready to interrogate the target table at will (using the

362 yaml_read_agent

table-prep formula that is set with the tbl argument of create_agent()). The agent can be given
more validation steps if needed before using interrogate() or taking part in any other agent ops
(e.g., writing to disk with outputs intact via x_write_disk() or again to pointblank YAML with
yaml_write()).

To get a picture of how yaml_read_agent() is interpreting the validation plan specified in the
pointblank YAML, we can use the yaml_agent_show_exprs() function. That function shows us
(in the console) the pointblank expressions for generating the described validation plan.

Usage
yaml_read_agent(filename, path = NULL)

Arguments
filename The name of the YAML file that contains fields related to an agent.
path An optional path to the YAML file (combined with filename).
Value

A ptblank_agent object.

Function ID
11-2

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_informant_incorporate(), yaml_read_informant(), yaml_write()

Examples

if (interactive()) {

Let's go through the process of
developing an agent with a validation
plan (to be used for the data quality
analysis of the ‘small_table‘ dataset),
and then offloading that validation
plan to a pointblank YAML file; this
will be read in with ‘yaml_read_agent()

\

% ¥ oM O H W

Creating an ‘action_levels‘ object is a
common workflow step when creating a
pointblank agent; we designate failure
thresholds to the ‘warn‘, ‘stop‘, and
‘notify‘ states using ‘action_levels()*
al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,

yaml_read_agent 363

notify_at = 0.35
)

Now create a pointblank ‘agent‘ object
and give it the ‘al‘ object (which
serves as a default for all validation
steps which can be overridden); the
data will be referenced in “tbl‘ with
a table-prep formula (a requirement
for writing to YAML)
agent <-
create_agent(

thl = ~ small_table,

tbl_name = "small_table”,

label = "A simple example with the ‘small_table*.",

actions = al

T R

)

Then, as with any ‘agent‘ object, we
can add steps to the validation plan by
using as many validation functions as we
want
agent <-
agent %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
vars(b),
regex = "[0-9]-[a-z]{3}-[0-91{3}"
) %%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5)

The agent can be written to a pointblank
YAML file with ‘yaml_write()"
yaml_write(

agent = agent,

filename = "agent-small_table.yml”

)

The 'agent-small_table.yml' file is
available in the package through
‘system.file()*
yml_file <-
system.file(
"yaml", "agent-small_table.yml"”,
package = "pointblank”
)

We can view the YAML file in the console
with the ‘yaml_agent_string()‘ function
yaml_agent_string(filename = yml_file)

364 yaml_read_informant

The YAML can also be printed in the console
by supplying the agent as the input
yaml_agent_string(agent = agent)

At some later time, the YAML file can

be read as a new agent with the

“yaml_read_agent()" function

agent <- yaml_read_agent(filename = yml_file)

class(agent)

We can interrogate the data (which
is accessible through the table-prep
formula supplied initially) with
‘interrogate()" and get an agent
with intel, or, we can interrogate
directly from the YAML file with
‘yaml_agent_interrogate()"
agent <-
yaml_agent_interrogate(

filename = yml_file

)

T T R

class(agent)

}

yaml_read_informant Read a pointblank YAML file to create an informant object

Description

With yaml_read_informant () we can read a pointblank YAML file that describes table informa-
tion (typically generated by the yaml_write() function. What’s returned is a new informant object
with the information intact. The informant object can be given more information through use of the
info_*() functions.

Usage

yaml_read_informant(filename, path = NULL)

Arguments
filename The name of the YAML file that contains fields related to an informant.
path An optional path to the YAML file (combined with filename).

Value

A ptblank_informant object.

yaml_read_informant 365

Function ID
11-3

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_informant_incorporate(), yaml_read_agent(), yaml_write()

Examples

if (interactive()) {

Create a pointblank ‘informant®

object with ‘create_informant()*

and the ‘small_table" dataset

informant <- create_informant(small_table)

An ‘informant® object can be written

to a YAML file with the ‘yaml_write()"

function

yaml_write(

informant = informant,

filename = "informant-small_table.yml”
#

)

The ‘informant-small_table.yml‘ file
looks like this when written

#> info_label: '[2020-09-06]13:37:38]"
#> table:

#> name: small_table

#> _columns: 8

#> _rows: 13

#> _type: tbl_df

#> columns:

#> date_time:

#> _type: POSIXct, POSIXt
#> date:

#> _type: Date

#> a:

#> _type: integer
#> b:

#> _type: character
#> c:

#> _type: numeric
#> d:

#> _type: numeric
#> e:

#> _type: logical
#> f:

#> _type: character

366

We can add keys and values to
add more pertinent information; with
some direct editing of the file we get:

#> info_label: '[2020-09-06|13:37:38]"

#> table:

#> name: small_table

#> _columns: 8

#> _rows: 13

#> _type: tbl_df

#> columns:

#> date_time:

#> _type: POSIXct, POSIXt

#> info: Date-time values.

#> date:

#> _type: Date

#> info: Date values (the date part of ‘date_time‘).
#> a:

#> _type: integer

#> info: Small integer values (no missing values).

#> b:

#> _type: character

#> info: Strings with a common pattern.

#> c:

#> _type: numeric

#> info: Small numeric values (contains missing values).
#> d:

#> _type: numeric

#> info: Large numeric values (much greater than ‘c‘).
#> e:

#> _type: logical

#> info: TRUE and FALSE values.

#> f:

#> _type: character

#> info: Strings of the set “"low”‘, “"mid”‘, and ‘"high"*®

We could also have done the same
with the ‘informant® object by use of
the ‘info_columns()‘ function

The 'informant-small_table.yml' file
is available in the package through
‘system.file()*

yml_file <-
system.file(
"yaml", "informant-small_table.yml”,
package = "pointblank”
)

We can read this YAML file back

as an ‘informant‘ object by using
“yaml_read_informant()"

informant <-

yaml_read_informant

yaml_write 367

yaml_read_informant(filename = yml_file)
class(informant)

}

yaml_write Write pointblank objects to YAML files

Description

With yaml_write () we can take different pointblank objects (these are the ptblank_agent, ptblank_informant,
and tbl_store) and write them to YAML. With an agent, for example, yaml_write() will write

that everything that is needed to specify an agent and it’s validation plan to a YAML file. With

YAML, we can modify the YAML markup if so desired, or, use as is to create a new agent

with the yaml_read_agent() function. That agent will have a validation plan and is ready to
interrogate() the data. We can go a step further and perform an interrogation directly from the

YAML file with the yaml_agent_interrogate() function. That returns an agent with intel (hav-

ing already interrogated the target data table). An informant object can also be written to YAML

with yaml_write().

One requirement for writing an agent or an informant to YAML is that we need to have a table-prep
formula specified (it’s an R formula that is used to read the target table when interrogate() or
incorporate() is called). This option can be set when using create_agent()/create_informant()
or with set_tb1() (useful with an existing agent or informant object).

Usage

yaml_write(
.list = list2(...),
filename = NULL,
path = NULL,
expanded = FALSE,
quiet = FALSE

Arguments

Any mix of pointblank objects such as the agent (ptblank_agent), the infor-
mant (ptblank_informant), or the table store (tbl_store). The agent and
informant can be combined into a single YAML file (so long as both objects
refer to the same table). A table store cannot be combined with either an agent
or an informant so it must undergo conversion alone.

.list Allows for the use of a list as an input alternative to

368 yaml_write

filename The name of the YAML file to create on disk. It is recommended that either the
.yaml or . yml extension be used for this file. If not provided then default names
will be used ("tbl_store.yml") for a table store and the other objects will get
default naming to the effect of "<object>-<tbl_name>.yml".

path An optional path to which the YAML file should be saved (combined with
filename).
expanded Should the written validation expressions for an agent be expanded such that

tidyselect and vars() expressions for columns are evaluated, yielding a valida-
tion function per column? By default, this is FALSE so expressions as written
will be retained in the YAML representation.

quiet Should the function not inform when the file is written? By default this is FALSE.

Value

Invisibly returns TRUE if the YAML file has been written.

Function ID

11-1

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant()

Examples

if (interactive()) {

Let's go through the process of
developing an agent with a validation
plan (to be used for the data quality
analysis of the ‘small_table‘ dataset),
and then offloading that validation
plan to a pointblank YAML file
Creating an ‘action_levels® object is a
common workflow step when creating a
pointblank agent; we designate failure
thresholds to the ‘warn‘, ‘stop‘, and
‘notify" states using ‘action_levels()*
al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35
)

Now create a pointblank ‘agent‘ object
and give it the ‘al® object (which

yaml_write 369

serves as a default for all validation
steps which can be overridden); the
data will be referenced in ‘tbl*
(a requirement for writing to YAML)
agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table”,
label = "A simple example with the ‘small_table*."
actions = al

)

Then, as with any ‘agent‘ object, we
can add steps to the validation plan by
using as many validation functions as we
want
agent <-
agent %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
vars(b), regex = "[0-9]-[a-z]1{3}-[0-9]1{3}"
) %%
rows_distinct() %>%
col_vals_gt(vars(d), value = 100) %>%
col_vals_lte(vars(c), value = 5)

The agent can be written to a pointblank
YAML file with ‘yaml_write()*
yaml_write(

agent,

filename = "agent-small_table.yml"”

)

The 'agent-small_table.yml' file is
available in the package through
‘system.file()*®
yml_file <-
system.file(
"yaml"”, "agent-small_table.yml",
package = "pointblank”
)

We can view the YAML file in the console
with the ‘yaml_agent_string()"‘ function
yaml_agent_string(filename = yml_file)

The YAML can also be printed in the console
by supplying the agent as the input
yaml_agent_string(agent = agent)

At some later time, the YAML file can
be read as a new agent with the
‘yaml_read_agent()" function

370 yaml_write

agent <-
yaml_read_agent(filename = yml_file)

class(agent)

We can interrogate the data (which
is accessible through ‘tbl*‘)

with “interrogate()‘ and get an

agent with intel, or, we can

interrogate directly from the YAML
file with ‘yaml_agent_interrogate()"

agent <-
yaml_agent_interrogate(filename = yml_file)

class(agent)

Index

+x Datasets
game_revenue, 224
game_revenue_info, 225
small_table, 298
small_table_sqglite, 299
specifications, 312

* Emailing
email_blast, 209
email_create, 212
stock_msg_body, 313
stock_msg_footer, 314

* Incorporate and Report
get_informant_report, 234
incorporate, 246

+ Information Functions
info_columns, 248
info_columns_from_tbl, 252
info_section, 254
info_snippet, 258
info_tabular, 261
snip_highest, 300
snip_list, 301
snip_lowest, 303
snip_stats, 304

* Interrogate and Report
get_agent_report, 226
interrogate, 264

+ Logging
log4r_step, 266

* Object Ops
activate_steps, 8
deactivate_steps, 205
export_report, 215
remove_steps, 269
set_tbl, 296
x_read_disk, 343
x_write_disk, 345

+ Planning and Prep
action_levels, 4

371

create_agent, 189
create_informant, 195
db_tbl, 202
draft_validation, 207
file_tbl, 218
scan_data, 288
tbl_get, 315
tbl_source, 323
tbl_store, 325
validate_rmd, 338

+ Post-interrogation
all_passed, 14
get_agent_x_list, 230
get_data_extracts, 232
get_sundered_data, 240
write_testthat_file, 339

* Table Transformers
get_tt_param, 243
tt_string_info, 329
tt_summary_stats, 330
tt_tbl_colnames, 332
tt_tbl_dims, 334
tt_time_shift, 335
tt_time_slice, 336

* The multiagent
create_multiagent, 199
get_multiagent_report, 236
read_disk_multiagent, 268

x Utility and Helper Functions
affix_date, 9
affix_datetime, 11
col_schema, 51
from_github, 222
has_columns, 244
stop_if_not, 314

+ datasets
game_revenue, 224
game_revenue_info, 225
small_table, 298

372

specifications, 312

* pointblank YAML
yaml_agent_interrogate, 350
yaml_agent_show_exprs, 353
yaml_agent_string, 354
yaml_exec, 356
yaml_informant_incorporate, 359
yaml_read_agent, 361
yaml_read_informant, 364
yaml_write, 367

+ validation functions
col_exists, 15
col_is_character, 20
col_is_date, 24
col_is_factor, 28
col_is_integer, 33
col_is_logical, 37
col_is_numeric, 42
col_is_posix, 46
col_schema_match, 53
col_vals_between, 58
col_vals_decreasing, 66
col_vals_equal, 73
col_vals_expr, 79
col_vals_gt, 85
col_vals_gte, 92
col_vals_in_set, 106
col_vals_increasing, 99
col_vals_1t, 112
col_vals_lte, 118
col_vals_make_set, 124
col_vals_make_subset, 131
col_vals_not_between, 137
col_vals_not_equal, 144
col_vals_not_in_set, 151
col_vals_not_null, 157
col_vals_null, 163
col_vals_regex, 169
col_vals_within_spec, 175
conjointly, 182
row_count_match, 282
rows_complete, 270
rows_distinct, 276
serially, 290
specially, 306
tbl_match, 317

action_levels, 4, 193, 198, 203, 208, 219,
289, 316, 324, 327, 339

INDEX

action_levels(), 16, 17, 20, 22, 25, 26, 29,
30, 34, 35, 38, 39,43, 44, 47, 48, 54
55,60, 62,67,70,74,77, 80, 82, 87,
89,94, 96, 100, 102, 107, 109, 113,
115,119,122, 126, 128, 132, 134,
139, 141, 146, 148, 152, 154, 158,
160, 164, 166, 170, 172, 176, 179,
184, 186, 190, 209, 266, 271, 273,
277,279, 283, 285, 291, 293, 306,

308, 318, 320
activate_steps, 8, 206, 216, 269, 297, 344,
346

activate_steps(), 206, 269, 340
affix_date, 9, 13, 52, 223, 245, 315
affix_date(), 13
affix_datetime, 10, 11, 52, 223, 245, 315
affix_datetime(), 10
all_passed, 14, 231, 233, 241, 341
all_passed(), 191, 264

base::difftime(), 335
base::strptime(), 10, 12
blastula::creds(), 209
blastula::creds_anonymous(), 209
blastula::creds_file(), 209
blastula::creds_key(), 209

col_exists, 15,23, 27, 32, 36, 40, 45, 49, 57,
64,71,78,84,91,97,104, 110, 117,
123,129, 135, 142, 149, 156, 161,
167,173,181, 187, 274, 280, 286,
294,309, 321

col_exists(), 182, 184

col_is_character, 18,20, 27, 32, 36, 40, 45,
49,57,64,71,78, 84,91, 97, 104,
110,117,123, 129, 135, 142, 149,
156, 161, 167,173, 181, 187, 274,
280, 286, 294, 309, 321

col_is_date, I8, 23, 24, 32, 36, 40, 45, 49,
57,64,71,78,84,91,97, 104, 110,
117,123,129, 135, 142, 149, 156,
161,167,173, 181, 187, 274, 280,
286, 294, 309, 321

col_is_factor, 18, 23, 27, 28, 36, 40, 45, 49,
57,64,71,78,84,91,97, 104, 110,
117,123,129, 135, 142, 149, 156,
161,167,173, 181, 187, 274, 280,
286, 294, 309, 321

INDEX

col_is_integer, 18, 23,27, 32, 33, 40, 45,
49,57,64,71,78, 84,91, 97, 104,
110,117,123,129, 135, 142, 149,
156, 161, 167,173, 181, 187, 274,
280, 286, 294, 309, 321

col_is_logical, 18, 23,27, 32, 36, 37, 45,
49,57,64,71,78, 84,91, 97, 104,
110,117,123,129, 135, 142, 149,
156, 161, 167,173, 181, 187, 274,
280, 286, 294, 309, 321

col_is_numeric, 18, 23, 27, 32, 36, 40, 42,
49,57,64,71,78, 84,91, 97, 104,
110,117,123,129, 135, 142, 149,
156, 161, 167,173, 181, 187, 274,
280, 286, 294, 309, 321

col_is_posix, 18, 23, 27, 32, 36, 40, 45, 46,
57,64,71,78,84,91,97,104, 110,
117,123,129, 135, 142, 149, 156,
161, 167,173,181, 187,274, 280,
286, 294, 309, 321

col_schema, 10, 13, 51, 223, 245, 315

col_schema(), 53, 54

col_schema_match, 18, 23, 27, 32, 36, 40, 45,
49,53,64,71,78, 84,91, 97, 104,
110,117,123,129, 135, 142, 149,
156, 161, 167,173, 181, 187, 274,
280, 286, 294, 309, 321

col_schema_match(), 51

col_vals_between, I8, 23, 27, 32, 36, 40, 45,
49,57,58,71,78,84,91,97, 104,
110,117,123, 129, 135, 142, 149,
156, 161, 167,173, 181, 187, 274,
280, 286, 294, 309, 321

col_vals_between(), 142

col_vals_decreasing, 18, 23, 27, 32, 36, 40,
45,49, 57,64, 66, 78, 84, 91, 97,
104,110, 117,123, 129, 135, 142,
149, 156, 161, 167, 173, 181, 187,
274, 280, 286, 294, 309, 321

col_vals_decreasing(), 104

col_vals_equal, 18, 23,27, 32, 36, 40, 45,
49,57,64,71,73, 84,91, 97, 104,
110,117,123, 129, 135, 142, 149,
156,161, 167,173, 181, 187, 274,
280, 286, 294, 309, 321

col_vals_equal(), 149

col_vals_expr, 18, 23,27, 32, 36, 40, 45, 49,
57,64,71,78,79,91, 97,104, 110,

373

117,123,129, 135, 142, 149, 156,
161, 167,173,181, 187, 274, 280,
286, 294, 309, 321
col_vals_gt, 18, 23,27, 32, 36, 40, 45, 49,
57,64,71,78, 84,85, 97,104, 110,
117,123,129, 135, 142, 149, 156,
161,167,173, 181, 187, 274, 280,
286, 294, 309, 321
col_vals_gt(), 59,97, 137
col_vals_gte, 18, 23, 27, 32, 36, 40, 45, 49,
57,64,71,78,84,91,92, 104, 110,
117,123,129, 135, 142, 149, 156,
161, 167,173,181, 187,274, 280,
286, 294, 309, 321
col_vals_gte(), 59, 90, 137
col_vals_in_set, 18, 23,27, 32, 36, 41,45,
50,57,64,71,78,84,91, 97, 104,
106, 117,123, 129, 135, 142, 149,
156, 161,167,173, 181, 187, 274,
280, 286, 294, 309, 321
col_vals_in_set(), 156
col_vals_increasing, 18, 23,27, 32, 36, 41,
45,50, 57,64,71,78, 84,91, 97, 99,
110,117,123,129, 135, 142, 149,
156, 161, 167,173, 181, 187, 274,
280, 286, 294, 309, 321
col_vals_increasing(), 71, 291
col_vals_1t, 18, 23, 27, 32, 36,41, 45, 50,
57,64,71,78,84,91,97, 104, 110,
112, 123, 129, 135, 142, 149, 156,
161, 167,173,181, 187, 274, 280,
286, 294, 309, 321
col_vals_1t(), 59, 123,137
col_vals_1te, 18, 23, 27, 32, 36, 41, 45, 50,
57,64,71,78,84,91,97,104, 110,
117,118, 129, 135, 142, 149, 156,
161, 167,173,181, 187, 274, 280,
286, 294, 309, 321
col_vals_1te(), 59, 116, 137
col_vals_make_set, I8, 23,27, 32, 36, 41,
45, 50, 57,64,71,78, 84,91, 97,
104,110, 117,123,124, 135, 142,
149, 156, 161, 167, 173, 181, 187,
274, 280, 286, 294, 309, 321
col_vals_make_subset, I8, 23, 27, 32, 36,
41,45, 50, 57,64,71,78, 84, 91, 97,
104,110, 117,123, 129, 131, 142,
149, 156, 161, 167, 173, 181, 187,

374

274, 280, 286, 294, 309, 321
col_vals_make_subset(), 125
col_vals_not_between, I8, 23, 27, 32, 36,

41,45, 50,57,64,71,78, 84,91, 97,

104, 110,117,123, 129, 135, 137,

149, 156, 161, 167, 173, 181, 187,

274, 280, 286, 294, 309, 321
col_vals_not_between(), 64
col_vals_not_equal, 18, 23, 27, 32, 36, 41,

45, 50, 57,64,71,78, 84,91, 97,

104,110, 117,123, 129, 135, 142,

144, 156, 161, 167, 173, 181, 187,

274, 280, 286, 294, 309, 321
col_vals_not_equal(), 78
col_vals_not_in_set, I8, 23,27, 32, 36, 41,

45, 50, 57,64,71,78, 84,91, 97,

104,110, 117,123,129, 135, 142,

149,151, 161, 167, 174, 181, 187,

274, 280, 286, 294, 309, 321
col_vals_not_in_set(), 110
col_vals_not_null, I8, 23, 27, 32, 36, 41,

45, 50, 57,64,71,78, 84,91, 97,

104,110, 117,123, 129, 136, 142,

149, 156, 157, 167, 174, 181, 187,

274, 280, 286, 294, 309, 321
col_vals_not_null(), 167
col_vals_null, 18, 23, 27, 32, 36, 41, 45, 50,

57,64,71,78,84,91,97,104, 110,

117,123,129, 136, 142, 149, 156,

161,163, 174,181, 187,274, 280,

286, 294, 309, 321
col_vals_null(), 161
col_vals_regex, 18,23,27,32,36,41,45,

50,57,64,71,78,84,91, 97, 104,

110,117,123,129, 136, 142, 149,

156, 161, 167,169, 181, 187, 274,

280, 286, 294, 309, 321
col_vals_within_spec, 18, 23, 27, 32, 36,

41,45, 50, 57,64,71,78, 84, 91, 97,

104,110,117, 123, 129, 136, 142,

149, 156, 161, 167, 174, 175, 187,

274, 280, 286, 294, 309, 321
col_vals_within_spec(), 312
conjointly, 18, 23, 27, 32, 36, 41, 45, 50, 57,

64,71,78,84,91,97,104, 110, 117,

123,129, 136, 142, 149, 156, 161,

167,174, 181, 182, 274, 280, 286,

294, 309, 321

INDEX

conjointly(), 191, 227,233, 241
create_agent, 6, 189, 198, 203, 208, 219,
289, 316, 324, 327, 339
create_agent(), 4, 16, 20, 21, 25, 29, 30, 34,
38,42, 43,47, 54, 55, 60, 61, 67, 68,
74, 75, 80, 81, 87, 93, 94, 100, 101,
106, 107, 113, 119, 120, 125, 126,
132,138, 139, 145, 146, 152, 158,
163, 164, 170, 176, 177, 183, 184,
202,209, 210, 213, 219, 228, 232,
264,271, 272,277, 282, 283, 291,
292, 306, 307, 315, 318, 323, 325,
339, 346, 362, 367
create_informant, 6, 193, 195, 203, 208,
219, 289, 316, 324, 327, 339
create_informant(), 202, 219, 234, 235,
248, 261, 302, 315, 323, 325, 346,
367
create_multiagent, 199, 237, 269
create_multiagent(), 193, 268

db_tbl, 6, 193, 198, 202, 208, 219, 289, 316,
324,327, 339
deactivate_steps, 8, 205, 216, 269, 297
344, 346
deactivate_steps(), 8, 269, 340
dplyr::between(), 84
dplyr::case_when(), 84
draft_validation, 6, 193, 198, 203, 207,
219,289, 316, 324, 327, 339

email_blast, 209, 213, 313, 314
email_blast(), 190, 313, 314
email_create, 211,212,313, 314
email_create(), 209, 313, 314
expect_col_exists (col_exists), 15
expect_col_is_character
(col_is_character), 20
expect_col_is_date (col_is_date), 24
expect_col_is_factor (col_is_factor), 28
expect_col_is_integer (col_is_integer),
33
expect_col_is_logical (col_is_logical),
37
expect_col_is_numeric (col_is_numeric),
42
expect_col_is_posix (col_is_posix), 46
expect_col_schema_match
(col_schema_match), 53

INDEX

expect_col_vals_between
(col_vals_between), 58
expect_col_vals_decreasing
(col_vals_decreasing), 66
expect_col_vals_equal (col_vals_equal),
73
expect_col_vals_expr (col_vals_expr), 79
expect_col_vals_gt (col_vals_gt), 85
expect_col_vals_gte (col_vals_gte), 92
expect_col_vals_in_set
(col_vals_in_set), 106
expect_col_vals_increasing
(col_vals_increasing), 99
expect_col_vals_1t (col_vals_1t), 112
expect_col_vals_lte (col_vals_lte), 118
expect_col_vals_make_set
(col_vals_make_set), 124
expect_col_vals_make_subset
(col_vals_make_subset), 131
expect_col_vals_not_between
(col_vals_not_between), 137
expect_col_vals_not_equal
(col_vals_not_equal), 144
expect_col_vals_not_in_set
(col_vals_not_in_set), 151
expect_col_vals_not_null
(col_vals_not_null), 157
expect_col_vals_null (col_vals_null),
163
expect_col_vals_regex (col_vals_regex),
169
expect_col_vals_within_spec
(col_vals_within_spec), 175
expect_col_vals_within_spec(), 312
expect_conjointly (conjointly), 182
expect_row_count_match
(row_count_match), 282
expect_rows_complete (rows_complete),
270
expect_rows_distinct (rows_distinct),
276
expect_serially (serially), 290
expect_specially (specially), 306
expect_tbl_match (tbl_match), 317
export_report, 8, 206, 215, 269, 297, 344,
346
export_report(), 227

file_tbl, 6, 193, 198, 203, 208, 218, 289,

375

316, 324, 327, 339
file_tb1(), 222
from_github, 10, 13, 52,222, 245, 315
from_github(), 219

game_revenue, 224, 226, 299, 313
game_revenue_info, 225, 225, 299, 313
get_agent_report, 226, 265
get_agent_report(), 189-191, 208, 215,
232,237,264, 343
get_agent_x_list, 15,230, 233, 241, 341
get_agent_x_list(), 14, 191, 209, 210, 212
213, 343
get_data_extracts, 15,231,232, 241, 341
get_data_extracts(), 191, 343
get_informant_report, 234, 247
get_informant_report(), 196, 215, 246,
251,256, 263, 343
get_multiagent_report, 200, 236, 269
get_multiagent_report(), 193, 199, 215
get_sundered_data, 15, 231, 233, 240, 341
get_sundered_data(), 191
get_tt_param, 243, 329, 331, 333, 334, 336,
337

has_columns, 10, 13,52, 223,244, 315

has_columns(), 16, 21, 25, 30, 34, 39, 43, 48,
55,61,68,75,81,88,94, 101, 107,
114,120, 126, 133, 139, 146, 153,
159,164,171, 177,184, 272, 278,
283,292, 307, 319

10,202,228, 234,236
incorporate, 235, 246
incorporate(), 195, 198, 250, 251, 256, 263,
344, 359, 367
info_columns, 248, 253, 257, 260, 263, 300,
302, 303, 305
info_columns(), 195, 252-254, 258
info_columns_from_tbl, 251, 252, 257, 260,
263, 300, 302, 303, 305
info_columns_from_tbl(), 225
info_section, 251, 253, 254, 260, 263, 300,
302, 303, 305
info_section(), 195, 258
info_snippet, 251, 253, 257, 258, 263, 300,
302, 303, 305
info_snippet(), 195, 246, 250, 256, 263,
300-305

376

info_tabular, 251, 253, 257, 260, 261, 300,
302, 303, 305

info_tabular(), 195, 254, 258

interrogate, 229, 264

interrogate(), 189, 191, 226, 232, 233, 241,
244, 339, 344, 350, 362, 367

log4r_step, 266
logdr_step(), 9

read_disk_multiagent, 200, 237, 268
read_disk_multiagent(), 193, 357
remove_steps, 8, 206, 216, 269, 297, 344, 346
rlang::expr(), 84
row_count_match, 18, 23, 27, 32, 36, 41, 45,
50,57,64,71,78,84,91, 97, 104,
110,117,123,129, 136, 142, 149,
156, 161, 167,174, 181, 187, 274,
280, 282, 294, 309, 321
rows_complete, 18, 23, 27, 32, 36, 41, 45, 50,
57,64,71,78,84,91, 97, 104, 110,
117,123,129, 136, 142, 149, 156,
161, 167,174,181, 187,270, 280,
286, 294, 309, 321
rows_distinct, 18, 23, 27, 32, 36,41, 45, 50,
57,64,71,78,84,91,97, 104, 110,
117,123, 129, 136, 142, 149, 156,
161,167,174, 181, 187, 274, 276,
286, 294, 309, 321
rows_distinct(), 233

scan_data, 6, 193, 198, 203, 208, 219, 288,
316, 324, 327, 339

scan_data(), 231

serially, 18, 23, 27, 32, 36, 41, 45, 50, 57,
64,71,78,84,91,97,104, 110, 117,
123,129, 136, 142, 149, 156, 161,
167,174,181, 187, 274, 280, 286,
290, 309, 321

set_tbl, &, 206, 216, 269, 296, 344, 346

set_tbl(), 315, 323, 339, 346, 367

small_table, 225, 226, 298, 299, 313

small_table_sqlite, 225, 226, 299, 299,
313

snip_highest, 251, 253, 257, 260, 263, 300,
302, 303, 305

snip_highest(), 195, 259

snip_list, 251, 253, 257, 260, 263, 300, 301,
303, 305

INDEX

snip_list(), 195, 258
snip_lowest, 251, 253,257, 260, 263, 300,
302, 303, 305
snip_lowest(), 195, 259
snip_stats, 251, 253, 257, 260, 263, 300,
302, 303, 304
snip_stats(), 195, 258
specially, 18, 23, 27, 32, 36, 41, 45, 50, 57,
64,71,78,84,91,97, 104,110, 117,
123,129, 136, 142, 149, 156, 161,
167,174, 181, 187, 274, 280, 286,
294, 306, 321
specifications, 225, 226, 299, 312
stock_msg_body, 211, 213,313, 314
stock_msg_footer, 211,213, 313,314
stop_if_not, 10, 13, 52, 223, 245, 314
stop_on_fail (action_levels), 4

tbl_get, 6, 193, 198, 203, 208, 219, 289, 315,
324, 327, 339
tbl_get(), 323, 325, 326
tbl_match, 18, 23, 27, 32, 36,41, 45, 50, 57,
64,71,78,84,91,97, 104,110, 117,
123,129, 136, 142, 149, 156, 161,
167,174, 181, 187, 274, 280, 286,
294, 309, 317
tbl_source, 6, 193, 198, 203, 208, 219, 289,
316, 323, 327, 339
tbl_source(), 315, 325, 326, 357
tbl_store, 6, 193, 198, 203, 208, 219, 289,
316, 324, 325, 339
tbl_store(), 202, 219, 315, 316, 323, 357
test_col_exists (col_exists), 15
test_col_is_character
(col_is_character), 20
test_col_is_date (col_is_date), 24
test_col_is_factor (col_is_factor), 28
test_col_is_integer (col_is_integer), 33
test_col_is_logical (col_is_logical), 37
test_col_is_numeric (col_is_numeric), 42
test_col_is_posix (col_is_posix), 46
test_col_schema_match
(col_schema_match), 53
test_col_vals_between
(col_vals_between), 58
test_col_vals_between(), 291
test_col_vals_decreasing
(col_vals_decreasing), 66
test_col_vals_equal (col_vals_equal), 73

INDEX

test_col_vals_expr (col_vals_expr), 79
test_col_vals_gt (col_vals_gt), 85
test_col_vals_gte (col_vals_gte), 92
test_col_vals_in_set (col_vals_in_set),
106
test_col_vals_increasing
(col_vals_increasing), 99
test_col_vals_lt (col_vals_1t), 112
test_col_vals_lte (col_vals_lte), 118
test_col_vals_make_set
(col_vals_make_set), 124
test_col_vals_make_subset
(col_vals_make_subset), 131
test_col_vals_not_between
(col_vals_not_between), 137
test_col_vals_not_equal
(col_vals_not_equal), 144
test_col_vals_not_in_set
(col_vals_not_in_set), 151
test_col_vals_not_null
(col_vals_not_null), 157
test_col_vals_null (col_vals_null), 163
test_col_vals_regex (col_vals_regex),
169
test_col_vals_within_spec
(col_vals_within_spec), 175
test_col_vals_within_spec(), 312
test_conjointly (conjointly), 182
test_row_count_match (row_count_match),
282
test_rows_complete (rows_complete), 270
test_rows_distinct (rows_distinct), 276
test_serially (serially), 290
test_specially (specially), 306
test_tbl_match (tbl_match), 317
testthat: :skip_on_appveyor(), 340
testthat: :skip_on_bioc(), 340
testthat::skip_on_ci(), 340
testthat: :skip_on_covr(), 340
testthat::skip_on_cran(), 340
testthat: :skip_on_os(), 340
testthat::skip_on_travis(), 340
testthat::test_that(), 339
tt_string_info, 244, 329, 331, 333, 334,
336, 337
tt_string_info(), 243
tt_summary_stats, 244, 329, 330, 333, 334,
336, 337

377

tt_summary_stats(), 243

tt_tbl_colnames, 244, 329, 331, 332, 334,
336, 337

tt_tbl_colnames(), 243

tt_tbl_dims, 244, 329, 331, 333, 334, 336,
337

tt_tbl_dims(), 243

tt_time_shift, 244, 329, 331, 333, 334, 335,
337

tt_time_slice, 244, 329, 331, 333, 334, 336,
336

validate_rmd, 6, 193, 198, 203, 208, 219,
289, 316, 324, 327, 338
vars(), 16, 355, 368

warn_on_fail (action_levels), 4
write_testthat_file, 15, 231, 233, 241,
339

x_read_disk, 8, 206, 216, 269, 297, 343, 346
x_read_disk(), 193, 198, 268, 269, 345, 346,
357
x_write_disk, 8, 206, 216, 269, 297, 344, 345
x_write_disk(), 9, 12,192, 198, 199, 268,
343,357, 358, 362

yaml_agent_interrogate, 350, 353, 355,
358, 360, 362, 365, 368
yaml_agent_interrogate(), 17, 22, 26, 31,
35,40, 44, 49, 56, 63, 70, 77, 83, 90,
96,103, 109, 116, 122, 128, 134,
141, 148, 155, 160, 166, 173, 180,
186, 191, 210, 274, 279, 285, 293,
308, 320, 326, 327, 354, 357, 367
yaml_agent_show_exprs, 351, 353, 355, 358,
360, 362, 365, 368
yaml_agent_show_exprs(), 192, 362
yaml_agent_string, 351, 353, 354, 358, 360,
362, 365, 368
yaml_agent_string(), I8, 23, 27, 31, 36, 40,
45,49,57,64,71,78, 83, 90, 97,
104,110, 116, 123, 129, 135, 142,
149, 155, 161, 167, 173, 181, 187,
192, 274, 280, 286, 294, 309, 321
yaml_exec, 351, 353, 355, 356, 360, 362, 365,
368
yaml_informant_incorporate, 351, 353,
355, 358, 359, 362, 365, 368

378 INDEX

yaml_informant_incorporate(), 197, 250,
255,259, 262, 326, 357
yaml_read_agent, 351, 353, 355, 358, 360,

361, 365, 368
yaml_read_agent(), 17, 22, 26, 31, 35, 40,
44, 49, 56, 63, 70, 77, 83, 90, 96,
103,109, 116, 122, 128, 134, 141,
148, 155, 160, 166, 172, 180, 186,
191, 210, 273, 279, 285, 293, 308,
320, 350, 354, 367
yaml_read_informant, 351, 353, 355, 358,
360, 362, 364, 368
yaml_read_informant(), 197, 250, 255, 259,
262, 359
yaml_write, 351, 353, 355, 358, 360, 362,
365, 367
yaml_write(), 9, 12,17, 18, 22, 26, 27, 31,
35, 36, 40, 44, 45, 49, 56, 57, 63, 64,
70, 71,77, 78, 83, 90, 96, 97, 103,
104, 109, 110, 116, 122, 123, 128,
129,134, 135, 141, 142, 148, 149,
155,160, 161, 166, 167, 172, 173,
180, 186, 187, 191, 192, 197, 210,
250, 255, 259, 262, 273, 274, 279,
280, 285, 286, 293, 294, 308, 309,
315, 316, 320, 321, 323, 326, 353
354,357, 361, 362, 364

	action_levels
	activate_steps
	affix_date
	affix_datetime
	all_passed
	col_exists
	col_is_character
	col_is_date
	col_is_factor
	col_is_integer
	col_is_logical
	col_is_numeric
	col_is_posix
	col_schema
	col_schema_match
	col_vals_between
	col_vals_decreasing
	col_vals_equal
	col_vals_expr
	col_vals_gt
	col_vals_gte
	col_vals_increasing
	col_vals_in_set
	col_vals_lt
	col_vals_lte
	col_vals_make_set
	col_vals_make_subset
	col_vals_not_between
	col_vals_not_equal
	col_vals_not_in_set
	col_vals_not_null
	col_vals_null
	col_vals_regex
	col_vals_within_spec
	conjointly
	create_agent
	create_informant
	create_multiagent
	db_tbl
	deactivate_steps
	draft_validation
	email_blast
	email_create
	export_report
	file_tbl
	from_github
	game_revenue
	game_revenue_info
	get_agent_report
	get_agent_x_list
	get_data_extracts
	get_informant_report
	get_multiagent_report
	get_sundered_data
	get_tt_param
	has_columns
	incorporate
	info_columns
	info_columns_from_tbl
	info_section
	info_snippet
	info_tabular
	interrogate
	log4r_step
	read_disk_multiagent
	remove_steps
	rows_complete
	rows_distinct
	row_count_match
	scan_data
	serially
	set_tbl
	small_table
	small_table_sqlite
	snip_highest
	snip_list
	snip_lowest
	snip_stats
	specially
	specifications
	stock_msg_body
	stock_msg_footer
	stop_if_not
	tbl_get
	tbl_match
	tbl_source
	tbl_store
	tt_string_info
	tt_summary_stats
	tt_tbl_colnames
	tt_tbl_dims
	tt_time_shift
	tt_time_slice
	validate_rmd
	write_testthat_file
	x_read_disk
	x_write_disk
	yaml_agent_interrogate
	yaml_agent_show_exprs
	yaml_agent_string
	yaml_exec
	yaml_informant_incorporate
	yaml_read_agent
	yaml_read_informant
	yaml_write
	Index

