Package 'pomdp'

March 27, 2022
Title Infrastructure for Partially Observable Markov Decision Processes (POMDP)

Version 1.0.1
Date 2022-03-25
Description Provides the infrastructure to define and analyze the solutions of Partially Observable Markov Decision Process (POMDP) models. Interfaces for various exact and approximate solution algorithms are available including value iteration, point-based value iteration and SARSOP. Smallwood and Sondik (1973) doi:10.1287/opre.21.5.1071.

Classification/ACM G.4, G.1.6, I.2.6

URL https://github.com/mhahsler/pomdp
BugReports https://github.com/mhahsler/pomdp/issues
Depends R (>= 3.5.0)
Imports pomdpSolve, igraph
Suggests knitr, rmarkdown, testthat, Ternary, visNetwork, sarsop
VignetteBuilder knitr
Encoding UTF-8
License GPL (>=3)
Copyright Copyright (C) Hossein Kamalzadeh and Michael Hahsler.
RoxygenNote 7.1.2.9000
Collate 'AAA_check_installed.R' 'AAA_imports.R' 'AAA_pomdp-package.R'
'POMDP.R' 'MDP.R' 'Maze.R' 'Tiger.R' 'colors.R'
'optimal_action.R' 'plot_belief_space.R' 'plot_policy_graph.R'
'plot_value_function.R' 'policy.R' 'print.text.R'
'read_write_POMDP.R' 'read_write_pomdp_solve.R' 'reward.R'
'round_stochchastic.R' 'sample_belief_space.R' 'solve_MDP.R'
'solve_POMDP.R' 'solve_SARSOP.R' 'transition_matrix.R'
'update_belief.R' 'visNetwork.R'
NeedsCompilation no
Author Michael Hahsler [aut, cph, cre],
Hossein Kamalzadeh [aut, cph]
Maintainer Michael Hahsler mhahsler@lyle.smu.edu
Repository CRAN
Date/Publication 2022-03-27 14:50:02 UTC

R topics documented:

pomdp-package 2
Maze 3
MDP 5
optimal_action 7
plot_belief_space 8
plot_policy_graph 10
plot_value_function 12
policy 14
POMDP 15
reward 20
round_stochastic 21
sample_belief_space 22
simulate_POMDP 23
solve_MDP 25
solve_POMDP 28
solve_SARSOP 34
Tiger 36
transition_matrix 37
update_belief 38
write_POMDP 40
Index 42
pomdp-package pomdp: Infrastructure for Partially Observable Markov Decision Pro- cesses (POMDP)

Description

Provides the infrastructure to define and analyze the solutions of Partially Observable Markov Decision Process (POMDP) models. Interfaces for various exact and approximate solution algorithms are available including value iteration, Point-Based Value Iteration (PBVI) and Successive Approximations of the Reachable Space under Optimal Policies (SARSOP).

Key functions

- Problem specification: POMDP, MDP
- Solvers: solve_POMDP(), solve_MDP(), solve_SARSOP()

Author(s)

Michael Hahsler
Maze \quad Steward Russell's 4x3 Maze MDP

Description

The 4×3 maze described in Chapter 17 of the the textbook: "Artificial Intelligence: A Modern Approach" (AIMA).

Format

An object of class MDP.

Details

The simple maze has the following layout:

1234	Transition model:
\#\#\#\#\#\#	. 8 (action direction)
3\# +\#	\wedge)
2\# \# -\#	\|
1\# \#	. 1 <-\|-> . 1
\#\#\#\#\#\#	

We represent the maze states as a matrix with 3 rows (north/south) and 4 columns (east/west). The states are labeled s_1 through s_12 and are fully observable. The \# (state s_5) in the middle of the maze is an obstruction and not reachable. Rewards are associated with transitions. The default reward (penalty) is -0.04 . Transitioning to + (state $s_{-} 12$) gives a reward of 1.0 , transitioning to (state $s_{-} 11$) has a reward of -1.0 . States $s_{-} 11$ and $s_{-} 12$ are terminal states.

Actions are movements (north, south, east, west). The actions are unreliable with a .8 chance to move in the correct direction and a 0.1 chance to instead to move in a perpendicular direction leading to a stochastic transition model.

Note that the problem has reachable terminal states which leads to a proper policy (that is guaranteed to reach a terminal state). This means that the solution also converges without discounting (discount = 1).

References

Russell, S. J. and Norvig, P., \& Davis, E. (2021). Artificial intelligence: a modern approach. 4rd ed.

Examples

```
# The problem can be loaded using data(Maze).
# Here is the complete problem definition:
S <- paste0("s_", seq_len(3 * 4))
s2rc <- function(s) {
    if(is.character(s)) s <- match(s, S)
    c((s - 1) %% 3 + 1, (s - 1) %/% 3 + 1)
}
rc2s <- function(rc) S[rc[1] + 3 * (rc[2] - 1)]
A <- c("north", "south", "east", "west")
T <- function(action, start.state, end.state) {
    action <- match.arg(action, choices = A)
    if (start.state %in% c('s_11', 's_12', 's_5')) {
        if (start.state == end.state) return(1)
        else return(0)
    }
    if(action %in% c("north", "south")) error_direction <- c("east", "west")
    else error_direction <- c("north", "south")
    rc <- s2rc(start.state)
    delta <- list(north = c(+1, 0), south = c(-1, 0),
                    east = c(0, +1), west = c(0, -1))
    P <- matrix(0, nrow = 3, ncol = 4)
    add_prob <- function(P, rc, a, value) {
        new_rc <- rc + delta[[a]]
        if (new_rc[1] > 3 || new_rc[1] < 1 || new_rc[2] > 4 || new_rc[2] < 1
            || (new_rc[1] == 2 && new_rc[2]== 2))
            new_rc <- rc
        P[new_rc[1], new_rc[2]] <- P[new_rc[1], new_rc[2]] + value
        P
    }
    P <- add_prob(P, rc, action, .8)
    P <- add_prob(P, rc, error_direction[1], .1)
    P <- add_prob(P, rc, error_direction[2], .1)
    P[rbind(s2rc(end.state))]
}
T("n", "s_1", "s_2")
R <- rbind(
    R_(end.state = '*', value = -0.04),
    R_(end.state = 's_11', value = -1),
    R_(end.state = 's_12', value = +1),
    R_(start.state = 's_11', value = 0),
```

```
    R_(start.state = 's_12', value = 0),
    R_(start.state = 's_5', value = 0)
)
```

Maze <- MDP(
name $=$ "Stuart Russell's 3×4 Maze",
discount = 1,
horizon = Inf,
states = S,
actions = A,
transition_prob $=T$,
reward $=R$
)
Maze
str(Maze)
maze_solved <- solve_MDP(Maze, method = "value")
policy(maze_solved)
\# show the utilities and optimal actions organized in the maze layout (like in the AIMA textbook)
matrix(policy(maze_solved)[[1]]\$U, nrow = 3, dimnames = list(1:3, 1:4))[3:1,]
matrix(policy(maze_solved)[[1]]\$action, nrow $=3$, dimnames $=\operatorname{list}(1: 3,1: 4)$)[3:1,]
\# Note: the optimal actions for the states with a utility of 0 are artefacts and should be ignored.

Description

Defines all the elements of a MDP problem.

Usage

```
MDP(
    states,
    actions,
    transition_prob,
    reward,
    discount = 0.9,
    horizon = Inf,
    start = "uniform",
    name = NA
)
MDP2POMDP(x)
```


Arguments

Details

MDPs are similar to POMDPs, however, states are completely observable and observations are not necessary. The model is defined similar to POMDP models, but observations are not specified and the 'observations' column in the the reward specification is always ' $*$ '.

MDP2POMDP () reformulates a MDP as a POMDP with one observation per state that reveals the current state. This is achieved by defining identity observation probability matrices.
More details on specifying the model components can be found in the documentation for POMDP.

Value

The function returns an object of class MDP which is list with the model specification. solve_MDP() reads the object and adds a list element called 'solution'.

Author(s)

Michael Hahsler

Examples

```
# Michael's Sleepy Tiger Problem is like the POMDP Tiger problem, but
# has completely observable states because the tiger is sleeping in front
# of the door. This makes the problem an MDP.
STiger <- MDP(
    name = "Michael's Sleepy Tiger Problem",
    discount = .9,
    states = c("tiger-left" , "tiger-right"),
    actions = c("open-left", "open-right", "do-nothing"),
    start = "uniform",
    # opening a door resets the problem
    transition_prob = list(
        "open-left" = "uniform",
```

```
            "open-right" = "uniform",
            "do-nothing" = "identity"),
    # the reward helper R_() expects: action, start.state, end.state, observation, value
    reward = rbind(
        R_("open-left", "tiger-left", v = -100),
        R_("open-left", "tiger-right", v = 10),
        R_("open-right", "tiger-left", v = 10),
        R_("open-right", "tiger-right", v = -100),
        R_("do-nothing", v = 0)
    )
)
STiger
sol <- solve_MDP(STiger, eps = 1e-7)
sol
policy(sol)
plot_value_function(sol)
# convert the MDP into a POMDP and solve
STiger_POMDP <- MDP2POMDP(STiger)
sol2 <- solve_POMDP(STiger_POMDP)
sol2
policy(sol2)
plot_value_function(sol2)
```

```
optimal_action Optimal action for a belief
```


Description

Determines the optimal action for a policy (solved POMDP) for a given belief at a given epoch.

Usage

optimal_action(model, belief, epoch = 1)

Arguments

model	a solved POMDP.
belief	The belief (probability distribution over the states) as a vector or a matrix with
multiple belief states as rows.	
epoch	what epoch of the policy should be used. Use 1 for converged policies.

Value

The name of the optimal action.

Author(s)

Michael Hahsler

See Also

Other policy: plot_policy_graph(), plot_value_function(), policy(), reward(), solve_POMDP(), solve_SARSOP()

Examples

```
data("Tiger")
Tiger
sol <- solve_POMDP(model = Tiger)
# these are the states
sol$states
# belief that tiger is to the left
optimal_action(sol, c(1, 0))
optimal_action(sol, "tiger-left")
# belief that tiger is to the right
optimal_action(sol, c(0, 1))
optimal_action(sol, "tiger-right")
# belief is 50/50
optimal_action(sol, c(.5, .5))
optimal_action(sol, "uniform")
# the POMDP is converged, so all epoch give the same result.
optimal_action(sol, "tiger-right", epoch = 10)
```

plot_belief_space Plot a $2 D$ or $3 D$ Projection of the Belief Space

Description

Plots the optimal action, the node in the policy graph or the reward for a given set of belief points on a line (2D) or on a ternary plot (3D). If no points are given, points are sampled using a regular arrangement or randomly from the (projected) belief space.

Usage

plot_belief_space(
model,
projection $=$ NULL,
epoch $=1$,

```
    sample = "regular",
    n = 100,
    what = c("action", "pg_node", "reward"),
    legend = TRUE,
    pch = 20,
    col = NULL,
    jitter_factor = 0,
    )
```


Arguments

model	a solved POMDP.
projection	a vector with state IDs or names to project on. Allowed are projections on two or three states. NULL uses the first two or three states.
epoch	display this epoch.
sample	a matrix with belief points as rows or a character string specifying the method used for sample_belief_space.
n	number of points sampled.
what	what to plot.
legend	logical; add a legend? If the legend is covered by the plot then you need to increase the plotting region of the plotting device.
pch	plotting symbols.
col	plotting colors.
jitter_factor	y jitter for 2D belief spaces.
	additional arguments are passed on to plot for 2D or TerneryPlot for 3D.

Value

Returns invisibly the sampled points.

Author(s)

Michael Hahsler

See Also

Other POMDP: POMDP(), sample_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(), transition_matrix(), update_belief(), write_POMDP()

Examples

```
# two-state POMDP
data("Tiger")
sol <- solve_POMDP(Tiger)
plot_belief_space(sol)
```

```
plot_belief_space(sol, n = 10)
plot_belief_space(sol, n = 10, sample = "random")
# plot the belief points used by the grid-based solver
plot_belief_space(sol, sample = sol$solution$belief_states)
# plot different measures
plot_belief_space(sol, what = "pg_node")
plot_belief_space(sol, what = "reward")
# three-state POMDP
# Note: If the plotting region is too small then the legend might run into the plot
data("Three_doors")
sol <- solve_POMDP(Three_doors)
sol
plot_belief_space(sol)
plot_belief_space(sol, sample = "random", n = 1000)
plot_belief_space(sol, what = "pg_node")
plot_belief_space(sol, what = "reward", sample = "random", n = 1000)
# plot the belief points used by the grid-based solver
plot_belief_space(sol, sample = sol$solution$belief_states)
# plot the belief points obtained using simulated trajectories (we use n = 50 to save time).
plot_belief_space(sol, sample = simulate_POMDP(Three_doors, n = 50, horizon = 100,
    random_actions = TRUE, visited_beliefs = TRUE))
```

```
plot_policy_graph Visualize a POMDP Policy Graph
```


Description

The function plots the POMDP policy graph in a converged POMDP solution. It uses plot in igraph with appropriate plotting options.

Usage

```
plot_policy_graph(
    x,
    belief = TRUE,
    legend = TRUE,
    engine = c("igraph", "visNetwork"),
    col = NULL,
)
policy_graph(x, belief = TRUE, col = NULL, ...)
estimate_belief_for_nodes(x, method = c("regular", "random", "simulate"), ...)
```


Arguments

x	object of class POMDP containing a solved and converged POMDP problem.
belief	logical; estimate belief proportions? If TRUE then estimate_belief_for_nodes() is used and the belief is visualized as a pie chart in each node.
legend	logical; display a legend for colors used belief proportions? col
The plotting engine to be used.	
colors used for the states.	
method	parameters are passed on to policy_graph(), estimate_belief_for_nodes() and the functions they use. Also, plotting options are passed on to the plotting engine igraph: :plot.igraph() or visNetwork: :visIgraph().
	sampling method used to estimate the belief. Methods "regular" and "random" call sample_belief_space() and method "simulate" calls simulate_POMDP(). Further arguments are passed on to these functions.

Details

The function only plots converged policy graphs. The policy graph nodes represent the segments in the value function. Each segment represents one or more believe states. If available, a pie chart (or the color) in each node represent the average belief of the belief states belonging to the node/segment. This can help with interpreting the policy graph.
First, the policy in the solved POMDP is converted into an igraph object using policy_graph(). Average beliefs for the graph nodes are estimated using estimate_belief_for_node() and then the igraph object is visualized using the plotting function igraph: :plot.igraph() or, for interactive graphs, visNetwork: :visIgraph().
estimate_belief_for_nodes() estimated the central belief for each node/segment of the value function by generating/sampling a large set of possible belief points, assigning them to the segments and then averaging the belief over the points assigned to each segment. If no belief point is generated for a segment, then a warning is produced. In this case, the number of sampled points can be increased.

Value

- plot_policy_graph() returns invisibly what the plotting engine returns.
- policy_graph() returns the policy graph as an igraph object.
- estimate_belief_for_nodes() returns a matrix with the central belief for each node.

See Also

Other policy: optimal_action(), plot_value_function(), policy(), reward(), solve_POMDP(), solve_SARSOP()

Examples

```
data("Tiger")
sol <- solve_POMDP(model = Tiger)
sol
```

```
## policy graph
policy_graph(sol)
## visualization
plot_policy_graph(sol)
## use a different graph layout (circle and manual; needs igraph)
library("igraph")
plot_policy_graph(sol, layout = layout.circle)
plot_policy_graph(sol, layout = rbind(c(1,1), c(1,-1), c(0,0), c(-1,-1), c(-1,1)))
## hide labels and legend
plot_policy_graph(sol, edge.label = NA, vertex.label = NA, legend = FALSE)
## add a plot title
plot_policy_graph(sol, main = sol$name)
## custom larger vertex labels (A, B, ...)
plot_policy_graph(sol,
    vertex.label = LETTERS[1:nrow(policy(sol)[[1]])],
    vertex.label.cex = 2,
    vertex.label.color = "white")
## plotting using the graph object
## (e.g., using the graph in the layout and to change the edge curvature)
pg <- policy_graph(sol)
plot(pg,
    layout = layout_as_tree(pg, root = 3, mode = "out"),
    edge.curved = curve_multiple(pg, .2))
## changes labels
plot(pg,
    edge.label = abbreviate(E(pg)$label),
    vertex.label = V(pg)$label,
    vertex.size = 20)
## plot interactive graphs using the visNetwork library.
## Note: the pie chart representation is not available, but colors are used instead.
plot_policy_graph(sol, engine = "visNetwork")
## add smooth edges and a layout (note, engine can be abbreviated)
plot_policy_graph(sol, engine = "vis", layout = "layout_in_circle", smooth = TRUE)
## estimate the central belief for the graph nodes. We use here method "simulate".
## For infinite horizon problems, the simulation horizon has to be specified.
## See simulate_POMDP().
estimate_belief_for_nodes(sol, method = "simulate", horizon = 10)
```


Description

Plots the value function of a POMDP solution as a line plot. The solution is projected on two states (i.e., the belief for the other states is held constant at zero).

Usage

```
    plot_value_function(
        model,
        projection = 1:2,
        epoch = 1,
        ylim = NULL,
        legend = TRUE,
        col = NULL,
        lwd = 1,
        lty = 1,
    )
```


Arguments

model	a solved POMDP.
projection	index or name of two states for the projection. epoch
the value function of what epoch should be plotted? Use 1 for converged poli- cies.	
ylim	the y limits of the plot.
col	logical; add a legend?
lwd	potting colors.
lty	line width.
\ldots	line type.

Value

the function has no return value.

Author(s)

Michael Hahsler

See Also

Other policy: optimal_action(), plot_policy_graph(), policy(), reward(), solve_POMDP(), solve_SARSOP()

Examples

```
data("Tiger")
sol <- solve_POMDP(model = Tiger)
sol
plot_value_function(sol, ylim = c(0,20))
## finite-horizon
sol <- solve_POMDP(model = Tiger, horizon = 3, discount = 1,
    method = "enum")
sol
plot_value_function(sol, epoch = 1, ylim = c(-5, 25))
plot_value_function(sol, epoch = 2, ylim = c(-5, 25))
plot_value_function(sol, epoch = 3, ylim = c(-5, 25))
# using ggplot2
# library(ggplot2)
# pol <- policy(sol)[[3]]
# ggplot(pol) +
# geom_segment(aes(x = 0, y = `tiger-left`, xend=1, yend=`tiger-right`, color = action)) +
# coord_cartesian(ylim = c(-5, 15)) + ylab("Reward") + xlab("Belief")
```

```
policy Extract the Policy from a POMDP/MDP
```


Description

Extracts the policy from a solved POMDP/MDP.

Usage

policy(x)

Arguments

$x \quad$ A solved POMDP object.

Details

A list (one entry per epoch) with the optimal policy. For converged, infinite-horizon problems solutions, a list with only the converged solution is produced. The policy is a data.frame consisting o:

- Part 1: The value function with one column per state. For POMDPs these are alpha vectors and for MDPs this is just one column with the state.
- Part 2: One column with the optimal action.

Value

A list with the policy for each epoch.

Author(s)

Michael Hahsler

See Also

Other policy: optimal_action(), plot_policy_graph(), plot_value_function(), reward(), solve_POMDP(), solve_SARSOP()

Examples

```
data("Tiger")
# Infinite horizon
sol <- solve_POMDP(model = Tiger)
sol
# policy with value function, optimal action and transitions for observations.
policy(sol)
plot_value_function(sol)
# Finite horizon (we use incremental pruning because grid does not converge)
sol <- solve_POMDP(model = Tiger, method = "incprune", horizon = 3, discount = 1)
sol
policy(sol)
# Note: We see that it is initially better to listen till we make a decision in the final epoch.
```

POMDP
Define a POMDP Problem

Description

Defines all the elements of a POMDP problem including the discount rate, the set of states, the set of actions, the set of observations, the transition probabilities, the observation probabilities, and rewards.

Usage

POMDP(states, actions, observations, transition_prob, observation_prob,

```
    reward,
    discount = 0.9,
    horizon = Inf,
    terminal_values = NULL,
    start = "uniform",
    name = NA
)
O_(action = "*", end.state = "*", observation = "*", probability)
T_(action = "*", start.state = "*", end.state = "*", probability)
R_(action = "*", start.state = "*", end.state = "*", observation = "*", value)
```


Arguments

states	a character vector specifying the names of the states. Note that state names have
to start with a letter.	

actions
a character vector specifying the names of the available actions. Note that action
names have to start with a letter.
a vector with the terminal values for each state or a matrix specifying the terminal rewards via a terminal value function (e.g., the alpha component produced by solve_POMDP). A single 0 specifies that all terminal values are zero.
start Specifies the initial probabilities for each state (i.e., the initial belief), typically as a vector or the string ' uniform' (default). This belief is used to calculate the total expected cumulative reward. It is also used by some solvers. See Details section for more information.
name a string to identify the POMDP problem.
action, start.state, end.state, observation, probability, value
Values used in the helper functions $O_{-}(), R_{-}()$, and $T_{-}()$to create an entry for observation_prob, reward, or transistion_prob above, respectively. The default value ' \star "' matches any action/state/observation.

Details

In the following we use the following notation. The POMDP is a 7-duple:
$(S, A, T, R, \Omega, O, \gamma)$.
S is the set of states; A is the set of actions; T are the conditional transition probabilities between states; R is the reward function; Ω is the set of observations; O are the conditional observation probabilities; and γ is the discount factor. We will use lower case letters to represent a member of a set, e.g., s is a specific state. To refer to the size of a set we will use cardinality, e.g., the number of actions is $|A|$.

Names used for mathematical symbols in code

- S, s, s^{\prime} : 'states', start.state', 'end.state'
- A, a : 'actions', 'action'
- Ω, o : 'observations', 'observation'

State names, actions and observations can be specified as strings or index numbers (e.g., start. state can be specified as the index of the state in states). For the specification as data.frames below, ' \star ' can be used to mean any start. state, end. state, action or observation.
The specification below map to the format used by pomdp-solve (see http://www. pomdp.org).
Specification of transition probabilities: $T\left(s^{\prime} \mid s, a\right)$
Transition probability to transition to state s^{\prime} from given state s and action a. The transition probabilities can be specified in the following ways:

- A data.frame with columns exactly like the arguments of T_(). You can use rbind() with helper function $T_{-}()$to create this data frame.
- A named list of matrices, one for each action. Each matrix is square with rows representing start states s and columns representing end states s^{\prime}. Instead of a matrix, also the strings 'identity' or 'uniform' can be specified.
- A function with the same arguments are $T_{-}()$, but no default values that returns the transition probability.

Specification of observation probabilities: $O\left(o \mid s^{\prime}, a\right)$

The POMDP specifies the probability for each observation o given an action a and that the system transitioned to the end state s^{\prime}. These probabilities can be specified in the following ways:

- A data frame with columns named exactly like the arguments of $O_{-}()$. You can use rbind() with helper function $0_{-}()$to create this data frame.
- A named list of matrices, one for each action. Each matrix has rows representing end states s^{\prime} and columns representing an observation o. Instead of a matrix, also the strings 'identity' or 'uniform' can be specified.
- A function with the same arguments are $0_{-}()$, but no default values that returns the observation probability.

Specification of the reward function: $R\left(s, s^{\prime}, o, a\right)$

The reward function can be specified in the following ways:

- A data frame with columns named exactly like the arguments of $R_{-}()$. You can use rbind() with helper function $R_{-}()$to create this data frame.
- A list of lists. The list levels are 'action' and 'start. state'. The list elements are matrices with rows representing end states s^{\prime} and columns representing an observation o.
- A function with the same arguments are $R_{-}()$, but no default values that returns the reward.

Start Belief

This belief is used to calculate the total expected cumulative reward printed with the solved model. The function reward () can be used to calculate rewards for any belief.

Some methods use this belief to decide which belief states to explore (e.g., the finite grid method). The default initial belief is a uniform distribution over all states. No initial belief state can be used by setting start $=$ NULL.

Options to specify the start belief state are:

- A probability distribution over the states. That is, a vector of $|S|$ probabilities, that add up to 1.
- The string "uniform" for a uniform distribution over all states.
- An integer in the range 1 to n to specify the index of a single starting state.
- a string specifying the name of a single starting state.

Time-dependent POMDPs

Time dependence of transition probabilities, observation probabilities and reward structure can be modeled by considering a set of episodes representing epoch with the same settings. The length of each episode is specified as a vector for horizon, where the length is the number of episodes and each value is the length of the episode in epochs. Transition probabilities, observation probabilities and/or reward structure can contain a list with the values for each episode. See solve_POMDP() for more details and an example.

Value

The function returns an object of class POMDP which is list of the model specification. solve_POMDP () reads the object and adds a list element named 'solution'.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

pomdp-solve website: http://www. pomdp.org

See Also

Other POMDP: plot_belief_space(), sample_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(), transition_matrix(), update_belief(), write_POMDP()

Examples

```
## Defining the Tiger Problem (it is also available via data(Tiger), see ? Tiger)
Tiger <- POMDP(
    name = "Tiger Problem",
    discount = 0.75,
    states = c("tiger-left" , "tiger-right"),
    actions = c("listen", "open-left", "open-right"),
    observations = c("tiger-left", "tiger-right"),
    start = "uniform",
    transition_prob = list(
            "listen" = "identity",
            "open-left" = "uniform",
            "open-right" = "uniform"
        ),
    observation_prob = list(
            "listen" = rbind(c(0.85, 0.15),
                    c(0.15, 0.85)),
            "open-left" = "uniform",
            "open-right" = "uniform"
    ),
    # the reward helper expects: action, start.state, end.state, observation, value
    # missing arguments default to '*' matching any value.
    reward = rbind(
            R_("listen", v = -1),
            R_("open-left", "tiger-left", v = -100),
            R_("open-left", "tiger-right", v = 10),
            R_("open-right", "tiger-left", v = 10),
            R_("open-right", "tiger-right", v = -100)
    )
)
Tiger
# Defining the Tiger problem using functions
trans_f <- function(action, start.state, end.state) {
    if(action == 'listen')
            if(end.state == start.state) return(1)
            else return(0)
    return(1/2) ### all other actions have a uniform distribution
}
obs_f <- function(action, end.state, observation) {
    if(action == 'listen')
            if(end.state == observation) return(0.85)
    else return(0.15)
```

```
    return(1/2)
    }
    rew_f <- function(action, start.state, end.state, observation) {
        if(action == 'listen') return(-1)
        if(action == 'open-left' && start.state == 'tiger-left') return(-100)
    if(action == 'open-left' && start.state == 'tiger-right') return(10)
    if(action == 'open-right' && start.state == 'tiger-left') return(10)
    if(action == 'open-right' && start.state == 'tiger-right') return(-100)
    stop('Not possible')
}
Tiger_func <- POMDP(
    name = "Tiger Problem",
    discount = 0.75,
    states = c("tiger-left" , "tiger-right"),
    actions = c("listen", "open-left", "open-right"),
    observations = c("tiger-left", "tiger-right"),
    start = "uniform",
    transition_prob = trans_f,
    observation_prob = obs_f,
    reward = rew_f
)
Tiger_func
```

reward

Calculate the Reward for a POMDP Solution

Description

This function calculates the expected total reward for a POMDP solution given a starting belief state.

Usage

reward $(x$, belief $=$ NULL, epoch $=1)$

Arguments

x
belief specification of the current belief state (see argument start in POMDP for details). By default the belief state defined in the model as start is used.
epoch return reward for this epoch. Use 1 for converged policies.

Details

The value is calculated using the value function stored in the POMDP solution.

Value

A list with the components
reward the total expected reward given a belief and epoch.
belief_state the belief state specified in belief.
pg_node the policy node that represents the belief state.
action the optimal action.

Author(s)

Michael Hahsler

See Also

Other policy: optimal_action(), plot_policy_graph(), plot_value_function(), policy(), solve_POMDP(), solve_SARSOP()

Examples

```
data("Tiger")
sol <- solve_POMDP(model = Tiger)
# if no start is specified, a uniform belief is used.
reward(sol)
# we have additional information that makes us believe that the tiger
# is more likely to the left.
reward(sol, belief = c(0.85, 0.15))
# we start with strong evidence that the tiger is to the left.
reward(sol, belief = "tiger-left")
# Note that in this case, the total discounted expected reward is greater
# than 10 since the tiger problem resets and another game staring with
# a uniform belief is played which produces additional reward.
```

round_stochastic Round a stochastic vector or a row-stochastic matrix

Description

Rounds a vector such that the sum of 1 is preserved. Rounds a matrix such that the rows still sum up to 1 .

Usage

round_stochastic(x, digits = 3)

Arguments

```
x a stochastic vector or a row-stochastic matrix.
digits number of digits for rounding.
```


Details

Rounds and adjusts one entry such that the rounding error is the smallest.

Value

The rounded vector or matrix.

See Also

round

Examples

```
x <- c(0.25, 0.25, 0.5)
round_stochastic(x, 2)
round_stochastic(x, 1)
round_stochastic(x, 0)
```


Description

Sample randomly (uniform) or regularly spaced points from the projected belief space.

Usage

sample_belief_space(model, projection = NULL, n = 1000, method = "random", ...)

Arguments

model a unsolved or solved POMDP.
projection Sample in a projected belief space. All states not included in the projection are held at a belief of 0 . NULL means no projection.
n
size of the sample.
method character string specifying the sampling strategy. Available are "random", "regular", and "vertices".
... further arguments are ignored.

Details

Several sampling methods are implemented:

- 'random' samples uniformly sample from the projected belief space using the method described by Luc Devroye (1986).
- 'regular' samples points using a regularly spaced grid. This method is only available for projections on 2 or 3 states.
- 'vertices' only samples from the vertices of the belief space.

Value

Returns a matrix. Each row is a sample from the belief space.

Author(s)

Michael Hahsler

References

Luc Devroye, Non-Uniform Random Variate Generation, Springer Verlag, 1986.

See Also

Other POMDP: POMDP(), plot_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(), transition_matrix(), update_belief(), write_POMDP()

Examples

```
data("Tiger")
sample_belief_space(Tiger, n = 5)
sample_belief_space(Tiger, n = 5, method = "regular")
# sample and calculate the reward for a solve POMDP
sol <- solve_POMDP(Tiger)
reward(sol, belief = sample_belief_space(sol, n = 5, method = "regular"))
```

```
simulate_POMDP Simulate Trajectories in a POMDP
```


Description

Simulate several trajectories through a POMDP. The start state for each trajectory is randomly chosen using the specified belief. For solved POMDPs the optimal actions will be chosen, for unsolved POMDPs random actions will be used.

Usage

```
simulate_POMDP(
        model,
        n = 100,
        belief = NULL,
        horizon = NULL,
        visited_beliefs = FALSE,
        random_actions = FALSE,
        digits = 7,
        verbose = FALSE
    )
```


Arguments

model a POMDP model.
$\mathrm{n} \quad$ number of trajectories.
belief probability distribution over the states for choosing the starting states for the trajectories. Defaults to the start belief state specified in the model or "uniform".
horizon number of epochs for the simulation. If NULL then the horizon for the model is used.
visited_beliefs
logical; Should all belief points visited on the trajectories be returned? If FALSE then only the belief at the final epoch is returned.
random_actions logical; should randomized actions be used instead of the policy of the solved POMDP? Randomized actions can be used for unsolved POMDPs.
digits round belief points.
verbose report used parameters.

Value

A matrix with belief points as rows. Attributes containing action counts, and rewards may be available.

Author(s)

Michael Hahsler

See Also

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), solve_POMDP(), solve_SARSOP(), transition_matrix(), update_belief(), write_POMDP()

Examples

data(Tiger)
\# solve the POMDP for 5 epochs and no discounting

```
sol <- solve_POMDP(Tiger, horizon = 5, discount = 1, method = "enum")
sol
policy(sol)
## Example 1: simulate 10 trajectories, only the final belief state is returned
sim <- simulate_POMDP(sol, n = 100, verbose = TRUE)
head(sim)
# plot the final belief state, look at the average reward and how often different actions were used.
plot_belief_space(sol, sample = sim)
# additional data is available as attributes
names(attributes(sim))
attr(sim, "avg_reward")
colMeans(attr(sim, "action"))
## Example 2: look at all belief states in the trajectory starting with an initial start belief.
sim <- simulate_POMDP(sol, n = 100, belief = c(.5, .5), visited_beliefs = TRUE)
# plot with added density
plot_belief_space(sol, sample = sim, ylim = c(0,3))
lines(density(sim[, 1], bw = .05)); axis(2); title(ylab = "Density")
## Example 3: simulate trajectories for an unsolved POMDP using randomized actions
sim <- simulate_POMDP(Tiger, n = 100, horizon = 5,
    random_actions = TRUE, visited_beliefs = TRUE)
plot_belief_space(sol, sample = sim, ylim = c(0,6))
lines(density(sim[, 1], bw = .05)); axis(2); title(ylab = "Density")
```

solve_MDP Solve an MDP Problem

Description

A simple implementation of value iteration and modified policy iteration.

Usage

solve_MDP(
model,
horizon = NULL,
discount = NULL,
terminal_values = NULL,
method = "value",
eps = 0.01,
max_iterations = 1000,
k_backups = 10,

```
    verbose = FALSE
)
q_values_MDP(model, U = NULL)
random_MDP_policy(model, prob = NULL)
approx_MDP_policy_evaluation(pi, model, U = NULL, k_backups = 10)
```


Arguments

model	a POMDP problem specification created with POMDP (). Alternatively, a POMDP file or the URL for a POMDP file can be specified. an integer with the number of epochs for problems with a finite planning hori- zon. If set to Inf, the algorithm continues running iterations till it converges to the infinite horizon solution. If NULL, then the horizon specified in model will be used. For time-dependent POMDPs a vector of horizons can be specified (see Details section). discount factor in range [0, 1]. If NULL, then the discount factor specified in model will be used.		
discount		\quad	a vector with terminal utilities for each state. If NULL, then a vector of all 0s is
:---			
terminal_values			

Value

solve_MDP() returns an object of class POMDP which is a list with the model specifications (model), the solution (solution). The solution is a list with the elements:

- policy a list representing the policy graph. The list only has one element for converged solutions.
- converged did the algorithm converge (NA) for finite-horizon problems.
- delta final delta (infinite-horizon only)
- iterations number of iterations to convergence (infinite-horizon only)
q_values_MDP() returns a state by action matrix specifying the Q-function, i.e., the utility value of executing each action in each state.
random_MDP_policy () returns a data.frame with columns state and action to define a policy.
approx_MDP_policy_evaluation() is used by the modified policy iteration algorithm and returns an approximate utility vector U estimated by evaluating policy pi.

Author(s)

Michael Hahsler

See Also

Other solver: solve_POMDP(), solve_SARSOP()

Examples

```
data(Maze)
Maze
# use value iteration
maze_solved <- solve_MDP(Maze, method = "value")
policy(maze_solved)
# value function (utility function U)
plot_value_function(maze_solved)
# Q-function (states times action)
q_values_MDP(maze_solved)
# use modified policy iteration
maze_solved <- solve_MDP(Maze, method = "policy")
policy(maze_solved)
# finite horizon
maze_solved <- solve_MDP(Maze, method = "value", horizon = 3)
policy(maze_solved)
# create a random policy where action n is very likely and approximate
# the value function. We change the discount factor to . }9\mathrm{ for this.
Maze_discounted <- Maze
Maze_discounted$discount <- . }
pi <- random_MDP_policy(Maze_discounted, prob = c(n = .7, e = .1, s = . 1, w = 0.1))
pi
# compare the utility function for the random policy with the function for the optimal
# policy found by the solver.
maze_solved <- solve_MDP(Maze)
approx_MDP_policy_evaluation(pi, Maze, k_backup = 100)
approx_MDP_policy_evaluation(policy(maze_solved)[[1]], Maze, k_backup = 100)
```

```
# Note that the solver already calculates the utility function and returns it with the policy
policy(maze_solved)
```

```
solve_POMDP Solve a POMDP Problem using pomdp-solver
```


Description

This function utilizes the C implementation of 'pomdp-solve' by Cassandra (2015) to solve problems that are formulated as partially observable Markov decision processes (POMDPs). The result is an optimal or approximately optimal policy.

Usage

```
solve_POMDP(
        model,
        horizon = NULL,
        discount = NULL,
        terminal_values = NULL,
        method = "grid",
        digits = 7,
        parameter = NULL,
        verbose = FALSE
    )
    solve_POMDP_parameter()
```


Arguments

model a POMDP problem specification created with POMDP(). Alternatively, a POMDP file or the URL for a POMDP file can be specified.
horizon an integer with the number of epochs for problems with a finite planning horizon. If set to Inf, the algorithm continues running iterations till it converges to the infinite horizon solution. If NULL, then the horizon specified in model will be used. For time-dependent POMDPs a vector of horizons can be specified (see Details section).
discount discount factor in range $[0,1]$. If NULL, then the discount factor specified in model will be used.
terminal_values
a vector with the terminal utility values for each state or a matrix specifying the terminal rewards via a terminal value function (e.g., the alpha components produced by solve_POMDP()). If NULL, then, if available, the terminal values specified in model will be used or a vector with all 0s otherwise.
method string; one of the following solution methods: "grid", "enum", "twopass", "witness", or "incprune". The default is "grid" implementing the finite grid method.
$\begin{array}{ll}\text { digits } & \text { precision used when writing POMDP files (see write_POMDP()). } \\ \text { parameter } & \text { a list with parameters passed on to the pomdp-solve program. } \\ \text { verbose } & \begin{array}{l}\text { logical, if set to TRUE, the function provides the output of the pomdp solver in } \\ \text { the R console. }\end{array}\end{array}$

Details

solve_POMDP_parameter() displays available solver parameter options.
Horizon: Infinite-horizon POMDPs (horizon = Inf) converge to a single policy graph. Finitehorizon POMDPs result in a policy tree of a depth equal to the smaller of the horizon or the number of epochs to convergence. The policy (and the associated value function) are stored in a list by epoch. The policy for the first epoch is stored as the first element.
Policy: Each policy is a data frame where each row representing a policy graph node with an associated optimal action and a list of node IDs to go to depending on the observation (specified as the column names). For the finite-horizon case, the observation specific node IDs refer to nodes in the next epoch creating a policy tree. Impossible observations have a NA as the next state.

Value function: The value function is stored as a matrix. Each row is associated with a node (row) in the policy graph and represents the coefficients (alpha vector) of a hyperplane. An alpha vector contains one value per state and is the value for the belief state that has a probability of 1 for that state and 0 s for all others.

Precision:* The POMDP solver uses various epsilon values to control precision for comparing alpha vectors to check for convergence, and solving LPs. Overall precision can be changed using parameter $=$ list $(e p s i l o n=1 e-3)$.
Methods: Several algorithms for dynamic-programming updates are available:

- Enumeration (Sondik 1971).
- Two pass (Sondik 1971).
- Witness (Littman, Cassandra, Kaelbling, 1996).
- Incremental pruning (Zhang and Liu, 1996, Cassandra et al 1997).
- Grid implements a variation of point-based value iteration to solve larger POMDPs (PBVI; see Pineau 2003) without dynamic belief set expansion.

Details can be found in (Cassandra, 2015).
Note on method grid: The grid method implements a version of Point Based Value Iteration (PBVI). The used belief points are by default created using points that are reachable from the initial belief (start) by following all combinations of actions and observations. The size of the grid can be set via parameter $=$ list (fg_points $=100$). Alternatively, different strategies can be chosen using the parameter fg_type. In this implementation, the user can also specify manually a grid of belief states by providing a matrix with belief states as produced by sample_belief_space() as the parameter grid.

To guarantee convergence in point-based (finite grid) value iteration, the initial value function must be a lower bound on the optimal value function. If all rewards are strictly non-negative, an initial value function with an all zero vector can be used and results will be similar to other methods. However, if there are negative rewards, lower bounds can be guaranteed by setting a single vector with the values $\min ($ reward $) /(1-$ discount $)$. The value function is guaranteed to converge to
the true value function, but finite-horizon value functions will not be as expected. solve_POMDP() produces a warning in this case.
Time-dependent POMDPs: Time dependence of transition probabilities, observation probabilities and reward structure can be modeled by considering a set of episodes representing epoch with the same settings. In the scared tiger example (see Examples section), the tiger has the normal behavior for the first three epochs (episode 1) and then becomes scared with different transition probabilities for the next three epochs (episode 2). The episodes can be solved in reverse order where the value function is used as the terminal values of the preceding episode. This can be done by specifying a vector of horizons (one horizon for each episode) and then lists with transition matrices, observation matrices, and rewards. If the horizon vector has names, then the lists also need to be named, otherwise they have to be in the same order (the numeric index is used). Only the time-varying matrices need to be specified. An example can be found in Example 4 in the Examples section. The procedure can also be done by calling the solver multiple times (see Example 5).
Note: The parser for POMDP files is experimental. Please report problems here: https://github. com/mhahsler/pomdp/issues.

Value

The solver returns an object of class POMDP which is a list with the model specifications (model), the solution (solution), and the solver output (solver_output). The solution is a list with elements:

- converged did the solution converge?
- initial_belief used initial beliefs.
- total_expected_reward reward from the initial beliefs.
- pg, initial_pg_node a list representing the policy graph. A converged solution has only a single list elements.
- belief_states used belief states.
- alpha value function as hyperplanes representing the nodes in the policy graph.
- policy the policy.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

Cassandra, A. (2015). pomdp-solve: POMDP Solver Software, http://www. pomdp.org.
Sondik, E. (1971). The Optimal Control of Partially Observable Markov Processes. Ph.D. Dissertation, Stanford University.

Cassandra, A., Littman M.L., Zhang L. (1997). Incremental Pruning: A Simple, Fast, Exact Algorithm for Partially Observable Markov Decision Processes. UAI'97: Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence, August 1997, pp. 54-61.
Monahan, G. E. (1982). A survey of partially observable Markov decision processes: Theory, models, and algorithms. Management Science 28(1):1-16.

Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. (1996). Efficient dynamic-programming updates in partially observable Markov decision processes. Technical Report CS-95-19, Brown University, Providence, RI.
Zhang, N. L., and Liu, W. (1996). Planning in stochastic domains: Problem characteristics and approximation. Technical Report HKUST-CS96-31, Department of Computer Science, Hong Kong University of Science and Technology.

Pineau J., Geoffrey J Gordon G.J., Thrun S.B. (2003). Point-based value iteration: an anytime algorithm for POMDPs. IJCAI'03: Proceedings of the 18th international joint conference on Artificial Intelligence. Pages 1025-1030.

See Also

Other policy: optimal_action(), plot_policy_graph(), plot_value_function(), policy(), reward(), solve_SARSOP()

Other solver: solve_MDP(), solve_SARSOP()
Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(), solve_SARSOP(), transition_matrix(), update_belief(), write_POMDP()

Examples

```
################################################################
# Example 1: Solving the simple infinite-horizon Tiger problem
data("Tiger")
Tiger
# look at the model as a list
unclass(Tiger)
# inspect an individual field of the model (e.g., the reward)
Tiger$reward
sol <- solve_POMDP(model = Tiger)
sol
# look at solver output
sol$solver_output
# look at the solution
sol$solution
# policy (value function (alpha vectors), optimal action and observation dependent transitions)
policy(sol)
# plot the policy graph of the infinite-horizon POMDP
plot_policy_graph(sol)
# value function
plot_value_function(sol, ylim = c(0,20))
# display available solver options which can be passed on to the solver as parameters.
```

```
solve_POMDP_parameter()
#################################################################
# Example 2: Solve a problem specified as a POMDP file
# using a grid of size 10
sol <- solve_POMDP("http://www.pomdp.org/examples/cheese.95.POMDP",
    method = "grid", parameter = list(fg_points = 10))
sol
policy(sol)
# Example 3: Solving a finite-horizon POMDP using the incremental
# pruning method (without discounting)
sol <- solve_POMDP(model = Tiger,
    horizon = 3, discount = 1, method = "incprune")
sol
# look at the policy tree
policy(sol)
# note: it does not make sense to open the door in epochs }1\mathrm{ or 2 if you only have 3 epochs.
reward(sol) # listen twice and then open the door or listen 3 times
reward(sol, belief = c(1,0)) # listen twice (-2) and then open-left (10)
reward(sol, belief = c(1,0), epoch = 3) # just open the right door (10)
reward(sol, belief = c(.95,.05), epoch = 3) # just open the right door (95% chance)
#################################################################
# Example 3: Using terminal values (state-dependent utilities after the final epoch)
#
# Specify 1000 if the tiger is right after 3 (horizon) epochs
sol <- solve_POMDP(model = Tiger,
    horizon = 3, discount = 1, method = "incprune",
    terminal_values = c(0, 1000))
sol
policy(sol)
# Note: The optimal strategy is to never open the left door. If we think the
# Tiger is behind the right door, then we just wait for the final payout. If
# we think the tiger might be behind the left door, then we open the right
# door, are likely to get a small reward and the tiger has a chance of 50\% to
# move behind the right door. The second episode is used to gather more
# information for the more important # final action.
```


\#

```
\# Example 4: Model time-dependent transition probabilities
\# The tiger reacts normally for 3 epochs (goes randomly two one
\# of the two doors when a door was opened). After 3 epochs he gets
\# scared and when a door is opened then he always goes to the other door.
\# specify the horizon for each of the two different episodes
Tiger_time_dependent <- Tiger
Tiger_time_dependent\$name <- "Scared Tiger Problem"
```

```
Tiger_time_dependent$horizon <- c(normal_tiger = 3, scared_tiger = 3)
Tiger_time_dependent$transition_prob <- list(
    normal_tiger = list(
            "listen" = "identity",
            "open-left" = "uniform",
            "open-right" = "uniform"),
        scared_tiger = list(
            "listen" = "identity",
            "open-left" = rbind(c(0, 1), c(0, 1)),
            "open-right" = rbind(c(1, 0), c(1, 0))
    )
)
# Tiger_time_dependent (a higher value for verbose will show more messages)
sol <- solve_POMDP(model = Tiger_time_dependent, discount = 1,
    method = "incprune", verbose = 1)
sol
policy(sol)
################################################################
# Example 5: Alternative method to solve time-dependent POMDPs
# 1) create the scared tiger model
Tiger_scared <- Tiger
Tiger_scared$transition_prob <- list(
            "listen" = "identity",
            "open-left" = rbind(c(0, 1), c(0, 1)),
            "open-right" = rbind(c(1, 0), c(1, 0))
    )
# 2) Solve in reverse order. Scared tiger without terminal values first.
sol_scared <- solve_POMDP(model = Tiger_scared,
    horizon = 3, discount = 1, method = "incprune")
sol_scared
policy(sol_scared)
# 3) Solve the regular tiger with the value function of the scared tiger as terminal values
sol <- solve_POMDP(model = Tiger,
    horizon = 3, discount = 1, method = "incprune",
    terminal_values = sol_scared$solution$alpha[[1]])
sol
policy(sol)
# Note: it is optimal to mostly listen till the Tiger gets in the scared mood. Only if
# we are extremely sure in the first epoch, then opening a door is optimal.
################################################################
# Example 6: PBVI with a custom grid
# Create a search grid by sampling from the belief space in
# 10 regular intervals
custom_grid <- sample_belief_space(Tiger, n = 10, method = "regular")
```

```
    custom_grid
    # Visualize the search grid
    plot_belief_space(sol, sample = custom_grid)
    # Solve the POMDP using the grid for approximation
    sol <- solve_POMDP(Tiger, method = "grid", parameter = list(grid = custom_grid))
    policy(sol)
```

solve_SARSOP
Solve a POMDP Problem using SARSOP

Description

This function uses the C++ implementation of the SARSOP algorithm by Kurniawati, Hsu and Lee (2008) interfaced in package sarsop to solve infinite horizon problems that are formulated as partially observable Markov decision processes (POMDPs). The result is an optimal or approximately optimal policy.

Usage

solve_SARSOP(

```
        model,
```

 horizon = Inf,
 discount = NULL,
 terminal_values = NULL,
 method = "sarsop",
 digits = 7,
 parameter \(=\) NULL,
 verbose = FALSE
)

Arguments

model a POMDP problem specification created with POMDP(). Alternatively, a POMDP file or the URL for a POMDP file can be specified.
horizon need to be Inf.
discount discount factor in range $[0,1]$. If NULL, then the discount factor specified in model will be used.
terminal_values
needs to be NULL. SARSOP does not use terminal values.
method string; there is only one method available called "sarsop".
digits precision used when writing POMDP files (see write_POMDP()).
parameter a list with parameters passed on to the function sarsop in package sarsop.
verbose logical, if set to TRUE, the function provides the output of the solver in the R console.

Value

The solver returns an object of class POMDP which is a list with the model specifications (' model '), the solution ('solution'), and the solver output ('solver_output').

Author(s)

Michael Hahsler

References

Carl Boettiger, Jeroen Ooms and Milad Memarzadeh (2020). sarsop: Approximate POMDP Planning Software. R package version 0.6.6. https://CRAN.R-project.org/package=sarsop
H. Kurniawati, D. Hsu, and W.S. Lee (2008). SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In Proc. Robotics: Science and Systems.

See Also

Other policy: optimal_action(), plot_policy_graph(), plot_value_function(), policy(), reward(), solve_POMDP()

Other solver: solve_MDP(), solve_POMDP()
Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(), solve_POMDP(), transition_matrix(), update_belief(), write_POMDP()

Examples

```
## Not run:
# Solving the simple infinite-horizon Tiger problem with SARSOP
# You need to install package "sarsop"
data("Tiger")
Tiger
sol <- solve_SARSOP(model = Tiger)
sol
# look at solver output
sol$solver_output
# policy (value function (alpha vectors), optimal action and observation dependent transitions)
policy(sol)
# value function
plot_value_function(sol, ylim = c(0,20))
# plot the policy graph
plot_policy_graph(sol)
# reward of the optimal policy
reward(sol)
# Solve a problem specified as a POMDP file
```

 sol <- solve_SARSOP("http://www.pomdp.org/examples/cheese.95.POMDP")
 sol
 \#\# End(Not run)
 Tiger Tiger Problem POMDP Specification

Description

The model for the Tiger Problem introduces in Cassandra et al (1994).

Format

An object of class POMDP.

Details

The original Tiger problem was published in Cassandra et al (1994) as follows:
An agent is facing two closed doors and a tiger is put with equal probability behind one of the two doors represented by the states tiger-left and tiger-right, while treasure is put behind the other door. The possible actions are listen for tiger noises or opening a door (actions open-left and open-right). Listening is neither free (the action has a reward of -1) nor is it entirely accurate. There is a $15 \backslash$ probability that the agent hears the tiger behind the left door while it is actually behind the right door and vice versa. If the agent opens door with the tiger, it will get hurt (a negative reward of -100), but if it opens the door with the treasure, it will receive a positive reward of 10 . After a door is opened, the problem is reset(i.e., the tiger is randomly assigned to a door with chance 50/50) and the the agent gets another try.
The three doors problem is an extension of the Tiger problem where the tiger is behind one of three doors represented by three states (tiger-left, tiger-center, and tiger-right) and treasure is behind the other two doors. There are also three open actions and three different observations for listening.

References

Anthony R. Cassandra, Leslie P Kaelbling, and Michael L. Littman (1994). Acting Optimally in Partially Observable Stochastic Domains. In Proceedings of the Twelfth National Conference on Artificial Intelligence, pp. 1023-1028.

Examples

```
data("Tiger")
Tiger
data("Three_doors")
Three_doors
```


Description

Converts the description of transition probabilities and observation probabilities in a POMDP into a list of matrices or a function.

Usage

transition_matrix(x, episode = 1, type = "matrix")
observation_matrix(x, episode $=1$, type = "matrix")
reward_matrix(x, episode $=1$, type = "matrix")

Arguments

x
episode Episode used for time-dependent POMDPs (POMDP).
type 'matrix' or 'function' to get a list of matrices or a function.

Details

See Details section in POMDP for details.

Value

A list or a list of lists of matrices.

Author(s)

Michael Hahsler

See Also

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(), update_belief(), write_POMDP()

Examples

```
data("Tiger")
```

\# List of $|\mathrm{A}|$ transition matrices. One per action in the from states x states Tiger\$transition_prob
transition_matrix(Tiger)

```
f <- transition_matrix(Tiger, type = "function")
args(f)
## listening does not change the tiger's position.
f("listen", "tiger-left", "tiger-left")
# List of |A| observation matrices. One per action in the from states x observations
Tiger$observation_prob
observation_matrix(Tiger)
# List of list of reward matrices. 1st level is action and second level is the
# start state in the form end state x observation
Tiger$reward
reward_matrix(Tiger)
# Visualize transition matrix for action 'open-left'
library("igraph")
g <- graph_from_adjacency_matrix(transition_matrix(Tiger)$"open-left", weighted = TRUE)
edge_attr(g, "label") <- edge_attr(g, "weight")
igraph.options("edge.curved" = TRUE)
plot(g, layout = layout_on_grid, main = "Transitions for action 'open=left'")
## Use a function for the Tiger transition model
trans <- function(end.state, start.state, action) {
    ## listen has an identity matrix
    if(action == 'listen')
        if(end.state == start.state) return(1)
        else return(0)
    # other actions have a uniform distribution
    return(1/2)
}
Tiger$transition_prob <- trans
transition_matrix(Tiger)
```

update_belief

Belief Update

Description

Update the belief given a taken action and observation.

Usage

update_belief(model,
belief = NULL,
action = NULL,
observation $=$ NULL,

```
    episode = 1,
    digits = 7,
    drop = TRUE
)
```


Arguments

model	a POMDP object.
belief	"uniform". the current belief state. Defaults to the start belief state specified in the model or
action	the taken action. Can also be a vector of multiple actions or, if missing, then all actions are evaluated.
observation	the received observation. Can also be a vector of multiple observations or, if missing, then all observations are evaluated.
episode	Use transition and observation matrices for the given episode for time-dependent POMDPs (see POMDP).
digits	round decimals. drop

Details

Update the belief state b (belief) with an action a and observation o. The new belief state b^{\prime} is:

$$
b^{\prime}\left(s^{\prime}\right)=\eta O\left(o \mid s^{\prime}, a\right) \sum_{s \in S} T\left(s^{\prime} \mid s, a\right) b(s)
$$

where $\eta=1 / \sum_{s^{\prime} \in S}\left[O\left(o \mid s^{\prime}, a\right) \sum_{s \in S} T\left(s^{\prime} \mid s, a\right) b(s)\right]$ normalizes the new belief state so the probabilities add up to one.

Value

returns the updated belief state as a named vector. If action or observations is a vector with multiple elements ot missing, then a matrix with all resulting belief states is returned.

Author(s)

Michael Hahsler

See Also

Other POMDP: $\operatorname{POMDP}()$, plot_belief_space(), sample_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(), transition_matrix(), write_POMDP()

Examples

```
data(Tiger)
update_belief(c(.5,.5), model = Tiger)
update_belief(c(.5,.5), action = "listen", observation = "tiger-left", model = Tiger)
update_belief(c(.15,.85), action = "listen", observation = "tiger-right", model = Tiger)
```

write_POMDP
Read and write a POMDP Model to a File in POMDP Format

Description

Reads and write a POMDP file suitable for the pomdp-solve program. Note: read POMDP files are intended to be used in solve_POMDP () and do not support all auxiliary functions. Fields like the transition matrix, the observation matrix and the reward structure are not parsed.

Usage

write_POMDP(x, file, digits = 7)
read_POMDP(file)

Arguments

$x \quad$ an object of class POMDP.
file a file name.
digits precision for writing numbers (digits after the decimal point).

Value

read_POMDP () returns a POMDP object.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

POMDP solver website: http://www.pomdp.org

See Also

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(), transition_matrix(), update_belief()

Examples

data(Tiger)
\#\# show the POMDP file that would be written.
write_POMDP(Tiger, file = stdout())

Index

```
* IO
    write_POMDP,40
* MDP
    solve_MDP, 25
* POMDP
    plot_belief_space, 8
    POMDP, 15
    sample_belief_space, 22
    simulate_POMDP, 23
    solve_POMDP, 28
    solve_SARSOP, 34
    transition_matrix,37
    update_belief, 38
    write_POMDP,40
* datasets
    Maze, 3
    Tiger, 36
* graphs
    plot_policy_graph, 10
    policy,14
* hplot
    plot_belief_space, 8
    plot_policy_graph, 10
    plot_value_function, 12
* policy
    optimal_action, 7
    plot_policy_graph,10
    plot_value_function, 12
    policy,14
    reward, 20
    solve_POMDP, 28
    solve_SARSOP, 34
* solver
    solve_MDP, 25
    solve_POMDP, 28
    solve_SARSOP, 34
approx_MDP_policy_evaluation
    (solve_MDP), 25
```

```
sample_belief_space(), 11, 29
simulate_POMDP, 9, 18, 23, 23, 31, 35, 37, 39,
    4 0
simulate_POMDP(),11
solve_MDP, 25, 31,35
solve_MDP(), 2,6
solve_POMDP, 8, 9, 11, 13, 15, 18, 21, 23, 24,
    27, 28, 35, 37, 39, 40
solve_POMDP(), 2, 18, 28,30,40
solve_POMDP_parameter (solve_POMDP), 28
solve_SARSOP, 8, 9, 11, 13, 15, 18, 21, 23, 24,
    27,31,34, 37, 39, 40
solve_SARSOP(),2
stats::line(),13
T_ (POMDP), 15
Three_doors(Tiger), 36
Tiger,36
transition_matrix, 9, 18, 23, 24,31, 35, 37,
    39,40
update_belief, 9, 18,23,24,31, 35,37,38,
    4 0
visNetwork::visIgraph(),11
write_POMDP, 9, 18, 23, 24, 31, 35, 37, 39, 40
write_POMDP(), 29, 34
```

