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pomp-package Inference for partially observed Markov processes

Description

The pomp package provides facilities for inference on time series data using partially-observed
Markov process (POMP) models. These models are also known as state-space models, hidden
Markov models, or nonlinear stochastic dynamical systems. One can use pomp to fit nonlinear,
non-Gaussian dynamic models to time-series data. The package is both a set of tools for data analy-
sis and a platform upon which statistical inference methods for POMP models can be implemented.

Data analysis using pomp

pomp provides algorithms for:

1. Simulation of stochastic dynamical systems; see simulate.

[\

. Particle filtering (AKA sequential Monte Carlo or sequential importance sampling); see pfilter
and wpfilter.

. The iterated filtering methods of Ionides et al. (2006, 2011, 2015); see mif2.

. The nonlinear forecasting algorithm of Kendall et al. (2005); see nonlinear forecasting.
. The particle MCMC approach of Andrieu et al. (2010); see pmcmc.

. The probe-matching method of Kendall et al. (1999, 2005); see probe matching.

. Synthetic likelihood a la Wood (2010); see probe.

. A spectral probe-matching method (Reuman et al. 2006, 2008); see spectrum matching.

O 0 9 N »n b~ W

. Approximate Bayesian computation (Toni et al. 2009); see abc.
10. The approximate Bayesian sequential Monte Carlo scheme of Liu & West (2001); see bsmc2.
11. Ensemble and ensemble adjusted Kalman filters; see kalman.

12. Simple trajectory matching; see trajectory matching.

The package also provides various tools for plotting and extracting information on models and data.

Structure of the package

pomp algorithms are arranged on several levels. At the top level, estimation algorithms estimate
model parameters and return information needed for other aspects of inference. Elementary algo-
rithms perform common operations on POMP models, including simulation, filtering, and applica-
tion of diagnostic probes; these functions may be useful in inference, but they do not themselves
perform estimation. At the lowest level, workhorse functions provide the interface to basic POMP
model components. Beyond these, pomp provides a variety of auxiliary functions for manipulat-
ing and extracting information from ‘pomp’ objects, producing diagnostic plots, facilitating repro-
ducible computations, and so on.
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Implementing a model

The basic structure at the heart of the package is the ‘pomp object’. This is a container holding a
time series of data (possibly multivariate) and a model. The model is specified by specifying some
or all of its basic model components. One does this using the basic component arguments to the
pomp constructor. One can also add, modify, or delete basic model components “on the fly” in any
pomp function that accepts them.

Documentation and examples

The package contains a number of examples. Some of these are included in the help pages. In
addition, several pre-built POMP models are included with the package. Tutorials and other docu-
mentation, including a package FAQ, are available from the package website.

Useful links
e pomp homepage: https://kingaa.github.io/pomp/
* Report bugs to: https://github.com/kingaa/pomp/issues
* Frequently asked questions: https://kingaa.github.io/pomp/FAQ.html
» User guides and tutorials: https://kingaa.github.io/pomp/docs.html
e pomp news: https://kingaa.github.io/pomp/blog.html

Citing pomp

Execute citation("pomp") to view the correct citation for publications.

Author(s)
Aaron A. King

References

A. A. King, D. Nguyen, and E. L. Ionides. Statistical inference for partially observed Markov
processes via the package pomp. Journal of Statistical Software 69(12), 1-43, 2016. An updated
version of this paper is available on the package website.

See the package website for more references, including many publications that use pomp.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp, prior specification, rinit
specification, rmeasure specification, rprocess specification, skeleton specification,
transformations, userdata, vmeasure specification

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(),workhorses

More on pomp estimation algorithms: approximate Bayesian computation, bsmc2(), estimation
algorithms, mif2(), nonlinear forecasting, pmcmc(), probe matching, spectrum matching
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https://kingaa.github.io/pomp/
https://kingaa.github.io/pomp/
https://github.com/kingaa/pomp/issues
https://kingaa.github.io/pomp/FAQ.html
https://kingaa.github.io/pomp/docs.html
https://kingaa.github.io/pomp/blog.html
https://kingaa.github.io/pomp/docs.html
https://kingaa.github.io/pomp/biblio.html
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More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), probe(),
simulate(), spect(), trajectory(), wpfilter()

accumulator variables accumulator variables

Description

Latent state variables that accumulate quantities through time.

Details

In formulating models, one sometimes wishes to define a state variable that will accumulate some
quantity over the interval between successive observations. pomp provides a facility to make such
features more convenient. Specifically, variables named in the pomp’s accumvars argument will
be set to zero immediately following each observation. See sir and the tutorials on the package
website for examples.

See Also
sir
More on implementing POMP models: Csnippet, basic components, betabinomial, covariates,
distributions, dmeasure specification, dprocess specification, emeasure specification,
parameter transformations, pomp-package, pomp, prior specification, rinit specification,

rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

Examples

## A simple SIR model.

ewmeas %>%
subset(time < 1952) %>%
pomp(
times="time",6 t0=1948,
rprocess=euler(

Csnippet(”

int nrate = 6;

double rate[nratel; // transition rates
double trans[nrate]; // transition numbers
double dWw;

// gamma noise, mean=dt, variance=(sigma“2 dt)
dW = rgammawn(sigma,dt);

// compute the transition rates
rate[@] = mu*pop; // birth into susceptible class
rate[1] = (iota+BetaxIxdW/dt)/pop; // force of infection
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rate[2] = mu; // death from susceptible class
rate[3] = gamma; // recovery

rate[4] = mu; // death from infectious class
rate[5] = mu; // death from recovered class

// compute the transition numbers

trans[@] = rpois(rate[@]*dt); // births are Poisson
reulermultinom(2,S,&rate[1],dt,&trans[1]);
reulermultinom(2,I,&rate[3],dt,&trans[3]);
reulermultinom(1,R,&rate[5],dt,&trans[5]);

// balance the equations
S += trans[@]-trans[1]-trans[2];
I += trans[1]-trans[3]-trans[4];
R += trans[3]-trans[5];
"),
delta.t=1/52/20
),
rinit=Csnippet(”
double m = pop/(S_0+I_0+R_0);
S = nearbyint(m*S_0);
I = nearbyint(mxI_0);
R = nearbyint(m*R_0);
",
paramnames=c("mu"”, "pop"”,"iota","gamma"”,"Beta","sigma",
"S_@0","I_0","R_0"),
statenames=c("S","I","R"),
params=c(mu=1/50,iota=10,pop=50e6,gamma=26,Beta=400,sigma=0.1,
S_0=0.07,1_0=0.001,R_0=0.93)
) —> ewl

ewl %>%
simulate() %>%
plot(variables=c("S","I","R"))

## A simple SIR model that tracks cumulative incidence.

ewl %>%

pomp (
rprocess=euler(
Csnippet(”
int nrate = 6;
double rate[nrate]; // transition rates
double trans[nrate]; // transition numbers
double dw;

// gamma noise, mean=dt, variance=(sigma”2 dt)
dW = rgammawn(sigma,dt);

// compute the transition rates

rate[@] = mu*pop; // birth into susceptible class
rate[1] (iota+BetaxI*xdW/dt)/pop; // force of infection
rate[2] mu; // death from susceptible class
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rate[3] = gamma; // recovery
rate[4] = mu; // death from infectious class
rate[5] = mu; // death from recovered class

// compute the transition numbers

trans[@] = rpois(rate[@]*dt); // births are Poisson
reulermultinom(2,S,&rate[1],dt,&trans[1]);
reulermultinom(2,I,&rate[3],dt,&trans[3]);
reulermultinom(1,R,&rate[5],dt,&trans[5]);

// balance the equations
S += trans[@]-trans[1]-trans[2];
I += trans[1]-trans[3]-trans[4];
R += trans[3]-trans[5];
H += trans[3]; // cumulative incidence
"),
delta.t=1/52/20
),
rmeasure=Csnippet ("
double mean = Hx*rho;
double size = 1/tau;
reports = rnbinom_mu(size,mean);
",
rinit=Csnippet ("
double m = pop/(S_0+I_0+R_0);
S = nearbyint(m*S_0);
I = nearbyint(mxI_0);
R = nearbyint(m*R_0);
H Q;

n)
’
non nons non n

paramnames=c("mu”,"pop”,"iota","gamma","Beta”,"sigma","tau”,"rho",
"S_@","I_0","R_0"),

statenames=c("S","I1","R","H"),

params=c(mu=1/50,iota=10, pop=50e6,gamma=26,
Beta=400,sigma=0.1,tau=0.001,rho=0.6,
S_0=0.07,1_0=0.001,R_0=0.93)

) —> ew2

ew2 %>%
simulate() %>%
plot()

## A simple SIR model that tracks weekly incidence.

ew2 %>%
pomp(accumvars="H") -> ew3

ew3 %>%
simulate() %>%
plot()
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approximate Bayesian computation
Approximate Bayesian computation

Description

The approximate Bayesian computation (ABC) algorithm for estimating the parameters of a partially-
observed Markov process.

Usage

## S4 method for signature 'data.frame'
abc(

data,

Nabc = 1,

proposal,

scale,

epsilon,

probes,

params,

rinit,

rprocess,

rmeasure,

dprior,

verbose = getOption("verbose"”, FALSE)
)

## S4 method for signature 'pomp'
abc(

data,

Nabc = 1,

proposal,

scale,

epsilon,

probes,

verbose = getOption("verbose"”, FALSE)
)

## S4 method for signature 'probed_pomp'
abc(data, probes, ..., verbose = getOption("verbose”, FALSE))

## S4 method for signature 'abcd_pomp'
abc(

data,

Nabc,
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proposal,

scale,
epsilon,
probes,

L

verbose

Arguments

data

Nabc

proposal

scale
epsilon

probes

params

rinit

rprocess

rmeasure

dprior

getOption("verbose”, FALSE)

either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

the number of ABC iterations to perform.

optional function that draws from the proposal distribution. Currently, the pro-
posal distribution must be symmetric for proper inference: it is the user’s respon-
sibility to ensure that it is. Several functions that construct appropriate proposal
function are provided: see MCMC proposals for more information.

named numeric vector of scales.
ABC tolerance.

a single probe or a list of one or more probes. A probe is simply a scalar- or
vector-valued function of one argument that can be applied to the data array of
a ‘pomp’. A vector-valued probe must always return a vector of the same size.
A number of useful probes are provided with the package: see basic probes.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.

optional; prior distribution density evaluator, specified either as a C snippet,
an R function, or the name of a pre-compiled native routine available in a dy-
namically loaded library. For more information, see prior specification. Setting
dprior=NULL resets the prior distribution to its default, which is a flat improper
prior.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
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When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Running ABC

abc returns an object of class ‘abcd_pomp’. One or more ‘abcd_pomp’ objects can be joined to
form an ‘abcList’ object.

Re-running ABC iterations

To re-run a sequence of ABC iterations, one can use the abc method on a ‘abcd_pomp’ object. By
default, the same parameters used for the original ABC run are re-used (except for verbose, the
default of which is shown above). If one does specify additional arguments, these will override the
defaults.

Continuing ABC iterations

One can continue a series of ABC iterations from where one left off using the continue method. A
call to abc to perform Nabc=m iterations followed by a call to continue to perform Nabc=n iterations
will produce precisely the same effect as a single call to abc to perform Nabc=m+n iterations. By
default, all the algorithmic parameters are the same as used in the original call to abc. Additional
arguments will override the defaults.

Methods

The following can be applied to the output of an abc operation:

abc repeats the calculation, beginning with the last state
continue continues the abc calculation
plot produces a series of diagnostic plots

traces produces an mecmc object, to which the various coda convergence diagnostics can be applied

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)
Edward L. Ionides, Aaron A. King
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References
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Statistics and Computing 22, 1167-1180, 2012.
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See Also

More on methods based on summary statistics: basic probes, nonlinear forecasting, probe
matching, probe(), spectrum matching, spect()

More on pomp estimation algorithms: bsmc2(), estimation algorithms, mif2(), nonlinear
forecasting, pmemc (), pomp-package, probe matching, spectrummatching

More on Markov chain Monte Carlo methods: pmcmc (), proposals

More on Bayesian methods: bsmc2(), dprior(), pmcmc(), prior specification, rprior()

basic components Basic POMP model components.

Description

Mathematically, the parts of a POMP model include the latent-state process transition distribution,
the measurement-process distribution, the initial-state distribution, and possibly a prior parameter
distribution. Algorithmically, each of these corresponds to at least two distinct operations. In
particular, for each of the above parts, one sometimes needs to make a random draw from the
distribution and sometimes to evaluate the density function. Accordingly, for each such component,
there are two basic model components, one prefixed by a ‘r’, the other by a ‘d’, following the usual
R convention.

Details

In addition to the parts listed above, pomp includes two additional basic model components: the
deterministic skeleton, and parameter transformations that can be used to map the parameter space
onto a Euclidean space for estimation purposes.

There are thus altogether eleven basic model components:

1. rprocess, which samples from the latent-state transition distribution,
2. dprocess, which evaluates the latent-state transition density,

3. rmeasure, which samples from the measurement distribution,
4,

emeasure, which computes the conditional expectation of the measurements, given the latent
states,
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5. vmeasure, which computes the conditional covariance matrix of the measurements, given the
latent states,

dmeasure, which evaluates the measurement density,
rprior, which samples from the prior distribution,

dprior, which evaluates the prior density,

Y 2

rinit, which samples from the initial-state distribution,
10. skeleton, which evaluates the deterministic skeleton,
11. partrans, which evaluates the forward or inverse parameter transformations.
Each of these can be set or modified in the pomp constructor function or in any of the pomp ele-

mentary algorithms or estimation algorithms using an argument that matches the basic model com-
ponent. A basic model component can be unset by passing NULL in the same way.

Help pages detailing each basic model component are provided.

See Also

workhorse functions, elementary algorithms, estimation algorithms.

More on implementing POMP models: Csnippet, accumulator variables, betabinomial, covariates,
distributions, dmeasure specification, dprocess specification, emeasure specification,
parameter transformations, pomp-package, pomp, prior specification, rinit specification,
rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

basic probes Useful probes for partially-observed Markov processes

Description

Several simple and configurable probes are provided with in the package. These can be used directly
and as templates for custom probes.

Usage

probe.mean(var, trim = @, transform = identity, na.rm = TRUE)
probe.median(var, na.rm = TRUE)

probe.var(var, transform = identity, na.rm = TRUE)

probe.sd(var, transform = identity, na.rm = TRUE)
probe.period(var, kernel.width, transform = identity)

probe.quantile(var, probs, ...)
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probe.acf(
var,
lags,
type = c("covariance”, "correlation”),
transform = identity
)
probe.ccf(
vars,
lags,
type = c("covariance”, "correlation”),

transform = identity

)

probe.marginal(var, ref, order =

3, diff =1, transform = identity)

probe.nlar(var, lags, powers, transform = identity)

Arguments

var, vars
trim
transform
na.rm

kernel.width

probs

lags

type

ref

order
diff

powers

character; the name(s) of the observed variable(s).

the fraction of observations to be trimmed (see mean).

transformation to be applied to the data before the probe is computed.
if TRUE, remove all NA observations prior to computing the probe.

width of modified Daniell smoothing kernel to be used in power-spectrum com-
putation: see kernel.

the quantile or quantiles to compute: see quantile.
additional arguments passed to the underlying algorithms.

In probe. ccf, a vector of lags between time series. Positive lags correspond to
x advanced relative to y; negative lags, to the reverse.

In probe.nlar, a vector of lags present in the nonlinear autoregressive model
that will be fit to the actual and simulated data. See Details, below, for a precise
description.

Compute autocorrelation or autocovariance?

empirical reference distribution. Simulated data will be regressed against the
values of ref, sorted and, optionally, differenced. The resulting regression co-
efficients capture information about the shape of the marginal distribution. A
good choice for ref is the data itself.

order of polynomial regression.
order of differencing to perform.

the powers of each term (corresponding to 1ags) in the the nonlinear autoregres-
sive model that will be fit to the actual and simulated data. See Details, below,
for a precise description.
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Value

A call to any one of these functions returns a probe function, suitable for use in probe or probe_objfun.
That is, the function returned by each of these takes a data array (such as comes from a call to obs)
as input and returns a single numerical value.

Author(s)

Daniel C. Reuman, Aaron A. King

References

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet,
and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches. Ecology 80, 1789-1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466,
1102-1104, 2010.
See Also

More on methods based on summary statistics: approximate Bayesian computation, nonlinear
forecasting, probe matching, probe(), spectrum matching, spect()

betabinomial Beta-binomial distribution

Description

Density and random generation for the Beta-binomial distribution with parameters size, mu, and
theta.

Usage

rbetabinom(n = 1, size, prob, theta)

dbetabinom(x, size, prob, theta, log = FALSE)

Arguments
n integer; number of random variates to generate.
size size parameter of the binomial distribution
prob mean of the Beta distribution
theta Beta distribution dispersion parameter
X vector of non-negative integer quantiles

log logical; if TRUE, return logarithm(s) of probabilities.
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Details

A variable X is Beta-binomially distributed if X Binomial(n, P) where P Beta(mu,theta).
Using the standard (a,b) parameterization, a = mu * theta and b = (1 — mu) * theta.

Value
rbetabinom Returns a vector of length n containing random variates drawn from the Beta-
binomial distribution.
dbetabinom Returns a vector (of length equal to the number of columns of x) containing
the probabilities of observing each column of x given the specified parameters
(size, prob, theta).
C API

An interface for C codes using these functions is provided by the package. Visit the package home-
page to view the pomp C API document.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components,
covariates, distributions, dmeasure specification, dprocess specification, emeasure
specification, parameter transformations, pomp-package, pomp, prior specification,rinit
specification, rmeasure specification, rprocess specification, skeleton specification,
transformations, userdata, vmeasure specification

blowflies Nicholson’s blowflies.

Description

blowflies is a data frame containing the data from several of Nicholson’s classic experiments with
the Australian sheep blowfly, Lucilia cuprina.

Usage

blowflies1(
P = 3.2838,
delta = 9.16073,
NO = 679.94,
sigma.P = 1.3512,
sigma.d = 0.74677,
sigma.y = 0.026649
)

blowflies2(
P = 2.7319,
delta = 0.17377,
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NO = 800.31,
sigma.P = 1.442,
sigma.d = 0.76033,
sigma.y = 0.010846

)
Arguments
P reproduction parameter
delta death rate
No population scale factor
sigma.P intensity of e noise
sigma.d intensity of eps noise
sigma.y measurement error s.d.
Details

blowflies1() and blowflies2() construct ‘pomp’ objects encoding stochastic delay-difference
equation models. The data for these come from "population I", a control culture. The experiment
is described on pp. 163—4 of Nicholson (1957). Unlimited quantities of larval food were provided;
the adult food supply (ground liver) was constant at 0.4g per day. The data were taken from the
table provided by Brillinger et al. (1980).

The models are discrete delay equations:
R(t + 1) ~ Poisson(PN(t — 7) exp (—N(t — 7)/No)e(t + 1) At)
S(t+ 1) ~ Binomial(N (t), exp (—de(t + 1)At))

N(t) = R(t) + S(t)

where e(t) and e(t) are Gamma-distributed i.i.d. random variables with mean 1 and variances
0% /At, 02/ At, respectively. blowflies1 has a timestep (At) of 1 day; blowflies2 has a timestep
of 2 days. The process model in blowflies1 thus corresponds exactly to that studied by Wood
(2010). The measurement model in both cases is taken to be

y(t) ~ NegBin(N(¢), 1/02)

i.e., the observations are assumed to be negative-binomially distributed with mean N (¢) and vari-
ance N (t) + (o, N(t))%.

Default parameter values are the MLEs as estimated by Ionides (2011).

Value

blowflies1 and blowflies?2 return ‘pomp’ objects containing the actual data and two variants of
the model.
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References

A.J. Nicholson. The self-adjustment of populations to change. Cold Spring Harbor Symposia on
Quantitative Biology 22, 153—-173, 1957.

Y. Xia and H. Tong. Feature matching in time series modeling. Statistical Science 26, 21-46, 2011.

E.L. Ionides. Discussion of “Feature matching in time series modeling” by Y. Xia and H. Tong.
Statistical Science 26, 49-52, 2011.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466,
1102-1104, 2010.

W.S.C. Gurney, S.P. Blythe, and R.M. Nisbet. Nicholson’s blowflies revisited. Nature 287, 17-21,
1980.

D.R. Brillinger, J. Guckenheimer, P. Guttorp, and G. Oster. Empirical modelling of population
time series: The case of age and density dependent rates. In: G. Oster (ed.), Some Questions in
Mathematical Biology vol. 13, pp. 65-90, American Mathematical Society, Providence, 1980.

See Also

More examples provided with pomp: SIR models, childhood disease data, dacca(), ebola,
gompertz(), ou2(), pomp examples, ricker(), rw2(), verhulst()

More data sets provided with pomp: bsflu, childhood disease data, dacca(), ebola, parus

Examples

plot(blowflies1())
plot(blowflies2())

bsflu Influenza outbreak in a boarding school

Description

An outbreak of influenza in an all-boys boarding school.

Details

Data are recorded from a 1978 flu outbreak in a closed population. The variable ‘B’ refers to boys
confined to bed on the corresponding day and ‘C’ to boys in convalescence, i.e., not yet allowed
back to class. In total, 763 boys were at risk of infection and, over the course of the outbreak, 512
boys spent between 3 and 7 days away from class (either in bed or convalescent). The index case
was a boy who arrived at school from holiday six days before the next case.

References

Anonymous. Influenza in a boarding school. British Medical Journal 1, 587, 1978.
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See Also

SIR models

More data sets provided with pomp: blowflies, childhood disease data, dacca(), ebola,
parus

Examples

library(tidyr)
library(ggplot2)

bsflu %>%
gather(variable,value,-date,-day) %>%
ggplot(aes(x=date,y=value,color=variable))+
geom_line()+
labs(y="number of boys",title="boarding school flu outbreak")+
theme_bw()

bsmc?2 The Liu and West Bayesian particle filter

Description

Modified version of the Liu and West (2001) algorithm.

Usage

## S4 method for signature 'data.frame'
bsmc2(
data,
Np,
smooth = 0.1,
params,
rprior,
rinit,
rprocess,
dmeasure,
partrans,

L

verbose = getOption("verbose"”, FALSE)

## S4 method for signature 'pomp'
bsmc2(data, Np, smooth = @.1, ..., verbose = getOption("verbose”, FALSE))
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Arguments

data

Np

smooth

params

rprior

rinit

rprocess

dmeasure

partrans
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either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object, t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np (k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(@) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=1ength(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

Kernel density smoothing parameter. The compensating shrinkage factor will
be sqrt(1-smooth”2). Thus, smooth=0 means that no noise will be added to
parameters. The general recommendation is that the value of smooth should be
chosen close to 0 (e.g., shrink ~ 0.1).

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

optional; prior distribution sampler, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see prior specification. Setting rprior=NULL
removes the prior distribution sampler.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more in-
formation, see parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.
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additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

bsmc2 uses a version of the original algorithm (Liu \& West 2001), but discards the auxiliary particle
filter. The modification appears to give superior performance for the same amount of effort.

Samples from the prior distribution are drawn using the rprior component. This is allowed to
depend on elements of params, i.e., some of the elements of params can be treated as “hyperpa-
rameters”. Np draws are made from the prior distribution.

Value
An object of class ‘bsmecd_pomp’. The following methods are avaiable:

plot produces diagnostic plots

as.data.frame puts the prior and posterior samples into a data frame

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)

Michael Lavine, Matthew Ferrari, Aaron A. King, Edward L. Ionides

References

Liu, J. and M. West. Combining Parameter and State Estimation in Simulation-Based Filtering. In
A. Doucet, N. de Freitas, and N. J. Gordon, editors, Sequential Monte Carlo Methods in Practice,
pages 197-224. Springer, New York, 2001.

See Also

More on Bayesian methods: approximate Bayesian computation, dprior(), pmcmc(), prior
specification, rprior()

More on full-information (i.e., likelihood-based) methods: mif2(), pfilter(), pmemc(),wpfilter()
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More on sequential Monte Carlo methods: cond. loglLik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman,mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(),
wpfilter()

More on pomp estimation algorithms: approximate Bayesian computation, estimation algorithms,
mif2(), nonlinear forecasting, pmcmc(), pomp-package, probe matching, spectrum matching

bsplines B-spline bases

Description

These functions generate B-spline basis functions. bspline.basis gives a basis of spline functions.
periodic.bspline.basis gives a basis of periodic spline functions.

Usage

bspline.basis(x, nbasis, degree = 3, deriv = @, names = NULL)

periodic.bspline.basis(

X ’
nbasis,
degree = 3,
period = 1,
deriv = 0,
names = NULL
)
Arguments
X Vector at which the spline functions are to be evaluated.
nbasis The number of basis functions to return.
degree Degree of requested B-splines.
deriv The order of the derivative required.
names optional; the names to be given to the basis functions. These will be the column-

names of the matrix returned. If the names are specified as a format string
(e.g., "basis%d"), sprintf will be used to generate the names from the column
number. If a single non-format string is specified, the names will be generated
by paste-ing name to the column number. One can also specify each column
name explicitly by giving a length-nbasis string vector. By default, no column-
names are given.

period The period of the requested periodic B-splines.
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Value

bspline.basis Returns a matrix with length(x) rows and nbasis columns. Each column
contains the values one of the spline basis functions.
periodic.bspline.basis
Returns a matrix with length(x) rows and nbasis columns. The basis func-
tions returned are periodic with period period.

If deriv>0, the derivative of that order of each of the corresponding spline basis functions are
returned.

C API
Access to the underlying C routines is available: see the pomp C API document. for definition and
documentation of the C API.

Author(s)
Aaron A. King

See Also

More on interpolation: covariates, lookup()

Examples

X <- seq(@,2,by=0.01)

y <- bspline.basis(x,degree=3,nbasis=9,names="basis")
matplot(x,y,type="1"',ylim=c(0,1.1))
lines(x,apply(y,1,sum),lwd=2)

x <- seq(-1,2,by=0.01)
y <- periodic.bspline.basis(x,nbasis=5,names="spline%d")
matplot(x,y,type="1")

childhood disease data
Historical childhood disease incidence data

Description

LondonYorke is a data frame containing the monthly number of reported cases of chickenpox,
measles, and mumps from two American cities (Baltimore and New York) in the mid-20th century
(1928-1972).

ewmeas and ewcitmeas are data frames containing weekly reported cases of measles in England and
Wales. ewmeas records the total measles reports for the whole country, 1948-1966. One question-
able data point has been replaced with an NA. ewcitmeas records the incidence in seven English
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cities 1948—-1987. These data were kindly provided by Ben Bolker, who writes: “Most of these data
have been manually entered from published records by various people, and are prone to errors at
several levels. All data are provided as is; use at your own risk.”

References

W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps: 1. Seasonal
variation in contact rates. American Journal of Epidemiology 98, 453—468, 1973.

See Also

SIR models, bsflu
More data sets provided with pomp: blowflies, bsflu, dacca(), ebola, parus

More examples provided with pomp: SIR models, blowflies, dacca(), ebola, gompertz(),
ou2(), pomp examples, ricker(), rw2(), verhulst()

Examples

plot(cases~time,data=LondonYorke, subset=disease=="measles"”,type='n',main="measles"”, bty="1")
lines(cases~time,data=LondonYorke, subset=disease=="measles"&town=="Baltimore”, col="red")
lines(cases~time,data=LondonYorke, subset=disease=="measles"&town=="New York",h col="blue")
legend("topright”,legend=c("Baltimore”,"New York"),1lty=1,col=c("red"”,"blue”),bty="n")

plot(
cases~time,
data=LondonYorke,
subset=disease=="chickenpox"&town=="New York",
type='1",col="blue",main="chickenpox, New York",
bty="1"

plot(
cases~time,
data=LondonYorke,
subset=disease=="mumps"&town=="New York",
type='1",col="blue” ,main="mumps, New York",
bty="1"
)

plot(reports~time,data=ewmeas, type="'1")

plot(reports~date,data=ewcitmeas, subset=city=="Liverpool”,type="1")
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coef Extract, set, or alter coefficients

Description

Extract, set, or modify the estimated parameters from a fitted model.

Usage

## S4 method for signature 'listie'
coef(object, ...)

## S4 method for signature 'pomp'
coef(object, pars, transform = FALSE, ...)

## S4 replacement method for signature 'pomp'
coef(object, pars, transform = FALSE, ...) <- value

## S4 method for signature 'objfun'
coef(object, ...)

## S4 replacement method for signature 'objfun'

coef(object, pars, transform = FALSE, ...) <- value
Arguments
object an object of class ‘pomp’, or of a class extending ‘pomp’

ignored or passed to the more primitive function

pars optional character; names of parameters to be retrieved or set.
transform logical; perform parameter transformation?
value numeric vector or list; values to be assigned. If value = NULL, the parameters
are unset.
Details

coef allows one to extract the parameters from a fitted model.
coef(object, transform=TRUE) returns the parameters transformed onto the estimation scale.
coef (object) <-value sets or alters the coefficients of a ‘pomp’ object.

coef(object, transform=TRUE) <-value assumes that value is on the estimation scale, and ap-
plies the “from estimation scale” parameter transformation from object before altering the coeffi-
cients.
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See Also

Other extraction methods: cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(),
forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()

cond. loglLik Conditional log likelihood

Description

The estimated conditional log likelihood from a fitted model.

Usage

## S4 method for signature 'kalmand_pomp'
cond.logLik(object, ...)

## S4 method for signature 'pfilterd_pomp'
cond.logLik(object, ...)

## S4 method for signature 'wpfilterd_pomp'
cond.loglLik(object, ...)

## S4 method for signature 'bsmcd_pomp'

cond.logLik(object, ...)
Arguments
object result of a filtering computation
ignored
Details

The conditional likelihood is defined to be the value of the density of
Y ()Y (t1), ..., Y (te-1)

evaluated at Y (¢x) = y;. Here, Y (¢) is the observable process, and y;; the data, at time t.

Thus the conditional log likelihood at time ¢y, is
Ce(0) = log fIY (t) = y[Y (1) = w7, -, Y (tr—1) = yi—al;

where f is the probability density above.
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Value

The numerical value of the conditional log likelihood. Note that some methods compute not the log
likelihood itself but instead a related quantity. To keep the code simple, the cond. logLik function
is nevertheless used to extract this quantity.

When object is of class ‘bsmcd_pomp’ (i.e., the result of a bsmc2 computation), cond. loglLik
returns the conditional log “evidence” (see bsmc2).

See Also

More on sequential Monte Carlo methods: bsmc2(), eff.sample.size(), filter.mean(), filter.traj(),
kalman,mif2(), pfilter (), pmemc(), pred.mean(), pred.var(), saved.states(),wpfilter()

Other extraction methods: coef (), covmat (), eff.sample.size(), filter.mean(), filter.traj(),
forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()

continue Continue an iterative calculation

Description

Continue an iterative computation where it left off.

Usage

continue(object, ...)

## S4 method for signature 'abcd_pomp'
continue(object, Nabc =1, ...)

## S4 method for signature 'pmcmcd_pomp'
continue(object, Nmcmc = 1, ...)

## S4 method for signature 'mif2d_pomp'

continue(object, Nmif =1, ...)
Arguments
object the result of an iterative pomp computation

additional arguments will be passed to the underlying method. This allows one
to modify parameters used in the original computations.

Nabc positive integer; number of additional ABC iterations to perform

Nmecme positive integer; number of additional PMCMC iterations to perform

Nmif positive integer; number of additional filtering iterations to perform
See Also

mif2 pmemc abc
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covariates Covariates

Description

Incorporating time-varying covariates using lookup tables.

Usage

## S4 method for signature 'numeric'
covariate_table(..., order = c("linear”, "constant”), times)

## S4 method for signature 'character'
covariate_table(..., order = c("linear"”, "constant”), times)

Arguments

numeric vectors or data frames containing time-varying covariates. It must be
possible to bind these into a data frame.

order the order of interpolation to be used. Options are “linear” (the default) and
“constant”. Setting order="1linear" treats the covariates as piecewise linear
functions of time; order="constant" treats them as right-continuous piecewise
constant functions.

times the times corresponding to the covariates. This may be given as a vector of (non-
decreasing, finite) numerical values. Alternatively, one can specify by name
which of the given variables is the time variable.

Details

If the ‘pomp’ object contains covariates (specified via the covar argument), then interpolated val-
ues of the covariates will be available to each of the model components whenever it is called. In
particular, variables with names as they appear in the covar covariate table will be available to any
C snippet. When a basic component is defined using an R function, that function will be called
with an extra argument, covars, which will be a named numeric vector containing the interpolated
values from the covariate table.

An exception to this rule is the prior (rprior and dprior): covariate-dependent priors are not
allowed. Nor are parameter transformations permitted to depend upon covariates.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, distributions, dmeasure specification, dprocess specification, emeasure
specification, parameter transformations, pomp-package, pomp, prior specification, rinit
specification, rmeasure specification, rprocess specification, skeleton specification,
transformations, userdata, vmeasure specification

More on interpolation: bsplines, lookup()
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covmat Estimate a covariance matrix from algorithm traces

Description

A helper function to extract a covariance matrix.

Usage

## S4 method for signature 'pmcmcd_pomp'

covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'pmcmclList'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'abcd_pomp'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'abclList'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'probed_pomp'
covmat(object, ...)
Arguments
object an object extending ‘pomp’
start the first iteration number to be used in estimating the covariance matrix. Setting
thin > 1 allows for a burn-in period.
thin factor by which the chains are to be thinned
expand the expansion factor
ignored
Value

When object is the result of a pmcmc or abc computation, covmat (object) gives the covariance
matrix of the chains. This can be useful, for example, in tuning the proposal distribution.

When object is a ‘probed_pomp’ object (i.e., the result of a probe computation), covmat (object)
returns the covariance matrix of the probes, as applied to simulated data.

See Also

MCMC proposals.

Other extraction methods: coef (), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(),
forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()
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Csnippet C snippets

Description

Accelerating computations through inline snippets of C code

Usage

Csnippet(text)

Arguments

text character; text written in the C language

Details

pomp provides a facility whereby users can define their model’s components using inline C code.
C snippets are written to a C file, by default located in the R session’s temporary directory, which is
then compiled (via R CMD SHLIB) into a dynamically loadable shared object file. This is then loaded
as needed.

Note to Windows and Mac users

By default, your R installation may not support R CMD SHLIB. The package website contains instal-
lation instructions that explain how to enable this powerful feature of R.

General rules for writing C snippets

In writing a C snippet one must bear in mind both the goal of the snippet, i.e., what computation it
is intended to perform, and the context in which it will be executed. These are explained here in the
form of general rules. Additional specific rules apply according to the function of the particular C
snippet. [llustrative examples are given in the tutorials on the package website.

1. C snippets must be valid C. They will embedded verbatim in a template file which will then be
compiled by a call to R CMD SHLIB. If the resulting file does not compile, an error message will
be generated. Compiler messages will be displayed, but no attempt will be made by pomp to
interpret them. Typically, compilation errors are due to either invalid C syntax or undeclared
variables.

2. State variables, parameters, observables, and covariates must be left undeclared within the
snippet. State variables and parameters are declared via the statenames or paramnames ar-
guments to pomp, respectively. Compiler errors that complain about undeclared state variables
or parameters are usually due to failure to declare these in statenames or paramnames, as
appropriate.

3. A C snippet can declare local variables. Be careful not to use names that match those of state
variables, observables, or parameters. One must never declare state variables, observables,
covariates, or parameters within a C snippet.
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4. Names of observables must match the names given given in the data. They must be referred
to in measurement model C snippets (rmeasure and dmeasure) by those names.

5. If the ‘pomp’ object contains a table of covariates (see above), then the variables in the co-
variate table will be available, by their names, in the context within which the C snippet is
executed.

6. Because the dot “.” has syntactic meaning in C, R variables with names containing dots (*.”) are
replaced in the C codes by variable names in which all dots have been replaced by underscores
).

7. The headers ‘R.h’ and ‘Rmath.h’, provided with R, will be included in the generated C file,
making all of the R C API available for use in the C snippet. This makes a great many useful
functions available, including all of R’s statistical distribution functions.

8. The header ‘pomp.h’, provided with pomp, will also be included, making all of the pomp C
API available for use in every C snippet.

9. Snippets of C code passed to the globals argument of pomp will be included at the head of
the generated C file. This can be used to declare global variables, define useful functions, and
include arbitrary header files.

10. INCLUDE INFORMATION ABOUT LINKING TO PRECOMPILED LIBRARIES!

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

Spy

More on implementing POMP models: accumulator variables, basic components, betabinomial,
covariates, distributions, dmeasure specification, dprocess specification, emeasure
specification, parameter transformations, pomp-package, pomp, prior specification, rinit
specification, rmeasure specification, rprocess specification, skeleton specification,
transformations, userdata, vmeasure specification

dacca Model of cholera transmission for historic Bengal.

Description

dacca constructs a ‘pomp’ object containing census and cholera mortality data from the Dacca dis-
trict of the former British province of Bengal over the years 1891 to 1940 together with a stochastic
differential equation transmission model. The model is that of King et al. (2008). The parameters
are the MLE for the SIRS model with seasonal reservoir.


https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#The-R-API
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#Distribution-functions
https://github.com/kingaa/pomp/blob/master/inst/include/pomp.h
https://kingaa.github.io/pomp/vignettes/C_API.html
https://kingaa.github.io/pomp/vignettes/C_API.html
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Usage

dacca(
gamma
eps =
rho =
delta
deltal =
clin =1,
alpha = 1,
beta_trend = -0.00498,
logbeta = c(0.747, 6.38, -3.44, 4.23, 3.33, 4.55),
logomega = log(c(0.184, 0.0786, ©0.0584, 0.00917, 0.000208, 0.0124)),

20.8,

9.1,
0.02,

0.06,

N o© = 1

sd_beta = 3.13,
tau = 0.23,
S_0 = 0.621,
1.0 = 0.378,
Y_0 =0,
R1_0 = 0.000843,
R2_0 = 0.000972,
R3_0 = 1.16e-07
)
Arguments
gamma recovery rate
eps rate of waning of immunity for severe infections
rho rate of waning of immunity for inapparent infections
delta baseline mortality rate
deltal cholera mortality rate
clin fraction of infections that lead to severe infection
alpha transmission function exponent
beta_trend slope of secular trend in transmission
logbeta seasonal transmission rates
logomega seasonal environmental reservoir parameters
sd_beta environmental noise intensity
tau measurement error s.d.
S_0 initial susceptible fraction
1.0 initial fraction of population infected
Y_0 initial fraction of the population in the Y class

R1_0, R2_0, R3_0
initial fractions in the respective R classes
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Details

Data are provided courtesy of Dr. Menno J. Bouma, London School of Tropical Medicine and
Hygiene.

Value

dacca returns a ‘pomp’ object containing the model, data, and MLE parameters, as estimated by
King et al. (2008).

References

A.A. King, E.L. Ionides, M. Pascual, and M.J. Bouma. Inapparent infections and cholera dynamics.
Nature 454, 877-880, 2008

See Also

More examples provided with pomp: SIR models, blowflies, childhood disease data, ebola,
gompertz(), ou2(), pomp examples, ricker(), rw2(), verhulst()

More data sets provided with pomp: blowflies, bsflu, childhood disease data, ebola, parus

Examples

## Not run:
po <- dacca()
plot(po)
## MLE:
coef (po)
plot(simulate(po))

## End(Not run)

design Design matrices for pomp calculations

Description

These functions are useful for generating designs for the exploration of parameter space.

profile_design generates a data-frame where each row can be used as the starting point for a
profile likelihood calculation.

runif_design generates a design based on random samples from a multivariate uniform distribu-
tion.

slice_design generates points along slices through a specified point.

sobol_design generates a Latin hypercube design based on the Sobol’ low-discrepancy sequence.
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Usage
profile_design(

lower,

upper,

nprof,

type = c("runif”, "sobol"),

stringsAsFactors = getOption("stringsAsFactors"”, FALSE)

runif_design(lower = numeric(@), upper = numeric(@), nseq)

slice_design(center, ...)

sobol_design(lower = numeric(@), upper = numeric(@), nseq)

Arguments
In profile_design, additional arguments specify the parameters over which to
profile and the values of these parameters. In slice_design, additional numeric
vector arguments specify the locations of points along the slices.
lower, upper named numeric vectors giving the lower and upper bounds of the ranges, respec-
tively.
nprof The number of points per profile point.
type the type of design to use. type="runif” uses runif_design. type="sobol"
uses sobol_design;
stringsAsFactors
should character vectors be converted to factors?
nseq Total number of points requested.
center center is anamed numeric vector specifying the point through which the slice(s)
is (are) to be taken.
Details

The Sobol’ sequence generation is performed using codes from the NLopt library by S. Johnson.

Value

profile_design returns a data frame with nprof points per profile point.

runif_design returns a data frame with nseq rows and one column for each variable named in
lower and upper.

slice_design returns a data frame with one row per point. The ‘slice’ variable indicates which
slice the point belongs to.

sobol_design returns a data frame with nseq rows and one column for each variable named in
lower and upper.
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Author(s)

Aaron A. King

References

S. Kucherenko and Y. Sytsko. Application of deterministic low-discrepancy sequences in global
optimization. Computational Optimization and Applications 30, 297-318, 2005. doi: 10.1007/
s1058900546151.

S.G. Johnson. The NLopt nonlinear-optimization package. https://github.com/stevengj/
nlopt/.

P. Bratley and B.L. Fox. Algorithm 659 Implementing Sobol’s quasirandom sequence generator.
ACM Transactions on Mathematical Software 14, 88100, 1988.

S. Joe and F.Y. Kuo. Remark on algorithm 659: Implementing Sobol” quasirandom sequence gen-
erator. ACM Transactions on Mathematical Software 29, 49-57, 2003.

Examples

## Sobol' low-discrepancy design
plot(sobol_design(lower=c(a=0,b=100),upper=c(b=200,a=1),nseq=100))

## Uniform random design
plot(runif_design(lower=c(a=0,b=100),upper=c(b=200,a=1),100))

## A one-parameter profile design:

x <- profile_design(p=1:10,lower=c(a=0,b=0),upper=c(a=1,b=5),nprof=20)
dim(x)

plot(x)

## A two-parameter profile design:

x <- profile_design(p=1:10,9=3:5, lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=200)
dim(x)

plot(x)

## A two-parameter profile design with random points:

x <- profile_design(p=1:10,q9=3:5, lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=200, type="runif")
dim(x)

plot(x)

## A single 11-point slice through the point c(A=3,B=8,C=0) along the B direction.
X <- slice_design(center=c(A=3,B=8,C=0),B=seq(0,10,by=1))

dim(x)

plot(x)

## Two slices through the same point along the A and C directions.

x <- slice_design(c(A=3,B=8,C=0),A=seq(0@,5,by=1),C=seq(@,5,1length=11))
dim(x)

plot(x)


https://doi.org/10.1007/s10589-005-4615-1
https://doi.org/10.1007/s10589-005-4615-1
https://github.com/stevengj/nlopt/
https://github.com/stevengj/nlopt/
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distributions Probability distributions

Description

pomp provides a number of probability distributions that have proved useful in modeling partially
observed Markov processes. These include the Euler-multinomial family of distributions and the
the Gamma white-noise processes.

Usage

reulermultinom(n = 1, size, rate, dt)
deulermultinom(x, size, rate, dt, log = FALSE)

rgammawn(n = 1, sigma, dt)

Arguments
n integer; number of random variates to generate.
size scalar integer; number of individuals at risk.
rate numeric vector of hazard rates.
dt numeric scalar; duration of Euler step.
X matrix or vector containing number of individuals that have succumbed to each
death process.
log logical; if TRUE, return logarithm(s) of probabilities.
sigma numeric scalar; intensity of the Gamma white noise process.
Details
If N individuals face constant hazards of death in k£ ways at rates 1,73, . .., 7k, then in an interval
of duration At, the number of individuals remaining alive and dying in each way is multinomially
distributed:
k
(N — Z An;, Any,...,Any) ~ Multinomial(N; po, p1, . - . , Dk),
i=1

where An; is the number of individuals dying in way i over the interval, the probability of remaining
alive is pg = exp(— Y_, r;/At), and the probability of dying in way j is

(1 —exp(— ZnAt

r;

szzl

In this case, we say that
(Any,...,Any) ~ Eulermultinom(N, r, At),

where r = (71, ..., 7). Draw m random samples from this distribution by doing
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dn <- reulermultinom(n=m,size=N,rate=r,dt=dt),

where r is the vector of rates. Evaluate the probability that x = (1, ..., 2y) are the numbers of
individuals who have died in each of the k ways over the interval At =dt, by doing

deulermultinom(x=x,size=N,rate=r,dt=dt).
Breto & Ionides (2011) discuss how an infinitesimally overdispersed death process can be con-
structed by compounding a multinomial process with a Gamma white noise process. The Euler
approximation of the resulting process can be obtained as follows. Let the increments of the equidis-
persed process be given by

reulermultinom(size=N,rate=r,dt=dt).
In this expression, replace the rate r with 7AW /At, where AW ~ Gamma(At/o?,0?) is the
increment of an integrated Gamma white noise process with intensity o. That is, AT/ has mean At
and variance o2 At. The resulting process is overdispersed and converges (as At goes to zero) to a
well-defined process. The following lines of code accomplish this:

dW <- rgammawn(sigma=sigma,dt=dt)

dn <- reulermultinom(size=N,rate=r,dt=dW)
or

dn <- reulermultinom(size=N,rate=r*dW/dt,dt=dt).

He et al. (2010) use such overdispersed death processes in modeling measles.

For all of the functions described here, access to the underlying C routines is available: see below.

Value

reulermultinom Returns a length(rate) by n matrix. Each column is a different random draw.
Each row contains the numbers of individuals that have succumbed to the corre-
sponding process.

deulermultinom Returns a vector (of length equal to the number of columns of x) containing
the probabilities of observing each column of x given the specified parameters
(size, rate, dt).

rgammawn Returns a vector of length n containing random increments of the integrated
Gamma white noise process with intensity sigma.

C API

An interface for C codes using these functions is provided by the package. Visit the package home-
page to view the pomp C API document.

Author(s)

Aaron A. King


https://kingaa.github.io/pomp/vignettes/C_API.html
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References

C. Bret6 and E. L. Ionides. Compound Markov counting processe and their applications to modeling
infinitesimally over-dispersed systems. Stochastic Processes and their Applications 121, 2571-
2591, 2011.

D. He, E.L. Ionides, & A.A. King. Plug-and-play inference for disease dynamics: measles in large
and small populations as a case study. Journal of the Royal Society Interface 7, 271-283, 2010.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, dmeasure specification, dprocess specification, emeasure specification,
parameter transformations, pomp-package, pomp, prior specification, rinit specification,

rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

Examples

print(dn <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=0.1))
deulermultinom(x=dn,size=100,rate=c(1,2,3),dt=0.1)

## an Euler-multinomial with overdispersed transitions:

dt <- 0.1

dW <- rgammawn(sigma=0.1,dt=dt)

print(dn <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=dW))

dmeasure dmeasure

Description

dmeasure evaluates the probability density of observations given states.

Usage
## S4 method for signature 'pomp'
dmeasure(object, y, x, times, params, ..., log = FALSE)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

y a matrix containing observations. The dimensions of y are nobs x ntimes,
where nobs is the number of observables and ntimes is the length of times.

X an array containing states of the unobserved process. The dimensions of x are
nvars X nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.
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times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

additional arguments are ignored.

log if TRUE, log probabilities are returned.

Value

dmeasure returns a matrix of dimensions nreps x ntimes. If d is the returned matrix, d[j,k] is
the likelihood (or log likelihood if log = TRUE) of the observation y[,k] at time times[k] given
the state x[, j, k1.

See Also

Specification of the measurement density evaluator: dmeasure specification

More on pomp workhorse functions: dprior(), dprocess(), emeasure(), flow(), partrans(),
pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses

dmeasure specification
The measurement model density

Description

Specification of the measurement model density function, dmeasure.

Details
The measurement model is the link between the data and the unobserved state process. It can be
specified either by using one or both of the rmeasure and dmeasure arguments.

Suppose you have a procedure to compute the probability density of an observation given the value
of the latent state variables. Then you can furnish

dmeasure = f

to pomp algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets. The goal of a dmeasure C snippet is to fill the variable 1ik
with the either the probability density or the log probability density, depending on the value of the
variable give_log.

In writing a dmeasure C snippet, observe that:
1. In addition to the states, parameters, covariates (if any), and observables, the variable t, con-

taining the time of the observation will be defined in the context in which the snippet is exe-
cuted.
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2. Moreover, the Boolean variable give_log will be defined.

3. The goal of a dmeasure C snippet is to set the value of the 1ik variable to the likelihood of
the data given the state, if give_log==0. If give_log==1, lik should be set to the log
likelihood.

If dmeasure is to be provided instead as an R function, this is accomplished by supplying
dmeasure = f

to pomp, where f is a function. The arguments of f should be chosen from among the observables,
state variables, parameters, covariates, and time. It must also have the arguments . . ., and log. It
can take additional arguments via the userdata facility. f must return a single numeric value, the
probability density (or log probability density if log = TRUE) of y given x at time t.

Important note

It is a common error to fail to account for both log = TRUE and log = FALSE when writing the
dmeasure C snippet or function.

Default behavior

If dmeasure is left unspecified, calls to dmeasure will return missing values (NA).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

dmeasure

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dprocess specification, emeasure specification,
parameter transformations, pomp-package, pomp, prior specification, rinit specification,
rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

Examples

## We start with the pre-built Ricker example:
ricker() -> po

## To change the measurement model density, dmeasure,
## we use the 'dmeasure' argument in any 'pomp'

## elementary or estimation function.

## Here, we pass the dmeasure specification to 'pfilter'
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## as an R function.

po %>%
pfilter(
dmeasure=function (y, N, phi, ..., log) {
dpois(y,lambda=phixN, log=1og)
h
Np=100
) —> pf

## We can also pass it as a C snippet:

po %>%
pfilter(
dmeasure=Csnippet(”1lik = dpois(y,phi*N,give_log);"),
paramnames="phi",
statenames="N",
Np=100
) —> pf

dprior dprior

Description

Evaluates the prior probability density.

Usage
## S4 method for signature 'pomp'
dprior(object, params, ..., log = FALSE)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

additional arguments are ignored.

log if TRUE, log probabilities are returned.

Value

The required density (or log density), as a numeric vector.
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See Also

Specification of the prior density evaluator: prior specification

More on pomp workhorse functions: dmeasure(), dprocess(), emeasure(), flow(), partrans(),
pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses

More on Bayesian methods: approximate Bayesian computation, bsmc2(), pmecmc(), prior
specification, rprior()

dprocess dprocess

Description

Evaluates the probability density of a sequence of consecutive state transitions.

Usage
## S4 method for signature 'pomp'
dprocess(object, x, times, params, ..., log = FALSE)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

X an array containing states of the unobserved process. The dimensions of x are
nvars x nrep X ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

additional arguments are ignored.

log if TRUE, log probabilities are returned.

Value

dprocess returns a matrix of dimensions nrep x ntimes-1. If d is the returned matrix, d[j,k] is
the likelihood (or the log likelihood if 1og=TRUE) of the transition from state x[, j,k-1] at time
times[k-1] to state x[, j, k] at time times[k].

See Also

Specification of the process-model density evaluator: dprocess specification

More on pomp workhorse functions: dmeasure(), dprior(), emeasure(), flow(), partrans(),
pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
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dprocess specification
The latent state process density

Description

Specification of the latent state process density function, dprocess.

Details

Suppose you have a procedure that allows you to compute the probability density of an arbitrary
transition from state x; at time ¢; to state zo at time t5 > t; under the assumption that the state
remains unchanged between ¢; and ¢5. Then you can furnish

dprocess = f

to pomp, where f is a C snippet or R function that implements your procedure. Specifically, f should
compute the log probability density.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets. The goal of a dprocess C snippet is to fill the variable loglik
with the log probability density. In the context of such a C snippet, the parameters, and covariates
will be defined, as will the times t_1 and t_2. The state variables at time t_1 will have their usual
name (see statenames) with a “_1" appended. Likewise, the state variables at time t_2 will have a
“_2” appended.

If f is given as an R function, it should take as arguments any or all of the state variables, param-
eter, covariates, and time. The state-variable and time arguments will have suffices “_1 and “_2”
appended. Thus for example, if var is a state variable, when f is called, var_1 will value of state
variable var at time t_1, var_2 will have the value of var at time t_2. f should return the log like-
lihood of a transition from x1 at time t1 to x2 at time t2, assuming that no intervening transitions
have occurred.

To see examples, consult the demos and the tutorials on the package website.

Note

It is not typically necessary (or even feasible) to define dprocess. In fact, no current pomp in-
ference algorithm makes use of dprocess. This functionality is provided only to support future
algorithm development.

Default behavior

By default, dprocess returns missing values (NA).


https://kingaa.github.io/pomp/

ebola 45

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

dprocess

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, emeasure specification,
parameter transformations, pomp-package, pomp, prior specification, rinit specification,
rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

ebola Ebola outbreak, West Africa, 2014-2016

Description

Data and models for the 2014—2016 outbreak of Ebola virus disease in West Africa.

Usage
ebolaModel(
country = c("GIN", "LBR", "SLE"),
data = NULL,
timestep = 1/8,
nstageE = 3L,
RO = 1.4,
rho = 0.2,
cfr = 0.7,
k =0,
index_case = 10,
incubation_period = 11.4,
infectious_period = 7
)
Arguments
country ISO symbol for the country (GIN=Guinea, LBR=Liberia, SLE=Sierra Leone).
data if NULL, the situation report data (WHO Ebola Response Team 2014) for the

appropriate country or region will be used. Providing a dataset here will override
this behavior.

timestep duration (in days) of Euler timestep for the simulations.
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nstagek integer; number of incubation stages.

RO basic reproduction ratio

rho case reporting efficiency

cfr case fatality rate

k dispersion parameter (negative binomial size parameter)
index_case number of cases on day 0 (2014-04-01)

incubation_period, infectious_period
mean duration (in days) of the incubation and infectious periods.

Details

The data include monthly case counts and death reports derived from WHO situation reports, as
reported by the U.S. CDC. The models are described in King et al. (2015).

The data-cleaning script is included in the R source code file ‘ebola.R’.

Model structure

The default incubation period is supposed to be Gamma distributed with shape parameter nstageE
and mean 11.4 days and the case-fatality ratio (‘cfr’) is taken to be 0.7 (cf. WHO Ebola Response
Team 2014). The discrete-time formula is used to calculate the corresponding alpha (cf. He et al.
2010).

The observation model is a hierarchical model for cases and deaths:
(R, Di|Cy) = p(Re|Cy)p(D¢|Cy, Ry).

Here, p(R;|C}) is negative binomial with mean pC} and dispersion parameter 1/k; p(D;|Cy, R;) is
binomial with size R, and probability equal to the case fatality rate cfr.

References

A.A. King, M. Domenech de Celles, FM.G. Magpantay, and P. Rohani. Avoidable errors in the
modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proceedings of the
Royal Society of London, Series B 282, 20150347, 2015.

WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9 months of the epidemic
and forward projections. New England Journal of Medicine 371, 1481-1495, 2014.

D. He, E.L. Ionides, & A.A. King. Plug-and-play inference for disease dynamics: measles in large
and small populations as a case study. Journal of the Royal Society Interface 7, 271-283, 2010.

See Also

More data sets provided with pomp: blowflies, bsflu, childhood disease data, dacca(),
parus

More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(),
gompertz(), ou2(), pomp examples, ricker(), rw2(), verhulst()
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Examples

data(ebolaWA2014)

library(ggplot2)
library(tidyr)

ebolaWA2014 %>%
gather(variable,count,cases,deaths) %>%
ggplot(aes(x=date, y=count, group=country,color=country))+
geom_line()+
facet_grid(variable~.,scales="free_y")+
theme_bw()+
theme(axis.text=element_text(angle=-90))

ebolaWA2014 %>%
gather(variable,count,cases,deaths) %>%
ggplot(aes(x=date,y=count,group=variable,color=variable))+
geom_line()+
facet_grid(country~.,scales="free_y")+
theme_bw()+
theme(axis.text=element_text(angle=-90))

plot(ebolaModel (country="SLE"))
plot(ebolaModel (country="LBR"))
plot(ebolaModel (country="GIN"))
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eff.sample.size Effective sample size

Description

Estimate the effective sample size of a Monte Carlo computation.

Usage

## S4 method for signature 'bsmcd_pomp'
eff.sample.size(object, ...)

## S4 method for signature 'pfilterd_pomp'
eff.sample.size(object, ...)

## S4 method for signature 'wpfilterd_pomp'

eff.sample.size(object, ...)
Arguments
object result of a filtering computation

ignored
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Details

Effective sample size is computed as

(=)

where w;; is the normalized weight of particle ¢ at time .

See Also

More on sequential Monte Carlo methods: bsmc2(), cond. loglLik(), filter.mean(), filter.traj(Q),
kalman,mif2(), pfilter(), pmemc(), pred.mean(), pred.var(), saved.states(),wpfilter()

Other extraction methods: coef (), cond.loglLik(), covmat(), filter.mean(), filter.traj(),
forecast(), loglLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()

elementary algorithms Elementary computations on POMP models.

Description

In pomp, elementary algorithms perform POMP model operations. These operations do not them-
selves estimate parameters, though they may be instrumental in inference methods.

Details
There are six elementary algorithms in pomp:

e simulate which simulates from the joint distribution of latent and observed variables,
» pfilter, which performs a simple particle filter operation,
» wpfilter, which performs a weighted particle filter operation,

* probe, which computes a suite of user-specified summary statistics to actual and simulated
data,

* spect, which performs a power-spectral density function computation on actual and simulated
data,

* trajectory, which iterates or integrates the deterministic skeleton (according to whether the
latter is a (discrete-time) map or a (continuous-time) vectorfield.

Help pages detailing each elementary algorithm component are provided.

See Also

basic model components, workhorse functions, estimation algorithms.

More on pomp elementary algorithms: kalman, pfilter (), pomp-package, probe(), simulate(),
spect(), trajectory(), wpfilter()
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emeasure emeasure

Description

Return the expected value of the observed variables, given values of the latent states and the param-

eters.
Usage
## S4 method for signature 'pomp'
emeasure(object, x, times, params, ...)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

X an array containing states of the unobserved process. The dimensions of x are
nvars x nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

additional arguments are ignored.

Value

emeasure returns a rank-3 array of dimensions nobs x nrep x ntimes, where nobs is the number
of observed variables.

See Also

Specification of the measurement-model expectation: emeasure specification

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), flow(), partrans(),
pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
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emeasure specification
The expectation of the measurement model

Description

Specification of the measurement-model conditional expectation, emeasure.

Details

The measurement model is the link between the data and the unobserved state process. Some
algorithms require the conditional expectation of the measurement model, given the latent state and
parameters. This is supplied using the emeasure argument.

Suppose you have a procedure to compute this conditional expectation, given the value of the latent
state variables. Then you can furnish

emeasure = f

to pomp algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets.

In writing an emeasure C snippet, bear in mind that:
1. The goal of such a snippet is to fill variables named E_y with the conditional expectations of
observables y. Accordingly, there should be one assignment of E_y for each observable y.
2. In addition to the states, parameters, and covariates (if any), the variable t, containing the time
of the observation, will be defined in the context in which the snippet is executed.
The demos and the tutorials on the package website give examples.

It is also possible, though less efficient, to specify emeasure using an R function. In this case,
specify the measurement model expectation by furnishing

emeasure = f

to pomp, where f is an R function. The arguments of f should be chosen from among the state
variables, parameters, covariates, and time. It must also have the argument . ... f must return a
named numeric vector of length equal to the number of observable variables. The names should
match those of the observable variables.

Default behavior

The default emeasure is undefined. It will yield missing values (NA).
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Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

emeasure

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
parameter transformations, pomp-package, pomp, prior specification, rinit specification,
rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

estimation algorithms Parameter estimation algorithms for POMP models.

Description
pomp currently implements the following algorithms for estimating model parameters:

* iterated filtering (IF2)

e particle Markov chain Monte Carlo (PMCMC)
* approximate Bayesian computation (ABC)

* probe-matching via synthetic likelihood

* nonlinear forecasting

* power-spectrum matching

» Liu-West Bayesian sequential Monte Carlo

* Ensemble and ensemble-adjusted Kalman filters

Details

Help pages detailing each estimation algorithm are provided.

See Also

basic model components, workhorse functions, elementary algorithms.

More on pomp estimation algorithms: approximate Bayesian computation, bsmc2(), mif2(),
nonlinear forecasting, pmcmc(), pomp-package, probe matching, spectrummatching
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filter.mean Filtering mean

Description

The mean of the filtering distribution

Usage

## S4 method for signature 'kalmand_pomp'
filter.mean(object, vars, ...)

## S4 method for signature 'pfilterd_pomp'

filter.mean(object, vars, ...)
Arguments
object result of a filtering computation
vars optional character; names of variables
ignored
Details

The filtering distribution is that of

XY (1) = yis- -, Y(te) = Y
where X (t), Y (t) are the latent state and observable processes, respectively, and y; is the data,
at time ty,.

The filtering mean is therefore the expectation of this distribution

EX ()Y () = y1,- - Y (tk) = yil-

See Also

More on sequential Monte Carlo methods: bsmc2(), cond.loglLik(), eff.sample.size(), filter.traj(),
kalman,mif2(), pfilter (), pmemc(), pred.mean(), pred.var(), saved.states(),wpfilter()

Other extraction methods: coef (), cond.loglLik(), covmat(), eff.sample.size(), filter.traj(),
forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()
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filter.traj Filtering trajectories

Description

Drawing from the smoothing distribution

Usage

## S4 method for signature 'pfilterd_pomp
filter.traj(object, vars, ...)

## S4 method for signature 'pfilterList'
filter.traj(object, vars, ...)

## S4 method for signature 'pmcmcd_pomp'
filter.traj(object, vars, ...)

## S4 method for signature 'pmcmclList'

filter.traj(object, vars, ...)
Arguments
object result of a filtering computation
vars optional character; names of variables
ignored
Details

The smoothing distribution is the distribution of
X (@)Y () =v1,- - Y(tn) = yp,
where X (1) is the latent state process and Y (¢;,) is the observable process at time tj, and n is the

number of observations.

To draw samples from this distribution, one can run a number of independent particle filter (pfilter)
operations, sampling the full trajectory of one randomly-drawn particle from each one. One should
view these as weighted samples from the smoothing distribution, where the weights are the likeli-
hoods returned by each of the pfilter computations.

One accomplishes this by setting filter.traj = TRUE in each pfilter computation and extracting
the trajectory using the filter.traj command.

In particle MCMC (pmcmc), the tracking of an individual trajectory is performed automatically.
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See Also

More on sequential Monte Carlo methods: bsmc2(), cond.loglLik(), eff.sample.size(), filter.mean(),
kalman,mif2(), pfilter(), pmemc(), pred.mean(), pred.var(), saved.states(),wpfilter()

Other extraction methods: coef (), cond.logLik(), covmat (), eff.sample.size(), filter.mean(),
forecast(), loglLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()

flow Flow of a deterministic model

Description

Compute the flow generated by a deterministic vectorfield or map.

Usage

## S4 method for signature 'pomp'

flow(object, x0, t@, times, params, ..., verbose = getOption("verbose", FALSE))
Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

X0 an array with dimensions nvar x nrep giving the initial conditions of the trajec-
tories to be computed.

to the time at which the initial conditions are assumed to hold. By default, this is
the zero-time (see timezero).

times a numeric vector (length ntimes) containing times at which the itineraries are
desired. These must be in non-decreasing order with times[1]>t@. By default,
this is the full set of observation times (see time).

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

Additional arguments are passed to the ODE integrator (if the skeleton is a vec-
torfield) and are ignored if it is a map. See ode for a description of the additional
arguments accepted by the ODE integrator. By default, this is the parameter vec-
tor stored in object (see coef).

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In the case of a discrete-time system (map), flow iterates the map to yield trajectories of the system.
In the case of a continuous-time system (vectorfield), flow uses the numerical solvers in deSolve
to integrate the vectorfield starting from given initial conditions.
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Value

flow returns an array of dimensions nvar x nrep x ntimes. If x is the returned matrix, x[i, j, k]
is the i-th component of the state vector at time times[k] given parameters params[, jJ.

See Also

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), partrans(),
pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses

More on methods for deterministic process models: skeleton specification, skeleton(), trajectory
matching, trajectory()

forecast Forecast mean

Description

Mean of the one-step-ahead forecasting distribution.

Usage

forecast(object, ...)

## S4 method for signature 'kalmand_pomp'
forecast(object, vars, ...)

## S4 method for signature 'pfilterd_pomp'

forecast(object, vars, ...)
Arguments
object result of a filtering computation
ignored
vars optional character; names of variables
See Also

Other extraction methods: coef (), cond.loglLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), loglLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()
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gompertz Gompertz model with log-normal observations.

Description

gompertz() constructs a ‘pomp’ object encoding a stochastic Gompertz population model with
log-normal measurement error.

Usage
gompertz(
K=1,
r=2=0.1,
sigma = 0.1,
tau = 0.1,
X_0 =1,
times = 1:100,
t0 = @
)
Arguments
K carrying capacity
r growth rate
sigma process noise intensity
tau measurement error s.d.
X_0 value of the latent state variable X at the zero time
times observation times
t0 Zero time
Details

The state process is
1-SyS
Xt+1 =K Xt €t,

where S = e~" and the ¢ are i.i.d. lognormal random deviates with variance 0. The observed
variables Y; are distributed as
Y; ~ lognormal(log Xy, 7).

Parameters include the per-capita growth rate r, the carrying capacity K, the process noise s.d. o,
the measurement error s.d. 7, and the initial condition Xy. The ‘pomp’ object includes parameter
transformations that log-transform the parameters for estimation purposes.

Value

A ‘pomp’ object with simulated data.
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See Also

More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(),
ebola, ou2(), pomp examples, ricker(), rw2(), verhulst()

Examples

plot(gompertz())
plot(gompertz(K=2,r=0.01))

hitch Hitching C snippets and R functions to pomp_fun objects

Description

The algorithms in pomp are formulated using R functions that access the basic model components
(rprocess, dprocess, rmeasure, dmeasure, etc.). For short, we refer to these elementary functions
as “workhorses”. In implementing a model, the user specifies basic model components using func-
tions, procedures in dynamically-linked libraries, or C snippets. Each component is then packaged
into a ‘pomp_fun’ objects, which gives a uniform interface. The construction of ‘pomp_fun’ objects
is handled by the hitch function, which conceptually “hitches” the workhorses to the user-defined
procedures.

Usage
hitch(

templates,

obsnames,

statenames,

paramnames,

covarnames,

PACKAGE,

globals,

cfile,

cdir = getOption("pomp_cdir”, NULL),
shlib.args,

compile = TRUE,

verbose = getOption("verbose", FALSE)

Arguments

named arguments representing the user procedures to be hitched. These can be
functions, character strings naming routines in external, dynamically-linked li-
braries, C snippets, or NULL. The first three are converted by hitch to ‘pomp_fun’
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templates

hitch

objects which perform the indicated computations. NULL arguments are trans-
lated to default ‘pomp_fun’ objects. If any of these procedures are already
‘pomp_fun’ objects, they are returned unchanged.

named list of templates. Each workhorse must have a corresponding template.
See pomp: : :workhorse_templates for a list.

obsnames, statenames, paramnames, covarnames

PACKAGE

globals

cfile

cdir

shlib.args

compile

verbose

Value

character vectors specifying the names of observable variables, latent state vari-
ables, parameters, and covariates, respectively. These are only needed if one or
more of the horses are furnished as C snippets.

optional character; the name (without extension) of the external, dynamically
loaded library in which any native routines are to be found. This is only useful
if one or more of the model components has been specified using a precompiled
dynamically loaded library; it is not used for any component specified using C
snippets. PACKAGE can name at most one library.

optional character; arbitrary C code that will be hard-coded into the shared-
object library created when C snippets are provided. If no C snippets are used,
globals has no effect.

optional character variable. cfile gives the name of the file (in directory cdir)
into which C snippet codes will be written. By default, a random filename is
used. If the chosen filename would result in over-writing an existing file, an
error is generated.

optional character variable. cdir specifies the name of the directory within
which C snippet code will be compiled. By default, this is in a temporary
directory specific to the R session. One can also set this directory using the
pomp_cdir global option.

optional character variables. Command-line arguments to the R CMD SHLIB call
that compiles the C snippets.

logical; if FALSE, compilation of the C snippets will be postponed until they are
needed.

logical. Setting verbose=TRUE will cause additional information to be dis-
played.

hitch returns a named list of length two. The element named “funs” is itself a named list of
‘pomp_fun’ objects, each of which corresponds to one of the horses passed in. The element named
“lib” contains information on the shared-object library created using the C snippets (if any were
passed to hitch). If no C snippets were passed to hitch, 1ib is NULL. Otherwise, it is a length-3
named list with the following elements:

name The name of the library created.

dir The directory in which the library was created. If this is NULL, the library was created in the
session’s temporary directory.

src A character string with the full contents of the C snippet file.
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Author(s)

Aaron A. King

See Also

pomp, spy
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kalman Ensemble Kalman filters

Description

The ensemble Kalman filter and ensemble adjustment Kalman filter.

Usage

## S4 method for signature 'data.frame'
enkf'(

data,

Np,

params,

rinit,

rprocess,

emeasure,

vmeasure,

verbose = getOption("verbose"”, FALSE)
)

## S4 method for signature 'pomp'
enkf(data, Np, ..., verbose = getOption("verbose"”, FALSE))

## S4 method for signature 'kalmand_pomp'
enkf(data, Np, ..., verbose = getOption("verbose"”, FALSE))

## S4 method for signature 'data.frame'
eakf (

data,

Np,

params,

rinit,

rprocess,

emeasure,

vmeasure,

L

verbose = getOption("verbose", FALSE)
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kalman

## S4 method for signature 'pomp'

eakf(data, Np,

Arguments

data

Np
params

rinit

rprocess

emeasure

vmeasure

verbose

Value

., verbose = getOption("verbose"”, FALSE))

either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

integer; the number of particles to use, i.e., the size of the ensemble.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

the expectation of the measured variables, conditional on the latent state. This
can be specified as a C snippet, an R function, or the name of a pre-compiled
native routine available in a dynamically loaded library. Setting emeasure=NULL
removes the emeasure component. For more information, see emeasure specifi-
cation.

the covariance of the measured variables, conditional on the latent state. This
can be specified as a C snippet, an R function, or the name of a pre-compiled
native routine available in a dynamically loaded library. Setting vmeasure=NULL
removes the vimeasure component. For more information, see vmeasure specifi-
cation.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

logical; if TRUE, diagnostic messages will be printed to the console.

An object of class ‘kalmand_pomp’.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
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handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)
Aaron A. King

References

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte
Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans 99, 10143—
10162, 1994.

J.L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather
Review 129, 2884-2903, 2001.

G. Evensen. Data assimilation: the ensemble Kalman filter. Springer-Verlag, 2009.

See Also

kalmanFilter

More on sequential Monte Carlo methods: bsmc2(), cond.loglLik(), eff.sample.size(), filter.mean(),

filter.traj(), mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(),
wpfilter()

More on pomp elementary algorithms: elementary algorithms, pfilter(), pomp-package,
probe(), simulate(), spect(), trajectory(), wpfilter()

kalmanFilter Kalman filter

Description

The basic Kalman filter for multivariate, linear, Gaussian processes.

Usage

kalmanFilter(object, X0, A, Q, C, R, tol = 1e-06)

Arguments
object a pomp object containing data;
X0 length-m vector containing initial state. This is assumed known without uncer-

tainty.
m x m latent state-process transition matrix. E[X (¢ + 1)| X (¢)] = A.X ().
m x m latent state-process covariance matrix. Var[X (t + 1)|X (¢)] = @

C n x m link matrix. E[Y (¢)|X (¢)] = C. X (¢).
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R n X n observation process covariance matrix. Var[Y (t)| X (t)] = R

tol numeric; the tolerance to be used in computing matrix pseudoinverses via singular-
value decomposition. Singular values smaller than tol are set to zero.

Details
If the latent state is X, the observed variable is Y, X (t) € R™, Y (t) € R", and

X (t) MultivariateNormal(AX (t — 1), Q)

Y (t) Multivariate Normal(CX (t), R)
Then the Kalman filter computes the exact likelihood of Y given A, C, @, and R.

Value

A named list containing the following elements:

object the ‘pomp’ object

A, Q,C, R asin the call

filter.mean E[X(t)|y*(1),...,y*(t)]
pred.mean E[X (t)|y*(1),...,y*(t —1)]
forecast E[Y (t)|y*(1),...,y*(t —1)]
cond.dogLik f(y*(t)|y*(1),...,y*(t —1))
logLik f(y*(1), .., y"(T))

See Also
enkf, eakf

Examples

## Not run:
library(dplyr)
gompertz() -> po

po %>%

as.data.frame() %>%

mutate(
logY=1log(Y)

) %%

select(time,logY) %>%

pomp(times="time",t0=0) %>%

kalmanFilter(
X0=c(logXx=0),
A=matrix(exp(-0.1),1,1),
Q=matrix(0.01,1,1),
C=matrix(1,1,1),



logLik

R=matrix(0.01,1,1)

) > kf

po %>%

pfilter(Np=1000) -> pf

kf$loglik

logLik(pf) + sum(log(obs(pf)))

## End(Not run)
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loglLik

Log likelihood

Description

Extract the estimated log likelihood (or related quantity) from a fitted model.

Usage
loglLik(object,

## S4 method for
loglLik(object,

## S4 method for
loglLik(object)

## S4 method for
loglLik(object)

## S4 method for
loglLik(object)

## S4 method for
loglLik(object)

## S4 method for
logLik(object)

## S4 method for
loglLik(object)

## S4 method for
loglLik(object)

## S4 method for

.2)

signature

.)

signature

signature

signature

signature

signature

signature

signature

signature

'listie’

'pfilterd_pomp'

[

'wpfilterd_pomp

'probed_pomp'

"kalmand_pomp'

'pmcmed_pomp'!

"bsmcd_pomp'

'objfun'

"spect_match_objfun’
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loglLik(object)

## S4 method for signature 'nlf_objfun'

logLik(object, ...)
Arguments
object fitted model object
ignored
Value

numerical value of the log likelihood. Note that some methods compute not the log likelihood itself
but instead a related quantity. To keep the code simple, the loglL ik function is nevertheless used to
extract this quantity.

When object is of ‘pfilterd_pomp’ class (i.e., the result of a wpfilter computation), loglLik
retrieves the estimated log likelihood.

When object is of ‘wpfilterd_pomp’ class (i.e., the result of a wpfilter computation), loglLik
retrieves the estimated log likelihood.

When object is of ‘probed_pomp’ class (i.e., the result of a probe computation), logLik retrieves
the “synthetic likelihood”.

When object is of ‘kalmand_pomp’ class (i.e., the result of an eakf or enkf computation), loglL ik
retrieves the estimated log likelihood.

When object is of ‘pmcmcd_pomp’ class (i.e., the result of a pmcmc computation), loglL ik retrieves
the estimated log likelihood as of the last particle filter operation.

When object is of ‘bsmcd_pomp’ class (i.e., the result of a bsmc2 computation), logLik retrieves
the “log evidence”.

When object is of ‘spect_match_objfun’ class (i.e., an objective function constructed by spect_objfun),
loglL ik retrieves minus the spectrum mismatch.

When object is an NLF objective function, i.e., the result of a call to n1f_objfun, loglLik retrieves
the “quasi log likelihood”.

See Also

Other extraction methods: coef (), cond.logLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()
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logmeanexp The log-mean-exp trick

Description

logmeanexp computes
1
x
log N Zei ,
n=1

avoiding over- and under-flow in doing so. It can optionally return an estimate of the standard error
in this quantity.

Usage

logmeanexp(x, se = FALSE)

Arguments

X numeric

se logical; give approximate standard error?
Details

When se = TRUE, logmeanexp uses a jackknife estimate of the variance in log(z).

Value

log(mean(exp(x))) computed so as to avoid over- or underflow. If se = FALSE, the approximate
standard error is returned as well.

Author(s)

Aaron A. King

Examples

## Not run:
## an estimate of the log likelihood:
po <- ricker()
11 <- replicate(n=5,loglLik(pfilter(po,Np=1000)))
logmeanexp(11)
## with standard error:
logmeanexp(1ll, se=TRUE)

## End(Not run)
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lookup Lookup table

Description

Interpolate values from a lookup table

Usage
lookup(table, t)

Arguments
table a ‘covartable’ object created by a call to covariate_table
t numeric vector; times at which interpolated values of the covariates in table
are required.
Details

A warning will be generated if extrapolation is performed.

Value

A numeric vector or matrix of the interpolated values.

See Also

More on interpolation: bsplines, covariates

mcap Monte Carlo adjusted profile

Description

Given a collection of points maximizing the likelihood over a range of fixed values of a focal
parameter, this function constructs a profile likelihood confidence interval accommodating both
Monte Carlo error in the profile and statistical uncertainty present in the likelihood function.

Usage

mcap(logLik, parameter, level = 0.95, span = 0.75, Ngrid = 1000)
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Arguments
loglLik numeric; a vector of profile log likelihood evaluations.
parameter numeric; the corresponding values of the focal parameter.
level numeric; the confidence level required.
span numeric; the loess smoothing parameter.
Ngrid integer; the number of points to evaluate the smoothed profile.
Value

mcap returns a list including the’ loess-smoothed profile, a quadratic approximation, and the con-
structed confidence interval.

Author(s)
Edward L. Ionides

References

E. L. Ionides, C. Breto, J. Park, R. A. Smith, and A. A. King. Monte Carlo profile confidence
intervals for dynamic systems. Journal of the Royal Society, Interface 14, 20170126, 2017.

mif2 Iterated filtering: maximum likelihood by iterated, perturbed Bayes
maps

Description

An iterated filtering algorithm for estimating the parameters of a partially-observed Markov process.
Running mif2 causes the algorithm to perform a specified number of particle-filter iterations. At
each iteration, the particle filter is performed on a perturbed version of the model, in which the
parameters to be estimated are subjected to random perturbations at each observation. This extra
variability effectively smooths the likelihood surface and combats particle depletion by introducing
diversity into particle population. As the iterations progress, the magnitude of the perturbations is
diminished according to a user-specified cooling schedule. The algorithm is presented and justified
in Ionides et al. (2015).

Usage
## S4 method for signature 'data.frame'
mif2(
data,
Nmif = 1,
rw.sd,

cooling.type = c("geometric”, "hyperbolic"),
cooling.fraction.50,
Np,
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params,
rinit,

rprocess,
dmeasure,
partrans,

L

verbose = getOption("”verbose"”, FALSE)

)
## S4 method for signature 'pomp'
mif2(

data,

Nmif = 1,

rw.sd,

)

cooling.type = c("geometric”", "hyperbolic"),
cooling.fraction.50,
Np,

L

verbose = getOption("verbose”, FALSE)

## S4 method for signature 'pfilterd_pomp'

mif2(data, Nmif = 1, Np,

## S4 method for signature 'mif2d_pomp'
mif2(

data,

Nmif,

rw.sd,

cooling.type,
cooling.fraction.50,

L

verbose = getOption("verbose"”, FALSE)

., verbose = getOption("verbose”, FALSE))

mif2

)
Arguments
data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.
Nmif The number of filtering iterations to perform.
rw.sd specification of the magnitude of the random-walk perturbations that will be

applied to some or all model parameters. Parameters that are to be estimated
should have positive perturbations specified here. The specification is given
using the rw. sd function, which creates a list of unevaluated expressions. The
latter are evaluated in a context where the model time variable is defined (as

time). The expression ivp(s) can be used in this context as shorthand for

ifelse(time==time[1],s,0).
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Likewise, ivp(s, lag) is equivalent to
ifelse(time==time[lag],s,0).

See below for some examples.

The perturbations that are applied are normally distributed with the specified
s.d. If parameter transformations have been supplied, then the perturbations are
applied on the transformed (estimation) scale.

cooling.type, cooling.fraction.50

Np

params

rinit

rprocess

dmeasure

partrans

specifications for the cooling schedule, i.e., the manner and rate with which the
intensity of the parameter perturbations is reduced with successive filtering iter-
ations. cooling.type specifies the nature of the cooling schedule. See below
(under “Specifying the perturbations”) for more detail.

the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object, t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np (k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(@) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[11], and so on, while when T=1length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more in-
formation, see parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
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When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Value

Upon successful completion, mif2 returns an object of class ‘mif2d_pomp’.

Number of particles

If Np is anything other than a constant, the user must take care that the number of particles re-
quested at the end of the time series matches that requested at the beginning. In particular, if
T=length(time(object)), then one should have Np[1]==Np[T+1] when Np is furnished as an
integer vector and Np(@)==Np(T) when Np is furnished as a function.

Methods

The following methods are available for such an object:

continue picks up where mif2 leaves off and performs more filtering iterations.

loglLik returns the so-called mif log likelihood which is the log likelihood of the perturbed model,
not of the focal model itself. To obtain the latter, it is advisable to run several pfilter opera-
tions on the result of a mif2 computatation.

coef extracts the point estimate

eff.sample.size extracts the effective sample size of the final filtering iteration

Various other methods can be applied, including all the methods applicable to a pfilterd_pomp
object and all other pomp estimation algorithms and diagnostic methods.

Specifying the perturbations

The rw. sd function simply returns a list containing its arguments as unevaluated expressions. These
are then evaluated in a context containing the model time variable. This allows for easy specifica-
tion of the structure of the perturbations that are to be applied. For example,

rw.sd(a=0.05, b=ifelse(time==time[1],0.2,0),
c=ivp(0.2), d=ifelse(time==time[13],0.2,0),
e=ivp(0.2,lag=13), f=ifelse(time<23,0.02,0))

results in perturbations of parameter a with s.d. 0.05 at every time step, while parameters b and
¢ both get perturbations of s.d. 0.2 only just before the first observation. Parameters d and e, by
contrast, get perturbations of s.d. 0.2 only just before the thirteenth observation. Finally, parameter
f gets a random perturbation of size 0.02 before every observation falling before ¢ = 23.

On the m-th IF2 iteration, prior to time-point n, the d-th parameter is given a random increment
normally distributed with mean 0 and standard deviation ¢, 04, Where c is the cooling schedule
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and o is specified using rw. sd, as described above. Let IV be the length of the time series and
« =cooling.fraction.50. Then, when cooling. type="geometric”, we have

n—14+(m—1)N

Cmn = 50N

When cooling. type="hyperbolic”, we have

s+1
s+n+(m—1)N’

Cm,n =

where s satisfies
s+1

—— =«

s+ 50N
Thus, in either case, the perturbations at the end of 50 IF2 iterations are a fraction « smaller than
they are at first.

Re-running IF2 iterations

To re-run a sequence of IF2 iterations, one can use the mif2 method on a ‘mif2d_pomp’ object.
By default, the same parameters used for the original IF2 run are re-used (except for verbose, the
default of which is shown above). If one does specify additional arguments, these will override the
defaults.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)

Aaron A. King, Edward L. Ionides, Dao Nguyen

References

E.L. Tonides, D. Nguyen, Y. Atchadé, S. Stoev, and A.A. King. Inference for dynamic and la-
tent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of
Sciences 112, 719-724, 2015.

See Also

More on full-information (i.e., likelihood-based) methods: bsmc2(), pfilter (), pmcmc(),wpfilter()

More on sequential Monte Carlo methods: bsmc2(), cond.loglik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman, pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(),
wpfilter()

More on pomp estimation algorithms: approximate Bayesian computation, bsmc2(), estimation
algorithms, nonlinear forecasting, pmcmc(), pomp-package, probe matching, spectrum matching

More on maximization-based estimation methods: nonlinear forecasting, probe matching,
spectrummatching, trajectory matching
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nonlinear forecasting Nonlinear forecasting

Description

Parameter estimation by maximum simulated quasi-likelihood.

Usage

## S4 method for signature 'data.frame'

nlf_objfun(

)

data,

est = character(90),
lags,

nrbf = 4,

ti,

tf,

seed = NULL,
transform.data = identity,
period = NA,

tensor = TRUE,
fail.value = NA_real_,
params,

rinit,

rprocess,

rmeasure,

L

verbose = getOption("verbose")

## S4 method for signature 'pomp'
nlf_objfun(

data,

est = character(90),
lags,

nrbf = 4,

ti,

tf,

seed = NULL,
transform.data = identity,
period = NA,

tensor = TRUE,
fail.value = NA,

L

verbose = getOption("verbose”)
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## S4 method for signature 'nlf_objfun'

nlf_objfun(
data,
est,
lags,
nrbf,
ti,
tf,
seed = NULL,
period,
tensor,

transform.data,

fail.value,

°

verbose = getOption("verbose"”, FALSE)

Arguments

data

est

lags

nrbf
ti, tf

seed

transform.data

period

tensor

either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

character vector; the names of parameters to be estimated.

A vector specifying the lags to use when constructing the nonlinear autoregres-
sive prediction model. The first lag is the prediction interval.

integer scalar; the number of radial basis functions to be used at each lag.

required numeric values. NLF works by generating simulating long time se-
ries from the model. The simulated time series will be from ti to tf, with the
same sampling frequency as the data. ti should be chosen large enough so that
transient dynamics have died away. tf should be chosen large enough so that
sufficiently many data points are available to estimate the nonlinear forecast-
ing model well. An error will be generated unless the data-to-parameter ratio
exceeds 10 and a warning will be given if the ratio is smaller than 30.

integer. When fitting, it is often best to fix the seed of the random-number
generator (RNG). This is accomplished by setting seed to an integer. By default,
seed = NULL, which does not alter the RNG state.

optional function. If specified, forecasting is performed using data and model
simulations transformed by this function. By default, transform.data is the
identity function, i.e., no transformation is performed. The main purpose of
transform.data is to achieve approximately multivariate normal forecasting
errors. If the data are univariate, transform.data should take a scalar and
return a scalar. If the data are multivariate, transform.data should assume a
vector input and return a vector of the same length.

numeric; period=NA means the model is nonseasonal. period > 0 is the period
of seasonal forcing. period <= @ is equivalent to period = NA.

logical; if FALSE, the fitted model is a generalized additive model with time
mod period as one of the predictors, i.e., a gam with time-varying intercept. If
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TRUE, the fitted model is a gam with lagged state variables as predictors and
time-periodic coefficients, constructed using tensor products of basis functions
of state variables with basis functions of time.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values
of the objective function. It should be a large number (i.e., bigger than any
legitimate values the objective function is likely to take).

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

Nonlinear forecasting (NLF) is an ‘indirect inference’ method. The NLF approximation to the
log likelihood of the data series is computed by simulating data from a model, fitting a nonlinear
autoregressive model to the simulated time series, and quantifying the ability of the resulting fitted
model to predict the data time series. The nonlinear autoregressive model is implemented as a
generalized additive model (GAM), conditional on lagged values, for each observation variable.
The errors are assumed multivariate normal.

The NLF objective function constructed by n1f_objfun simulates long time series (nasymp is the
number of observations in the simulated times series), perhaps after allowing for a transient period
(ntransient steps). It then fits the GAM for the chosen lags to the simulated time series. Finally,
it computes the quasi-likelihood of the data under the fitted GAM.

NLF assumes that the observation frequency (equivalently the time between successive observa-
tions) is uniform.

Value

nlf_objfun constructs a stateful objective function for NLF estimation. Specfically, n1f_objfun
returns an object of class ‘nlf_objfun’, which is a function suitable for use in an optim-like opti-
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mizer. In particular, this function takes a single numeric-vector argument that is assumed to contain
the parameters named in est, in that order. When called, it will return the negative log quasilikeli-
hood. It is a stateful function: Each time it is called, it will remember the values of the parameters
and its estimate of the log quasilikelihood.

Periodically-forced systems (seasonality)

Unlike other pomp estimation methods, NLF cannot accommodate general time-dependence in
the model via explicit time-dependence or dependence on time-varying covariates. However, NLF
can accommodate periodic forcing. It does this by including forcing phase as a predictor in the
nonlinear autoregressive model. To accomplish this, one sets period to the period of the forcing (a
positive numerical value). In this case, if tensor = FALSE, the effect is to add a periodic intercept
in the autoregressive model. If tensor = TRUE, by contrast, the fitted model includes time-periodic
coefficients, constructed using tensor products of basis functions of observables with basis functions
of time.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Important Note

Since pomp cannot guarantee that the final call an optimizer makes to the function is a call at
the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.
Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization
routine, which will ensure that these parameters are stored.

Author(s)

Stephen P. Ellner, Bruce E. Kendall, Aaron A. King

References

S.P. Ellner, B.A. Bailey, G.V. Bobashev, A.R. Gallant, B.T. Grenfell, and D.W. Nychka. Noise and
nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population
modeling. American Naturalist 151, 425-440, 1998.

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet,
and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches. Ecology 80, 1789-1805, 1999.

B.E. Kendall, S.P. Ellner, E. McCauley, S.N. Wood, C.J. Briggs, W.W. Murdoch, and P. Turchin.
Population cycles in the pine looper moth (Bupalus piniarius): dynamical tests of mechanistic
hypotheses. Ecological Monographs 75 259-276, 2005.
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See Also

optim subplex nloptr

More on pomp estimation algorithms: approximate Bayesian computation, bsmc2(), estimation
algorithms, mif2(), pmcmc(), pomp-package, probe matching, spectrum matching

More on methods based on summary statistics: approximate Bayesian computation, basic probes,
probe matching, probe(), spectrum matching, spect()

More on maximization-based estimation methods: mif2(), probe matching, spectrum matching,
trajectory matching

Examples

ricker() %>%
nlf_objfun(est=c("r","sigma","N_0"),lags=c(4,6),
partrans=parameter_trans(log=c("r","sigma","N_0")),
paramnames=c("r","sigma","”"N_0"),
ti=100, tf=2000, seed=426094906L) -> m1

library(subplex)
subplex(par=log(c(20,0.5,5)),fn=m1,control=1list(reltol=1e-4)) -> out

m1 (out$par)
coef(m1)
plot(simulate(m1))

obs obs

Description

Extract the data array from a ‘pomp’ object.

Usage

## S4 method for signature 'pomp'
obs(object, vars, ...)

## S4 method for signature 'listie'

obs(object, vars, ...)

Arguments
object an object of class ‘pomp’, or of a class extending ‘pomp’
vars names of variables to retrieve

ignored
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See Also

Other extraction methods: coef (), cond.loglLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), logLik, pred.mean(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()

ou2 Two-dimensional discrete-time Ornstein-Uhlenbeck process

Description

ou2() constructs a ‘pomp’ object encoding a bivariate discrete-time Ornstein-Uhlenbeck process
with noisy observations.

Usage

ou2(
alpha_1
alpha_2
alpha_3 =
alpha_4
sigma_1
sigma_2
sigma_3
tau = 1,
x1_0 = -3,
X2_0 = 4,
times = 1:100,
to = 0@
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Arguments

alpha_1, alpha_2, alpha_3, alpha_4
entries of the alpha matrix, in column-major order. That is, alpha_2 is in the
lower-left position.

sigma_1, sigma_2, sigma_3
entries of the lower-triangular sigma matrix. sigma_2 is the entry in the lower-
left position.

tau measurement error s.d.
x1_0, x2_0 latent variable values at time t@
times vector of observation times

t0 the zero time
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Details
If the state process is X (t) = (1 (¢), z2(t)), then

X(t+1)=aX(t)+ oe(t),

where « and o are 2x2 matrices, o is lower-triangular, and €(t) is standard bivariate normal. The
observation process is Y (t) = (y1(t), y2(t)), where y;(t) ~ normal(z,(t), 7).

Value

A ‘pomp’ object with simulated data.

See Also

More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(),
ebola, gompertz (), pomp examples, ricker(), rw2(), verhulst()

Examples

po <- ou2()

plot(po)

coef (po)

x <- simulate(po)

plot(x)

pf <- pfilter(po,Np=1000)
loglLik(pf)

parameter transformations
Parameter transformations

Description

Equipping models with parameter transformations to ease searches in constrained parameter spaces.
Usage
parameter_trans(toEst, fromEst, ...)

## S4 method for signature '“NULL®,*NULL*'
parameter_trans(toEst, fromEst, ...)

## S4 method for signature 'pomp_fun,pomp_fun'
parameter_trans(toEst, fromkEst, ...)

## S4 method for signature 'Csnippet,Csnippet’
parameter_trans(toEst, fromEst, ..., log, logit, barycentric)
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## S4 method for signature 'character,character'’
parameter_trans(toEst, fromEst, ...)

## S4 method for signature 'function,function'
parameter_trans(toEst, fromEst, ...)

Arguments

toEst, fromEst procedures that perform transformation of model parameters to and from the
estimation scale, respectively. These can be furnished using C snippets, R func-
tions, or via procedures in an external, dynamically loaded library.

ignored.
log names of parameters to be log transformed.
logit names of parameters to be logit transformed.
barycentric names of parameters to be collectively transformed according to the log barycen-

tric transformation. Important note: variables to be log-barycentrically trans-
formed must be adjacent in the parameter vector.

Details

When parameter transformations are desired, they can be integrated into the ‘pomp’ object via
the partrans arguments using the parameter_trans function. As with the other basic model
components, these should ordinarily be specified using C snippets. When doing so, note that:

1. The parameter transformation mapping a parameter vector from the scale used by the model
codes to another scale, and the inverse transformation, are specified via a call to

parameter_trans(toEst,fromEst)

2. The goal of these snippets is the transformation of the parameters from the natural scale to the
estimation scale, and vice-versa. If p is the name of a variable on the natural scale, its value on
the estimation scale is T_p. Thus the toEst snippet computes T_p given p whilst the fromEst
snippet computes p given T_p.

3. Time-, state-, and covariate-dependent transformations are not allowed. Therefore, neither the
time, nor any state variables, nor any of the covariates will be available in the context within
which a parameter transformation snippet is executed.

These transformations can also be specified using R functions with arguments chosen from among
the parameters. Such an R function must also have the argument . . .’. In this case, toEst should
transform parameters from the scale that the basic components use internally to the scale used in
estimation. fromEst should be the inverse of toEst.

Note that it is the user’s responsibility to make sure that the transformations are mutually inverse. If
obj is the constructed ‘pomp’ object, and coef (obj) is non-empty, a simple check of this property
is

x <- coef(obj, transform = TRUE)
obj1 <- obj
coef(obj1, transform = TRUE) <- x
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identical (coef(obj), coef(obj1))
identical (coef(obj1, transform=TRUE), x)

One can use the log and logit arguments of parameter_trans to name variables that should be
log-transformed or logit-transformed, respectively. The barycentric argument can name sets of
parameters that should be log-barycentric transformed.

Note that using the log, logit, or barycentric arguments causes C snippets to be generated.
Therefore, you must make sure that variables named in any of these arguments are also mentioned
in paramnames at the same time.

The logit transform is defined by

logit(#) = log 0

1-0
The log barycentric transformation of variables 61, .. ., 6, is given by
0 0,
logbarycentric(6y, . ..,0,) = <log ﬁ, ..., log Z;@) .

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

partrans

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, pomp-package, pomp, prior specification, rinit specification,
rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

parmat Create a matrix of parameters

Description

parmat is a utility that makes a vector of parameters suitable for use in pomp functions.
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Usage
parmat(params, ...)

## S4 method for signature 'numeric'
parmat(params, nrep = 1, ..., names = NULL)

## S4 method for signature 'array'
parmat(params, nrep = 1, ..., names = NULL)

## S4 method for signature 'data.frame'

parmat(params, nrep = 1, ...)
Arguments
params named numeric vector or matrix of parameters.

additional arguments, currently ignored.

nrep number of replicates (columns) desired.
names optional character; column names.
Value

parmat returns a matrix consisting of nrep copies of params.

Author(s)

Aaron A. King

Examples

## generate a bifurcation diagram for the Ricker map
p <- parmat(coef(ricker()),nrep=500)
p["r",] <- exp(seq(from=1.5,to=4,length=500))
trajectory(
ricker(),
times=seq(from=1000, to=2000,by=1),
params=p,
format="array"
) -=> x
matplot(pL"r",1,x["N",,],pch=".",6col="black',
xlab=expression(log(r)),ylab="N",log="'x")
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partrans partrans

Description

Performs parameter transformations.

Usage

## S4 method for signature 'pomp'
partrans(object, params, dir = c("fromEst”, "toEst"), ...)

## S4 method for signature 'objfun'

partrans(object, ...)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

dir the direction of the transformation to perform.

additional arguments are ignored.

Value

If dir=fromEst, the parameters in params are assumed to be on the estimation scale and are trans-
formed onto the natural scale. If dir=toEst, they are transformed onto the estimation scale. In
both cases, the parameters are returned as a named numeric vector or an array with rownames, as
appropriate.

See Also

Specification of parameter transformations: parameter_trans

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
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parus Parus major population dynamics

Description

Size of a population of great tits (Parus major) from Wytham Wood, near Oxford.

Details

Provenance: Global Population Dynamics Database dataset #10163. (NERC Centre for Population
Biology, Imperial College (2010) The Global Population Dynamics Database Version 2. https:
//www. imperial.ac.uk/cpb/gpdd2/). Original source: McCleer and Perrins (1991).

References

R. McCleery and C. Perrins. Effects of predation on the numbers of Great Tits, Parus major. In:
C.M. Perrins, J.-D. Lebreton, and G.J.M. Hirons (eds.), Bird Population Studies, pp. 129-147,
Oxford. Univ. Press, 1991.

See Also

More data sets provided with pomp: blowflies, bsflu, childhood disease data, dacca(),
ebola

Examples

## Not run:
parus %>%
pfilter(Np=1000,times="year",t0=1960,
params=c(K=190,r=2.7,sigma=0.2,theta=0.05,N.0=148),
rprocess=discrete_time(
function (r, K, sigma, N, ...) {
e <- rnorm(n=1,mean=0,sd=sigma)
c(N = exp(log(N)+r*(1-N/K)+e))

3,
delta.t=1
)’
rmeasure=function (N, theta, ...) {
c(pop=rnbinom(n=1,size=1/theta,mu=N+1e-10))
}’
dmeasure=function (pop, N, theta, ..., log) {
dnbinom(x=pop,mu=N+1e-10@,size=1/theta, log=log)
}’

partrans=parameter_trans(log=c("sigma"”,"theta","N_0","r","K")),
paramnames=c("sigma"”, "theta”,"”"N_0","r","K")
) > pf

pf %>% loglLik()


https://www.imperial.ac.uk/cpb/gpdd2/
https://www.imperial.ac.uk/cpb/gpdd2/
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pf %>% simulate() %>% plot()

## End(Not run)

pfilter

pfilter Farticle filter

Description

A plain vanilla sequential Monte Carlo (particle filter) algorithm. Resampling is performed at each
observation.

Usage

## S4 method for signature 'data.frame'
pfilter(

)

data,

Np,

params,

rinit,

rprocess,

dmeasure,

pred.mean = FALSE,
pred.var = FALSE,
filter.mean = FALSE,
filter.traj = FALSE,
save.states FALSE,

L

verbose = getOption("verbose”, FALSE)

## S4 method for signature 'pomp'
pfilter(

)

data,

Np,

pred.mean = FALSE,
pred.var = FALSE,
filter.mean = FALSE,
filter.traj = FALSE,
save.states = FALSE,

L

verbose = getOption("verbose"”, FALSE)

## S4 method for signature 'pfilterd_pomp'

pfilter(data, Np, ..., verbose = getOption("verbose”, FALSE))
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## S4 method for signature 'objfun'

pfilter(data,

Arguments

data

Np

params

rinit

rprocess

dmeasure

pred.mean

pred.var

filter.mean

filter.traj

save.states

.2

either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object, t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(@) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[11], and so on, while when T=1length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

logical; if TRUE, the prediction means are calculated for the state variables and
parameters.

logical; if TRUE, the prediction variances are calculated for the state variables
and parameters.

logical; if TRUE, the filtering means are calculated for the state variables and
parameters.

logical; if TRUE, a filtered trajectory is returned for the state variables and pa-
rameters. See filter.traj for more information.

logical. If save.states=TRUE, the state-vector for each particle at each time is
saved.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
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When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Value

An object of class ‘pfilterd_pomp’, which extends class ‘pomp’. Information can be extracted from
this object using the methods documented below.

Methods

loglLik the estimated log likelihood

cond.loglLik the estimated conditional log likelihood

eff.sample.size the (time-dependent) estimated effective sample size

pred.mean, pred.var the mean and variance of the approximate prediction distribution
filter.mean the mean of the filtering distribution

filter.traj retrieve one particle trajectory. Useful for building up the smoothing distribution.
saved.states retrieve list of saved states.

as.data.frame coerce to a data frame

plot diagnostic plots

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)

Aaron A. King

References

M.S. Arulampalam, S. Maskell, N. Gordon, & T. Clapp. A tutorial on particle filters for online
nonlinear, non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50, 174—188,
2002.

A. Bhadra and E.L. Ionides. Adaptive particle allocation in iterated sequential Monte Carlo via
approximating meta-models. Statistics and Computing 26, 393-407, 2016.
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See Also

More on pomp elementary algorithms: elementary algorithms, kalman, pomp-package, probe(),
simulate(), spect(), trajectory(), wpfilter()

More on sequential Monte Carlo methods: bsmc2(), cond.loglLik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman,mif2(), pmcmc(), pred.mean(), pred.var(), saved.states(),wpfilter()

More on full-information (i.e., likelihood-based) methods: bsmc2(), mif2(), pmcmc (), wpfilter()

Examples

pf <- pfilter(gompertz(),Np=1000) ## use 1000 particles

plot(pf)

logLik(pf)

cond.loglLik(pf) ## conditional log-likelihoods
eff.sample.size(pf) ## effective sample size
loglLik(pfilter(pf)) ## run it again with 1000 particles

## run it again with 2000 particles
pf <- pfilter(pf,Np=2000,filter.mean=TRUE,filter.traj=TRUE,save.states=TRUE)

fm <- filter.mean(pf) ## extract the filtering means
ft <- filter.traj(pf) ## one draw from the smoothing distribution
ss <- saved.states(pf) ## the latent-state portion of each particle

as(pf,"data.frame") %>% head()

plot pomp plotting facilities

Description

Diagnostic plots.

Usage

## S4 method for signature 'pomp_plottable'
plot(
X,
variables,
panel = lines,
nc = NULL,
yax.flip = FALSE,
mar = c(0@, 5.1, 0, if (yax.flip) 5.1 else 2.1),
oma = c(6, 9, 5, 9),
axes = TRUE,
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## S4 method
plot(x, ...,

## S4 method
plot(x, ...,

## S4 method
plot(x, ...,

## S4 method
plot(x, vy,

## S4 method

plot(
X,
max.plots.p
plot.data =
quantiles =
quantile.st
data.styles

)

## S4 method
plot(x, pars,

## S4 method
plot(x, v,

## S4 method
plot(x, vy,

Arguments

X
variables
panel

nc

yax.flip

mar, oma

axes

pars
scatter

plot

for signature 'Pmcmc'
pars)

for signature 'Abc'
pars, scatter = FALSE)

for signature 'Mif2'
pars, transform = FALSE)

for signature 'probed_pomp

.2

for signature 'spectd_pomp

er.page = 4,

TRUE,

c(0.025, 0.25, 0.5, 0.75, 0.975),
yles = list(lwd = 1, 1ty = 1, col = "gray70"),
= list(lwd = 2, 1ty = 2, col = "black")

for signature 'bsmcd_pomp'
thin, ...)

for signature 'probe_match_objfun'

L)
for signature 'spect_match_objfun'
L)

the object to plot

optional character; names of variables to be displayed

function of prototype panel(x,col,bg,pch, type, .. .) which gives the action
to be carried out in each panel of the display.

the number of columns to use. Defaults to 1 for up to 4 series, otherwise to 2.

logical; if TRUE, the y-axis (ticks and numbering) should flip from side 2 (left)
to 4 (right) from series to series.

the par mar and oma settings. Modify with care!
logical; indicates if x- and y- axes should be drawn
ignored or passed to low-level plotting functions
names of parameters.

logical; if FALSE, traces of the parameters named in pars will be plotted against
ABC iteration number. If TRUE, the traces will be displayed or as a scatterplot.
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transform logical; should the parameter be transformed onto the estimation scale?
y ignored
max.plots.per.page
positive integer; maximum number of plots on a page
plot.data logical; should the data spectrum be included?
quantiles numeric; quantiles to display
quantile.styles
list; plot styles to use for quantiles
data.styles list; plot styles to use for data

thin integer; when the number of samples is very large, it can be helpful to plot a
random subsample: thin specifies the size of this subsample.

pmcme The particle Markov chain Metropolis-Hastings algorithm

Description

The Particle MCMC algorithm for estimating the parameters of a partially-observed Markov pro-
cess. Running pmeme causes a particle random-walk Metropolis-Hastings Markov chain algorithm
to run for the specified number of proposals.

Usage

## S4 method for signature 'data.frame'
pmcmc (

data,

Nmcme = 1,

proposal,

Np,

params,

rinit,

rprocess,

dmeasure,

dprior,

verbose = getOption("verbose"”, FALSE)
)

## S4 method for signature 'pomp'
pmcmc (

data,

Nmcme = 1,

proposal,

Np,
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verbose = getOption("verbose”, FALSE)

)

## S4 method for signature 'pfilterd_pomp'

pmcme (

data,

Nmcme

proposal,

Np,

verbose = getOption("verbose"”, FALSE)

)

## S4 method for signature 'pmcmcd_pomp'

pmcmc(data, Nmcmc, proposal, ..., verbose = getOption("verbose”, FALSE))

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

Nmcmc The number of PMCMC iterations to perform.

proposal optional function that draws from the proposal distribution. Currently, the pro-
posal distribution must be symmetric for proper inference: it is the user’s respon-
sibility to ensure that it is. Several functions that construct appropriate proposal
function are provided: see MCMC proposals for more information.

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length
length(time(object, t@=TRUE))
or as a function taking a positive integer argument. In the latter case, Np (k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(@) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=1ength(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.
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dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

dprior optional; prior distribution density evaluator, specified either as a C snippet,
an R function, or the name of a pre-compiled native routine available in a dy-
namically loaded library. For more information, see prior specification. Setting
dprior=NULL resets the prior distribution to its default, which is a flat improper
prior.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Value

An object of class ‘pmcmed_pomp’.

Methods

The following can be applied to the output of a pmcmc operation:

pmcmc repeats the calculation, beginning with the last state

continue continues the pmcme calculation

plot produces a series of diagnostic plots

filter.traj extracts a random sample from the smoothing distribution

traces produces an mecmc object, to which the various coda convergence diagnostics can be applied

Re-running PMCMC Iterations

To re-run a sequence of PMCMC iterations, one can use the pmcmc method on a ‘pmcmce’ object.
By default, the same parameters used for the original PMCMC run are re-used (except for verbose,
the default of which is shown above). If one does specify additional arguments, these will override
the defaults.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.
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Author(s)
Edward L. Tonides, Aaron A. King, Sebastian Funk

References

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal
of the Royal Statistical Society, Series B 72, 269-342, 2010.

See Also
More on pomp estimation algorithms: approximate Bayesian computation, bsmc2(), estimation
algorithms, mif2(), nonlinear forecasting, pomp-package, probe matching, spectrum matching

More on sequential Monte Carlo methods: bsmc2(), cond.loglik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman,mif2(), pfilter(), pred.mean(), pred.var(), saved.states(),wpfilter()

More on full-information (i.e., likelihood-based) methods: bsmc2(), mif2(), pfilter(),wpfilter()
More on Markov chain Monte Carlo methods: approximate Bayesian computation, proposals

More on Bayesian methods: approximate Bayesian computation, bsmc2(), dprior(), prior
specification, rprior()

pomp Constructor of the basic pomp object

Description

This function constructs a ‘pomp’ object, encoding a partially-observed Markov process (POMP)
model together with a uni- or multi-variate time series. As such, it is central to all the package’s
functionality. One implements the POMP model by specifying some or all of its basic components.
These comprise:

rinit, which samples from the distribution of the state process at the zero-time;

rprocess, the simulator of the unobserved Markov state process;

dprocess, the evaluator of the probability density function for transitions of the unobserved Markov
state process;

rmeasure, the simulator of the observed process, conditional on the unobserved state;
dmeasure, the evaluator of the measurement model probability density function;
emeasure, the expectation of the measurements, conditional on the latent state;
vmeasure, the covariance matrix of the measurements, conditional on the latent state;
rprior, which samples from a prior probability distribution on the parameters;
dprior, which evaluates the prior probability density function;

skeleton, which computes the deterministic skeleton of the unobserved state process;
partrans, which performs parameter transformations.

The basic structure and its rationale are described in the Journal of Statistical Software paper, an
updated version of which is to be found on the package website.


https://kingaa.github.io/pomp/

pomp

Usage

po

mp (
data,
times,
to,

.
rinit,
rprocess,
dprocess,
rmeasure,
dmeasure,
emeasure,
vmeasure,
skeleton,
rprior,
dprior,
partrans,
covar,
params,
accumvars,
obsnames,
statenames,
paramnames,
covarnames,
PACKAGE,
globals,
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cdir = getOption("pomp_cdir”, NULL),

cfile,
shlib.args,

compile = TRUE,

verbose =

Arguments

da

ti

to

ta

mes

getOption("verbose", FALSE)

either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

the sequence of observation times. times must indicate the column of obser-
vation times by name or index. The time vector must be numeric and non-
decreasing.

The zero-time, i.e., the time of the initial state. This must be no later than the
time of the first observation, i.e., t@ <= times[1].

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
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rinit

rprocess

dprocess

rmeasure

dmeasure

emeasure

vmeasure

skeleton

rprior

dprior

pomp

lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

optional; specification of the probability density evaluation function of the un-
observed state process. Setting dprocess=NULL removes the latent-state density
evaluator. For more information, see dprocess specification.

simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.

evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

the expectation of the measured variables, conditional on the latent state. This
can be specified as a C snippet, an R function, or the name of a pre-compiled
native routine available in a dynamically loaded library. Setting emeasure=NULL
removes the emeasure component. For more information, see emeasure specifi-
cation.

the covariance of the measured variables, conditional on the latent state. This
can be specified as a C snippet, an R function, or the name of a pre-compiled
native routine available in a dynamically loaded library. Setting vmeasure=NULL
removes the vmeasure component. For more information, see vmeasure specifi-
cation.

optional; the deterministic skeleton of the unobserved state process. Depend-
ing on whether the model operates in continuous or discrete time, this is either a
vectorfield or a map. Accordingly, this is supplied using either the vectorfield
or map fnctions. For more information, see skeleton specification. Setting
skeleton=NULL removes the deterministic skeleton.

optional; prior distribution sampler, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see prior specification. Setting rprior=NULL
removes the prior distribution sampler.

optional; prior distribution density evaluator, specified either as a C snippet,
an R function, or the name of a pre-compiled native routine available in a dy-
namically loaded library. For more information, see prior specification. Setting
dprior=NULL resets the prior distribution to its default, which is a flat improper
prior.
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partrans

covar

params

accumvars

obsnames

statenames

paramnames

covarnames

PACKAGE

globals

cdir

cfile

shlib.args
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optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more in-
formation, see parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

optional covariate table, constructed using covariate_table.

If a covariate table is supplied, then the value of each of the covariates is inter-
polated as needed. The resulting interpolated values are made available to the
appropriate basic components. See the documentation for covariate_table
for details.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

optional character vector; contains the names of accumulator variables. See
accumulators for a definition and discussion of accumulator variables.

optional character vector; names of the observables. It is not usually necessary
to specify obsnames since, by default, these are read from the names of the data
variables.

optional character vector; names of the latent state variables. It is typically only
necessary to supply statenames when C snippets are in use.

optional character vector; names of model parameters. It is typically only nec-
essary to supply paramnames when C snippets are in use.

optional character vector; names of the covariates. It is not usually necessary
to specify covarnames since, by default, these are read from the names of the
covariates.

optional character; the name (without extension) of the external, dynamically
loaded library in which any native routines are to be found. This is only useful
if one or more of the model components has been specified using a precompiled
dynamically loaded library; it is not used for any component specified using C
snippets. PACKAGE can name at most one library.

optional character; arbitrary C code that will be hard-coded into the shared-
object library created when C snippets are provided. If no C snippets are used,
globals has no effect.

optional character variable. cdir specifies the name of the directory within
which C snippet code will be compiled. By default, this is in a temporary
directory specific to the R session. One can also set this directory using the
pomp_cdir global option.

optional character variable. cfile gives the name of the file (in directory cdir)
into which C snippet codes will be written. By default, a random filename is
used. If the chosen filename would result in over-writing an existing file, an
error is generated.

optional character variables. Command-line arguments to the R CMD SHLIB call
that compiles the C snippets.
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compile logical; if FALSE, compilation of the C snippets will be postponed until they are
needed.
verbose logical; if TRUE, diagnostic messages will be printed to the console.
Details

Each basic component is supplied via an argument of the same name. These can be given in the call
to pomp, or to many of the package’s other functions. In any case, the effect is the same: to add,
remove, or modify the basic component.

Each basic component can be furnished using C snippets, R functions, or pre-compiled native rou-
tine available in user-provided dynamically loaded libraries.

Value

The pomp constructor function returns an object, call it P, of class ‘pomp’. P contains, in addition to
the data, any elements of the model that have been specified as arguments to the pomp constructor
function. One can add or modify elements of P by means of further calls to pomp, using P as the
first argument in such calls. One can pass P to most of the pomp package methods via their data
argument.

Note

It is not typically necessary (or indeed feasible) to define all of the basic components for any given
purpose. However, each pomp algorithm makes use of only a subset of these components. When
an algorithm requires a basic component that has not been furnished, an error is generated to let you
know that you must provide the needed component to use the algorithm.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)

Aaron A. King

References

A. A. King, D. Nguyen, and E. L. Ionides. Statistical inference for partially observed Markov
processes via the package pomp. Journal of Statistical Software 69(12), 1-43, 2016. An updated
version of this paper is available on the package website.


https://kingaa.github.io/pomp/docs.html
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See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp-package, prior specification,

rinit specification, rmeasure specification, rprocess specification, skeleton specification,
transformations, userdata, vmeasure specification

pomp examples pomp_examples

Description

Pre-built POMP examples

Details

pomp includes a number of pre-built examples of pomp objects and data that can be analyzed using
pomp methods. These include:
blowflies Data from Nicholson’s experiments with sheep blowfly populations

blowflies1() A pomp object with some of the blowfly data together with a discrete delay equation
model.

blowflies2() A variant of blowfliesl.
bsflu Data from an outbreak of influenza in a boarding school.

dacca() Fifty years of census and cholera mortality data, together with a stochastic differential
equation transmission model (King et al. 2008).

ebolaModel () Data from the 2014 West Africa outbreak of Ebola virus disease, together with
simple transmission models (King et al. 2015).

gompertz() The Gompertz population dynamics model, with simulated data.
LondonYorke Data on incidence of several childhood diseases (London and Yorke 1973)
ewmeas Measles incidence data from England and Wales

ewcitmeas Measles incidence data from 7 English cities

ou2() A 2-D Ornstein-Uhlenbeck process with simulated data

parus Population censuses of a Parus major population in Wytham Wood, England.
ricker The Ricker population dynamics model, with simulated data

rw2 A 2-D Brownian motion model, with simulated data.

sir() A simple continuous-time Markov chain SIR model, coded using Euler-multinomial steps,
with simulated data.

sir2() A simple continuous-time Markov chain SIR model, coded using Gillespie’s algorithm,
with simulated data.

verhulst() The Verhulst-Pearl (logistic) model, a continuous-time model of population dynamics,
with simulated data

See also the tutorials on the package website for more examples.


https://kingaa.github.io/pomp/
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References
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See Also

More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(),
ebola, gompertz(), ou2(), ricker(), rw2(), verhulst()

pred.mean Prediction mean

Description

The mean of the prediction distribution

Usage

## S4 method for signature 'kalmand_pomp'
pred.mean(object, vars, ...)

## S4 method for signature 'pfilterd_pomp'

pred.mean(object, vars, ...)
Arguments
object result of a filtering computation
vars optional character; names of variables
ignored
Details

The prediction distribution is that of

XY () =1, Y(th—1) = Yp—1,
where X (t5), Y (tx) are the latent state and observable processes, respectively, and y;, is the data,
at time ;.

The prediction mean is therefore the expectation of this distribution

EX ()Y (t1) = 415, Y (1) = Yl
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See Also

More on sequential Monte Carlo methods: bsmc2(), cond.loglik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman,mif2(), pfilter(), pmcmc(), pred.var(), saved.states(),wpfilter()

Other extraction methods: coef (), cond.loglLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(), pred.var(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()

pred.var Prediction variance

Description

The variance of the prediction distribution

Usage
## S4 method for signature 'pfilterd_pomp'
pred.var(object, vars, ...)
Arguments
object result of a filtering computation
vars optional character; names of variables
ignored
Details

The prediction distribution is that of

X(tk)|Y(t1) = yik’ s 7Y(t7€—1) = y;:—la
where X (t5,), Y (tx) are the latent state and observable processes, respectively, and y;, is the data,
at time ;.

The prediction variance is therefore the variance of this distribution
Var[X ()Y (1) = 1, -+ Y (1) = ypal-

See Also

More on sequential Monte Carlo methods: bsmc2(), cond.loglLik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman,mif2(), pfilter(), pmcmc(), pred.mean(), saved.states(),wpfilter()

Other extraction methods: coef (), cond.logLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(), pred.mean(), saved.states(), spy(), states(),
summary (), timezero(), time(), traces()
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prior specification prior distribution

Description

Specification of prior distributions.

Details

A prior distribution on parameters is specified by means of the rprior and/or dprior arguments to
pomp. As with the other basic model components, it is preferable to specify these using C snippets.
In writing a C snippet for the prior sampler (rprior), keep in mind that:

1. Within the context in which the snippet will be evaluated, only the parameters will be defined.

2. The goal of such a snippet is the replacement of parameters with values drawn from the prior
distribution.

3. Hyperparameters can be included in the ordinary parameter list. Obviously, hyperparameters
should not be replaced with random draws.

In writing a C snippet for the prior density function (dprior), observe that:

1. Within the context in which the snippet will be evaluated, only the parameters and give_log
will be defined.

2. The goal of such a snippet is computation of the prior probability density, or the log of same,
at a given point in parameter space. This scalar value should be returned in the variable 1ik.
When give_log == 1, lik should contain the log of the prior probability density.

3. Hyperparameters can be included in the ordinary parameter list.

General rules for writing C snippets can be found here.

Alternatively, one can furnish R functions for one or both of these arguments. In this case, rprior
must be a function that makes a draw from the prior distribution of the parameters and returns a
named vector containing all the parameters. The only required argument of this function is . . ..

Similarly, the dprior function must evaluate the prior probability density (or log density if log ==
TRUE) and return that single scalar value. The only required arguments of this function are ... and
log.

Default behavior

By default, the prior is assumed flat and improper. In particular, dprior returns 1 (@ if log = TRUE)
for every parameter set. Since it is impossible to simulate from a flat improper prior, rprocess
returns missing values (NAs).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.
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See Also
dprior rprior

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp-package, pomp, rinit specification,
rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

More on Bayesian methods: approximate Bayesian computation, bsmc2(), dprior(), pmcmc(),
rprior()

Examples

## Not run:
## Starting with an existing pomp object

verhulst() %>% window(end=30) -> po

## we add or change prior distributions using the two
## arguments 'rprior' and 'dprior'. Here, we introduce

## a Gamma prior on the 'r' parameter.
## We construct 'rprior' and 'dprior' using R functions.

po %>%
bsmc2(
rprior=function (n_@, K@, K1, sigma, tau, ro, ri1, ...) {
c(
n_0 = n_o,
K = rgamma(n=1, shape=K@, scale=K1),
r = rgamma(n=1,shape=ro0,scale=r1),
sigma = sigma,
tau = tau
)
3
dprior=function(K, K@, K1, r, ro, r1, ..., log) {

p <- dgamma(x=c(K,r),shape=c(K@,ro),scale=c(K1,r1),log=log)
if (log) sum(p) else prod(p)
3,
params=c(n_0=10000,K=10000,K0=10,K1=1000,
r=0.9,r0=0.9,r1=1,sigma=0.5, tau=0.3),
Np=1000
)y > B

## We can also pass them as C snippets:

po %>%
bsmc2(
rprior=Csnippet ("
K = rgamma(Ko,K1);
r = rgamma(re,r1);"
),
dprior=Csnippet ("
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double 1lik1 = dgamma(K,K@,K1,give_log);
double 1ik2 = dgamma(r,r@,r1,give_log);
lik = (give_log) ? lik1+lik2 : lik1*1lik2;"

)!

paramnames=c("K","K@" , "K1","r" "ra" "r1"y,
params=c(n_0=10000,K=10000,K0=10,K1=1000,
r=0.9,r0=0.9,r1=1,sigma=0.5, tau=0.3),

Np=10000
) > B

## The prior is plotted in grey; the posterior, in blue.

plot(B)

B %>%

pmcmc (Nmcme=100,Np=1000, proposal=mvn.diag.rw(c(r=0.01,K=10))) -> Bb

plot(Bb,pars=c("loglik"”,"log.prior”,"r","K"))

## End(Not run)

probe

probe

Probes (AKA summary statistics)

Description

Probe a partially-observed Markov process by computing summary statistics and the synthetic like-

lihood.

Usage

## S4 method for signature 'data.frame'
probe(

data,

probes,

nsim,

seed = NULL,

params,

rinit,

rprocess,

rmeasure,

D

verbose = getOption("verbose", FALSE)

## S4 method for signature 'pomp'
probe(

data,
probes,
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nsim,

seed = NULL,

verbose = getOption("verbose", FALSE)
)

## S4 method for signature 'probed_pomp'
probe(

data,

probes,

nsim,

seed = NULL,

verbose = getOption("verbose", FALSE)
)

## S4 method for signature 'probe_match_objfun'
probe(data, seed, ..., verbose = getOption("verbose”, FALSE))

## S4 method for signature 'objfun'

probe(data, seed = NULL, ...)
Arguments
data either a data frame holding the time series data, or an object of class ‘pomp’,

i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

probes a single probe or a list of one or more probes. A probe is simply a scalar- or
vector-valued function of one argument that can be applied to the data array of
a ‘pomp’. A vector-valued probe must always return a vector of the same size.
A number of useful probes are provided with the package: see basic probes.

nsim the number of model simulations to be computed.

seed optional integer; if non-NULL, the random number generator will be initialized
with this seed for simulations. See simulate.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.
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additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

probe applies one or more “probes” to time series data and model simulations and compares the
results. It can be used to diagnose goodness of fit and/or as the basis for “probe-matching”, a
generalized method-of-moments approach to parameter estimation.

A call to probe results in the evaluation of the probe(s) in probes on the data. Additionally, nsim
simulated data sets are generated (via a call to simulate) and the probe(s) are applied to each of
these. The results of the probe computations on real and simulated data are stored in an object of
class ‘probed_pomp’.

When probe operates on a probe-matching objective function (a ‘probe_match_objfun’ object), by
default, the random-number generator seed is fixed at the value given when the objective function
was constructed. Specifying NULL or an integer for seed overrides this behavior.

Value

probe returns an object of class ‘probed_pomp’, which contains the data and the model, together
with the results of the probe calculation.

Methods
The following methods are available.

plot displays diagnostic plots.

summary displays summary information. The summary includes quantiles (fractions of simulations
with probe values less than those realized on the data) and the corresponding two-sided p-
values. In addition, the “synthetic likelihood” (Wood 2010) is computed, under the assumption
that the probe values are multivariate-normally distributed.

logLik returns the synthetic likelihood for the probes. NB: in general, this is not the same as the
likelihood.

as.data.frame coerces a ‘probed_pomp’ to a ‘data.frame’. The latter contains the realized values
of the probes on the data and on the simulations. The variable .id indicates whether the
probes are from the data or simulations.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.
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Author(s)

Daniel C. Reuman, Aaron A. King

References

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet,
and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches. Ecology 80, 1789-1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466,
1102-1104, 2010.

See Also

More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package,
simulate(), spect(), trajectory(),wpfilter()

More on methods based on summary statistics: approximate Bayesian computation, basic probes,
nonlinear forecasting, probe matching, spectrum matching, spect()

probe matching Probe matching

Description

Estimation of parameters by maximum synthetic likelihood

Usage

## S4 method for signature 'data.frame'
probe_objfun(

data,

est = character(90),

fail.value = NA,

probes,

nsim,

seed = NULL,

params,

rinit,

rprocess,

rmeasure,

partrans,

verbose = getOption("verbose"”, FALSE)
)

## S4 method for signature 'pomp'
probe_objfun(
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data,

est = character(90),

fail.value = NA,

probes,

nsim,

seed = NULL,

verbose = getOption("verbose”, FALSE)
)

## S4 method for signature 'probed_pomp'
probe_objfun(

data,

est = character(90),

fail.value = NA,

probes,

nsim,

seed = NULL,

verbose = getOption("verbose", FALSE)
)

## S4 method for signature 'probe_match_objfun'
probe_objfun(

data,
est,
fail.value,
seed = NULL,

L

verbose = getOption("verbose", FALSE)

)
Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

est character vector; the names of parameters to be estimated.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values
of the objective function. It should be a large number (i.e., bigger than any
legitimate values the objective function is likely to take).

probes a single probe or a list of one or more probes. A probe is simply a scalar- or
vector-valued function of one argument that can be applied to the data array of
a ‘pomp’. A vector-valued probe must always return a vector of the same size.
A number of useful probes are provided with the package: see basic probes.

nsim the number of model simulations to be computed.

seed integer. When fitting, it is often best to fix the seed of the random-number
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generator (RNG). This is accomplished by setting seed to an integer. By default,
seed = NULL, which does not alter the RNG state.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.

partrans optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more in-
formation, see parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In probe-matching, one attempts to minimize the discrepancy between simulated and actual data,
as measured by a set of summary statistics called probes. In pomp, this discrepancy is measured
using the “synthetic likelihood” as defined by Wood (2010).

Value

probe_objfun constructs a stateful objective function for probe matching. Specifically, probe_objfun
returns an object of class ‘probe_match_objfun’, which is a function suitable for use in an optim-
like optimizer. In particular, this function takes a single numeric-vector argument that is assumed

to contain the parameters named in est, in that order. When called, it will return the negative syn-
thetic log likelihood for the probes specified. It is a stateful function: Each time it is called, it will
remember the values of the parameters and its estimate of the synthetic likelihood.
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Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Important Note

Since pomp cannot guarantee that the final call an optimizer makes to the function is a call at
the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.
Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization
routine, which will ensure that these parameters are stored.

Author(s)
Aaron A. King

See Also

optim subplex nloptr

More on methods based on summary statistics: approximate Bayesian computation, basic probes,
nonlinear forecasting, probe(), spectrummatching, spect()

More on pomp estimation algorithms: approximate Bayesian computation, bsmc2(), estimation
algorithms, mif2(), nonlinear forecasting, pmcmc(), pomp-package, spectrum matching

More on maximization-based estimation methods: mif2(), nonlinear forecasting, spectrum
matching, trajectory matching

Examples

gompertz() -> po

## A list of probes:

plist <- list(
mean=probe.mean("Y",trim=0.1, transform=sqrt),
sd=probe.sd("Y", transform=sqrt),
probe.marginal ("Y", ref=obs(po)),
probe.acf("Y",lags=c(1,3,5),type="correlation”,transform=sqrt),
probe.quantile("Y",prob=c(@.25,0.75),na.rm=TRUE)

)

## Construct the probe-matching objective function.
## Here, we just want to estimate 'K'.
po %>%
probe_objfun(probes=plist,nsim=100, seed=5069977,
est="K") -> f

## Any numerical optimizer can be used to minimize 'f'.
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library(subplex)
subplex(fn=f,par=0.4,control=1list(reltol=1e-5)) -> out

## Call the objective one last time on the optimal parameters:
f(out$par)
coef(f)

## There are 'plot' and 'summary' methods:
f %>% as("probed_pomp") %>% plot()
f %>% summary()

## One can convert an objective function to a data frame:
f %>% as("data.frame") %>% head()
f %>% as("probed_pomp") %>% as("data.frame") %>% head()

f %>% probe() %>% plot()

## One can modify the objective function with another call
## to 'probe_objfun':

f %>% probe_objfun(est=c("r","K")) -> f1
subplex(fn=f1,par=c(0.3,0.3),control=list(reltol=1e-5)) -> out
f1(out$par)

coef (f1)

proposals MCMC proposal distributions

Description

Functions to construct proposal distributions for use with MCMC methods.

Usage

mvn.diag.rw(rw.sd)
mvn.rw(rw.var)

mvn.rw.adaptive(
rw.sd,
rw.var,
scale.start = NA,
scale.cooling = 0.999,
shape.start = NA,
target = 0.234,
max.scaling = 50
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Arguments

rw.sd

rw.var

reproducibility tools

named numeric vector; random-walk SDs for a multivariate normal random-
walk proposal with diagonal variance-covariance matrix.

square numeric matrix with row- and column-names. Specifies the variance-
covariance matrix for a multivariate normal random-walk proposal distribution.

scale.start, scale.cooling, shape.start, target, max.scaling

Value

parameters to control the proposal adaptation algorithm. Beginning with MCMC
iteration scale.start, the scale of the proposal covariance matrix will be ad-
justed in an effort to match the target acceptance ratio. This initial scale adjust-
ment is “cooled”, i.e., the adjustment diminishes as the chain moves along. The
parameter scale.cooling specifies the cooling schedule: at n iterations after
scale.start, the current scaling factor is multiplied with scale.cooling”n.
The maximum scaling factor allowed at any one iteration is max.scaling. After
shape.start accepted proposals have accumulated, a scaled empirical covari-
ance matrix will be used for the proposals, following Roberts and Rosenthal
(2009).

Each of these calls constructs a function suitable for use as the proposal argument of pmcmc or
abc. Given a parameter vector, each such function returns a single draw from the corresponding
proposal distribution.

Author(s)

Aaron A. King, Sebastian Funk

References

G.O. Roberts and J.S. Rosenthal. Examples of adaptive MCMC. Journal of Computational and
Graphical Statistics 18, 349-367, 2009.

See Also

More on Markov chain Monte Carlo methods: approximate Bayesian computation, pmcmc()

reproducibility tools Tools for reproducible computations.

Description

Bake, stew, and freeze assist in the construction of reproducible computations.
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Usage
bake(
file,
expr,
seed = NULL,
kind = NULL,

normal.kind =

111

NULL,

dependson = NULL,

NULL,

info = FALSE,
timing = TRUE
)
stew(
file,
expr,
seed = NULL,
kind = NULL,
normal.kind = NULL,
dependson =
info = FALSE
)
freeze(
expr,
seed = NULL,
kind = NULL,

normal.kind =
parent.frame(),
if (is.list(envir) || is.pairlist(envir)) parent.frame() else baseenv()

envir =
enclos

)

Arguments

file

expr

NULL,

Name of the binary data file in which the result will be stored or retrieved, as
appropriate. For bake, this will contain a single object and hence be an RDS
file (extension ‘rds’); for stew, this will contain one or more named objects and
hence be an RDA file (extension ‘rda’).

Expression to be evaluated.

seed, kind, normal.kind

dependson

optional. To set the state and of the RNG. The default, seed = NULL, will not
change the RNG state. seed should be a single integer. See set.seed for more
information.

arbitrary R object (optional). Variables on which the computation in expr de-
pends. A hash of these objects will be archived in file, along with the results
of evaluation expr. When bake or stew are called and file exists, the hash
of these objects will be compared against the archived hash; recomputation is
forced when these do not match. The dependencies should be specified as un-
quoted symbols: use a list if there are multiple dependencies.



112 reproducibility tools

info logical. If TRUE, the “ingredients” of the calculation are returned as a list. In
the case of bake, this list is the “ingredients” attribute of the returned object. In
the case of stew, this list is a hidden object named “.ingredients”, located in the
environment within which stew was called.

timing logical. If TRUE, the time required for the computation is returned. This is
returned as the “system.time” attribute of the returned object.

envir the environment in which expr is to be evaluated. May also be NULL, a list, a
data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted as
the base package environment, baseenv()) or an environment.

Details

On cooking shows, recipes requiring lengthy baking or stewing are prepared beforehand. The bake
and stew functions perform analogously: an computation is performed and archived in a named
file. If the function is called again and the file is present, the computation is not executed. Instead,
the results are loaded from the archive. Moreover, via their optional seed argument, bake and
stew can control the pseudorandom-number generator (RNG) for greater reproducibility. After the
computation is finished, these functions restore the pre-existing RNG state to avoid side effects.

The freeze function doesn’t save results, but does set the RNG state to the specified value and
restore it after the computation is complete.

Both bake and stew first test to see whether file exists. If it does, bake reads it using readRDS
and returns the resulting object. By contrast, stew loads the file using load and copies the objects
it contains into the user’s workspace (or the environment of the call to stew).

If file does not exist, then both bake and stew evaluate the expression expr; they differ in the
results that they save. bake saves the value of the evaluated expression to file as a single object.
The name of that object is not saved. By contrast, stew creates a local environment within which
expr is evaluated; all objects in that environment are saved (by name) in file. bake and stew also
store information about the code executed, the dependencies, and the state of the random-number
generator (if the latter is controlled) in the archive file. Re-computation is triggered if any of these
things change.

Value

bake returns the value of the evaluated expression expr. Other objects created in the evaluation of
expr are discarded along with the temporary, local environment created for the evaluation.

The latter behavior differs from that of stew, which returns the names of the objects created during
the evaluation of expr. After stew completes, these objects are copied into the environment in
which stew was called.

freeze returns the value of evaluated expression expr. However, freeze evaluates expr within
the parent environment, so other objects created in the evaluation of expr will therefore exist after
freeze completes.

bake and stew store information about the code executed, the dependencies, and the state of the
random-number generator in the archive file. In the case of bake, this is recorded in the “ingredi-
ents” attribute (attr(.,"ingredients”)); in the stew case, this is recorded in an object, “.ingre-
dients”, in the archive. This information is returned only if info=TRUE.
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The time required for execution is also recorded. bake stores this in the “system.time” attribute
of the archived R object; stew does so in a hidden variable named .system.time. The timing is
obtained using system. time.

Compatibility with older versions

With pomp version 3.4.4.2, the behavior of bake and stew changed. In particular, older versions
did no dependency checking, and did not check to see whether expr had changed. Accordingly,
the archive files written by older versions have a format that is not compatible with the newer ones.
When an archive file in the old format is encountered, it will be updated to the new format, with a
warning message. Note that this will overwrite existing archive files! However, there will be no
loss of information.

Author(s)
Aaron A. King

Examples

## Not run:
bake(file="examplel.rds",{
X <= runif(1000)
mean (x)

»

bake(file="examplel.rds", {
X <= runif(1000)
mean (x)

b

bake(file="examplel.rds",{
a<-3
X <= runif(1000)
mean (x)

b

stew(file="example2.rda",
dependson=list(a,b),{
X <- runif(10)
y <= rnorm(n=10,mean=a*x+b, sd=2)

»
plot(x,y)

set.seed(11)

runif(2)
freeze(runif(3),seed=5886730)
runif(2)
freeze(runif(3),seed=5886730)
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runif(2)

set.seed(11)
runif(2)
runif(2)
runif(2)

## End(Not run)

ricker Ricker model with Poisson observations.

Description

ricker is a ‘pomp’ object encoding a stochastic Ricker model with Poisson measurement error.

Usage

ricker(r = exp(3.8), sigma = 0.3, phi =10, ¢ =1, N_0 =7)

Arguments
r intrinsic growth rate
sigma environmental process noise s.d.
phi sampling rate
c density dependence parameter
N_0 initial condition

Details

The state process is Nyy1 = 7Ny exp(—cNy + e;), where the e; are i.i.d. normal random deviates
with zero mean and variance o2. The observed variables y; are distributed as Poisson(¢Ny).

Value

A ‘pomp’ object containing the Ricker model and simulated data.

See Also

More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(),
ebola, gompertz(), ou2(), pomp examples, rw2(), verhulst()
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Examples

po <- ricker()

plot(po)

coef (po)

simulate(po) %>% plot()

## generate a bifurcation diagram for the Ricker map
p <- parmat(coef(ricker()),nrep=500)
p["r",] <- exp(seq(from=1.5,to=4,length=500))
trajectory(
ricker(),
times=seq(from=1000, to=2000,by=1),
params=p,
format="array"
) —> X
matplot(pl"r",],x["N",,],pch=".",col="black",
xlab=expression(log(r)),ylab="N",6log="x")

rinit rinit

Description

Samples from the initial-state distribution.

Usage
## S4 method for signature 'pomp'
rinit(object, params, t@, nsim =1, ...)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.
params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.
t0 the initial time, i.e., the time corresponding to the initial-state distribution.
nsim optional integer; the number of initial states to simulate per column of params.

additional arguments are ignored.

Value

rinit returns an nvar x nsim*ncol (params) matrix of state-process initial conditions when given
an npar x nsim matrix of parameters, params, and an initial time t@. By default, t0 is the initial
time defined when the ‘pomp’ object ws constructed.
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See Also

Specification of the initial-state distribution: rinit specification

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(),
workhorses

rinit specification The initial-state distribution

Description

Specification of the initial-state distribution simulator, rinit.

Details

To fully specify the unobserved Markov state process, one must give its distribution at the zero-time
(t@). One does this by furnishing a value for the rinit argument. As usual, this can be provided
either as a C snippet or as an R function. In the former case, bear in mind that:

1. The goal of a this snippet is the construction of a state vector, i.e., the setting of the dynamical
states at time .

2. In addition to the parameters and covariates (if any), the variable t, containing the zero-time,
will be defined in the context in which the snippet is executed.

3. NB: The statenames argument plays a particularly important role when the rinit is specified
using a C snippet. In particular, every state variable must be named in statenames. Failure
to follow this rule will result in undefined behavior.

General rules for writing C snippets can be found here.

If an R function is to be used, pass
rinit = f

to pomp, where f is a function with arguments that can include the initial time t@, any of the model
parameters, and any covariates. As usual, f may take additional arguments, provided these are
passed along with it in the call to pomp. f must return a named numeric vector of initial states.
It is of course important that the names of the states match the expectations of the other basic
components.

Note that the state-process rinit can be either deterministic (as in the default) or stochastic. In the
latter case, it samples from the distribution of the state process at the zero-time, to.

Default behavior

By default, pomp assumes that the initial distribution is concentrated on a single point. In particular,
any parameters in params, the names of which end in “_0” or “. @”, are assumed to be initial values
of states. When the state process is initialized, these are simply copied over as initial conditions.
The names of the resulting state variables are obtained by dropping the suffix.



rinit specification 117

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also
rinit
More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp-package, pomp, prior specification,

rmeasure specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

Examples

## Starting with an existing pomp object
verhulst() -> po

## we add or change the initial-state simulator,

## rinit, using the 'rinit' argument in any 'pomp'

## elementary or estimation function (or in the

## 'pomp' constructor itself).

## Here, we pass the rinit specification to 'simulate'
## as an R function.

po %>%
simulate(
rinit=function (n_0, ...) {
c(n=rpois(n=1,lambda=n_0))
}
) —> sim

## We can also pass it as a C snippet:

po %>%
simulate(
rinit=Csnippet(”"n = rpois(n_0);"),
paramnames="n_0",

statenames="n
) -> sim
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rmeasure rmeasure

Description

Sample from the measurement model distribution, given values of the latent states and the parame-

ters.
Usage
## S4 method for signature 'pomp'
rmeasure(object, x, times, params, ...)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

X an array containing states of the unobserved process. The dimensions of x are
nvars x nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

additional arguments are ignored.

Value

rmeasure returns a rank-3 array of dimensions nobs x nrep x ntimes, where nobs is the number
of observed variables.

See Also

Specification of the measurement-model simulator: rmeasure specification

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
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rmeasure specification
The measurement-model simulator

Description

Specification of the measurement-model simulator, rmeasure.

Details
The measurement model is the link between the data and the unobserved state process. It can be
specified either by using one or both of the rmeasure and dmeasure arguments.

Suppose you have a procedure to simulate observations given the value of the latent state variables.
Then you can furnish

rmeasure = f

to pomp algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets.

In writing an rmeasure C snippet, bear in mind that:
1. The goal of such a snippet is to fill the observables with random values drawn from the mea-
surement model distribution. Accordingly, each observable should be assigned a new value.
2. In addition to the states, parameters, and covariates (if any), the variable t, containing the time
of the observation, will be defined in the context in which the snippet is executed.
The demos and the tutorials on the package website give examples.

It is also possible, though far less efficient, to specify rmeasure using an R function. In this case,
specify the measurement model simulator by furnishing

rmeasure = f

to pomp, where f is an R function. The arguments of f should be chosen from among the state
variables, parameters, covariates, and time. It must also have the argument . ... f must return a
named numeric vector of length equal to the number of observable variables.

Default behavior

The default rmeasure is undefined. It will yield missing values (NA).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.
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See Also

rmeasure

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp-package, pomp, prior specification,
rinit specification, rprocess specification, skeleton specification, transformations,
userdata, vmeasure specification

Examples

## We start with the pre-built Ricker example:
ricker() -> po

## To change the measurement model simulator, rmeasure,
## we use the 'rmeasure' argument in any 'pomp'

## elementary or estimation function.

## Here, we pass the rmeasure specification to 'simulate'
## as an R function.

po %>%
simulate(
rmeasure=function (N, phi, ...) {
c(y=rpois(n=1,lambda=phi*N))
3
) -> sim

## We can also pass it as a C snippet:

po %>%
simulate(
rmeasure=Csnippet("y = rpois(phi*N);"),
paramnames="phi",
statenames="N"
) —> sim

rprior rprior

Description

Sample from the prior probability distribution.

Usage

## S4 method for signature 'pomp'
rprior(object, params, ...)
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Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.
params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.
additional arguments are ignored.
Value

A numeric matrix containing the required samples.

See Also

Specification of the prior distribution simulator: prior specification

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprocess(), skeleton(), vmeasure(), workhorses

More on Bayesian methods: approximate Bayesian computation, bsmc2(), dprior(), pmemc(),
prior specification

rprocess rprocess

Description

rprocess simulates the process-model portion of partially-observed Markov process.

Usage
## S4 method for signature 'pomp'
rprocess(object, x0, t@, times, params, ...)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

X0 an nvar x nrep matrix containing the starting state of the system. Columns of x@
correspond to states; rows to components of the state vector. One independent
simulation will be performed for each column. Note that in this case, params
must also have nrep columns.

to the initial time, i.e., the time corresponding to the state in x@.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x@.

additional arguments are ignored.
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Details

When rprocess is called, t@ is taken to be the initial time (i.e., that corresponding to x@). The
values in times are the times at which the state of the simulated processes are required.

Value

rprocess returns a rank-3 array with rownames. Suppose x is the array returned. Then

dim(x)=c(nvars,nrep,ntimes),

where nvars is the number of state variables (=nrow(x0)), nrep is the number of independent
realizations simulated (=ncol(x@)), and ntimes is the length of the vector times. x[,j,k] is
the value of the state process in the j-th realization at time times[k]. The rownames of x will
correspond to those of x@.

See Also

Specification of the process-model simulator: rprocess specification

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprior(), skeleton(), vmeasure(), workhorses

rprocess specification
The latent state process simulator

Description

Specification of the latent state process simulator, rprocess.

Usage
onestep(step.fun)
discrete_time(step.fun, delta.t = 1)
euler(step.fun, delta.t)
gillespie(rate.fun, v, hmax = Inf)

nn nn

gillespie_hl(..., .pre = , .post = , hmax = Inf)
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Arguments

step.fun a C snippet, an R function, or the name of a native routine in a shared-object
library. This gives a procedure by which one simulates a single step of the latent
state process.

delta.t positive numerical value; for euler and discrete_time, the size of the step to
take

rate.fun a C snippet, an R function, or the name of a native routine in a shared-object
library. This gives a procedure by which one computes the event-rate of the
elementary events in the continuous-time latent Markov chain.

v integer matrix; giving the stoichiometry of the continuous-time latent Markov
process. It should have dimensions nvar x nevent, where nvar is the number
of state variables and nevent is the number of elementary events. v describes the
changes that occur in each elementary event: it will usually comprise the values
1, -1, and 0 according to whether a state variable is incremented, decremented,
or unchanged in an elementary event. The rows of v may be unnamed or named.
If the rows are unnamed, they are assumed to be in the same order as the vector
of state variables returned by rinit. If the rows are named, the names of the
state variables returned by rinit will be matched to the rows of v to ensure a
correct mapping. If any of the row names of v cannot be found among the state
variables or if any row names of v are duplicated, an error will occur.

hmax maximum time step allowed (see below)
individual C snippets corresponding to elementary events

.pre, .post C snippets (see Details)

Discrete-time processes

If the state process evolves in discrete time, specify rprocess using the discrete_time plug-in.
Specifically, provide

rprocess = discrete_time(step.fun = f, delta.t),

where f is a C snippet or R function that simulates one step of the state process. The former is the
preferred option, due to its much greater computational efficiency. The goal of such a C snippet is to
replace the state variables with their new random values at the end of the time interval. Accordingly,
each state variable should be over-written with its new value. In addition to the states, parameters,
covariates (if any), and observables, the variables t and dt, containing respectively the time at the
beginning of the step and the step’s duration, will be defined in the context in which the C snippet
is executed. See Csnippet for general rules on writing C snippets. Examples are to be found in the
tutorials on the package website.

If f is given as an R function, its arguments should come from the state variables, parameters,
covariates, and time. It may also take the argument ‘delta.t’; when called, the latter will be the
timestep. It must also have the argument ‘. . . . It should return a named vector of length equal to
the number of state variables, representing a draw from the distribution of the state process at time
t+delta. t conditional on its value at time t.
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Continuous-time processes

If the state process evolves in continuous time, but you can use an Euler approximation, implement
rprocess using the euler plug-in. Specify

rprocess = euler(step.fun = f, delta.t)

in this case. As before, f can be provided either as a C snippet or as an R function, the former
resulting in much quicker computations. The form of f will be the same as above (in the discrete-
time case).

If you have a procedure that allows you, given the value of the state process at any time, to simulate
it at an arbitrary time in the future, use the onestep plug-in. To do so, specify

rprocess = onestep(step.fun = f).

Again, f can be provided either as a C snippet or as an R function, the former resulting in much
quicker computations. The form of f should be as above (in the discrete-time or Euler cases).

Size of time step

The simulator plug-ins discrete_time, euler, and onestep all work by taking discrete time steps.
They differ as to how this is done. Specifically,

1. onestep takes a single step to go from any given time t1 to any later time t2 (t1 < t2). Thus,
this plug-in is designed for use in situations where a closed-form solution to the process exists.

2. To go from t1 to t2, euler takes n steps of equal size, where
n = ceiling((t2-t1)/delta.t).

3. discrete_time assumes that the process evolves in discrete time, where the interval between
successive times is delta. t. Thus, to go from t1 to t2, discrete_time takes n steps of size
exactly delta. t, where

n = floor((t2-t1)/delta.t).

Exact (event-driven) simulations

If you desire exact simulation of certain continuous-time Markov chains, an implementation of
Gillespie’s algorithm (Gillespie 1977) is available, via the gillespie and gillespie_hl plug-ins.
The former allows for the rate function to be provided as an R function or a single C snippet, while
the latter provides a means of specifying the elementary events via a list of C snippets.

A high-level interface to the simulator is provided by gillespie_hl. To use it, supply

nn

rprocess = gillespie_hl(..., .pre = .post = "", hmax = Inf)

to pomp. Each argument in ... corresponds to a single elementary event and should be a list
containing two elements. The first should be a string or C snippet; the second should be a named
integer vector. The variable rate will exist in the context of the C snippet, as will the parameter,
state variables, covariates, and the time t. The C snippet should assign to the variable rate the
corresponding elementary event rate.
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The named integer vector specifies the changes to the state variables corresponding to the elemen-
tary event. There should be named value for each of the state variables returned by rinit. The
arguments .pre and .post can be used to provide C code that will run respectively before and af-
ter the elementary-event snippets. These hooks can be useful for avoiding duplication of code that
performs calculations needed to obtain several of the different event rates.

Here’s how a simple birth-death model might be specified:
gillespie_hl(

birth=1list("rate = b*N;",c(N=1)),
death=list("rate = m*N;" ,c(N=-1))

)

In the above, the state variable N represents the population size and parameters b, m are the birth and
death rates, respectively.

To use the lower-level gillespie interface, furnish
rprocess = gillespie(rate.fun = f, v, hmax = Inf)

to pomp, where f gives the rates of the elementary events. Here, f may be an R function with
prototype

f(j, x, t, params, ...)

When f is called, the integer j will be the number of the elementary event (corresponding to the
column the matrix v, see below), x will be a named numeric vector containing the value of the state
process at time t and params is a named numeric vector containing parameters. f should return a
single numerical value, representing the rate of that elementary event at that point in state space and
time.

Here, the stoichiometric matrix v specifies the continuous-time Markov process in terms of its
elementary events. It should have dimensions nvar x nevent, where nvar is the number of state
variables and nevent is the number of elementary events. v describes the changes that occur in
each elementary event: it will usually comprise the values 1, -1, and 0 according to whether a state
variable is incremented, decremented, or unchanged in an elementary event. The rows of v should
have names corresponding to the state variables. If any of the row names of v cannot be found
among the state variables or if any row names of v are duplicated, an error will occur.

It is also possible to provide a C snippet via the rate. fun argument to gillespie. Such a snippet
should assign the correct value to a rate variable depending on the value of j. The same variables
will be available as for the C code provided to gillespie_hl. This lower-level interface may be
preferable if it is easier to write code that calculates the correct rate based on j rather than to write
a snippet for each possible value of j. For example, if the number of possible values of j is large
and the rates vary according to a few simple rules, the lower-level interface may provide the easier
way of specifying the model.

When the process is non-autonomous (i.e., the event rates depend explicitly on time), it can be
useful to set hmax to the maximum step that will be taken. By default, the elementary event rates
will be recomputed at least once per observation interval.

Default behavior

The default rprocess is undefined. It will yield missing values (NA) for all state variables.
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Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

rprocess

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp-package, pomp, prior specification,
rinit specification, rmeasure specification, skeleton specification, transformations,
userdata, vmeasure specification

rw.sd rw.sd

Description

Specifying random-walk intensities.

Usage

rw.sd(...)

Arguments

Specification of the random-walk intensities (as standard deviations).

Details

See mif2 for details.

See Also

mif2
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rw2 Two-dimensional random-walk process

Description

rw2 constructs a ‘pomp’ object encoding a 2-D Gaussian random walk.

Usage
rw2(x1_0 = 0, x2.0 =0, s1 =1, s2 =3, tau =1, times = 1:100, t0 = 0)

Arguments
x1_0, x2_0 initial conditions (i.e., latent state variable values at the zero time t@)
s1, s2 random walk intensities
tau observation error s.d.
times observation times
to zero time
Details

The random-walk process is fully but noisily observed.

Value

A ‘pomp’ object containing simulated data.

See Also

More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(),
ebola, gompertz(), ou2(), pomp examples, ricker(), verhulst()

Examples

library(ggplot2)
rw2() %>% plot()

rw2(s1=1,s2=1,tau=0.1) %>%
simulate(nsim=10,format="d") %>%
ggplot(aes(x=y1,y=y2,group=.id,color=.id))+
geom_path()+
guides(color="none")+
theme_bw()
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sannbox Simulated annealing with box constraints.

Description

A straightforward implementation of simulated annealing with box constraints.

Usage
sannbox(par, fn, control = list(), ...)
Arguments
par Initial values for the parameters to be optimized over.
fn A function to be minimized, with first argument the vector of parameters over
which minimization is to take place. It should return a scalar result.
control A named list of control parameters. See ‘Details’.
ignored.
Details

The control argument is a list that can supply any of the following components:
trace Non-negative integer. If positive, tracing information on the progress of the optimization is
produced. Higher values may produce more tracing information.

fnscale An overall scaling to be applied to the value of fn during optimization. If negative, turns
the problem into a maximization problem. Optimization is performed on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on par/parscale
and these should be comparable in the sense that a unit change in any element produces about
a unit change in the scaled value.

maxit The total number of function evaluations: there is no other stopping criterion. Defaults to
10000.

temp starting temperature for the cooling schedule. Defaults to 1.
tmax number of function evaluations at each temperature. Defaults to 10.

candidate.dist function to randomly select a new candidate parameter vector. This should be a
function with three arguments, the first being the current parameter vector, the second the
temperature, and the third the parameter scaling. By default, candidate.dist is

function(par, temp,scale)
rnorm(n=length(par),mean=par,sd=scalextemp).

sched cooling schedule. A function of a three arguments giving the temperature as a function of
iteration number and the control parameters temp and tmax. By default, sched is

function(k, temp, tmax) temp/log(((k-1)%/%tmax)*xtmax+exp(1)).
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Alternatively, one can supply a numeric vector of temperatures. This must be of length at least
maxit.

lower,upper optional numeric vectors. These describe the lower and upper box constraints, re-
spectively. Each can be specified either as a single scalar (common to all parameters) or as a
vector of the same length as par. By default, lower=-Inf and upper=Inf, i.e., there are no
constraints.

Value

sannbox returns a list with components:

counts two-element integer vector. The first number gives the number of calls made to fn. The
second number is provided for compatibility with optim and will always be NA.

convergence provided for compatibility with optim; will always be 0.

final.params last tried value of par.

final.value value of fn corresponding to final.params.

par best tried value of par.

value value of fn corresponding to par.

Author(s)

Daniel Reuman, Aaron A. King

See Also

trajectory matching, probe matching, spectrum matching, nonlinear forecasting.

saved.states Saved states

Description

Retrieve latent state trajectories from a particle filter calculation.

Usage

## S4 method for signature 'pfilterd_pomp'
saved.states(object, ...)

## S4 method for signature 'pfilterList'

saved.states(object, ...)
Arguments
object result of a filtering computation

ignored
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Details

When one calls pfilter with save.states=TRUE, the latent state vector associated with each par-
ticle is saved. This can be extracted by calling saved. states on the ‘pfilterd.pomp’ object.

Value

The saved states are returned in the form of a list, with one element per time-point. Each element
consists of a matrix, with one row for each state variable and one column for each particle.

See Also

More on sequential Monte Carlo methods: bsmc2(), cond.loglLik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), wpfilter()

Other extraction methods: coef (), cond.logLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(), pred.mean(), pred.var(), spy(), states(), summary(),
timezero(), time(), traces()

simulate Simulations of a partially-observed Markov process

Description

simulate generates simulations of the state and measurement processes.

Usage

## S4 method for signature 'missing'’
simulate(

nsim = 1,

seed = NULL,

times,

t0,

params,

rinit,

rprocess,

rmeasure,

format = c("pomps”, "arrays”, "data.frame"),

include.data = FALSE,

verbose = getOption("verbose", FALSE)
)

## S4 method for signature 'data.frame'
simulate(

object,

nsim = 1,
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seed = NULL,

times,

to,

params,

rinit,

rprocess,

rmeasure,

format = c("pomps”, "arrays”, "data.frame"),
include.data = FALSE,

L

verbose = getOption("verbose"”, FALSE)

## S4 method for signature 'pomp'
simulate(
object,
nsim = 1,
seed = NULL,
format = c("pomps”, "arrays”, "data.frame"),
include.data = FALSE,

L

verbose = getOption("verbose"”, FALSE)

)
## S4 method for signature 'objfun'
simulate(object, nsim = 1, seed = NULL, ...)
Arguments
nsim The number of simulations to perform. Note that the number of replicates will

be nsim times ncol (params).

seed optional; if set, the pseudorandom number generator (RNG) will be initialized
with seed. the random seed to use. The RNG will be restored to its original
state afterward.

times the sequence of observation times. times must indicate the column of obser-
vation times by name or index. The time vector must be numeric and non-
decreasing.

to The zero-time, i.e., the time of the initial state. This must be no later than the

time of the first observation, i.e., t@ <= times[1].

params a named numeric vector or a matrix with rownames containing the parameters
at which the simulations are to be performed.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.
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rmeasure

format

include.data

verbose

object

Value

simulate

simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.

the format in which to return the results.

format = "pomps” causes the results to be returned as a single “pomp” object,
identical to object except for the latent states and observations, which have
been replaced by the simulated values.

format = "arrays" causes the results to be returned as a list of two arrays. The
“states” element will contain the simulated state trajectories in a rank-3 array
with dimensions nvar x (ncol(params)*nsim) x ntimes. Here, nvar is the
number of state variables and ntimes the length of the argument times. The
“obs” element will contain the simulated data, returned as a rank-3 array with
dimensions nobs x (ncol(params)*nsim) x ntimes. Here, nobs is the number
of observables.

format = "data.frame” causes the results to be returned as a single data frame
containing the time, states, and observations. An ordered factor variable, ‘.id’,
distinguishes one simulation from another.

if TRUE, the original data and covariates (if any) are included (with .id = "data").
This option is ignored unless format = "data.frame”.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

logical; if TRUE, diagnostic messages will be printed to the console.

optional; if present, it should be a data frame or a ‘pomp’ object.

A single “pomp” object, a “pompList” object, a named list of two arrays, or a data frame, according
to the format option.

If params is a matrix, each column is treated as a distinct parameter set. In this case, if nsim=1,
then simulate will return one simulation for each parameter set. If nsim>1, then simulate
will yield nsim simulations for each parameter set. These will be ordered such that the first
ncol(params) simulations represent one simulation from each of the distinct parameter sets, the
second ncol (params) simulations represent a second simulation from each, and so on.

Adding column names to params can be helpful.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
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handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)

Aaron A. King

See Also

More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package,
probe(), spect(), trajectory(), wpfilter()

SIR models Compartmental epidemiological models

Description

Simple SIR-type models implemented in various ways.

Usage
sir(

gamma = 26,
mu = 0.02,
iota = 0.01,
betal = 400,
beta2 = 480,
beta3 = 320,
beta_sd = 0.001,
rho = 0.6,
k =0.1,
pop = 2100000,
S_0 = 26/400,
1.0 = 0.001,
R.@=1-S_0-1_0,
to = 0,

times = seq(from = t@ + 1/52, to = t@ + 4, by = 1/52),
seed = 329343545,
delta.t = 1/52/20

)

sir2(
gamma = 24,
mu = 1/70,
iota = 0.1,

betal = 330,
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beta2 = 410,

beta3 = 490,

rho = 0.1,

k =0.1,

pop = le+06,

S_0 = 0.05,

1_0 = 1e-04,
R@O=1-5S10-1_9,
to = 0,

times = seq(from = t@ + 1/12, to = t0 + 10, by = 1/12),
seed = 1772464524

)
Arguments
gamma recovery rate
mu death rate (assumed equal to the birth rate)
iota infection import rate

betal, beta2, beta3
seasonal contact rates

beta_sd environmental noise intensity

rho reporting efficiency

k reporting overdispersion parameter (reciprocal of the negative-binomial size pa-
rameter)

pop overall host population size

S_0,I1_0,R_0 the fractions of the host population that are susceptible, infectious, and recov-
ered, respectively, at time zero.

to zero time
times observation times
seed seed of the random number generator
delta.t Euler step size
Details

sir() producees a ‘pomp’ object encoding a simple seasonal SIR model with simulated data. Sim-
ulation is performed using an Euler multinomial approximation.

sir2() has the same model implemented using Gillespie’s algorithm.

In both cases the measurement model is negative binomial: reports is distributed as a negative
binomial random variable with mean equal to rho*cases and size equal to 1/k.

This and similar examples are discussed and constructed in tutorials available on the package web-
site.

Value

These functions return ‘pomp’ objects containing simulated data.


https://kingaa.github.io/pomp/
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See Also

More examples provided with pomp: blowflies, childhood disease data, dacca(), ebola,
gompertz(), ou2(), pomp examples, ricker(), rw2(), verhulst()

Examples

po <- sir()
plot(po)
coef(po)

po <- sir2()

plot(po)
plot(simulate(window(po,end=3)))
coef(po)

po %>% as.data.frame() %>% head()

skeleton skeleton

Description

Evaluates the deterministic skeleton at a point or points in state space, given parameters. In the
case of a discrete-time system, the skeleton is a map. In the case of a continuous-time system, the
skeleton is a vectorfield. NB: skeleton just evaluates the deterministic skeleton; it does not iterate
or integrate (see trajectory for this).

Usage
## S4 method for signature 'pomp'
skeleton(object, x, times, params, ...)
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

X an array containing states of the unobserved process. The dimensions of x are
nvars x nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

additional arguments are ignored.
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Value

skeleton returns an array of dimensions nvar x nrep x ntimes. If f is the returned matrix,
fLi,j,k] is the i-th component of the deterministic skeleton at time times[k] given the state
x[, j, k] and parameters params[, j].

See Also

Specification of the deterministic skeleton: skeleton specification

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), vmeasure(),workhorses

More on methods for deterministic process models: flow(), skeleton specification, trajectory
matching, trajectory()

skeleton specification
The deterministic skeleton of a model

Description

Specification of the deterministic skeleton.

Usage
vectorfield(f)

map(f, delta.t = 1)

Arguments
f procedure for evaluating the deterministic skeleton This can be a C snippet, an
R function, or the name of a native routine in a dynamically linked library.
delta.t positive numerical value; the size of the discrete time step corresponding to an
application of the map
Details

The skeleton is a dynamical system that expresses the central tendency of the unobserved Markov
state process. As such, it is not uniquely defined, but can be both interesting in itself and useful in
practice. In pomp, the skeleton is used by trajectory and traj_objfun.

If the state process is a discrete-time stochastic process, then the skeleton is a discrete-time map. To
specify it, provide

skeleton = map(f, delta.t)
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to pomp, where f implements the map and delta.t is the size of the timestep covered at one map
iteration.

If the state process is a continuous-time stochastic process, then the skeleton is a vectorfield (i.e., a
system of ordinary differential equations). To specify it, supply

skeleton = vectorfield(f)

to pomp, where f implements the vectorfield, i.e., the right-hand-size of the differential equations.

In either case, f can be furnished either as a C snippet (the preferred choice), or an R function.
General rules for writing C snippets can be found here. In writing a skeleton C snippet, be aware
that:

1. For each state variable, there is a corresponding component of the deterministic skeleton. The
goal of such a snippet is to compute all the components.

2. When the skeleton is a map, the component corresponding to state variable x is named Dx and
is the new value of x after one iteration of the map.

3. When the skeleton is a vectorfield, the component corresponding to state variable x is named
Dx and is the value of dx/dt.

4. As with the other C snippets, all states, parameters and covariates, as well as the current time,
t, will be defined in the context within which the snippet is executed.

5. NB: When the skeleton is a map, the duration of the timestep will not be defined in the context
within which the snippet is executed. When the skeleton is a vectorfield, of course, no timestep
is defined. In this regard, C snippets for the skeleton and rprocess components differ.

The tutorials on the package website give some examples.

If f is an R function, its arguments should be taken from among the state variables, parameters,
covariates, and time. It must also take the argument ‘. ..’. As with the other basic components,
f may take additional arguments, provided these are passed along with it in the call to pomp. The
function f must return a numeric vector of the same length as the number of state variables, which
contains the value of the map or vectorfield at the required point and time.

Default behavior

The default skeleton is undefined. It will yield missing values (NA) for all state variables.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

skeleton

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,


https://kingaa.github.io/pomp/

138 skeleton specification

emeasure specification, parameter transformations, pomp-package, pomp, prior specification,
rinit specification, rmeasure specification, rprocess specification, transformations,
userdata, vmeasure specification

More on methods for deterministic process models: flow(), skeleton(), trajectory matching,
trajectory()

Examples

## Starting with an existing pomp object,
## e.g., the continuous-time Verhulst-Pearl model,

verhulst() -> po

## we add or change the deterministic skeleton
## using the 'skeleton' argument in any 'pomp'’
## elementary or estimation function

## (or in the 'pomp' constructor itself).

## Here, we pass the skeleton specification
## to 'trajectory' as an R function.

## Since this is a continuous-time POMP, the
## skeleton is a vectorfield.

po %>%
trajectory(
skeleton=vectorfield(
function(r, K, n, ...) {
c(n=r*n*(1-n/K))
3
),
format="data.frame"
) -> traj

## We can also pass it as a C snippet:

po %>%
traj_objfun(
skeleton=vectorfield(Csnippet ("Dn=r*n*(1-n/K);")),
paramnames=c("r","K"),

statenames="n
) => ofun

ofun()

## For a discrete-time POMP, the deterministic skeleton
## is a map. For example,

gompertz() -> po
po %>%

traj_objfun(
skeleton=map(
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Csnippet(”
double dt = 1.9;
double s = exp(-rxdt);
DX = pow(K, (1-s))*pow(X,s);"
), delta.t=1
),
paramnames=c("r","K"),
statenames=c("X")
) -> ofun

ofun()

spect Power spectrum

Description

Power spectrum computation and spectrum-matching for partially-observed Markov processes.

Usage

## S4 method for signature 'data.frame'
spect(

data,

vars,

kernel.width,

nsim,

seed = NULL,

transform.data = identity,

detrend = c("none”, "mean", "linear"”, "quadratic"),

params,

rinit,

rprocess,

rmeasure,

L

verbose = getOption("verbose"”, FALSE)

## S4 method for signature 'pomp'
spect(

data,

vars,

kernel.width,

nsim,

seed = NULL,

transform.data = identity,
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detrend = c("none”, "mean”, "linear”, "quadratic"),

L

verbose = getOption("verbose", FALSE)

## S4 method for signature 'spectd_pomp'

spect(
data,
vars,
kernel.width,
nsim,
seed = NULL,

transform.data,

detrend,

L

verbose = getOption("verbose"”, FALSE)

## S4 method for signature 'spect_match_objfun'
spect(data, seed, ..., verbose = getOption("verbose”, FALSE))

## S4 method for signature 'objfun'

spect(data, seed = NULL, ...)
Arguments
data either a data frame holding the time series data, or an object of class ‘pomp’,

vars

kernel.width

nsim

seed

transform.data

detrend

params

rinit

i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

optional; names of observed variables for which the power spectrum will be
computed. By default, the spectrum will be computed for all observables.

width parameter for the smoothing kernel used for calculating the estimate of
the spectrum.

number of model simulations to be computed.

optional; if non-NULL, the random number generator will be initialized with this
seed for simulations. See simulate.

function; this transformation will be applied to the observables prior to estima-
tion of the spectrum, and prior to any detrending.

de-trending operation to perform. Options include no detrending, and subtrac-
tion of constant, linear, and quadratic trends from the data. Detrending is applied
to each data series and to each model simulation independently.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.
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rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

spect estimates the power spectrum of time series data and model simulations and compares the re-
sults. It can be used to diagnose goodness of fit and/or as the basis for frequency-domain parameter
estimation (spect.match).

A call to spect results in the estimation of the power spectrum for the (transformed, detrended)
data and nsim model simulations. The results of these computations are stored in an object of class
‘spectd_pomp’.

When spect operates on a spectrum-matching objective function (a ‘spect_match_objfun’ object),
by default, the random-number generator seed is fixed at the value given when the objective function
was constructed. Specifying NULL or an integer for seed overrides this behavior.

Value

An object of class ‘spectd_pomp’, which contains the model, the data, and the results of the spect
computation. The following methods are available:

plot produces some diagnostic plots

summary displays a summary

logLik gives a measure of the agreement of the power spectra

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)
Daniel C. Reuman, Cai GoGwilt, Aaron A. King
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References
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See Also

More on methods based on summary statistics: approximate Bayesian computation, basic probes,
nonlinear forecasting, probe matching, probe(), spectrum matching

More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package,
probe(), simulate(), trajectory(), wpfilter()

spectrum matching Spectrum matching

Description

Estimation of parameters by matching power spectra

Usage

## S4 method for signature 'data.frame'
spect_objfun(

data,

est = character(0),

weights = 1,

fail.value = NA,

vars,

kernel.width,

nsim,

seed = NULL,

transform.data = identity,

detrend = c("none”, "mean", "linear"”, "quadratic"),

params,

rinit,

rprocess,

rmeasure,

partrans,

verbose = getOption("verbose"”, FALSE)
)

## S4 method for signature 'pomp'
spect_objfun(
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data,

est = character(90),

weights = 1,

fail.value = NA,

vars,

kernel.width,

nsim,

seed = NULL,

transform.data = identity,

detrend = c("none”, "mean", "linear"”, "quadratic"),

L

verbose = getOption("”verbose"”, FALSE)

## S4 method for signature 'spectd_pomp'
spect_objfun(
data,
est = character(0),
weights = 1,
fail.value = NA,
vars,
kernel.width,
nsim,
seed = NULL,
transform.data = identity,
detrend,

L

verbose = getOption("”verbose"”, FALSE)

## S4 method for signature 'spect_match_objfun'
spect_objfun(

data,

est,

weights,

fail.value,

seed = NULL,

L

verbose = getOption("”verbose"”, FALSE)

)
Arguments
data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.
est character vector; the names of parameters to be estimated.

weights optional numeric or function. The mismatch between model and data is mea-
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fail.value

vars

kernel.width

nsim

seed

transform.data

detrend

params

rinit

rprocess

rmeasure

partrans

spectrum matching

sured by a weighted average of mismatch at each frequency. By default, all
frequencies are weighted equally. weights can be specified either as a vector
(which must have length equal to the number of frequencies) or as a function of
frequency. If the latter, weights(freq) must return a nonnegative weight for
each frequency.

optional numeric scalar; if non-NA, this value is substituted for non-finite values
of the objective function. It should be a large number (i.e., bigger than any
legitimate values the objective function is likely to take).

optional; names of observed variables for which the power spectrum will be
computed. By default, the spectrum will be computed for all observables.

width parameter for the smoothing kernel used for calculating the estimate of
the spectrum.

the number of model simulations to be computed.

integer. When fitting, it is often best to fix the seed of the random-number
generator (RNG). This is accomplished by setting seed to an integer. By default,
seed = NULL, which does not alter the RNG state.

function; this transformation will be applied to the observables prior to estima-
tion of the spectrum, and prior to any detrending.

de-trending operation to perform. Options include no detrending, and subtrac-
tion of constant, linear, and quadratic trends from the data. Detrending is applied
to each data series and to each model simulation independently.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.

optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more in-
formation, see parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
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When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In spectrum matching, one attempts to minimize the discrepancy between a POMP model’s predic-
tions and data, as measured in the frequency domain by the power spectrum.

spect_objfun constructs an objective function that measures the discrepancy. It can be passed
to any one of a variety of numerical optimization routines, which will adjust model parameters to
minimize the discrepancies between the power spectrum of model simulations and that of the data.

Value

spect_objfun constructs a stateful objective function for spectrum matching. Specifically, spect_objfun
returns an object of class ‘spect_match_objfun’, which is a function suitable for use in an optim-

like optimizer. This function takes a single numeric-vector argument that is assumed to contain the
parameters named in est, in that order. When called, it will return the (optionally weighted) L?
distance between the data spectrum and simulated spectra. It is a stateful function: Each time it is
called, it will remember the values of the parameters and the discrepancy measure.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Important Note

Since pomp cannot guarantee that the final call an optimizer makes to the function is a call at
the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.
Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization
routine, which will ensure that these parameters are stored.

See Also

spect optim subplex nloptr

More on pomp estimation algorithms: approximate Bayesian computation, bsmc2(), estimation
algorithms, mif2(), nonlinear forecasting, pmcmc(), pomp-package, probe matching

More on methods based on summary statistics: approximate Bayesian computation, basic probes,
nonlinear forecasting, probe matching, probe(), spect()

More on maximization-based estimation methods: mif2(), nonlinear forecasting, probe matching,
trajectory matching
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Examples

ricker() %>%

spect_objfun(
est=c("r","sigma","N_0"),
partrans=parameter_trans(log=c("r","sigma","N_0")),
paramnames=c("r","sigma","”"N_0"),
kernel.width=3,
nsim=100,
seed=5069977

)y > f

f(log(c(20,0.3,10)))
f %>% spect() %>% plot()

library(subplex)
subplex(fn=f,par=1log(c(20,0.3,10)),control=list(reltol=1e-5)) -> out
f(out$par)

f %>% summary()

f %>% spect() %>% plot()

spy Spy

Description

Peek into the inside of one of pomp’s objects.

Usage
## S4 method for signature 'pomp'
spy(object)

Arguments

object the object whose structure we wish to examine

See Also

Csnippet

Other extraction methods: coef (), cond.logLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(), pred.mean(), pred.var(), saved.states(), states(),
summary (), timezero(), time(), traces()
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states Latent states

Description

Extract the latent states from a ‘pomp’ object.

Usage

## S4 method for signature 'pomp'
states(object, vars, ...)

## S4 method for signature 'listie'’

states(object, vars, ...)
Arguments
object an object of class ‘pomp’, or of a class extending ‘pomp’
vars names of variables to retrieve
ignored
See Also

Other extraction methods: coef (), cond.loglLik (), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(),pred.mean(), pred.var(), saved.states(), spy(),
summary (), timezero(), time(), traces()

summary Summary methods

Description

Display a summary of a fitted model object.

Usage

## S4 method for signature 'probed_pomp
summary (object, ...)
## S4 method for signature 'spectd_pomp'
summary(object, ...)

## S4 method for signature 'objfun'
summary (object, ...)
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Arguments
object a fitted model object
ignored or passed to the more primitive function
See Also

Other extraction methods: coef (), cond.loglLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(), pred.mean(), pred.var(), saved.states(), spy(),
states(), timezero(), time(), traces()

time Methods to extract and manipulate the obseration times

Description

Get and set the vector of observation times.

Usage

## S4 method for signature 'pomp'
time(x, t@ = FALSE, ...)

## S4 replacement method for signature 'pomp'

time(object, t@ = FALSE, ...) <- value
Arguments
X a ‘pomp’ object
to logical; should the zero time be included?
ignored or passed to the more primitive function
object a ‘pomp’ object
value numeric vector; the new vector of times
Details

time(object) returns the vector of observation times. time(object, t0=TRUE) returns the vector
of observation times with the zero-time t@ prepended.

time(object) <-value replaces the observation times slot (times) of object with value. time(object, t0=TRUE)
<-value has the same effect, but the first element in value is taken to be the initial time. The sec-

ond and subsequent elements of value are taken to be the observation times. Those data and states

(if they exist) corresponding to the new times are retained.

See Also

Other extraction methods: coef (), cond.loglLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(), pred.mean(), pred.var(), saved.states(), spy(),
states(), summary(), timezero(), traces()
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timezero The zero time

Description

Get and set the zero-time.

Usage

## S4 method for signature 'pomp'
timezero(object, ...)

## S4 replacement method for signature 'pomp'

timezero(object, ...) <- value
Arguments
object an object of class ‘pomp’, or of a class that extends ‘pomp’

ignored or passed to the more primitive function

value numeric; the new zero-time value

Value

the value of the zero time

See Also

Other extraction methods: coef (), cond.logLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(), pred.mean(), pred.var(), saved.states(), spy(),
states(), summary(), time(), traces()

traces Traces

Description

Retrieve the history of an iterative calculation.
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Usage

## S4 method for signature 'mif2d_pomp'
traces(object, pars, transform = FALSE, ...)

## S4 method for signature 'mif2List’
traces(object, pars, ...)

## S4 method for signature 'abcd_pomp'
traces(object, pars, ...)

## S4 method for signature 'abclList'
traces(object, pars, ...)

## S4 method for signature 'pmcmcd_pomp'
traces(object, pars, ...)

## S4 method for signature 'pmcmcList'

traces(object, pars, ...)
Arguments
object an object of class extending ‘pomp’, the result of the application of a parameter
estimation algorithm
pars names of parameters
transform logical; should the traces be transformed back onto the natural scale?

ignored or passed to the more primitive function

Details

Note that pmecmc does not currently support parameter transformations.

Value

When object is the result of amif2 calculation, traces(object, pars) returns the traces of the pa-
rameters named in pars. By default, the traces of all parameters are returned. If transform=TRUE,
the parameters are transformed from the natural scale to the estimation scale.

When object is a ‘abcd_pomp’, traces(object) extracts the traces as a coda: :mcmc.
When object is a ‘abcList’, traces(object) extracts the traces as a coda: :mcmc. list.
When object is a ‘pmecmcd_pomp’, traces(object) extracts the traces as a coda: :memc.

When object is a ‘pmemcList’, traces(object) extracts the traces as a coda: :memc. list.

See Also

Other extraction methods: coef (), cond.logLik(), covmat(), eff.sample.size(), filter.mean(),
filter.traj(), forecast(), loglLik, obs(), pred.mean(), pred.var(), saved.states(), spy(),
states(), summary(), timezero(), time()
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trajectory Trajectory of a deterministic model

Description

Compute trajectories of the deterministic skeleton of a Markov process.

Usage

## S4 method for signature 'missing'’
trajectory(

to,

times,

params,

skeleton,

rinit,

ode_control = list(),

format = c("pomps"”, "array”, "data.frame”),

verbose = getOption("verbose"”, FALSE)

## S4 method for signature 'data.frame'
trajectory(
object,
t0,
times,
params,
skeleton,
rinit,
ode_control = list(),
format = c("pomps”, "array"”, "data.frame"),
verbose = getOption("verbose”", FALSE)

## S4 method for signature 'pomp'
trajectory(

object,

params,

skeleton,

rinit,

ode_control = list(),

format = c("pomps”, "array"”, "data.frame"),
verbose = getOption("verbose", FALSE)
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## S4 method for signature 'traj_match_objfun'

trajectory(object, ..., verbose = getOption("”verbose"”, FALSE))
Arguments

t0 The zero-time, i.e., the time of the initial state. This must be no later than the
time of the first observation, i.e., t@ <= times[1].

times the sequence of observation times. times must indicate the column of obser-
vation times by name or index. The time vector must be numeric and non-
decreasing.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

skeleton optional; the deterministic skeleton of the unobserved state process. Depend-
ing on whether the model operates in continuous or discrete time, this is either a
vectorfield or a map. Accordingly, this is supplied using either the vectorfield
or map fnctions. For more information, see skeleton specification. Setting
skeleton=NULL removes the deterministic skeleton.

rinit simulator of the initial-state distribution. This can be furnished either as a C

ode_control

format

verbose
object

snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

optional list; the elements of this list will be passed to ode if the skeleton is a
vectorfield, and ignored if it is a map.

the format in which to return the results.

format = "pomps"” causes the trajectories to be returned as a single ‘pomp’ ob-
ject (if a single parameter vector have been furnished to trajectory) or as
a ‘pompList’ object (if multiple parameters have been furnished). In each of
these, the states slot will have been replaced by the computed trajectory. Use
states to view these.

format = "array"” causes the trajectories to be returned in a rank-3 array with
dimensions nvar x ncol(params) x ntimes. Here, nvar is the number of state
variables and ntimes the length of the argument times. Thus if x is the returned
array, x[ i, j, k] is the i-th component of the state vector at time times[k] given
parameters params[, jJ.

format = "data.frame" causes the results to be returned as a single data frame
containing the time and states. An ordered factor variable, ‘.id’, distinguishes
the trajectories from one another.

logical; if TRUE, diagnostic messages will be printed to the console.

optional; if present, it should be a data frame or a ‘pomp’ object.
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Details

In the case of a discrete-time system, the deterministic skeleton is a map and a trajectory is obtained
by iterating the map. In the case of a continuous-time system, the deterministic skeleton is a vector-
field; trajectory uses the numerical solvers in deSolve to integrate the vectorfield.

Value

The format option controls the nature of the return value of trajectory. See above for details.

See Also

More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package,
probe(), simulate(), spect(),wpfilter()

More on methods for deterministic process models: flow(), skeleton specification, skeleton(),
trajectory matching

Examples

## The basic components needed to compute trajectories
## of a deterministic dynamical system are
## rinit and skeleton.

## The following specifies these for a simple continuous-time
## model: dx/dt = r (1+e cos(t)) x

trajectory(
to = 0, times = seq(1,30,by=0.1),
rinit = function (x@, ...) {
c(x = x0)
1,
skeleton = vectorfield(
function (r, e, t, x, ...) {
c(x=rx(1+excos(t))*x)
3
),
params = c(r=1,e=3,x0=1)
) -> po

plot(po,log="y")

## In the case of a discrete-time skeleton,
## we use the 'map' function. For example,
## the following computes a trajectory from
## the dynamical system with skeleton

## x -> x exp(r sin(omega t)).

trajectory(
t0 = 0, times=seq(1,100),
rinit = function (x0, ...) {
c(x = x0)
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h
skeleton = map(
function (r, t, x, omega, ...) {
c(x=xxexp(r*sin(omegaxt)))
}
delta.t=1
),
params = c(r=1,x0=1,omega=4)
) => po
plot(po)

## generate a bifurcation diagram for the Ricker map
p <- parmat(coef(ricker()),nrep=500)
pL"r",] <- exp(seq(from=1.5,to=4,length=500))
trajectory(
ricker(),
times=seq(from=1000, t0=2000,by=1),
params=p,
format="array"
) => x
matplot(p["r",1,x["N",,]1,pch=".",col="black",
xlab=expression(log(r)),ylab="N",6log="x")

trajectory matching Trajectory matching

Description

Estimation of parameters for deterministic POMP models via trajectory matching.

Usage

## S4 method for signature 'data.frame'
traj_objfun(
data,
est = character(0),
fail.value = NA,
ode_control = list(),
params,
rinit,
skeleton,
dmeasure,
partrans,

L

verbose = getOption("verbose"”, FALSE)
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## S4 method for signature 'pomp'

traj_objfun(
data,

est = character(0),
fail.value = NA,

ode_control =

L

listQ),

verbose = getOption("verbose"”, FALSE)

## S4 method for signature 'traj_match_objfun

traj_objfun(
data,
est,
fail.value,
ode_control,

L

verbose = getOption("verbose", FALSE)

Arguments

data

est

fail.value

ode_control

params

rinit

skeleton

dmeasure

either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

character vector; the names of parameters to be estimated.

optional numeric scalar; if non-NA, this value is substituted for non-finite values
of the objective function. It should be a large number (i.e., bigger than any
legitimate values the objective function is likely to take).

optional list; the elements of this list will be passed to ode if the skeleton is a
vectorfield, and ignored if it is a map.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

optional; the deterministic skeleton of the unobserved state process. Depend-
ing on whether the model operates in continuous or discrete time, this is either a
vectorfield or a map. Accordingly, this is supplied using either the vectorfield
or map fnctions. For more information, see skeleton specification. Setting
skeleton=NULL removes the deterministic skeleton.

evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
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cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

partrans optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more in-
formation, see parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

additional arguments will modify the model structure

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In trajectory matching, one attempts to minimize the discrepancy between a POMP model’s predic-
tions and data under the assumption that the latent state process is deterministic and all discrep-
ancies between model and data are due to measurement error. The measurement model likelihood
(dmeasure), or rather its negative, is the natural measure of the discrepancy.

Trajectory matching is a generalization of the traditional nonlinear least squares approach. In par-
ticular, if, on some scale, measurement errors are normal with constant variance, then trajectory
matching is equivalent to least squares on that particular scale.

traj_objfun constructs an objective function that evaluates the likelihood function. It can be
passed to any one of a variety of numerical optimization routines, which will adjust model param-
eters to minimize the discrepancies between the power spectrum of model simulations and that of
the data.

Value

traj_objfun constructs a stateful objective function for spectrum matching. Specifically, traj_objfun
returns an object of class ‘traj_match_objfun’, which is a function suitable for use in an optim-like
optimizer. In particular, this function takes a single numeric-vector argument that is assumed to
contain the parameters named in est, in that order. When called, it will return the negative log like-
lihood. It is a stateful function: Each time it is called, it will remember the values of the parameters
and its estimate of the log likelihood.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Important Note

Since pomp cannot guarantee that the final call an optimizer makes to the function is a call at
the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.
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Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization
routine, which will ensure that these parameters are stored.

See Also

optim, subplex, nloptr

More on methods for deterministic process models: flow(), skeleton specification, skeleton(),
trajectory()

More on maximization-based estimation methods: mif2(), nonlinear forecasting, probe matching,
spectrummatching

Examples

ricker() %>%
traj_objfun(
est=c("r","sigma","N_0"),
partrans=parameter_trans(log=c("r","sigma","N_0")),
paramnames=c("r","sigma","”"N_0"),
)y > f

f(log(c(20,0.3,10)))

library(subplex)
subplex(fn=f,par=log(c(20,0.3,10)),control=list(reltol=1e-5)) -> out
f(out$par)

library(ggplot2)

f %>%

trajectory(format="data.frame") %>%
ggplot(aes(x=time, y=N))+geom_line()+theme_bw()

transformations Transformations

Description

Some useful parameter transformations.

Usage
logit(p)

expit(x)
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log_barycentric(X)

inv_log_barycentric(Y)

Arguments
p numeric; a quantity in [0,1].
X numeric; the log odds ratio.
X numeric; a vector containing the quantities to be transformed according to the
log-barycentric transformation.
Y numeric; a vector containing the log fractions.
Details

Parameter transformations can be used in many cases to recast constrained optimization problems
as unconstrained problems. Although there are no limits to the transformations one can implement
using the parameter_trans facilty, pomp provides a few ready-built functions to implement some
very commonly useful ones.

The logit transformation takes a probability p to its log odds, log 1’%}). It maps the unit interval [0, 1]
into the extended real line [—o0, o).

The inverse of the logit transformation is the expit transformation.

The log-barycentric transformation takes a vector X;,¢ = 1,...,n, to a vector Y;, where

X;
Y, =1 .
o8 Eij

If X is an n-vector, it takes every simplex defined by ), X; = ¢, c constant, to n-dimensional
Euclidean space R™.

The inverse of the log-barycentric transformation is implemented as inv_log_barycentric. Note
that it is not a true inverse, in the sense that it takes R" to the unit simplex, | ; X; = 1. Thus,

log_barycentric(inv_log_barycentric(Y)) ==Y,
but

inv_log_barycentric(log_barycentric(X)) == X
only if sum(X) == 1.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp-package, pomp, prior specification,
rinit specification, rmeasure specification, rprocess specification, skeleton specification,
userdata, vmeasure specification
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userdata Facilities for making additional information to basic components

Description

When POMP basic components need information they can’t get from parameters or covariates.

Details

It can happen that one desires to pass information to one of the POMP model basic components
(see here for a definition of this term) outside of the standard routes (i.e., via model parameters or
covariates). pomp provides facilities for this purpose. We refer to the objects one wishes to pass in
this way as user data.

The following will apply to every basic model component. For the sake of definiteness, however,
we’ll use the rmeasure component as an example. To be even more specific, the measurement
model we wish to implement is

y1 ~ Poisson(x1+theta), y2 ~ Poisson(x2+theta),

where theta is a parameter. Although it would be very easy (and indeed far preferable) to include
theta among the ordinary parameters (by including it in params), we will assume here that we
have some reason for not wanting to do so.

Now, we have the choice of providing rmeasure in one of three ways:

1. as an R function,
2. as a C snippet, or

3. as a procedure in an external, dynamically loaded library.

We’ll deal with these three cases in turn.

When the basic component is specified as an R function

We can implement a simulator for the aforementioned measurement model so:

f <- function (t, x, params, theta, ...) {
y <= rpois(n=2,x[c("x1","x2")]+theta)
setNames(y,c("y1","y2"))

3

So far, so good, but how do we get theta to this function? We simply provide an additional
argument to whichever pomp algorithm we are employing (e.g., simulate, pfilter, mif2, abc,
etc.). For example:

simulate(..., rmeasure = f, theta = 42, ...)

where the ... represent the other simulate arguments we might want to supply. When we do
so, a message will be generated, informing us that theta is available for use by the POMP basic
components. This warning helps forestall accidental triggering of this facility due to typographical
error.
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When the basic component is specified via a C snippet

A C snippet implementation of the aforementioned measurement model is:

f <- Csnippet(”

double theta = x(get_userdata_double(\"theta\"));
y1 = rpois(x1+theta); y2 = rpois(x2+theta);

II)

Here, the call to get_userdata_double retrieves a pointer to the stored value of theta. Note the
need to escape the quotes in the C snippet text.

It is possible to store and retrieve integer objects also, using get_userdata_int.

One must take care that one stores the user data with the appropriate storage type. For example, it
is wise to wrap floating point scalars and vectors with as.double and integers with as.integer.
In the present example, our call to simulate might look like

simulate(..., rmeasure = f, theta = as.double(42), ...)

Since the two functions get_userdata_double and get_userdata_int return pointers, it is trivial
to pass vectors of double-precision and integers.

A simpler and more elegant approach is afforded by the globals argument (see below).

When the basic component is specified via an external library

The rules are essentially the same as for C snippets. typedef declarations for the get_userdata_double
and get_userdata_int are given in the ‘pomp.h’ header file and these two routines are registered

so that they can be retrieved via a call to R_GetCCallable. See the Writing R extensions manual

for more information.

Setting globals

The use of the userdata facilities incurs a run-time cost. It is faster and more elegant, when using C
snippets, to put the needed objects directly into the C snippet library. The globals argument does
this. See the example below.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp-package, pomp, prior specification,
rinit specification, rmeasure specification, rprocess specification, skeleton specification,
transformations, vmeasure specification

Examples

## The familiar Ricker example
## For some bizarre reason, we wish to pass 'phi'
## via the userdata facility.


https://cran.r-project.org/doc/manuals/R-exts.html
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## C snippet approach:

simulate(times=1:100,t0=0,
phi=as.double(100),
params=c(r=3.8,sigma=0.3,N.0=7),
rprocess=discrete_time(
step.fun=Csnippet ("
double e = (sigma > 0.0) ? rnorm(Q,sigma) : 0.0;
N = r*N*xexp(-N+e);"
),
delta.t=1
),
rmeasure=Csnippet ("
double phi = *(get_userdata_double(\"phi\"));
y = rpois(phi*N);"
),
paramnames=c("r","sigma"),
statenames="N",
obsnames="y"
) -> rickl

## The same problem solved using 'globals':
simulate(times=1:100,t0=0,
globals=Csnippet(”static double phi = 100;"),
params=c(r=3.8,sigma=0.3,N.0=7),
rprocess=discrete_time(
step. fun=Csnippet ("
double e = (sigma > ©0.0) ? rnorm(Q,sigma) : 0.0;
N = r*Nxexp(-N+e);"
),
delta.t=1
),
rmeasure=Csnippet ("
y = rpois(phi*N);"
),
paramnames=c("r","sigma"),
statenames="N",
obsnames="y"
) -> rick2

## Finally, the R function approach:

simulate(times=1:100,t0=0,
phi=100,
params=c(r=3.8,sigma=0.3,N_0=7),
rprocess=discrete_time(
step.fun=function (r, N, sigma, ...) {
e <- rnorm(n=1,mean=0,sd=sigma)
c(N=rxN*exp(-N+e))
1,
delta.t=1
),



162 verhulst

rmeasure=function(phi, N, ...) {
c(y=rpois(n=1,lambda=phixN))
3

) -> rick3

verhulst Verhulst-Pearl model

Description

The Verhulst-Pearl (logistic) model of population growth.

Usage

verhulst(n_0 = 10000, K = 10000, r = 0.9, sigma = 0.4, tau = 0.1, dt = 0.01)

Arguments
n_o initial condition
K carrying capacity
r intrinsic growth rate
sigma environmental process noise s.d.
tau measurement error s.d.
dt Euler timestep
Details

A stochastic version of the Verhulst-Pearl logistic model. This evolves in continuous time, accord-
ing to the stochastic differential equation

dn=rn (1—%) dt + ondW.

Numerically, we simulate the stochastic dynamics using an Euler approximation.
The measurements are assumed to be log-normally distributed.
Value

A ‘pomp’ object containing the model and simulated data. The following basic components are
included in the ‘pomp’ object: ‘rinit’, ‘rprocess’, ‘rmeasure’, ‘dmeasure’, and ‘skeleton’.

See Also

More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(),
ebola, gompertz(), ou2(), pomp examples, ricker(), rw2()



vmeasure

Examples

## Not run:
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verhulst() -> po

plot(po)

plot(simulate(po))
pfilter(po,Np=1000) -> pf

logLik(pf)
spy(po)

## End(Not run)

vmeasure

vmedasure

Description

Return the covariance matrix of the observed variables, given values of the latent states and the

parameters.
Usage

## S4 method for signature 'pomp'

vmeasure(object, x, times, params, ...)
Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

X an array containing states of the unobserved process. The dimensions of x are
nvars x nrep X ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.
additional arguments are ignored.

Value

vmeasure returns a rank-4 array of dimensions nobs x nobs x nrep x ntimes, where nobs is the
number of observed variables. If v is the returned array, v[,, j,k] contains the covariance matrix
at time times[k] given the state x[, j, k1.
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See Also

Specification of the measurement-model covariance matrix: vmeasure specification

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), workhorses

vmeasure specification
The variance of the measurement model

Description

Specification of the measurement-model covariance matrix, vmeasure.

Details

The measurement model is the link between the data and the unobserved state process. Some
algorithms require the conditional covariance of the measurement model, given the latent state and
parameters. This is supplied using the vmeasure argument.

Suppose you have a procedure to compute this conditional covariance matrix, given the value of the
latent state variables. Then you can furnish

vmeasure = f

to pomp algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets.

In writing a vmeasure C snippet, bear in mind that:

1. The goal of such a snippet is to fill variables named V_y_z with the conditional covariances of
observables y, z. Accordingly, there should be one assignment of V_y_z and one assignment
of V_z_y for each pair of observables y and z.

2. In addition to the states, parameters, and covariates (if any), the variable t, containing the time
of the observation, will be defined in the context in which the snippet is executed.

The demos and the tutorials on the package website give examples.

It is also possible, though less efficient, to specify vmeasure using an R function. In this case,
specify it by furnishing

vmeasure = f

to pomp, where f is an R function. The arguments of f should be chosen from among the state
variables, parameters, covariates, and time. It must also have the argument .... f must return a
square matrix of dimension equal to the number of observable variables. The row- and column-
names of this matrix should match the names of the observable variables. The matrix should of
course be symmetric.


https://kingaa.github.io/pomp/
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Default behavior

The default vmeasure is undefined. It will yield missing values (NA).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

vmeasure

More on implementing POMP models: Csnippet, accumulator variables, basic components,
betabinomial, covariates, distributions, dmeasure specification, dprocess specification,
emeasure specification, parameter transformations, pomp-package, pomp, prior specification,
rinit specification, rmeasure specification, rprocess specification, skeleton specification,
transformations, userdata

window Window

Description

Restrict to a portion of a time series.

Usage
## S4 method for signature 'pomp'
window(x, start, end, ...)
Arguments
X a ‘pomp’ object or object of class extending ‘pomp’
start, end the left and right ends of the window, in units of time

ignored
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workhorses Workhorse functions for the pomp algorithms.

Description

These functions mediate the interface between the user’s model and the package algorithms. They
are low-level functions that do the work needed by the package’s inference methods.

Details

They include

dmeasure which evaluates the measurement model density,
rmeasure which samples from the measurement model distribution,
emeasure which computes the expectation of the observed variables conditional on the latent state,

vmeasure which computes the covariance matrix of the observed variables conditional on the latent
state,

dprocess which evaluates the process model density,

rprocess which samples from the process model distribution,

dprior which evaluates the prior probability density,

rprior which samples from the prior distribution,

skeleton which evaluates the model’s deterministic skeleton,

flow which iterates or integrates the deterministic skeleton to yield trajectories,

partrans which performs parameter transformations associated with the model.

Author(s)

Aaron A. King

See Also

basic model components, elementary algorithms, estimation algorithms

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure()
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wpfilter Weighted particle filter

Description

A sequential importance sampling (particle filter) algorithm. Unlike in pfilter, resampling is
performed only when triggered by deficiency in the effective sample size.

Usage

## S4 method for signature 'data.frame'
wpfilter(

data,

Np,

params,

rinit,

rprocess,

dmeasure,

trigger = 1,

target = 0.5,

verbose = getOption("”verbose"”, FALSE)
)

## S4 method for signature 'pomp'
wpfilter(

data,

Np,

trigger = 1,

target = 0.5,

verbose = getOption("verbose"”, FALSE)
)

## S4 method for signature 'wpfilterd_pomp'

wpfilter(data, Np, trigger, target, ..., verbose = getOption("”verbose"”, FALSE))
Arguments
data either a data frame holding the time series data, or an object of class ‘pomp’,

i.e., the output of another pomp calculation. Internally, data will be internally
coerced to an array with storage-mode double.

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length
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params

rinit

rprocess

dmeasure

trigger

target

verbose

Details

wpfilter

length(time(object, t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np (k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(@) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[11], and so on, while when T=1length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

numeric; if the effective sample size becomes smaller than trigger * Np, re-
sampling is triggered.

numeric; target power.

additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See userdata for
information on how to use this facility.

logical; if TRUE, diagnostic messages will be printed to the console.

This function is experimental and should be considered in alpha stage. Both interface and
underlying algorithms may change without warning at any time. Please explore the function
and give feedback via the pomp Issues page.

Value

An object of class ‘wpfilterd_pomp’, which extends class ‘pomp’. Information can be extracted
from this object using the methods documented below.

Methods

loglLik the estimated log likelihood
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cond.loglLik the estimated conditional log likelihood
eff.sample.size the (time-dependent) estimated effective sample size
as.data.frame coerce to a data frame

plot diagnostic plots

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)

Aaron A. King

References

M.S. Arulampalam, S. Maskell, N. Gordon, & T. Clapp. A tutorial on particle filters for online
nonlinear, non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50, 174—188,
2002.

See Also
More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package,
probe(), simulate(), spect(), trajectory()

More on sequential Monte Carlo methods: bsmc2(), cond.loglik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman,mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states()

More on full-information (i.e., likelihood-based) methods: bsmc2 (), mif2(), pfilter(), pmcmc()
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