Package 'pomp'

April 12, 2022

Type Package

Title Statistical Inference for Partially Observed Markov Processes

Version 4.2

Date 2022-04-11

URL https://kingaa.github.io/pomp/

Description Tools for data analysis with partially observed Markov process (POMP) models (also known as stochastic dynamical systems, hidden Markov models, and nonlinear, non-Gaussian, state-space models). The package provides facilities for implementing POMP models, simulating them, and fitting them to time series data by a variety of frequentist and Bayesian methods. It is also a versatile platform for implementation of inference methods for general POMP models.

Depends R(>=4.0.0), methods

Imports stats, graphics, digest, mvtnorm, deSolve, coda, reshape2, magrittr, plyr

Suggests ggplot2, knitr, tidyr, dplyr, subplex, nloptr

SystemRequirements For Windows users, Rtools (see https://cran.r-project.org/bin/windows/Rtools/).

License GPL-3

LazyData true

Contact kingaa at umich dot edu

BugReports https://github.com/kingaa/pomp/issues/

Encoding UTF-8

Collate 'pstop.R' 'undefined.R' 'package.R' 'csnippet.R' 'pomp_fun.R' 'parameter_trans.R' 'covariate_table.R' 'skeleton_spec.R' 'rprocess_spec.R' 'safecall.R' 'pomp_class.R' 'load.R' 'workhorses.R' 'continue.R' 'summary.R' 'prior_spec.R' 'dmeasure_spec.R' 'dprocess_spec.R' 'rmeasure_spec.R' 'rinit_spec.R' 'templates.R' 'builder.R' 'pomp.R' 'probe.R' 'abc.R' 'accumulators.R' 'kalman.R' 'pfilter.R' 'wpfilter.R' 'proposals.R' 'pmcmc.R' 'mif2.R' 'listie.R' 'simulate.R' 'spect.R' 'plot.R' 'bsmc2.R' 'as_data_frame.R' 'as_pomp.R'

'authors.R' 'bake.R' 'basic_components.R' 'basic_probes.R' 'betabinom.R' 'blowflies.R' 'bsflu.R' 'bsplines.R' 'childhood.R' 'coef.R' 'concat.R' 'cond_logLik.R' 'covmat.R' 'dacca.R' 'design.R' 'distributions.R' 'ebola.R' 'eff_sample_size.R' 'elementary_algorithms.R' 'emeasure_spec.R' 'estimation_algorithms.R' 'extract.R' 'filter_mean.R' 'filter_traj.R' 'flow.R' 'forecast.R' 'gompertz.R' 'kf.R' 'probe_match.R' 'spect_match.R' 'nlf.R' 'trajectory.R' 'traj_match.R' 'objfun.R' 'loglik.R' 'logmeanexp.R' 'lookup.R' 'mcap.R' 'melt.R' 'obs.R' 'ou2.R' 'parmat.R' 'parus.R' 'pipe.R' 'pomp_examp.R' 'pred_mean.R' 'pred_var.R' 'show.R' 'print.R' 'profile_design.R' 'resample.R' 'ricker.R' 'runif_design.R' 'rw2.R' 'sannbox.R' 'saved_states.R' 'sir.R' 'slice_design.R' 'sobol_design.R' 'spy.R' 'states.R' 'time.R' 'timezero.R' 'traces.R' 'transformations.R' 'userdata.R' 'verhulst.R' 'vmeasure_spec.R' 'window.R'
RoxygenNote 7.1.2
NeedsCompilation yes
Author Aaron A. King [aut, cre], Edward L. Ionides [aut], Carles Breto [aut], Stephen P. Ellner [ctb], Matthew J. Ferrari [ctb], Sebastian Funk [ctb], Steven G. Johnson [ctb], Bruce E. Kendall [ctb], Michael Lavine [ctb], Dao Nguyen [ctb], Eamon B. O'Dea [ctb], Daniel C. Reuman [ctb], Helen Wearing [ctb], Simon N. Wood [ctb]
Maintainer Aaron A. King <kingaa@umich.edu></kingaa@umich.edu>
Repository CRAN
Date/Publication 2022-04-11 22:40:02 UTC

R topics documented:

pomp-package	5
accumulator variables	7
approximate Bayesian computation	10
basic components	13
basic probes	14
betabinomial	16
blowflies	17
bsflu	19

bsmc2	 	20
bsplines	 	23
childhood disease data	 	24
coef		
cond.logLik		
continue		
covariates		
covmat		
Csnippet		
dacca		
design		
distributions		
dmeasure		
dmeasure specification		
dprior		
•		
dprocess		
dprocess specification		
ebola		
eff.sample.size		
elementary algorithms		
emeasure		
emeasure specification		
estimation algorithms		
filter.mean		
filter.traj		
flow	 	54
forecast	 	55
gompertz	 	56
hitch	 	57
kalman	 	59
kalmanFilter	 	61
logLik		
logmeanexp		
lookup		
mcap		66
mif2		
nonlinear forecasting		
obs		
ou2		70 77
parameter transformations		
•		0.0
parmat		0.0
partrans		0.2
parus	• • •	
pfilter	• •	84
plot	• •	87
pmcmc	• •	89
pomp		92
pomp examples	 	97

Index

pred.mean	
ored.var	
prior specification	
probe	
probe matching	
proposals	
reproducibility tools	
ricker	
init	
rinit specification	
measure	
measure specification	
prior	
process	
process specification	
w.sd	
rw2	
sannbox	
saved.states	
simulate	
SIR models	
skeleton	
skeleton specification	
spect	
spectrum matching	
spy	
states	
summary	
ime	
imezero	
races	
rajectory	
rajectory matching	
ransformations	
userdata	
verhulst	
vmeasure	
vmeasure specification	
window	
workhorses	
wpfilter	. 167
	150
	170

pomp-package 5

Description

The **pomp** package provides facilities for inference on time series data using partially-observed Markov process (POMP) models. These models are also known as state-space models, hidden Markov models, or nonlinear stochastic dynamical systems. One can use **pomp** to fit nonlinear, non-Gaussian dynamic models to time-series data. The package is both a set of tools for data analysis and a platform upon which statistical inference methods for POMP models can be implemented.

Data analysis using pomp

pomp provides algorithms for:

- 1. Simulation of stochastic dynamical systems; see simulate.
- 2. Particle filtering (AKA sequential Monte Carlo or sequential importance sampling); see pfilter and wpfilter.
- 3. The iterated filtering methods of Ionides et al. (2006, 2011, 2015); see mif2.
- 4. The nonlinear forecasting algorithm of Kendall et al. (2005); see nonlinear forecasting.
- 5. The particle MCMC approach of Andrieu et al. (2010); see pmcmc.
- 6. The probe-matching method of Kendall et al. (1999, 2005); see probe matching.
- 7. Synthetic likelihood a la Wood (2010); see probe.
- 8. A spectral probe-matching method (Reuman et al. 2006, 2008); see spectrum matching.
- 9. Approximate Bayesian computation (Toni et al. 2009); see abc.
- 10. The approximate Bayesian sequential Monte Carlo scheme of Liu & West (2001); see bsmc2.
- 11. Ensemble and ensemble adjusted Kalman filters; see kalman.
- 12. Simple trajectory matching; see trajectory matching.

The package also provides various tools for plotting and extracting information on models and data.

Structure of the package

pomp algorithms are arranged on several levels. At the top level, estimation algorithms estimate model parameters and return information needed for other aspects of inference. Elementary algorithms perform common operations on POMP models, including simulation, filtering, and application of diagnostic probes; these functions may be useful in inference, but they do not themselves perform estimation. At the lowest level, workhorse functions provide the interface to basic POMP model components. Beyond these, pomp provides a variety of auxiliary functions for manipulating and extracting information from 'pomp' objects, producing diagnostic plots, facilitating reproducible computations, and so on.

6 pomp-package

Implementing a model

The basic structure at the heart of the package is the 'pomp object'. This is a container holding a time series of data (possibly multivariate) and a model. The model is specified by specifying some or all of its basic model components. One does this using the basic component arguments to the pomp constructor. One can also add, modify, or delete basic model components "on the fly" in any pomp function that accepts them.

Documentation and examples

The package contains a number of examples. Some of these are included in the help pages. In addition, several pre-built POMP models are included with the package. Tutorials and other documentation, including a package FAQ, are available from the package website.

Useful links

- pomp homepage: https://kingaa.github.io/pomp/
- Report bugs to: https://github.com/kingaa/pomp/issues
- Frequently asked questions: https://kingaa.github.io/pomp/FAQ.html
- User guides and tutorials: https://kingaa.github.io/pomp/docs.html
- pomp news: https://kingaa.github.io/pomp/blog.html

Citing pomp

Execute citation("pomp") to view the correct citation for publications.

Author(s)

Aaron A. King

References

A. A. King, D. Nguyen, and E. L. Ionides. Statistical inference for partially observed Markov processes via the package **pomp**. *Journal of Statistical Software* **69**(12), 1–43, 2016. An updated version of this paper is available on the package website.

See the package website for more references, including many publications that use **pomp**.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

More on **pomp** workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), partrans(), rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses More on **pomp** estimation algorithms: approximate Bayesian computation, bsmc2(), estimation algorithms, mif2(), nonlinear forecasting, pmcmc(), probe matching, spectrum matching

accumulator variables 7

More on **pomp** elementary algorithms: elementary algorithms, kalman, pfilter(), probe(), simulate(), spect(), trajectory(), wpfilter()

accumulator variables accumulator variables

Description

Latent state variables that accumulate quantities through time.

Details

In formulating models, one sometimes wishes to define a state variable that will accumulate some quantity over the interval between successive observations. **pomp** provides a facility to make such features more convenient. Specifically, variables named in the pomp's accumvars argument will be set to zero immediately following each observation. See sir and the tutorials on the package website for examples.

See Also

sir

More on implementing POMP models: Csnippet, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

Examples

```
## A simple SIR model.
ewmeas %>%
  subset(time < 1952) %>%
  pomp(
    times="time", t0=1948,
    rprocess=euler(
      Csnippet("
      int nrate = 6;
      double rate[nrate];
                             // transition rates
      double trans[nrate];
                              // transition numbers
      double dW;
      // gamma noise, mean=dt, variance=(sigma^2 dt)
      dW = rgammawn(sigma,dt);
      // compute the transition rates
      rate[0] = mu*pop;
                             // birth into susceptible class
      rate[1] = (iota+Beta*I*dW/dt)/pop; // force of infection
```

8 accumulator variables

```
rate[2] = mu;
                             // death from susceptible class
      rate[3] = gamma;
                             // recovery
      rate[4] = mu;
                             // death from infectious class
      rate[5] = mu;
                             // death from recovered class
      // compute the transition numbers
      trans[0] = rpois(rate[0]*dt); // births are Poisson
      reulermultinom(2,S,&rate[1],dt,&trans[1]);
      reulermultinom(2,I,&rate[3],dt,&trans[3]);
      reulermultinom(1,R,&rate[5],dt,&trans[5]);
      // balance the equations
      S += trans[0]-trans[1]-trans[2];
      I += trans[1]-trans[3]-trans[4];
     R += trans[3]-trans[5];
    "),
    delta.t=1/52/20
    ),
    rinit=Csnippet("
      double m = pop/(S_0+I_0+R_0);
      S = nearbyint(m*S_0);
     I = nearbyint(m*I_0);
      R = nearbyint(m*R_0);
  "),
  paramnames=c("mu","pop","iota","gamma","Beta","sigma",
    "S_0","I_0","R_0"),
  statenames=c("S","I","R"),
  params=c(mu=1/50,iota=10,pop=50e6,gamma=26,Beta=400,sigma=0.1,
    S_0=0.07, I_0=0.001, R_0=0.93)
  ) -> ew1
ew1 %>%
  simulate() %>%
 plot(variables=c("S","I","R"))
## A simple SIR model that tracks cumulative incidence.
ew1 %>%
  pomp(
    rprocess=euler(
      Csnippet('
      int nrate = 6;
      double rate[nrate];
                            // transition rates
      double trans[nrate];  // transition numbers
      double dW;
      // gamma noise, mean=dt, variance=(sigma^2 dt)
      dW = rgammawn(sigma,dt);
      \ensuremath{//} compute the transition rates
      rate[0] = mu*pop;  // birth into susceptible class
      rate[1] = (iota+Beta*I*dW/dt)/pop; // force of infection
      rate[2] = mu;
                            // death from susceptible class
```

accumulator variables 9

```
rate[3] = gamma;
                              // recovery
      rate[4] = mu;
                              // death from infectious class
      rate[5] = mu;
                              // death from recovered class
      // compute the transition numbers
      trans[0] = rpois(rate[0]*dt); // births are Poisson
      reulermultinom(2,S,&rate[1],dt,&trans[1]);
      reulermultinom(2,I,&rate[3],dt,&trans[3]);
      reulermultinom(1,R,&rate[5],dt,&trans[5]);
      // balance the equations
      S += trans[0]-trans[1]-trans[2];
      I += trans[1]-trans[3]-trans[4];
     R += trans[3]-trans[5];
     H += trans[3];
                              // cumulative incidence
    "),
    delta.t=1/52/20
    ),
    rmeasure=Csnippet("
      double mean = H*rho;
      double size = 1/tau;
      reports = rnbinom_mu(size,mean);
  "),
  rinit=Csnippet("
     double m = pop/(S_0+I_0+R_0);
      S = nearbyint(m*S_0);
     I = nearbyint(m*I_0);
     R = nearbyint(m*R_0);
     H = 0;
  "),
  paramnames=c("mu","pop","iota","gamma","Beta","sigma","tau","rho",
    "S_0","I_0","R_0"),
  statenames=c("S","I","R","H"),
  params=c(mu=1/50,iota=10,pop=50e6,gamma=26,
    Beta=400, sigma=0.1, tau=0.001, rho=0.6,
    S_0=0.07, I_0=0.001, R_0=0.93)
  ) -> ew2
ew2 %>%
  simulate() %>%
 plot()
## A simple SIR model that tracks weekly incidence.
ew2 %>%
  pomp(accumvars="H") -> ew3
ew3 %>%
  simulate() %>%
 plot()
```

```
approximate Bayesian computation Approximate\ Bayesian\ computation
```

Description

The approximate Bayesian computation (ABC) algorithm for estimating the parameters of a partially-observed Markov process.

Usage

```
## S4 method for signature 'data.frame'
abc(
  data,
 Nabc = 1,
  proposal,
  scale,
  epsilon,
  probes,
  params,
  rinit,
  rprocess,
  rmeasure,
  dprior,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
abc(
  data,
 Nabc = 1,
 proposal,
  scale,
  epsilon,
 probes,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'probed_pomp'
abc(data, probes, ..., verbose = getOption("verbose", FALSE))
## S4 method for signature 'abcd_pomp'
abc(
  data,
 Nabc,
```

```
proposal,
  scale,
  epsilon,
  probes,
  . . . ,
  verbose = getOption("verbose", FALSE)
)
```

Arguments

data either a data frame holding the time series data, or an object of class 'pomp',

i.e., the output of another **pomp** calculation. Internally, data will be internally

coerced to an array with storage-mode double.

Nabc the number of ABC iterations to perform.

proposal optional function that draws from the proposal distribution. Currently, the pro-

> posal distribution must be symmetric for proper inference: it is the user's responsibility to ensure that it is. Several functions that construct appropriate proposal

function are provided: see MCMC proposals for more information.

scale named numeric vector of scales.

epsilon ABC tolerance.

probes a single probe or a list of one or more probes. A probe is simply a scalar- or

> vector-valued function of one argument that can be applied to the data array of a 'pomp'. A vector-valued probe must always return a vector of the same size. A number of useful probes are provided with the package: see basic probes.

optional; named numeric vector of parameters. This will be coerced internally params

to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C rinit

> snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-

tion, see rprocess specification for the documentation on these plugins.

simulator of the measurement model, specified either as a C snippet, an R funcrmeasure

> tion, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rmeasure=NULL removes the measurement model simu-

lator. For more information, see rmeasure specification.

optional; prior distribution density evaluator, specified either as a C snippet, dprior

> an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. For more information, see prior specification. Setting dprior=NULL resets the prior distribution to its default, which is a flat improper

prior.

additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for information on how to use this facility.

verbose

logical; if TRUE, diagnostic messages will be printed to the console.

Running ABC

abc returns an object of class 'abcd_pomp'. One or more 'abcd_pomp' objects can be joined to form an 'abcList' object.

Re-running ABC iterations

To re-run a sequence of ABC iterations, one can use the abc method on a 'abcd_pomp' object. By default, the same parameters used for the original ABC run are re-used (except for verbose, the default of which is shown above). If one does specify additional arguments, these will override the defaults.

Continuing ABC iterations

One can continue a series of ABC iterations from where one left off using the continue method. A call to abc to perform Nabc=m iterations followed by a call to continue to perform Nabc=n iterations will produce precisely the same effect as a single call to abc to perform Nabc=m+n iterations. By default, all the algorithmic parameters are the same as used in the original call to abc. Additional arguments will override the defaults.

Methods

The following can be applied to the output of an abc operation:

abc repeats the calculation, beginning with the last state

continue continues the abc calculation

plot produces a series of diagnostic plots

traces produces an mcmc object, to which the various coda convergence diagnostics can be applied

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Edward L. Ionides, Aaron A. King

basic components 13

References

J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate Bayesian computational methods. *Statistics and Computing* **22**, 1167–1180, 2012.

T. Toni and M. P. H. Stumpf. Simulation-based model selection for dynamical systems in systems and population biology. *Bioinformatics* **26**, 104–110, 2010.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. *Journal of the Royal Society Interface* **6**, 187–202, 2009.

See Also

More on methods based on summary statistics: basic probes, nonlinear forecasting, probe matching, probe(), spectrum matching, spect()

More on **pomp** estimation algorithms: bsmc2(), estimation algorithms, mif2(), nonlinear forecasting, pmcmc(), pomp-package, probe matching, spectrum matching

More on Markov chain Monte Carlo methods: pmcmc(), proposals

More on Bayesian methods: bsmc2(), dprior(), pmcmc(), prior specification, rprior()

basic components

Basic POMP model components.

Description

Mathematically, the parts of a POMP model include the latent-state process transition distribution, the measurement-process distribution, the initial-state distribution, and possibly a prior parameter distribution. Algorithmically, each of these corresponds to at least two distinct operations. In particular, for each of the above parts, one sometimes needs to make a random draw from the distribution and sometimes to evaluate the density function. Accordingly, for each such component, there are two basic model components, one prefixed by a 'r', the other by a 'd', following the usual R convention.

Details

In addition to the parts listed above, **pomp** includes two additional basic model components: the deterministic skeleton, and parameter transformations that can be used to map the parameter space onto a Euclidean space for estimation purposes.

There are thus altogether eleven **basic model components**:

- 1. rprocess, which samples from the latent-state transition distribution,
- 2. dprocess, which evaluates the latent-state transition density,
- 3. rmeasure, which samples from the measurement distribution,
- 4. emeasure, which computes the conditional expectation of the measurements, given the latent states,

14 basic probes

5. vmeasure, which computes the conditional covariance matrix of the measurements, given the latent states,

- 6. dmeasure, which evaluates the measurement density,
- 7. rprior, which samples from the prior distribution,
- 8. dprior, which evaluates the prior density,
- 9. rinit, which samples from the initial-state distribution,
- 10. skeleton, which evaluates the deterministic skeleton,
- 11. partrans, which evaluates the forward or inverse parameter transformations.

Each of these can be set or modified in the pomp constructor function or in any of the **pomp** elementary algorithms or estimation algorithms using an argument that matches the basic model component. A basic model component can be unset by passing NULL in the same way.

Help pages detailing each basic model component are provided.

See Also

workhorse functions, elementary algorithms, estimation algorithms.

More on implementing POMP models: Csnippet, accumulator variables, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

basic probes

Useful probes for partially-observed Markov processes

Description

Several simple and configurable probes are provided with in the package. These can be used directly and as templates for custom probes.

Usage

```
probe.mean(var, trim = 0, transform = identity, na.rm = TRUE)
probe.median(var, na.rm = TRUE)
probe.var(var, transform = identity, na.rm = TRUE)
probe.sd(var, transform = identity, na.rm = TRUE)
probe.period(var, kernel.width, transform = identity)
probe.quantile(var, probs, ...)
```

basic probes 15

```
probe.acf(
  var,
  lags,
  type = c("covariance", "correlation"),
  transform = identity
)

probe.ccf(
  vars,
  lags,
  type = c("covariance", "correlation"),
  transform = identity
)

probe.marginal(var, ref, order = 3, diff = 1, transform = identity)

probe.nlar(var, lags, powers, transform = identity)
```

Arguments

var, vars character; the name(s) of the observed variable(s).

trim the fraction of observations to be trimmed (see mean).

transform transformation to be applied to the data before the probe is computed.

na.rm if TRUE, remove all NA observations prior to computing the probe.

kernel.width width of modified Daniell smoothing kernel to be used in power-spectrum com-

putation: see kernel.

probs the quantile or quantiles to compute: see quantile.

. . . additional arguments passed to the underlying algorithms.

lags In probe.ccf, a vector of lags between time series. Positive lags correspond to

x advanced relative to y; negative lags, to the reverse.

In probe.nlar, a vector of lags present in the nonlinear autoregressive model that will be fit to the actual and simulated data. See Details, below, for a precise

description.

type Compute autocorrelation or autocovariance?

ref empirical reference distribution. Simulated data will be regressed against the

values of ref, sorted and, optionally, differenced. The resulting regression coefficients capture information about the shape of the marginal distribution. A

good choice for ref is the data itself.

order order of polynomial regression.

diff order of differencing to perform.

powers the powers of each term (corresponding to lags) in the the nonlinear autoregres-

sive model that will be fit to the actual and simulated data. See Details, below,

for a precise description.

16 betabinomial

Value

A call to any one of these functions returns a probe function, suitable for use in probe or probe_objfun. That is, the function returned by each of these takes a data array (such as comes from a call to obs) as input and returns a single numerical value.

Author(s)

Daniel C. Reuman, Aaron A. King

References

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet, and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. *Ecology* **80**, 1789–1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. *Nature* **466**, 1102–1104, 2010.

See Also

More on methods based on summary statistics: approximate Bayesian computation, nonlinear forecasting, probe matching, probe(), spectrum matching, spect()

|--|

Description

Density and random generation for the Beta-binomial distribution with parameters size, mu, and theta.

Usage

```
rbetabinom(n = 1, size, prob, theta)
dbetabinom(x, size, prob, theta, log = FALSE)
```

Arguments

n	integer; number of random variates to generate.
size	size parameter of the binomial distribution
prob	mean of the Beta distribution
theta	Beta distribution dispersion parameter
Х	vector of non-negative integer quantiles
log	logical; if TRUE, return logarithm(s) of probabilities.

blowflies 17

Details

A variable X is Beta-binomially distributed if X Binomial(n, P) where P Beta(mu, theta). Using the standard (a,b) parameterization, a = mu * theta and b = (1 - mu) * theta.

Value

rbetabinom Returns a vector of length n containing random variates drawn from the Beta-

binomial distribution.

dbetabinom Returns a vector (of length equal to the number of columns of x) containing

the probabilities of observing each column of x given the specified parameters

(size, prob, theta).

C API

An interface for C codes using these functions is provided by the package. Visit the package homepage to view the **pomp** C API document.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

blowflies

Nicholson's blowflies.

Description

blowflies is a data frame containing the data from several of Nicholson's classic experiments with the Australian sheep blowfly, *Lucilia cuprina*.

Usage

```
blowflies1(
    P = 3.2838,
    delta = 0.16073,
    N0 = 679.94,
    sigma.P = 1.3512,
    sigma.d = 0.74677,
    sigma.y = 0.026649
)

blowflies2(
    P = 2.7319,
    delta = 0.17377,
```

18 blowflies

```
N0 = 800.31,
sigma.P = 1.442,
sigma.d = 0.76033,
sigma.y = 0.010846
```

Arguments

Р	reproduction parameter
delta	death rate
NØ	population scale factor
sigma.P	intensity of e noise
sigma.d	intensity of eps noise
sigma.y	measurement error s.d.

Details

blowflies1() and blowflies2() construct 'pomp' objects encoding stochastic delay-difference equation models. The data for these come from "population I", a control culture. The experiment is described on pp. 163–4 of Nicholson (1957). Unlimited quantities of larval food were provided; the adult food supply (ground liver) was constant at 0.4g per day. The data were taken from the table provided by Brillinger et al. (1980).

The models are discrete delay equations:

$$R(t+1) \sim \text{Poisson}(PN(t-\tau) \exp{(-N(t-\tau)/N_0)}e(t+1)\Delta t)$$

$$S(t+1) \sim \text{Binomial}(N(t), \exp{(-\delta\epsilon(t+1)\Delta t)})$$

$$N(t) = R(t) + S(t)$$

where e(t) and $\epsilon(t)$ are Gamma-distributed i.i.d. random variables with mean 1 and variances $\sigma_P^2/\Delta t$, $\sigma_d^2/\Delta t$, respectively. blowflies1 has a timestep (Δt) of 1 day; blowflies2 has a timestep of 2 days. The process model in blowflies1 thus corresponds exactly to that studied by Wood (2010). The measurement model in both cases is taken to be

$$y(t) \sim \text{NegBin}(N(t), 1/\sigma_y^2)$$

i.e., the observations are assumed to be negative-binomially distributed with mean N(t) and variance $N(t) + (\sigma_y N(t))^2$.

Default parameter values are the MLEs as estimated by Ionides (2011).

Value

blowflies1 and blowflies2 return 'pomp' objects containing the actual data and two variants of the model.

bsflu 19

References

A.J. Nicholson. The self-adjustment of populations to change. *Cold Spring Harbor Symposia on Quantitative Biology* **22**, 153–173, 1957.

Y. Xia and H. Tong. Feature matching in time series modeling. Statistical Science 26, 21–46, 2011.

E.L. Ionides. Discussion of "Feature matching in time series modeling" by Y. Xia and H. Tong. *Statistical Science* **26**, 49–52, 2011.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. *Nature* **466**, 1102–1104, 2010.

W.S.C. Gurney, S.P. Blythe, and R.M. Nisbet. Nicholson's blowflies revisited. *Nature* **287**, 17–21, 1980.

D.R. Brillinger, J. Guckenheimer, P. Guttorp, and G. Oster. Empirical modelling of population time series: The case of age and density dependent rates. In: G. Oster (ed.), *Some Questions in Mathematical Biology* vol. 13, pp. 65–90, American Mathematical Society, Providence, 1980.

See Also

More examples provided with **pomp**: SIR models, childhood disease data, dacca(), ebola, gompertz(), ou2(), pomp examples, ricker(), rw2(), verhulst()

More data sets provided with pomp: bsflu, childhood disease data, dacca(), ebola, parus

Examples

```
plot(blowflies1())
plot(blowflies2())
```

bsflu

Influenza outbreak in a boarding school

Description

An outbreak of influenza in an all-boys boarding school.

Details

Data are recorded from a 1978 flu outbreak in a closed population. The variable 'B' refers to boys confined to bed on the corresponding day and 'C' to boys in convalescence, i.e., not yet allowed back to class. In total, 763 boys were at risk of infection and, over the course of the outbreak, 512 boys spent between 3 and 7 days away from class (either in bed or convalescent). The index case was a boy who arrived at school from holiday six days before the next case.

References

Anonymous. Influenza in a boarding school. British Medical Journal 1, 587, 1978.

20 bsmc2

See Also

SIR models

More data sets provided with **pomp**: blowflies, childhood disease data, dacca(), ebola, parus

Examples

```
library(tidyr)
library(ggplot2)

bsflu %>%
   gather(variable,value,-date,-day) %>%
   ggplot(aes(x=date,y=value,color=variable))+
   geom_line()+
   labs(y="number of boys",title="boarding school flu outbreak")+
   theme_bw()
```

bsmc2

The Liu and West Bayesian particle filter

Description

Modified version of the Liu and West (2001) algorithm.

Usage

```
## S4 method for signature 'data.frame'
bsmc2(
  data,
 Nρ,
  smooth = 0.1,
 params,
  rprior,
  rinit,
  rprocess,
  dmeasure,
  partrans,
  . . . ,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
bsmc2(data, Np, smooth = 0.1, ..., verbose = getOption("verbose", FALSE))
```

Arguments

data

either a data frame holding the time series data, or an object of class 'pomp', i.e., the output of another **pomp** calculation. Internally, data will be internally coerced to an array with storage-mode double.

Np

the number of particles to use. This may be specified as a single positive integer, in which case the same number of particles will be used at each timestep. Alternatively, if one wishes the number of particles to vary across timesteps, one may specify Np either as a vector of positive integers of length

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k) must be a single positive integer, representing the number of particles to be used at the k-th timestep: Np(0) is the number of particles to use going from timezero(object) to time(object)[1], Np(1), from timezero(object) to time(object)[1], and so on, while when T=length(time(object)), Np(T) is the number of particles to sample at the end of the time-series.

smooth

Kernel density smoothing parameter. The compensating shrinkage factor will be sqrt(1-smooth^2). Thus, smooth=0 means that no noise will be added to parameters. The general recommendation is that the value of smooth should be chosen close to 0 (e.g., shrink ~ 0.1).

params

optional; named numeric vector of parameters. This will be coerced internally to storage mode double.

rprior

optional; prior distribution sampler, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. For more information, see prior specification. Setting rprior=NULL removes the prior distribution sampler.

rinit

simulator of the initial-state distribution. This can be furnished either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator to its default. For more information, see rinit specification.

rprocess

simulator of the latent state process, specified using one of the rprocess plugins. Setting rprocess=NULL removes the latent-state simulator. For more information, see rprocess specification for the documentation on these plugins.

dmeasure

evaluator of the measurement model density, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting dmeasure=NULL removes the measurement density evaluator. For more information, see dmeasure specification.

partrans

optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of parameters. When working with such an algorithm and a model for which the parameters are constrained, it can be useful to transform parameters. One should supply the partrans argument via a call to parameter_trans. For more information, see parameter_trans. Setting partrans=NULL removes the parameter transformations, i.e., sets them to the identity transformation.

22 bsmc2

... additional arguments supply new or modify existing model characteristics or components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for information on both to use this facilities.

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

bsmc2 uses a version of the original algorithm (Liu & West 2001), but discards the auxiliary particle filter. The modification appears to give superior performance for the same amount of effort.

Samples from the prior distribution are drawn using the rprior component. This is allowed to depend on elements of params, i.e., some of the elements of params can be treated as "hyperparameters". Np draws are made from the prior distribution.

Value

An object of class 'bsmcd_pomp'. The following methods are avaiable:

```
plot produces diagnostic plots
```

as.data.frame puts the prior and posterior samples into a data frame

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Michael Lavine, Matthew Ferrari, Aaron A. King, Edward L. Ionides

References

Liu, J. and M. West. Combining Parameter and State Estimation in Simulation-Based Filtering. In A. Doucet, N. de Freitas, and N. J. Gordon, editors, Sequential Monte Carlo Methods in Practice, pages 197-224. Springer, New York, 2001.

See Also

```
More on Bayesian methods: approximate Bayesian computation, dprior(), pmcmc(), prior specification, rprior()
```

More on full-information (i.e., likelihood-based) methods: mif2(), pfilter(), pmcmc(), wpfilter()

bsplines 23

```
More on sequential Monte Carlo methods: cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()
```

More on **pomp** estimation algorithms: approximate Bayesian computation, estimation algorithms, mif2(), nonlinear forecasting, pmcmc(), pomp-package, probe matching, spectrum matching

bsplines

B-spline bases

Description

These functions generate B-spline basis functions. bspline.basis gives a basis of spline functions. periodic.bspline.basis gives a basis of periodic spline functions.

Usage

```
bspline.basis(x, nbasis, degree = 3, deriv = 0, names = NULL)

periodic.bspline.basis(
    x,
    nbasis,
    degree = 3,
    period = 1,
    deriv = 0,
    names = NULL
)
```

Arguments

names

x Vector at which the spline functions are to be evaluated.

nbasis The number of basis functions to return.

degree Degree of requested B-splines.

deriv The order of the derivative required.

optional; the names to be given to the basis functions. These will be the columnnames of the matrix returned. If the names are specified as a format string (e.g., "basis%d"), sprintf will be used to generate the names from the column number. If a single non-format string is specified, the names will be generated by paste-ing name to the column number. One can also specify each column name explicitly by giving a length-nbasis string vector. By default, no column-

names are given.

period The period of the requested periodic B-splines.

24 childhood disease data

Value

bspline.basis Returns a matrix with length(x) rows and nbasis columns. Each column contains the values one of the spline basis functions.

```
periodic.bspline.basis
```

Returns a matrix with length(x) rows and nbasis columns. The basis functions returned are periodic with period period.

If deriv>0, the derivative of that order of each of the corresponding spline basis functions are returned.

C API

Access to the underlying C routines is available: see the **pomp** C API document. for definition and documentation of the C API.

Author(s)

```
Aaron A. King
```

See Also

More on interpolation: covariates, lookup()

Examples

```
x <- seq(0,2,by=0.01)
y <- bspline.basis(x,degree=3,nbasis=9,names="basis")
matplot(x,y,type='l',ylim=c(0,1.1))
lines(x,apply(y,1,sum),lwd=2)

x <- seq(-1,2,by=0.01)
y <- periodic.bspline.basis(x,nbasis=5,names="spline%d")
matplot(x,y,type='l')</pre>
```

childhood disease data

Historical childhood disease incidence data

Description

LondonYorke is a data frame containing the monthly number of reported cases of chickenpox, measles, and mumps from two American cities (Baltimore and New York) in the mid-20th century (1928–1972).

ewmeas and ewcitmeas are data frames containing weekly reported cases of measles in England and Wales. ewmeas records the total measles reports for the whole country, 1948–1966. One questionable data point has been replaced with an NA. ewcitmeas records the incidence in seven English

childhood disease data 25

cities 1948–1987. These data were kindly provided by Ben Bolker, who writes: "Most of these data have been manually entered from published records by various people, and are prone to errors at several levels. All data are provided as is; use at your own risk."

References

W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps: I. Seasonal variation in contact rates. *American Journal of Epidemiology* **98**, 453–468, 1973.

See Also

```
SIR models, bsflu

More data sets provided with pomp: blowflies, bsflu, dacca(), ebola, parus

More examples provided with pomp: SIR models, blowflies, dacca(), ebola, gompertz(),
```

ou2(), pomp examples, ricker(), rw2(), verhulst()

Examples

```
plot(cases~time,data=LondonYorke,subset=disease=="measles",type='n',main="measles",bty='l')
lines(cases~time,data=LondonYorke,subset=disease=="measles"&town=="Baltimore",col="red")
lines(cases~time,data=LondonYorke,subset=disease=="measles"&town=="New York",col="blue")
legend("topright",legend=c("Baltimore","New York"),lty=1,col=c("red","blue"),bty='n')
plot(
     cases~time,
     data=LondonYorke,
     subset=disease=="chickenpox"&town=="New York",
     type='l',col="blue",main="chickenpox, New York",
    bty='1'
    )
plot(
     cases~time,
     data=LondonYorke,
     subset=disease=="mumps"&town=="New York",
     type='l',col="blue",main="mumps, New York",
    bty='1'
plot(reports~time, data=ewmeas, type='l')
plot(reports~date, data=ewcitmeas, subset=city=="Liverpool", type='l')
```

26 coef

coef

Extract, set, or alter coefficients

Description

Extract, set, or modify the estimated parameters from a fitted model.

Usage

```
## S4 method for signature 'listie'
coef(object, ...)
## S4 method for signature 'pomp'
coef(object, pars, transform = FALSE, ...)
## S4 replacement method for signature 'pomp'
coef(object, pars, transform = FALSE, ...) <- value
## S4 method for signature 'objfun'
coef(object, ...)
## S4 replacement method for signature 'objfun'
coef(object, pars, transform = FALSE, ...) <- value</pre>
```

Arguments

object an object of class 'pomp', or of a class extending 'pomp'

... ignored or passed to the more primitive function

pars optional character; names of parameters to be retrieved or set.

transform logical; perform parameter transformation?

value numeric vector or list; values to be assigned. If value = NULL, the parameters

are unset.

Details

coef allows one to extract the parameters from a fitted model.

coef(object, transform=TRUE) returns the parameters transformed onto the estimation scale.

coef(object) <-value sets or alters the coefficients of a 'pomp' object.

coef(object,transform=TRUE) <-value assumes that value is on the estimation scale, and applies the "from estimation scale" parameter transformation from object before altering the coefficients. cond.logLik 27

See Also

```
Other extraction methods: cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

cond.logLik

Conditional log likelihood

Description

The estimated conditional log likelihood from a fitted model.

Usage

```
## S4 method for signature 'kalmand_pomp'
cond.logLik(object, ...)

## S4 method for signature 'pfilterd_pomp'
cond.logLik(object, ...)

## S4 method for signature 'wpfilterd_pomp'
cond.logLik(object, ...)

## S4 method for signature 'bsmcd_pomp'
cond.logLik(object, ...)
```

Arguments

object result of a filtering computation
... ignored

Details

The conditional likelihood is defined to be the value of the density of

$$Y(t_k)|Y(t_1),...,Y(t_{k-1})$$

evaluated at $Y(t_k) = y_k^*$. Here, $Y(t_k)$ is the observable process, and y_k^* the data, at time t_k .

Thus the conditional log likelihood at time t_k is

$$\ell_k(\theta) = \log f[Y(t_k) = y_k^*|Y(t_1) = y_1^*, \dots, Y(t_{k-1}) = y_{k-1}^*],$$

where f is the probability density above.

28 continue

Value

The numerical value of the conditional log likelihood. Note that some methods compute not the log likelihood itself but instead a related quantity. To keep the code simple, the cond.logLik function is nevertheless used to extract this quantity.

When object is of class 'bsmcd_pomp' (i.e., the result of a bsmc2 computation), cond.logLik returns the conditional log "evidence" (see bsmc2).

See Also

```
More on sequential Monte Carlo methods: bsmc2(), eff.sample.size(), filter.mean(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

Other extraction methods: coef(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

continue

Continue an iterative calculation

Description

Continue an iterative computation where it left off.

Usage

```
continue(object, ...)
## S4 method for signature 'abcd_pomp'
continue(object, Nabc = 1, ...)
## S4 method for signature 'pmcmcd_pomp'
continue(object, Nmcmc = 1, ...)
## S4 method for signature 'mif2d_pomp'
continue(object, Nmif = 1, ...)
```

Arguments

object the result of an iterative **pomp** computation

... additional arguments will be passed to the underlying method. This allows one to modify parameters used in the original computations.

Nabc positive integer; number of additional ABC iterations to perform positive integer; number of additional PMCMC iterations to perform positive integer; number of additional filtering iterations to perform

See Also

```
mif2 pmcmc abc
```

covariates 29

Description

Incorporating time-varying covariates using lookup tables.

Usage

```
## S4 method for signature 'numeric'
covariate_table(..., order = c("linear", "constant"), times)
## S4 method for signature 'character'
covariate_table(..., order = c("linear", "constant"), times)
```

Arguments

... numeric vectors or data frames containing time-varying covariates. It must be

possible to bind these into a data frame.

order the order of interpolation to be used. Options are "linear" (the default) and

"constant". Setting order="linear" treats the covariates as piecewise linear functions of time; order="constant" treats them as right-continuous piecewise

constant functions.

times the times corresponding to the covariates. This may be given as a vector of (non-

decreasing, finite) numerical values. Alternatively, one can specify by name

which of the given variables is the time variable.

Details

If the 'pomp' object contains covariates (specified via the covar argument), then interpolated values of the covariates will be available to each of the model components whenever it is called. In particular, variables with names as they appear in the covar covariate table will be available to any C snippet. When a basic component is defined using an R function, that function will be called with an extra argument, covars, which will be a named numeric vector containing the interpolated values from the covariate table.

An exception to this rule is the prior (rprior and dprior): covariate-dependent priors are not allowed. Nor are parameter transformations permitted to depend upon covariates.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

More on interpolation: bsplines, lookup()

30 covmat

covmat

Estimate a covariance matrix from algorithm traces

Description

A helper function to extract a covariance matrix.

Usage

```
## S4 method for signature 'pmcmcd_pomp'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'pmcmcList'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'abcd_pomp'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'abcList'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'probed_pomp'
covmat(object, ...)
```

Arguments

object an object extending 'pomp' start the first iteration number to be used in estimating the covariance matrix. Setting thin > 1 allows for a burn-in period. thin factor by which the chains are to be thinned expand the expansion factor ignored

Value

. . .

When object is the result of a pmcmc or abc computation, covmat(object) gives the covariance matrix of the chains. This can be useful, for example, in tuning the proposal distribution.

When object is a 'probed_pomp' object (i.e., the result of a probe computation), covmat(object) returns the covariance matrix of the probes, as applied to simulated data.

See Also

MCMC proposals.

```
Other extraction methods: coef(), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(),
forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(),
summary(), timezero(), time(), traces()
```

Csnippet 31

Csnippet C snippets

Description

Accelerating computations through inline snippets of C code

Usage

Csnippet(text)

Arguments

text

character; text written in the C language

Details

pomp provides a facility whereby users can define their model's components using inline C code. C snippets are written to a C file, by default located in the R session's temporary directory, which is then compiled (via R CMD SHLIB) into a dynamically loadable shared object file. This is then loaded as needed.

Note to Windows and Mac users

By default, your R installation may not support R CMD SHLIB. The package website contains installation instructions that explain how to enable this powerful feature of R.

General rules for writing C snippets

In writing a C snippet one must bear in mind both the *goal* of the snippet, i.e., what computation it is intended to perform, and the *context* in which it will be executed. These are explained here in the form of general rules. Additional specific rules apply according to the function of the particular C snippet. Illustrative examples are given in the tutorials on the package website.

- C snippets must be valid C. They will embedded verbatim in a template file which will then be compiled by a call to R CMD SHLIB. If the resulting file does not compile, an error message will be generated. Compiler messages will be displayed, but no attempt will be made by **pomp** to interpret them. Typically, compilation errors are due to either invalid C syntax or undeclared variables.
- 2. State variables, parameters, observables, and covariates must be left undeclared within the snippet. State variables and parameters are declared via the statenames or paramnames arguments to pomp, respectively. Compiler errors that complain about undeclared state variables or parameters are usually due to failure to declare these in statenames or paramnames, as appropriate.
- 3. A C snippet can declare local variables. Be careful not to use names that match those of state variables, observables, or parameters. One must never declare state variables, observables, covariates, or parameters within a C snippet.

32 dacca

4. Names of observables must match the names given given in the data. They must be referred to in measurement model C snippets (rmeasure and dmeasure) by those names.

- 5. If the 'pomp' object contains a table of covariates (see above), then the variables in the covariate table will be available, by their names, in the context within which the C snippet is executed.
- 6. Because the dot '.' has syntactic meaning in C, R variables with names containing dots ('.') are replaced in the C codes by variable names in which all dots have been replaced by underscores ('_').
- 7. The headers 'R.h' and 'Rmath.h', provided with R, will be included in the generated C file, making all of the R C API available for use in the C snippet. This makes a great many useful functions available, including all of R's statistical distribution functions.
- 8. The header 'pomp.h', provided with **pomp**, will also be included, making all of the **pomp** C API available for use in every C snippet.
- 9. Snippets of C code passed to the globals argument of pomp will be included at the head of the generated C file. This can be used to declare global variables, define useful functions, and include arbitrary header files.
- 10. INCLUDE INFORMATION ABOUT LINKING TO PRECOMPILED LIBRARIES!

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

spy

More on implementing POMP models: accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

dacca

Model of cholera transmission for historic Bengal.

Description

dacca constructs a 'pomp' object containing census and cholera mortality data from the Dacca district of the former British province of Bengal over the years 1891 to 1940 together with a stochastic differential equation transmission model. The model is that of King et al. (2008). The parameters are the MLE for the SIRS model with seasonal reservoir.

dacca 33

Usage

```
dacca(
  gamma = 20.8,
 eps = 19.1,
 rho = 0,
 delta = 0.02,
 deltaI = 0.06,
  clin = 1,
  alpha = 1,
 beta_trend = -0.00498,
  logbeta = c(0.747, 6.38, -3.44, 4.23, 3.33, 4.55),
  logomega = log(c(0.184, 0.0786, 0.0584, 0.00917, 0.000208, 0.0124)),
  sd_beta = 3.13,
  tau = 0.23,
  S_0 = 0.621,
 I_0 = 0.378,
 Y_0 = 0,
 R1_0 = 0.000843,
 R2_0 = 0.000972,
 R3_0 = 1.16e-07
)
```

Arguments

gamma	recovery rate	
eps	rate of waning of immunity for severe infections	
rho	rate of waning of immunity for inapparent infections	
delta	baseline mortality rate	
deltaI	cholera mortality rate	
clin	fraction of infections that lead to severe infection	
alpha	transmission function exponent	
beta_trend	slope of secular trend in transmission	
logbeta	seasonal transmission rates	
logomega	seasonal environmental reservoir parameters	
sd_beta	environmental noise intensity	
tau	measurement error s.d.	
S_0	initial susceptible fraction	
I_0	initial fraction of population infected	
Y_0	initial fraction of the population in the Y class	
R1_0, R2_0, R3_0		
	initial fractions in the respective R classes	

34 design

Details

Data are provided courtesy of Dr. Menno J. Bouma, London School of Tropical Medicine and Hygiene.

Value

dacca returns a 'pomp' object containing the model, data, and MLE parameters, as estimated by King et al. (2008).

References

A.A. King, E.L. Ionides, M. Pascual, and M.J. Bouma. Inapparent infections and cholera dynamics. *Nature* **454**, 877-880, 2008

See Also

```
More examples provided with pomp: SIR models, blowflies, childhood disease data, ebola, gompertz(), ou2(), pomp examples, ricker(), rw2(), verhulst()
```

More data sets provided with **pomp**: blowflies, bsflu, childhood disease data, ebola, parus

Examples

```
## Not run:
   po <- dacca()
   plot(po)
   ## MLE:
   coef(po)
   plot(simulate(po))
## End(Not run)</pre>
```

design

Design matrices for pomp calculations

Description

These functions are useful for generating designs for the exploration of parameter space.

profile_design generates a data-frame where each row can be used as the starting point for a profile likelihood calculation.

runif_design generates a design based on random samples from a multivariate uniform distribution.

slice_design generates points along slices through a specified point.

sobol_design generates a Latin hypercube design based on the Sobol' low-discrepancy sequence.

design 35

Usage

```
profile_design(
    ...,
    lower,
    upper,
    nprof,
    type = c("runif", "sobol"),
    stringsAsFactors = getOption("stringsAsFactors", FALSE)
)

runif_design(lower = numeric(0), upper = numeric(0), nseq)

slice_design(center, ...)

sobol_design(lower = numeric(0), upper = numeric(0), nseq)
```

Arguments

... In profile_design, additional arguments specify the parameters over which to

profile and the values of these parameters. In slice_design, additional numeric

vector arguments specify the locations of points along the slices.

lower, upper named numeric vectors giving the lower and upper bounds of the ranges, respec-

tively.

nprof The number of points per profile point.

type the type of design to use. type="runif" uses runif_design. type="sobol"

uses sobol_design;

stringsAsFactors

should character vectors be converted to factors?

nseq Total number of points requested.

center center is a named numeric vector specifying the point through which the slice(s)

is (are) to be taken.

Details

The Sobol' sequence generation is performed using codes from the NLopt library by S. Johnson.

Value

profile_design returns a data frame with nprof points per profile point.

runif_design returns a data frame with nseq rows and one column for each variable named in lower and upper.

slice_design returns a data frame with one row per point. The 'slice' variable indicates which slice the point belongs to.

sobol_design returns a data frame with nseq rows and one column for each variable named in lower and upper.

36 design

Author(s)

Aaron A. King

References

S. Kucherenko and Y. Sytsko. Application of deterministic low-discrepancy sequences in global optimization. *Computational Optimization and Applications* **30**, 297–318, 2005. doi: 10.1007/s1058900546151.

- S.G. Johnson. The **NLopt** nonlinear-optimization package. https://github.com/stevengj/nlopt/.
- P. Bratley and B.L. Fox. Algorithm 659 Implementing Sobol's quasirandom sequence generator. *ACM Transactions on Mathematical Software* **14**, 88–100, 1988.
- S. Joe and F.Y. Kuo. Remark on algorithm 659: Implementing Sobol' quasirandom sequence generator. *ACM Transactions on Mathematical Software* **29**, 49–57, 2003.

Examples

```
## Sobol' low-discrepancy design
plot(sobol_design(lower=c(a=0,b=100),upper=c(b=200,a=1),nseq=100))
## Uniform random design
plot(runif_design(lower=c(a=0,b=100),upper=c(b=200,a=1),100))
## A one-parameter profile design:
x \leftarrow profile_design(p=1:10,lower=c(a=0,b=0),upper=c(a=1,b=5),nprof=20)
dim(x)
plot(x)
## A two-parameter profile design:
x \leftarrow profile_design(p=1:10,q=3:5,lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=200)
dim(x)
plot(x)
## A two-parameter profile design with random points:
x \leftarrow \texttt{profile\_design(p=1:10,q=3:5,lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=200,type="runif")}
dim(x)
plot(x)
## A single 11-point slice through the point c(A=3,B=8,C=0) along the B direction.
x \leftarrow slice_design(center=c(A=3,B=8,C=0),B=seq(0,10,by=1))
dim(x)
plot(x)
## Two slices through the same point along the A and C directions.
x \leftarrow slice_design(c(A=3,B=8,C=0),A=seq(0,5,by=1),C=seq(0,5,length=11))
dim(x)
plot(x)
```

distributions 37

distributions

Probability distributions

Description

pomp provides a number of probability distributions that have proved useful in modeling partially observed Markov processes. These include the Euler-multinomial family of distributions and the the Gamma white-noise processes.

Usage

```
reulermultinom(n = 1, size, rate, dt)
deulermultinom(x, size, rate, dt, log = FALSE)
rgammawn(n = 1, sigma, dt)
```

Arguments

n	integer; number of random variates to generate.
size	scalar integer; number of individuals at risk.
rate	numeric vector of hazard rates.
dt	numeric scalar; duration of Euler step.
х	matrix or vector containing number of individuals that have succumbed to each death process.
log	logical; if TRUE, return logarithm(s) of probabilities.
sigma	numeric scalar; intensity of the Gamma white noise process.

Details

If N individuals face constant hazards of death in k ways at rates r_1, r_2, \ldots, r_k , then in an interval of duration Δt , the number of individuals remaining alive and dying in each way is multinomially distributed:

$$(N - \sum_{i=1}^{k} \Delta n_i, \Delta n_1, \dots, \Delta n_k) \sim \text{Multinomial}(N; p_0, p_1, \dots, p_k),$$

where Δn_i is the number of individuals dying in way i over the interval, the probability of remaining alive is $p_0 = \exp(-\sum_i r_i \Delta t)$, and the probability of dying in way j is

$$p_j = \frac{r_j}{\sum_i r_i} (1 - \exp(-\sum_i r_i \Delta t)).$$

In this case, we say that

$$(\Delta n_1, \ldots, \Delta n_k) \sim \text{Eulermultinom}(N, r, \Delta t),$$

where $r = (r_1, \dots, r_k)$. Draw m random samples from this distribution by doing

38 distributions

```
dn <- reulermultinom(n=m, size=N, rate=r, dt=dt),</pre>
```

where r is the vector of rates. Evaluate the probability that $x = (x_1, \dots, x_k)$ are the numbers of individuals who have died in each of the k ways over the interval $\Delta t = dt$, by doing

```
deulermultinom(x=x,size=N,rate=r,dt=dt).
```

Breto & Ionides (2011) discuss how an infinitesimally overdispersed death process can be constructed by compounding a multinomial process with a Gamma white noise process. The Euler approximation of the resulting process can be obtained as follows. Let the increments of the equidispersed process be given by

```
reulermultinom(size=N,rate=r,dt=dt).
```

In this expression, replace the rate r with $r\Delta W/\Delta t$, where $\Delta W \sim \mathrm{Gamma}(\Delta t/\sigma^2,\sigma^2)$ is the increment of an integrated Gamma white noise process with intensity σ . That is, ΔW has mean Δt and variance $\sigma^2\Delta t$. The resulting process is overdispersed and converges (as Δt goes to zero) to a well-defined process. The following lines of code accomplish this:

```
dW <- rgammawn(sigma=sigma,dt=dt)
dn <- reulermultinom(size=N,rate=r,dt=dW)
dn <- reulermultinom(size=N,rate=r*dW/dt,dt=dt).</pre>
```

He et al. (2010) use such overdispersed death processes in modeling measles.

For all of the functions described here, access to the underlying C routines is available: see below.

Value

or

reulermultinom Returns a length(rate) by n matrix. Each column is a different random draw. Each row contains the numbers of individuals that have succumbed to the corresponding process.

deulermultinom Returns a vector (of length equal to the number of columns of x) containing the probabilities of observing each column of x given the specified parameters (size, rate, dt).

Returns a vector of length n containing random increments of the integrated Gamma white noise process with intensity sigma.

C API

An interface for C codes using these functions is provided by the package. Visit the package homepage to view the **pomp** C API document.

Author(s)

Aaron A. King

dmeasure 39

References

C. Bretó and E. L. Ionides. Compound Markov counting processe and their applications to modeling infinitesimally over-dispersed systems. *Stochastic Processes and their Applications* **121**, 2571–2591, 2011.

D. He, E.L. Ionides, & A.A. King. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. *Journal of the Royal Society Interface* **7**, 271–283, 2010.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

Examples

```
print(dn <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=0.1))
deulermultinom(x=dn,size=100,rate=c(1,2,3),dt=0.1)
## an Euler-multinomial with overdispersed transitions:
dt <- 0.1
dW <- rgammawn(sigma=0.1,dt=dt)
print(dn <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=dW))</pre>
```

dmeasure

dmeasure

Description

dmeasure evaluates the probability density of observations given states.

Usage

```
## S4 method for signature 'pomp'
dmeasure(object, y, x, times, params, ..., log = FALSE)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
У	a matrix containing observations. The dimensions of y are nobs \boldsymbol{x} ntimes, where nobs is the number of observables and ntimes is the length of times.
x	an array containing states of the unobserved process. The dimensions of x are nvars x nrep x ntimes, where nvars is the number of state variables, nrep is the number of replicates, and ntimes is the length of times. One can also pass x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times	a numeric vector (length ntimes) containing times. These must be in non-decreasing order.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x.
	additional arguments are ignored.
log	if TRUE, log probabilities are returned.

Value

dmeasure returns a matrix of dimensions nreps x ntimes. If d is the returned matrix, d[j,k] is the likelihood (or log likelihood if log = TRUE) of the observation y[,k] at time times[k] given the state x[,j,k].

See Also

Specification of the measurement density evaluator: dmeasure specification

```
More on pomp workhorse functions: dprior(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
```

dmeasure specification

The measurement model density

Description

Specification of the measurement model density function, dmeasure.

Details

The measurement model is the link between the data and the unobserved state process. It can be specified either by using one or both of the rmeasure and dmeasure arguments.

Suppose you have a procedure to compute the probability density of an observation given the value of the latent state variables. Then you can furnish

```
dmeasure = f
```

to **pomp** algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet for general rules on writing C snippets. The goal of a *dmeasure* C snippet is to fill the variable lik with the either the probability density or the log probability density, depending on the value of the variable give_log.

In writing a dmeasure C snippet, observe that:

1. In addition to the states, parameters, covariates (if any), and observables, the variable t, containing the time of the observation will be defined in the context in which the snippet is executed.

- 2. Moreover, the Boolean variable give_log will be defined.
- 3. The goal of a dmeasure C snippet is to set the value of the lik variable to the likelihood of the data given the state, if give_log == 0. If give_log == 1, lik should be set to the log likelihood.

If dmeasure is to be provided instead as an R function, this is accomplished by supplying

```
dmeasure = f
```

to pomp, where f is a function. The arguments of f should be chosen from among the observables, state variables, parameters, covariates, and time. It must also have the arguments \dots , and \log . It can take additional arguments via the userdata facility. f must return a single numeric value, the probability density (or \log probability density if \log = TRUE) of y given x at time t.

Important note

It is a common error to fail to account for both \log = TRUE and \log = FALSE when writing the dmeasure C snippet or function.

Default behavior

If dmeasure is left unspecified, calls to dmeasure will return missing values (NA).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

dmeasure

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

Examples

```
## We start with the pre-built Ricker example:
ricker() -> po

## To change the measurement model density, dmeasure,
## we use the 'dmeasure' argument in any 'pomp'
## elementary or estimation function.
## Here, we pass the dmeasure specification to 'pfilter'
```

dprior

```
## as an R function.

po %>%
    pfilter(
        dmeasure=function (y, N, phi, ..., log) {
            dpois(y,lambda=phi*N,log=log)
        },
        Np=100
    ) -> pf

## We can also pass it as a C snippet:

po %>%
    pfilter(
        dmeasure=Csnippet("lik = dpois(y,phi*N,give_log);"),
        paramnames="phi",
        statenames="N",
        Np=100
    ) -> pf
```

dprior

dprior

Description

Evaluates the prior probability density.

Usage

```
## S4 method for signature 'pomp'
dprior(object, params, ..., log = FALSE)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x .
	additional arguments are ignored.
log	if TRUE, log probabilities are returned.

Value

The required density (or log density), as a numeric vector.

dprocess 43

See Also

Specification of the prior density evaluator: prior specification

More on **pomp** workhorse functions: dmeasure(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses More on Bayesian methods: approximate Bayesian computation, bsmc2(), pmcmc(), prior specification, rprior()

dprocess dprocess

Description

Evaluates the probability density of a sequence of consecutive state transitions.

Usage

```
## S4 method for signature 'pomp'
dprocess(object, x, times, params, ..., log = FALSE)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
×	an array containing states of the unobserved process. The dimensions of x are nvars x nrep x ntimes, where nvars is the number of state variables, nrep is the number of replicates, and ntimes is the length of times. One can also pass x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.
times	a numeric vector (length ntimes) containing times. These must be in non-decreasing order.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x.
	additional arguments are ignored.
log	if TRUE, log probabilities are returned.

Value

dprocess returns a matrix of dimensions nrep x ntimes-1. If d is the returned matrix, d[j,k] is the likelihood (or the log likelihood if log=TRUE) of the transition from state x[,j,k-1] at time times[k-1] to state x[,j,k] at time times[k].

See Also

```
Specification of the process-model density evaluator: dprocess specification
```

```
More on pomp workhorse functions: dmeasure(), dprior(), emeasure(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
```

dprocess specification

The latent state process density

Description

Specification of the latent state process density function, dprocess.

Details

Suppose you have a procedure that allows you to compute the probability density of an arbitrary transition from state x_1 at time t_1 to state x_2 at time $t_2 > t_1$ under the assumption that the state remains unchanged between t_1 and t_2 . Then you can furnish

```
dprocess = f
```

to pomp, where f is a C snippet or R function that implements your procedure. Specifically, f should compute the *log* probability density.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet for general rules on writing C snippets. The goal of a *dprocess* C snippet is to fill the variable loglik with the log probability density. In the context of such a C snippet, the parameters, and covariates will be defined, as will the times t_1 and t_2. The state variables at time t_1 will have their usual name (see statenames) with a "_1" appended. Likewise, the state variables at time t_2 will have a "_2" appended.

If f is given as an R function, it should take as arguments any or all of the state variables, parameter, covariates, and time. The state-variable and time arguments will have suffices "_1" and "_2" appended. Thus for example, if var is a state variable, when f is called, var_1 will value of state variable var at time t_1, var_2 will have the value of var at time t_2. f should return the *log* likelihood of a transition from x1 at time t1 to x2 at time t2, assuming that no intervening transitions have occurred.

To see examples, consult the demos and the tutorials on the package website.

Note

It is not typically necessary (or even feasible) to define dprocess. In fact, no current **pomp** inference algorithm makes use of dprocess. This functionality is provided only to support future algorithm development.

Default behavior

By default, dprocess returns missing values (NA).

ebola 45

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

dprocess

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

ebola

Ebola outbreak, West Africa, 2014-2016

Description

Data and models for the 2014–2016 outbreak of Ebola virus disease in West Africa.

Usage

```
ebolaModel(
    country = c("GIN", "LBR", "SLE"),
    data = NULL,
    timestep = 1/8,
    nstageE = 3L,
    R0 = 1.4,
    rho = 0.2,
    cfr = 0.7,
    k = 0,
    index_case = 10,
    incubation_period = 11.4,
    infectious_period = 7
)
```

Arguments

country ISO symbol for the country (GIN=Guinea, LBR=Liberia, SLE=Sierra Leone).

data if NULL, the situation report data (WHO Ebola Response Team 2014) for the

appropriate country or region will be used. Providing a dataset here will override

this behavior.

timestep duration (in days) of Euler timestep for the simulations.

46 ebola

nstageE integer; number of incubation stages.

R0 basic reproduction ratio rho case reporting efficiency

cfr case fatality rate

k dispersion parameter (negative binomial size parameter)

index_case number of cases on day 0 (2014-04-01)

incubation_period, infectious_period

mean duration (in days) of the incubation and infectious periods.

Details

The data include monthly case counts and death reports derived from WHO situation reports, as reported by the U.S. CDC. The models are described in King et al. (2015).

The data-cleaning script is included in the R source code file 'ebola.R'.

Model structure

The default incubation period is supposed to be Gamma distributed with shape parameter nstageE and mean 11.4 days and the case-fatality ratio ('cfr') is taken to be 0.7 (cf. WHO Ebola Response Team 2014). The discrete-time formula is used to calculate the corresponding alpha (cf. He et al. 2010).

The observation model is a hierarchical model for cases and deaths:

$$p(R_t, D_t|C_t) = p(R_t|C_t)p(D_t|C_t, R_t).$$

Here, $p(R_t|C_t)$ is negative binomial with mean ρC_t and dispersion parameter 1/k; $p(D_t|C_t,R_t)$ is binomial with size R_t and probability equal to the case fatality rate cfr.

References

A.A. King, M. Domenech de Cellès, F.M.G. Magpantay, and P. Rohani. Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. *Proceedings of the Royal Society of London, Series B* **282**, 20150347, 2015.

WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. *New England Journal of Medicine* **371**, 1481–1495, 2014.

D. He, E.L. Ionides, & A.A. King. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. *Journal of the Royal Society Interface* 7, 271–283, 2010.

See Also

More data sets provided with **pomp**: blowflies, bsflu, childhood disease data, dacca(), parus

More examples provided with **pomp**: SIR models, blowflies, childhood disease data, dacca(), gompertz(), ou2(), pomp examples, ricker(), rw2(), verhulst()

eff.sample.size 47

Examples

```
data(ebolaWA2014)
library(ggplot2)
library(tidyr)
ebolaWA2014 %>%
  gather(variable,count,cases,deaths) %>%
  ggplot(aes(x=date,y=count,group=country,color=country))+
  geom_line()+
  facet_grid(variable~.,scales="free_y")+
  theme_bw()+
  theme(axis.text=element_text(angle=-90))
ebolaWA2014 %>%
 gather(variable,count,cases,deaths) %>%
 ggplot(aes(x=date,y=count,group=variable,color=variable))+
 geom_line()+
  facet_grid(country~.,scales="free_y")+
  theme_bw()+
  theme(axis.text=element_text(angle=-90))
plot(ebolaModel(country="SLE"))
plot(ebolaModel(country="LBR"))
plot(ebolaModel(country="GIN"))
```

eff.sample.size

Effective sample size

Description

Estimate the effective sample size of a Monte Carlo computation.

Usage

```
## S4 method for signature 'bsmcd_pomp'
eff.sample.size(object, ...)
## S4 method for signature 'pfilterd_pomp'
eff.sample.size(object, ...)
## S4 method for signature 'wpfilterd_pomp'
eff.sample.size(object, ...)
```

Arguments

```
object result of a filtering computation ... ignored
```

Details

Effective sample size is computed as

$$\left(\sum_{i} w_{it}^{2}\right)^{-1},$$

where w_{it} is the normalized weight of particle i at time t.

See Also

```
More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), filter.mean(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

Other extraction methods: coef(), cond.logLik(), covmat(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

elementary algorithms *Elementary computations on POMP models*.

Description

In **pomp**, elementary algorithms perform POMP model operations. These operations do not themselves estimate parameters, though they may be instrumental in inference methods.

Details

There are six elementary algorithms in **pomp**:

- simulate which simulates from the joint distribution of latent and observed variables,
- pfilter, which performs a simple particle filter operation,
- wpfilter, which performs a weighted particle filter operation,
- probe, which computes a suite of user-specified summary statistics to actual and simulated data,
- spect, which performs a power-spectral density function computation on actual and simulated data,
- trajectory, which iterates or integrates the deterministic skeleton (according to whether the latter is a (discrete-time) map or a (continuous-time) vectorfield.

Help pages detailing each elementary algorithm component are provided.

See Also

basic model components, workhorse functions, estimation algorithms.

```
More on pomp elementary algorithms: kalman, pfilter(), pomp-package, probe(), simulate(), spect(), trajectory(), wpfilter()
```

emeasure 49

Description

Return the expected value of the observed variables, given values of the latent states and the parameters.

Usage

```
## S4 method for signature 'pomp'
emeasure(object, x, times, params, ...)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
х	an array containing states of the unobserved process. The dimensions of x are nvars x nrep x ntimes, where nvars is the number of state variables, nrep is the number of replicates, and ntimes is the length of times. One can also pass x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.
times	a numeric vector (length $ntimes$) containing times. These must be in non-decreasing order.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x.
	additional arguments are ignored.

Value

emeasure returns a rank-3 array of dimensions nobs x nrep x ntimes, where nobs is the number of observed variables.

See Also

Specification of the measurement-model expectation: emeasure specification

```
More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
```

emeasure specification

The expectation of the measurement model

Description

Specification of the measurement-model conditional expectation, emeasure.

Details

The measurement model is the link between the data and the unobserved state process. Some algorithms require the conditional expectation of the measurement model, given the latent state and parameters. This is supplied using the emeasure argument.

Suppose you have a procedure to compute this conditional expectation, given the value of the latent state variables. Then you can furnish

```
emeasure = f
```

to **pomp** algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet for general rules on writing C snippets.

In writing an emeasure C snippet, bear in mind that:

- 1. The goal of such a snippet is to fill variables named E_y with the conditional expectations of observables y. Accordingly, there should be one assignment of E_y for each observable y.
- 2. In addition to the states, parameters, and covariates (if any), the variable t, containing the time of the observation, will be defined in the context in which the snippet is executed.

The demos and the tutorials on the package website give examples.

It is also possible, though less efficient, to specify emeasure using an R function. In this case, specify the measurement model expectation by furnishing

```
emeasure = f
```

to pomp, where f is an R function. The arguments of f should be chosen from among the state variables, parameters, covariates, and time. It must also have the argument f must return a named numeric vector of length equal to the number of observable variables. The names should match those of the observable variables.

Default behavior

The default emeasure is undefined. It will yield missing values (NA).

estimation algorithms 51

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

emeasure

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

estimation algorithms Parameter estimation algorithms for POMP models.

Description

pomp currently implements the following algorithms for estimating model parameters:

- iterated filtering (IF2)
- particle Markov chain Monte Carlo (PMCMC)
- approximate Bayesian computation (ABC)
- · probe-matching via synthetic likelihood
- nonlinear forecasting
- power-spectrum matching
- Liu-West Bayesian sequential Monte Carlo
- Ensemble and ensemble-adjusted Kalman filters

Details

Help pages detailing each estimation algorithm are provided.

See Also

basic model components, workhorse functions, elementary algorithms.

More on **pomp** estimation algorithms: approximate Bayesian computation, bsmc2(), mif2(), nonlinear forecasting, pmcmc(), pomp-package, probe matching, spectrum matching

52 filter.mean

filter.mean

Filtering mean

Description

The mean of the filtering distribution

Usage

```
## S4 method for signature 'kalmand_pomp'
filter.mean(object, vars, ...)
## S4 method for signature 'pfilterd_pomp'
filter.mean(object, vars, ...)
```

Arguments

object result of a filtering computation

vars optional character; names of variables

... ignored

Details

The filtering distribution is that of

$$X(t_k)|Y(t_1) = y_1^*, \dots, Y(t_k) = y_k^*,$$

where $X(t_k)$, $Y(t_k)$ are the latent state and observable processes, respectively, and y_t^* is the data, at time t_k .

The filtering mean is therefore the expectation of this distribution

$$E[X(t_k)|Y(t_1) = y_1^*, \dots, Y(t_k) = y_k^*].$$

See Also

```
More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

filter.traj 53

filter.traj

Filtering trajectories

Description

Drawing from the smoothing distribution

Usage

```
## S4 method for signature 'pfilterd_pomp'
filter.traj(object, vars, ...)
## S4 method for signature 'pfilterList'
filter.traj(object, vars, ...)
## S4 method for signature 'pmcmcd_pomp'
filter.traj(object, vars, ...)
## S4 method for signature 'pmcmcList'
filter.traj(object, vars, ...)
```

Arguments

object result of a filtering computation
vars optional character; names of variables
... ignored

Details

The smoothing distribution is the distribution of

$$X(t_k)|Y(t_1) = y_1^*, \dots, Y(t_n) = y_n^*,$$

where $X(t_k)$ is the latent state process and $Y(t_k)$ is the observable process at time t_k , and n is the number of observations.

To draw samples from this distribution, one can run a number of independent particle filter (pfilter) operations, sampling the full trajectory of *one* randomly-drawn particle from each one. One should view these as *weighted* samples from the smoothing distribution, where the weights are the *likelihoods* returned by each of the pfilter computations.

One accomplishes this by setting filter.traj = TRUE in each pfilter computation and extracting the trajectory using the filter.traj command.

In particle MCMC (pmcmc), the tracking of an individual trajectory is performed automatically.

54 flow

See Also

```
More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

flow

Flow of a deterministic model

Description

Compute the flow generated by a deterministic vectorfield or map.

Usage

```
## S4 method for signature 'pomp'
flow(object, x0, t0, times, params, ..., verbose = getOption("verbose", FALSE))
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
x0	an array with dimensions nvar x nrep giving the initial conditions of the trajectories to be computed.
t0	the time at which the initial conditions are assumed to hold. By default, this is the zero-time (see timezero).
times	a numeric vector (length ntimes) containing times at which the itineraries are desired. These must be in non-decreasing order with times[1]>t0. By default, this is the full set of observation times (see time).
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x.
	Additional arguments are passed to the ODE integrator (if the skeleton is a vectorfield) and are ignored if it is a map. See ode for a description of the additional arguments accepted by the ODE integrator. By default, this is the parameter vector stored in object (see coef).
verbose	logical; if TRUE, diagnostic messages will be printed to the console.

Details

In the case of a discrete-time system (map), flow iterates the map to yield trajectories of the system. In the case of a continuous-time system (vectorfield), flow uses the numerical solvers in **deSolve** to integrate the vectorfield starting from given initial conditions.

forecast 55

Value

flow returns an array of dimensions nvar x nrep x ntimes. If x is the returned matrix, x[i,j,k] is the i-th component of the state vector at time times[k] given parameters params[,j].

See Also

```
More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
```

More on methods for deterministic process models: skeleton specification, skeleton(), trajectory matching, trajectory()

forecast

Forecast mean

Description

Mean of the one-step-ahead forecasting distribution.

Usage

```
forecast(object, ...)
## S4 method for signature 'kalmand_pomp'
forecast(object, vars, ...)
## S4 method for signature 'pfilterd_pomp'
forecast(object, vars, ...)
```

Arguments

```
object result of a filtering computation
... ignored
vars optional character; names of variables
```

See Also

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

56 gompertz

gompertz

Gompertz model with log-normal observations.

Description

gompertz() constructs a 'pomp' object encoding a stochastic Gompertz population model with log-normal measurement error.

Usage

```
gompertz(
   K = 1,
   r = 0.1,
   sigma = 0.1,
   tau = 0.1,
   X_0 = 1,
   times = 1:100,
   t0 = 0
)
```

Arguments

K	carrying capacity
r	growth rate
sigma	process noise intensity
tau	measurement error s.d.
X_0	value of the latent state variable X at the zero time
times	observation times
t0	zero time

Details

The state process is

$$X_{t+1} = K^{1-S} X_t^S \epsilon_t,$$

where $S=e^{-r}$ and the ϵ_t are i.i.d. lognormal random deviates with variance σ^2 . The observed variables Y_t are distributed as

$$Y_t \sim \text{lognormal}(\log X_t, \tau).$$

Parameters include the per-capita growth rate r, the carrying capacity K, the process noise s.d. σ , the measurement error s.d. τ , and the initial condition X_0 . The 'pomp' object includes parameter transformations that log-transform the parameters for estimation purposes.

Value

A 'pomp' object with simulated data.

hitch 57

See Also

More examples provided with **pomp**: SIR models, blowflies, childhood disease data, dacca(), ebola, ou2(), pomp examples, ricker(), rw2(), verhulst()

Examples

```
plot(gompertz())
plot(gompertz(K=2,r=0.01))
```

hitch

Hitching C snippets and R functions to pomp_fun objects

Description

The algorithms in **pomp** are formulated using R functions that access the basic model components (rprocess, dprocess, rmeasure, dmeasure, etc.). For short, we refer to these elementary functions as "workhorses". In implementing a model, the user specifies basic model components using functions, procedures in dynamically-linked libraries, or C snippets. Each component is then packaged into a 'pomp_fun' objects, which gives a uniform interface. The construction of 'pomp_fun' objects is handled by the hitch function, which conceptually "hitches" the workhorses to the user-defined procedures.

Usage

```
hitch(
    ...,
    templates,
    obsnames,
    statenames,
    paramnames,
    covarnames,
    PACKAGE,
    globals,
    cfile,
    cdir = getOption("pomp_cdir", NULL),
    shlib.args,
    compile = TRUE,
    verbose = getOption("verbose", FALSE)
)
```

Arguments

.. named arguments representing the user procedures to be hitched. These can be functions, character strings naming routines in external, dynamically-linked libraries, C snippets, or NULL. The first three are converted by hitch to 'pomp_fun'

58 hitch

objects which perform the indicated computations. NULL arguments are translated to default 'pomp_fun' objects. If any of these procedures are already 'pomp_fun' objects, they are returned unchanged.

templates named list of templates. Each workhorse must have a corresponding template.

See pomp:::workhorse_templates for a list.

obsnames, statenames, paramnames, covarnames

character vectors specifying the names of observable variables, latent state variables, parameters, and covariates, respectively. These are only needed if one or more of the horses are furnished as C snippets.

PACKAGE optional character; the name (without extension) of the external, dynamically

loaded library in which any native routines are to be found. This is only useful if one or more of the model components has been specified using a precompiled dynamically loaded library; it is not used for any component specified using C

snippets. PACKAGE can name at most one library.

globals optional character; arbitrary C code that will be hard-coded into the shared-

object library created when C snippets are provided. If no C snippets are used,

globals has no effect.

cfile optional character variable. cfile gives the name of the file (in directory cdir)

into which C snippet codes will be written. By default, a random filename is used. If the chosen filename would result in over-writing an existing file, an

error is generated.

cdir optional character variable. cdir specifies the name of the directory within

which C snippet code will be compiled. By default, this is in a temporary directory specific to the R session. One can also set this directory using the

pomp_cdir global option.

shlib.args optional character variables. Command-line arguments to the R CMD SHLIB call

that compiles the C snippets.

compile logical; if FALSE, compilation of the C snippets will be postponed until they are

needed.

verbose logical. Setting verbose=TRUE will cause additional information to be dis-

played.

Value

hitch returns a named list of length two. The element named "funs" is itself a named list of 'pomp_fun' objects, each of which corresponds to one of the horses passed in. The element named "lib" contains information on the shared-object library created using the C snippets (if any were passed to hitch). If no C snippets were passed to hitch, lib is NULL. Otherwise, it is a length-3 named list with the following elements:

name The name of the library created.

dir The directory in which the library was created. If this is NULL, the library was created in the session's temporary directory.

src A character string with the full contents of the C snippet file.

kalman 59

Author(s)

Aaron A. King

See Also

pomp, spy

kalman

Ensemble Kalman filters

Description

The ensemble Kalman filter and ensemble adjustment Kalman filter.

Usage

```
## S4 method for signature 'data.frame'
enkf(
  data,
 Νp,
  params,
  rinit,
  rprocess,
  emeasure,
  vmeasure,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
enkf(data, Np, ..., verbose = getOption("verbose", FALSE))
## S4 method for signature 'kalmand_pomp'
enkf(data, Np, ..., verbose = getOption("verbose", FALSE))
## S4 method for signature 'data.frame'
eakf(
  data,
 Nρ,
  params,
  rinit,
  rprocess,
  emeasure,
  vmeasure,
  verbose = getOption("verbose", FALSE)
)
```

60 kalman

```
## S4 method for signature 'pomp'
eakf(data, Np, ..., verbose = getOption("verbose", FALSE))
```

Arguments

data either a data frame holding the time series data, or an object of class 'pomp',

i.e., the output of another **pomp** calculation. Internally, data will be internally

coerced to an array with storage-mode double.

Np integer; the number of particles to use, i.e., the size of the ensemble.

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-

tion, see rprocess specification for the documentation on these plugins.

emeasure the expectation of the measured variables, conditional on the latent state. This

can be specified as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting emeasure=NULL removes the emeasure component. For more information, see emeasure specifi-

cation.

vmeasure the covariance of the measured variables, conditional on the latent state. This

can be specified as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting vmeasure=NULL removes the vmeasure component. For more information, see vmeasure specifi-

cation.

.. additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Value

An object of class 'kalmand_pomp'.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not

kalmanFilter 61

handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Aaron A. King

References

- G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. *Journal of Geophysical Research: Oceans* **99**, 10143–10162, 1994.
- J.L. Anderson. An ensemble adjustment Kalman filter for data assimilation. *Monthly Weather Review* **129**, 2884–2903, 2001.
- G. Evensen. Data assimilation: the ensemble Kalman filter. Springer-Verlag, 2009.

See Also

kalmanFilter

```
More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(), mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()
```

More on **pomp** elementary algorithms: elementary algorithms, pfilter(), pomp-package, probe(), simulate(), spect(), trajectory(), wpfilter()

kalmanFilter

Kalman filter

Description

The basic Kalman filter for multivariate, linear, Gaussian processes.

Usage

```
kalmanFilter(object, X0, A, Q, C, R, tol = 1e-06)
```

Arguments

object	a pomp object containing data;
X0	length-m vector containing initial state. This is assumed known without uncertainty.
A	$m \times m$ latent state-process transition matrix. $E[X(t+1) X(t)] = A.X(t)$.
Q	$m \times m$ latent state-process covariance matrix. $Var[X(t+1) X(t)] = Q$
С	$n \times m$ link matrix. $E[Y(t) X(t)] = C.X(t)$.

62 kalmanFilter

```
R n \times n observation process covariance matrix. Var[Y(t)|X(t)] = R tol numeric; the tolerance to be used in computing matrix pseudoinverses via singular-value decomposition. Singular values smaller than tol are set to zero.
```

Details

If the latent state is X, the observed variable is $Y, X(t) \in \mathbb{R}^m, Y(t) \in \mathbb{R}^n$, and

$$X(t) \ MultivariateNormal(AX(t-1),Q)$$

Then the Kalman filter computes the exact likelihood of Y given A, C, Q, and R.

Value

A named list containing the following elements:

```
object the 'pomp' object  \textbf{A}, \textbf{Q}, \textbf{C}, \textbf{R} \text{ as in the call}   \textbf{filter.mean} \ E[X(t)|y^*(1), \ldots, y^*(t)]   \textbf{pred.mean} \ E[X(t)|y^*(1), \ldots, y^*(t-1)]   \textbf{forecast} \ E[Y(t)|y^*(1), \ldots, y^*(t-1)]   \textbf{cond.logLik} \ f(y^*(t)|y^*(1), \ldots, y^*(t-1))   \textbf{logLik} \ f(y^*(1), \ldots, y^*(T))
```

See Also

```
enkf, eakf
```

Examples

```
## Not run:
library(dplyr)
gompertz() -> po
po %>%
   as.data.frame() %>%
   mutate(
    logY=log(Y)
) %>%
select(time,logY) %>%
pomp(times="time",t0=0) %>%
kalmanFilter(
   X0=c(logX=0),
   A=matrix(exp(-0.1),1,1),
   Q=matrix(0.01,1,1),
   C=matrix(1,1,1),
```

logLik 63

```
R=matrix(0.01,1,1)
) -> kf

po %>%
    pfilter(Np=1000) -> pf

kf$logLik
logLik(pf) + sum(log(obs(pf)))
## End(Not run)
```

logLik

Log likelihood

Description

Extract the estimated log likelihood (or related quantity) from a fitted model.

Usage

```
logLik(object, ...)
## S4 method for signature 'listie'
logLik(object, ...)
## S4 method for signature 'pfilterd_pomp'
logLik(object)
## S4 method for signature 'wpfilterd_pomp'
logLik(object)
## S4 method for signature 'probed_pomp'
logLik(object)
## S4 method for signature 'kalmand_pomp'
logLik(object)
## S4 method for signature 'pmcmcd_pomp'
logLik(object)
## S4 method for signature 'bsmcd_pomp'
logLik(object)
## S4 method for signature 'objfun'
logLik(object)
## S4 method for signature 'spect_match_objfun'
```

64 logLik

```
logLik(object)
## S4 method for signature 'nlf_objfun'
logLik(object, ...)
```

Arguments

object fitted model object

... ignored

Value

numerical value of the log likelihood. Note that some methods compute not the log likelihood itself but instead a related quantity. To keep the code simple, the logLik function is nevertheless used to extract this quantity.

When object is of 'pfilterd_pomp' class (i.e., the result of a wpfilter computation), logLik retrieves the estimated log likelihood.

When object is of 'wpfilterd_pomp' class (i.e., the result of a wpfilter computation), logLik retrieves the estimated log likelihood.

When object is of 'probed_pomp' class (i.e., the result of a probe computation), logLik retrieves the "synthetic likelihood".

When object is of 'kalmand_pomp' class (i.e., the result of an eakf or enkf computation), logLik retrieves the estimated log likelihood.

When object is of 'pmcmcd_pomp' class (i.e., the result of a pmcmc computation), logLik retrieves the estimated log likelihood as of the last particle filter operation.

When object is of 'bsmcd_pomp' class (i.e., the result of a bsmc2 computation), logLik retrieves the "log evidence".

When object is of 'spect_match_objfun' class (i.e., an objective function constructed by spect_objfun), logLik retrieves minus the spectrum mismatch.

When object is an NLF objective function, i.e., the result of a call to nlf_objfun, logLik retrieves the "quasi log likelihood".

See Also

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

logmeanexp 65

logmeanexp

The log-mean-exp trick

Description

logmeanexp computes

$$\log \frac{1}{N} \sum_{n=1}^{N} e_i^x,$$

avoiding over- and under-flow in doing so. It can optionally return an estimate of the standard error in this quantity.

Usage

```
logmeanexp(x, se = FALSE)
```

Arguments

x numeric

se logical; give approximate standard error?

Details

When se = TRUE, logmeanexp uses a jackknife estimate of the variance in log(x).

Value

log(mean(exp(x))) computed so as to avoid over- or underflow. If se = FALSE, the approximate standard error is returned as well.

Author(s)

Aaron A. King

Examples

```
## Not run:
    ## an estimate of the log likelihood:
    po <- ricker()
    ll <- replicate(n=5,logLik(pfilter(po,Np=1000)))
    logmeanexp(ll)
    ## with standard error:
    logmeanexp(ll,se=TRUE)
## End(Not run)</pre>
```

66 mcap

lookup

Lookup table

Description

Interpolate values from a lookup table

Usage

```
lookup(table, t)
```

Arguments

table a 'covartable' object created by a call to covariate_table

t numeric vector; times at which interpolated values of the covariates in table

are required.

Details

A warning will be generated if extrapolation is performed.

Value

A numeric vector or matrix of the interpolated values.

See Also

More on interpolation: bsplines, covariates

тсар

Monte Carlo adjusted profile

Description

Given a collection of points maximizing the likelihood over a range of fixed values of a focal parameter, this function constructs a profile likelihood confidence interval accommodating both Monte Carlo error in the profile and statistical uncertainty present in the likelihood function.

Usage

```
mcap(logLik, parameter, level = 0.95, span = 0.75, Ngrid = 1000)
```

mif2 67

Arguments

logLik numeric; a vector of profile log likelihood evaluations.

parameter numeric; the corresponding values of the focal parameter.

level numeric; the confidence level required.
span numeric; the loess smoothing parameter.

Ngrid integer; the number of points to evaluate the smoothed profile.

Value

mcap returns a list including the' loess-smoothed profile, a quadratic approximation, and the constructed confidence interval.

Author(s)

Edward L. Ionides

References

E. L. Ionides, C. Breto, J. Park, R. A. Smith, and A. A. King. Monte Carlo profile confidence intervals for dynamic systems. *Journal of the Royal Society, Interface* **14**, 20170126, 2017.

mif2 Iterated filtering: maximum likelihood by iterated, perturbed Bayes maps

Description

An iterated filtering algorithm for estimating the parameters of a partially-observed Markov process. Running mif2 causes the algorithm to perform a specified number of particle-filter iterations. At each iteration, the particle filter is performed on a perturbed version of the model, in which the parameters to be estimated are subjected to random perturbations at each observation. This extra variability effectively smooths the likelihood surface and combats particle depletion by introducing diversity into particle population. As the iterations progress, the magnitude of the perturbations is diminished according to a user-specified cooling schedule. The algorithm is presented and justified in Ionides et al. (2015).

Usage

```
## S4 method for signature 'data.frame'
mif2(
   data,
   Nmif = 1,
   rw.sd,
   cooling.type = c("geometric", "hyperbolic"),
   cooling.fraction.50,
   Np,
```

68 mif2

```
params,
  rinit,
  rprocess,
  dmeasure,
  partrans,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
mif2(
  data,
 Nmif = 1,
  rw.sd,
  cooling.type = c("geometric", "hyperbolic"),
  cooling.fraction.50,
  Nρ,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pfilterd_pomp'
mif2(data, Nmif = 1, Np, ..., verbose = getOption("verbose", FALSE))
## S4 method for signature 'mif2d_pomp'
mif2(
  data,
 Nmif,
  rw.sd,
  cooling.type,
  cooling.fraction.50,
  verbose = getOption("verbose", FALSE)
)
```

Arguments

data

either a data frame holding the time series data, or an object of class 'pomp', i.e., the output of another **pomp** calculation. Internally, data will be internally coerced to an array with storage-mode double.

Nmif

The number of filtering iterations to perform.

rw.sd

specification of the magnitude of the random-walk perturbations that will be applied to some or all model parameters. Parameters that are to be estimated should have positive perturbations specified here. The specification is given using the rw.sd function, which creates a list of unevaluated expressions. The latter are evaluated in a context where the model time variable is defined (as time). The expression ivp(s) can be used in this context as shorthand for

```
ifelse(time==time[1],s,0).
```

mif2

Likewise, ivp(s,lag) is equivalent to

ifelse(time==time[lag],s,0).

See below for some examples.

The perturbations that are applied are normally distributed with the specified s.d. If parameter transformations have been supplied, then the perturbations are applied on the transformed (estimation) scale.

cooling.type, cooling.fraction.50

specifications for the cooling schedule, i.e., the manner and rate with which the intensity of the parameter perturbations is reduced with successive filtering iterations. cooling.type specifies the nature of the cooling schedule. See below (under "Specifying the perturbations") for more detail.

the number of particles to use. This may be specified as a single positive integer, in which case the same number of particles will be used at each timestep. Alternatively, if one wishes the number of particles to vary across timesteps, one may specify Np either as a vector of positive integers of length

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k) must be a single positive integer, representing the number of particles to be used at the k-th timestep: Np(0) is the number of particles to use going from timezero(object) to time(object)[1], Np(1), from timezero(object) to time(object)[1], and so on, while when T=length(time(object)), Np(T) is the number of particles to sample at the end of the time-series.

optional; named numeric vector of parameters. This will be coerced internally to storage mode double.

simulator of the initial-state distribution. This can be furnished either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator to its default. For more information, see rinit specification.

simulator of the latent state process, specified using one of the rprocess plugins. Setting rprocess=NULL removes the latent-state simulator. For more information, see rprocess specification for the documentation on these plugins.

evaluator of the measurement model density, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting dmeasure=NULL removes the measurement density evaluator. For more information, see dmeasure specification.

optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of parameters. When working with such an algorithm and a model for which the parameters are constrained, it can be useful to transform parameters. One should supply the partrans argument via a call to parameter_trans. For more information, see parameter_trans. Setting partrans=NULL removes the parameter transformations, i.e., sets them to the identity transformation.

additional arguments supply new or modify existing model characteristics or components. See pomp for a full list of recognized arguments.

Np

params

rinit

rprocess

dmeasure

partrans

. . .

70 mif2

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for information on how to use this facility.

verbose

logical; if TRUE, diagnostic messages will be printed to the console.

Value

Upon successful completion, mif2 returns an object of class 'mif2d_pomp'.

Number of particles

If Np is anything other than a constant, the user must take care that the number of particles requested at the end of the time series matches that requested at the beginning. In particular, if T=length(time(object)), then one should have Np[1]==Np[T+1] when Np is furnished as an integer vector and Np(0)==Np(T) when Np is furnished as a function.

Methods

The following methods are available for such an object:

continue picks up where mif2 leaves off and performs more filtering iterations.

logLik returns the so-called *mif log likelihood* which is the log likelihood of the perturbed model, not of the focal model itself. To obtain the latter, it is advisable to run several pfilter operations on the result of a mif2 computation.

coef extracts the point estimate

eff.sample.size extracts the effective sample size of the final filtering iteration

Various other methods can be applied, including all the methods applicable to a pfilterd_pomp object and all other **pomp** estimation algorithms and diagnostic methods.

Specifying the perturbations

The rw. sd function simply returns a list containing its arguments as unevaluated expressions. These are then evaluated in a context containing the model time variable. This allows for easy specification of the structure of the perturbations that are to be applied. For example,

results in perturbations of parameter a with s.d. 0.05 at every time step, while parameters b and c both get perturbations of s.d. 0.2 only just before the first observation. Parameters d and e, by contrast, get perturbations of s.d. 0.2 only just before the thirteenth observation. Finally, parameter f gets a random perturbation of size 0.02 before every observation falling before t=23.

On the m-th IF2 iteration, prior to time-point n, the d-th parameter is given a random increment normally distributed with mean 0 and standard deviation $c_{m,n}\sigma_{d,n}$, where c is the cooling schedule

and σ is specified using rw.sd, as described above. Let N be the length of the time series and α =cooling.fraction.50. Then, when cooling.type="geometric", we have

$$c_{m,n} = \alpha^{\frac{n-1+(m-1)N}{50N}}.$$

When cooling.type="hyperbolic", we have

$$c_{m,n}=\frac{s+1}{s+n+(m-1)N},$$

where s satisfies

$$\frac{s+1}{s+50N} = \alpha.$$

Thus, in either case, the perturbations at the end of 50 IF2 iterations are a fraction α smaller than they are at first.

Re-running IF2 iterations

To re-run a sequence of IF2 iterations, one can use the mif2 method on a 'mif2d_pomp' object. By default, the same parameters used for the original IF2 run are re-used (except for verbose, the default of which is shown above). If one does specify additional arguments, these will override the defaults.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Aaron A. King, Edward L. Ionides, Dao Nguyen

References

E.L. Ionides, D. Nguyen, Y. Atchadé, S. Stoev, and A.A. King. Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. *Proceedings of the National Academy of Sciences* **112**, 719–724, 2015.

See Also

More on full-information (i.e., likelihood-based) methods: bsmc2(), pfilter(), pmcmc(), wpfilter()
More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
filter.traj(), kalman, pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(),
wpfilter()

More on **pomp** estimation algorithms: approximate Bayesian computation, bsmc2(), estimation algorithms, nonlinear forecasting, pmcmc(), pomp-package, probe matching, spectrum matching

More on maximization-based estimation methods: nonlinear forecasting, probe matching, spectrum matching, trajectory matching

72 nonlinear forecasting

nonlinear forecasting Nonlinear forecasting

Description

Parameter estimation by maximum simulated quasi-likelihood.

Usage

```
## S4 method for signature 'data.frame'
nlf_objfun(
  data,
 est = character(0),
 lags,
 nrbf = 4,
  ti,
  tf,
  seed = NULL,
  transform.data = identity,
  period = NA,
  tensor = TRUE,
  fail.value = NA_real_,
  params,
  rinit,
  rprocess,
  rmeasure,
  verbose = getOption("verbose")
)
## S4 method for signature 'pomp'
nlf_objfun(
 data,
 est = character(0),
 lags,
  nrbf = 4,
  ti,
  tf,
  seed = NULL,
  transform.data = identity,
  period = NA,
  tensor = TRUE,
  fail.value = NA,
  verbose = getOption("verbose")
)
```

nonlinear forecasting 73

```
## S4 method for signature 'nlf_objfun'
nlf_objfun(
    data,
    est,
    lags,
    nrbf,
    ti,
    tf,
    seed = NULL,
    period,
    tensor,
    transform.data,
    fail.value,
    ...,
    verbose = getOption("verbose", FALSE)
)
```

Arguments

data either a data frame holding the time series data, or an object of class 'pomp',

i.e., the output of another pomp calculation. Internally, data will be internally

coerced to an array with storage-mode double.

est character vector; the names of parameters to be estimated.

lags A vector specifying the lags to use when constructing the nonlinear autoregres-

sive prediction model. The first lag is the prediction interval.

nrbf integer scalar; the number of radial basis functions to be used at each lag.

ti, tf required numeric values. NLF works by generating simulating long time se-

ries from the model. The simulated time series will be from ti to tf, with the same sampling frequency as the data. ti should be chosen large enough so that transient dynamics have died away. tf should be chosen large enough so that sufficiently many data points are available to estimate the nonlinear forecasting model well. An error will be generated unless the data-to-parameter ratio

exceeds 10 and a warning will be given if the ratio is smaller than 30.

seed integer. When fitting, it is often best to fix the seed of the random-number

generator (RNG). This is accomplished by setting seed to an integer. By default,

seed = NULL, which does not alter the RNG state.

transform.data optional function. If specified, forecasting is performed using data and model

simulations transformed by this function. By default, transform.data is the identity function, i.e., no transformation is performed. The main purpose of transform.data is to achieve approximately multivariate normal forecasting errors. If the data are univariate, transform.data should take a scalar and return a scalar. If the data are multivariate, transform.data should assume a

vector input and return a vector of the same length.

period numeric; period=NA means the model is nonseasonal. period > 0 is the period

of seasonal forcing. period <= 0 is equivalent to period = NA.

tensor logical; if FALSE, the fitted model is a generalized additive model with time

mod period as one of the predictors, i.e., a gam with time-varying intercept. If

TRUE, the fitted model is a gam with lagged state variables as predictors and time-periodic coefficients, constructed using tensor products of basis functions of state variables with basis functions of time.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values

of the objective function. It should be a large number (i.e., bigger than any

legitimate values the objective function is likely to take).

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-

tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-

tion, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rmeasure=NULL removes the measurement model simu-

lator. For more information, see rmeasure specification.

.. additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

Nonlinear forecasting (NLF) is an 'indirect inference' method. The NLF approximation to the log likelihood of the data series is computed by simulating data from a model, fitting a nonlinear autoregressive model to the simulated time series, and quantifying the ability of the resulting fitted model to predict the data time series. The nonlinear autoregressive model is implemented as a generalized additive model (GAM), conditional on lagged values, for each observation variable. The errors are assumed multivariate normal.

The NLF objective function constructed by nlf_objfun simulates long time series (nasymp is the number of observations in the simulated times series), perhaps after allowing for a transient period (ntransient steps). It then fits the GAM for the chosen lags to the simulated time series. Finally, it computes the quasi-likelihood of the data under the fitted GAM.

NLF assumes that the observation frequency (equivalently the time between successive observations) is uniform.

Value

nlf_objfun constructs a stateful objective function for NLF estimation. Specifically, nlf_objfun returns an object of class 'nlf_objfun', which is a function suitable for use in an optim-like opti-

nonlinear forecasting 75

mizer. In particular, this function takes a single numeric-vector argument that is assumed to contain the parameters named in est, in that order. When called, it will return the negative log quasilikelihood. It is a stateful function: Each time it is called, it will remember the values of the parameters and its estimate of the log quasilikelihood.

Periodically-forced systems (seasonality)

Unlike other **pomp** estimation methods, NLF cannot accommodate general time-dependence in the model via explicit time-dependence or dependence on time-varying covariates. However, NLF can accommodate periodic forcing. It does this by including forcing phase as a predictor in the nonlinear autoregressive model. To accomplish this, one sets period to the period of the forcing (a positive numerical value). In this case, if tensor = FALSE, the effect is to add a periodic intercept in the autoregressive model. If tensor = TRUE, by contrast, the fitted model includes time-periodic coefficients, constructed using tensor products of basis functions of observables with basis functions of time.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Important Note

Since **pomp** cannot guarantee that the *final* call an optimizer makes to the function is a call *at* the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones. Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization routine, which will ensure that these parameters are stored.

Author(s)

Stephen P. Ellner, Bruce E. Kendall, Aaron A. King

References

- S.P. Ellner, B.A. Bailey, G.V. Bobashev, A.R. Gallant, B.T. Grenfell, and D.W. Nychka. Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling. *American Naturalist* **151**, 425–440, 1998.
- B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet, and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. *Ecology* **80**, 1789–1805, 1999.
- B.E. Kendall, S.P. Ellner, E. McCauley, S.N. Wood, C.J. Briggs, W.W. Murdoch, and P. Turchin. Population cycles in the pine looper moth (*Bupalus piniarius*): dynamical tests of mechanistic hypotheses. *Ecological Monographs* **75** 259–276, 2005.

76 obs

See Also

```
optim subplex nloptr
```

More on **pomp** estimation algorithms: approximate Bayesian computation, bsmc2(), estimation algorithms, mif2(), pmcmc(), pomp-package, probe matching, spectrum matching

More on methods based on summary statistics: approximate Bayesian computation, basic probes, probe matching, probe(), spectrum matching, spect()

More on maximization-based estimation methods: mif2(), probe matching, spectrum matching, trajectory matching

Examples

```
ricker() %>%
  nlf_objfun(est=c("r","sigma","N_0"),lags=c(4,6),
    partrans=parameter_trans(log=c("r","sigma","N_0")),
    paramnames=c("r","sigma","N_0"),
    ti=100,tf=2000,seed=426094906L) -> m1

library(subplex)
subplex(par=log(c(20,0.5,5)),fn=m1,control=list(reltol=1e-4)) -> out

m1(out$par)
coef(m1)
plot(simulate(m1))
```

obs

obs

Description

Extract the data array from a 'pomp' object.

Usage

```
## S4 method for signature 'pomp'
obs(object, vars, ...)
## S4 method for signature 'listie'
obs(object, vars, ...)
```

Arguments

```
object an object of class 'pomp', or of a class extending 'pomp' vars names of variables to retrieve ... ignored
```

ou2 77

See Also

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

ou2

Two-dimensional discrete-time Ornstein-Uhlenbeck process

Description

ou2() constructs a 'pomp' object encoding a bivariate discrete-time Ornstein-Uhlenbeck process with noisy observations.

Usage

```
ou2(
   alpha_1 = 0.8,
   alpha_2 = -0.5,
   alpha_3 = 0.3,
   alpha_4 = 0.9,
   sigma_1 = 3,
   sigma_2 = -0.5,
   sigma_3 = 2,
   tau = 1,
   x1_0 = -3,
   x2_0 = 4,
   times = 1:100,
   t0 = 0
)
```

Arguments

```
alpha_1, alpha_2, alpha_3, alpha_4
entries of the alpha matrix, in column-major order. That is, alpha_2 is in the lower-left position.

sigma_1, sigma_2, sigma_3
entries of the lower-triangular sigma matrix. sigma_2 is the entry in the lower-left position.

tau measurement error s.d.

x1_0, x2_0 latent variable values at time t0

times vector of observation times

t0 the zero time
```

Details

If the state process is $X(t) = (x_1(t), x_2(t))$, then

$$X(t+1) = \alpha X(t) + \sigma \epsilon(t),$$

where α and σ are 2x2 matrices, σ is lower-triangular, and $\epsilon(t)$ is standard bivariate normal. The observation process is $Y(t) = (y_1(t), y_2(t))$, where $y_i(t) \sim \operatorname{normal}(x_i(t), \tau)$.

Value

A 'pomp' object with simulated data.

See Also

More examples provided with **pomp**: SIR models, blowflies, childhood disease data, dacca(), ebola, gompertz(), pomp examples, ricker(), rw2(), verhulst()

Examples

```
po <- ou2()
plot(po)
coef(po)
x <- simulate(po)
plot(x)
pf <- pfilter(po,Np=1000)
logLik(pf)</pre>
```

parameter transformations

Parameter transformations

Description

Equipping models with parameter transformations to ease searches in constrained parameter spaces.

Usage

```
parameter_trans(toEst, fromEst, ...)

## S4 method for signature '`NULL`, `NULL`'
parameter_trans(toEst, fromEst, ...)

## S4 method for signature 'pomp_fun,pomp_fun'
parameter_trans(toEst, fromEst, ...)

## S4 method for signature 'Csnippet,Csnippet'
parameter_trans(toEst, fromEst, ..., log, logit, barycentric)
```

parameter transformations 79

```
## S4 method for signature 'character, character'
parameter_trans(toEst, fromEst, ...)
## S4 method for signature 'function, function'
parameter_trans(toEst, fromEst, ...)
```

Arguments

toEst, fromEst procedures that perform transformation of model parameters to and from the

estimation scale, respectively. These can be furnished using \boldsymbol{C} snippets, \boldsymbol{R} func-

tions, or via procedures in an external, dynamically loaded library.

... ignored.

log names of parameters to be log transformed.

logit names of parameters to be logit transformed.

barycentric names of parameters to be collectively transformed according to the log barycen-

tric transformation. Important note: variables to be log-barycentrically trans-

formed *must be adjacent* in the parameter vector.

Details

When parameter transformations are desired, they can be integrated into the 'pomp' object via the partrans arguments using the parameter_trans function. As with the other basic model components, these should ordinarily be specified using C snippets. When doing so, note that:

1. The parameter transformation mapping a parameter vector from the scale used by the model codes to another scale, and the inverse transformation, are specified via a call to

```
parameter_trans(toEst,fromEst)
```

- 2. The goal of these snippets is the transformation of the parameters from the natural scale to the estimation scale, and vice-versa. If p is the name of a variable on the natural scale, its value on the estimation scale is T_p. Thus the toEst snippet computes T_p given p whilst the fromEst snippet computes p given T_p.
- 3. Time-, state-, and covariate-dependent transformations are not allowed. Therefore, neither the time, nor any state variables, nor any of the covariates will be available in the context within which a parameter transformation snippet is executed.

These transformations can also be specified using R functions with arguments chosen from among the parameters. Such an R function must also have the argument '...'. In this case, toEst should transform parameters from the scale that the basic components use internally to the scale used in estimation. fromEst should be the inverse of toEst.

Note that it is the user's responsibility to make sure that the transformations are mutually inverse. If obj is the constructed 'pomp' object, and coef(obj) is non-empty, a simple check of this property is

```
x <- coef(obj, transform = TRUE)
obj1 <- obj
coef(obj1, transform = TRUE) <- x</pre>
```

80 parmat

```
identical(coef(obj), coef(obj1))
identical(coef(obj1, transform=TRUE), x)
```

One can use the log and logit arguments of parameter_trans to name variables that should be log-transformed or logit-transformed, respectively. The barycentric argument can name sets of parameters that should be log-barycentric transformed.

Note that using the log, logit, or barycentric arguments causes C snippets to be generated. Therefore, you must make sure that variables named in any of these arguments are also mentioned in paramnames at the same time.

The logit transform is defined by

$$logit(\theta) = log \frac{\theta}{1 - \theta}.$$

The log barycentric transformation of variables $\theta_1, \dots, \theta_n$ is given by

logbarycentric
$$(\theta_1, \dots, \theta_n) = \left(\log \frac{\theta_1}{\sum_i \theta_i}, \dots, \log \frac{\theta_n}{\sum_i \theta_i}\right).$$

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

partrans

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

parmat

Create a matrix of parameters

Description

parmat is a utility that makes a vector of parameters suitable for use in **pomp** functions.

parmat 81

Usage

```
parmat(params, ...)
## S4 method for signature 'numeric'
parmat(params, nrep = 1, ..., names = NULL)
## S4 method for signature 'array'
parmat(params, nrep = 1, ..., names = NULL)
## S4 method for signature 'data.frame'
parmat(params, nrep = 1, ...)
```

Arguments

named numeric vector or matrix of parameters.
... additional arguments, currently ignored.
nrep number of replicates (columns) desired.
names optional character; column names.

Value

parmat returns a matrix consisting of nrep copies of params.

Author(s)

Aaron A. King

Examples

```
## generate a bifurcation diagram for the Ricker map
p <- parmat(coef(ricker()),nrep=500)
p["r",] <- exp(seq(from=1.5,to=4,length=500))
trajectory(
    ricker(),
    times=seq(from=1000,to=2000,by=1),
    params=p,
    format="array"
) -> x
matplot(p["r",],x["N",,],pch='.',col='black',
    xlab=expression(log(r)),ylab="N",log='x')
```

82 partrans

|--|

Description

Performs parameter transformations.

Usage

```
## S4 method for signature 'pomp'
partrans(object, params, dir = c("fromEst", "toEst"), ...)
## S4 method for signature 'objfun'
partrans(object, ...)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x .
dir	the direction of the transformation to perform.
	additional arguments are ignored.

Value

If dir=fromEst, the parameters in params are assumed to be on the estimation scale and are transformed onto the natural scale. If dir=toEst, they are transformed onto the estimation scale. In both cases, the parameters are returned as a named numeric vector or an array with rownames, as appropriate.

See Also

```
Specification of parameter transformations: parameter_trans
```

```
More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
```

parus 83

parus

Parus major population dynamics

Description

Size of a population of great tits (Parus major) from Wytham Wood, near Oxford.

Details

Provenance: Global Population Dynamics Database dataset #10163. (NERC Centre for Population Biology, Imperial College (2010) The Global Population Dynamics Database Version 2. https://www.imperial.ac.uk/cpb/gpdd2/). Original source: McCleer and Perrins (1991).

References

R. McCleery and C. Perrins. Effects of predation on the numbers of Great Tits, *Parus major*. In: C.M. Perrins, J.-D. Lebreton, and G.J.M. Hirons (eds.), *Bird Population Studies*, pp. 129–147, Oxford. Univ. Press, 1991.

See Also

More data sets provided with **pomp**: blowflies, bsflu, childhood disease data, dacca(), ebola

Examples

```
## Not run:
 parus %>%
   pfilter(Np=1000,times="year",t0=1960,
      params=c(K=190,r=2.7,sigma=0.2,theta=0.05,N.0=148),
      rprocess=discrete_time(
        function (r, K, sigma, N, ...) {
          e <- rnorm(n=1,mean=0,sd=sigma)
         c(N = exp(log(N)+r*(1-N/K)+e))
        },
        delta.t=1
      rmeasure=function (N, theta, ...) {
        c(pop=rnbinom(n=1, size=1/theta, mu=N+1e-10))
      dmeasure=function (pop, N, theta, ..., log) {
        dnbinom(x=pop,mu=N+1e-10,size=1/theta,log=log)
      partrans=parameter_trans(log=c("sigma","theta","N_0","r","K")),
      paramnames=c("sigma","theta","N_0","r","K")
    ) -> pf
 pf %>% logLik()
```

pfilter pfilter

```
pf %>% simulate() %>% plot()
## End(Not run)
```

pfilter

Particle filter

Description

A plain vanilla sequential Monte Carlo (particle filter) algorithm. Resampling is performed at each observation.

Usage

```
## S4 method for signature 'data.frame'
pfilter(
  data,
 Nρ,
  params,
  rinit,
  rprocess,
  dmeasure,
  pred.mean = FALSE,
  pred.var = FALSE,
  filter.mean = FALSE,
  filter.traj = FALSE,
  save.states = FALSE,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
pfilter(
  data,
 Nρ,
  pred.mean = FALSE,
 pred.var = FALSE,
  filter.mean = FALSE,
  filter.traj = FALSE,
  save.states = FALSE,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pfilterd_pomp'
pfilter(data, Np, ..., verbose = getOption("verbose", FALSE))
```

pfilter 85

```
## S4 method for signature 'objfun'
pfilter(data, ...)
```

Arguments

data

either a data frame holding the time series data, or an object of class 'pomp', i.e., the output of another **pomp** calculation. Internally, data will be internally coerced to an array with storage-mode double.

Np

the number of particles to use. This may be specified as a single positive integer, in which case the same number of particles will be used at each timestep. Alternatively, if one wishes the number of particles to vary across timesteps, one may specify Np either as a vector of positive integers of length

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k) must be a single positive integer, representing the number of particles to be used at the k-th timestep: Np(0) is the number of particles to use going from timezero(object) to time(object)[1], Np(1), from timezero(object) to time(object)[1], and so on, while when T=length(time(object)), Np(T) is the number of particles to sample at the end of the time-series.

params

optional; named numeric vector of parameters. This will be coerced internally to storage mode double.

rinit

simulator of the initial-state distribution. This can be furnished either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator to its default. For more information, see rinit specification.

rprocess

simulator of the latent state process, specified using one of the rprocess plugins. Setting rprocess=NULL removes the latent-state simulator. For more information, see rprocess specification for the documentation on these plugins.

dmeasure

evaluator of the measurement model density, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting dmeasure=NULL removes the measurement density evaluator. For more information, see dmeasure specification.

pred.mean

logical; if TRUE, the prediction means are calculated for the state variables and parameters.

pred.var

logical; if TRUE, the prediction variances are calculated for the state variables and parameters.

filter.mean

logical; if TRUE, the filtering means are calculated for the state variables and parameters.

filter.traj

logical; if TRUE, a filtered trajectory is returned for the state variables and parameters. See filter.traj for more information.

logical. If save. states=TRUE, the state-vector for each particle at each time is saved.

additional arguments supply new or modify existing model characteristics or components. See pomp for a full list of recognized arguments.

save.states

86 pfilter

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for information on how to use this facility.

verbose

logical; if TRUE, diagnostic messages will be printed to the console.

Value

An object of class 'pfilterd_pomp', which extends class 'pomp'. Information can be extracted from this object using the methods documented below.

Methods

```
logLik the estimated log likelihood

cond.logLik the estimated conditional log likelihood

eff.sample.size the (time-dependent) estimated effective sample size

pred.mean, pred.var the mean and variance of the approximate prediction distribution

filter.mean the mean of the filtering distribution

filter.traj retrieve one particle trajectory. Useful for building up the smoothing distribution.

saved.states retrieve list of saved states.

as.data.frame coerce to a data frame

plot diagnostic plots
```

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Aaron A. King

References

M.S. Arulampalam, S. Maskell, N. Gordon, & T. Clapp. A tutorial on particle filters for online nonlinear, non-Gaussian Bayesian tracking. *IEEE Transactions on Signal Processing* **50**, 174–188, 2002.

A. Bhadra and E.L. Ionides. Adaptive particle allocation in iterated sequential Monte Carlo via approximating meta-models. *Statistics and Computing* **26**, 393–407, 2016.

plot 87

See Also

```
More on pomp elementary algorithms: elementary algorithms, kalman, pomp-package, probe(), simulate(), spect(), trajectory(), wpfilter()

More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(), kalman, mif2(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

More on full-information (i.e., likelihood-based) methods: bsmc2(), mif2(), pmcmc(), wpfilter()
```

Examples

```
pf <- pfilter(gompertz(),Np=1000) ## use 1000 particles
plot(pf)
logLik(pf)
cond.logLik(pf) ## conditional log-likelihoods
eff.sample.size(pf)
                                 ## effective sample size
logLik(pfilter(pf))
                          ## run it again with 1000 particles
## run it again with 2000 particles
pf <- pfilter(pf,Np=2000,filter.mean=TRUE,filter.traj=TRUE,save.states=TRUE)</pre>
fm <- filter.mean(pf)</pre>
                        ## extract the filtering means
ft <- filter.traj(pf) ## one draw from the smoothing distribution</pre>
ss <- saved.states(pf)</pre>
                                 ## the latent-state portion of each particle
as(pf,"data.frame") %>% head()
```

plot

pomp plotting facilities

Description

Diagnostic plots.

Usage

```
## S4 method for signature 'pomp_plottable'
plot(
    x,
    variables,
    panel = lines,
    nc = NULL,
    yax.flip = FALSE,
    mar = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1),
    oma = c(6, 0, 5, 0),
    axes = TRUE,
    ...
)
```

88 plot

```
## S4 method for signature 'Pmcmc'
plot(x, ..., pars)
## S4 method for signature 'Abc'
plot(x, ..., pars, scatter = FALSE)
## S4 method for signature 'Mif2'
plot(x, ..., pars, transform = FALSE)
## S4 method for signature 'probed_pomp'
plot(x, y, ...)
## S4 method for signature 'spectd_pomp'
plot(
 Х,
 ...,
 max.plots.per.page = 4,
 plot.data = TRUE,
 quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975),
 quantile.styles = list(lwd = 1, lty = 1, col = "gray70"),
 data.styles = list(lwd = 2, lty = 2, col = "black")
## S4 method for signature 'bsmcd_pomp'
plot(x, pars, thin, ...)
## S4 method for signature 'probe_match_objfun'
plot(x, y, ...)
## S4 method for signature 'spect_match_objfun'
plot(x, y, ...)
```

Arguments

	the chiest to plot
X	the object to plot
variables	optional character; names of variables to be displayed
panel	function of prototype panel(x , col, bg, pch, type,) which gives the action to be carried out in each panel of the display.
nc	the number of columns to use. Defaults to 1 for up to 4 series, otherwise to 2.
yax.flip	logical; if TRUE, the y-axis (ticks and numbering) should flip from side 2 (left) to 4 (right) from series to series.
mar, oma	the par mar and oma settings. Modify with care!
axes	logical; indicates if x- and y- axes should be drawn
	ignored or passed to low-level plotting functions
pars	names of parameters.
scatter	logical; if FALSE, traces of the parameters named in pars will be plotted against ABC iteration number. If TRUE, the traces will be displayed or as a scatterplot.

pmcmc 89

```
logical; should the parameter be transformed onto the estimation scale?
transform
                  ignored
max.plots.per.page
                  positive integer; maximum number of plots on a page
plot.data
                  logical; should the data spectrum be included?
quantiles
                   numeric; quantiles to display
quantile.styles
                  list; plot styles to use for quantiles
data.styles
                  list; plot styles to use for data
thin
                  integer; when the number of samples is very large, it can be helpful to plot a
                  random subsample: thin specifies the size of this subsample.
```

pmcmc

The particle Markov chain Metropolis-Hastings algorithm

Description

The Particle MCMC algorithm for estimating the parameters of a partially-observed Markov process. Running pmcmc causes a particle random-walk Metropolis-Hastings Markov chain algorithm to run for the specified number of proposals.

Usage

```
## S4 method for signature 'data.frame'
pmcmc(
  data,
 Nmcmc = 1,
 proposal,
 Nρ,
 params,
 rinit,
  rprocess,
  dmeasure,
  dprior,
  verbose = getOption("verbose", FALSE)
## S4 method for signature 'pomp'
pmcmc(
  data,
 Nmcmc = 1,
 proposal,
 Nρ,
  . . . ,
```

90 pmcmc

```
verbose = getOption("verbose", FALSE)
)

## S4 method for signature 'pfilterd_pomp'
pmcmc(
    data,
    Nmcmc = 1,
    proposal,
    Np,
    ...,
    verbose = getOption("verbose", FALSE)
)

## S4 method for signature 'pmcmcd_pomp'
pmcmc(data, Nmcmc, proposal, ..., verbose = getOption("verbose", FALSE))
```

Arguments

data

either a data frame holding the time series data, or an object of class 'pomp', i.e., the output of another **pomp** calculation. Internally, data will be internally coerced to an array with storage-mode double.

Nmcmc

The number of PMCMC iterations to perform.

proposal

optional function that draws from the proposal distribution. Currently, the proposal distribution must be symmetric for proper inference: it is the user's responsibility to ensure that it is. Several functions that construct appropriate proposal function are provided: see MCMC proposals for more information.

Np

the number of particles to use. This may be specified as a single positive integer, in which case the same number of particles will be used at each timestep. Alternatively, if one wishes the number of particles to vary across timesteps, one may specify Np either as a vector of positive integers of length

```
length(time(object,t0=TRUE))
```

or as a function taking a positive integer argument. In the latter case, Np(k) must be a single positive integer, representing the number of particles to be used at the k-th timestep: Np(0) is the number of particles to use going from timezero(object) to time(object)[1], Np(1), from timezero(object) to time(object)[1], and so on, while when T=length(time(object)), Np(T) is the number of particles to sample at the end of the time-series.

params

optional; named numeric vector of parameters. This will be coerced internally to storage mode double.

rinit

simulator of the initial-state distribution. This can be furnished either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator to its default. For more information, see rinit specification.

rprocess

simulator of the latent state process, specified using one of the rprocess plugins. Setting rprocess=NULL removes the latent-state simulator. For more information, see rprocess specification for the documentation on these plugins.

pmcmc 91

dmeasure evaluator of the measurement model density, specified either as a C snippet, an

R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting dmeasure=NULL removes the measurement density

evaluator. For more information, see dmeasure specification.

dprior optional; prior distribution density evaluator, specified either as a C snippet,

an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. For more information, see prior specification. Setting dprior=NULL resets the prior distribution to its default, which is a flat improper

prior.

additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Value

An object of class 'pmcmcd_pomp'.

Methods

The following can be applied to the output of a pmcmc operation:

pmcmc repeats the calculation, beginning with the last state

continue continues the pmcmc calculation

plot produces a series of diagnostic plots

filter.traj extracts a random sample from the smoothing distribution

traces produces an mcmc object, to which the various coda convergence diagnostics can be applied

Re-running PMCMC Iterations

To re-run a sequence of PMCMC iterations, one can use the pmcmc method on a 'pmcmc' object. By default, the same parameters used for the original PMCMC run are re-used (except for verbose, the default of which is shown above). If one does specify additional arguments, these will override the defaults.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Edward L. Ionides, Aaron A. King, Sebastian Funk

References

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. *Journal of the Royal Statistical Society, Series B* **72**, 269–342, 2010.

See Also

More on **pomp** estimation algorithms: approximate Bayesian computation, bsmc2(), estimation algorithms, mif2(), nonlinear forecasting, pomp-package, probe matching, spectrum matching More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(), kalman, mif2(), pfilter(), pred.mean(), pred.var(), saved.states(), wpfilter() More on full-information (i.e., likelihood-based) methods: bsmc2(), mif2(), pfilter(), wpfilter() More on Markov chain Monte Carlo methods: approximate Bayesian computation, proposals More on Bayesian methods: approximate Bayesian computation, bsmc2(), dprior(), prior specification, rprior()

pomp

Constructor of the basic pomp object

Description

This function constructs a 'pomp' object, encoding a partially-observed Markov process (POMP) model together with a uni- or multi-variate time series. As such, it is central to all the package's functionality. One implements the POMP model by specifying some or all of its *basic components*. These comprise:

rinit, which samples from the distribution of the state process at the zero-time;

rprocess, the simulator of the unobserved Markov state process;

dprocess, the evaluator of the probability density function for transitions of the unobserved Markov state process;

rmeasure, the simulator of the observed process, conditional on the unobserved state;

dmeasure, the evaluator of the measurement model probability density function;

emeasure, the expectation of the measurements, conditional on the latent state;

vmeasure, the covariance matrix of the measurements, conditional on the latent state;

rprior, which samples from a prior probability distribution on the parameters;

dprior, which evaluates the prior probability density function;

skeleton, which computes the deterministic skeleton of the unobserved state process;

partrans, which performs parameter transformations.

The basic structure and its rationale are described in the *Journal of Statistical Software* paper, an updated version of which is to be found on the package website.

Usage

```
pomp(
  data,
  times,
  t0,
  . . . ,
  rinit,
  rprocess,
  dprocess,
  rmeasure,
  dmeasure,
  emeasure,
  vmeasure,
  skeleton,
  rprior,
  dprior,
  partrans,
  covar,
  params,
  accumvars,
  obsnames,
  statenames,
  paramnames,
  covarnames,
  PACKAGE,
  globals,
  cdir = getOption("pomp_cdir", NULL),
  cfile,
  shlib.args,
  compile = TRUE,
  verbose = getOption("verbose", FALSE)
)
```

Arguments

times

t0

. . .

data	either a data frame holding the time series data, or an object of class 'pomp',
	i.e., the output of another pomp calculation. Internally, data will be internally
	coerced to an array with storage-mode double.

the sequence of observation times. times must indicate the column of observation times by name or index. The time vector must be numeric and non-decreasing.

The zero-time, i.e., the time of the initial state. This must be no later than the time of the first observation, i.e., $t0 \le times[1]$.

additional arguments supply new or modify existing model characteristics or components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This al-

lows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for information on how to use this facility.

rinit

simulator of the initial-state distribution. This can be furnished either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator to its default. For more information, see rinit specification.

rprocess

simulator of the latent state process, specified using one of the rprocess plugins. Setting rprocess=NULL removes the latent-state simulator. For more information, see rprocess specification for the documentation on these plugins.

dprocess

optional; specification of the probability density evaluation function of the unobserved state process. Setting dprocess=NULL removes the latent-state density evaluator. For more information, see dprocess specification.

rmeasure

simulator of the measurement model, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rmeasure=NULL removes the measurement model simulator. For more information, see rmeasure specification.

dmeasure

evaluator of the measurement model density, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting dmeasure=NULL removes the measurement density evaluator. For more information, see dmeasure specification.

emeasure

the expectation of the measured variables, conditional on the latent state. This can be specified as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting emeasure=NULL removes the emeasure component. For more information, see emeasure specification.

vmeasure

the covariance of the measured variables, conditional on the latent state. This can be specified as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting vmeasure=NULL removes the vmeasure component. For more information, see vmeasure specification.

skeleton

optional; the deterministic skeleton of the unobserved state process. Depending on whether the model operates in continuous or discrete time, this is either a vectorfield or a map. Accordingly, this is supplied using either the vectorfield or map fnctions. For more information, see skeleton specification. Setting skeleton=NULL removes the deterministic skeleton.

rprior

optional; prior distribution sampler, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. For more information, see prior specification. Setting rprior=NULL removes the prior distribution sampler.

dprior

optional; prior distribution density evaluator, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. For more information, see prior specification. Setting dprior=NULL resets the prior distribution to its default, which is a flat improper prior.

partrans optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of parameters. When working with such an algorithm and a model for which the parameters are constrained, it can be useful to transform parameters. One should supply the partrans argument via a call to parameter_trans. For more information, see parameter_trans. Setting partrans=NULL removes the parameter transformations, i.e., sets them to the identity transformation.

covar optional covariate table, constructed using covariate_table.

If a covariate table is supplied, then the value of each of the covariates is interpolated as needed. The resulting interpolated values are made available to the appropriate basic components. See the documentation for covariate_table

for details.

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

accumvars optional character vector; contains the names of accumulator variables. See

accumulators for a definition and discussion of accumulator variables.

obsnames optional character vector; names of the observables. It is not usually necessary to specify obsnames since, by default, these are read from the names of the data

variables.

statenames optional character vector; names of the latent state variables. It is typically only

necessary to supply statenames when C snippets are in use.

paramnames optional character vector; names of model parameters. It is typically only nec-

essary to supply paramnames when C snippets are in use.

covarnames optional character vector; names of the covariates. It is not usually necessary

to specify covarnames since, by default, these are read from the names of the

covariates.

PACKAGE optional character; the name (without extension) of the external, dynamically

loaded library in which any native routines are to be found. This is only useful if one or more of the model components has been specified using a precompiled dynamically loaded library; it is not used for any component specified using C

snippets. PACKAGE can name at most one library.

globals optional character; arbitrary C code that will be hard-coded into the shared-

object library created when C snippets are provided. If no C snippets are used,

globals has no effect.

cdir optional character variable. cdir specifies the name of the directory within

which C snippet code will be compiled. By default, this is in a temporary directory specific to the R session. One can also set this directory using the

pomp_cdir global option.

cfile optional character variable. cfile gives the name of the file (in directory cdir)

into which C snippet codes will be written. By default, a random filename is used. If the chosen filename would result in over-writing an existing file, an

error is generated.

shlib.args optional character variables. Command-line arguments to the R CMD SHLIB call

that compiles the C snippets.

compile logical; if FALSE, compilation of the C snippets will be postponed until they are

needed.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

Each basic component is supplied via an argument of the same name. These can be given in the call to pomp, or to many of the package's other functions. In any case, the effect is the same: to add, remove, or modify the basic component.

Each basic component can be furnished using C snippets, R functions, or pre-compiled native routine available in user-provided dynamically loaded libraries.

Value

The pomp constructor function returns an object, call it P, of class 'pomp'. P contains, in addition to the data, any elements of the model that have been specified as arguments to the pomp constructor function. One can add or modify elements of P by means of further calls to pomp, using P as the first argument in such calls. One can pass P to most of the **pomp** package methods via their data argument.

Note

It is not typically necessary (or indeed feasible) to define all of the basic components for any given purpose. However, each **pomp** algorithm makes use of only a subset of these components. When an algorithm requires a basic component that has not been furnished, an error is generated to let you know that you must provide the needed component to use the algorithm.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Aaron A. King

References

A. A. King, D. Nguyen, and E. L. Ionides. Statistical inference for partially observed Markov processes via the package **pomp**. *Journal of Statistical Software* **69**(12), 1–43, 2016. An updated version of this paper is available on the package website.

pomp examples 97

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

pomp examples

pomp_examples

Description

Pre-built POMP examples

Details

pomp includes a number of pre-built examples of pomp objects and data that can be analyzed using **pomp** methods. These include:

blowflies Data from Nicholson's experiments with sheep blowfly populations

blowflies1() A pomp object with some of the blowfly data together with a discrete delay equation model.

blowflies2() A variant of blowflies1.

bsflu Data from an outbreak of influenza in a boarding school.

dacca() Fifty years of census and cholera mortality data, together with a stochastic differential equation transmission model (King et al. 2008).

ebolaModel() Data from the 2014 West Africa outbreak of Ebola virus disease, together with simple transmission models (King et al. 2015).

gompertz() The Gompertz population dynamics model, with simulated data.

LondonYorke Data on incidence of several childhood diseases (London and Yorke 1973)

ewmeas Measles incidence data from England and Wales

ewcitmeas Measles incidence data from 7 English cities

ou2() A 2-D Ornstein-Uhlenbeck process with simulated data

parus Population censuses of a *Parus major* population in Wytham Wood, England.

ricker The Ricker population dynamics model, with simulated data

rw2 A 2-D Brownian motion model, with simulated data.

sir() A simple continuous-time Markov chain SIR model, coded using Euler-multinomial steps, with simulated data.

sir2() A simple continuous-time Markov chain SIR model, coded using Gillespie's algorithm, with simulated data.

verhulst() The Verhulst-Pearl (logistic) model, a continuous-time model of population dynamics, with simulated data

See also the tutorials on the package website for more examples.

98 pred.mean

References

Anonymous. Influenza in a boarding school. British Medical Journal 1, 587, 1978.

A.A. King, E.L. Ionides, M. Pascual, and M.J. Bouma. Inapparent infections and cholera dynamics. *Nature* **454**, 877-880, 2008

A.A. King, M. Domenech de Cellès, F.M.G. Magpantay, and P. Rohani. Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. *Proceedings of the Royal Society of London, Series B* **282**, 20150347, 2015.

W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps: I. Seasonal variation in contact rates. *American Journal of Epidemiology* **98**, 453–468, 1973.

A.J. Nicholson. The self-adjustment of populations to change. *Cold Spring Harbor Symposia on Quantitative Biology* **22**, 153–173, 1957.

See Also

More examples provided with **pomp**: SIR models, blowflies, childhood disease data, dacca(), ebola, gompertz(), ou2(), ricker(), rw2(), verhulst()

pred.mean

Prediction mean

Description

The mean of the prediction distribution

Usage

```
## S4 method for signature 'kalmand_pomp'
pred.mean(object, vars, ...)
## S4 method for signature 'pfilterd_pomp'
pred.mean(object, vars, ...)
```

Arguments

object result of a filtering computation
vars optional character; names of variables
... ignored

Details

The prediction distribution is that of

$$X(t_k)|Y(t_1) = y_1^*, \dots, Y(t_{k-1}) = y_{k-1}^*,$$

where $X(t_k)$, $Y(t_k)$ are the latent state and observable processes, respectively, and y_k^* is the data, at time t_k .

The prediction mean is therefore the expectation of this distribution

$$E[X(t_k)|Y(t_1) = y_1^*, \dots, Y(t_{k-1}) = y_{k-1}^*].$$

pred.var 99

See Also

```
More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.var(), saved.states(), wpfilter()

Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

pred.var

Prediction variance

Description

The variance of the prediction distribution

Usage

```
## S4 method for signature 'pfilterd_pomp'
pred.var(object, vars, ...)
```

Arguments

object result of a filtering computation
vars optional character; names of variables
... ignored

Details

The prediction distribution is that of

$$X(t_k)|Y(t_1) = y_1^*, \dots, Y(t_{k-1}) = y_{k-1}^*,$$

where $X(t_k)$, $Y(t_k)$ are the latent state and observable processes, respectively, and y_k^* is the data, at time t_k .

The prediction variance is therefore the variance of this distribution

$$Var[X(t_k)|Y(t_1) = y_1^*, \dots, Y(t_{k-1}) = y_{k-1}^*].$$

See Also

```
More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), saved.states(), wpfilter()

Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), saved.states(), spy(), states(), summary(), timezero(), time(), traces()
```

100 prior specification

prior specification prior distribution

Description

Specification of prior distributions.

Details

A prior distribution on parameters is specified by means of the rprior and/or dprior arguments to pomp. As with the other basic model components, it is preferable to specify these using C snippets. In writing a C snippet for the prior sampler (rprior), keep in mind that:

- 1. Within the context in which the snippet will be evaluated, only the parameters will be defined.
- 2. The goal of such a snippet is the replacement of parameters with values drawn from the prior distribution.
- 3. Hyperparameters can be included in the ordinary parameter list. Obviously, hyperparameters should not be replaced with random draws.

In writing a C snippet for the prior density function (dprior), observe that:

- Within the context in which the snippet will be evaluated, only the parameters and give_log will be defined.
- 2. The goal of such a snippet is computation of the prior probability density, or the log of same, at a given point in parameter space. This scalar value should be returned in the variable lik. When give_log == 1, lik should contain the log of the prior probability density.
- 3. Hyperparameters can be included in the ordinary parameter list.

General rules for writing C snippets can be found here.

Alternatively, one can furnish R functions for one or both of these arguments. In this case, rprior must be a function that makes a draw from the prior distribution of the parameters and returns a named vector containing all the parameters. The only required argument of this function is

Similarly, the dprior function must evaluate the prior probability density (or log density if log == TRUE) and return that single scalar value. The only required arguments of this function are . . . and log.

Default behavior

By default, the prior is assumed flat and improper. In particular, dprior returns 1 (0 if log = TRUE) for every parameter set. Since it is impossible to simulate from a flat improper prior, rprocess returns missing values (NAs).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

prior specification 101

See Also

dprior rprior

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

More on Bayesian methods: approximate Bayesian computation, bsmc2(), dprior(), pmcmc(), rprior()

Examples

```
## Not run:
 ## Starting with an existing pomp object
 verhulst() %>% window(end=30) -> po
 ## we add or change prior distributions using the two
 ## arguments 'rprior' and 'dprior'. Here, we introduce
 ## a Gamma prior on the 'r' parameter.
 ## We construct 'rprior' and 'dprior' using R functions.
 po %>%
   bsmc2(
      rprior=function (n_0, K0, K1, sigma, tau, r0, r1, ...) {
        c(
          n_0 = n_0
          K = rgamma(n=1,shape=K0,scale=K1),
          r = rgamma(n=1, shape=r0, scale=r1),
          sigma = sigma,
          tau = tau
        )
      dprior=function(K, K0, K1, r, r0, r1, ..., log) {
       p \leftarrow dgamma(x=c(K,r), shape=c(K0,r0), scale=c(K1,r1), log=log)
        if (log) sum(p) else prod(p)
      params=c(n_0=10000,K=10000,K0=10,K1=1000,
        r=0.9, r0=0.9, r1=1, sigma=0.5, tau=0.3),
      Np=1000
   ) -> B
 ## We can also pass them as C snippets:
 po %>%
   bsmc2(
      rprior=Csnippet("
         K = rgamma(K0,K1);
         r = rgamma(r0,r1);"
      dprior=Csnippet("
```

102 probe

```
double lik1 = dgamma(K,K0,K1,give_log);
    double lik2 = dgamma(r,r0,r1,give_log);
    lik = (give_log) ? lik1+lik2 : lik1*lik2;"
),
    paramnames=c("K","K0","K1","r","r0","r1"),
    params=c(n_0=10000,K=10000,K0=10,K1=1000,
        r=0.9,r0=0.9,r1=1,sigma=0.5,tau=0.3),
    Np=10000
) -> B

## The prior is plotted in grey; the posterior, in blue.
    plot(B)

B %>%
    pmcmc(Nmcmc=100,Np=1000,proposal=mvn.diag.rw(c(r=0.01,K=10))) -> Bb

plot(Bb,pars=c("loglik","log.prior","r","K"))
## End(Not run)
```

probe

Probes (AKA summary statistics)

Description

Probe a partially-observed Markov process by computing summary statistics and the synthetic likelihood.

Usage

```
## S4 method for signature 'data.frame'
probe(
  data,
  probes,
  nsim,
  seed = NULL,
 params,
  rinit,
  rprocess,
  rmeasure,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
probe(
  data,
  probes,
```

probe 103

```
nsim,
  seed = NULL,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'probed_pomp'
probe(
  data.
  probes,
  nsim,
  seed = NULL,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'probe_match_objfun'
probe(data, seed, ..., verbose = getOption("verbose", FALSE))
## S4 method for signature 'objfun'
probe(data, seed = NULL, ...)
```

Arguments

data either a data frame holding the time series data, or an object of class 'pomp',

i.e., the output of another **pomp** calculation. Internally, data will be internally

coerced to an array with storage-mode double.

probes a single probe or a list of one or more probes. A probe is simply a scalar- or

vector-valued function of one argument that can be applied to the data array of a 'pomp'. A vector-valued probe must always return a vector of the same size.

A number of useful probes are provided with the package: see basic probes.

nsim the number of model simulations to be computed.

seed optional integer; if non-NULL, the random number generator will be initialized

with this seed for simulations. See simulate.

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-

tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-

tion, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rmeasure=NULL removes the measurement model simu-

lator. For more information, see rmeasure specification.

104 probe

... additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for information on both to use the facility.

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

probe applies one or more "probes" to time series data and model simulations and compares the results. It can be used to diagnose goodness of fit and/or as the basis for "probe-matching", a generalized method-of-moments approach to parameter estimation.

A call to probe results in the evaluation of the probe(s) in probes on the data. Additionally, nsim simulated data sets are generated (via a call to simulate) and the probe(s) are applied to each of these. The results of the probe computations on real and simulated data are stored in an object of class 'probed_pomp'.

When probe operates on a probe-matching objective function (a 'probe_match_objfun' object), by default, the random-number generator seed is fixed at the value given when the objective function was constructed. Specifying NULL or an integer for seed overrides this behavior.

Value

probe returns an object of class 'probed_pomp', which contains the data and the model, together with the results of the probe calculation.

Methods

The following methods are available.

plot displays diagnostic plots.

summary displays summary information. The summary includes quantiles (fractions of simulations with probe values less than those realized on the data) and the corresponding two-sided p-values. In addition, the "synthetic likelihood" (Wood 2010) is computed, under the assumption that the probe values are multivariate-normally distributed.

logLik returns the synthetic likelihood for the probes. NB: in general, this is not the same as the likelihood.

as.data.frame coerces a 'probed_pomp' to a 'data.frame'. The latter contains the realized values of the probes on the data and on the simulations. The variable .id indicates whether the probes are from the data or simulations.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Daniel C. Reuman, Aaron A. King

References

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet, and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. *Ecology* **80**, 1789–1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. *Nature* **466**, 1102–1104, 2010.

See Also

```
More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package, simulate(), spect(), trajectory(), wpfilter()
```

More on methods based on summary statistics: approximate Bayesian computation, basic probes, nonlinear forecasting, probe matching, spectrum matching, spect()

probe matching

Probe matching

Description

Estimation of parameters by maximum synthetic likelihood

Usage

```
## S4 method for signature 'data.frame'
probe_objfun(
  data.
  est = character(0),
  fail.value = NA,
  probes,
  nsim,
  seed = NULL,
  params,
  rinit,
  rprocess,
  rmeasure,
  partrans,
  . . . ,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
probe_objfun(
```

```
data,
  est = character(0),
  fail.value = NA,
  probes,
  nsim,
  seed = NULL,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'probed_pomp'
probe_objfun(
  data,
  est = character(0),
  fail.value = NA,
  probes,
 nsim,
  seed = NULL,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'probe_match_objfun'
probe_objfun(
  data,
  est.
  fail.value,
 seed = NULL,
  verbose = getOption("verbose", FALSE)
)
```

Arguments

data	either a data	frame	holding th	ne time	series data.	or an ob	ject of class '	nomn'.

i.e., the output of another pomp calculation. Internally, data will be internally

coerced to an array with storage-mode double.

est character vector; the names of parameters to be estimated.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values

of the objective function. It should be a large number (i.e., bigger than any

legitimate values the objective function is likely to take).

probes a single probe or a list of one or more probes. A probe is simply a scalar- or

vector-valued function of one argument that can be applied to the data array of a 'pomp'. A vector-valued probe must always return a vector of the same size.

A number of useful probes are provided with the package: see basic probes.

nsim the number of model simulations to be computed.

seed integer. When fitting, it is often best to fix the seed of the random-number

generator (RNG). This is accomplished by setting seed to an integer. By default, seed = NULL, which does not alter the RNG state.

optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-

tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-

tion, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rmeasure=NULL removes the measurement model simu-

lator. For more information, see rmeasure specification.

partrans optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of parameters. When working with such an algorithm and a model for which the parameters are constrained, it can be useful to transform parameters. One should supply the partrans argument via a call to parameter_trans. For more information, see parameter_trans. Setting partrans=NULL removes the parameter

transformations, i.e., sets them to the identity transformation.

additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

params

In probe-matching, one attempts to minimize the discrepancy between simulated and actual data, as measured by a set of summary statistics called *probes*. In **pomp**, this discrepancy is measured using the "synthetic likelihood" as defined by Wood (2010).

Value

probe_objfun constructs a stateful objective function for probe matching. Specifically, probe_objfun returns an object of class 'probe_match_objfun', which is a function suitable for use in an optim-like optimizer. In particular, this function takes a single numeric-vector argument that is assumed to contain the parameters named in est, in that order. When called, it will return the negative synthetic log likelihood for the probes specified. It is a stateful function: Each time it is called, it will remember the values of the parameters and its estimate of the synthetic likelihood.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Important Note

Since **pomp** cannot guarantee that the *final* call an optimizer makes to the function is a call *at* the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones. Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization routine, which will ensure that these parameters are stored.

Author(s)

Aaron A. King

See Also

```
optim subplex nloptr
```

More on methods based on summary statistics: approximate Bayesian computation, basic probes, nonlinear forecasting, probe(), spectrum matching, spect()

More on **pomp** estimation algorithms: approximate Bayesian computation, bsmc2(), estimation algorithms, mif2(), nonlinear forecasting, pmcmc(), pomp-package, spectrum matching

More on maximization-based estimation methods: mif2(), nonlinear forecasting, spectrum matching, trajectory matching

Examples

proposals 109

```
library(subplex)
subplex(fn=f,par=0.4,control=list(reltol=1e-5)) -> out
## Call the objective one last time on the optimal parameters:
f(out$par)
coef(f)
## There are 'plot' and 'summary' methods:
f %>% as("probed_pomp") %>% plot()
f %>% summary()
## One can convert an objective function to a data frame:
f %>% as("data.frame") %>% head()
f %>% as("probed_pomp") %>% as("data.frame") %>% head()
f %>% probe() %>% plot()
## One can modify the objective function with another call
## to 'probe_objfun':
f %>% probe_objfun(est=c("r","K")) -> f1
subplex(fn=f1,par=c(0.3,0.3),control=list(reltol=1e-5)) \rightarrow out
f1(out$par)
coef(f1)
```

proposals

MCMC proposal distributions

Description

Functions to construct proposal distributions for use with MCMC methods.

Usage

```
mvn.diag.rw(rw.sd)
mvn.rw(rw.var)

mvn.rw.adaptive(
   rw.sd,
   rw.var,
   scale.start = NA,
   scale.cooling = 0.999,
   shape.start = NA,
   target = 0.234,
   max.scaling = 50
)
```

Arguments

rw.sd named numeric vector; random-walk SDs for a multivariate normal random-

walk proposal with diagonal variance-covariance matrix.

rw.var square numeric matrix with row- and column-names. Specifies the variance-

covariance matrix for a multivariate normal random-walk proposal distribution.

scale.start, scale.cooling, shape.start, target, max.scaling

parameters to control the proposal adaptation algorithm. Beginning with MCMC iteration scale.start, the scale of the proposal covariance matrix will be adjusted in an effort to match the target acceptance ratio. This initial scale adjustment is "cooled", i.e., the adjustment diminishes as the chain moves along. The parameter scale.cooling specifies the cooling schedule: at n iterations after scale.start, the current scaling factor is multiplied with scale.cooling^n. The maximum scaling factor allowed at any one iteration is max.scaling. After shape.start accepted proposals have accumulated, a scaled empirical covariance matrix will be used for the proposals, following Roberts and Rosenthal (2009).

Value

Each of these calls constructs a function suitable for use as the proposal argument of pmcmc or abc. Given a parameter vector, each such function returns a single draw from the corresponding proposal distribution.

Author(s)

Aaron A. King, Sebastian Funk

References

G.O. Roberts and J.S. Rosenthal. Examples of adaptive MCMC. *Journal of Computational and Graphical Statistics* **18**, 349–367, 2009.

See Also

More on Markov chain Monte Carlo methods: approximate Bayesian computation, pmcmc()

reproducibility tools *Tools for reproducible computations*.

Description

Bake, stew, and freeze assist in the construction of reproducible computations.

Usage

```
bake(
  file,
  expr,
  seed = NULL,
  kind = NULL,
  normal.kind = NULL,
  dependson = NULL,
  info = FALSE,
  timing = TRUE
)
stew(
  file,
  expr,
  seed = NULL,
  kind = NULL,
  normal.kind = NULL,
  dependson = NULL,
  info = FALSE
)
freeze(
  expr,
  seed = NULL,
 kind = NULL,
  normal.kind = NULL,
  envir = parent.frame(),
 enclos = if (is.list(envir) || is.pairlist(envir)) parent.frame() else baseenv()
)
```

Arguments

file

Name of the binary data file in which the result will be stored or retrieved, as appropriate. For bake, this will contain a single object and hence be an RDS file (extension 'rds'); for stew, this will contain one or more named objects and hence be an RDA file (extension 'rda').

expr Expression to be evaluated.

Expression to be eval

seed, kind, normal.kind

optional. To set the state and of the RNG. The default, seed = NULL, will not change the RNG state. seed should be a single integer. See set.seed for more information.

dependson

arbitrary R object (optional). Variables on which the computation in expr depends. A hash of these objects will be archived in file, along with the results of evaluation expr. When bake or stew are called and file exists, the hash of these objects will be compared against the archived hash; recomputation is forced when these do not match. The dependencies should be specified as unquoted symbols: use a list if there are multiple dependencies.

info
 logical. If TRUE, the "ingredients" of the calculation are returned as a list. In
 the case of bake, this list is the "ingredients" attribute of the returned object. In
 the case of stew, this list is a hidden object named ".ingredients", located in the
 environment within which stew was called.

timing
 logical. If TRUE, the time required for the computation is returned. This is
 returned as the "system.time" attribute of the returned object.

envir
 the environment in which expr is to be evaluated. May also be NULL, a list, a
 data frame, a pairlist or an integer as specified to sys.call.

enclos
 Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
 where R looks for objects not found in envir. This can be NULL (interpreted as
 the base package environment, baseenv()) or an environment.

Details

On cooking shows, recipes requiring lengthy baking or stewing are prepared beforehand. The bake and stew functions perform analogously: an computation is performed and archived in a named file. If the function is called again and the file is present, the computation is not executed. Instead, the results are loaded from the archive. Moreover, via their optional seed argument, bake and stew can control the pseudorandom-number generator (RNG) for greater reproducibility. After the computation is finished, these functions restore the pre-existing RNG state to avoid side effects.

The freeze function doesn't save results, but does set the RNG state to the specified value and restore it after the computation is complete.

Both bake and stew first test to see whether file exists. If it does, bake reads it using readRDS and returns the resulting object. By contrast, stew loads the file using load and copies the objects it contains into the user's workspace (or the environment of the call to stew).

If file does not exist, then both bake and stew evaluate the expression expr; they differ in the results that they save. bake saves the value of the evaluated expression to file as a single object. The name of that object is not saved. By contrast, stew creates a local environment within which expr is evaluated; all objects in that environment are saved (by name) in file. bake and stew also store information about the code executed, the dependencies, and the state of the random-number generator (if the latter is controlled) in the archive file. Re-computation is triggered if any of these things change.

Value

bake returns the value of the evaluated expression expr. Other objects created in the evaluation of expr are discarded along with the temporary, local environment created for the evaluation.

The latter behavior differs from that of stew, which returns the names of the objects created during the evaluation of expr. After stew completes, these objects are copied into the environment in which stew was called.

freeze returns the value of evaluated expression expr. However, freeze evaluates expr within the parent environment, so other objects created in the evaluation of expr will therefore exist after freeze completes.

bake and stew store information about the code executed, the dependencies, and the state of the random-number generator in the archive file. In the case of bake, this is recorded in the "ingredients" attribute (attr(., "ingredients")); in the stew case, this is recorded in an object, ".ingredients", in the archive. This information is returned only if info=TRUE.

The time required for execution is also recorded. bake stores this in the "system.time" attribute of the archived R object; stew does so in a hidden variable named .system.time. The timing is obtained using system.time.

Compatibility with older versions

With **pomp** version 3.4.4.2, the behavior of bake and stew changed. In particular, older versions did no dependency checking, and did not check to see whether expr had changed. Accordingly, the archive files written by older versions have a format that is not compatible with the newer ones. When an archive file in the old format is encountered, it will be updated to the new format, with a warning message. **Note that this will overwrite existing archive files!** However, there will be no loss of information.

Author(s)

Aaron A. King

Examples

```
## Not run:
  bake(file="example1.rds",{
    x <- runif(1000)
    mean(x)
  })
  bake(file="example1.rds",{
    x \leftarrow runif(1000)
    mean(x)
  })
  bake(file="example1.rds",{
    a <- 3
    x <- runif(1000)
    mean(x)
  })
  a <- 5
  b <- 2
  stew(file="example2.rda",
    dependson=list(a,b),{
      x \leftarrow runif(10)
      y \leftarrow rnorm(n=10, mean=a*x+b, sd=2)
    })
  plot(x,y)
  set.seed(11)
  runif(2)
  freeze(runif(3), seed=5886730)
  runif(2)
  freeze(runif(3), seed=5886730)
```

114 ricker

```
runif(2)
set.seed(11)
runif(2)
runif(2)
runif(2)
## End(Not run)
```

ricker

Ricker model with Poisson observations.

Description

ricker is a 'pomp' object encoding a stochastic Ricker model with Poisson measurement error.

Usage

```
ricker(r = \exp(3.8), sigma = 0.3, phi = 10, c = 1, N_0 = 7)
```

Arguments

r	intrinsic growth rate
sigma	environmental process noise s.d.
phi	sampling rate
С	density dependence parameter

N_0 initial condition

Details

The state process is $N_{t+1} = rN_t \exp(-cN_t + e_t)$, where the e_t are i.i.d. normal random deviates with zero mean and variance σ^2 . The observed variables y_t are distributed as $Poisson(\phi N_t)$.

Value

A 'pomp' object containing the Ricker model and simulated data.

See Also

```
More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(), ebola, gompertz(), ou2(), pomp examples, rw2(), verhulst()
```

rinit 115

Examples

```
po <- ricker()
plot(po)
coef(po)
simulate(po) %>% plot()

## generate a bifurcation diagram for the Ricker map
p <- parmat(coef(ricker()),nrep=500)
p["r",] <- exp(seq(from=1.5,to=4,length=500))
trajectory(
    ricker(),
    times=seq(from=1000,to=2000,by=1),
    params=p,
    format="array"
) -> x
matplot(p["r",],x["N",,],pch='.',col='black',
    xlab=expression(log(r)),ylab="N",log='x')
```

rinit

rinit

Description

Samples from the initial-state distribution.

Usage

```
## S4 method for signature 'pomp'
rinit(object, params, t0, nsim = 1, ...)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x .
t0	the initial time, i.e., the time corresponding to the initial-state distribution.
nsim	optional integer; the number of initial states to simulate per column of params.
	additional arguments are ignored.

Value

rinit returns an nvar x nsim*ncol(params) matrix of state-process initial conditions when given an npar x nsim matrix of parameters, params, and an initial time t0. By default, t0 is the initial time defined when the 'pomp' object ws constructed.

rinit specification

See Also

Specification of the initial-state distribution: rinit specification

More on **pomp** workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses

rinit specification

The initial-state distribution

Description

Specification of the initial-state distribution simulator, rinit.

Details

To fully specify the unobserved Markov state process, one must give its distribution at the zero-time (t0). One does this by furnishing a value for the rinit argument. As usual, this can be provided either as a C snippet or as an R function. In the former case, bear in mind that:

- 1. The goal of a this snippet is the construction of a state vector, i.e., the setting of the dynamical states at time t_0 .
- 2. In addition to the parameters and covariates (if any), the variable t, containing the zero-time, will be defined in the context in which the snippet is executed.
- 3. **NB:** The statenames argument plays a particularly important role when the rinit is specified using a C snippet. In particular, every state variable must be named in statenames. **Failure to follow this rule will result in undefined behavior.**

General rules for writing C snippets can be found here.

If an R function is to be used, pass

```
rinit = f
```

to pomp, where f is a function with arguments that can include the initial time t0, any of the model parameters, and any covariates. As usual, f may take additional arguments, provided these are passed along with it in the call to pomp. f must return a named numeric vector of initial states. It is of course important that the names of the states match the expectations of the other basic components.

Note that the state-process rinit can be either deterministic (as in the default) or stochastic. In the latter case, it samples from the distribution of the state process at the zero-time, t0.

Default behavior

By default, pomp assumes that the initial distribution is concentrated on a single point. In particular, any parameters in params, the names of which end in "_0" or ".0", are assumed to be initial values of states. When the state process is initialized, these are simply copied over as initial conditions. The names of the resulting state variables are obtained by dropping the suffix.

rinit specification 117

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

rinit

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

Examples

```
## Starting with an existing pomp object
verhulst() -> po
## we add or change the initial-state simulator,
## rinit, using the 'rinit' argument in any 'pomp'
## elementary or estimation function (or in the
## 'pomp' constructor itself).
## Here, we pass the rinit specification to 'simulate'
## as an R function.
po %>%
  simulate(
    rinit=function (n_0, ...) {
      c(n=rpois(n=1,lambda=n_0))
  ) -> sim
## We can also pass it as a C snippet:
po %>%
  simulate(
    rinit=Csnippet("n = rpois(n_0);"),
    paramnames="n_0",
    statenames="n"
  ) -> sim
```

118 rmeasure

|--|

Description

Sample from the measurement model distribution, given values of the latent states and the parameters.

Usage

```
## S4 method for signature 'pomp'
rmeasure(object, x, times, params, ...)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
X	an array containing states of the unobserved process. The dimensions of x are nvars x nrep x ntimes, where nvars is the number of state variables, nrep is the number of replicates, and ntimes is the length of times. One can also pass x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.
times	a numeric vector (length ntimes) containing times. These must be in non-decreasing order.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x.
	additional arguments are ignored.

Value

rmeasure returns a rank-3 array of dimensions nobs x nrep x ntimes, where nobs is the number of observed variables.

See Also

Specification of the measurement-model simulator: rmeasure specification

```
More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rinit(), rprior(), rprocess(), skeleton(), vmeasure(), workhorses
```

rmeasure specification 119

rmeasure specification

The measurement-model simulator

Description

Specification of the measurement-model simulator, rmeasure.

Details

The measurement model is the link between the data and the unobserved state process. It can be specified either by using one or both of the rmeasure and dmeasure arguments.

Suppose you have a procedure to simulate observations given the value of the latent state variables. Then you can furnish

```
rmeasure = f
```

to **pomp** algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet for general rules on writing C snippets.

In writing an rmeasure C snippet, bear in mind that:

- 1. The goal of such a snippet is to fill the observables with random values drawn from the measurement model distribution. Accordingly, each observable should be assigned a new value.
- 2. In addition to the states, parameters, and covariates (if any), the variable t, containing the time of the observation, will be defined in the context in which the snippet is executed.

The demos and the tutorials on the package website give examples.

It is also possible, though far less efficient, to specify rmeasure using an R function. In this case, specify the measurement model simulator by furnishing

```
rmeasure = f
```

to pomp, where f is an R function. The arguments of f should be chosen from among the state variables, parameters, covariates, and time. It must also have the argument f must return a named numeric vector of length equal to the number of observable variables.

Default behavior

The default rmeasure is undefined. It will yield missing values (NA).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

120 rprior

See Also

rmeasure

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rprocess specification, skeleton specification, transformations, userdata, vmeasure specification

Examples

```
## We start with the pre-built Ricker example:
ricker() -> po
## To change the measurement model simulator, rmeasure,
## we use the 'rmeasure' argument in any 'pomp'
## elementary or estimation function.
## Here, we pass the rmeasure specification to 'simulate'
## as an R function.
po %>%
  simulate(
    rmeasure=function (N, phi, ...) {
      c(y=rpois(n=1,lambda=phi*N))
  ) -> sim
## We can also pass it as a C snippet:
po %>%
 simulate(
    rmeasure=Csnippet("y = rpois(phi*N);"),
    paramnames="phi",
    statenames="N"
  ) -> sim
```

rprior

rprior

Description

Sample from the prior probability distribution.

Usage

```
## S4 method for signature 'pomp'
rprior(object, params, ...)
```

rprocess 121

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x .
	additional arguments are ignored.

Value

A numeric matrix containing the required samples.

See Also

Specification of the prior distribution simulator: prior specification

More on **pomp** workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprocess(), skeleton(), vmeasure(), workhorses More on Bayesian methods: approximate Bayesian computation, bsmc2(), dprior(), pmcmc(), prior specification

Description

rprocess simulates the process-model portion of partially-observed Markov process.

Usage

```
## S4 method for signature 'pomp'
rprocess(object, x0, t0, times, params, ...)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
x0	an nvar x nrep matrix containing the starting state of the system. Columns of x0 correspond to states; rows to components of the state vector. One independent simulation will be performed for each column. Note that in this case, params must also have nrep columns.
t0	the initial time, i.e., the time corresponding to the state in $x0$.
times	a numeric vector (length ntimes) containing times. These must be in non-decreasing order.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of $x0$.
	additional arguments are ignored.

Details

When rprocess is called, t0 is taken to be the initial time (i.e., that corresponding to x0). The values in times are the times at which the state of the simulated processes are required.

rprocess specification

Value

rprocess returns a rank-3 array with rownames. Suppose x is the array returned. Then

```
dim(x)=c(nvars,nrep,ntimes),
```

where nvars is the number of state variables (=nrow(x0)), nrep is the number of independent realizations simulated (=ncol(x0)), and ntimes is the length of the vector times. x[,j,k] is the value of the state process in the j-th realization at time times[k]. The rownames of x will correspond to those of x0.

See Also

Specification of the process-model simulator: rprocess specification

```
More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), skeleton(), vmeasure(), workhorses
```

```
rprocess specification
```

The latent state process simulator

Description

Specification of the latent state process simulator, rprocess.

Usage

```
onestep(step.fun)
discrete_time(step.fun, delta.t = 1)
euler(step.fun, delta.t)
gillespie(rate.fun, v, hmax = Inf)
gillespie_hl(..., .pre = "", .post = "", hmax = Inf)
```

rprocess specification 123

Arguments

step. fun a C snippet, an R function, or the name of a native routine in a shared-object

library. This gives a procedure by which one simulates a single step of the latent

state process.

delta.t positive numerical value; for euler and discrete_time, the size of the step to

take

rate. fun a C snippet, an R function, or the name of a native routine in a shared-object

library. This gives a procedure by which one computes the event-rate of the

elementary events in the continuous-time latent Markov chain.

v integer matrix; giving the stoichiometry of the continuous-time latent Markov

process. It should have dimensions nvar x nevent, where nvar is the number of state variables and nevent is the number of elementary events. v describes the changes that occur in each elementary event: it will usually comprise the values 1, -1, and 0 according to whether a state variable is incremented, decremented, or unchanged in an elementary event. The rows of v may be unnamed or named. If the rows are unnamed, they are assumed to be in the same order as the vector of state variables returned by rinit. If the rows are named, the names of the state variables returned by rinit will be matched to the rows of v to ensure a correct mapping. If any of the row names of v cannot be found among the state

variables or if any row names of v are duplicated, an error will occur.

hmax maximum time step allowed (see below)

... individual C snippets corresponding to elementary events

.pre, .post C snippets (see Details)

Discrete-time processes

If the state process evolves in discrete time, specify rprocess using the discrete_time plug-in. Specifically, provide

```
rprocess = discrete_time(step.fun = f, delta.t),
```

where f is a C snippet or R function that simulates one step of the state process. The former is the preferred option, due to its much greater computational efficiency. The goal of such a C snippet is to replace the state variables with their new random values at the end of the time interval. Accordingly, each state variable should be over-written with its new value. In addition to the states, parameters, covariates (if any), and observables, the variables t and dt, containing respectively the time at the beginning of the step and the step's duration, will be defined in the context in which the C snippet is executed. See Csnippet for general rules on writing C snippets. Examples are to be found in the tutorials on the package website.

If f is given as an R function, its arguments should come from the state variables, parameters, covariates, and time. It may also take the argument 'delta.t'; when called, the latter will be the timestep. It must also have the argument '...'. It should return a named vector of length equal to the number of state variables, representing a draw from the distribution of the state process at time t+delta.t conditional on its value at time t.

Continuous-time processes

If the state process evolves in continuous time, but you can use an Euler approximation, implement rprocess using the euler plug-in. Specify

```
rprocess = euler(step.fun = f, delta.t)
```

in this case. As before, f can be provided either as a C snippet or as an R function, the former resulting in much quicker computations. The form of f will be the same as above (in the discrete-time case).

If you have a procedure that allows you, given the value of the state process at any time, to simulate it at an arbitrary time in the future, use the onestep plug-in. To do so, specify

```
rprocess = onestep(step.fun = f).
```

Again, f can be provided either as a C snippet or as an R function, the former resulting in much quicker computations. The form of f should be as above (in the discrete-time or Euler cases).

Size of time step

The simulator plug-ins discrete_time, euler, and onestep all work by taking discrete time steps. They differ as to how this is done. Specifically,

- 1. onestep takes a single step to go from any given time t1 to any later time t2 (t1 < t2). Thus, this plug-in is designed for use in situations where a closed-form solution to the process exists.
- 2. To go from t1 to t2, euler takes n steps of equal size, where

```
n = ceiling((t2-t1)/delta.t).
```

3. discrete_time assumes that the process evolves in discrete time, where the interval between successive times is delta.t. Thus, to go from t1 to t2, discrete_time takes n steps of size exactly delta.t, where

```
n = floor((t2-t1)/delta.t).
```

Exact (event-driven) simulations

If you desire exact simulation of certain continuous-time Markov chains, an implementation of Gillespie's algorithm (Gillespie 1977) is available, via the gillespie and gillespie_hl plug-ins. The former allows for the rate function to be provided as an R function or a single C snippet, while the latter provides a means of specifying the elementary events via a list of C snippets.

A high-level interface to the simulator is provided by gillespie_hl. To use it, supply

```
rprocess = gillespie_hl(..., .pre = "", .post = "", hmax = Inf)
```

to pomp. Each argument in ... corresponds to a single elementary event and should be a list containing two elements. The first should be a string or C snippet; the second should be a named integer vector. The variable rate will exist in the context of the C snippet, as will the parameter, state variables, covariates, and the time t. The C snippet should assign to the variable rate the corresponding elementary event rate.

rprocess specification 125

The named integer vector specifies the changes to the state variables corresponding to the elementary event. There should be named value for each of the state variables returned by rinit. The arguments .pre and .post can be used to provide C code that will run respectively before and after the elementary-event snippets. These hooks can be useful for avoiding duplication of code that performs calculations needed to obtain several of the different event rates.

Here's how a simple birth-death model might be specified:

```
gillespie_hl(
    birth=list("rate = b*N;",c(N=1)),
    death=list("rate = m*N;",c(N=-1))
)
```

In the above, the state variable N represents the population size and parameters b, m are the birth and death rates, respectively.

To use the lower-level gillespie interface, furnish

```
rprocess = gillespie(rate.fun = f, v, hmax = Inf)
```

to pomp, where f gives the rates of the elementary events. Here, f may be an R function with prototype

```
f(j, x, t, params, ...)
```

When f is called, the integer j will be the number of the elementary event (corresponding to the column the matrix v, see below), x will be a named numeric vector containing the value of the state process at time t and params is a named numeric vector containing parameters. f should return a single numerical value, representing the rate of that elementary event at that point in state space and time.

Here, the stoichiometric matrix v specifies the continuous-time Markov process in terms of its elementary events. It should have dimensions nvar x nevent, where nvar is the number of state variables and nevent is the number of elementary events. v describes the changes that occur in each elementary event: it will usually comprise the values 1, -1, and 0 according to whether a state variable is incremented, decremented, or unchanged in an elementary event. The rows of v should have names corresponding to the state variables. If any of the row names of v cannot be found among the state variables or if any row names of v are duplicated, an error will occur.

It is also possible to provide a C snippet via the rate. fun argument to gillespie. Such a snippet should assign the correct value to a rate variable depending on the value of j. The same variables will be available as for the C code provided to gillespie_hl. This lower-level interface may be preferable if it is easier to write code that calculates the correct rate based on j rather than to write a snippet for each possible value of j. For example, if the number of possible values of j is large and the rates vary according to a few simple rules, the lower-level interface may provide the easier way of specifying the model.

When the process is non-autonomous (i.e., the event rates depend explicitly on time), it can be useful to set hmax to the maximum step that will be taken. By default, the elementary event rates will be recomputed at least once per observation interval.

Default behavior

The default rprocess is undefined. It will yield missing values (NA) for all state variables.

126 rw.sd

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

rprocess

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, skeleton specification, transformations, userdata, vmeasure specification

rw.sd rw.sd

Description

Specifying random-walk intensities.

Usage

```
rw.sd(...)
```

Arguments

Specification of the random-walk intensities (as standard deviations).

Details

See mif2 for details.

See Also

mif2

rw2

Two-dimensional random-walk process

127

Description

rw2 constructs a 'pomp' object encoding a 2-D Gaussian random walk.

Usage

```
rw2(x1_0 = 0, x2_0 = 0, s1 = 1, s2 = 3, tau = 1, times = 1:100, t0 = 0)
```

Arguments

```
x1_0, x2_0
                   initial conditions (i.e., latent state variable values at the zero time t0)
s1, s2
                   random walk intensities
                   observation error s.d.
tau
                   observation times
times
t0
                   zero time
```

Details

The random-walk process is fully but noisily observed.

Value

A 'pomp' object containing simulated data.

See Also

```
More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(),
ebola, gompertz(), ou2(), pomp examples, ricker(), verhulst()
```

Examples

```
library(ggplot2)
rw2() %>% plot()
rw2(s1=1,s2=1,tau=0.1) %>%
  simulate(nsim=10,format="d") %>%
  ggplot(aes(x=y1,y=y2,group=.id,color=.id))+
 geom_path()+
  guides(color="none")+
  theme_bw()
```

rw2

128 sannbox

sannbox	Simulated annealing with box constraints.

Description

A straightforward implementation of simulated annealing with box constraints.

Usage

```
sannbox(par, fn, control = list(), ...)
```

Arguments

par Initial values for the parameters to be optimized over.

A function to be minimized, with first argument the vector of parameters over which minimization is to take place. It should return a scalar result.

control A named list of control parameters. See 'Details'.

ignored.

Details

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the optimization is produced. Higher values may produce more tracing information.

fnscale An overall scaling to be applied to the value of fn during optimization. If negative, turns the problem into a maximization problem. Optimization is performed on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on par/parscale and these should be comparable in the sense that a unit change in any element produces about a unit change in the scaled value.

maxit The total number of function evaluations: there is no other stopping criterion. Defaults to 10000.

temp starting temperature for the cooling schedule. Defaults to 1.

tmax number of function evaluations at each temperature. Defaults to 10.

candidate.dist function to randomly select a new candidate parameter vector. This should be a function with three arguments, the first being the current parameter vector, the second the temperature, and the third the parameter scaling. By default, candidate.dist is

sched cooling schedule. A function of a three arguments giving the temperature as a function of iteration number and the control parameters temp and tmax. By default, sched is

```
function(k, temp, tmax) temp/log(((k-1)\%/\%tmax)*tmax+exp(1)).
```

saved.states 129

Alternatively, one can supply a numeric vector of temperatures. This must be of length at least maxit.

lower,upper optional numeric vectors. These describe the lower and upper box constraints, respectively. Each can be specified either as a single scalar (common to all parameters) or as a vector of the same length as par. By default, lower=-Inf and upper=Inf, i.e., there are no constraints.

Value

sannbox returns a list with components:

counts two-element integer vector. The first number gives the number of calls made to fn. The second number is provided for compatibility with optim and will always be NA.

convergence provided for compatibility with optim; will always be 0.

final.params last tried value of par.

final.value value of fn corresponding to final.params.

par best tried value of par.

value value of fn corresponding to par.

Author(s)

Daniel Reuman, Aaron A. King

See Also

trajectory matching, probe matching, spectrum matching, nonlinear forecasting.

saved.states

Saved states

Description

Retrieve latent state trajectories from a particle filter calculation.

Usage

```
## S4 method for signature 'pfilterd_pomp'
saved.states(object, ...)
## S4 method for signature 'pfilterList'
saved.states(object, ...)
```

Arguments

object result of a filtering computation

... ignored

130 simulate

Details

When one calls pfilter with save.states=TRUE, the latent state vector associated with each particle is saved. This can be extracted by calling saved.states on the 'pfilterd.pomp' object.

Value

The saved states are returned in the form of a list, with one element per time-point. Each element consists of a matrix, with one row for each state variable and one column for each particle.

See Also

```
More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), wpfilter()

Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), spy(), states(), summary(), timezero(), time(), traces()
```

simulate

Simulations of a partially-observed Markov process

Description

simulate generates simulations of the state and measurement processes.

Usage

```
## S4 method for signature 'missing'
simulate(
 nsim = 1,
  seed = NULL,
  times,
  t0,
  params,
 rinit,
 rprocess,
  rmeasure,
  format = c("pomps", "arrays", "data.frame"),
  include.data = FALSE,
  verbose = getOption("verbose", FALSE)
## S4 method for signature 'data.frame'
simulate(
 object,
 nsim = 1,
```

simulate 131

```
seed = NULL,
  times,
  t0,
  params,
 rinit,
 rprocess,
  rmeasure,
  format = c("pomps", "arrays", "data.frame"),
  include.data = FALSE,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
simulate(
 object,
 nsim = 1,
  seed = NULL,
  format = c("pomps", "arrays", "data.frame"),
  include.data = FALSE,
 verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'objfun'
simulate(object, nsim = 1, seed = NULL, ...)
```

Arguments

nsim	The number of simulations to perform. Note that the number of replicates will be nsim times ncol(params).
seed	optional; if set, the pseudorandom number generator (RNG) will be initialized with seed. the random seed to use. The RNG will be restored to its original state afterward.
times	the sequence of observation times. times must indicate the column of observation times by name or index. The time vector must be numeric and non-decreasing.
t0	The zero-time, i.e., the time of the initial state. This must be no later than the time of the first observation, i.e., $t0 \le times[1]$.
params	a named numeric vector or a matrix with rownames containing the parameters at which the simulations are to be performed.
rinit	simulator of the initial-state distribution. This can be furnished either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator to its default. For more information, see rinit specification.
rprocess	simulator of the latent state process, specified using one of the rprocess plugins. Setting rprocess=NULL removes the latent-state simulator. For more information, see rprocess specification for the documentation on these plugins.

132 simulate

simulator of the measurement model, specified either as a C snippet, an R funcrmeasure

> tion, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rmeasure=NULL removes the measurement model simu-

lator. For more information, see rmeasure specification.

format the format in which to return the results.

> format = "pomps" causes the results to be returned as a single "pomp" object, identical to object except for the latent states and observations, which have been replaced by the simulated values.

> format = "arrays" causes the results to be returned as a list of two arrays. The "states" element will contain the simulated state trajectories in a rank-3 array with dimensions nvar x (ncol(params)*nsim) x ntimes. Here, nvar is the number of state variables and ntimes the length of the argument times. The "obs" element will contain the simulated data, returned as a rank-3 array with dimensions nobs x (ncol(params)*nsim) x ntimes. Here, nobs is the number of observables.

> format = "data. frame" causes the results to be returned as a single data frame containing the time, states, and observations. An ordered factor variable, '.id', distinguishes one simulation from another.

include.data if TRUE, the original data and covariates (if any) are included (with . id = "data").

This option is ignored unless format = "data.frame".

additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called userdata facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

optional; if present, it should be a data frame or a 'pomp' object. object

Value

A single "pomp" object, a "pompList" object, a named list of two arrays, or a data frame, according to the format option.

If params is a matrix, each column is treated as a distinct parameter set. In this case, if nsim=1, then simulate will return one simulation for each parameter set. If nsim>1, then simulate will yield nsim simulations for each parameter set. These will be ordered such that the first ncol(params) simulations represent one simulation from each of the distinct parameter sets, the second ncol (params) simulations represent a second simulation from each, and so on.

Adding column names to params can be helpful.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not

SIR models 133

handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Aaron A. King

See Also

More on **pomp** elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package, probe(), spect(), trajectory(), wpfilter()

SIR models

Compartmental epidemiological models

Description

Simple SIR-type models implemented in various ways.

Usage

```
sir(
  gamma = 26,
 mu = 0.02,
  iota = 0.01,
  beta1 = 400,
 beta2 = 480,
 beta3 = 320,
 beta_sd = 0.001,
  rho = 0.6,
  k = 0.1,
  pop = 2100000,
  S_0 = 26/400,
  I_0 = 0.001,
 R_0 = 1 - S_0 - I_0
  t0 = 0,
  times = seq(from = t0 + 1/52, to = t0 + 4, by = 1/52),
  seed = 329343545,
  delta.t = 1/52/20
)
sir2(
  gamma = 24,
 mu = 1/70,
  iota = 0.1,
  beta1 = 330,
```

134 SIR models

```
beta2 = 410,
beta3 = 490,
rho = 0.1,
k = 0.1,
pop = 1e+06,
S_0 = 0.05,
I_0 = 1e-04,
R_0 = 1 - S_0 - I_0,
t0 = 0,
times = seq(from = t0 + 1/12, to = t0 + 10, by = 1/12),
seed = 1772464524
)
```

Arguments

gamma recovery rate death rate (assumed equal to the birth rate) mu infection import rate iota beta1, beta2, beta3 seasonal contact rates beta_sd environmental noise intensity reporting efficiency rho k reporting overdispersion parameter (reciprocal of the negative-binomial size parameter) overall host population size pop the fractions of the host population that are susceptible, infectious, and recov-S_0, I_0, R_0 ered, respectively, at time zero. t0 zero time times observation times seed seed of the random number generator

Details

delta.t

sir() producees a 'pomp' object encoding a simple seasonal SIR model with simulated data. Simulation is performed using an Euler multinomial approximation.

sir2() has the same model implemented using Gillespie's algorithm.

Euler step size

In both cases the measurement model is negative binomial: reports is distributed as a negative binomial random variable with mean equal to rho*cases and size equal to 1/k.

This and similar examples are discussed and constructed in tutorials available on the package website.

Value

These functions return 'pomp' objects containing simulated data.

skeleton 135

See Also

More examples provided with **pomp**: blowflies, childhood disease data, dacca(), ebola, gompertz(), ou2(), pomp examples, ricker(), rw2(), verhulst()

Examples

```
po <- sir()
plot(po)
coef(po)

po <- sir2()
plot(po)
plot(simulate(window(po,end=3)))
coef(po)

po %>% as.data.frame() %>% head()
```

skeleton

skeleton

Description

Evaluates the deterministic skeleton at a point or points in state space, given parameters. In the case of a discrete-time system, the skeleton is a map. In the case of a continuous-time system, the skeleton is a vectorfield. NB: skeleton just evaluates the deterministic skeleton; it does not iterate or integrate (see trajectory for this).

Usage

```
## S4 method for signature 'pomp'
skeleton(object, x, times, params, ...)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
X	an array containing states of the unobserved process. The dimensions of x are nvars x nrep x ntimes, where nvars is the number of state variables, nrep is the number of replicates, and ntimes is the length of times. One can also pass x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.
times	a numeric vector (length ntimes) containing times. These must be in non-decreasing order.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x .
	additional arguments are ignored.

skeleton specification

Value

skeleton returns an array of dimensions nvar x nrep x ntimes. If f is the returned matrix, f[i,j,k] is the i-th component of the deterministic skeleton at time times[k] given the state x[,j,k] and parameters params[,j].

See Also

Specification of the deterministic skeleton: skeleton specification

```
More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), vmeasure(), workhorses
```

More on methods for deterministic process models: flow(), skeleton specification, trajectory matching, trajectory()

skeleton specification

The deterministic skeleton of a model

Description

Specification of the deterministic skeleton.

Usage

```
vectorfield(f)
map(f, delta.t = 1)
```

Arguments

f procedure for evaluating the deterministic skeleton This can be a C snippet, an R function, or the name of a native routine in a dynamically linked library.

delta.t positive numerical value; the size of the discrete time step corresponding to an application of the map

Details

The skeleton is a dynamical system that expresses the central tendency of the unobserved Markov state process. As such, it is not uniquely defined, but can be both interesting in itself and useful in practice. In **pomp**, the skeleton is used by trajectory and traj_objfun.

If the state process is a discrete-time stochastic process, then the skeleton is a discrete-time map. To specify it, provide

```
skeleton = map(f, delta.t)
```

skeleton specification 137

to pomp, where f implements the map and delta.t is the size of the timestep covered at one map iteration.

If the state process is a continuous-time stochastic process, then the skeleton is a vectorfield (i.e., a system of ordinary differential equations). To specify it, supply

```
skeleton = vectorfield(f)
```

to pomp, where f implements the vectorfield, i.e., the right-hand-size of the differential equations.

In either case, f can be furnished either as a C snippet (the preferred choice), or an R function. General rules for writing C snippets can be found here. In writing a skeleton C snippet, be aware that:

- 1. For each state variable, there is a corresponding component of the deterministic skeleton. The goal of such a snippet is to compute all the components.
- 2. When the skeleton is a map, the component corresponding to state variable x is named Dx and is the new value of x after one iteration of the map.
- 3. When the skeleton is a vectorfield, the component corresponding to state variable x is named Dx and is the value of dx/dt.
- 4. As with the other C snippets, all states, parameters and covariates, as well as the current time, t, will be defined in the context within which the snippet is executed.
- 5. **NB:** When the skeleton is a map, the duration of the timestep will **not** be defined in the context within which the snippet is executed. When the skeleton is a vectorfield, of course, no timestep is defined. In this regard, C snippets for the skeleton and rprocess components differ.

The tutorials on the package website give some examples.

If f is an R function, its arguments should be taken from among the state variables, parameters, covariates, and time. It must also take the argument '...'. As with the other basic components, f may take additional arguments, provided these are passed along with it in the call to pomp. The function f must return a numeric vector of the same length as the number of state variables, which contains the value of the map or vectorfield at the required point and time.

Default behavior

The default skeleton is undefined. It will yield missing values (NA) for all state variables.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

skeleton

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification,

skeleton specification

emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, transformations, userdata, vmeasure specification

More on methods for deterministic process models: flow(), skeleton(), trajectory matching, trajectory()

Examples

```
## Starting with an existing pomp object,
## e.g., the continuous-time Verhulst-Pearl model,
verhulst() -> po
## we add or change the deterministic skeleton
## using the 'skeleton' argument in any 'pomp'
## elementary or estimation function
## (or in the 'pomp' constructor itself).
## Here, we pass the skeleton specification
## to 'trajectory' as an R function.
## Since this is a continuous-time POMP, the
## skeleton is a vectorfield.
%<% og
  trajectory(
    skeleton=vectorfield(
      function(r, K, n, ...) {
        c(n=r*n*(1-n/K))
     }
    ).
    format="data.frame"
  ) -> traj
## We can also pass it as a C snippet:
po %>%
 traj_objfun(
    skeleton=vectorfield(Csnippet("Dn=r*n*(1-n/K);")),
    paramnames=c("r","K"),
    statenames="n"
  ) -> ofun
ofun()
## For a discrete-time POMP, the deterministic skeleton
## is a map. For example,
gompertz() -> po
po %>%
 traj_objfun(
    skeleton=map(
```

spect 139

spect

Power spectrum

Description

Power spectrum computation and spectrum-matching for partially-observed Markov processes.

Usage

```
## S4 method for signature 'data.frame'
spect(
 data,
  vars,
 kernel.width,
 nsim,
  seed = NULL,
  transform.data = identity,
 detrend = c("none", "mean", "linear", "quadratic"),
 params,
 rinit,
 rprocess,
 rmeasure,
 verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
spect(
 data,
 vars,
 kernel.width,
 nsim,
  seed = NULL,
  transform.data = identity,
```

spect spect

```
detrend = c("none", "mean", "linear", "quadratic"),
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'spectd_pomp'
spect(
  data,
  vars.
  kernel.width,
  nsim,
  seed = NULL,
  transform.data,
  detrend,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'spect_match_objfun'
spect(data, seed, ..., verbose = getOption("verbose", FALSE))
## S4 method for signature 'objfun'
spect(data, seed = NULL, ...)
```

Arguments

data either a data frame holding the time series data, or an object of class 'pomp',

i.e., the output of another **pomp** calculation. Internally, data will be internally

coerced to an array with storage-mode double.

vars optional; names of observed variables for which the power spectrum will be

computed. By default, the spectrum will be computed for all observables.

kernel.width width parameter for the smoothing kernel used for calculating the estimate of

the spectrum.

nsim number of model simulations to be computed.

seed optional; if non-NULL, the random number generator will be initialized with this

seed for simulations. See simulate.

transform.data function; this transformation will be applied to the observables prior to estima-

tion of the spectrum, and prior to any detrending.

detrending operation to perform. Options include no detrending, and subtrac-

tion of constant, linear, and quadratic trends from the data. Detrending is applied

to each data series and to each model simulation independently.

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

spect 141

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-

tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-

tion, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rmeasure=NULL removes the measurement model simu-

lator. For more information, see rmeasure specification.

.. additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

spect estimates the power spectrum of time series data and model simulations and compares the results. It can be used to diagnose goodness of fit and/or as the basis for frequency-domain parameter estimation (spect.match).

A call to spect results in the estimation of the power spectrum for the (transformed, detrended) data and nsim model simulations. The results of these computations are stored in an object of class 'spectd_pomp'.

When spect operates on a spectrum-matching objective function (a 'spect_match_objfun' object), by default, the random-number generator seed is fixed at the value given when the objective function was constructed. Specifying NULL or an integer for seed overrides this behavior.

Value

An object of class 'spectd_pomp', which contains the model, the data, and the results of the spect computation. The following methods are available:

plot produces some diagnostic plots

summary displays a summary

logLik gives a measure of the agreement of the power spectra

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the <code>cdir</code> and <code>cfile</code> options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Daniel C. Reuman, Cai GoGwilt, Aaron A. King

142 spectrum matching

References

D.C. Reuman, R.A. Desharnais, R.F. Costantino, O. Ahmad, J.E. Cohen. Power spectra reveal the influence of stochasticity on nonlinear population dynamics. *Proceedings of the National Academy of Sciences* **103**, 18860-18865, 2006

D.C. Reuman, R.F. Costantino, R.A. Desharnais, J.E. Cohen. Color of environmental noise affects the nonlinear dynamics of cycling, stage-structured populations. *Ecology Letters* **11**, 820-830, 2008.

See Also

More on methods based on summary statistics: approximate Bayesian computation, basic probes, nonlinear forecasting, probe matching, probe(), spectrum matching

More on **pomp** elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package, probe(), simulate(), trajectory(), wpfilter()

spectrum matching

Spectrum matching

Description

Estimation of parameters by matching power spectra

Usage

```
## S4 method for signature 'data.frame'
spect_objfun(
 data,
 est = character(0),
 weights = 1,
  fail.value = NA,
  vars,
 kernel.width,
 nsim,
  seed = NULL,
  transform.data = identity,
  detrend = c("none", "mean", "linear", "quadratic"),
  params,
  rinit,
  rprocess,
  rmeasure,
 partrans,
  . . . ,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
spect_objfun(
```

spectrum matching 143

```
data,
 est = character(0),
 weights = 1,
  fail.value = NA,
  vars,
 kernel.width,
 nsim,
  seed = NULL,
  transform.data = identity,
 detrend = c("none", "mean", "linear", "quadratic"),
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'spectd_pomp'
spect_objfun(
 data,
  est = character(0),
 weights = 1,
  fail.value = NA,
 vars,
 kernel.width,
 nsim,
  seed = NULL,
  transform.data = identity,
 detrend,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'spect_match_objfun'
spect_objfun(
 data,
  est,
 weights,
 fail.value,
 seed = NULL,
  verbose = getOption("verbose", FALSE)
)
```

Arguments

either a data frame holding the time series data, or an object of class 'pomp', i.e., the output of another **pomp** calculation. Internally, data will be internally coerced to an array with storage-mode double.

est character vector; the names of parameters to be estimated.

weights optional numeric or function. The mismatch between model and data is mea-

144 spectrum matching

sured by a weighted average of mismatch at each frequency. By default, all frequencies are weighted equally. weights can be specified either as a vector (which must have length equal to the number of frequencies) or as a function of frequency. If the latter, weights(freq) must return a nonnegative weight for each frequency.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values

of the objective function. It should be a large number (i.e., bigger than any

legitimate values the objective function is likely to take).

vars optional; names of observed variables for which the power spectrum will be computed. By default, the spectrum will be computed for all observables.

kernel.width width parameter for the smoothing kernel used for calculating the estimate of

the spectrum.

nsim the number of model simulations to be computed.

seed integer. When fitting, it is often best to fix the seed of the random-number

generator (RNG). This is accomplished by setting seed to an integer. By default,

seed = NULL, which does not alter the RNG state.

transform.data function; this transformation will be applied to the observables prior to estima-

tion of the spectrum, and prior to any detrending.

detrend de-trending operation to perform. Options include no detrending, and subtrac-

tion of constant, linear, and quadratic trends from the data. Detrending is applied

to each data series and to each model simulation independently.

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-

tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-

tion, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rmeasure=NULL removes the measurement model simu-

lator. For more information, see rmeasure specification.

partrans optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of parameters. When working with such an algorithm and a model for which the parameters are constrained, it can be useful to transform parameters. One should supply the partrans argument via a call to parameter_trans. For more information, see parameter_trans. Setting partrans=NULL removes the parameter

transformations, i.e., sets them to the identity transformation.

additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

spectrum matching 145

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for information on how to use this facility.

verbose

logical; if TRUE, diagnostic messages will be printed to the console.

Details

In spectrum matching, one attempts to minimize the discrepancy between a POMP model's predictions and data, as measured in the frequency domain by the power spectrum.

spect_objfun constructs an objective function that measures the discrepancy. It can be passed to any one of a variety of numerical optimization routines, which will adjust model parameters to minimize the discrepancies between the power spectrum of model simulations and that of the data.

Value

spect_objfun constructs a stateful objective function for spectrum matching. Specifically, spect_objfun returns an object of class 'spect_match_objfun', which is a function suitable for use in an optim-like optimizer. This function takes a single numeric-vector argument that is assumed to contain the parameters named in est, in that order. When called, it will return the (optionally weighted) L^2 distance between the data spectrum and simulated spectra. It is a stateful function: Each time it is called, it will remember the values of the parameters and the discrepancy measure.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Important Note

Since **pomp** cannot guarantee that the *final* call an optimizer makes to the function is a call *at* the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones. Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization routine, which will ensure that these parameters are stored.

See Also

spect optim subplex nloptr

More on **pomp** estimation algorithms: approximate Bayesian computation, bsmc2(), estimation algorithms, mif2(), nonlinear forecasting, pmcmc(), pomp-package, probe matching

More on methods based on summary statistics: approximate Bayesian computation, basic probes, nonlinear forecasting, probe matching, probe(), spect()

More on maximization-based estimation methods: mif2(), nonlinear forecasting, probe matching, trajectory matching

146 spy

Examples

```
ricker() %>%
  spect_objfun(
    est=c("r","sigma","N_0"),
    partrans=parameter_trans(log=c("r","sigma","N_0")),
    paramnames=c("r","sigma","N_0"),
    kernel.width=3,
    nsim=100,
    seed=5069977
 ) -> f
f(log(c(20,0.3,10)))
f %>% spect() %>% plot()
library(subplex)
subplex(fn=f,par=log(c(20,0.3,10)),control=list(reltol=1e-5)) \rightarrow out
f(out$par)
f %>% summary()
f %>% spect() %>% plot()
```

spy

Spy

Description

Peek into the inside of one of **pomp**'s objects.

Usage

```
## S4 method for signature 'pomp'
spy(object)
```

Arguments

object

the object whose structure we wish to examine

See Also

Csnippet

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), states(), summary(), timezero(), time(), traces()
```

states 147

states

Latent states

Description

Extract the latent states from a 'pomp' object.

Usage

```
## S4 method for signature 'pomp'
states(object, vars, ...)
## S4 method for signature 'listie'
states(object, vars, ...)
```

Arguments

```
object an object of class 'pomp', or of a class extending 'pomp' vars names of variables to retrieve
... ignored
```

See Also

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), summary(), timezero(), time(), traces()
```

summary

Summary methods

Description

Display a summary of a fitted model object.

Usage

```
## S4 method for signature 'probed_pomp'
summary(object, ...)
## S4 method for signature 'spectd_pomp'
summary(object, ...)
## S4 method for signature 'objfun'
summary(object, ...)
```

time

Arguments

```
object a fitted model object
... ignored or passed to the more primitive function
```

See Also

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), timezero(), time(), traces()
```

time

Methods to extract and manipulate the obseration times

Description

Get and set the vector of observation times.

Usage

```
## S4 method for signature 'pomp'
time(x, t0 = FALSE, ...)
## S4 replacement method for signature 'pomp'
time(object, t0 = FALSE, ...) <- value</pre>
```

Arguments

```
    x a 'pomp' object
    t0 logical; should the zero time be included?
    ... ignored or passed to the more primitive function
    object a 'pomp' object
    value numeric vector; the new vector of times
```

Details

time(object) returns the vector of observation times. time(object, t0=TRUE) returns the vector of observation times with the zero-time t0 prepended.

time(object) <-value replaces the observation times slot (times) of object with value. time(object, t0=TRUE) <-value has the same effect, but the first element in value is taken to be the initial time. The second and subsequent elements of value are taken to be the observation times. Those data and states (if they exist) corresponding to the new times are retained.

See Also

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), traces()
```

timezero 149

timezero The zero time

Description

Get and set the zero-time.

Usage

```
## S4 method for signature 'pomp'
timezero(object, ...)
## S4 replacement method for signature 'pomp'
timezero(object, ...) <- value</pre>
```

Arguments

object an object of class 'pomp', or of a class that extends 'pomp'
... ignored or passed to the more primitive function
value numeric; the new zero-time value

Value

the value of the zero time

See Also

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), time(), traces()
```

traces Traces

Description

Retrieve the history of an iterative calculation.

150 traces

Usage

```
## S4 method for signature 'mif2d_pomp'
traces(object, pars, transform = FALSE, ...)
## S4 method for signature 'mif2List'
traces(object, pars, ...)
## S4 method for signature 'abcd_pomp'
traces(object, pars, ...)
## S4 method for signature 'abcList'
traces(object, pars, ...)
## S4 method for signature 'pmcmcd_pomp'
traces(object, pars, ...)
## S4 method for signature 'pmcmcd_pomp'
traces(object, pars, ...)
```

Arguments

object an object of class extending 'pomp', the result of the application of a parameter

estimation algorithm

pars names of parameters

transform logical; should the traces be transformed back onto the natural scale?

... ignored or passed to the more primitive function

Details

Note that pmcmc does not currently support parameter transformations.

Value

When object is the result of a mif2 calculation, traces(object,pars) returns the traces of the parameters named in pars. By default, the traces of all parameters are returned. If transform=TRUE, the parameters are transformed from the natural scale to the estimation scale.

When object is a 'abcd_pomp', traces(object) extracts the traces as a coda::mcmc.

When object is a 'abcList', traces(object) extracts the traces as a coda::mcmc.list.

When object is a 'pmcmcd_pomp', traces(object) extracts the traces as a coda::mcmc.

When object is a 'pmcmcList', traces(object) extracts the traces as a coda::mcmc.list.

See Also

```
Other extraction methods: coef(), cond.logLik(), covmat(), eff.sample.size(), filter.mean(), filter.traj(), forecast(), logLik, obs(), pred.mean(), pred.var(), saved.states(), spy(), states(), summary(), timezero(), time()
```

trajectory 151

trajectory

Trajectory of a deterministic model

Description

Compute trajectories of the deterministic skeleton of a Markov process.

Usage

```
## S4 method for signature 'missing'
trajectory(
  t0,
  times,
 params,
  skeleton,
 rinit,
  . . . ,
 ode_control = list(),
 format = c("pomps", "array", "data.frame"),
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'data.frame'
trajectory(
  object,
  . . . ,
  t0,
  times,
 params,
  skeleton,
  rinit,
 ode_control = list(),
  format = c("pomps", "array", "data.frame"),
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
trajectory(
 object,
 params,
  . . . ,
  skeleton,
  rinit,
  ode_control = list(),
 format = c("pomps", "array", "data.frame"),
  verbose = getOption("verbose", FALSE)
)
```

152 trajectory

```
## S4 method for signature 'traj_match_objfun'
trajectory(object, ..., verbose = getOption("verbose", FALSE))
```

Arguments

The zero-time, i.e., the time of the initial state. This must be no later than the

time of the first observation, i.e., $t0 \le times[1]$.

times the sequence of observation times. times must indicate the column of obser-

vation times by name or index. The time vector must be numeric and non-

decreasing.

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

skeleton optional; the deterministic skeleton of the unobserved state process. Depend-

ing on whether the model operates in continuous or discrete time, this is either a vectorfield or a map. Accordingly, this is supplied using either the vectorfield or map fnctions. For more information, see skeleton specification. Setting

skeleton=NULL removes the deterministic skeleton.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for

information on how to use this facility.

ode_control optional list; the elements of this list will be passed to ode if the skeleton is a

vectorfield, and ignored if it is a map.

format the format in which to return the results.

format = "pomps" causes the trajectories to be returned as a single 'pomp' object (if a single parameter vector have been furnished to trajectory) or as a 'pompList' object (if multiple parameters have been furnished). In each of these, the states slot will have been replaced by the computed trajectory. Use

states to view these.

format = "array" causes the trajectories to be returned in a rank-3 array with dimensions nvar x ncol(params) x ntimes. Here, nvar is the number of state variables and ntimes the length of the argument times. Thus if x is the returned array, x[i,j,k] is the i-th component of the state vector at time times[k] given

parameters params[,j].

format = "data.frame" causes the results to be returned as a single data frame containing the time and states. An ordered factor variable, '.id', distinguishes

the trajectories from one another.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

object optional; if present, it should be a data frame or a 'pomp' object.

trajectory 153

Details

In the case of a discrete-time system, the deterministic skeleton is a map and a trajectory is obtained by iterating the map. In the case of a continuous-time system, the deterministic skeleton is a vector-field; trajectory uses the numerical solvers in **deSolve** to integrate the vectorfield.

Value

The format option controls the nature of the return value of trajectory. See above for details.

See Also

```
More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package, probe(), simulate(), spect(), wpfilter()
```

More on methods for deterministic process models: flow(), skeleton specification, skeleton(), trajectory matching

Examples

```
## The basic components needed to compute trajectories
## of a deterministic dynamical system are
## rinit and skeleton.
## The following specifies these for a simple continuous-time
## model: dx/dt = r (1+e cos(t)) x
trajectory(
  t0 = 0, times = seq(1,30,by=0.1),
  rinit = function (x0, ...) {
    c(x = x0)
  skeleton = vectorfield(
    function (r, e, t, x, ...) {
      c(x=r*(1+e*cos(t))*x)
    }
 ),
 params = c(r=1, e=3, x0=1)
) -> po
plot(po,log='y')
## In the case of a discrete-time skeleton,
## we use the 'map' function. For example,
## the following computes a trajectory from
## the dynamical system with skeleton
## x \rightarrow x \exp(r \sin(\text{omega t})).
trajectory(
  t0 = 0, times=seq(1,100),
  rinit = function (x0, ...) {
    c(x = x0)
```

154 trajectory matching

```
},
  skeleton = map(
    function (r, t, x, omega, \dots) {
     c(x=x*exp(r*sin(omega*t)))
    },
    delta.t=1
 ),
 params = c(r=1,x0=1,omega=4)
) -> po
plot(po)
## generate a bifurcation diagram for the Ricker map
p <- parmat(coef(ricker()),nrep=500)</pre>
p["r",] <- exp(seq(from=1.5, to=4, length=500))</pre>
trajectory(
  ricker(),
  times=seq(from=1000, to=2000, by=1),
 params=p,
  format="array"
) -> x
matplot(p["r",],x["N",,],pch='.',col='black',
 xlab=expression(log(r)),ylab="N",log='x')
```

trajectory matching Trajectory matching

Description

Estimation of parameters for deterministic POMP models via trajectory matching.

Usage

```
## S4 method for signature 'data.frame'
traj_objfun(
   data,
   est = character(0),
   fail.value = NA,
   ode_control = list(),
   params,
   rinit,
   skeleton,
   dmeasure,
   partrans,
   ...,
   verbose = getOption("verbose", FALSE)
```

trajectory matching 155

```
)
## S4 method for signature 'pomp'
traj_objfun(
  data,
  est = character(0),
  fail.value = NA,
  ode_control = list(),
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'traj_match_objfun'
traj_objfun(
  data,
  est,
  fail.value,
  ode_control,
  verbose = getOption("verbose", FALSE)
)
```

Arguments

data either a data frame holding the time series data, or an object of class 'pomp',

i.e., the output of another **pomp** calculation. Internally, data will be internally

coerced to an array with storage-mode double.

est character vector; the names of parameters to be estimated.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values

of the objective function. It should be a large number (i.e., bigger than any

legitimate values the objective function is likely to take).

ode_control optional list; the elements of this list will be passed to ode if the skeleton is a

vectorfield, and ignored if it is a map.

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

skeleton optional; the deterministic skeleton of the unobserved state process. Depend-

ing on whether the model operates in continuous or discrete time, this is either a vectorfield or a map. Accordingly, this is supplied using either the vectorfield or map fnctions. For more information, see skeleton specification. Setting

skeleton=NULL removes the deterministic skeleton.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an

R function, or the name of a pre-compiled native routine available in a dynami-

156 trajectory matching

cally loaded library. Setting dmeasure=NULL removes the measurement density evaluator. For more information, see dmeasure specification.

partrans optional parameter transformations, constructed using parameter_trans.

Many algorithms for parameter estimation search an unconstrained space of parameters. When working with such an algorithm and a model for which the parameters are constrained, it can be useful to transform parameters. One should supply the partrans argument via a call to parameter_trans. For more information, see parameter_trans. Setting partrans=NULL removes the parameter transformations is a sate them to the identity transformation.

transformations, i.e., sets them to the identity transformation.

... additional arguments will modify the model structure

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In trajectory matching, one attempts to minimize the discrepancy between a POMP model's predictions and data under the assumption that the latent state process is deterministic and all discrepancies between model and data are due to measurement error. The measurement model likelihood (dmeasure), or rather its negative, is the natural measure of the discrepancy.

Trajectory matching is a generalization of the traditional nonlinear least squares approach. In particular, if, on some scale, measurement errors are normal with constant variance, then trajectory matching is equivalent to least squares on that particular scale.

traj_objfun constructs an objective function that evaluates the likelihood function. It can be passed to any one of a variety of numerical optimization routines, which will adjust model parameters to minimize the discrepancies between the power spectrum of model simulations and that of the data.

Value

traj_objfun constructs a stateful objective function for spectrum matching. Specifically, traj_objfun returns an object of class 'traj_match_objfun', which is a function suitable for use in an optim-like optimizer. In particular, this function takes a single numeric-vector argument that is assumed to contain the parameters named in est, in that order. When called, it will return the negative log likelihood. It is a stateful function: Each time it is called, it will remember the values of the parameters and its estimate of the log likelihood.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Important Note

Since **pomp** cannot guarantee that the *final* call an optimizer makes to the function is a call *at* the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.

transformations 157

Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization routine, which will ensure that these parameters are stored.

See Also

```
optim, subplex, nloptr
```

More on methods for deterministic process models: flow(), skeleton specification, skeleton(), trajectory()

More on maximization-based estimation methods: mif2(), nonlinear forecasting, probe matching, spectrum matching

Examples

```
ricker() %>%
  traj_objfun(
    est=c("r","sigma","N_0"),
    partrans=parameter_trans(log=c("r","sigma","N_0")),
    paramnames=c("r","sigma","N_0"),
) -> f

f(log(c(20,0.3,10)))

library(subplex)
subplex(fn=f,par=log(c(20,0.3,10)),control=list(reltol=1e-5)) -> out
f(out$par)

library(ggplot2)

f %>%
  trajectory(format="data.frame") %>%
  ggplot(aes(x=time,y=N))+geom_line()+theme_bw()
```

transformations

Transformations

Description

Some useful parameter transformations.

Usage

```
logit(p)
expit(x)
```

158 transformations

```
log_barycentric(X)
inv_log_barycentric(Y)
```

Arguments

р	numeric; a quantity in [0,1].
Х	numeric; the log odds ratio.
X	numeric; a vector containing the quantities to be transformed according to the log-barycentric transformation.
Υ	numeric: a vector containing the log fractions.

Details

Parameter transformations can be used in many cases to recast constrained optimization problems as unconstrained problems. Although there are no limits to the transformations one can implement using the parameter_trans facilty, **pomp** provides a few ready-built functions to implement some very commonly useful ones.

The logit transformation takes a probability p to its log odds, $\log \frac{p}{1-p}$. It maps the unit interval [0,1]into the extended real line $[-\infty, \infty]$.

The inverse of the logit transformation is the expit transformation.

The log-barycentric transformation takes a vector X_i , i = 1, ..., n, to a vector Y_i , where

$$Y_i = \log \frac{X_i}{\sum_i X_j}.$$

If X is an n-vector, it takes every simplex defined by $\sum_i X_i = c$, c constant, to n-dimensional Euclidean space \mathbb{R}^n .

The inverse of the log-barycentric transformation is implemented as inv_log_barycentric. Note that it is not a true inverse, in the sense that it takes R^n to the *unit* simplex, $\sum_i X_i = 1$. Thus,

```
log_barycentric(inv_log_barycentric(Y)) == Y,
   inv_log_barycentric(log_barycentric(X)) == X
only if sum(X) == 1.
```

See Also

but

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, userdata, vmeasure specification

userdata 159

userdata

Facilities for making additional information to basic components

Description

When POMP basic components need information they can't get from parameters or covariates.

Details

It can happen that one desires to pass information to one of the POMP model *basic components* (see here for a definition of this term) outside of the standard routes (i.e., via model parameters or covariates). **pomp** provides facilities for this purpose. We refer to the objects one wishes to pass in this way as *user data*.

The following will apply to every basic model component. For the sake of definiteness, however, we'll use the rmeasure component as an example. To be even more specific, the measurement model we wish to implement is

```
y1 ~ Poisson(x1+theta), y2 ~ Poisson(x2+theta),
```

where theta is a parameter. Although it would be very easy (and indeed far preferable) to include theta among the ordinary parameters (by including it in params), we will assume here that we have some reason for not wanting to do so.

Now, we have the choice of providing rmeasure in one of three ways:

- 1. as an R function,
- 2. as a C snippet, or
- 3. as a procedure in an external, dynamically loaded library.

We'll deal with these three cases in turn.

When the basic component is specified as an R function

We can implement a simulator for the aforementioned measurement model so:

```
f <- function (t, x, params, theta, ...) {
   y <- rpois(n=2,x[c("x1","x2")]+theta)
   setNames(y,c("y1","y2"))
}</pre>
```

So far, so good, but how do we get theta to this function? We simply provide an additional argument to whichever **pomp** algorithm we are employing (e.g., simulate, pfilter, mif2, abc, etc.). For example:

```
simulate(..., rmeasure = f, theta = 42, ...)
```

where the ... represent the other simulate arguments we might want to supply. When we do so, a message will be generated, informing us that theta is available for use by the POMP basic components. This warning helps forestall accidental triggering of this facility due to typographical error.

160 userdata

When the basic component is specified via a C snippet

A C snippet implementation of the aforementioned measurement model is:

```
f <- Csnippet("
  double theta = *(get_userdata_double(\"theta\"));
  y1 = rpois(x1+theta); y2 = rpois(x2+theta);
")</pre>
```

Here, the call to get_userdata_double retrieves a *pointer* to the stored value of theta. Note the need to escape the quotes in the C snippet text.

It is possible to store and retrieve integer objects also, using get_userdata_int.

One must take care that one stores the user data with the appropriate storage type. For example, it is wise to wrap floating point scalars and vectors with as.double and integers with as.integer. In the present example, our call to simulate might look like

```
simulate(..., rmeasure = f, theta = as.double(42), ...)
```

Since the two functions get_userdata_double and get_userdata_int return pointers, it is trivial to pass vectors of double-precision and integers.

A simpler and more elegant approach is afforded by the globals argument (see below).

When the basic component is specified via an external library

The rules are essentially the same as for C snippets. typedef declarations for the get_userdata_double and get_userdata_int are given in the 'pomp.h' header file and these two routines are registered so that they can be retrieved via a call to R_GetCCallable. See the Writing R extensions manual for more information.

Setting globals

The use of the userdata facilities incurs a run-time cost. It is faster and more elegant, when using C snippets, to put the needed objects directly into the C snippet library. The globals argument does this. See the example below.

See Also

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, vmeasure specification

Examples

```
## The familiar Ricker example
## For some bizarre reason, we wish to pass 'phi'
## via the userdata facility.
```

userdata 161

```
## C snippet approach:
simulate(times=1:100,t0=0,
 phi=as.double(100),
  params=c(r=3.8, sigma=0.3, N.0=7),
  rprocess=discrete_time(
    step.fun=Csnippet("
    double e = (sigma > 0.0) ? rnorm(0, sigma) : 0.0;
    N = r*N*exp(-N+e);
    ),
    delta.t=1
 ),
  rmeasure=Csnippet("
     double phi = *(get_userdata_double(\"phi\"));
     y = rpois(phi*N);"
 ),
  paramnames=c("r","sigma"),
  statenames="N",
  obsnames="y"
) -> rick1
## The same problem solved using 'globals':
simulate(times=1:100,t0=0,
  globals=Csnippet("static double phi = 100;"),
 params=c(r=3.8, sigma=0.3, N.0=7),
  rprocess=discrete_time(
    step.fun=Csnippet("
    double e = (sigma > 0.0) ? rnorm(0, sigma) : 0.0;
    N = r*N*exp(-N+e);
    ),
    delta.t=1
 ),
  rmeasure=Csnippet("
     y = rpois(phi*N);"
 ),
 paramnames=c("r","sigma"),
 statenames="N",
  obsnames="y"
) -> rick2
## Finally, the R function approach:
simulate(times=1:100,t0=0,
 phi=100,
  params=c(r=3.8, sigma=0.3, N_0=7),
  rprocess=discrete_time(
    step.fun=function (r, N, sigma, ...) {
      e <- rnorm(n=1,mean=0,sd=sigma)
      c(N=r*N*exp(-N+e))
    },
    delta.t=1
  ),
```

162 verhulst

```
rmeasure=function(phi, N, ...) {
    c(y=rpois(n=1,lambda=phi*N))
}
) -> rick3
```

verhulst

Verhulst-Pearl model

Description

The Verhulst-Pearl (logistic) model of population growth.

Usage

```
verhulst(n_0 = 10000, K = 10000, r = 0.9, sigma = 0.4, tau = 0.1, dt = 0.01)
```

Arguments

n_0	initial condition
K	carrying capacity
r	intrinsic growth rate
sigma	environmental process noise s.d.
tau	measurement error s.d.
dt	Euler timestep

Details

A stochastic version of the Verhulst-Pearl logistic model. This evolves in continuous time, according to the stochastic differential equation

$$dn = r n \left(1 - \frac{n}{K}\right) dt + \sigma n dW.$$

Numerically, we simulate the stochastic dynamics using an Euler approximation.

The measurements are assumed to be log-normally distributed.

Value

A 'pomp' object containing the model and simulated data. The following basic components are included in the 'pomp' object: 'rinit', 'rprocess', 'rmeasure', 'dmeasure', and 'skeleton'.

See Also

```
More examples provided with pomp: SIR models, blowflies, childhood disease data, dacca(), ebola, gompertz(), ou2(), pomp examples, ricker(), rw2()
```

vmeasure 163

Examples

```
## Not run:
   verhulst() -> po
   plot(po)
   plot(simulate(po))
   pfilter(po,Np=1000) -> pf
   logLik(pf)
   spy(po)
## End(Not run)
```

vmeasure

vmeasure

Description

Return the covariance matrix of the observed variables, given values of the latent states and the parameters.

Usage

```
## S4 method for signature 'pomp'
vmeasure(object, x, times, params, ...)
```

Arguments

object	an object of class 'pomp', or of a class that extends 'pomp'. This will typically be the output of pomp, simulate, or one of the pomp inference algorithms.
X	an array containing states of the unobserved process. The dimensions of x are nvars x nrep x ntimes, where nvars is the number of state variables, nrep is the number of replicates, and ntimes is the length of times. One can also pass x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.
times	a numeric vector (length ntimes) containing times. These must be in non-decreasing order.
params	a npar x nrep matrix of parameters. Each column is treated as an independent parameter set, in correspondence with the corresponding column of x.
	additional arguments are ignored.

Value

vmeasure returns a rank-4 array of dimensions nobs x nobs x nrep x ntimes, where nobs is the number of observed variables. If v is the returned array, v[,,j,k] contains the covariance matrix at time times[k] given the state x[,j,k].

See Also

Specification of the measurement-model covariance matrix: vmeasure specification

More on **pomp** workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), workhorses

vmeasure specification

The variance of the measurement model

Description

Specification of the measurement-model covariance matrix, vmeasure.

Details

The measurement model is the link between the data and the unobserved state process. Some algorithms require the conditional covariance of the measurement model, given the latent state and parameters. This is supplied using the vmeasure argument.

Suppose you have a procedure to compute this conditional covariance matrix, given the value of the latent state variables. Then you can furnish

```
vmeasure = f
```

to **pomp** algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet for general rules on writing C snippets.

In writing a vmeasure C snippet, bear in mind that:

- 1. The goal of such a snippet is to fill variables named V_y_z with the conditional covariances of observables y, z. Accordingly, there should be one assignment of V_y_z and one assignment of V_z_y for each pair of observables y and z.
- 2. In addition to the states, parameters, and covariates (if any), the variable t, containing the time of the observation, will be defined in the context in which the snippet is executed.

The demos and the tutorials on the package website give examples.

It is also possible, though less efficient, to specify vmeasure using an R function. In this case, specify it by furnishing

```
vmeasure = f
```

to pomp, where f is an R function. The arguments of f should be chosen from among the state variables, parameters, covariates, and time. It must also have the argument f must return a square matrix of dimension equal to the number of observable variables. The row- and columnnames of this matrix should match the names of the observable variables. The matrix should of course be symmetric.

window 165

Default behavior

The default vmeasure is undefined. It will yield missing values (NA).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

See Also

vmeasure

More on implementing POMP models: Csnippet, accumulator variables, basic components, betabinomial, covariates, distributions, dmeasure specification, dprocess specification, emeasure specification, parameter transformations, pomp-package, pomp, prior specification, rinit specification, rmeasure specification, rprocess specification, skeleton specification, transformations, userdata

window Window

Description

Restrict to a portion of a time series.

Usage

```
## S4 method for signature 'pomp'
window(x, start, end, ...)
```

Arguments

```
x a 'pomp' object or object of class extending 'pomp' start, end the left and right ends of the window, in units of time ignored
```

166 workhorses

workhorses

Workhorse functions for the pomp algorithms.

Description

These functions mediate the interface between the user's model and the package algorithms. They are low-level functions that do the work needed by the package's inference methods.

Details

```
They include
```

```
dmeasure which evaluates the measurement model density,
rmeasure which samples from the measurement model distribution,
emeasure which computes the expectation of the observed variables conditional on the latent state,
vmeasure which computes the covariance matrix of the observed variables conditional on the latent state,
dprocess which evaluates the process model density,
rprocess which samples from the process model distribution,
dprior which evaluates the prior probability density,
rprior which samples from the prior distribution,
skeleton which evaluates the model's deterministic skeleton,
flow which iterates or integrates the deterministic skeleton to yield trajectories,
```

Author(s)

Aaron A. King

See Also

```
basic model components, elementary algorithms, estimation algorithms
```

partrans which performs parameter transformations associated with the model.

```
More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(), partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure()
```

wpfilter 167

wpfilter

Weighted particle filter

Description

A sequential importance sampling (particle filter) algorithm. Unlike in pfilter, resampling is performed only when triggered by deficiency in the effective sample size.

Usage

```
## S4 method for signature 'data.frame'
wpfilter(
  data,
 Nρ,
  params,
  rinit,
  rprocess,
  dmeasure,
  trigger = 1,
  target = 0.5,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
wpfilter(
  data,
 Np,
  trigger = 1,
  target = 0.5,
  verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'wpfilterd_pomp'
wpfilter(data, Np, trigger, target, ..., verbose = getOption("verbose", FALSE))
```

Arguments

data

either a data frame holding the time series data, or an object of class 'pomp', i.e., the output of another **pomp** calculation. Internally, data will be internally coerced to an array with storage-mode double.

Np

the number of particles to use. This may be specified as a single positive integer, in which case the same number of particles will be used at each timestep. Alternatively, if one wishes the number of particles to vary across timesteps, one may specify Np either as a vector of positive integers of length

168 wpfilter

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k) must be a single positive integer, representing the number of particles to be used at the k-th timestep: Np(0) is the number of particles to use going from timezero(object) to time(object)[1], Np(1), from timezero(object) to time(object)[1], and so on, while when T=length(time(object)), Np(T) is the number of particles to sample at the end of the time-series.

params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator

to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.

Setting rprocess=NULL removes the latent-state simulator. For more informa-

tion, see rprocess specification for the documentation on these plugins.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an

R function, or the name of a pre-compiled native routine available in a dynamically loaded library. Setting dmeasure=NULL removes the measurement density

evaluator. For more information, see dmeasure specification.

trigger numeric; if the effective sample size becomes smaller than trigger * Np, re-

sampling is triggered.

target numeric; target power.

... additional arguments supply new or modify existing model characteristics or

components. See pomp for a full list of recognized arguments.

When named arguments not recognized by pomp are provided, these are made available to all basic components via the so-called *userdata* facility. This allows the user to pass information to the basic components outside of the usual routes of covariates (covar) and model parameters (params). See userdata for

information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

This function is experimental and should be considered in alpha stage. Both interface and underlying algorithms may change without warning at any time. Please explore the function and give feedback via the pomp Issues page.

Value

An object of class 'wpfilterd_pomp', which extends class 'pomp'. Information can be extracted from this object using the methods documented below.

Methods

logLik the estimated log likelihood

wpfilter 169

```
cond.logLik the estimated conditional log likelihood
eff.sample.size the (time-dependent) estimated effective sample size
as.data.frame coerce to a data frame
plot diagnostic plots
```

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system. To circumvent this problem, use the cdir and cfile options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.

Author(s)

Aaron A. King

References

M.S. Arulampalam, S. Maskell, N. Gordon, & T. Clapp. A tutorial on particle filters for online nonlinear, non-Gaussian Bayesian tracking. *IEEE Transactions on Signal Processing* **50**, 174–188, 2002.

See Also

```
More on pomp elementary algorithms: elementary algorithms, kalman, pfilter(), pomp-package, probe(), simulate(), spect(), trajectory()

More on sequential Monte Carlo methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states()

More on full-information (i.e., likelihood-based) methods: bsmc2(), mif2(), pfilter(), pmcmc()
```

Index

* Bayesian methods	simulate, 130
approximate Bayesian computation,	spect, 139
10	trajectory, 151
bsmc2, 20	wpfilter, 167
dprior, 42	* estimation methods
pmcmc, 89	approximate Bayesian computation,
prior specification, 100	10
rprior, 120	bsmc2, 20
* Kalman filter	estimation algorithms, 51
kalman, 59	mif2, 67
kalmanFilter, 61	nonlinear forecasting, 72
* MCMC methods	pmcmc, 89
approximate Bayesian computation,	pomp-package, 5
10	probe matching, 105
pmcmc, 89	spectrum matching, 142
proposals, 109	* extending the pomp package
* approximate Bayesian computation	dmeasure, 39
approximate Bayesian computation,	dprior,42
10	dprocess, 43
* basic model components	flow, 54
basic components, 13	hitch, 57
* covariates	partrans, 82
covariates, 29	rinit, 115
* deterministic methods	rmeasure, 118
flow, 54	rprior,120
skeleton, 135	rprocess, 121
skeleton specification, 136	skeleton, 135
trajectory, 151	workhorses, 166
trajectory matching, 154	* extraction methods
* diagnostics	coef, 26
basic probes, 14	cond.logLik,27
* distribution	covmat, 30
distributions, 37	eff.sample.size,47
* elementary algorithms	filter.mean, 52
elementary algorithms, 48	filter.traj,53
kalman, 59	forecast, 55
pfilter,84	logLik, 63
pomp-package, 5	obs, 76
probe, 102	pred.mean, 98

pred.var,99	rprior, 120
saved.states, 129	rprocess, 121
spy, 146	skeleton, 135
states, 147	workhorses, 166
summary, 147	* methods based on maximization
time, 148	mif2, 67
timezero, 149	nonlinear forecasting, 72
traces, 149	probe matching, 105
* full-information methods	spectrum matching, 142
bsmc2, 20	trajectory matching, 154
mif2, 67	* models
pfilter,84	blowflies, 17
pmcmc, 89	dacca, 32
wpfilter, 167	gompertz, 56
* implementation information	ou2, 77
accumulator variables, 7	pomp examples, 97
basic components, 13	pomp-package, 5
betabinomial, 16	ricker, 114
covariates, 29	rw2, <u>127</u>
Csnippet, 31	SIR models, 133
distributions, 37	* multivariate
dmeasure specification, 40	pomp-package, 5
dprocess specification, 44	* nonlinear forecasting
emeasure specification, 50	nonlinear forecasting, 72
parameter transformations, 78	* optimize
pomp, 92	sannbox, 128
pomp-package, 5	* parameter transformations
prior specification, 100	transformations, 157
rinit specification, 116	* particle filter methods
rmeasure specification, 119	bsmc2, 20
rprocess specification, 122	cond.logLik, 27
skeleton specification, 136	eff.sample.size,47
transformations, 157	filter.mean, 52
userdata, 159	filter.traj,53
vmeasure specification, 164	kalman, 59
* interpolation	mif2, 67
bsplines, 23	pfilter, 84
covariates, 29	pmcmc, 89
lookup, 66	pred.mean, 98
* low-level interface	pred.var, 99
dmeasure, 39	saved.states, 129
dprior, 42	wpfilter, 167
dprocess, 43	* pomp datasets
flow, 54	blowflies, 17
hitch, 57	bsflu, 19
partrans, 82	childhood disease data, 24
rinit, 115	dacca, 32
rmeasure, 118	ebola, 45

parus, 83	10
* pomp examples	basic probes, 14
blowflies, 17	nonlinear forecasting,72
childhood disease data, 24	probe, 102
dacca, 32	probe matching, 105
ebola, 45	spect, 139
gompertz, 56	spectrum matching, 142
ou2, 77	* synthetic likelihood
pomp examples, 97	probe, 102
ricker,114	probe matching, 105
rw2, 127	* trajectory matching
SIR models, 133	trajectory matching, 154
verhulst, 162	* ts
* pomp workhorses	pomp-package, 5
dmeasure, 39	5 20 150
dprior, 42	abc, 5, 28, 159
dprocess, 43	abc(approximate Bayesian computation),
emeasure, 49	10
flow, 54	abc,abcd_pomp-method(approximate
partrans, 82	Bayesian computation), 10
pomp-package, 5	abc, ANY-method (approximate Bayesian
rinit, 115	computation), 10
rmeasure, 118	abc, data.frame-method (approximate
rprior, 120	Bayesian computation), 10
rprocess, 121	abc, missing-method (approximate
skeleton, 135	Bayesian computation), 10
vmeasure, 163	abc,pomp-method(approximate Bayesian computation), 10
workhorses, 166	abc,probed_pomp-method(approximate
* power-spectrum matching	Bayesian computation), 10
spectrum matching, 142	accumulator variables, 6, 7, 14, 17, 29, 32,
* probability distributions	39, 41, 45, 51, 80, 97, 101, 117, 120,
betabinomial, 16	126, 137, 158, 160, 165
distributions, 37	accumulators, 95
* probe matching	accumvars (accumulator variables), 7
probe matching, 105	approximate Bayesian computation, $6, 10$,
* profile likelihood	16, 22, 23, 43, 51, 71, 76, 92, 101,
design, 34	105, 108, 110, 121, 142, 145
mcap, 66	approximate Bayesian computation
* reproducibility	(ABC), <i>51</i>
reproducibility tools, 110	as.data.frame, 22, 86, 169
* search design	, , ,
design, 34	bake (reproducibility tools), 110
* smooth	baseenv, 112
bsplines, 23	basic component arguments, 6
* splines	basic components, 6, 7, 13, 17, 29, 32, 39,
bsplines, 23	41, 45, 51, 80, 97, 101, 117, 120,
* summary statistic-based methods	126, 137, 158, 160, 165
approximate Bavesian computation.	basic model component, 159

basic model components, 6, 48, 31, 3/, /9,	cond.logLik,kalmand_pomp-method
100, 166	(cond.logLik), 27
basic POMP model components, 5	cond.logLik,missing-method
basic probes, 11, 13, 14, 76, 103, 105, 106,	(cond.logLik), 27
108, 142, 145	<pre>cond.logLik,pfilterd_pomp-method</pre>
betabinomial, 6, 7, 14, 16, 29, 32, 39, 41, 45,	(cond.logLik), 27
51, 80, 97, 101, 117, 120, 126, 137,	<pre>cond.logLik,wpfilterd_pomp-method</pre>
158, 160, 165	(cond.logLik), 27
blowflies, 17, 20, 25, 34, 46, 57, 78, 83, 97,	continue, <i>12</i> , 28, <i>70</i> , <i>91</i>
98, 114, 127, 135, 162	<pre>continue,abcd_pomp-method(continue), 2</pre>
blowflies1, 97	continue, ANY-method (continue), 28
blowflies1 (blowflies), 17	<pre>continue,mif2d_pomp-method(continue),</pre>
blowflies2, 97	28
blowflies2 (blowflies), 17	continue, missing-method (continue), 28
bsflu, 19, 19, 25, 34, 46, 83, 97	<pre>continue,pmcmcd_pomp-method(continue)</pre>
bsmc2, 5, 6, 13, 20, 28, 43, 48, 51, 52, 54, 61,	28
64, 71, 76, 87, 92, 99, 101, 108, 121,	covariate_table, 66, 95
130, 145, 169	covariate_table (covariates), 29
bsmc2, ANY-method (bsmc2), 20	covariate_table, ANY-method
bsmc2, data.frame-method (bsmc2), 20	(covariates), 29
bsmc2, missing-method (bsmc2), 20	covariate_table,character-method
bsmc2,pomp-method(bsmc2), 20	(covariates), 29
bspline.basis (bsplines), 23	covariate_table,missing-method
bsplines, 23, 29, 66	(covariates), 29
	covariate_table,numeric-method
cdir, 12, 22, 32, 41, 45, 51, 61, 71, 75, 80, 86,	(covariates), 29
91, 96, 100, 104, 108, 117, 119, 126,	
133, 137, 141, 145, 156, 165, 169	covariates, 6, 7, 14, 17, 24, 29, 32, 39, 41,
cfile, 12, 22, 32, 41, 45, 51, 61, 71, 75, 80,	45, 51, 66, 80, 97, 101, 117, 120,
86, 91, 96, 100, 104, 108, 117, 119,	126, 137, 158, 160, 165
126, 133, 137, 141, 145, 156, 165,	covmat, 27, 28, 30, 48, 52, 54, 55, 64, 77, 99,
169	130, 146–150
childhood disease data, 19, 20, 24, 34, 46,	covmat, abcd_pomp-method (covmat), 30
57, 78, 83, 98, 114, 127, 135, 162	covmat, abcList-method (covmat), 30
coef, 26, 28, 30, 48, 52, 54, 55, 64, 70, 77, 99,	covmat, ANY-method (covmat), 30
130, 146–150	covmat, missing-method (covmat), 30
coef, listie-method (coef), 26	covmat, pmcmcd_pomp-method (covmat), 30
coef, objfun-method (coef), 26	covmat,pmcmcList-method(covmat),30
coef, pomp-method (coef), 26	${\tt covmat,probed_pomp-method(covmat)}, 30$
coef<- (coef), 26	Csnippet, 6, 7, 14, 17, 29, 31, 39–41, 44, 45,
<pre>coef<-,missing-method(coef), 26</pre>	50, 51, 80, 97, 101, 117, 119, 120,
coef<-,objfun-method(coef), 26	123, 126, 137, 158, 160, 164, 165
coef<-, pomp-method (coef), 26	
cond.logLik, 23, 27, 27, 30, 48, 52, 54, 55,	dacca, 19, 20, 25, 32, 46, 57, 78, 83, 97, 98,
61, 64, 71, 77, 86, 87, 92, 99, 130,	114, 127, 135, 162
146–150, 169	dbetabinom (betabinomial), 16
cond.logLik, ANY-method (cond.logLik), 27	design, 34
cond.logLik,bsmcd_pomp-method	deSolve, <i>54</i> , <i>153</i>
(cond.logLik), 27	deulermultinom (distributions), 37

<pre>discrete_time (rprocess specification),</pre>	eff.sample.size,missing-method
122	(eff.sample.size), 47
distributions, 6, 7, 14, 17, 29, 32, 37, 41,	eff.sample.size,pfilterd_pomp-method
45, 51, 80, 97, 101, 117, 120, 126,	(eff.sample.size), 47
137, 158, 160, 165	eff.sample.size,wpfilterd_pomp-method
dmeasure, 6, 14, 39, 41, 43, 49, 55, 82, 116,	(eff.sample.size), 47
118, 121, 122, 136, 164, 166	Elementary algorithms, 5
dmeasure specification, <i>6</i> , <i>7</i> , <i>14</i> , <i>17</i> , <i>21</i> ,	elementary algorithms, 7, 14, 48, 51, 61,
29, 32, 39, 40, 40, 45, 51, 69, 80, 85,	87, 105, 133, 142, 153, 166, 169
91, 94, 97, 101, 117, 120, 126, 137,	emeasure, 6, 13, 40, 43, 49, 51, 55, 82, 116,
156, 158, 160, 165, 168	118, 121, 122, 136, 164, 166
dmeasure, ANY-method (dmeasure), 39	emeasure specification, 6, 7, 14, 17, 29,
dmeasure, missing-method (dmeasure), 39	32, 39, 41, 45, 49, 50, 60, 80, 94, 97,
dmeasure, pomp-method (dmeasure), 39	101, 117, 120, 126, 138, 158, 160,
dprior, 6, 13, 14, 22, 40, 42, 43, 49, 55, 82,	165
	emeasure, ANY-method (emeasure), 49
92, 101, 116, 118, 121, 122, 136,	emeasure, missing-method (emeasure), 49
164, 166	emeasure, pomp-method (emeasure), 49
dprior, ANY-method (dprior), 42	enkf, 62 , 64
dprior, missing-method (dprior), 42	enkf (kalman), 59
dprior, pomp-method (dprior), 42	
dprocess, 6, 13, 40, 43, 43, 45, 49, 55, 82,	enkf, ANY-method (kalman), 59
116, 118, 121, 122, 136, 164, 166	enkf, data.frame-method(kalman), 59
dprocess specification, <i>6</i> , <i>7</i> , <i>14</i> , <i>17</i> , <i>29</i> ,	enkf, kalmand_pomp-method (kalman), 59
32, 39, 41, 43, 44, 51, 80, 94, 97,	enkf, missing-method (kalman), 59
101, 117, 120, 126, 137, 158, 160,	enkf, pomp-method (kalman), 59
165	Ensemble and ensemble-adjusted Kalman
dprocess, ANY-method (dprocess), 43	filters, 51
dprocess, missing-method (dprocess), 43	environment, 112
dprocess, pomp-method (dprocess), 43	estimation algorithms, 5, 6, 13, 14, 23, 48, 51, 71, 76, 92, 108, 145, 166
10.00.01	euler (rprocess specification), 122
eakf, 62, 64	ewcitmeas, 97
eakf (kalman), 59	ewcitmeas (childhood disease data), 24
eakf, ANY-method (kalman), 59	ewmeas, 97
eakf,data.frame-method(kalman),59	ewmeas (childhood disease data), 24
eakf, missing-method (kalman), 59	expit (transformations), 157
eakf,pomp-method(kalman),59	
ebola, 19, 20, 25, 34, 45, 57, 78, 83, 98, 114,	facilitating reproducible
127, 135, 162	computations, 5
ebolaModel, 97	filter.mean, 23, 27, 28, 30, 48, 52, 54, 55,
ebolaModel (ebola), 45	61, 64, 71, 77, 86, 87, 92, 99, 130,
ebolaWA2014 (ebola), 45	146–150, 169
eff.sample.size, 23, 27, 28, 30, 47, 52, 54,	filter.mean, ANY-method (filter.mean), 52
55, 61, 64, 70, 71, 77, 86, 87, 92, 99,	filter.mean,kalmand_pomp-method
130, 146–150, 169	(filter.mean), 52
eff.sample.size,ANY-method	filter.mean, missing-method
(eff.sample.size), 47	(filter.mean), 52
eff.sample.size,bsmcd_pomp-method	filter.mean, pfilterd_pomp-method
(eff.sample.size), 47	(filter.mean), 52
(CII. Sampte. Size), 4/	(IIICEI.IIICAII), JZ

filter.traj, 23, 27, 28, 30, 48, 52, 53, 55,	Liu-West Bayesian sequential Monte
61, 64, 71, 77, 85–87, 91, 92, 99,	Carlo, <i>51</i>
130, 146–150, 169	load, <i>112</i>
filter.traj, ANY-method(filter.traj), 53	loess, <i>67</i>
filter.traj,missing-method	log_barycentric(transformations), 157
(filter.traj), 53	logit (transformations), 157
filter.traj,pfilterd_pomp-method	logLik, 27, 28, 30, 48, 52, 54, 55, 63, 70, 77,
(filter.traj),53	86, 99, 130, 146–150, 168
filter.traj,pfilterList-method	logLik, ANY-method (logLik), 63
(filter.traj), 53	<pre>logLik, bsmcd_pomp-method (logLik), 63</pre>
<pre>filter.traj,pmcmcd_pomp-method</pre>	logLik, kalmand_pomp-method (logLik), 63
(filter.traj), 53	logLik, listie-method (logLik), 63
filter.traj,pmcmcList-method	logLik, missing-method (logLik), 63
(filter.traj), 53	logLik,nlf_objfun-method(logLik),63
flow, 6, 40, 43, 49, 54, 82, 116, 118, 121, 122,	logLik, objfun-method (logLik), 63
136, 138, 153, 157, 164, 166	<pre>logLik,pfilterd_pomp-method(logLik), 63</pre>
flow, ANY-method (flow), 54	logLik, pmcmcd_pomp-method (logLik), 63
flow, missing-method (flow), 54	logLik, probed_pomp-method (logLik), 63
flow, pomp-method (flow), 54	logLik, spect_match_objfun-method
forecast, 27, 28, 30, 48, 52, 54, 55, 64, 77,	(logLik), 63
99, 130, 146–150	logLik, wpfilterd_pomp-method(logLik),
forecast, ANY-method (forecast), 55	63
forecast, kalmand_pomp-method	logmeanexp, 65
(forecast), 55	LondonYorke, 97
forecast, missing-method (forecast), 55	LondonYorke (childhood disease data), 24
forecast,pfilterd_pomp-method	lookup, 24, 29, 66
(forecast), 55	100Kdp, 27, 29, 00
freeze (reproducibility tools), 110	map, <i>94</i> , <i>152</i> , <i>155</i>
3	map (skeleton specification), 136
General rules for writing C snippets	mcap, 66
can be found here, 100, 116, 137	mcmc, 12, 91
gillespie (rprocess specification), 122	MCMC proposals, 11, 30, 90
gillespie_hl (rprocess specification),	mean, 15
122	
gompertz, 19, 25, 34, 46, 56, 78, 97, 98, 114,	mif2, 5, 6, 13, 22, 23, 28, 48, 51, 52, 54, 61,
127, 135, 162	67, 76, 87, 92, 99, 108, 126, 130,
127, 133, 102	145, 150, 157, 159, 169
here for a definition of this term, <i>159</i>	mif2, ANY-method (mif2), 67
	mif2, data. frame-method (mif2), 67
hitch, 57	mif2, mif2d_pomp-method (mif2), 67
	mif2, missing-method (mif2), 67
<pre>inv_log_barycentric(transformations),</pre>	mif2, pfilterd_pomp-method (mif2), 67
157	mif2,pomp-method(mif2),67
iterated filtering (IF2), 51	mvn.diag.rw(proposals), 109
	mvn.rw(proposals), 109
kalman, 5, 7, 23, 28, 48, 52, 54, 59, 71, 87, 92,	
99, 105, 130, 133, 142, 153, 169	nlf(nonlinear forecasting),72
kalmanFilter, 61, 61	nlf_objfun, 64
kernel, <i>15</i>	<pre>nlf_objfun(nonlinear forecasting), 72</pre>

nlf_objfun,ANY-method(nonlinear forecasting),72	parameter_trans,pomp_fun,pomp_fun-method (parameter transformations),78
nlf_objfun,data.frame-method	parmat, 80
(nonlinear forecasting), 72	parmat, ANY-method (parmat), 80
nlf_objfun,missing-method(nonlinear	parmat, array-method (parmat), 80
forecasting), 72	parmat, data. frame-method (parmat), 80
nlf_objfun,nlf_objfun-method	parmat, missing-method (parmat), 80
(nonlinear forecasting), 72	parmat, numeric-method (parmat), 80
nlf_objfun,pomp-method(nonlinear	particle Markov chain Monte Carlo
forecasting), 72	(PMCMC), <i>51</i>
nloptr, 76, 108, 145, 157	partrans, 6, 14, 40, 43, 49, 55, 80, 82, 116,
nonlinear forecasting, 5, 6, 13, 16, 23, 51,	118, 121, 122, 136, 164, 166
71, 72, 92, 105, 108, 129, 142, 145,	partrans, ANY-method (partrans), 82
157	partrans, missing-method (partrans), 82
-L- 16 27 20 20 40 52 54 55 64 76 00	partrans, objfun-method (partrans), 82
obs, 16, 27, 28, 30, 48, 52, 54, 55, 64, 76, 99,	partrans, pomp-method (partrans), 82
130, 146–150	parus, <i>19</i> , <i>20</i> , <i>25</i> , <i>34</i> , <i>46</i> , 83, <i>97</i>
obs, listie-method (obs), 76	paste, <i>23</i>
obs, pomp-method (obs), 76	periodic.bspline.basis(bsplines), 23
ode, 54, 152, 155	pfilter, 5, 7, 22, 23, 28, 48, 52–54, 61, 70,
onestep (rprocess specification), 122	71, 84, 92, 99, 105, 130, 133, 142,
optim, 74, 76, 107, 108, 129, 145, 156, 157	153, 159, 169
ou2, 19, 25, 34, 46, 57, 77, 97, 98, 114, 127,	pfilter, ANY-method (pfilter), 84
135, 162	pfilter, data.frame-method (pfilter), 84
par, 88	pfilter, missing-method (pfilter), 84
parameter transformations, 6, 7, 14, 17,	pfilter,objfun-method(pfilter),84
29, 32, 39, 41, 45, 51, 78, 97, 101,	<pre>pfilter,pfilterd_pomp-method(pfilter),</pre>
117, 120, 126, 138, 158, 160, 165	84
parameter_trans, 21, 69, 82, 95, 107, 144,	pfilter, pomp-method (pfilter), 84
156, 158	pfilterd_pomp, 70
parameter_trans (parameter	plot, 22, 86, 87, 169
transformations), 78	plot, Abc-method (plot), 87
parameter_trans, ANY, ANY-method	plot,bsmcd_pomp-method(plot),87
(parameter transformations), 78	plot, Mif2-method (plot), 87
parameter_trans, ANY, missing-method	plot, missing-method (plot), 87
(parameter transformations), 78	plot, Pmcmc-method (plot), 87
parameter_trans,character,character-method	<pre>plot,pomp_plottable-method(plot), 87</pre>
(parameter transformations), 78	<pre>plot,probe_match_objfun-method(plot),</pre>
parameter_trans,Csnippet,Csnippet-method	87
(parameter transformations), 78	<pre>plot,probed_pomp-method(plot), 87</pre>
parameter_trans,function,function-method	<pre>plot, spect_match_objfun-method (plot),</pre>
(parameter transformations), 78	87
parameter_trans,missing,ANY-method	<pre>plot, spectd_pomp-method (plot), 87</pre>
(parameter transformations), 78	pmcmc, 5, 6, 13, 22, 23, 28, 43, 48, 51–54, 61,
parameter_trans,missing,missing-method	64, 71, 76, 87, 89, 99, 101, 108, 110,
(parameter transformations), 78	121, 130, 145, 150, 169
parameter_trans,NULL,NULL-method	pmcmc, ANY-method (pmcmc), 89
(parameter transformations), 78	pmcmc, data.frame-method(pmcmc), 89

	muska as C (kasisa muskasa) 14
pmcmc, missing-method (pmcmc), 89	probe.acf (basic probes), 14
pmcmc, pfilterd_pomp-method (pmcmc), 89	probe.ccf (basic probes), 14
pmcmc, pmcmcd_pomp-method (pmcmc), 89	probe.marginal (basic probes), 14 probe.mean (basic probes), 14
pmcmc, pomp-method (pmcmc), 89	probe.median (basic probes), 14 probe.median (basic probes), 14
pomp, 6, 7, 11, 12, 14, 17, 22, 29, 32, 39, 41,	
45, 51, 59, 60, 69, 70, 74, 80, 85, 86,	probe.nlar(basic probes), 14
91, 92, 93, 101, 104, 107, 117, 120,	probe period (basic probes), 14
126, 132, 138, 141, 144, 145, 152,	probe quantile (basic probes), 14
158, 160, 165, 168	probe.sd (basic probes), 14
pomp examples, 19, 25, 34, 46, 57, 78, 97,	probe.var (basic probes), 14
114, 127, 135, 162	probe_objfun, <i>16</i> probe_objfun (probe matching), 105
pomp, package (pomp-package), 5	probe_objfun, ANY-method (probe
pomp-package, 5	matching), 105
power-spectrum matching, 51	·
pred.mean, 23, 27, 28, 30, 48, 52, 54, 55, 61,	<pre>probe_objfun,data.frame-method(probe matching), 105</pre>
64, 71, 77, 86, 87, 92, 98, 99, 130,	probe_objfun,missing-method(probe
146–150, 169	matching), 105
pred.mean, ANY-method (pred.mean), 98	probe_objfun,pomp-method(probe
pred.mean,kalmand_pomp-method	matching), 105
(pred.mean), 98	probe_objfun,probe_match_objfun-method
pred.mean, missing-method (pred.mean), 98	(probe matching), 105
<pre>pred.mean,pfilterd_pomp-method</pre>	probe_objfun,probed_pomp-method(probe
(pred.mean), 98	matching), 105
pred.var, 23, 27, 28, 30, 48, 52, 54, 55, 61,	profile_design (design), 34
64, 71, 77, 86, 87, 92, 99, 99, 130,	proposals, 13, 92, 109
146–150, 169	pi oposats, 13, 72, 107
pred.var, ANY-method (pred.var), 99	quantile, 15
pred.var,missing-method(pred.var),99	
<pre>pred.var,pfilterd_pomp-method</pre>	R CMD SHLIB, 31
(pred.var), 99	rbetabinom (betabinomial), 16
prior specification, 6, 7, 11, 13, 14, 17,	readRDS, <i>112</i>
21, 22, 29, 32, 39, 41, 43, 45, 51, 80,	reproducibility tools, 110
91, 92, 94, 97, 100, 117, 120, 121,	reulermultinom (distributions), 37
126, 138, 158, 160, 165	rgammawn (distributions), 37
probe, 5, 7, 13, 16, 48, 61, 64, 76, 87, 102,	ricker, 19, 25, 34, 46, 57, 78, 97, 98, 114,
108, 133, 142, 145, 153, 169	127, 135, 162
probe matching, 5, 6, 13, 16, 23, 51, 71, 76,	rinit, 6, 14, 40, 43, 49, 55, 82, 115, 117, 118,
92, 105, 105, 129, 142, 145, 157	121, 122, 136, 164, 166
probe, ANY-method (probe), 102	rinit specification, 6, 7, 11, 14, 17, 21,
probe, data. frame-method (probe), 102	29, 32, 39, 41, 45, 51, 60, 69, 74, 80,
probe, missing-method (probe), 102	85, 90, 94, 97, 101, 103, 107, 116,
probe, objfun-method (probe), 102	116, 120, 126, 131, 138, 140, 144,
probe, pomp-method (probe), 102	152, 155, 158, 160, 165, 168
<pre>probe,probe_match_objfun-method</pre>	rinit, ANY-method (rinit), 115
(probe), 102	rinit, missing-method (rinit), 115
$probe, probed_pomp-method(probe), 102$	rinit,pomp-method(rinit),115
probe-matching via synthetic	rmeasure, 6, 13, 40, 43, 49, 55, 82, 116, 118,
likelihood, <i>51</i>	120–122, 136, 164, 166

rmeasure specification, 6, 7, 11, 14, 17, 29, 32, 39, 41, 45, 51, 74, 80, 94, 97,	simulate, data.frame-method (simulate), 130
101, 103, 107, 117, 118, 119, 126,	simulate, missing-method (simulate), 130
132, 138, 141, 144, 158, 160, 165	simulate, objfun-method (simulate), 130
rmeasure, ANY-method (rmeasure), 118	simulate, pomp-method (simulate), 130
rmeasure, missing-method (rmeasure), 118	sir, 7, 97
rmeasure, pomp-method (rmeasure), 118	sir (SIR models), 133
rprior, 6, 13, 14, 22, 40, 43, 49, 55, 82, 92,	SIR models, 19, 20, 25, 34, 46, 57, 78, 98,
101, 116, 118, 120, 122, 136, 164,	114, 127, 133, 162
166	sir2, 97
rprior, ANY-method (rprior), 120	sir2(SIR models), 133
rprior, missing-method (rprior), 120	skeleton, 6, 14, 40, 43, 49, 55, 82, 116, 118,
rprior, pomp-method (rprior), 120	121, 122, 135, 137, 138, 153, 157,
rprocess, 6, 13, 40, 43, 49, 55, 82, 116, 118,	164, 166
121, 121, 126, 136, 164, 166	skeleton specification, 6, 7, 14, 17, 29,
rprocess plugins, 11, 21, 60, 69, 74, 85, 90,	32, 39, 41, 45, 51, 55, 80, 94, 97,
94, 103, 107, 131, 141, 144, 168	101, 117, 120, 126, 136, 136, 152,
rprocess specification, <i>6</i> , <i>7</i> , <i>14</i> , <i>17</i> , <i>29</i> ,	153, 155, 157, 158, 160, 165
32, 39, 41, 45, 51, 80, 97, 101, 117,	skeleton, ANY-method (skeleton), 135
120, 122, 122, 138, 158, 160, 165	skeleton, missing-method (skeleton), 135
rprocess specification for the	skeleton, pomp-method (skeleton), 135
documentation on these	slice_design (design), 34
plugins, 11, 21, 60, 69, 74, 85, 90,	sobol_design, 35
94, 103, 107, 131, 141, 144, 168	sobol_design (design), 34
rprocess, ANY-method (rprocess), 121	spect, 7, 13, 16, 48, 61, 76, 87, 105, 108, 133,
rprocess, missing-method (rprocess), 121	139, 145, 153, 169
rprocess, pomp-method (rprocess), 121	spect, ANY-method (spect), 139
runif_design, 35	spect, data.frame-method(spect), 139
runif_design (design), 34	spect, missing-method (spect), 139
rw.sd, 68, 126	spect, objfun-method (spect), 139
rw2, 19, 25, 34, 46, 57, 78, 97, 98, 114, 127,	spect, pomp-method (spect), 139
135, 162	spect, spect_match_objfun-method
sannbox, 128	(spect), 139
saved.states, 23, 27, 28, 30, 48, 52, 54, 55,	<pre>spect, spectd_pomp-method (spect), 139</pre>
61, 64, 71, 77, 86, 87, 92, 99, 129,	spect_objfun, 64
146–150, 169	<pre>spect_objfun (spectrum matching), 142</pre>
saved.states, ANY-method (saved.states),	spect_objfun,ANY-method(spectrum
129	matching), 142
saved.states, missing-method	spect_objfun,data.frame-method
(saved.states), 129	(spectrum matching), 142
<pre>saved.states,pfilterd_pomp-method</pre>	<pre>spect_objfun,missing-method(spectrum</pre>
(saved.states), 129	matching), 142
saved.states,pfilterList-method	<pre>spect_objfun,pomp-method(spectrum</pre>
(saved.states), 129	matching), 142
set.seed, 111	<pre>spect_objfun,spect_match_objfun-method</pre>
several pre-built POMP models, 6	(spectrum matching), 142
simulate, 5, 7, 48, 61, 87, 103–105, 130, 140,	<pre>spect_objfun,spectd_pomp-method</pre>
142, 153, 159, 169	(spectrum matching), 142

spectrum matching, 5, 6, 13, 16, 23, 51, 71,	traces, pmcmcList-method (traces), 149
<i>76</i> , <i>92</i> , <i>105</i> , <i>108</i> , <i>129</i> , <i>142</i> , 142, <i>157</i>	traj_objfun, <i>136</i>
sprintf, 23	traj_objfun(trajectory matching), 154
spy, 27, 28, 30, 48, 52, 54, 55, 59, 64, 77, 99,	<pre>traj_objfun,ANY-method(trajectory</pre>
<i>130</i> , 146, <i>147–150</i>	matching), 154
spy, ANY-method (spy), 146	traj_objfun,data.frame-method
spy, missing-method (spy), 146	(trajectory matching), 154
spy, pomp-method (spy), 146	traj_objfun,missing-method(trajectory
states, 27, 28, 30, 48, 52, 54, 55, 64, 77, 99,	matching), 154
130, 146, 147, 148–150, 152	traj_objfun,pomp-method(trajectory
states, listie-method (states), 147	matching), 154
states, pomp-method (states), 147	traj_objfun,traj_match_objfun-method
stew (reproducibility tools), 110	(trajectory matching), 154
subplex, 76, 108, 145, 157	trajectory, 7, 48, 55, 61, 87, 105, 133, 135,
summary, 27, 28, 30, 48, 52, 54, 55, 64, 77, 99,	136, 138, 142, 151, 157, 169
130, 146, 147, 147, 148–150	trajectory matching, 5, 55, 71, 76, 108,
summary, objfun-method (summary), 147	129, 136, 138, 145, 153, 154
summary, probed_pomp-method (summary),	trajectory, ANY-method (trajectory), 151
147	trajectory, data. frame-method
summary, spectd_pomp-method(summary),	(trajectory), 151
147	trajectory, missing-method (trajectory,
sys.call, <i>112</i>	151
system.time, 113	trajectory, pomp-method (trajectory), 15
System. time, 115	trajectory, traj_match_objfun-method
time, 27, 28, 30, 48, 52, 54, 55, 64, 77, 99,	(trajectory), 151
130, 146–148, 148, 149, 150	transformations, 6, 7, 14, 17, 29, 32, 39, 41
time, missing-method (time), 148	45, 51, 80, 97, 101, 117, 120, 126,
time, pomp-method (time), 148	138, 157, 160, 165
time<- (time), 148	130, 137, 100, 103
time<-,pomp-method (time), 148	userdata, 6, 7, 12, 14, 17, 22, 29, 32, 39, 41,
timezero, 27, 28, 30, 48, 52, 54, 55, 64, 77,	45, 51, 60, 70, 74, 80, 86, 91, 94, 97
99, 130, 146–148, 149, 150	101, 104, 107, 117, 120, 126, 132,
timezero, ANY-method (timezero), 149	138, 141, 145, 152, 158, 159, 165,
timezero, missing-method (timezero), 149	168
timezero, pomp-method (timezero), 149	userdata facility, <i>41</i>
timezero<- (timezero), 149	user data racifity, 71
timezero<-, ANY-method (timezero), 149	vectorfield, 94, 152, 155
timezero<-,missing-method(timezero),	vectorfield (skeleton specification),
149	136
timezero<-,pomp-method(timezero), 149	verhulst, 19, 25, 34, 46, 57, 78, 97, 98, 114,
traces, 12, 27, 28, 30, 48, 52, 54, 55, 64, 77,	<i>127, 135,</i> 162
<i>91</i> , <i>99</i> , <i>130</i> , <i>146–149</i> , 149	vmeasure, 6, 14, 40, 43, 49, 55, 82, 116, 118,
traces, abcd_pomp-method(traces), 149	<i>121, 122, 136,</i> 163 <i>, 165, 166</i>
traces, abcList-method (traces), 149	vmeasure specification, 6 , 7 , 14 , 17 , 29 ,
traces, ANY-method (traces), 149	32, 39, 41, 45, 51, 60, 80, 94, 97,
traces, mif2d_pomp-method(traces), 149	101, 117, 120, 126, 138, 158, 160,
traces, mif2List-method(traces), 149	<i>164</i> , 164
traces, missing-method (traces), 149	vmeasure, ANY-method (vmeasure), 163
traces.pmcmcd pomp-method(traces), 149	vmeasure.missing-method(vmeasure).163