Package 'prioritizr'

October 30, 2021

Type Package

Version 7.1.1

Title Systematic Conservation Prioritization in R
Description Systematic conservation prioritization using mixed integer linear programming (MILP). It provides a flexible interface for building and solving conservation planning problems. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. By using exact algorithm solvers, solutions can be generated that are guaranteed to be optimal (or within a pre-specified optimality gap). Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. To solve large-scale or complex conservation planning problems, users should install the Gurobi optimization software (available from <https: //www.gurobi. com/>) and the 'gurobi' R package (see Gurobi Installation Guide vignette for details). Additionally, the 'rcbc' R package (available at https://github.com/dirkschumacher/rcbc) can be used to generate solutions using the CBC optimization software (https://projects.coin-or.org/Cbc).

Imports utils, methods, asserthat (>= 0.2.0), data.table, uuid, Matrix, slam (>= 0.1-48), igraph, ape, rgeos, plyr, parallel, doParallel, magrittr, fasterize ($>=1.0 .2$), exactextractr ($>=$ 0.2 .0), tibble (>= 2.0.0), withr (>= 2.3.0)

Suggests testhhat, knitr, roxygen2, scales, RandomFields, maptools, PBSmapping, gurobi, rcbc ($>=0.1 .0 .9001$), cplexAPI ($>=1.4 .0$), lpsymphony, Rsymphony, rmarkdown, prioritizrdata (>= 0.2.4)
Depends R (>= 3.5.0), raster, sp, sf (>= 0.8-0), proto
LinkingTo Rcpp, RcppArmadillo (>= 0.10.1.0.0), BH
License GPL-3
Language en-US
Encoding UTF-8
LazyData true
SystemRequirements C++11

URL https://prioritizr.net, https://github.com/prioritizr/prioritizr
BugReports https://github.com/prioritizr/prioritizr/issues
VignetteBuilder knitr
RoxygenNote 7.1.2
Collate 'internal.R' 'pproto.R' 'Parameter-proto.R'
'ArrayParameter-proto.R' 'MiscParameter-proto.R'
'Parameters-proto.R' 'ScalarParameter-proto.R' 'parameters.R'
'waiver.R' 'ConservationModifier-proto.R' 'Penalty-proto.R'
'Constraint-proto.R' 'Collection-proto.R' 'category_vector.R'
'category_layer.R' 'binary_stack.R'
'ConservationProblem-proto.R' 'Decision-proto.R' 'Id.R'
'Objective-proto.R' 'OptimizationProblem-proto.R'
'OptimizationProblem-methods.R' 'Portfolio-proto.R'
'RcppExports.R' 'Solver-proto.R' 'Target-proto.R' 'zones.R'
'add_absolute_targets.R' 'add_binary_decisions.R'
'marxan_boundary_data_to_matrix.R' 'add_boundary_penalties.R'
'add_cbc_solver.R' 'add_connectivity_penalties.R'
'add_contiguity_constraints.R' 'add_cplex_solver.R'
'add_cuts_portfolio.R' 'add_default_decisions.R'
'add_default_objective.R' 'add_default_portfolio.R'
'add_default_solver.R' 'add_default_targets.R'
'add_extra_portfolio.R' 'add_feature_contiguity_constraints.R'
'add_feature_weights.R' 'add_gap_portfolio.R'
'add_gurobi_solver.R' 'add_linear_constraints.R'
'add_linear_penalties.R' 'intersecting_units.R'
'add_locked_in_constraints.R' 'add_locked_out_constraints.R'
'loglinear_interpolation.R' 'add_loglinear_targets.R'
'add_lpsymphony_solver.R'
'add_mandatory_allocation_constraints.R' 'tbl_df.R'
'add_manual_targets.R' 'add_manual_bounded_constraints.R'
'add_manual_locked_constraints.R' 'add_max_cover_objective.R'
'add_max_features_objective.R' 'add_max_phylo_div_objective.R'
'add_max_phylo_end_objective.R' 'add_max_utility_objective.R'
'add_min_largest_shortfall_objective.R'
'add_min_set_objective.R' 'add_min_shortfall_objective.R'
'add_neighbor_constraints.R' 'add_proportion_decisions.R'
'add_relative_targets.R' 'add_rsymphony_solver.R'
'add_semicontinuous_decisions.R' 'add_shuffle_portfolio.R'
'add_top_portfolio.R' 'adjacency_matrix.R' 'boundary_matrix.R'
'branch_matrix.R' 'compile.R' 'connectivity_matrix.R'
'constraints.R' 'data.R' 'decisions.R' 'deprecated.R'
'distribute_load.R' 'eval_boundary_summary.R'
'eval_connectivity_summary.R' 'eval_cost_summary.R'
'eval_feature_representation_summary.R'
'eval_ferrier_importance.R' 'eval_n_summary.R' 'problem.R'
'eval_rare_richness_importance.R' 'presolve_check.R' 'solve.R'
'eval_replacement_importance.R'

```
'eval_target_coverage_summary.R' 'fast_extract.R'
'feature_abundances.R' 'feature_names.R' 'importance.R'
'magrittr-operators.R' 'marxan_problem.R' 'misc.R'
'new_optimization_problem.R' 'number_of_features.R'
'number_of_planning_units.R' 'number_of_total_units.R'
'number_of_zones.R' 'objectives.R' 'package.R' 'penalties.R'
'planning_unit_solution_status.R' 'portfolios.R'
'predefined_optimization_problem.R' 'print.R'
'proximity_matrix.R' 'rij_matrix.R' 'run_calculations.R' 'sf.R'
'show.R' 'simulate.R' 'solvers.R' 'summaries.R' 'targets.R'
'write_problem.R' 'zone_names.R' 'zzz.R'
```


NeedsCompilation yes

Author Jeffrey O Hanson [aut] (https://orcid.org/0000-0002-4716-6134),
Richard Schuster [aut, cre] (https://orcid.org/0000-0003-3191-7869), Nina Morrell [aut],
Matthew Strimas-Mackey [aut] (https://orcid.org/0000-0001-8929-7776), Brandon P M Edwards [aut] (https://orcid.org/0000-0003-0865-3076), Matthew E Watts [aut], Peter Arcese [aut] (https://orcid.org/0000-0002-8097-482X), Joseph Bennett [aut] (https://orcid.org/0000-0002-3901-9513), Hugh P Possingham [aut] (https://orcid.org/0000-0001-7755-996X)
Maintainer Richard Schuster richard.schuster@glel.carleton.ca
Repository CRAN
Date/Publication 2021-10-29 22:50:09 UTC

R topics documented:

add_absolute_targets 6
add_binary_decisions 9
add_boundary_penalties 10
add_cbc_solver 15
add_connectivity_penalties 18
add_contiguity_constraints 26
add_cplex_solver 30
add_cuts_portfolio 32
add_default_decisions 34
add_default_solver 34
add_extra_portfolio 35
add_feature_contiguity_constraints 37
add_feature_weights 41
add_gap_portfolio 45
add_gurobi_solver 47
add_linear_constraints 51
add_linear_penalties 56
add_locked_in_constraints 60
add_locked_out_constraints 64
add_loglinear_targets 69
add_lsymphony_solver 71
add_mandatory_allocation_constraints 73
add_manual_bounded_constraints 75
add_manual_locked_constraints 78
add_manual_targets 80
add_max_cover_objective 85
add_max_features_objective 87
add_max_phylo_div_objective 90
add_max_phylo_end_objective 94
add_max_utility_objective 98
add_min_largest_shortfall_objective 100
add_min_set_objective 102
add_min_shortfall_objective 104
add_neighbor_constraints 106
add_proportion_decisions 110
add_relative_targets 112
add_rsymphony_solver 114
add_semicontinuous_decisions 116
add_shuffle_portfolio 118
add_top_portfolio 120
adjacency_matrix 121
ArrayParameter-class 123
array_parameters 125
as.Id 127
as.list.OptimizationProblem 128
binary_stack 128
boundary_matrix 129
branch_matrix 131
category_layer 132
category_vector 133
Collection-class 134
compile 135
connectivity_matrix 136
ConservationModifier-class 140
ConservationProblem-class 142
Constraint-class 145
constraints 146
Decision-class 147
decisions 148
distribute_load 149
eval_boundary_summary 150
eval_connectivity_summary 156
eval_cost_summary 161
eval_feature_representation_summary 165
eval_ferrier_importance 170
eval_n_summary 174
eval_rare_richness_importance 177
eval_replacement_importance 181
eval_target_coverage_summary 186
fast_extract 190
feature_abundances 192
feature_names 195
importance 196
intersecting_units 198
is.Id 200
loglinear_interpolation 200
marxan_boundary_data_to_matrix 202
marxan_problem 203
matrix_parameters 206
MiscParameter-class 208
misc_parameter 209
new_id 210
new_optimization_problem 211
new_waiver 211
number_of_features 212
number_of_planning_units 213
number_of_total_units 214
number_of_zones 215
Objective-class 216
objectives 216
OptimizationProblem-class 218
OptimizationProblem-methods 220
Parameter-class 222
parameters 223
Parameters-class 224
penalties 225
Penalty-class 226
Portfolio-class 227
portfolios 228
pproto 229
predefined_optimization_problem 230
presolve_check 232
print 235
prioritizr 236
prioritizr-deprecated 237
problem 239
proximity_matrix 248
rij_matrix 250
run_calculations 251
ScalarParameter-class 253
scalar_parameters 254
show 256
simulate_cost 257
simulate_data 258
simulate_species 259
sim_data 260
solve 262
Solver-class 267
solvers 268
summaries 270
Target-class 272
targets 272
tibble-methods 273
write_problem 274
zones 275
zone_names 277
\%>\% 278
$\% \mathrm{~T}>\%$ 279
Index 281
add_absolute_targets Add absolute targets

Description

Set targets expressed as the actual value of features in the study area that need to be represented in the prioritization. For instance, setting a target of 10 requires that the solution secure a set of planning units for which their summed feature values are equal to or greater than 10.

Usage

```
add_absolute_targets(x, targets)
## S4 method for signature 'ConservationProblem,numeric'
add_absolute_targets(x, targets)
    ## S4 method for signature 'ConservationProblem,matrix'
    add_absolute_targets(x, targets)
    ## S4 method for signature 'ConservationProblem,character'
    add_absolute_targets(x, targets)
```


Arguments

[^0]
Details

Targets are used to specify the minimum amount or proportion of a feature's distribution that needs to be protected. Most conservation planning problems require targets with the exception of the maximum cover (see add_max_cover_objective()) and maximum utility (see add_max_utility_objective()) problems. Attempting to solve problems with objectives that require targets without specifying targets will throw an error.
For problems associated with multiple management zones, this function can be used to set targets that each pertain to a single feature and a single zone. To set targets which can be met through allocating different planning units to multiple zones, see the add_manual_targets() function. An example of a target that could be met through allocations to multiple zones might be where each management zone is expected to result in a different amount of a feature and the target requires that the total amount of the feature in all zones must exceed a certain threshold. In other words, the target does not require that any single zone secure a specific amount of the feature, but the total amount held in all zones must secure a specific amount. Thus the target could, potentially, be met through allocating all planning units to any specific management zone, or through allocating the planning units to different combinations of management zones.

Value

Object (i.e. ConservationProblem) with the targets added to it.

Targets format

The targets for a problem can be specified using the following formats.
targets as a numeric vector containing target values for each feature. Additionally, for convenience, this format can be a single value to assign the same target to each feature. Note that this format cannot be used to specify targets for problems with multiple zones.
targets as a matrix object containing a target for each feature in each zone. Here, each row corresponds to a different feature in argument to x , each column corresponds to a different zone in argument to x, and each cell contains the target value for a given feature that the solution needs to secure in a given zone.
targets as a character vector containing the names of fields (columns) in the feature data associated with the argument to x that contain targets. This format can only be used when the feature data associated with x is a data.frame. This argument must contain a field (column) name for each zone.

See Also

See targets for an overview of all functions for adding targets.
Other targets: add_loglinear_targets(), add_manual_targets(), add_relative_targets()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
```

```
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create simple problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with targets to secure 3 amounts for each feature
p1 <- p %>% add_absolute_targets(3)
# create problem with varying targets for each feature
targets <- c(1, 2, 3, 2, 1)
p2 <- p %>% add_absolute_targets(targets)
## Not run:
# solve problem
s <- stack(solve(p1), solve(p2))
# plot solution
plot(s, main = c("equal targets", "varying targets"), axes = FALSE,
    box = FALSE)
## End(Not run)
# create a problem with multiple management zones
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create a problem with targets that specify an equal amount of each feature
# to be represented in each zone
p4_targets <- matrix(2, nrow = number_of_features(sim_features_zones),
                ncol = number_of_zones(sim_features_zones),
                dimnames = list(feature_names(sim_features_zones),
                zone_names(sim_features_zones)))
print(p4_targets)
p4 <- p3 %>% add_absolute_targets(p4_targets)
# solve problem
## Not run:
# solve problem
s4 <- solve(p4)
# plot solution (pixel values correspond to zone identifiers)
plot(category_layer(s4), main = c("equal targets"))
## End(Not run)
# create a problem with targets that require a varying amount of each
# feature to be represented in each zone
p5_targets <- matrix(rpois(15, 1),
                                    nrow = number_of_features(sim_features_zones),
```

```
                ncol = number_of_zones(sim_features_zones),
                dimnames = list(feature_names(sim_features_zones),
                            zone_names(sim_features_zones)))
print(p5_targets)
p5 <- p3 %>% add_absolute_targets(p4_targets)
# solve problem
## Not run:
# solve problem
s5 <- solve(p5)
# plot solution (pixel values correspond to zone identifiers)
plot(category_layer(s5), main = c("varying targets"))
## End(Not run)
```

add_binary_decisions Add binary decisions

Description

Add a binary decision to a conservation planning problem(). This is the classic decision of either prioritizing or not prioritizing a planning unit. Typically, this decision has the assumed action of buying the planning unit to include in a protected area network. If no decision is added to a problem then this decision class will be used by default.

Usage

add_binary_decisions(x)

Arguments

x

Details

Conservation planning problems involve making decisions on planning units. These decisions are then associated with actions (e.g. turning a planning unit into a protected area). Only a single decision should be added to a ConservationProblem object. Note that if multiple decisions are added to a problem object, then the last one to be added will be used.

Value

Object (i.e. ConservationProblem) with the decisions added to it.

See Also

See decisions for an overview of all functions for adding decisions.
Other decisions: add_default_decisions(), add_proportion_decisions(), add_semicontinuous_decisions()

Examples

```
    # set seed for reproducibility
    set.seed(500)
    # load data
    data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
    # create minimal problem with binary decisions
    p1 <- problem(sim_pu_raster, sim_features) %>%
        add_min_set_objective() %>%
        add_relative_targets(0.1) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
    ## Not run:
    # solve problem
    s1 <- solve(p1)
    # plot solution
    plot(s1, main = "solution")
    ## End(Not run)
    # build multi-zone conservation problem with binary decisions
    p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
        add_min_set_objective() %>%
        add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
    # solve the problem
    s2 <- solve(p2)
    # print solution
    print(s2)
    # plot solution
    plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
    ## End(Not run)
```

add_boundary_penalties

Add boundary penalties

Description

Add penalties to a conservation planning problem() to favor solutions that spatially clump planning units together based on the overall boundary length (perimeter).

Usage

```
add_boundary_penalties(
        x ,
        penalty,
        edge_factor = rep(0.5, number_of_zones(x)),
        zones = diag(number_of_zones(x)),
        data \(=\) NULL
)
```


Arguments

X
penalty numeric penalty that is used to scale the importance of selecting planning units that are spatially clumped together compared to the main problem objective (e.g. solution cost when the argument to x has a minimum set objective per add_min_set_objective()). Higher penalty values prefer solutions with a higher degree of spatial clumping, and smaller penalty values prefer solutions with a smaller degree of clumping. Note that negative penalty values prefer solutions that are more spread out. This parameter is equivalent to the boundary length modifier (BLM) parameter in Marxan.
edge_factor numeric proportion to scale planning unit edges (borders) that do not have any neighboring planning units. For example, an edge factor of 0.5 is commonly used to avoid overly penalizing planning units along a coastline. Note that this argument must have an element for each zone in the argument to x.
zones matrix or Matrix object describing the clumping scheme for different zones. Each row and column corresponds to a different zone in the argument to x, and cell values indicate the relative importance of clumping planning units that are allocated to a combination of zones. Cell values along the diagonal of the matrix represent the relative importance of clumping planning units that are allocated to the same zone. Cell values must range between 1 and -1 , where negative values favor solutions that spread out planning units. The default argument to zones is an identity matrix (i.e. a matrix with ones along the matrix diagonal and zeros elsewhere), so that penalties are incurred when neighboring planning units are not assigned to the same zone. If the cells along the matrix diagonal contain markedly smaller values than those found elsewhere in the matrix, then solutions are preferred that surround planning units with those allocated to different zones (i.e. greater spatial fragmentation).
data NULL, data.frame, matrix, or Matrix object containing the boundary data. These data describe the total amount of boundary (perimeter) length for each planning unit, and the amount of boundary (perimeter) length shared between different planning units (i.e. planning units that are adjacent to each other). See the Data format section for more information.

Details

This function adds penalties to a conservation planning problem to penalize fragmented solutions. It was is inspired by Ball et al. (2009) and Beyer et al. (2016). The penalty argument is equivalent
to the boundary length modifier (BLM) used in Marxan. Note that this function can only be used to represent symmetric relationships between planning units. If asymmetric relationships are required, use the add_connectivity_penalties() function.

Value

Object (i.e. ConservationProblem) with the penalties added to it.

Data format

The argument to data can be specified using the following formats. Note that boundary data must always describe symmetric relationships between planning units.
data as a NULL value indicating that the data should be automatically calculated using the boundary_matrix() function. This argument is the default. Note that the boundary data must be supplied using one of the other formats below if the planning unit data in the argument to x do not explicitly contain spatial information (e.g. planning unit data are a data.frame or numeric class).
data as a matrix/Matrix object where rows and columns represent different planning units and the value of each cell represents the amount of shared boundary length between two different planning units. Cells that occur along the matrix diagonal represent the amount of exposed boundary associated with each planning unit that has no neighbor (e.g. these value might pertain to boundaries along a coastline).
data as a data. frame object with the columns "id1", "id2", and "boundary". The "id1" and "id2" columns contain identifiers (indices) for a pair of planning units, and the "boundary" column contains the amount of shared boundary length between these two planning units. This format follows the the standard Marxan format for boundary data (i.e. per the "bound.dat" file).

Mathematical formulation

The boundary penalties are implemented using the following equations. Let I represent the set of planning units (indexed by i or j), Z represent the set of management zones (indexed by z or y), and $X_{i z}$ represent the decision variable for planning unit i for in zone z (e.g. with binary values one indicating if planning unit is allocated or not). Also, let p represent the argument to penalty, E_{z} represent the argument to edge_factor, $B_{i j}$ represent the matrix argument to data (e.g. generated using boundary_matrix()), and $W_{z z}$ represent the matrix argument to zones.

$$
\sum_{i}^{I} \sum_{j}^{I} \sum_{z}^{Z}\left(\text { ifelse }\left(i==j, E_{z}, 1\right) \times p \times W_{z z} B_{i j}\right)+\sum_{i}^{I} \sum_{j}^{I} \sum_{z}^{Z} \sum_{y}^{Z}\left(-2 \times p \times X_{i z} \times X_{j y} \times W_{z y} \times B_{i j}\right)
$$

Note that when the problem objective is to maximize some measure of benefit and not minimize some measure of cost, the term p is replaced with $-p$.

References

Ball IR, Possingham HP, and Watts M (2009) Marxan and relatives: Software for spatial conservation prioritisation in Spatial conservation prioritisation: Quantitative methods and computational tools. Eds Moilanen A, Wilson KA, and Possingham HP. Oxford University Press, Oxford, UK.

Beyer HL, Dujardin Y, Watts ME, and Possingham HP (2016) Solving conservation planning problems with integer linear programming. Ecological Modelling, 228: 14-22.

See Also

See penalties for an overview of all functions for adding penalties.
Other penalties: add_connectivity_penalties(), add_feature_weights(), add_linear_penalties()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with low boundary penalties
p2 <- p1 %>% add_boundary_penalties(50, 1)
# create problem with high boundary penalties but outer edges receive
# half the penalty as inner edges
p3 <- p1 %>% add_boundary_penalties(500, 0.5)
# create a problem using precomputed boundary data
bmat <- boundary_matrix(sim_pu_raster)
p4 <- p1 %>% add_boundary_penalties(50, 1, data = bmat)
## Not run:
# solve problems
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4))
# plot solutions
plot(s, main = c("basic solution", "small penalties", "high penalties",
                            "precomputed data"), axes = FALSE, box = FALSE)
## End(Not run)
# create minimal problem with multiple zones and limit the run-time for
# solver to 10 seconds so this example doesn't take too long
p5 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(0.2, nrow = 5, ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(time_limit = 10, verbose = FALSE)
# create zone matrix which favors clumping planning units that are
```

```
# allocated to the same zone together - note that this is the default
zm6 <- diag(3)
print(zm6)
# create problem with the zone matrix and low penalties
p6 <- p5 %>% add_boundary_penalties(50, zone = zm6)
# create another problem with the same zone matrix and higher penalties
p7 <- p5 %>% add_boundary_penalties(500, zone = zm6)
# create zone matrix which favors clumping units that are allocated to
# different zones together
zm8 <- matrix(1, ncol = 3, nrow = 3)
diag(zm8) <- 0
print(zm8)
# create problem with the zone matrix
p8 <- p5 %>% add_boundary_penalties(500, zone = zm8)
# create zone matrix which strongly favors clumping units
# that are allocated to the same zone together. It will also prefer
# clumping planning units in zones 1 and 2 together over having
# these planning units with no neighbors in the solution
zm9 <- diag(3)
zm9[upper.tri(zm9)] <- c(0.3, 0, 0)
zm9[lower.tri(zm9)] <- zm9[upper.tri(zm9)]
print(zm9)
# create problem with the zone matrix
p9 <- p5 %>% add_boundary_penalties(500, zone = zm9)
# create zone matrix which favors clumping planning units in zones 1 and 2
# together, and favors planning units in zone 3 being spread out
# (i.e. negative clumping)
zm10 <- diag(3)
zm10[3, 3] <- -1
print(zm10)
# create problem with the zone matrix
p10 <- p5 %>% add_boundary_penalties(500, zone = zm10)
## Not run:
# solve problems
s2 <- stack(category_layer(solve(p5)), category_layer(solve(p6)),
    category_layer(solve(p7)), category_layer(solve(p8)),
    category_layer(solve(p9)), category_layer(solve(p10)))
# plot solutions
plot(s2, main = c("basic solution", "within zone clumping (low)",
                                    "within zone clumping (high)", "between zone clumping",
                                    "within + between clumping", "negative clumping"),
    axes = FALSE, box = FALSE)
```

\#\# End(Not run)
add_cbc_solver Add a CBC solver

Description

Specify that the $C B C$ (COIN-OR branch and cut) software (Forrest \& Lougee-Heimer 2005) should be used to solve a conservation planning problem(). This function can also be used to customize the behavior of the solver. It requires the rcbc package to be installed (only available on GitHub, see below for installation instructions).

Usage

add_cbc_solver (
x ,
gap $=0.1$,
time_limit = .Machine\$integer.max,
presolve = TRUE,
threads = 1,
first_feasible = FALSE,
start_solution = NULL,
verbose = TRUE
)

Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
gap numeric gap to optimality. This gap is relative and expresses the acceptable deviance from the optimal objective. For example, a value of 0.01 will result in the solver stopping when it has found a solution within 1% of optimality. Additionally, a value of 0 will result in the solver stopping when it has found an optimal solution. The default value is 0.1 (i.e. 10% from optimality).
time_limit numeric time limit (seconds) for generating solutions. The solver will return the current best solution when this time limit is exceeded. The default value is the largest integer value (i.e. .Machine\$integer.max), effectively meaning that solver will keep running until a solution within the optimality gap is found.
presolve logical attempt to simplify the problem before solving it? Defaults to TRUE.
threads integer number of threads to use for the optimization algorithm. The default value is 1 .
first_feasible logical should the first feasible solution be be returned? If first_feasible is set to TRUE, the solver will return the first solution it encounters that meets all the constraints, regardless of solution quality. Note that the first feasible solution is not an arbitrary solution, rather it is derived from the relaxed solution, and is therefore often reasonably close to optimality. Defaults to FALSE.
start_solution NULL or object containing the starting solution for the solver. Defaults to NULL such that no starting solution is used. To specify a starting solution, the argument to start_solution should be in the same format as the planning units (i.e. a NULL, numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object). See the Start solution format section for more information.
verbose logical should information be printed while solving optimization problems? Defaults to TRUE.

Details

$C B C$ is an open-source mixed integer programming solver that is part of the Computational Infrastructure for Operations Research (COIN-OR) project. Although formal benchmarks examining the performance of this solver for conservation planning problems have yet to be completed, preliminary analyses suggest that it performs much faster than the other open-source solvers (i.e. add_rsymphony_solver(), add_rsymphony_solver()), and so we recommend using this solver if the Gurobi and IBM CPLEX solvers are unavailable.

Value

Object (i.e. ConservationProblem) with the solver added to it.

Installation

The rcbe package is required to use this solver. Since the rcbc package is not available on the the Comprehensive R Archive Network (CRAN), it must be installed from its GitHub repository. To install the rcbc package, please use the following code:
if (!require(remotes)) install.packages("remotes")
remotes::install_github("dirkschumacher/rcbc")
Note that you may also need to install several dependencies - such as the Rtools software or system libraries - prior to installing the rcbc package. For further details on installing this package, please consult official installation instructions for the package.

Start solution format

Broadly speaking, the argument to start_solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to start_solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to start_solution.
x has matrix planning units The argument to start_solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to start_solution.
x has Raster planning units The argument to start_solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to start_solution.
x has data. frame planning units The argument to start_solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:: \mathrm{sf}()$ data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to start_solution.
x has Spatial planning units The argument to start_solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $s f:: s f()$ data). Additionally, the argument to start_solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to start_solution.
x has $s f:: s f()$ planning units The argument to start_solution must be a sf::sf() object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the sf::sf() object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to start_solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to start_solution.

References

Forrest J and Lougee-Heimer R (2005) CBC User Guide. In Emerging theory, Methods, and Applications (pp. 257-277). INFORMS, Catonsville, MD. doi: 10.1287/educ.1053.0020.

See Also

See solvers for an overview of all functions for adding a solver.
Other solvers: add_cplex_solver(), add_default_solver(), add_gurobi_solver(), add_lsymphony_solver, add_rsymphony_solver()

Examples

```
## Not run:
# load data
data(sim_pu_raster, sim_features)
# create problem
```

```
    p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_cbc_solver(gap = 0, verbose = FALSE)
    # generate solution %>%
    s <- solve(p)
    # plot solution
    plot(s, main = "solution", axes = FALSE, box = FALSE)
    # create a similar problem with boundary length penalties and
    # specify the solution from the previous run as a starting solution
    p2 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_boundary_penalties(10) %>%
    add_binary_decisions() %>%
    add_cbc_solver(gap = 0, start_solution = s, verbose = FALSE)
    # generate solution
    s2 <- solve(p2)
    # plot solution
    plot(s2, main = "solution with boundary penalties", axes = FALSE,
        box = FALSE)
## End(Not run)
```

add_connectivity_penalties
Add connectivity penalties

Description

Add penalties to a conservation planning problem() to favor solutions that select planning units with high connectivity between them.

Usage

```
## S4 method for signature 'ConservationProblem,ANY,ANY,matrix'
add_connectivity_penalties(x, penalty, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,Matrix'
add_connectivity_penalties(x, penalty, zones, data)
    ## S4 method for signature 'ConservationProblem,ANY,ANY,data.frame'
    add_connectivity_penalties(x, penalty, zones, data)
```

```
## S4 method for signature 'ConservationProblem,ANY,ANY,dgCMatrix'
add_connectivity_penalties(x, penalty, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,array'
add_connectivity_penalties(x, penalty, zones, data)
```


Arguments

x

problem() (i.e. ConservationProblem) object.
penalty numeric penalty that is used to scale the importance of selecting planning units with strong connectivity between them compared to the main problem objective (e.g. solution cost when the argument to x has a minimum set objective set using add_min_set_objective()). Higher penalty values can be used to obtain solutions with a high degree of connectivity, and smaller penalty values can be used to obtain solutions with a small degree of connectivity. Note that negative penal ty values can be used to obtain solutions that have very little connectivity.
zones matrix or Matrix object describing the level of connectivity between different zones. Each row and column corresponds to a different zone in the argument to x, and cell values indicate the level of connectivity between each combination of zones. Cell values along the diagonal of the matrix represent the level of connectivity between planning units allocated to the same zone. Cell values must lay between 1 and -1 , where negative values favor solutions with weak connectivity. The default argument to zones is an identity matrix (i.e. a matrix with ones along the matrix diagonal and zeros elsewhere), so that planning units are only considered to be connected when they are allocated to the same zone. This argument is required when the argument to data is a matrix or Matrix object. If the argument to data is an array or data. frame with zone data, this argument must explicitly be set to NULL otherwise an error will be thrown.
data matrix, Matrix, data.frame, or array object containing connectivity data. The connectivity values correspond to the strength of connectivity between different planning units. Thus connections between planning units that are associated with higher values are more favorable in the solution. See the Data format section for more information.

Details

This function adds penalties to conservation planning problem to penalize solutions that have low connectivity. Specifically, it favors pair-wise connections between planning units that have high connectivity values. It was inspired by Beger et al. (2010) and can symmetric and asymmetric connectivity relationships between planning units.

Value

Object (i.e. ConservationProblem) with the penalties added to it.

Data format

The argument to data can be specified using several different formats. These formats can be used to describe symmetric or asymmetric relationships between planning units.
data as a matrix/Matrix object where rows and columns represent different planning units and the value of each cell represents the strength of connectivity between two different planning units. Cells that occur along the matrix diagonal are treated as weights which indicate that planning units are more desirable in the solution. The argument to zones can be used to control the strength of connectivity between planning units in different zones. The default argument for zones is to treat planning units allocated to different zones as having zero connectivity.
data as a data. frame object containing the fields (columns) "id1", "id2", and "boundary". Here, each row denotes the connectivity between two planning units following the Marxan format. The data can be used to denote symmetric or asymmetric relationships between planning units. By default, input data is assumed to be symmetric unless asymmetric data is also included (e.g. if data is present for planning units 2 and 3, then the same amount of connectivity is expected for planning units 3 and 2 , unless connectivity data is also provided for planning units 3 and 2). If the argument to x contains multiple zones, then the columns "zone1" and "zone2" can optionally be provided to manually specify the connectivity values between planning units when they are allocated to specific zones. If the columns "zone1" and "zone2" are present, then the argument to zones must be NULL.
data as an array object containing four-dimensions where cell values indicate the strength of connectivity between planning units when they are assigned to specific management zones. The first two dimensions (i.e. rows and columns) indicate the strength of connectivity between different planning units and the second two dimensions indicate the different management zones. Thus the data[1, 2, 3, 4] indicates the strength of connectivity between planning unit 1 and planning unit 2 when planning unit 1 is assigned to zone 3 and planning unit 2 is assigned to zone 4.

Mathematical formulation

The connectivity penalties are implemented using the following equations. Let I represent the set of planning units (indexed by i or j), Z represent the set of management zones (indexed by z or y), and $X_{i z}$ represent the decision variable for planning unit i for in zone z (e.g. with binary values one indicating if planning unit is allocated or not). Also, let p represent the argument to penalty, D represent the argument to data, and W represent the argument to zones.
If the argument to data is supplied as a matrix or Matrix object, then the penalties are calculated as:

$$
\sum_{i}^{I} \sum_{j}^{I} \sum_{z}^{Z} \sum_{y}^{Z}\left(-p \times X_{i z} \times X_{j y} \times D_{i j} \times W_{z y}\right)
$$

Otherwise, if the argument to data is supplied as a data. frame or array object, then the penalties are calculated as:

$$
\sum_{i}^{I} \sum_{j}^{I} \sum_{z}^{Z} \sum_{y}^{Z}\left(-p \times X_{i z} \times X_{j y} \times D_{i j z y}\right)
$$

Note that when the problem objective is to maximize some measure of benefit and not minimize some measure of cost, the term $-p$ is replaced with p.

References

Beger M, Linke S, Watts M, Game E, Treml E, Ball I, and Possingham, HP (2010) Incorporating asymmetric connectivity into spatial decision making for conservation, Conservation Letters, 3: 359-368.

See Also

See penalties for an overview of all functions for adding penalties.
Other penalties: add_boundary_penalties(), add_feature_weights(), add_linear_penalties()

Examples

```
# set seed for reproducibility
set.seed(600)
# load Matrix package for visualizing matrices
require(Matrix)
# load data
data(sim_pu_polygons, sim_pu_zones_stack, sim_features, sim_features_zones)
# define function to rescale values between zero and one so that we
# can compare solutions from different connectivity matrices
rescale <- function(x, to = c(0, 1), from = range(x, na.rm = TRUE)) {
    (x - from[1]) / diff(from) * diff(to) + to[1]
}
# create basic problem
p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_default_solver(verbose = FALSE)
# create a symmetric connectivity matrix where the connectivity between
# two planning units corresponds to their shared boundary length
b_matrix <- boundary_matrix(sim_pu_polygons)
# standardize matrix values to lay between zero and one
b_matrix[] <- rescale(b_matrix[])
# visualize connectivity matrix
## Not run:
image(b_matrix)
## End(Not run)
# create a symmetric connectivity matrix where the connectivity between
# two planning units corresponds to their spatial proximity
# i.e. planning units that are further apart share less connectivity
```

```
centroids <- rgeos::gCentroid(sim_pu_polygons, byid = TRUE)
d_matrix <- (1 / (as(dist(centroids@coords), "Matrix") + 1))
# standardize matrix values to lay between zero and one
d_matrix[] <- rescale(d_matrix[])
# remove connections between planning units without connectivity to
# reduce run-time
d_matrix[d_matrix < 0.7] <- 0
# visualize connectivity matrix
## Not run:
image(d_matrix)
## End(Not run)
# create a symmetric connectivity matrix where the connectivity
# between adjacent two planning units corresponds to their combined
# value in a field in the planning unit attribute data
# for example, this field could describe the extent of native vegetation in
# each planning unit and we could use connectivity penalties to identify
# solutions that cluster planning units together that both contain large
# amounts of native vegetation
c_matrix <- connectivity_matrix(sim_pu_polygons, "cost")
# standardize matrix values to lay between zero and one
c_matrix[] <- rescale(c_matrix[])
# visualize connectivity matrix
## Not run:
image(c_matrix)
## End(Not run)
# create an asymmetric connectivity matrix. Here, connectivity occurs between
# adjacent planning units and, due to rivers flowing southwards
# through the study area, connectivity from northern planning units to
# southern planning units is ten times stronger than the reverse.
ac_matrix <- matrix(0, length(sim_pu_polygons), length(sim_pu_polygons))
ac_matrix <- as(ac_matrix, "Matrix")
adjacent_units <- rgeos::gIntersects(sim_pu_polygons, byid = TRUE)
for (i in seq_len(length(sim_pu_polygons))) {
    for (j in seq_len(length(sim_pu_polygons))) {
        # find if planning units are adjacent
        if (adjacent_units[i, j]) {
            # find if planning units lay north and south of each other
            # i.e. they have the same x-coordinate
            if (centroids@coords[i, 1] == centroids@coords[j, 1]) {
                if (centroids@coords[i, 2] > centroids@coords[j, 2]) {
                    # if i is north of j add 10 units of connectivity
                        ac_matrix[i, j] <- ac_matrix[i, j] + 10
                    } else if (centroids@coords[i, 2] < centroids@coords[j, 2]) {
                        # if i is south of j add 1 unit of connectivity
                    ac_matrix[i, j] <- ac_matrix[i, j] + 1
                }
```

```
            }
        }
    }
}
# standardize matrix values to lay between zero and one
ac_matrix[] <- rescale(ac_matrix[])
# visualize asymmetric connectivity matrix
## Not run:
image(ac_matrix)
## End(Not run)
# create penalties
penalties <- c(10, 25)
# create problems using the different connectivity matrices and penalties
p2 <- list(p1,
    p1 %>% add_connectivity_penalties(penalties[1], data = b_matrix),
    p1 %>% add_connectivity_penalties(penalties[2], data = b_matrix),
    p1 %>% add_connectivity_penalties(penalties[1], data = d_matrix),
    p1 %>% add_connectivity_penalties(penalties[2], data = d_matrix),
    p1 %>% add_connectivity_penalties(penalties[1], data = c_matrix),
    p1 %>% add_connectivity_penalties(penalties[2], data = c_matrix),
    p1 %>% add_connectivity_penalties(penalties[1], data = ac_matrix),
    p1 %>% add_connectivity_penalties(penalties[2], data = ac_matrix))
```

\# assign names to the problems
names(p2) <- c("basic problem",
paste0("b_matrix (", penalties,")"),
paste0("d_matrix (", penalties,")"),
paste0("c_matrix (", penalties,")"),
paste0("ac_matrix (", penalties,")"))
\#\# Not run:
\# solve problems
s2 <- lapply(p2, solve)
\# plot solutions
$\operatorname{par}(m f r o w=c(3,3))$
for (i in seq_along(s2)) \{
plot(s2[[i]], main = names(p2)[i], cex = 1.5, col = "white")
plot(s2[[i]][s2[[i]]\$solution_1 == 1,], col = "darkgreen", add = TRUE)
\}
\#\# End(Not run)
\# create minimal multi-zone problem and limit solver to one minute
\# to obtain solutions in a short period of time
p3 <- problem(sim_pu_zones_stack, sim_features_zones) \%>\%
add_min_set_objective() \%>\%
add_relative_targets(matrix(0.15, nrow = 5, ncol = 3)) \%>\%
add_binary_decisions() \%>\%
add_default_solver(time_limit $=60$, verbose $=$ FALSE)

```
# create matrix showing which planning units are adjacent to other units
a_matrix <- adjacency_matrix(sim_pu_zones_stack)
# visualize matrix
## Not run:
image(a_matrix)
## End(Not run)
# create a zone matrix where connectivities are only present between
# planning units that are allocated to the same zone
zm1 <- as(diag(3), "Matrix")
# print zone matrix
print(zm1)
# create a zone matrix where connectivities are strongest between
# planning units allocated to different zones
zm2 <- matrix(1, ncol = 3, nrow = 3)
diag(zm2) <- 0
zm2 <- as(zm2, "Matrix")
# print zone matrix
print(zm2)
# create a zone matrix that indicates that connectivities between planning
# units assigned to the same zone are much higher than connectivities
# assigned to different zones
zm3 <- matrix(0.1, ncol = 3, nrow = 3)
diag(zm3) <- 1
zm3 <- as(zm3, "Matrix")
# print zone matrix
print(zm3)
# create a zone matrix that indicates that connectivities between planning
# units allocated to zone 1 are very high, connectivities between planning
# units allocated to zones 1 and 2 are moderately high, and connectivities
# planning units allocated to other zones are low
zm4 <- matrix(0.1, ncol = 3, nrow = 3)
zm4[1, 1] <- 1
zm4[1, 2] <- 0.5
zm4[2, 1] <- 0.5
zm4 <- as(zm4, "Matrix")
# print zone matrix
print(zm4)
# create a zone matrix with strong connectivities between planning units
# allocated to the same zone, moderate connectivities between planning
# unit allocated to zone 1 and zone 2, and negative connectivities between
# planning units allocated to zone 3 and the other two zones
zm5 <- matrix(-1, ncol = 3, nrow = 3)
```

```
zm5[1, 2] <- 0.5
zm5[2, 1] <- 0.5
diag(zm5) <- 1
zm5 <- as(zm5, "Matrix")
# print zone matrix
print(zm5)
# create vector of penalties to use creating problems
penalties2 <- c(5, 15)
# create multi-zone problems using the adjacent connectivity matrix and
# different zone matrices
p4 <- list(
    p3,
    p3 %>% add_connectivity_penalties(penalties2[1], zm1, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[2], zm1, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[1], zm2, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[2], zm2, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[1], zm3, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[2], zm3, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[1], zm4, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[2], zm4, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[1], zm5, a_matrix),
    p3 %>% add_connectivity_penalties(penalties2[2], zm5, a_matrix))
# assign names to the problems
names(p4) <- c("basic problem",
                    paste0("zm", rep(seq_len(5), each = 2), " (",
                    rep(penalties2, 2), ")"))
## Not run:
# solve problems
s4 <- lapply(p4, solve)
s4 <- lapply(s4, category_layer)
s4 <- stack(s4)
# plot solutions
plot(s4, main = names(p4), axes = FALSE, box = FALSE)
## End(Not run)
# create an array to manually specify the connectivities between
# each planning unit when they are allocated to each different zone
# for real-world problems, these connectivities would be generated using
# data - but here these connectivity values are assigned as random
# ones or zeros
c_array <- array(0, c(rep(ncell(sim_pu_zones_stack[[1]]), 2), 3, 3))
for (z1 in seq_len(3))
    for (z2 in seq_len(3))
        c_array[, , z1, z2] <- round(runif(ncell(sim_pu_zones_stack[[1]]) ^ 2,
                    0, 0.505))
```

\# create a problem with the manually specified connectivity array

```
# note that the zones argument is set to NULL because the connectivity
# data is an array
p5 <- list(p3,
    p3 %>% add_connectivity_penalties(15, zones = NULL, c_array))
# assign names to the problems
names(p5) <- c("basic problem", "connectivity array")
## Not run:
# solve problems
s5 <- lapply(p5, solve)
s5 <- lapply(s5, category_layer)
s5 <- stack(s5)
# plot solutions
plot(s5, main = names(p5), axes = FALSE, box = FALSE)
## End(Not run)
```

add_contiguity_constraints
Add contiguity constraints

Description

Add constraints to a conservation planning problem() to ensure that all selected planning units are spatially connected with each other and form a single contiguous unit.

Usage

```
## S4 method for signature 'ConservationProblem,ANY,ANY'
add_contiguity_constraints(x, zones, data)
    ## S4 method for signature 'ConservationProblem,ANY,data.frame'
    add_contiguity_constraints(x, zones, data)
    ## S4 method for signature 'ConservationProblem,ANY,matrix'
    add_contiguity_constraints(x, zones, data)
```


Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
zones matrix or Matrix object describing the connection scheme for different zones. Each row and column corresponds to a different zone in the argument to x, and cell values must contain binary numeric values (i.e. one or zero) that indicate if connected planning units (as specified in the argument to data) should be still considered connected if they are allocated to different zones. The cell values along the diagonal of the matrix indicate if planning units should be subject to
contiguity constraints when they are allocated to a given zone. Note arguments to zones must be symmetric, and that a row or column has a value of one then the diagonal element for that row or column must also have a value of one. The default argument to zones is an identity matrix (i.e. a matrix with ones along the matrix diagonal and zeros elsewhere), so that planning units are only considered connected if they are both allocated to the same zone.
data NULL, matrix, Matrix, data.frame object showing which planning units are connected with each other. The argument defaults to NULL which means that the connection data is calculated automatically using the adjacency_matrix() function. See the Data format section for more information.

Details

This function uses connection data to identify solutions that form a single contiguous unit. It was inspired by the mathematical formulations detailed in Önal and Briers (2006).

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Data format

The argument to data can be specified using the following formats.
data as a NULL value indicating that connection data should be calculated automatically using the adjacency_matrix() function. This is the default argument. Note that the connection data must be manually defined using one of the other formats below when the planning unit data in the argument to x is not spatially referenced (e.g. in data.frame or numeric format).
data as a matrix/Matrix object where rows and columns represent different planning units and the value of each cell indicates if the two planning units are connected or not. Cell values should be binary numeric values (i.e. one or zero). Cells that occur along the matrix diagonal have no effect on the solution at all because each planning unit cannot be a connected with itself.
data as a data. frame object containing the fields (columns) "id1", "id2", and "boundary". Here, each row denotes the connectivity between two planning units following the Marxan format. The field boundary should contain binary numeric values that indicate if the two planning units specified in the fields "id1" and "id2" are connected or not. This data can be used to describe symmetric or asymmetric relationships between planning units. By default, input data is assumed to be symmetric unless asymmetric data is also included (e.g. if data is present for planning units 2 and 3 , then the same amount of connectivity is expected for planning units 3 and 2 , unless connectivity data is also provided for planning units 3 and 2).

Notes

In early versions, this function was named as the add_connected_constraints() function.

References

Önal H and Briers RA (2006) Optimal selection of a connected reserve network. Operations Research, 54: 379-388.

See Also

See constraints for an overview of all functions for adding constraints.
Other constraints: add_feature_contiguity_constraints(), add_linear_constraints(), add_locked_in_constrair add_locked_out_constraints(), add_mandatory_allocation_constraints, ConservationProblem-method, add_manual_bounded_constraints(), add_manual_locked_constraints()

Examples

```
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with added connected constraints
p2 <- p1 %>% add_contiguity_constraints()
## Not run:
# solve problems
s <- stack(solve(p1), solve(p2))
# plot solutions
plot(s, main = c("basic solution", "connected solution"), axes = FALSE,
    box = FALSE)
## End(Not run)
# create minimal problem with multiple zones, and limit the solver to
# 30 seconds to obtain solutions in a feasible period of time
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(0.2, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(time_limit = 30, verbose = FALSE)
# create problem with added constraints to ensure that the planning units
# allocated to each zone form a separate contiguous unit
z4 <- diag(3)
print(z4)
p4 <- p3 %>% add_contiguity_constraints(z4)
# create problem with added constraints to ensure that the planning
# units allocated to each zone form a separate contiguous unit,
# except for planning units allocated to zone 2 which do not need
# form a single contiguous unit
z5 <- diag(3)
z5[3, 3] <- 0
print(z5)
p5 <- p3 %>% add_contiguity_constraints(z5)
```

```
# create problem with added constraints that ensure that the planning
# units allocated to zones 1 and 2 form a contiguous unit
z6 <- diag(3)
z6[1, 2] <- 1
z6[2, 1] <- 1
print(z6)
p6 <- p3 %>% add_contiguity_constraints(z6)
## Not run:
# solve problems
s2 <- lapply(list(p3, p4, p5, p6), solve)
s2 <- lapply(s2, category_layer)
s2 <- stack(s2)
# plot solutions
plot(s2, axes = FALSE, box = FALSE,
    main = c("basic solution", "p4", "p5", "p6"))
## End(Not run)
# create a problem that has a main "reserve zone" and a secondary
# "corridor zone" to connect up import areas. Here, each feature has a
# target of 30% of its distribution. If a planning unit is allocated to the
# "reserve zone", then the prioritization accrues 100% of the amount of
# each feature in the planning unit. If a planning unit is allocated to the
# "corridor zone" then the prioritization accrues 40% of the amount of each
# feature in the planning unit. Also, the cost of managing a planning unit
# in the "corridor zone" is 45% of that when it is managed as the
# "reserve zone". Finally, the problem has constraints which
# ensure that all of the selected planning units form a single contiguous
# unit, so that the planning units allocated to the "corridor zone" can
# link up the planning units allocated to the "reserve zone"
# create planning unit data
pus <- sim_pu_zones_stack[[c(1, 1)]]
pus[[2]] <- pus[[2]] * 0.45
print(pus)
# create biodiversity data
fts <- zones(sim_features, sim_features * 0.4,
    feature_names = names(sim_features),
    zone_names = c("reserve zone", "corridor zone"))
print(fts)
# create targets
targets <- tibble::tibble(feature = names(sim_features),
                                    zone = list(zone_names(fts))[rep(1, 5)],
                                    target = cellStats(sim_features, "sum") * 0.2,
    type = rep("absolute", 5))
print(targets)
# create zones matrix
z7 <- matrix(1, ncol = 2, nrow = 2)
print(z7)
```

```
    # create problem
    p7 <- problem(pus, fts) %>%
        add_min_set_objective() %>%
        add_manual_targets(targets) %>%
        add_contiguity_constraints(z7) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
    ## Not run:
    # solve problems
    s7 <- category_layer(solve(p7))
    # plot solutions
    plot(s7, "solution", axes = FALSE, box = FALSE)
    ## End(Not run)
```

add_cplex_solver
Add a CPLEX solver

Description

Specify that the IBM CPLEX software (IBM 2017) should be used to solve a conservation planning problem(). This function can also be used to customize the behavior of the solver. It requires the cplexAPI package to be installed (see below for installation instructions).

Usage

add_cplex_solver(
x,
gap $=0.1$,
time_limit = .Machine\$integer.max,
presolve = TRUE,
threads = 1,
verbose $=$ TRUE
)

Arguments

x
problem() (i.e. ConservationProblem) object.
gap numeric gap to optimality. This gap is relative and expresses the acceptable deviance from the optimal objective. For example, a value of 0.01 will result in the solver stopping when it has found a solution within 1% of optimality. Additionally, a value of 0 will result in the solver stopping when it has found an optimal solution. The default value is 0.1 (i.e. 10% from optimality).
time_limit numeric time limit (seconds) for generating solutions. The solver will return the current best solution when this time limit is exceeded. The default value is the largest integer value (i.e. .Machine\$integer.max), effectively meaning that solver will keep running until a solution within the optimality gap is found.

presolve	logical attempt to simplify the problem before solving it? Defaults to TRUE.
threads	integer number of threads to use for the optimization algorithm. The default value is 1.
verbose	logical should information be printed while solving optimization problems?

Details

IBM CPLEX is a commercial optimization software. It is faster than the available open source solvers (e.g. add_lpsymphony_solver() and add_rsymphony_solver (). Although formal benchmarks examining the performance of this solver for conservation planning problems have yet to be completed, preliminary analyses suggest that it performs slightly slower than the Gurobi solver (i.e. add_gurobi_solver()). We recommend using this solver if the Gurobi solver is not available. Licenses are available for the IBM CPLEX software to academics at no cost (see https: //www.ibm.com/products/ilog-cplex-optimization-studio).

Value

Object (i.e. ConservationProblem) with the solver added to it.

Installation

The pkgcplexAPI package is used to interface with $I B M C P L E X$. To install this package, the CPLEX_BIN variable must be set (similar to the GUROBI_HOME variable for the Gurobi software) to specify the file path for the CPLEX software. For example, on a Linux system, this variable can be specified by adding the following text to the $\sim /$. bashrc file:

```
export CPLEX_BIN="/opt/ibm/ILOG/CPLEX_Studio128/cplex/bin/x86-64_linux/cplex"
```

Note that you may need to change the version number in the file path (i.e. "CPLEX_Studio128"). For more information on installing the pkgcplexAPI package, please see the official installation instructions for the package.

References

IBM (2017) IBM ILOG CPLEX Optimization Studio CPLEX User's Manual. Version 12 Release 8. IBM ILOG CPLEX Division, Incline Village, NV.

See Also

See solvers for an overview of all functions for adding a solver.
Other solvers: add_cbc_solver(), add_default_solver(), add_gurobi_solver(), add_lsymphony_solver, add_rsymphony_solver()

Examples

```
## Not run:
# load data
data(sim_pu_raster, sim_features)
# create problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_cplex_solver(gap = 0.1, time_limit = 5, verbose = FALSE)
# generate solution
s <- solve(p)
# plot solution
plot(s, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_cuts_portfolio Add Bender's cuts portfolio

Description

Generate a portfolio of solutions for a conservation planning problem() using Bender's cuts (discussed in Rodrigues et al. 2000). This is recommended as a replacement for add_gap_portfolio() when the Gurobi software is not available.

Usage

add_cuts_portfolio(x, number_solutions = 10L)

Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
number_solutions
integer number of attempts to generate different solutions. Defaults to 10 .

Details

This strategy for generating a portfolio of solutions involves solving the problem multiple times and adding additional constraints to forbid previously obtained solutions. In general, this strategy is most useful when problems take a long time to solve and benefit from having multiple threads allocated for solving an individual problem.

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

Notes

In early versions (<4.0.1), this function was only compatible with Gurobi (i.e. add_gurobi_solver()). To provide functionality with exact algorithm solvers, this function now adds constraints to the problem formulation to generate multiple solutions.

References

Rodrigues AS, Cerdeira OJ, and Gaston KJ (2000) Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems. Ecography, 23: 565-574.

See Also

See portfolios for an overview of all functions for adding a portfolio.

```
Other portfolios: add_extra_portfolio(), add_gap_portfolio(), add_shuffle_portfolio(),
add_top_portfolio()
```


Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem with cuts portfolio
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_cuts_portfolio(10) %>%
    add_default_solver(gap = 0.2, verbose = FALSE)
## Not run:
# solve problem and generate 10 solutions within 20% of optimality
s1 <- solve(p1)
# plot solutions in portfolio
plot(stack(s1), axes = FALSE, box = FALSE)
## End(Not run)
# build multi-zone conservation problem with cuts portfolio
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                        ncol = 3)) %>%
    add_binary_decisions() %>%
    add_cuts_portfolio(10) %>%
    add_default_solver(gap = 0.2, verbose = FALSE)
## Not run:
# solve the problem
s2 <- solve(p2)
```

```
    # print solution
    str(s2, max.level = 1)
    # plot solutions in portfolio
    plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,
        box = FALSE)
## End(Not run)
```

 add_default_decisions Add default decisions

Description

This function adds the default decision types to a conservation planning problem(). The default types are binary and are added using the add_binary_decisions() function.

Usage

add_default_decisions(x)

Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.

Value

Object (i.e. ConservationProblem) with the decisions added to it.

See Also

See decisions for an overview of all functions for adding decisions.
Other decisions: add_binary_decisions(), add_proportion_decisions(), add_semicontinuous_decisions()

```
add_default_solver Add a default solver
```


Description

Identify the best solver currently installed on the system and specify that it should be used to solve a conservation planning problem(). For information on the performance of different solvers, please see Schuster et al. (2020) for benchmarks comparing the run time and solution quality of some of the available solvers when applied to different sized datasets.

Usage

```
add_default_solver(x, ...)
```


Arguments

x problem() (i.e. ConservationProblem) object.
... arguments passed to the solver.

Details

Ranked from best to worst, the available solvers that can be used are: add_gurobi_solver (), add_cplex_solver(), add_cbc_solver(), add_lpsymphony_solver(), and finally add_rsymphony_solver().

Value

Object (i.e. ConservationProblem) with the solver added to it.

References

Schuster R, Hanson JO, Strimas-Mackey M, and Bennett JR (2020). Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ, 8: e9258.

See Also

See solvers for an overview of all functions for adding a solver.
Other solvers: add_cbc_solver(), add_cplex_solver(), add_gurobi_solver(), add_lsymphony_solver, add_rsymphony_solver()

```
add_extra_portfolio Add an extra portfolio
```


Description

Generate a portfolio of solutions for a conservation planning problem() by storing feasible solutions discovered during the optimization process. This method is useful for quickly obtaining multiple solutions, but does not provide any guarantees on the number of solutions, or the quality of solutions.

Usage

add_extra_portfolio(x)

Arguments

x
problem() (i.e. ConservationProblem) object.

Details

This strategy for generating a portfolio requires problems to be solved using the Gurobi software suite (i.e. using add_gurobi_solver(). Specifically, version 8.0.0 (or greater) of the gurobi package must be installed.

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

See Also

See portfolios for an overview of all functions for adding a portfolio.
Other portfolios: add_cuts_portfolio(), add_gap_portfolio(), add_shuffle_portfolio(), add_top_portfolio()

Examples

```
## Not run:
# set seed for reproducibility
set.seed(600)
# load data
data(sim_pu_raster, sim_features)
# create minimal problem with a portfolio for extra solutions
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.05) %>%
    add_extra_portfolio() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve problem and generate portfolio
s1 <- solve(p1)
# print number of solutions found
print(length(s1))
# plot solutions
plot(stack(s1), axes = FALSE, box = FALSE)
# create multi-zone problem with a portfolio for extra solutions
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                                    ncol = 3)) %>%
    add_extra_portfolio() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve problem and generate portfolio
s2 <- solve(p2)
```

```
# print number of solutions found
print(length(s2))
# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,
            box = FALSE)
## End(Not run)
```

add_feature_contiguity_constraints

Add feature contiguity constraints

Description

Add constraints to a problem() to ensure that each feature is represented in a contiguous unit of dispersible habitat. These constraints are a more advanced version of those implemented in the add_contiguity_constraints() function, because they ensure that each feature is represented in a contiguous unit and not that the entire solution should form a contiguous unit. Additionally, this function can use data showing the distribution of dispersible habitat for each feature to ensure that all features can disperse through out the areas designated for their conservation.

Usage

```
## S4 method for signature 'ConservationProblem,ANY,Matrix'
add_feature_contiguity_constraints(x, zones, data)
## S4 method for signature 'ConservationProblem,ANY,data.frame'
add_feature_contiguity_constraints(x, zones, data)
## S4 method for signature 'ConservationProblem,ANY,matrix'
add_feature_contiguity_constraints(x, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY'
add_feature_contiguity_constraints(x, zones, data)
```


Arguments

x
problem() (i.e. ConservationProblem) object.
zones matrix, Matrix or list object describing the connection scheme for different zones. For matrix or and Matrix arguments, each row and column corresponds to a different zone in the argument to x, and cell values must contain binary numeric values (i.e. one or zero) that indicate if connected planning units (as specified in the argument to data) should be still considered connected if they are allocated to different zones. The cell values along the diagonal of the matrix indicate if planning units should be subject to contiguity constraints when they are allocated to a given zone. Note arguments to zones must be symmetric, and
that a row or column has a value of one then the diagonal element for that row or column must also have a value of one. If the connection scheme between different zones should differ among the features, then the argument to zones should be a list of matrix or Matrix objects that shows the specific scheme for each feature using the conventions described above. The default argument to zones is an identity matrix (i.e. a matrix with ones along the matrix diagonal and zeros elsewhere), so that planning units are only considered connected if they are both allocated to the same zone.
data NULL, matrix, Matrix, data.frame or list of matrix, Matrix, or data.frame objects. The argument to data shows which planning units should be treated as being connected when implementing constraints to ensure that features are represented in contiguous units. If different features have different dispersal capabilities, then it may be desirable to specify which sets of planning units should be treated as being connected for which features using a list of objects. The default argument is NULL which means that the connection data is calculated automatically using the adjacency_matrix() function and so all adjacent planning units are treated as being connected for all features. See the Data format section for more information.

Details

This function uses connection data to identify solutions that represent features in contiguous units of dispersible habitat. It was inspired by the mathematical formulations detailed in Önal and Briers (2006) and Cardeira et al. 2010. For an example that has used these constraints, see Hanson et al. (2019). Please note that these constraints require the expanded formulation and therefore cannot be used with feature data that have negative vales. Please note that adding these constraints to a problem will drastically increase the amount of time required to solve it.

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Data format

The argument to data can be specified using the following formats.
data as a NULL value connection data should be calculated automatically using the adjacency_matrix () function. This is the default argument and means that all adjacent planning units are treated as potentially dispersible for all features. Note that the connection data must be manually defined using one of the other formats below when the planning unit data in the argument to x is not spatially referenced (e.g. in data.frame or numeric format).
data as amatrix/Matrix object where rows and columns represent different planning units and the value of each cell indicates if the two planning units are connected or not. Cell values should be binary numeric values (i.e. one or zero). Cells that occur along the matrix diagonal have no effect on the solution at all because each planning unit cannot be a connected with itself. Note that pairs of connected planning units are treated as being potentially dispersible for all features.
data as a data. frame object containing the fields (columns) "id1", "id2", and "boundary". Here, each row denotes the connectivity between two planning units following the Marxan format. The field boundary should contain binary numeric values that indicate if the two planning units specified in the fields "id1" and "id2" are connected or not. This data can be used to describe symmetric or asymmetric relationships between planning units. By default, input data is assumed to be symmetric unless asymmetric data is also included (e.g. if data is present for planning units 2 and 3 , then the same amount of connectivity is expected for planning units 3 and 2, unless connectivity data is also provided for planning units 3 and 2). Note that pairs of connected planning units are treated as being potentially dispersible for all features.
data as a list object containing matrix, Matrix, or data.frame objects showing which planning units should be treated as connected for each feature. Each element in the list should correspond to a different feature (specifically, a different target in the problem), and should contain a matrix, Matrix, or data.frame object that follows the conventions detailed above.

Notes

In early versions, it was named as the add_corridor_constraints function.

References

Önal H and Briers RA (2006) Optimal selection of a connected reserve network. Operations Research, 54: 379-388.

Cardeira JO, Pinto LS, Cabeza M and Gaston KJ (2010) Species specific connectivity in reservenetwork design using graphs. Biological Conservation, 2: 408-415.
Hanson JO, Fuller RA, \& Rhodes JR (2019) Conventional methods for enhancing connectivity in conservation planning do not always maintain gene flow. Journal of Applied Ecology, 56: 913-922.

See Also

See constraints for an overview of all functions for adding constraints.

```
Other constraints: add_contiguity_constraints(), add_linear_constraints(), add_locked_in_constraints(), add_locked_out_constraints(), add_mandatory_allocation_constraints, ConservationProblem-method, add_manual_bounded_constraints(), add_manual_locked_constraints()
```


Examples

```
# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)
# create minimal problem
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.3) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with contiguity constraints
p2 <- p1 %>% add_contiguity_constraints()
```

```
# create problem with constraints to represent features in contiguous
# units
p3 <- p1 %>% add_feature_contiguity_constraints()
# create problem with constraints to represent features in contiguous
# units that contain highly suitable habitat values
# (specifically in the top 1.5th percentile)
cm4 <- lapply(seq_len(nlayers(sim_features)), function(i) {
    # create connectivity matrix using the i'th feature's habitat data
    m <- connectivity_matrix(sim_pu_raster, sim_features[[i]])
    # convert matrix to TRUE/FALSE values in top 20th percentile
    m <- m > quantile(as.vector(m), 1 - 0.015, names = FALSE)
    # convert matrix from TRUE/FALSE to sparse matrix with 0/1s
    m <- as(m, "dgCMatrix")
    # remove 0s from the sparse matrix
    m <- Matrix::drop0(m)
    # return matrix
    m
})
p4 <- p1 %>% add_feature_contiguity_constraints(data = cm4)
## Not run:
# solve problems
s1 <- stack(solve(p1), solve(p2), solve(p3), solve(p4))
# plot solutions
plot(s1, axes = FALSE, box = FALSE,
    main = c("basic solution", "contiguity constraints",
            "feature contiguity constraints",
            "feature contiguity constraints with data"))
## End(Not run)
# create minimal problem with multiple zones, and limit the solver to
# 30 seconds to obtain solutions in a feasible period of time
p5 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(time_limit = 30, verbose = FALSE)
# create problem with contiguity constraints that specify that the
# planning units used to conserve each feature in different management
# zones must form separate contiguous units
p6 <- p5 %>% add_feature_contiguity_constraints(diag(3))
# create problem with contiguity constraints that specify that the
# planning units used to conserve each feature must form a single
# contiguous unit if the planning units are allocated to zones 1 and 2
# and do not need to form a single contiguous unit if they are allocated
# to zone 3
zm7 <- matrix(0, ncol = 3, nrow = 3)
zm7[seq_len(2), seq_len(2)] <- 1
print(zm7)
```

```
p7 <- p5 %>% add_feature_contiguity_constraints(zm7)
# create problem with contiguity constraints that specify that all of
# the planning units in all three of the zones must conserve first feature
# in a single contiguous unit but the planning units used to conserve the
# remaining features do not need to be contiguous in any way
zm8 <- lapply(seq_len(number_of_features(sim_features_zones)), function(i)
    matrix(ifelse(i == 1, 1, 0), ncol = 3, nrow = 3))
print(zm8)
p8 <- p5 %>% add_feature_contiguity_constraints(zm8)
## Not run:
# solve problems
s2 <- lapply(list(p5, p6, p7, p8), solve)
s2 <- stack(lapply(s2, category_layer))
# plot solutions
plot(s2, main = c("p5", "p6", "p7", "p8"), axes = FALSE, box = FALSE)
## End(Not run)
```


Description

Conservation planning problems that aim to maximize the representation of features given a budget often will not able to conserve all of the features unless the budget is very high. In such budgetlimited problems, it may be desirable to prefer the representation of some features over other features. This information can be incorporated into the problem using weights. Weights can be applied to a problem to favor the representation of some features over other features when making decisions about how the budget should be allocated.

Usage

```
## S4 method for signature 'ConservationProblem,numeric'
add_feature_weights(x, weights)
    ## S4 method for signature 'ConservationProblem,matrix'
    add_feature_weights(x, weights)
```


Arguments

x
problem() (i.e. ConservationProblem) object.
weights numeric or matrix of weights. See the Weights format section for more information.

Details

Weights can only be applied to problems that have an objective that is budget limited (e.g. add_max_cover_objective()). They can be applied to problems that aim to maximize phylogenetic representation (add_max_phylo_div_objective()) to favor the representation of specific features over the representation of some phylogenetic branches. Weights cannot be negative values and must have values that are equal to or larger than zero. Note that planning unit costs are scaled to 0.01 to identify the cheapest solution among multiple optimal solutions. This means that the optimization process will favor cheaper solutions over solutions that meet feature targets (or occurrences) when feature weights are lower than 0.01 .

Value

Object (i.e. ConservationProblem) with the weights added to it.

Weights format

The argument to weights can be specified using the following formats.
weights as a numeric vector containing weights for each feature. Note that this format cannot be used to specify weights for problems with multiple zones.
weights as a matrix object containing weights for each feature in each zone. Here, each row corresponds to a different feature in argument to x, each column corresponds to a different zone in argument to x, and each cell contains the weight value for a given feature that the solution can to secure in a given zone. Note that if the problem contains targets created using add_manual_targets() then a matrix should be supplied containing a single column that indicates that weight for fulfilling each target.

See Also

See penalties for an overview of all functions for adding penalties.
Other penalties: add_boundary_penalties(), add_connectivity_penalties(), add_linear_penalties()

Examples

```
# load ape package
require(ape)
# load data
data(sim_pu_raster, sim_features, sim_phylogeny, sim_pu_zones_stack,
    sim_features_zones)
# create minimal problem that aims to maximize the number of features
# adequately conserved given a total budget of 3800. Here, each feature
# needs 20% of its habitat for it to be considered adequately conserved
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_max_features_objective(budget = 3800) %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create weights that assign higher importance to features with less
```

```
# suitable habitat in the study area
(w2 <- exp((1 / cellStats(sim_features, "sum")) * 200))
# create problem using rarity weights
p2 <- p1 %>% add_feature_weights(w2)
# create manually specified weights that assign higher importance to
# certain features. These weights could be based on a pre-calculated index
# (e.g. an index measuring extinction risk where higher values
# denote higher extinction risk)
w3 <- c(0, 0, 0, 100, 200)
p3 <- p1 %>% add_feature_weights(w3)
## Not run:
# solve problems
s1 <- stack(solve(p1), solve(p2), solve(p3))
# plot solutions
plot(s1, main = c("equal weights", "rarity weights", "manual weights"),
    axes = FALSE, box = FALSE)
## End(Not run)
# plot the example phylogeny
## Not run:
par(mfrow = c(1, 1))
plot(sim_phylogeny, main = "simulated phylogeny")
## End(Not run)
# create problem with a maximum phylogenetic diversity objective,
# where each feature needs 10% of its distribution to be secured for
# it to be adequately conserved and a total budget of 1900
p4 <- problem(sim_pu_raster, sim_features) %>%
    add_max_phylo_div_objective(1900, sim_phylogeny) %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s4 <- solve(p4)
# plot solution
plot(s4, main = "solution", axes = FALSE, box = FALSE)
# find out which features have their targets met
r4 <- eval_target_coverage_summary(p4, s4)
print(r4, width = Inf)
# plot the example phylogeny and color the represented features in red
plot(sim_phylogeny, main = "represented features",
    tip.color = replace(rep("black", nlayers(sim_features)),
            which(r4$met), "red"))
## End(Not run)
```

```
# we can see here that the third feature ("layer.3", i.e.
# sim_features[[3]]) is not represented in the solution. Let us pretend
# that it is absolutely critical this feature is adequately conserved
# in the solution. For example, this feature could represent a species
# that plays important role in the ecosystem, or a species that is
# important commercial activities (e.g. eco-tourism). So, to generate
# a solution that conserves the third feature whilst also aiming to
# maximize phylogenetic diversity, we will create a set of weights that
# assign a particularly high weighting to the third feature
w5 <- c(0, 0, 1000, 0, 0)
# we can see that this weighting (i.e. w5[3]) has a much higher value than
# the branch lengths in the phylogeny so solutions that represent this
# feature be much closer to optimality
print(sim_phylogeny$edge.length)
## Not run:
# create problem with high weighting for the third feature and solve it
s5 <- p4 %>% add_feature_weights(w5) %>% solve()
# plot solution
plot(s5, main = "solution", axes = FALSE, box = FALSE)
# find which features have their targets met
r5 <- eval_target_coverage_summary(p4, s5)
print(r5, width = Inf)
# plot the example phylogeny and color the represented features in red
# here we can see that this solution only adequately conserves the
# third feature. This means that, given the budget, we are faced with the
# trade-off of conserving either the third feature, or a phylogenetically
# diverse set of three different features.
plot(sim_phylogeny, main = "represented features",
    tip.color = replace(rep("black", nlayers(sim_features)),
            which(r5$met), "red"))
## End(Not run)
# create multi-zone problem with maximum features objective,
# with 10% representation targets for each feature, and set
# a budget such that the total maximum expenditure in all zones
# cannot exceed 3000
p6 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_max_features_objective(3000) %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create weights that assign equal weighting for the representation
# of each feature in each zone except that it does not matter if
# feature 1 is represented in zone 1 and it really important
# that feature 3 is really in zone 1
w7 <- matrix(1, ncol = 3, nrow = 5)
w7[1, 1] <- 0
w7[3, 1] <- 100
```

```
# create problem with weights
p7 <- p6 %>% add_feature_weights(w7)
## Not run:
# solve problems
s6 <- solve(p6)
s7 <- solve(p7)
# plot solutions
plot(stack(category_layer(s6), category_layer(s7)),
    main = c("equal weights", "manual weights"), axes = FALSE, box = FALSE)
## End(Not run)
# create minimal problem to show the correct method for setting
# weights for problems with manual targets
p8 <- problem(sim_pu_raster, sim_features) %>%
    add_max_features_objective(budget = 3000) %>%
    add_manual_targets(data.frame(feature = c("layer.1", "layer.4"),
                                    type = "relative",
                                    target = 0.1)) %>%
    add_feature_weights(matrix(c(1, 200), ncol = 1)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s8 <- solve(p8)
# plot solution
plot(s8, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_gap_portfolio Add a gap portfolio

Description

Generate a portfolio of solutions for a conservation planning problem() by finding a certain number of solutions that are all within a pre-specified optimality gap. This method is useful for generating multiple solutions that can be used to calculate selection frequencies for moderate and large-sized problems (similar to Marxan).

Usage

add_gap_portfolio(x, number_solutions, pool_gap = 0.1)

Arguments

```
number_solutions
                    integer number of solutions required.
pool_gap numeric gap to optimality for solutions in the portfolio. This relative gap spec-
    ifies a threshold worst-case performance for solutions in the portfolio. For
    example, value of 0.1 will result in the portfolio returning solutions that are
    within \(10 \%\) of an optimal solution. Note that the gap specified in the solver
    (i.e. add_gurobi_solver() must be less than or equal to the gap specified to
    generate the portfolio. Defaults to 0.1 .
```


Details

This strategy for generating a portfolio requires problems to be solved using the Gurobi software suite (i.e. using add_gurobi_solver(). Specifically, version 9.0.0 (or greater) of the gurobi package must be installed. Note that the number of solutions returned may be less than the argument to number_solutions, if the total number of solutions that meet the optimality gap is less than the number of solutions requested. Also, note that this portfolio function only works with problems that have binary decisions (i.e. specified using add_binary_decisions()).

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

See Also

See portfolios for an overview of all functions for adding a portfolio.
Other portfolios: add_cuts_portfolio(), add_extra_portfolio(), add_shuffle_portfolio(), add_top_portfolio()

Examples

```
## Not run:
# set seed for reproducibility
set.seed(600)
# load data
data(sim_pu_raster, sim_features)
# create minimal problem with a portfolio containing 10 solutions within 20%
# of optimality
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.05) %>%
    add_gap_portfolio(number_solutions = 5, pool_gap = 0.2) %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve problem and generate portfolio
s1 <- solve(p1)
# print number of solutions found
print(length(s1))
```

```
# plot solutions
plot(stack(s1), axes = FALSE, box = FALSE)
# create multi-zone problem with a portfolio containing 10 solutions within
# 20% of optimality
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
        add_min_set_objective() %>%
        add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                    ncol = 3)) %>%
        add_gap_portfolio(number_solutions = 5, pool_gap = 0.2) %>%
        add_default_solver(gap = 0, verbose = FALSE)
# solve problem and generate portfolio
s2 <- solve(p2)
# print number of solutions found
print(length(s2))
# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,
    box = FALSE)
## End(Not run)
```

```
add_gurobi_solver
```

Add a Gurobi solver

Description

Specify that the Gurobi software (Gurobi Optimization LLC 2021) should be used to solve a conservation planning problem(). This function can also be used to customize the behavior of the solver. It requires the gurobi package to be installed (see below for installation instructions).

Usage

add_gurobi_solver(
x ,
gap $=0.1$,
time_limit = .Machine\$integer.max,
presolve $=2$,
threads = 1,
first_feasible = FALSE,
numeric_focus = FALSE,
node_file_start = Inf,
start_solution = NULL,
verbose = TRUE
)

[^1]
Details

Gurobi is a state-of-the-art commercial optimization software with an R package interface. It is by far the fastest of the solvers available for generating prioritizations, however, it is not freely available. That said, licenses are available to academics at no cost. The gurobi package is distributed with the Gurobi software suite. This solver uses the gurobi package to solve problems. For information on the performance of different solvers, please see Schuster et al. (2020) for benchmarks comparing the run time and solution quality of different solvers when applied to different sized datasets.

Value

Object (i.e. ConservationProblem) with the solver added to it.

Installation

Please see the Gurobi Installation Guide vignette for details on installing the Gurobi software and the gurobi package. You can access this vignette online or using the following code:

```
vignette("gurobi_installation", package = "prioritizr")
```


Start solution format

Broadly speaking, the argument to start_solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to start_solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to start_solution.
x has matrix planning units The argument to start_solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to start_solution.
x has Raster planning units The argument to start_solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to start_solution.
x has data. frame planning units The argument to start_solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:: \mathrm{sf}()$ data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to start_solution.
x has Spatial planning units The argument to start_solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with sf::sf() data). Additionally, the argument to start_solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to start_solution.
x has $s f:: s f()$ planning units The argument to start_solution must be a sf::sf() object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $\mathrm{sf}:: \mathrm{sf}()$ object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to start_solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to start_solution.

References

Gurobi Optimization LLC (2021) Gurobi Optimizer Reference Manual. https://www.gurobi. com.

Schuster R, Hanson JO, Strimas-Mackey M, and Bennett JR (2020). Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ, 8: e9258.

See Also

See solvers for an overview of all functions for adding a solver.
Other solvers: add_cbc_solver(), add_cplex_solver(), add_default_solver(), add_lsymphony_solver, add_rsymphony_solver()

Examples

```
## Not run:
# load data
data(sim_pu_raster, sim_features)
# create problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_gurobi_solver(gap = 0, verbose = FALSE)
# generate solution
s <- solve(p)
# plot solution
plot(s, main = "solution", axes = FALSE, box = FALSE)
```

```
# create a similar problem with boundary length penalties and
# specify the solution from the previous run as a starting solution
p2 <- problem(sim_pu_raster, sim_features) %>%
            add_min_set_objective() %>%
            add_relative_targets(0.1) %>%
            add_boundary_penalties(10) %>%
            add_binary_decisions() %>%
            add_gurobi_solver(gap = 0, start_solution = s, verbose = FALSE)
# generate solution
s2 <- solve(p2)
# plot solution
plot(s2, main = "solution with boundary penalties", axes = FALSE,
    box = FALSE)
## End(Not run)
```

add_linear_constraints

Add linear constraints

Description

Add constraints to a conservation planning problem() to ensure that all selected planning units meet certain criteria.

Usage

```
## S4 method for signature 'ConservationProblem,ANY,ANY,character'
add_linear_constraints(x, threshold, sense, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,numeric'
add_linear_constraints(x, threshold, sense, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,matrix'
add_linear_constraints(x, threshold, sense, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,Matrix'
add_linear_constraints(x, threshold, sense, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,Raster'
add_linear_constraints(x, threshold, sense, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,dgCMatrix'
add_linear_constraints(x, threshold, sense, data)
```


Arguments

X
threshold
sense
data character, numeric, Raster, matrix, or Matrix object containing the constraint values. These constraint values are also known as constraint coefficients per integer programming terminology. See the Data format section for more information.

Details

This function adds general purpose constraints that can be used to ensure that solutions meet certain criteria (see Examples section below for details). For example, these constraints can be used to add multiple budgets. They can also be used to ensure that the total number of planning units allocated to a certain administrative area (e.g. country) does not exceed a certain threshold (e.g. 30% of its total area). Furthermore, they can also be used to ensure that features have a minimal level of representation (e.g. 30\%) when using an objective function that aims to enhance feature representation given a budget (e.g. add_min_shortfall_objective()).

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Mathematical formulation

The linear constraints are implemented using the following equation. Let I denote the set of planning units (indexed by i), Z the set of management zones (indexed by z), and $X_{i z}$ the decision variable for allocating planning unit i to zone z (e.g. with binary values indicating if each planning unit is allocated or not). Also, let $D_{i z}$ denote the constraint data associated with planning units $i \in I$ for zones $z \in Z$ (argument to data, if supplied as a matrix object), θ denote the constraint sense (argument to sense, e.g. $<=$), and t denote the constraint threshold (argument to threshold).

$$
\sum_{i}^{I} \sum_{z}^{Z}\left(D_{i z} \times X_{i z}\right) \theta t
$$

Data format

The argument to data can be specified using the following formats.
data as character vector containing field (column) name(s) that contain penalty values for planning units. This format is only compatible if the planning units in the argument to x are a Spatial, sf::sf(), or data.frame object. The fields (columns) must have numeric values, and must not contain any missing (NA) values. For problems that contain a single zone, the argument to data must contain a single field name. Otherwise, for problems that contain multiple zones, the argument to data must contain a field name for each zone.
data as a numeric vector containing values for planning units. These values must not contain any missing (NA) values. Note that this format is only available for planning units that contain a single zone.
data as a matrix/Matrix object containing numeric values that specify data for each planning unit. Each row corresponds to a planning unit, each column corresponds to a zone, and each cell indicates the data for penalizing a planning unit when it is allocated to a given zone.
data as a Raster object containing values for planning units. This format is only compatible if the planning units in the argument to x are Spatial, $s f:: s f()$, or Raster objects. If the planning unit data are a Spatial or sf::sf() object, then the values are calculated by overlaying the planning units with the argument to data and calculating the sum of the values associated with each planning unit. If the planning unit data are a Raster object then the values are calculated by extracting the cell values (note that the planning unit data and the argument to data must have exactly the same dimensionality, extent, and missingness). For problems involving multiple zones, the argument to data must contain a layer for each zone.

See Also

See constraints for an overview of all functions for adding constraints.

```
Other constraints: add_contiguity_constraints(), add_feature_contiguity_constraints(),
add_locked_in_constraints(), add_locked_out_constraints(), add_mandatory_allocation_constraints, Conse
add_manual_bounded_constraints(), add_manual_locked_constraints()
```


Examples

```
# load data
data(sim_pu_raster, sim_features)
## Not run:
# create a baseline problem with minimum shortfall objective
p0 <- problem(sim_pu_raster, sim_features) %>%
    add_min_shortfall_objective(1800) %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve problem
s0 <- solve(p0)
# plot solution
plot(s0, main = "solution", axes = FALSE, box = FALSE)
# now let's create some modified versions of this baseline problem by
# adding additional criteria using linear constraints
# first, let's create a modified version of p0 that contains
# an additional budget of 1600 based on a secondary cost dataset
# create a secondary cost dataset by simulating values
# (note this requires the RandomFields package to be installed)
sim_pu_raster2 <- simulate_cost(sim_pu_raster)
```

```
# plot the primary cost dataset (sim_pu_raster) and
# the secondary cost dataset (sim_pu_raster2)
plot(stack(sim_pu_raster, sim_pu_raster2),
    main = c("sim_pu_raster", "sim_pu_raster2"),
    axes = FALSE, box = FALSE)
# create a modified version of p0 with linear constraints that
# specify that the planning units in the solution must not have
# values in sim_pu_raster2 that sum to a total greater than 1600
p1 <- p0 %>%
    add_linear_constraints(threshold = 1600,
sense = "<=",
    data = sim_pu_raster2)
# solve problem
s1 <- solve(p1)
# plot solutions s1 and s2 to compare them
plot(stack(s0, s1), main = c("s0", "s1"), axes = FALSE, box = FALSE)
# second, let's create a modified version of p0 that contains
# additional constraints to ensure that each feature has
# at least 8% of its overall distribution represented by the solution
# to achieve this, we need to calculate the total amount of each feature
# within the planning units so we can, in turn, set the constraint thresholds
feat_abund <- feature_abundances(p0)$absolute_abundance
# create a modified version of p0 with additional constraints for each
# feature to specify that the planning units in the solution must
# secure at least 8% of the total abundance for each feature
p2 <- p0
for (i in seq_len(nlayers(sim_features))) {
    p2 <- p2 %>%
        add_linear_constraints(threshold = feat_abund[i] * 0.08,
                                    sense = ">=",
                                    data = sim_features[[i]])
}
# overall, p2 could be described as an optimization problem
# that maximizes feature representation as much as possible
# towards securing 20% of the total amount of each feature,
# whilst ensuring that (i) the total cost of the solution does
# not exceed 1800 (per cost values in sim_pu_raster) and (ii)
# the solution secures at least 8% of the total amount of each feature
# (if 20% is not possible due to the budget)
# solve problem
s2 <- solve(p2)
# plot solutions s0 and s2 to compare them
plot(stack(s0, s2), main = c("s1", "s2"), axes = FALSE, box = FALSE)
```

```
# third, let's create a modified version of p0 that contains
# additional constraints to ensure that the solution equitably
# distributes conservation effort across different administrative areas
# (e.g. countries) within the study region
# to begin with, we will simulate a dataset describing the spatial extent of
# four different administrative areas across the study region
sim_admin <- sim_pu_raster
sim_admin <- aggregate(sim_admin, fact = 5)
values(sim_admin) <- seq_along(values(sim_admin))
sim_admin <- resample(sim_admin, sim_pu_raster, method = "ngb")
sim_admin <- mask(sim_admin, sim_pu_raster)
# plot administrative areas layer,
# we can see that the administrative areas subdivide
# the study region into four quadrants, and the sim_admin object is a
# RasterLayer with integer values denoting ids for the administrative areas
plot(sim_admin)
# next we will convert the sim_admin RasterLayer object into a RasterStack
# object (with a layer for each administrative area) indicating which
# planning units belong to each administrative area using binary
# (presence/absence) values
sim_admin2 <- binary_stack(sim_admin)
# plot administrative areas stack
plot(sim_admin2)
# we will now calculate the total amount of planning units associated
# with each administrative area, so that we can set the constraint threshold
# since we are using raster data, we won't bother explicitly
# accounting for the total area of each planning unit (because all
# planning units have the same area in raster formats) -- but if we were
# using vector data then we would need to account for the area of each unit
admin_total <- rowSums(rij_matrix(sim_pu_raster, sim_admin2))
# create a modified version of p0 with additional constraints for each
# administrative area to specify that the planning units in the solution must
# not encompass more than 10% of the total extent of the administrative
# area
p3 <- p0
for (i in seq_len(nlayers(sim_admin2))) {
    p3 <- p3 %>%
                        add_linear_constraints(threshold = admin_total[i] * 0.1,
                                    sense = "<=",
                                    data = sim_admin2[[i]])
}
# solve problem
s3 <- solve(p3)
```

```
# plot solutions s0 and s3 to compare them
plot(stack(s0, s3), main = c("s0", "s3"), axes = FALSE, box = FALSE)
## End(Not run)
```

add_linear_penalties Add linear penalties

Description

Add penalties to a conservation planning problem() to penalize solutions that select planning units with higher values from a specific data source (e.g. anthropogenic impact). These penalties assume a linear trade-off between the penalty values and the primary objective of the conservation planning problem() (e.g. solution cost for minimum set problems; add_min_set_objective().

Usage

```
    ## S4 method for signature 'ConservationProblem,ANY,character'
    add_linear_penalties(x, penalty, data)
    ## S4 method for signature 'ConservationProblem,ANY,numeric'
    add_linear_penalties(x, penalty, data)
    ## S4 method for signature 'ConservationProblem,ANY,matrix'
    add_linear_penalties(x, penalty, data)
    ## S4 method for signature 'ConservationProblem,ANY,Matrix'
    add_linear_penalties(x, penalty, data)
    ## S4 method for signature 'ConservationProblem,ANY,Raster'
    add_linear_penalties(x, penalty, data)
    ## S4 method for signature 'ConservationProblem,ANY,dgCMatrix'
    add_linear_penalties(x, penalty, data)
```


Arguments

x
problem() (i.e. ConservationProblem) object.
penalty numeric penalty value that is used to scale the importance not selecting planning units with high data values. Higher penalty values can be used to obtain solutions that are strongly averse to selecting places with high data values, and smaller penalty values can be used to obtain solutions that only avoid places with especially high data values. Note that negative penalty values can be used to obtain solutions that prefer places with high data values. Additionally, when adding these penalties to problems with multiple zones, the argument to penalty must have a value for each zone.
data character, numeric, Raster, matrix, or Matrix object containing the values used to penalize solutions. Planning units that are associated with higher data values are penalized more strongly in the solution. See the Data format section for more information.

Details

This function penalizes solutions that have higher values according to the sum of the penalty values associated with each planning unit, weighted by status of each planning unit in the solution.

Value

Object (i.e. ConservationProblem) with the penalties added to it.

Data format

The argument to data can be specified using the following formats.
data as character vector containing field (column) name(s) that contain penalty values for planning units. This format is only compatible if the planning units in the argument to x are a Spatial, sf::sf(), or data.frame object. The fields (columns) must have numeric values, and must not contain any missing (NA) values. For problems that contain a single zone, the argument to data must contain a single field name. Otherwise, for problems that contain multiple zones, the argument to data must contain a field name for each zone.
data as a numeric vector containing values for planning units. These values must not contain any missing (NA) values. Note that this format is only available for planning units that contain a single zone.
data as a matrix/Matrix object containing numeric values that specify data for each planning unit. Each row corresponds to a planning unit, each column corresponds to a zone, and each cell indicates the data for penalizing a planning unit when it is allocated to a given zone.
data as a Raster object containing values for planning units. This format is only compatible if the planning units in the argument to x are Spatial, $s f:: s f()$, or Raster objects. If the planning unit data are a Spatial or sf::sf() object, then the values are calculated by overlaying the planning units with the argument to data and calculating the sum of the values associated with each planning unit. If the planning unit data are a Raster object then the values are calculated by extracting the cell values (note that the planning unit data and the argument to data must have exactly the same dimensionality, extent, and missingness). For problems involving multiple zones, the argument to data must contain a layer for each zone.

Mathematical formulation

The linear penalties are implemented using the following equations. Let I denote the set of planning units (indexed by i), Z the set of management zones (indexed by z), and $X_{i z}$ the decision variable for allocating planning unit i to zone z (e.g. with binary values indicating if each planning unit is allocated or not). Also, let P_{z} represent the penalty scaling value for zones $z \in Z$ (argument to penalty), and $D_{i z}$ the penalty data for allocating planning unit $i \in I$ to zones $z \in Z$ (argument to data, if supplied as a matrix object).

$$
\sum_{i}^{I} \sum_{z}^{Z} P_{z} \times D_{i z} \times X_{i z}
$$

Note that when the problem objective is to maximize some measure of benefit and not minimize some measure of cost, the term P_{z} is replaced with $-P_{z}$.

See Also

See penalties for an overview of all functions for adding penalties.
Other penalties: add_boundary_penalties(), add_connectivity_penalties(), add_feature_weights()

Examples

```
# set seed for reproducibility
set.seed(600)
# load data
data(sim_pu_polygons, sim_pu_zones_stack, sim_features, sim_features_zones)
# add a column to contain the penalty data for each planning unit
# e.g. these values could indicate the level of habitat
sim_pu_polygons$penalty_data <- runif(nrow(sim_pu_polygons))
# plot the penalty data to visualise its spatial distribution
spplot(sim_pu_polygons, zcol = "penalty_data", main = "penalty data",
    axes = FALSE, box = FALSE)
# create minimal problem with minimum set objective,
# this does not use the penalty data
p1 <- problem(sim_pu_polygons, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# print problem
print(p1)
# create an updated version of the previous problem,
# with the penalties added to it
p2 <- p1 %>% add_linear_penalties(100, data = "penalty_data")
# print problem
print(p2)
## Not run:
# solve the two problems
s1 <- solve(p1)
s2 <- solve(p2)
```

```
# plot the solutions and compare them,
# since we supplied a very high penalty value (i.e. 100), relative
# to the range of values in the penalty data and the objective function,
# the solution in s2 is very sensitive to values in the penalty data
spplot(s1, zcol = "solution_1", main = "solution without penalties",
    axes = FALSE, box = FALSE)
spplot(s2, zcol = "solution_1", main = "solution with penalties",
        axes = FALSE, box = FALSE)
# for real conservation planning exercises,
# it would be worth exploring a range of penalty values (e.g. ranging
# from 1 to 100 increments of 5) to explore the trade-offs
## End(Not run)
# now, let's examine a conservation planning exercise involving multiple
# management zones
## Not run:
# create targets for each feature within each zone,
# these targets indicate that each zone needs to represent 10% of the
# spatial distribution of each feature
targ <- matrix(0.1, ncol = number_of_zones(sim_features_zones),
    nrow = number_of_features(sim_features_zones))
# create penalty data for allocating each planning unit to each zone,
# these data will be generated by simulating values
# (note this requires the RandomFields package to be installed)
penalty_stack <- simulate_cost(sim_pu_zones_stack[[1]],
    n = number_of_zones(sim_features_zones))
# plot the penalty data, each layer corresponds to a different zone
plot(penalty_stack, main = "penalty data", axes = FALSE, box = FALSE)
# create a multi-zone problem with the minimum set objective
# and penalties for allocating planning units to each zone,
# with a penalty scaling factor of 1 for each zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(targ) %>%
    add_linear_penalties(c(1, 1, 1), penalty_stack) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# print problem
print(p3)
# solve problem
s3 <- solve(p3)
# plot solution
plot(category_layer(s3), main = "multi-zone solution",
    axes = FALSE, box = FALSE)
```

\#\# End(Not run)
add_locked_in_constraints
Add locked in constraints

Description

Add constraints to a conservation planning problem() to ensure that specific planning units are selected (or allocated to a specific zone) in the solution. For example, it may be desirable to lock in planning units that are inside existing protected areas so that the solution fills in the gaps in the existing reserve network. If specific planning units should be locked out of a solution, use add_locked_out_constraints(). For problems with non-binary planning unit allocations (e.g. proportions), the add_manual_locked_constraints() function can be used to lock planning unit allocations to a specific value.

Usage

```
add_locked_in_constraints(x, locked_in)
## S4 method for signature 'ConservationProblem,numeric'
add_locked_in_constraints(x, locked_in)
## S4 method for signature 'ConservationProblem,logical'
add_locked_in_constraints(x, locked_in)
## S4 method for signature 'ConservationProblem,matrix'
add_locked_in_constraints(x, locked_in)
## S4 method for signature 'ConservationProblem,character'
add_locked_in_constraints(x, locked_in)
## S4 method for signature 'ConservationProblem,Spatial'
add_locked_in_constraints(x, locked_in)
## S4 method for signature 'ConservationProblem,sf'
add_locked_in_constraints(x, locked_in)
## S4 method for signature 'ConservationProblem,Raster'
add_locked_in_constraints(x, locked_in)
```


Arguments

x
problem() (i.e. ConservationProblem) object.
locked_in Object that determines which planning units that should be locked in. See the Data format section for more information.

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Data format

The locked planning units can be specified using the following formats. Generally, the locked data should correspond to the planning units in the argument to x. To help make working with Raster planning unit data easier, the locked data should correspond to cell indices in the Raster data. For example, integer arguments should correspond to cell indices and logical arguments should have a value for each cell-regardless of which planning unit cells contain NA values.
data as an integer vector containing indices that indicate which planning units should be locked for the solution. This argument is only compatible with problems that contain a single zone.
data as a logical vector containing TRUE and/or FALSE values that indicate which planning units should be locked in the solution. This argument is only compatible with problems that contain a single zone.
data as a matrix object containing logical TRUE and/or FALSE values which indicate if certain planning units are should be locked to a specific zone in the solution. Each row corresponds to a planning unit, each column corresponds to a zone, and each cell indicates if the planning unit should be locked to a given zone. Thus each row should only contain at most a single TRUE value.
data as a character vector containing field (column) name(s) that indicate if planning units should be locked for the solution. This format is only compatible if the planning units in the argument to x are a Spatial, sf::sf(), or data.frame object. The fields (columns) must have logical (i.e. TRUE or FALSE) values indicating if the planning unit is to be locked for the solution. For problems that contain a single zone, the argument to data must contain a single field name. Otherwise, for problems that contain multiple zones, the argument to data must contain a field name for each zone.
data as a Spatial or sf: :sf() object containing geometries that will be used to lock planning units for the solution. Specifically, planning units in x that spatially intersect with y will be locked (per intersecting_units()). Note that this option is only available for problems that contain a single management zone.
data as a Raster object containing cells used to lock planning units for the solution. Specifically, planning units in x that intersect with cells that have non-zero and non-NA values are locked. For problems that contain multiple zones, the Raster object must contain a layer for each zone. Note that for multi-band arguments, each pixel must only contain a non-zero value in a single band. Additionally, if the cost data in x is a Raster object, we recommend standardizing NA values in this dataset with the cost data. In other words, the pixels in x that have NA values should also have NA values in the locked data.

See Also

See constraints for an overview of all functions for adding constraints.
Other constraints: add_contiguity_constraints(), add_feature_contiguity_constraints(), add_linear_constraints(), add_locked_out_constraints(), add_mandatory_allocation_constraints, Conserva add_manual_bounded_constraints(), add_manual_locked_constraints()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_polygons, sim_features, sim_locked_in_raster)
# create minimal problem
p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with added locked in constraints using integers
p2 <- p1 %>% add_locked_in_constraints(which(sim_pu_polygons$locked_in))
# create problem with added locked in constraints using a field name
p3 <- p1 %>% add_locked_in_constraints("locked_in")
# create problem with added locked in constraints using raster data
p4 <- p1 %>% add_locked_in_constraints(sim_locked_in_raster)
# create problem with added locked in constraints using spatial polygon data
locked_in <- sim_pu_polygons[sim_pu_polygons$locked_in == 1, ]
p5 <- p1 %>% add_locked_in_constraints(locked_in)
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
s4 <- solve(p4)
s5 <- solve(p5)
# plot solutions
par(mfrow = c(3, 2), mar = c(0, 0, 4.1, 0))
plot(s1, main = "none locked in")
plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s2, main = "locked in (integer input)")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s3, main = "locked in (character input)")
plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s4, main = "locked in (raster input)")
plot(s4[s4$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s5, main = "locked in (polygon input)")
plot(s5[s5$solution_1 == 1, ], col = "darkgreen", add = TRUE)
# reset plot
```

```
par(mfrow = c(1, 1))
## End(Not run)
# create minimal multi-zone problem with spatial data
p6 <- problem(sim_pu_zones_polygons, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
        add_min_set_objective() %>%
        add_absolute_targets(matrix(rpois(15, 1), nrow = 5,
                            ncol = 3)) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
# create multi-zone problem with locked in constraints using matrix data
locked_matrix <- sim_pu_zones_polygons@data[, c("locked_1", "locked_2",
                                    "locked_3")]
locked_matrix <- as.matrix(locked_matrix)
p7 <- p6 %>% add_locked_in_constraints(locked_matrix)
## Not run:
# solve problem
s6 <- solve(p6)
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s6$solution <- category_vector(s6@data[, c("solution_1_zone_1",
                                    "solution_1_zone_2",
                                    "solution_1_zone_3")])
s6$solution <- factor(s6$solution)
# plot solution
spplot(s6, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with locked in constraints using field names
p8 <- p6 %>% add_locked_in_constraints(c("locked_1", "locked_2", "locked_3"))
## Not run:
# solve problem
s8 <- solve(p8)
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s8$solution <- category_vector(s8@data[, c("solution_1_zone_1",
                                    "solution_1_zone_2",
                                    "solution_1_zone_3")])
s8$solution[s8$solution == 1 & s8$solution_1_zone_1 == 0] <- 0
s8$solution <- factor(s8$solution)
# plot solution
spplot(s8, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with raster planning units
```

```
p9 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_absolute_targets(matrix(rpois(15, 1), nrow = 5, ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create raster stack with locked in units
locked_in_stack <- sim_pu_zones_stack[[1]]
locked_in_stack[!is.na(locked_in_stack)] <- 0
locked_in_stack <- locked_in_stack[[c(1, 1, 1)]]
locked_in_stack[[1]][1] <- 1
locked_in_stack[[2]][2] <- 1
locked_in_stack[[3]][3] <- 1
# plot locked in stack
## Not run:
plot(locked_in_stack)
## End(Not run)
# add locked in raster units to problem
p9 <- p9 %>% add_locked_in_constraints(locked_in_stack)
## Not run:
# solve problem
s9 <- solve(p9)
# plot solution
plot(category_layer(s9), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_locked_out_constraints
Add locked out constraints

Description

Add constraints to a conservation planning problem() to ensure that specific planning units are not selected (or allocated to a specific zone) in the solution. For example, it may be useful to lock out planning units that have been degraded and are not suitable for conserving species. If specific planning units should be locked in to the solution, use add_locked_out_constraints(). For problems with non-binary planning unit allocations (e.g. proportions), the add_manual_locked_constraints() function can be used to lock planning unit allocations to a specific value.

Usage

add_locked_out_constraints(x, locked_out)
\#\# S4 method for signature 'ConservationProblem,numeric'

```
add_locked_out_constraints(x, locked_out)
## S4 method for signature 'ConservationProblem,logical'
add_locked_out_constraints(x, locked_out)
## S4 method for signature 'ConservationProblem,matrix'
add_locked_out_constraints(x, locked_out)
## S4 method for signature 'ConservationProblem,character'
add_locked_out_constraints(x, locked_out)
## S4 method for signature 'ConservationProblem,Spatial'
add_locked_out_constraints(x, locked_out)
## S4 method for signature 'ConservationProblem,sf'
add_locked_out_constraints(x, locked_out)
## S4 method for signature 'ConservationProblem,Raster'
add_locked_out_constraints(x, locked_out)
```


Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
locked_out Object that determines which planning units that should be locked out. See the Data format section for more information.

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Data format

The locked planning units can be specified using the following formats. Generally, the locked data should correspond to the planning units in the argument to x. To help make working with Raster planning unit data easier, the locked data should correspond to cell indices in the Raster data. For example, integer arguments should correspond to cell indices and logical arguments should have a value for each cell-regardless of which planning unit cells contain NA values.
data as an integer vector containing indices that indicate which planning units should be locked for the solution. This argument is only compatible with problems that contain a single zone.
data as a logical vector containing TRUE and/or FALSE values that indicate which planning units should be locked in the solution. This argument is only compatible with problems that contain a single zone.
data as a matrix object containing logical TRUE and/or FALSE values which indicate if certain planning units are should be locked to a specific zone in the solution. Each row corresponds to a planning unit, each column corresponds to a zone, and each cell indicates if the planning unit should be locked to a given zone. Thus each row should only contain at most a single TRUE value.
data as a character vector containing field (column) name(s) that indicate if planning units should be locked for the solution. This format is only compatible if the planning units in the argument to x are a Spatial, sf::sf(), or data.frame object. The fields (columns) must have logical (i.e. TRUE or FALSE) values indicating if the planning unit is to be locked for the solution. For problems that contain a single zone, the argument to data must contain a single field name. Otherwise, for problems that contain multiple zones, the argument to data must contain a field name for each zone.
data as a Spatial or $s f:: s f()$ object containing geometries that will be used to lock planning units for the solution. Specifically, planning units in x that spatially intersect with y will be locked (per intersecting_units()). Note that this option is only available for problems that contain a single management zone.
data as a Raster object containing cells used to lock planning units for the solution. Specifically, planning units in x that intersect with cells that have non-zero and non-NA values are locked. For problems that contain multiple zones, the Raster object must contain a layer for each zone. Note that for multi-band arguments, each pixel must only contain a non-zero value in a single band. Additionally, if the cost data in x is a Raster object, we recommend standardizing NA values in this dataset with the cost data. In other words, the pixels in x that have NA values should also have NA values in the locked data.

See Also

See constraints for an overview of all functions for adding constraints.
Other constraints: add_contiguity_constraints(), add_feature_contiguity_constraints(), add_linear_constraints(), add_locked_in_constraints(), add_mandatory_allocation_constraints, Conservat add_manual_bounded_constraints(), add_manual_locked_constraints()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_polygons, sim_features, sim_locked_out_raster)
# create minimal problem
p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with added locked out constraints using integers
p2 <- p1 %>% add_locked_out_constraints(which(sim_pu_polygons$locked_out))
# create problem with added locked out constraints using a field name
p3 <- p1 %>% add_locked_out_constraints("locked_out")
# create problem with added locked out constraints using raster data
p4 <- p1 %>% add_locked_out_constraints(sim_locked_out_raster)
```

```
# create problem with added locked out constraints using spatial polygon data
locked_out <- sim_pu_polygons[sim_pu_polygons$locked_out == 1, ]
p5 <- p1 %>% add_locked_out_constraints(locked_out)
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
s4 <- solve(p4)
s5 <- solve(p5)
# plot solutions
par(mfrow = c(3,2), mar = c(0, 0, 4.1, 0))
plot(s1, main = "none locked out")
plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s2, main = "locked out (integer input)")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s3, main = "locked out (character input)")
plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s4, main = "locked out (raster input)")
plot(s4[s4$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s5, main = "locked out (polygon input)")
plot(s5[s5$solution_1 == 1, ], col = "darkgreen", add = TRUE)
# reset plot
par(mfrow = c(1, 1))
## End(Not run)
# create minimal multi-zone problem with spatial data
p6 <- problem(sim_pu_zones_polygons, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
    add_min_set_objective() %>%
    add_absolute_targets(matrix(rpois(15, 1), nrow = 5, ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create multi-zone problem with locked out constraints using matrix data
locked_matrix <- sim_pu_zones_polygons@data[, c("locked_1", "locked_2",
                                    "locked_3")]
locked_matrix <- as.matrix(locked_matrix)
p7 <- p6 %>% add_locked_out_constraints(locked_matrix)
## Not run:
# solve problem
s6 <- solve(p6)
# create new column representing the zone id that each planning unit
# was allocated to in the solution
```

```
s6$solution <- category_vector(s6@data[, c("solution_1_zone_1",
                                    "solution_1_zone_2",
                                    "solution_1_zone_3")])
s6$solution <- factor(s6$solution)
# plot solution
spplot(s6, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with locked out constraints using field names
p8 <- p6 %>% add_locked_out_constraints(c("locked_1", "locked_2",
                            "locked_3"))
## Not run:
# solve problem
s8 <- solve(p8)
# create new column in s8 representing the zone id that each planning unit
# was allocated to in the solution
s8$solution <- category_vector(s8@data[, c("solution_1_zone_1",
                        "solution_1_zone_2",
                            "solution_1_zone_3")])
s8$solution[s8$solution == 1 & s8$solution_1_zone_1 == 0] <- 0
s8$solution <- factor(s8$solution)
# plot solution
spplot(s8, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with raster planning units
p9 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_absolute_targets(matrix(rpois(15, 1), nrow = 5, ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create raster stack with locked out units
locked_out_stack <- sim_pu_zones_stack[[1]]
locked_out_stack[!is.na(locked_out_stack)] <- 0
locked_out_stack <- locked_out_stack[[c(1, 1, 1)]]
locked_out_stack[[1]][1] <- 1
locked_out_stack[[2]][2] <- 1
locked_out_stack[[3]][3] <- 1
# plot locked out stack
## Not run:
plot(locked_out_stack)
## End(Not run)
# add locked out raster units to problem
p9 <- p9 %>% add_locked_out_constraints(locked_out_stack)
## Not run:
# solve problem
```

```
    s9 <- solve(p9)
```

 \# plot solution
 plot(category_layer(s9), main = "solution", axes = FALSE, box = FALSE)
 \#\# End(Not run)
 add_loglinear_targets Add targets using log-linear scaling

Description

Add targets to a conservation planning problem() by log-linearly interpolating the targets between thresholds based on the total amount of each feature in the study area (Rodrigues et al. 2004). Additionally, caps can be applied to targets to prevent features with massive distributions from being over-represented in solutions (Butchart et al. 2015).

Usage

add_loglinear_targets(
x ,
lower_bound_amount,
lower_bound_target,
upper_bound_amount,
upper_bound_target,
cap_amount = NULL,
cap_target $=$ NULL,
abundances = feature_abundances(x, na.rm = FALSE)\$absolute_abundance
)

Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
lower_bound_amount
numeric threshold.
lower_bound_target
numeric relative target that should be applied to features with a total amount that is less than or equal to lower_bound_amount.
upper_bound_amount
numeric threshold.
upper_bound_target
numeric relative target that should be applied to features with a total amount that is greater than or equal to upper_bound_amount.
cap_amount numeric total amount at which targets should be capped. Defaults to NULL so that targets are not capped.
cap_target numeric amount-based target to apply to features which have a total amount greater than argument to cap_amount. Defaults to NULL so that targets are not capped.
abundances numeric total amount of each feature to use when calculating the targets. Defaults to the feature abundances in the study area (calculated using the feature_abundances() function.

Details

Targets are used to specify the minimum amount or proportion of a feature's distribution that needs to be protected. All conservation planning problems require adding targets with the exception of the maximum cover problem (see add_max_cover_objective()), which maximizes all features in the solution and therefore does not require targets.

Seven parameters are used to calculate the targets: lower_bound_amount specifies the first range size threshold, lower_bound_target specifies the relative target required for species with a range size equal to or less than the first threshold, upper_bound_amount specifies the second range size threshold, upper_bound_target specifies the relative target required for species with a range size equal to or greater than the second threshold, cap_amount specifies the third range size threshold, cap_target specifies the absolute target that is uniformly applied to species with a range size larger than that third threshold, and finally abundances specifies the range size for each feature that should be used when calculating the targets.
The target calculations do not account for the size of each planning unit. Therefore, the feature data should account for the size of each planning unit if this is important (e.g. pixel values in the argument to features in the function problem() could correspond to amount of land occupied by the feature in km^{2} units). Additionally, the function can only be applied to ConservationProblem objects that are associated with a single zone.

Value

Object (i.e. ConservationProblem) with the targets added to it.

Notes

Early versions (<5.0.2.4) used different equations for calculating targets.

References

Rodrigues ASL, Akcakaya HR, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Chanson JS, Fishpool LDC, da Fonseca GAB, Gaston KJ, and others (2004) Global gap analysis: priority regions for expanding the global protected-area network. BioScience, 54: 1092-1100.
Butchart SHM, Clarke M, Smith RJ, Sykes RE, Scharlemann JPW, Harfoot M, Buchanan, GM, Angulo A, Balmford A, Bertzky B, and others (2015) Shortfalls and solutions for meeting national and global conservation area targets. Conservation Letters, 8: 329-337.

See Also

See targets for an overview of all functions for adding targets.
Other targets: add_absolute_targets(), add_manual_targets(), add_relative_targets()

Examples

```
    # load data
    data(sim_pu_raster, sim_features)
    # create problem using loglinear targets
    p <- problem(sim_pu_raster, sim_features) %>%
        add_min_set_objective() %>%
        add_loglinear_targets(10, 0.9, 100, 0.2) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
    ## Not run:
    # solve problem
    s <- solve(p)
    # plot solution
    plot(s, main = "solution", axes = FALSE, box = FALSE)
    ## End(Not run)
```

 add_lsymphony_solver Add a SYMPHONY solver with lpsymphony

Description

Specify that the SYMPHONY software (Ralphs \& Güzelsoy 2005) - using the lpsymphony package - should be used to solve a conservation planning problem(). This function can also be used to customize the behavior of the solver. It requires the lpsymphony package to be installed (see below for installation instructions).

Usage

add_lpsymphony_solver(
x ,
gap $=0.1$,
time_limit = .Machine\$integer.max,
first_feasible = FALSE,
verbose = TRUE
)

Arguments

x
problem() (i.e. ConservationProblem) object.
gap numeric gap to optimality. This gap is relative and expresses the acceptable deviance from the optimal objective. For example, a value of 0.01 will result in the solver stopping when it has found a solution within 1% of optimality. Additionally, a value of 0 will result in the solver stopping when it has found an optimal solution. The default value is 0.1 (i.e. 10% from optimality).

Abstract

time_limit numeric time limit (seconds) for generating solutions. The solver will return the current best solution when this time limit is exceeded. The default value is the largest integer value (i.e. .Machine\$integer.max), effectively meaning that solver will keep running until a solution within the optimality gap is found. first_feasible logical should the first feasible solution be be returned? If first_feasible is set to TRUE, the solver will return the first solution it encounters that meets all the constraints, regardless of solution quality. Note that the first feasible solution is not an arbitrary solution, rather it is derived from the relaxed solution, and is therefore often reasonably close to optimality. Defaults to FALSE. verbose logical should information be printed while solving optimization problems? Defaults to TRUE.

Details

SYMPHONY is an open-source mixed integer programming solver that is part of the Computational Infrastructure for Operations Research (COIN-OR) project. This solver is provided because it may be easier to install on some systems than the Rsymphony package. Additionally - although the lpsymphony package doesn't provide the functionality to specify the number of threads for solving a problem - the lpsymphony package will solve problems using parallel processing (unlike the Rsymphony package). As a consequence, this solver will likely generate solutions much faster than the add_rsymphony_solver(). Although formal benchmarks examining the performance of this solver have yet to be completed, please see Schuster et al. (2020) for benchmarks comparing the run time and solution quality of the Rsymphony solver.

Value

Object (i.e. ConservationProblem) with the solver added to it.

Installation

The lpsymphony package is distributed through Bioconductor. To install the lpsymphony package, please use the following code:

```
if (!require(remotes)) install.packages("remotes")
```

remotes::install_bioc("lpsymphony")

References

Ralphs TK and Güzelsoy M (2005) The SYMPHONY callable library for mixed integer programming. In The Next Wave in Computing, Optimization, and Decision Technologies (pp. 61-76). Springer, Boston, MA.

Schuster R, Hanson JO, Strimas-Mackey M, and Bennett JR (2020). Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ, 8: e9258.

See Also

See solvers for an overview of all functions for adding a solver.
Other solvers: add_cbc_solver(), add_cplex_solver(), add_default_solver(), add_gurobi_solver(), add_rsymphony_solver()

Examples

```
## Not run:
# load data
data(sim_pu_raster, sim_features)
# create problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.05) %>%
    add_proportion_decisions() %>%
    add_lpsymphony_solver(time_limit = 5, verbose = FALSE)
# generate solution
s <- solve(p)
# plot solution
plot(s, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_mandatory_allocation_constraints
Add mandatory allocation constraints

Description

Add constraints to ensure that every planning unit is allocated to a management zone in the solution. Note that this function can only be used with problems that contain multiple zones.

Usage

```
## S4 method for signature 'ConservationProblem'
add_mandatory_allocation_constraints(x)
```


Arguments

x
problem() (i.e. ConservationProblem) object.

Details

For a conservation planning problem() with multiple management zones, it may sometimes be desirable to obtain a solution that assigns each and every single planning unit to a zone. For example, when developing land-use plans, some decision makers may require that each and every single parcel of land has been allocated a specific land-use type. In other words are no "left over" areas. Although it might seem tempting to simply solve the problem and manually assign "left over" planning units to a default zone afterwards (e.g. an "other", "urban", or "grazing" land-use), this could result in highly sub-optimal solutions if there penalties for siting the default land-use adjacent to other zones. Instead, this function can be used to specify that all planning units in a problem with multiple zones must be allocated to a management zone (i.e. zone allocation is mandatory).

Value

Object (i.e. ConservationProblem) with the constraints added to it.

See Also

See constraints for an overview of all functions for adding constraints.

```
Other constraints: add_contiguity_constraints(), add_feature_contiguity_constraints(),
add_linear_constraints(), add_locked_in_constraints(), add_locked_out_constraints(),
add_manual_bounded_constraints(), add_manual_locked_constraints()
```


Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_zones_stack, sim_features_zones)
# create multi-zone problem with minimum set objective
targets_matrix <- matrix(rpois(15, 1), nrow = 5, ncol = 3)
# create minimal problem with minimum set objective
p1 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_absolute_targets(targets_matrix) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create another problem that is the same as p1, but has constraints
# to mandate that every planning unit in the solution is assigned to
# zone
p2 <- p1 %>% add_mandatory_allocation_constraints()
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
# convert solutions into category layers, where each pixel is assigned
```

```
# value indicating which zone it was assigned to in the zone
c1 <- category_layer(s1)
c2 <- category_layer(s2)
# plot solution category layers
plot(stack(c1, c2), main = c("default", "mandatory allocation"),
    axes = FALSE, box = FALSE)
## End(Not run)
```

add_manual_bounded_constraints
Add manually specified bound constraints

Description

Add constraints to a conservation planning problem() to ensure that the planning unit values (e.g. proportion, binary) in a solution range between specific lower and upper bounds. This function offers more fine-grained control than the add_manual_locked_constraints() function and is is most useful for problems involving proportion-type or semi-continuous decisions.

Usage

add_manual_bounded_constraints(x, data)
\#\# S4 method for signature 'ConservationProblem,data.frame'
add_manual_bounded_constraints(x, data)
\#\# S4 method for signature 'ConservationProblem,tbl_df'
add_manual_bounded_constraints(x, data)

Arguments

$\begin{array}{ll}\mathrm{x} & \text { problem() (i.e. ConservationProblem) object. } \\ \text { data } & \begin{array}{l}\text { data.frame or tibble::tibble() object. See the Data format section for } \\ \text { more information. }\end{array}\end{array}$

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Data format

The argument to data should be a data.frame with the following fields (columns):
pu integer planning unit identifier.
zone character names of zones. Note that this argument is optional for arguments to x that contain a single zone.
lower numeric values indicating the minimum value that each planning unit can be allocated to in each zone in the solution.
upper numeric values indicating the maximum value that each planning unit can be allocated to in each zone in the solution.

See Also

See constraints for an overview of all functions for adding constraints.
Other constraints: add_contiguity_constraints(), add_feature_contiguity_constraints(), add_linear_constraints(), add_locked_in_constraints(), add_locked_out_constraints(), add_mandatory_allocation_constraints, ConservationProblem-method, add_manual_locked_constraints()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_polygons, sim_features, sim_pu_zones_polygons,
    sim_features_zones)
# create minimal problem
p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with locked in constraints using add_locked_constraints
p2 <- p1 %>% add_locked_in_constraints("locked_in")
# create identical problem using add_manual_bounded_constraints
bounds_data <- data.frame(pu = which(sim_pu_polygons$locked_in),
            lower = 1, upper = 1)
p3 <- p1 %>% add_manual_bounded_constraints(bounds_data)
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
# plot solutions
par(mfrow = c(1,3), mar = c(0, 0, 4.1, 0))
plot(s1, main = "none locked in")
plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s2, main = "add_locked_in_constraints")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s3, main = "add_bounds_constraints")
```

```
plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE)
## End(Not run)
# create minimal problem with multiple zones
p4 <- problem(sim_pu_zones_polygons, sim_features_zones,
    c("cost_1", "cost_2", "cost_3")) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
    ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create data.frame with the following constraints:
# planning units 1, 2, and 3 must be allocated to zone 1 in the solution
# planning units 4, and 5 must be allocated to zone 2 in the solution
# planning units 8 and 9 must not be allocated to zone 3 in the solution
bounds_data2 <- data.frame(pu = c(1, 2, 3, 4, 5, 8, 9),
zone = c(rep("zone_1", 3), rep("zone_2", 2),
                    rep("zone_3", 2)),
lower = c(rep(1, 5), rep (0, 2)),
upper =c(rep(1, 5), rep (0, 2)))
# print bounds data
print(bounds_data2)
# create problem with added constraints
p5 <- p4 %>% add_manual_bounded_constraints(bounds_data2)
## Not run:
# solve problem
s4 <- solve(p4)
s5 <- solve(p5)
# create two new columns representing the zone id that each planning unit
# was allocated to in the two solutions
s4$solution <- category_vector(s4@data[, c("solution_1_zone_1",
                        "solution_1_zone_2",
                        "solution_1_zone_3")])
s4$solution <- factor(s4$solution)
s4$solution_bounded <- category_vector(s5@data[, c("solution_1_zone_1",
                                    "solution_1_zone_2",
                            "solution_1_zone_3")])
s4$solution_bounded <- factor(s4$solution_bounded)
# plot solutions
spplot(s4, zcol = c("solution", "solution_bounded"), axes = FALSE,
    box = FALSE)
## End(Not run)
```

```
add_manual_locked_constraints
    Add manually specified locked constraints
```


Description

Add constraints to a conservation planning problem() to ensure that solutions allocate (or do not allocate) specific planning units to specific management zones. This function offers more finegrained control than the add_locked_in_constraints() and add_locked_out_constraints() functions.

```
Usage
    add_manual_locked_constraints(x, data)
    ## S4 method for signature 'ConservationProblem,data.frame'
    add_manual_locked_constraints(x, data)
    ## S4 method for signature 'ConservationProblem,tbl_df'
    add_manual_locked_constraints(x, data)
```


Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
data data.frame or tibble::tibble() object. See the Data format section for more information.

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Data format

The argument to data should be a data. frame with the following fields (columns):
pu integer planning unit identifier.
zone character names of zones. Note that this argument is optional for arguments to x that contain a single zone.
status numeric values indicating how much of each planning unit should be allocated to each zone in the solution. For example, the numeric values could be binary values (i.e. zero or one) for problems containing binary-type decision variables (using the add_binary_decisions() function). Alternatively, the numeric values could be proportions (e.g. 0.5) for problems containing proportion-type decision variables (using the add_proportion_decisions()).

See Also

See constraints for an overview of all functions for adding constraints.
Other constraints: add_contiguity_constraints(), add_feature_contiguity_constraints(), add_linear_constraints(), add_locked_in_constraints(), add_locked_out_constraints(), add_mandatory_allocation_constraints, ConservationProblem-method, add_manual_bounded_constraints()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_polygons, sim_features, sim_pu_zones_polygons,
    sim_features_zones)
# create minimal problem
p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with locked in constraints using add_locked_constraints
p2 <- p1 %>% add_locked_in_constraints("locked_in")
# create identical problem using add_manual_locked_constraints
locked_data <- data.frame(pu = which(sim_pu_polygons$locked_in),
    status = 1)
p3 <- p1 %>% add_manual_locked_constraints(locked_data)
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
# plot solutions
par(mfrow = c(1,3), mar = c(0, 0, 4.1, 0))
plot(s1, main = "none locked in")
plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s2, main = "add_locked_in_constraints")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)
plot(s3, main = "add_manual_constraints")
plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE)
## End(Not run)
# create minimal problem with multiple zones
p4 <- problem(sim_pu_zones_polygons, sim_features_zones,
    c("cost_1", "cost_2", "cost_3")) %>%
```

```
        add_min_set_objective() %>%
        add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
    ncol = 3)) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
# create data.frame with the following constraints:
# planning units 1, 2, and 3 must be allocated to zone 1 in the solution
# planning units 4, and 5 must be allocated to zone 2 in the solution
# planning units 8 and 9 must not be allocated to zone 3 in the solution
locked_data2 <- data.frame(pu = c(1, 2, 3, 4, 5, 8, 9),
            zone = c(rep("zone_1", 3), rep("zone_2", 2),
                    rep("zone_3", 2)),
    status = c(rep(1, 5), rep(0, 2)))
# print locked constraint data
print(locked_data2)
# create problem with added constraints
p5 <- p4 %>% add_manual_locked_constraints(locked_data2)
## Not run:
# solve problem
s4 <- solve(p4)
s5 <- solve(p5)
# create two new columns representing the zone id that each planning unit
# was allocated to in the two solutions
s4$solution <- category_vector(s4@data[, c("solution_1_zone_1",
                                    "solution_1_zone_2",
                                    "solution_1_zone_3")])
s4$solution <- factor(s4$solution)
s4$solution_locked <- category_vector(s5@data[, c("solution_1_zone_1",
    "solution_1_zone_2",
    "solution_1_zone_3")])
s4$solution_locked <- factor(s4$solution_locked)
# plot solutions
spplot(s4, zcol = c("solution", "solution_locked"), axes = FALSE,
    box = FALSE)
## End(Not run)
```

add_manual_targets Add manual targets

Description

Set targets for a conservation planning problem() by manually specifying all the required information for each target. This function is useful because it can be used to customize all aspects
of a target. For most cases, targets can be specified using the add_absolute_targets() and add_relative_targets() functions. However, this function can be used to (i) mix absolute and relative targets for different features and zones, (ii) set targets that pertain to the allocations of planning units in multiple zones, and (iii) set targets that require different senses (e.g. targets which specify the solution should not exceed a certain quantity using "<=" values).

Usage

```
add_manual_targets(x, targets)
## S4 method for signature 'ConservationProblem,data.frame'
add_manual_targets(x, targets)
    ## S4 method for signature 'ConservationProblem,tbl_df'
    add_manual_targets(x, targets)
```


Arguments

```
X
```

problem() (i.e. ConservationProblem) object.
targets data.frame or tibble::tibble() object. See the Target data format section for more information.

Details

Targets are used to specify the minimum amount or proportion of a feature's distribution that needs to be protected. Most conservation planning problems require targets with the exception of the maximum cover (see add_max_cover_objective()) and maximum utility (see add_max_utility_objective()) problems. Attempting to solve problems with objectives that require targets without specifying targets will throw an error.
For problems associated with multiple management zones, this function can be used to set targets that each pertain to a single feature and a single zone. To set targets which can be met through allocating different planning units to multiple zones, see the add_manual_targets() function. An example of a target that could be met through allocations to multiple zones might be where each management zone is expected to result in a different amount of a feature and the target requires that the total amount of the feature in all zones must exceed a certain threshold. In other words, the target does not require that any single zone secure a specific amount of the feature, but the total amount held in all zones must secure a specific amount. Thus the target could, potentially, be met through allocating all planning units to any specific management zone, or through allocating the planning units to different combinations of management zones.

Value

Object (i.e. ConservationProblem) with the targets added to it.

Targets format

The targets argument should be a data.frame with the following fields (columns):
feature character name of features in argument to x.
zone character name of zones in argument to x. This field (column) is optional for arguments to x that do not contain multiple zones.
type character describing the type of target. Acceptable values include "absolute" and "relative". These values correspond to add_absolute_targets(), and add_relative_targets() respectively.
sense character sense of the target. Acceptable values include: ">=", "<=", and "=". This field (column) is optional and if it is missing then target senses will default to ">=" values.
target numeric target threshold.

See Also

See targets for an overview of all functions for adding targets.
Other targets: add_absolute_targets(), add_loglinear_targets(), add_relative_targets()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create problem with 10% relative targets
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create equivalent problem using add_manual_targets
p2 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_manual_targets(data.frame(feature = names(sim_features),
                                    type = "relative", sense = ">=",
                                    target = 0.1)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(s2, main = "solution", axes = FALSE, box = FALSE)
```

```
## End(Not run)
# create problem with targets set for only a few features
p3 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_manual_targets(data.frame(
                feature = names(sim_features)[1:3], type = "relative",
        sense = ">=", target = 0.1)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# plot solution
plot(s3, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create problem that aims to secure at least 10% of the habitat for one
# feature whilst ensuring that the solution does not capture more than
# 20 units habitat for different feature
# create problem with targets set for only a few features
p4 <- problem(sim_pu_raster, sim_features[[1:2]]) %>%
    add_min_set_objective() %>%
    add_manual_targets(data.frame(
        feature = names(sim_features)[1:2], type = "relative",
        sense = c(">=", "<="), target = c(0.1, 0.2))) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s4 <- solve(p4)
# plot solution
plot(s4, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create a multi-zone problem that requires a specific amount of each
# feature in each zone
targets_matrix <- matrix(rpois(15, 1), nrow = 5, ncol = 3)
p5 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_absolute_targets(targets_matrix) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s5 <- solve(p5)
# plot solution
plot(category_layer(s5), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

```
# create equivalent problem using add_manual_targets
targets_dataframe <- expand.grid(feature = feature_names(sim_features_zones),
                zone = zone_names(sim_features_zones),
                sense = ">=", type = "absolute")
targets_dataframe$target <- c(targets_matrix)
p6 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_manual_targets(targets_dataframe) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s6 <- solve(p6)
# plot solution
plot(category_layer(s6), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create a problem that requires a total of 20 units of habitat to be
# captured for two species. This can be achieved through representing
# habitat in two zones. The first zone represents a full restoration of the
# habitat and a second zone represents a partial restoration of the habitat
# Thus only half of the benefit that would have been gained from the full
# restoration is obtained when planning units are allocated a partial
# restoration
# create data
spp_zone1 <- as.list(sim_features_zones)[[1]][[1:2]]
spp_zone2 <- spp_zone1 * 0.5
costs <- sim_pu_zones_stack[[1:2]]
# create targets
targets_dataframe2 <- tibble::tibble(
    feature = names(spp_zone1), zone = list(c("z1", "z2"), c("z1", "z2")),
    sense = c(">=", ">="), type = c("absolute", "absolute"),
    target = c(20, 20))
# create problem
p7 <- problem(costs, zones(spp_zone1, spp_zone2,
                                    feature_names = names(spp_zone1),
                                    zone_names = c("z1", "z2"))) %>%
        add_min_set_objective() %>%
        add_manual_targets(targets_dataframe2) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s7 <- solve(p7)
# plot solution
plot(category_layer(s7), main = "solution", axes = FALSE, box = FALSE)
```

\#\# End(Not run)

```
add_max_cover_objective
```

Add maximum coverage objective

Description

Set the objective of a conservation planning problem() to represent at least one instance of as many features as possible within a given budget. This objective does not use targets, and feature weights should be used instead to increase the representation of certain features by a solution.

Usage

add_max_cover_objective(x, budget)

Arguments

x
problem() (i.e. ConservationProblem) object.
budget numeric value specifying the maximum expenditure of the prioritization. For problems with multiple zones, the argument to budget can be a single numeric value to specify a budget for the entire solution or a numeric vector to specify a budget for each each management zone.

Details

The maximum coverage objective seeks to find the set of planning units that maximizes the number of represented features, while keeping cost within a fixed budget. Here, features are treated as being represented if the reserve system contains at least a single instance of a feature (i.e. an amount greater than 1). This formulation has often been used in conservation planning problems dealing with binary biodiversity data that indicate the presence/absence of suitable habitat (e.g. Church \& Velle 1974). Additionally, weights can be used to favor the representation of certain features over other features (see add_feature_weights()). Check out the add_max_features_objective() for a more generalized formulation which can accommodate user-specified representation targets.

Value

Object (i.e. ConservationProblem) with the objective added to it.

Mathematical formulation

This objective is based on the maximum coverage reserve selection problem (Church \& Velle 1974; Church et al. 1996). The maximum coverage objective for the reserve design problem can be expressed mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

$$
\operatorname{Maximize} \sum_{i=1}^{I}-s c_{i} x_{i}+\sum_{j=1}^{J} y_{j} w_{j} \text { subjectto } \sum_{i=1}^{I} x_{i} r_{i j} \geq y_{j} \times 1 \forall j \in J \sum_{i=1}^{I} x_{i} c_{i} \leq B
$$

Here, x_{i} is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), $r_{i j}$ is the amount of feature j in planning unit i, y_{j} indicates if the solution has meet the target t_{j} for feature j, and w_{j} is the weight for feature j (defaults to 1 for all features; see add_feature_weights() to specify weights). Additionally, B is the budget allocated for the solution, c_{i} is the cost of planning unit i, and s is a scaling factor used to shrink the costs so that the problem will return a cheapest solution when there are multiple solutions that represent the same amount of all features within the budget.

Notes

In early versions (<3.0.0.0), the mathematical formulation underpinning this function was very different. Specifically, as described above, the function now follows the formulations outlined in Church et al. (1996). The old formulation is now provided by the add_max_utility_objective() function.

References

Church RL and Velle CR (1974) The maximum covering location problem. Regional Science, 32: 101-118.

Church RL, Stoms DM, and Davis FW (1996) Reserve selection as a maximum covering location problem. Biological Conservation, 76: 105-112.

See Also

See objectives for an overview of all functions for adding objectives. Also, see add_feature_weights() to specify weights for different features.

```
Other objectives: add_max_features_objective(), add_max_phylo_div_objective(), add_max_phylo_end_objectiv
add_max_utility_objective(), add_min_largest_shortfall_objective(), add_min_set_objective(),
add_min_shortfall_objective()
```


Examples

```
# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)
# threshold the feature data to generate binary biodiversity data
sim_binary_features <- sim_features
thresholds <- raster::quantile(sim_features, probs = 0.95, names = FALSE,
                    na.rm = TRUE)
for (i in seq_len(raster::nlayers(sim_features)))
    sim_binary_features[[i]] <- as.numeric(raster::values(sim_features[[i]]) >
                            thresholds[[i]])
# create problem with maximum utility objective
p1 <- problem(sim_pu_raster, sim_binary_features) %>%
        add_max_cover_objective(500) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
## Not run:
# solve problem
```

```
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# threshold the multi-zone feature data to generate binary biodiversity data
sim_binary_features_zones <- sim_features_zones
for (z in number_of_zones(sim_features_zones)) {
    thresholds <- raster::quantile(sim_features_zones[[z]], probs = 0.95,
                    names = FALSE, na.rm = TRUE)
    for (i in seq_len(number_of_features(sim_features_zones))) {
        sim_binary_features_zones[[z]][[i]] <- as.numeric(
            raster::values(sim_features_zones[[z]][[i]]) > thresholds[[i]])
    }
}
# create multi-zone problem with maximum utility objective that
# has a single budget for all zones
p2 <- problem(sim_pu_zones_stack, sim_binary_features_zones) %>%
        add_max_cover_objective(800) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with maximum utility objective that
# has separate budgets for each zone
p3 <- problem(sim_pu_zones_stack, sim_binary_features_zones) %>%
    add_max_cover_objective(c(400, 400, 400)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

```
add_max_features_objective
```


Description

Set the objective of a conservation planning problem() to fulfill as many targets as possible while ensuring that the cost of the solution does not exceed a budget.

Usage

add_max_features_objective(x, budget)

Arguments

x
problem() (i.e. ConservationProblem) object.
budget numeric value specifying the maximum expenditure of the prioritization. For problems with multiple zones, the argument to budget can be (i) a single numeric value to specify a single budget for the entire solution or (ii) a numeric vector to specify a separate budget for each management zone.

Details

The maximum feature representation objective is an enhanced version of the maximum coverage objective add_max_cover_objective() because targets can be used to ensure that a certain amount of each feature is required in order for them to be adequately represented (similar to the minimum set objective (see add_min_set_objective()). This objective finds the set of planning units that meets representation targets for as many features as possible while staying within a fixed budget (inspired by Cabeza and Moilanen 2001). Additionally, weights can be used add_feature_weights()). If multiple solutions can meet the same number of weighted targets while staying within budget, the cheapest solution is returned.

Value

Object (i.e. ConservationProblem) with the objective added to it.

Mathematical formulation

This objective can be expressed mathematically for a set of planning units i) and a set of features (J indexed by j) as:

$$
\operatorname{Maximize} \sum_{i=1}^{I}-s c_{i} x_{i}+\sum_{j=1}^{J} y_{j} w_{j} \text { subjectto } \sum_{i=1}^{I} x_{i} r_{i j} \geq y_{j} t_{j} \forall j \in J \sum_{i=1}^{I} x_{i} c_{i} \leq B
$$

Here, x_{i} is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), $r_{i j}$ is the amount of feature j in planning unit i, t_{j} is the representation target for feature j, y_{j} indicates if the solution has meet the target t_{j} for feature j, and w_{j} is the weight for feature j (defaults to 1 for all features; see add_feature_weights() to specify weights). Additionally, B is the budget allocated for the solution, c_{i} is the cost of planning unit i, and s is a scaling factor used to shrink the costs so that the problem will return a cheapest solution when there are multiple solutions that represent the same amount of all features within the budget.

References

Cabeza M and Moilanen A (2001) Design of reserve networks and the persistence of biodiversity. Trends in Ecology \& Evolution, 16: 242-248.

See Also

See objectives for an overview of all functions for adding objectives. Also, see targets for an overview of all functions for adding targets, and add_feature_weights() to specify weights for different features.

Other objectives: add_max_cover_objective(), add_max_phylo_div_objective(), add_max_phylo_end_objective() add_max_utility_objective(), add_min_largest_shortfall_objective(), add_min_set_objective(), add_min_shortfall_objective()

Examples

```
# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)
# create problem with maximum features objective
p1 <- problem(sim_pu_raster, sim_features) %>%
        add_max_features_objective(1800) %>%
        add_relative_targets(0.1) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with maximum features objective,
# with 10% representation targets for each feature, and set
# a budget such that the total maximum expenditure in all zones
# cannot exceed 3000
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_max_features_objective(3000) %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with maximum features objective,
```

```
# with 10% representation targets for each feature, and set
# separate budgets for each management zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_max_features_objective(c(3000, 3000, 3000)) %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

```
add_max_phylo_div_objective
```

 Add maximum phylogenetic diversity objective

Description

Set the objective of a conservation planning problem() to maximize the phylogenetic diversity of the features represented in the solution subject to a budget. This objective is similar to add_max_features_objective() except that emphasis is placed on representing a phylogenetically diverse set of species, rather than as many features as possible (subject to weights). This function was inspired by Faith (1992) and Rodrigues et al. (2002).

Usage

add_max_phylo_div_objective(x, budget, tree)

Arguments

x
problem() (i.e. ConservationProblem) object.
budget numeric value specifying the maximum expenditure of the prioritization. For problems with multiple zones, the argument to budget can be (i) a single numeric value to specify a single budget for the entire solution or (ii) a numeric vector to specify a separate budget for each management zone.
tree phylo() object specifying a phylogenetic tree for the conservation features.

Details

The maximum phylogenetic diversity objective finds the set of planning units that meets representation targets for a phylogenetic tree while staying within a fixed budget. If multiple solutions can meet all targets while staying within budget, the cheapest solution is chosen. Note that this objective is similar to the maximum features objective (add_max_features_objective()) in that it allows
for both a budget and targets to be set for each feature. However, unlike the maximum feature objective, the aim of this objective is to maximize the total phylogenetic diversity of the targets met in the solution, so if multiple targets are provided for a single feature, the problem will only need to meet a single target for that feature for the phylogenetic benefit for that feature to be counted when calculating the phylogenetic diversity of the solution. In other words, for multi-zone problems, this objective does not aim to maximize the phylogenetic diversity in each zone, but rather this objective aims to maximize the phylogenetic diversity of targets that can be met through allocating planning units to any of the different zones in a problem. This can be useful for problems where targets pertain to the total amount held for each feature across multiple zones. For example, each feature might have a non-zero amount of suitable habitat in each planning unit when the planning units are assigned to a (i) not restored, (ii) partially restored, or (iii) completely restored management zone. Here each target corresponds to a single feature and can be met through the total amount of habitat in planning units present to the three zones.

Value

Object (i.e. ConservationProblem) with the objective added to it.

Mathematical formulation

This objective can be expressed mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

Maximize $\sum_{i=1}^{I}-s c_{i} x_{i}+\sum_{j=1}^{J} m_{b} l_{b}$ subjectto $\sum_{i=1}^{I} x_{i} r_{i j} \geq y_{j} t_{j} \forall j \in J m_{b} \leq y_{j} \forall j \in T(b) \sum_{i=1}^{I} x_{i} c_{i} \leq B$

Here, x_{i} is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), $r_{i j}$ is the amount of feature j in planning unit i, t_{j} is the representation target for feature j, y_{j} indicates if the solution has meet the target t_{j} for feature j. Additionally, T represents a phylogenetic tree containing features j and has the branches b associated within lengths l_{b}. The binary variable m_{b} denotes if at least one feature associated with the branch b has met its representation as indicated by y_{j}. For brevity, we denote the features j associated with branch b using $T(b)$. Finally, B is the budget allocated for the solution, c_{i} is the cost of planning unit i, and s is a scaling factor used to shrink the costs so that the problem will return a cheapest solution when there are multiple solutions that represent the same amount of all features within the budget.

Notes

In early versions, this function was named as the add_max_phylo_div_objective function.

References

Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61: 1-10.

Rodrigues ASL and Gaston KJ (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation, 105: 103-111.

See Also

See objectives for an overview of all functions for adding objectives. Also, see targets for an overview of all functions for adding targets, and add_feature_weights() to specify weights for different features.

Other objectives: add_max_cover_objective(), add_max_features_objective(), add_max_phylo_end_objective(), add_max_utility_objective(), add_min_largest_shortfall_objective(), add_min_set_objective(), add_min_shortfall_objective()

Examples

```
# load ape package
require(ape)
# load data
data(sim_pu_raster, sim_features, sim_phylogeny, sim_pu_zones_stack,
    sim_features_zones)
# plot the simulated phylogeny
## Not run:
par(mfrow = c(1, 1))
plot(sim_phylogeny, main = "phylogeny")
## End(Not run)
# create problem with a maximum phylogenetic diversity objective,
# where each feature needs 10% of its distribution to be secured for
# it to be adequately conserved and a total budget of 1900
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_max_phylo_div_objective(1900, sim_phylogeny) %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# find out which features have their targets met
r1 <- eval_target_coverage_summary(p1, s1)
print(r1, width = Inf)
# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",
    tip.color = replace(
        rep("black", nlayers(sim_features)),
        sim_phylogeny$tip.label %in% r1$feature[r1$met],
        "red"))
## End(Not run)
# rename the features in the example phylogeny for use with the
```

```
# multi-zone data
sim_phylogeny$tip.label <- feature_names(sim_features_zones)
# create targets for a multi-zone problem. Here, each feature needs a total
# of 10 units of habitat to be conserved among the three zones to be
# considered adequately conserved
targets <- tibble::tibble(
    feature = feature_names(sim_features_zones),
    zone = list(zone_names(sim_features_zones))[rep(1,
                number_of_features(sim_features_zones))],
    type = rep("absolute", number_of_features(sim_features_zones)),
    target = rep(10, number_of_features(sim_features_zones)))
# create a multi-zone problem with a maximum phylogenetic diversity
# objective, where the total expenditure in all zones is 5000.
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_max_phylo_div_objective(5000, sim_phylogeny) %>%
    add_manual_targets(targets) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
# find out which features have their targets met
r2 <- eval_target_coverage_summary(p2, s2)
print(r2, width = Inf)
# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",
    tip.color = replace(rep("black", nlayers(sim_features)),
                which(r2$met), "red"))
## End(Not run)
# create a multi-zone problem with a maximum phylogenetic diversity
# objective, where each zone has a separate budget.
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_max_phylo_div_objective(c(2500, 500, 2000), sim_phylogeny) %>%
    add_manual_targets(targets) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)
# find out which features have their targets met
r3 <- eval_target_coverage_summary(p3, s3)
```

```
print(r3, width = Inf)
# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",
    tip.color = replace(rep("black", nlayers(sim_features)),
                    which(r3$met), "red"))
## End(Not run)
```

add_max_phylo_end_objective
Add maximum phylogenetic endemism objective

Description

Set the objective of a conservation planning problem() to maximize the phylogenetic endemism of the features represented in the solution subject to a budget. This objective is similar to add_max_phylo_end_objective() except that emphasis is placed on representing species with geographically restricted evolutionary histories, instead representing as much evolutionary history as possible. This function was inspired by Faith (1992), Rodrigues et al. (2002), and Rosauer et al. (2009).

Usage

add_max_phylo_end_objective(x, budget, tree)

Arguments

budget numeric value specifying the maximum expenditure of the prioritization. For
x
tree
problem() (i.e. ConservationProblem) object. problems with multiple zones, the argument to budget can be (i) a single numeric value to specify a single budget for the entire solution or (ii) a numeric vector to specify a separate budget for each management zone.

Details

The maximum phylogenetic endemism objective finds the set of planning units that meets representation targets for a phylogenetic tree while staying within a fixed budget. If multiple solutions can meet all targets while staying within budget, the cheapest solution is chosen. Note that this objective is similar to the maximum features objective (add_max_features_objective()) in that it allows for both a budget and targets to be set for each feature. However, unlike the maximum feature objective, the aim of this objective is to maximize the total phylogenetic endemism of the targets met in the solution, so if multiple targets are provided for a single feature, the problem will only need to meet a single target for that feature for the phylogenetic benefit for that feature to be counted when calculating the phylogenetic endemism of the solution. In other words, for multizone problems, this objective does not aim to maximize the phylogenetic endemism in each zone, but rather this objective aims to maximize the phylogenetic endemism of targets that can be met
through allocating planning units to any of the different zones in a problem. This can be useful for problems where targets pertain to the total amount held for each feature across multiple zones. For example, each feature might have a non-zero amount of suitable habitat in each planning unit when the planning units are assigned to a (i) not restored, (ii) partially restored, or (iii) completely restored management zone. Here each target corresponds to a single feature and can be met through the total amount of habitat in planning units present to the three zones.

Value

Object (i.e. ConservationProblem) with the objective added to it.

Mathematical formulation

This objective can be expressed mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

$$
\operatorname{Maximize} \sum_{i=1}^{I}-s c_{i} x_{i}+\sum_{j=1}^{J} m_{b} l_{b} \frac{1}{a_{b}} \text { subjectto } \sum_{i=1}^{I} x_{i} r_{i j} \geq y_{j} t_{j} \forall j \in J m_{b} \leq y_{j} \forall j \in T(b) \sum_{i=1}^{I} x_{i} c_{i} \leq B
$$

Here, x_{i} is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), $r_{i j}$ is the amount of feature j in planning unit i, t_{j} is the representation target for feature j, y_{j} indicates if the solution has meet the target t_{j} for feature j. Additionally, T represents a phylogenetic tree containing features j and has the branches b associated within lengths l_{b}. Each branch $b \in B$ is associated with a total amount a_{b} indicating the total geographic extent or amount of habitat. The a_{b} variable for a given branch is calculated by summing the $r_{i j}$ data for all features $j \in J$ that are associated with the branch. The binary variable m_{b} denotes if at least one feature associated with the branch b has met its representation as indicated by y_{j}. For brevity, we denote the features j associated with branch b using $T(b)$. Finally, B is the budget allocated for the solution, c_{i} is the cost of planning unit i, and s is a scaling factor used to shrink the costs so that the problem will return a cheapest solution when there are multiple solutions that represent the same amount of all features within the budget.

References

Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61 : 1-10.

Rodrigues ASL and Gaston KJ (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation, 105: 103-111.
Rosauer D, Laffan SW, Crisp, MD, Donnellan SC and Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 18: 4061-4072.

See Also

See objectives for an overview of all functions for adding objectives. Also, see targets for an overview of all functions for adding targets, and add_feature_weights() to specify weights for different features.

Other objectives: add_max_cover_objective(), add_max_features_objective(), add_max_phylo_div_objective(), add_max_utility_objective(), add_min_largest_shortfall_objective(), add_min_set_objective(), add_min_shortfall_objective()

Examples

```
# load ape package
require(ape)
# load data
data(sim_pu_raster, sim_features, sim_phylogeny, sim_pu_zones_stack,
    sim_features_zones)
# plot the simulated phylogeny
## Not run:
par(mfrow = c(1, 1))
plot(sim_phylogeny, main = "phylogeny")
## End(Not run)
# create problem with a maximum phylogenetic endemism objective,
# where each feature needs 10% of its distribution to be secured for
# it to be adequately conserved and a total budget of 1900
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_max_phylo_end_objective(1900, sim_phylogeny) %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# find out which features have their targets met
r1 <- eval_target_coverage_summary(p1, s1)
print(r1, width = Inf)
# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",
    tip.color = replace(
        rep("black", nlayers(sim_features)),
        sim_phylogeny$tip.label %in% r1$feature[r1$met],
        "red"))
```

\#\# End(Not run)
\# rename the features in the example phylogeny for use with the
\# multi-zone data
sim_phylogeny\$tip.label <- feature_names(sim_features_zones)
\# create targets for a multi-zone problem. Here, each feature needs a total
\# of 10 units of habitat to be conserved among the three zones to be
\# considered adequately conserved

```
targets <- tibble::tibble(
    feature = feature_names(sim_features_zones),
    zone = list(zone_names(sim_features_zones))[rep(1,
                number_of_features(sim_features_zones))],
    type = rep("absolute", number_of_features(sim_features_zones)),
    target = rep(10, number_of_features(sim_features_zones)))
# create a multi-zone problem with a maximum phylogenetic endemism
# objective, where the total expenditure in all zones is 5000.
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
            add_max_phylo_end_objective(5000, sim_phylogeny) %>%
            add_manual_targets(targets) %>%
            add_binary_decisions() %>%
            add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
# find out which features have their targets met
r2 <- eval_target_coverage_summary(p2, s2)
print(r2, width = Inf)
# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",
    tip.color = replace(rep("black", nlayers(sim_features)),
                            which(r2$met), "red"))
## End(Not run)
# create a multi-zone problem with a maximum phylogenetic endemism
# objective, where each zone has a separate budget.
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_max_phylo_end_objective(c(2500, 500, 2000), sim_phylogeny) %>%
    add_manual_targets(targets) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)
# find out which features have their targets met
r3 <- eval_target_coverage_summary(p3, s3)
print(r3, width = Inf)
# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",
    tip.color = replace(rep("black", nlayers(sim_features)),
            which(r3$met), "red"))
```


Description

Set the objective of a conservation planning problem() to secure as much of the features as possible without exceeding a budget. This objective does not use targets, and feature weights should be used instead to increase the representation of certain features by a solution. Note that this objective does not aim to maximize as much of each feature as possible, and so often results in solutions that are heavily biased towards just a few features.

Usage

add_max_utility_objective(x, budget)

Arguments

x
problem() (i.e. ConservationProblem) object.
budget numeric value specifying the maximum expenditure of the prioritization. For problems with multiple zones, the argument to budget can be (i) a single numeric value to specify a single budget for the entire solution or (ii) a numeric vector to specify a separate budget for each management zone.

Details

The maximum utility objective seeks to maximize the overall level of representation across a suite of conservation features, while keeping cost within a fixed budget. Additionally, weights can be used to favor the representation of certain features over other features (see add_feature_weights()).

Value

Object (i.e. ConservationProblem) with the objective added to it.

Mathematical formulation

This objective can be expressed mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

$$
\text { Maximize } \sum_{i=1}^{I}-s c_{i} x_{i}+\sum_{j=1}^{J} a_{j} w_{j} \text { subjectto }_{j}=\sum_{i=1}^{I} x_{i} r_{i j} \forall j \in J \sum_{i=1}^{I} x_{i} c_{i} \leq B
$$

Here, x_{i} is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), $r_{i j}$ is the amount of feature j in planning unit i, A_{j} is the amount of feature j represented in in the solution, and w_{j} is the weight for feature j (defaults to 1 for all features; see
add_feature_weights() to specify weights). Additionally, B is the budget allocated for the solution, c_{i} is the cost of planning unit i, and s is a scaling factor used to shrink the costs so that the problem will return a cheapest solution when there are multiple solutions that represent the same amount of all features within the budget.

Notes

In early versions (<3.0.0.0), this function was named as the add_max_cover_objective function. It was renamed to avoid confusion with existing terminology.

See Also

See objectives for an overview of all functions for adding objectives. Also, see add_feature_weights() to specify weights for different features.
Other objectives: add_max_cover_objective(), add_max_features_objective(), add_max_phylo_div_objective(), add_max_phylo_end_objective(), add_min_largest_shortfall_objective(), add_min_set_objective(), add_min_shortfall_objective()

Examples

```
# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)
# create problem with maximum utility objective
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_max_utility_objective(5000) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with maximum utility objective that
# has a single budget for all zones
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_max_utility_objective(5000) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

```
# create multi-zone problem with maximum utility objective that
# has separate budgets for each zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %%%
    add_max_utility_objective(c(1000, 2000, 3000)) %>%
    add_binary_decisions() %%%
    add_default_solver(gap = 0, verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_min_largest_shortfall_objective
Add minimum largest shortfall objective

Description

Set the objective of a conservation planning problem() to minimize the largest target shorffall while ensuring that the cost of the solution does not exceed a budget. Note that if the target shortfall for a single feature cannot be decreased beyond a certain point (e.g. because all remaining planning units occupied by that feature are too costly or are locked out), then solutions may only use a small proportion of the specified budget.

Usage

add_min_largest_shortfall_objective(x, budget)

Arguments

X
budget
problem() (i.e. ConservationProblem) object.
numeric value specifying the maximum expenditure of the prioritization. For problems with multiple zones, the argument to budget can be (i) a single numeric value to specify a single budget for the entire solution or (ii) a numeric vector to specify a separate budget for each management zone.

Details

The minimum largest shortfall objective aims to find the set of planning units that minimize the largest shortfall for any of the representation targets-that is, the fraction of each target that remains unmet-for as many features as possible while staying within a fixed budget. This objective is different from the minimum shortfall objective (add_min_shortfall_objective()) because this objective minimizes the largest (maximum) target shortfall, whereas the minimum shortfall objective minimizes the total (weighted sum) of the target shortfalls. Note that this objective function is not compatible with feature weights (add_feature_weights()).

Value

Object (i.e. ConservationProblem) with the objective added to it.

Mathematical formulation

This objective can be expressed mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

$$
\text { Minimizelsubjectto } \sum_{i=1}^{I} x_{i} r_{i j}+y_{j} \geq t_{j} \forall j \in J l \geq \frac{y_{j}}{t_{j}} \forall j \in J \sum_{i=1}^{I} x_{i} c_{i} \leq B
$$

Here, x_{i} is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), $r_{i j}$ is the amount of feature j in planning unit i, and t_{j} is the representation target for feature j. Additionally, y_{j} denotes the target shortfall for the target t_{j} for feature j, and l denotes the largest target shortfall. Furthermore, B is the budget allocated for the solution, c_{i} is the cost of planning unit i. Note that y_{j} and s are continuous variables bounded between zero and infinity.

See Also

See objectives for an overview of all functions for adding objectives. Also, see targets for an overview of all functions for adding targets, and add_feature_weights() to specify weights for different features.
Other objectives: add_max_cover_objective(), add_max_features_objective(), add_max_phylo_div_objective(), add_max_phylo_end_objective(), add_max_utility_objective(), add_min_set_objective(), add_min_shortfall_objective()

Examples

```
# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)
# create problem with minimum largest shortfall objective
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_largest_shortfall_objective(1800) %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with minimum largest shortfall objective,
# with 10% representation targets for each feature, and set
# a budget such that the total maximum expenditure in all zones
```

```
# cannot exceed 3000
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_largest_shortfall_objective(3000) %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with minimum largest shortfall objective,
# with 10% representation targets for each feature, and set
# separate budgets for each management zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_largest_shortfall_objective(c(3000, 3000, 3000)) %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_min_set_objective Add minimum set objective

Description

Set the objective of a conservation planning problem() to minimize the cost of the solution whilst ensuring that all targets are met. This objective is similar to that used in Marxan and is detailed in Rodrigues et al. (2000).

Usage

add_min_set_objective(x)

Arguments

x
problem() (i.e. ConservationProblem) object.

Details

The minimum set objective - in the the context of systematic reserve design - seeks to find the set of planning units that minimizes the overall cost of a reserve network, while meeting a set of representation targets for the conservation features. This objective is equivalent to a simplified Marxan reserve design problem with the Boundary Length Modifier (BLM) set to zero. The difference between this objective and the Marxan software is that the targets for the features will always be met (and as such it does not use Species Penalty Factors).

Value

Object (i.e. ConservationProblem) with the objective added to it.

Mathematical formulation

This objective can be expressed mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

$$
\text { Minimize } \sum_{i=1}^{I} x_{i} c_{i} \text { subjectto } \sum_{i=1}^{I} x_{i} r_{i j} \geq T_{j} \forall j \in J
$$

Here, x_{i} is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), c_{i} is the cost of planning unit $i, r_{i j}$ is the amount of feature j in planning unit i, and T_{j} is the target for feature j. The first term is the objective function and the second is the set of constraints. In words this says find the set of planning units that meets all the representation targets while minimizing the overall cost.

References

Rodrigues AS, Cerdeira OJ, and Gaston KJ (2000) Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems. Ecography, 23: 565-574.

See Also

See objectives for an overview of all functions for adding objectives. Also see targets for an overview of all functions for adding targets.
Other objectives: add_max_cover_objective(), add_max_features_objective(), add_max_phylo_div_objective(), add_max_phylo_end_objective(), add_max_utility_objective(), add_min_largest_shortfall_objective(), add_min_shortfall_objective()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem with minimum set objective
p1 <- problem(sim_pu_raster, sim_features) %>%
```

```
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
    ## Not run:
    # solve problem
    s1 <- solve(p1)
    # plot solution
    plot(s1, main = "solution", axes = FALSE, box = FALSE)
    ## End(Not run)
    # create multi-zone problem with minimum set objective
    targets_matrix <- matrix(rpois(15, 1), nrow = 5, ncol = 3)
    p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_absolute_targets(targets_matrix) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_min_shortfall_objective
Add minimum shortfall objective

Description

Set the objective of a conservation planning problem() to minimize the overall shortfall for as many targets as possible while ensuring that the cost of the solution does not exceed a budget.

Usage

add_min_shortfall_objective(x, budget)

Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
budget numeric value specifying the maximum expenditure of the prioritization. For problems with multiple zones, the argument to budget can be (i) a single numeric value to specify a single budget for the entire solution or (ii) a numeric vector to specify a separate budget for each management zone.

Details

The minimum shortfall objective aims to find the set of planning units that minimize the overall (weighted sum) shortfall for the representation targets-that is, the fraction of each target that remains unmet-for as many features as possible while staying within a fixed budget (inspired by Table 1, equation IV, Arponen et al. 2005). Additionally, weights can be used to favor the representation of certain features over other features (see add_feature_weights().

Value

Object (i.e. ConservationProblem) with the objective added to it.

Mathematical formulation

This objective can be expressed mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

$$
\text { Minimize } \sum_{j=1}^{J} w_{j} \frac{y_{j}}{t_{j}} \text { subjectto } \sum_{i=1}^{I} x_{i} r_{i j}+y_{j} \geq t_{j} \forall j \in J \sum_{i=1}^{I} x_{i} c_{i} \leq B
$$

Here, x_{i} is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), $r_{i j}$ is the amount of feature j in planning unit i, t_{j} is the representation target for feature j, y_{j} denotes the representation shortfall for the target t_{j} for feature j, and w_{j} is the weight for feature j (defaults to 1 for all features; see add_feature_weights() to specify weights). Additionally, B is the budget allocated for the solution, c_{i} is the cost of planning unit i. Note that y_{j} is a continuous variable bounded between zero and infinity, and denotes the shortfall for target j.

References

Arponen A, Heikkinen RK, Thomas CD, and Moilanen A (2005) The value of biodiversity in reserve selection: representation, species weighting, and benefit functions. Conservation Biology, 19: 2009-2014.

See Also

See objectives for an overview of all functions for adding objectives. Also, see targets for an overview of all functions for adding targets, and add_feature_weights() to specify weights for different features.
Other objectives: add_max_cover_objective(), add_max_features_objective(), add_max_phylo_div_objective(), add_max_phylo_end_objective(), add_max_utility_objective(), add_min_largest_shortfall_objective(), add_min_set_objective()

Examples

```
# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)
# create problem with minimum shortfall objective
p1 <- problem(sim_pu_raster, sim_features) %>%
```

```
    add_min_shortfall_objective(1800) %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with minimum shortfall objective,
# with 10% representation targets for each feature, and set
# a budget such that the total maximum expenditure in all zones
# cannot exceed 3000
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_shortfall_objective(3000) %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# create multi-zone problem with minimum shortfall objective,
# with 10% representation targets for each feature, and set
# separate budgets for each management zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_shortfall_objective(c(3000, 3000, 3000)) %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_neighbor_constraints

Description

Add constraints to a conservation planning problem() to ensure that all selected planning units in the solution have at least a certain number of neighbors that are also selected in the solution.

Usage

```
## S4 method for signature 'ConservationProblem,ANY,ANY,ANY'
add_neighbor_constraints(x, k, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,data.frame'
add_neighbor_constraints(x, k, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,matrix'
add_neighbor_constraints(x, k, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,array'
add_neighbor_constraints(x, k, zones, data)
```


Arguments

x
k
zones
data units are neighbors with each other. The argument defaults to NULL which means that the neighborhood data is calculated automatically using the adjacency_matrix() function. See the Data format section for more information.

Details

This function uses neighborhood data identify solutions that surround planning units with a minimum number of neighbors. It was inspired by the mathematical formulations detailed in Billionnet (2013) and Beyer et al. (2016).

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Data format

The argument to data can be specified using the following formats:
data as a NULL value neighborhood data should be calculated automatically using the adjacency_matrix() function. This is the default argument. Note that the neighborhood data must be manually defined using one of the other formats below when the planning unit data in the argument to x is not spatially referenced (e.g. in data. frame or numeric format).
data as a matrix/Matrix object where rows and columns represent different planning units and the value of each cell indicates if the two planning units are neighbors or not. Cell values should be binary numeric values (i.e. one or zero). Cells that occur along the matrix diagonal have no effect on the solution at all because each planning unit cannot be a neighbor with itself.
data as a data. frame object containing the fields (columns) "id1", "id2", and "boundary". Here, each row denotes the connectivity between two planning units following the Marxan format. The field boundary should contain binary numeric values that indicate if the two planning units specified in the fields "id1" and "id2" are neighbors or not. This data can be used to describe symmetric or asymmetric relationships between planning units. By default, input data is assumed to be symmetric unless asymmetric data is also included (e.g. if data is present for planning units 2 and 3 , then the same amount of connectivity is expected for planning units 3 and 2, unless connectivity data is also provided for planning units 3 and 2). If the argument to x contains multiple zones, then the columns "zone1" and "zone2" can optionally be provided to manually specify if the neighborhood data pertain to specific zones. The fields "zone1" and "zone2" should contain the character names of the zones. If the columns "zone1" and "zone2" are present, then the argument to zones must be NULL.
data as an array object containing four-dimensions where binary numeric values indicate if planning unit should be treated as being neighbors with every other planning unit when they are allocated to every combination of management zone. The first two dimensions (i.e. rows and columns) correspond to the planning units, and second two dimensions correspond to the management zones. For example, if the argument to data had a value of 1 at the index data[1, $2,3,4]$ this would indicate that planning unit 1 and planning unit 2 should be treated as neighbors when they are allocated to zones 3 and 4 respectively.

References

Beyer HL, Dujardin Y, Watts ME, and Possingham HP (2016) Solving conservation planning problems with integer linear programming. Ecological Modelling, 228: 14-22.

Billionnet A (2013) Mathematical optimization ideas for biodiversity conservation. European Journal of Operational Research, 231: 514-534.

See Also

See constraints for an overview of all functions for adding constraints.
Other constraints: add_feature_contiguity_constraints(), add_linear_constraints(), add_locked_in_constrair add_locked_out_constraints(), add_mandatory_allocation_constraints, ConservationProblem-method, add_manual_bounded_constraints(), add_manual_locked_constraints()

Examples

```
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_default_solver(verbose = FALSE)
# create problem with constraints that require 1 neighbor
# and neighbors are defined using a rook-style neighborhood
p2 <- p1 %>% add_neighbor_constraints(1)
# create problem with constraints that require 2 neighbor
# and neighbors are defined using a rook-style neighborhood
p3 <- p1 %>% add_neighbor_constraints(2)
# create problem with constraints that require 3 neighbor
# and neighbors are defined using a queen-style neighborhood
p4 <- p1 %>% add_neighbor_constraints(3,
    data = adjacency_matrix(sim_pu_raster, directions = 8))
## Not run:
# solve problems
s1 <- stack(list(solve(p1), solve(p2), solve(p3), solve(p4)))
# plot solutions
plot(s1, box = FALSE, axes = FALSE,
    main = c("basic solution", "1 neighbor", "2 neighbors", "3 neighbors"))
## End(Not run)
# create minimal problem with multiple zones
p5 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
    add_default_solver(verbose = FALSE)
# create problem where selected planning units require at least 2 neighbors
# for each zone and planning units are only considered neighbors if they
# are allocated to the same zone
z6 <- diag(3)
print(z6)
p6 <- p5 %>% add_neighbor_constraints(rep(2, 3), z6)
# create problem where the planning units in zone 1 don't explicitly require
# any neighbors, planning units in zone 2 require at least 1 neighbors, and
# planning units in zone 3 require at least 2 neighbors. As before, planning
# units are still only considered neighbors if they are allocated to the
# same zone
p7 <- p5 %>% add_neighbor_constraints(c(0, 1, 2), z6)
```

```
    # create problem given the same constraints as outlined above, except
    # that when determining which selected planning units are neighbors,
    # planning units that are allocated to zone 1 and zone 2 can also treated
    # as being neighbors with each other
    z8 <- diag(3)
    z8[1, 2] <- 1
    z8[2, 1] <- 1
    print(z8)
    p8 <- p5 %>% add_neighbor_constraints(c(0, 1, 2), z8)
    ## Not run:
# solve problems
s2 <- list(p5, p6, p7, p8)
s2 <- lapply(s2, solve)
s2 <- lapply(s2, category_layer)
s2 <- stack(s2)
names(s2) <- c("basic problem", "p6", "p7", "p8")
# plot solutions
plot(s2, main = names(s2), box = FALSE, axes = FALSE)
## End(Not run)
```

add_proportion_decisions

Add proportion decisions

Description

Add a proportion decision to a conservation planning problem(). This is a relaxed decision where a part of a planning unit can be prioritized as opposed to the entire planning unit. Typically, this decision has the assumed action of buying a fraction of a planning unit to include in decisions will solve much faster than problems that use binary-type decisions

Usage

add_proportion_decisions(x)

Arguments

x

```
problem() (i.e. ConservationProblem) object.
```


Details

Conservation planning problems involve making decisions on planning units. These decisions are then associated with actions (e.g. turning a planning unit into a protected area). Only a single decision should be added to a ConservationProblem object. Note that if multiple decisions are added to a problem object, then the last one to be added will be used.

Value

Object (i.e. ConservationProblem) with the decisions added to it.

See Also

See decisions for an overview of all functions for adding decisions.
Other decisions: add_binary_decisions(), add_default_decisions(), add_semicontinuous_decisions()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem with proportion decisions
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_proportion_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solutions
plot(s1, main = "solution")
## End(Not run)
# build multi-zone conservation problem with proportion decisions
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                            ncol = 3)) %>%
    add_proportion_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s2 <- solve(p2)
# print solution
print(s2)
# plot solution
# panels show the proportion of each planning unit allocated to each zone
plot(s2, axes = FALSE, box = FALSE)
## End(Not run)
```


Description

Set targets as a proportion (between 0 and 1) of the maximum level of representation of features in the study area. Please note that proportions are scaled according to the features' total abundances in the study area (including any locked out planning units, or planning units with NA cost data) using the feature_abundances() function.

```
Usage
    add_relative_targets(x, targets)
    ## S4 method for signature 'ConservationProblem,numeric'
    add_relative_targets(x, targets)
    ## S4 method for signature 'ConservationProblem,matrix'
    add_relative_targets(x, targets)
    ## S4 method for signature 'ConservationProblem,character'
    add_relative_targets(x, targets)
```


Arguments

x
targets Object that specifies the targets for each feature. See the Targets format section for more information.

Details

Targets are used to specify the minimum amount or proportion of a feature's distribution that needs to be protected. Most conservation planning problems require targets with the exception of the maximum cover (see add_max_cover_objective()) and maximum utility (see add_max_utility_objective()) problems. Attempting to solve problems with objectives that require targets without specifying targets will throw an error.
For problems associated with multiple management zones, this function can be used to set targets that each pertain to a single feature and a single zone. To set targets which can be met through allocating different planning units to multiple zones, see the add_manual_targets() function. An example of a target that could be met through allocations to multiple zones might be where each management zone is expected to result in a different amount of a feature and the target requires that the total amount of the feature in all zones must exceed a certain threshold. In other words, the target does not require that any single zone secure a specific amount of the feature, but the total amount held in all zones must secure a specific amount. Thus the target could, potentially, be met through allocating all planning units to any specific management zone, or through allocating the planning units to different combinations of management zones.

Value

Object (i.e. ConservationProblem) with the targets added to it.

Targets format

The targets for a problem can be specified using the following formats.
targets as a numeric vector containing target values for each feature. Additionally, for convenience, this format can be a single value to assign the same target to each feature. Note that this format cannot be used to specify targets for problems with multiple zones.
targets as a matrix object containing a target for each feature in each zone. Here, each row corresponds to a different feature in argument to x, each column corresponds to a different zone in argument to x, and each cell contains the target value for a given feature that the solution needs to secure in a given zone.
targets as a character vector containing the names of fields (columns) in the feature data associated with the argument to x that contain targets. This format can only be used when the feature data associated with x is a data. frame. This argument must contain a field (column) name for each zone.

See Also

See targets for an overview of all functions for adding targets.
Other targets: add_absolute_targets(), add_loglinear_targets(), add_manual_targets()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features)
# create base problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with 10% targets
p1 <- p %>% add_relative_targets(0.1)
# create problem with varying targets for each feature
targets <- c(0.1, 0.2, 0.3, 0.4, 0.5)
p2 <- p %>% add_relative_targets(targets)
## Not run:
# solve problem
s <- stack(solve(p1), solve(p2))
# plot solution
plot(s, main = c("10% targets", "varying targets"), axes = FALSE,
```

```
    box = FALSE)
## End(Not run)
# create a problem with multiple management zones
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create a problem with targets that specify an equal amount of each feature
# to be represented in each zone
p4_targets <- matrix(0.1, nrow = 5, ncol = 3,
        dimnames = list(feature_names(sim_features_zones),
                                    zone_names(sim_features_zones)))
print(p4_targets)
p4 <- p3 %>% add_relative_targets(p4_targets)
# solve problem
## Not run:
# solve problem
s4 <- solve(p4)
# plot solution (pixel values correspond to zone identifiers)
plot(category_layer(s4), main = c("equal targets"))
## End(Not run)
# create a problem with targets that require a varying amount of each
# feature to be represented in each zone
p5_targets <- matrix(runif(15, 0.01, 0.2), nrow = 5, ncol = 3,
                    dimnames = list(feature_names(sim_features_zones),
                            zone_names(sim_features_zones)))
print(p5_targets)
p5 <- p3 %>% add_relative_targets(p4_targets)
# solve problem
## Not run:
# solve problem
s5 <- solve(p5)
# plot solution (pixel values correspond to zone identifiers)
plot(category_layer(s5), main = c("varying targets"))
## End(Not run)
```


Description

Specify that the SYMPHONY software (Ralphs \& Güzelsoy 2005) - using the Rsymphony package - should be used to solve a conservation planning problem(). This function can also be used to customize the behavior of the solver. It requires the Rsymphony package to be installed.

```
Usage
    add_rsymphony_solver(
        x,
        gap = 0.1,
        time_limit = .Machine$integer.max,
        first_feasible = FALSE,
        verbose = TRUE
    )
```


Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
gap numeric gap to optimality. This gap is relative and expresses the acceptable deviance from the optimal objective. For example, a value of 0.01 will result in the solver stopping when it has found a solution within 1% of optimality. Additionally, a value of 0 will result in the solver stopping when it has found an optimal solution. The default value is 0.1 (i.e. 10% from optimality).
time_limit numeric time limit (seconds) for generating solutions. The solver will return the current best solution when this time limit is exceeded. The default value is the largest integer value (i.e. .Machine\$integer.max), effectively meaning that solver will keep running until a solution within the optimality gap is found.
first_feasible logical should the first feasible solution be be returned? If first_feasible is set to TRUE, the solver will return the first solution it encounters that meets all the constraints, regardless of solution quality. Note that the first feasible solution is not an arbitrary solution, rather it is derived from the relaxed solution, and is therefore often reasonably close to optimality. Defaults to FALSE.
verbose logical should information be printed while solving optimization problems? Defaults to TRUE.

Details

SYMPHONY is an open-source mixed integer programming solver that is part of the Computational Infrastructure for Operations Research (COIN-OR) project. The Rsymphony package provides an interface to COIN-OR and - unlike dependencies for other solvers - is available on CRAN. For information on the performance of different solvers, please see Schuster et al. (2020) for benchmarks comparing the run time and solution quality of different solvers when applied to different sized datasets.

Value

Object (i.e. ConservationProblem) with the solver added to it.

References

Ralphs TK and Güzelsoy M (2005) The SYMPHONY callable library for mixed integer programming. In The Next Wave in Computing, Optimization, and Decision Technologies (pp. 61-76). Springer, Boston, MA.
Schuster R, Hanson JO, Strimas-Mackey M, and Bennett JR (2020). Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ, 8: e9258.

See Also

See solvers for an overview of all functions for adding a solver.
Other solvers: add_cbc_solver(), add_cplex_solver(), add_default_solver(), add_gurobi_solver(), add_lsymphony_solver

Examples

```
## Not run:
# load data
data(sim_pu_raster, sim_features)
# create problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_rsymphony_solver(time_limit = 10, verbose = FALSE)
# generate solution
s <- solve(p)
# plot solution
plot(s, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
```

add_semicontinuous_decisions
Add semi-continuous decisions

Description

Add a semi-continuous decision to a conservation planning problem(). This is a relaxed decision where a part of a planning unit can be prioritized, as opposed to the entire planning unit, which is the default function (see add_binary_decisions()). This decision is similar to the add_proportion_decisions() function except that it has an upper bound parameter. By default, the decision can range from prioritizing none (0%) to all (100%) of a planning unit. However, an upper bound can be specified to ensure that at most only a fraction (e.g. 80%) of a planning unit can be preserved. This type of decision may be useful when it is not practical to conserve entire planning units.

Usage

add_semicontinuous_decisions(x, upper_limit)

Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
upper_limit numeric value specifying the maximum proportion of a planning unit that can be reserved (e.g. set to 0.8 for 80%).

Details

Conservation planning problems involve making decisions on planning units. These decisions are then associated with actions (e.g. turning a planning unit into a protected area). Only a single decision should be added to a ConservationProblem object. Note that if multiple decisions are added to a problem object, then the last one to be added will be used.

Value

Object (i.e. ConservationProblem) with the decisions added to it.

See Also

See decisions for an overview of all functions for adding decisions.
Other decisions: add_binary_decisions(), add_default_decisions(), add_proportion_decisions()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem with semi-continuous decisions
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_semicontinuous_decisions(0.5) %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# plot solutions
plot(s1, main = "solution")
## End(Not run)
# build multi-zone conservation problem with semi-continuous decisions
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
```

```
        add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
            ncol = 3)) %>%
        add_semicontinuous_decisions(0.5) %>%
        add_default_solver(verbose = FALSE)
    ## Not run:
    # solve the problem
    s2 <- solve(p2)
    # print solution
    print(s2)
    # plot solution
    # panels show the proportion of each planning unit allocated to each zone
    plot(s2, axes = FALSE, box = FALSE)
    ## End(Not run)
```

add_shuffle_portfolio Add a shuffle portfolio

Description

Generate a portfolio of solutions for a conservation planning problem() by randomly reordering the data prior to solving the problem. This is recommended as a replacement for add_top_portfolio() when the Gurobi software is not available.

Usage

add_shuffle_portfolio(
x ,
number_solutions = 10L, threads = 1L, remove_duplicates = TRUE
)

Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
number_solutions
integer number of attempts to generate different solutions. Defaults to 10.
threads integer number of threads to use for the generating the solution portfolio. Defaults to 1 .
remove_duplicates logical should duplicate solutions be removed? Defaults to TRUE.

Details

This strategy for generating a portfolio of solutions often results in different solutions, depending on optimality gap, but may return duplicate solutions. In general, this strategy is most effective when problems are quick to solve and multiple threads are available for solving each problem separately.

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

See Also

See portfolios for an overview of all functions for adding a portfolio.
Other portfolios: add_cuts_portfolio(), add_extra_portfolio(), add_gap_portfolio(), add_top_portfolio()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem with shuffle portfolio
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_shuffle_portfolio(10, remove_duplicates = FALSE) %>%
    add_default_solver(gap = 0.2, verbose = FALSE)
## Not run:
# solve problem and generate 10 solutions within 20% of optimality
s1 <- solve(p1)
# plot solutions in portfolio
plot(stack(s1), axes = FALSE, box = FALSE)
## End(Not run)
# build multi-zone conservation problem with shuffle portfolio
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                            ncol = 3)) %>%
    add_binary_decisions() %>%
    add_shuffle_portfolio(10, remove_duplicates = FALSE) %>%
    add_default_solver(gap = 0.2, verbose = FALSE)
## Not run:
# solve the problem
s2 <- solve(p2)
# print solution
str(s2, max.level = 1)
# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,
    box = FALSE)
## End(Not run)
```

```
add_top_portfolio Add a top portfolio
```


Description

Generate a portfolio of solutions for a conservation planning problem() by finding a pre-specified number of solutions that are closest to optimality (i.e the top solutions).

Usage

add_top_portfolio(x, number_solutions)

Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
number_solutions
integer number of solutions required.

Details

This strategy for generating a portfolio requires problems to be solved using the Gurobi software suite (i.e. using add_gurobi_solver(). Specifically, version 9.0.0 (or greater) of the gurobi package must be installed. Note that the number of solutions returned may be less than the argument to number_solutions, if the total number of feasible solutions is less than the number of solutions requested.

Value
Object (i.e. ConservationProblem) with the portfolio added to it.

See Also

See portfolios for an overview of all functions for adding a portfolio.
Other portfolios: add_cuts_portfolio(), add_extra_portfolio(), add_gap_portfolio(), add_shuffle_portfolio()

Examples

```
## Not run:
# set seed for reproducibility
set.seed(600)
# load data
data(sim_pu_raster, sim_features)
# create minimal problem with a portfolio for the top 5 solutions
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.05) %>%
```

```
    add_top_portfolio(number_solutions = 5) %>%
    add_default_solver(gap = 0, verbose = FALSE)
    # solve problem and generate portfolio
    s1 <- solve(p1)
    # print number of solutions found
    print(length(s1))
    # plot solutions
    plot(stack(s1), axes = FALSE, box = FALSE)
    # create multi-zone problem with a portfolio for the top 5 solutions
    p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
        add_min_set_objective() %>%
        add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                ncol = 3)) %>%
    add_top_portfolio(number_solutions = 5) %>%
    add_default_solver(gap = 0, verbose = FALSE)
    # solve problem and generate portfolio
    s2 <- solve(p2)
    # print number of solutions found
    print(length(s2))
    # plot solutions in portfolio
    plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,
    box = FALSE)
## End(Not run)
```

adjacency_matrix Adjacency matrix

Description

Create a matrix showing which planning units are spatially adjacent to each other. Note that this also include planning units that overlap with each other too.

Usage

adjacency_matrix(x, ...)
\#\# S3 method for class 'Raster'
adjacency_matrix(x, directions = 4L, ...)
\#\# S3 method for class 'SpatialPolygons'
adjacency_matrix(x, ...)

```
## S3 method for class 'SpatialLines'
adjacency_matrix(x, ...)
## S3 method for class 'SpatialPoints'
adjacency_matrix(x, ...)
## S3 method for class 'sf'
adjacency_matrix(x, ...)
## Default S3 method:
adjacency_matrix(x, ...)
```


Arguments

$x \quad$ Raster, SpatialPolygons, SpatialLines, or sf::sf() object representing planning units.
... not used.
directions integer If x is a Raster object, the number of directions in which cells should be considered adjacent: 4 (rook's case), 8 (queen's case), 16 (knight and one-cell queen moves), or "bishop" to for cells with one-cell diagonal moves.

Details

Spatial processing is completed using sf::st_intersects() for Spatial and sf::sf() objects, and raster: : adjacent() for Raster objects.

Value

dsCMatrix sparse symmetric matrix. Each row and column represents a planning unit. Cells values indicate if different planning units are adjacent to each other or not (using ones and zeros). To reduce computational burden, cells among the matrix diagonal are set to zero. Furthermore, if the argument to x is a Raster object, then cells with NA values are set to zero too.

Notes

In earlier versions (<5.0.0), this function was named as the connected_matrix function. It has been renamed to be consistent with other spatial association matrix functions.

Examples

```
# load data
data(sim_pu_raster, sim_pu_sf, sim_pu_lines)
# create adjacency matrix using raster data
## crop raster to 9 cells
r <- crop(sim_pu_raster, c(0, 0.3, 0, 0.3))
## make adjacency matrix
am_raster <- adjacency_matrix(r)
```

```
# create adjacency matrix using polygons (sf) data
## subset 9 polygons
ply <- sim_pu_sf[c(1:2, 10:12, 20:22), ]
## make adjacency matrix
am_ply <- adjacency_matrix(ply)
# create adjacency matrix using lines (Spatial) data
## subset 9 lines
lns <- sim_pu_lines[c(1:2, 10:12, 20:22), ]
## make adjacency matrix
am_lns <- adjacency_matrix(lns)
# plot data and the adjacency matrices
## Not run:
par(mfrow = c(4,2))
## plot raster and adjacency matrix
plot(r, main = "raster", axes = FALSE, box = FALSE)
plot(raster(as.matrix(am_raster)), main = "adjacency matrix", axes = FALSE,
        box = FALSE)
## plot polygons (sf) and adjacency matrix
plot(r, main = "polygons (sf)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(am_ply)), main = "adjacency matrix", axes = FALSE,
    box = FALSE)
## plot lines (Spatial) and adjacency matrix
plot(r, main = "lines (Spatial)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(am_lns)), main = "adjacency matrix", axes = FALSE,
    box = FALSE)
## End(Not run)
```

ArrayParameter-class Array parameter prototype

Description

This prototype is used to represent a parameter has multiple values. Each value is has a label to differentiate values. Only experts should interact directly with this prototype.

Fields

\$id character identifier for parameter.
\$name character name of parameter.
\$value numeric vector of values.
\$label character vector of names for each value.
\$default numeric vector of default values.
\$length integer value specifying the number of values.
\$class character value specifying the class of values.
\$lower_limit numeric vector specifying the minimum permitted values.
\$upper_limit numeric vector specifying the maximum permitted values.

Usage

x\$print()
x\$show()
$\mathrm{x} \$$ repr ($)$
$x \$$ validate(tbl)
x\$get()
x\$set(tbl)
x\$reset()

Arguments

tbl data.frame() containing new parameter values with row names indicating the labels and a column called "values" containing the new parameter values.

Details

print print the object.
show show the object.
repr character representation of object.
validate check if a proposed new set of parameters are valid.
get return a base: : data.frame() containing the parameter values.
set update the parameter values using a base: : data.frame().
reset update the parameter values to be the default values.

See Also

ScalarParameter, Parameter.

```
array_parameters Array parameters
```


Description

Create parameters that consist of multiple numbers. If an attempt is made to create a parameter with conflicting settings then an error will be thrown.

Usage

proportion_parameter_array(name, value, label)
binary_parameter_array(name, value, label)
integer_parameter_array(
name,
value,
label,
lower_limit $=$ rep(as.integer(-.Machine\$integer.max), length(value)), upper_limit $=$ rep(as.integer(.Machine\$integer.max), length(value))
)
numeric_parameter_array(
name,
value,
label,
lower_limit = rep(.Machine\$double.xmin, length(value)), upper_limit $=$ rep(.Machine\$double.xmax, length(value))
)

Arguments

name character name of parameter.
value numeric vector of values.
label character vector of labels for each value.
lower_limit numeric vector of values denoting the minimum acceptable value for each element in value. Defaults to the smallest possible number on the system.
upper_limit numeric vector of values denoting the maximum acceptable value for each element in value. Defaults to the largest possible number on the system.

Details

Below is a list of parameter generating functions and a brief description of each.
proportion_parameter_array a parameter that consists of multiple numeric values that are between zero and one.
binary_parameter_array a parameter that consists of multiple integer values that are either zero or one.
integer_parameter_array a parameter that consists of multiple integer values.
numeric_parameter_array a parameter that consists of multiple numeric values.

Value

ArrayParameter object.

Examples

```
# proportion parameter array
p1 <- proportion_parameter_array('prop_array', c(0.1, 0.2, 0.3),
                letters[1:3])
print(p1) # print it
p1$get() # get value
p1$id # get id
invalid <- data.frame(value = 1:3, row.names=letters[1:3]) # invalid values
p1$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0.4, 0.5, 0.6), row.names=letters[1:3]) # valid
p1$validate(valid) # check valid input is valid
p1$set(valid) # change value to valid input
print(p1)
# binary parameter array
p2 <- binary_parameter_array('bin_array', c(0L, 1L, 0L), letters[1:3])
print(p2) # print it
p2$get() # get value
p2$id # get id
invalid <- data.frame(value = 1:3, row.names=letters[1:3]) # invalid values
p2$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0L, 0L, 0L), row.names=letters[1:3]) # valid
p2$validate(valid) # check valid input is valid
p2$set(valid) # change value to valid input
print(p2)
# integer parameter array
p3 <- integer_parameter_array('int_array', c(1:3), letters[1:3])
print(p3) # print it
p3$get() # get value
p3$id # get id
invalid <- data.frame(value = rnorm(3), row.names=letters[1:3]) # invalid
p3$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = 5:7, row.names=letters[1:3]) # valid
p3$validate(valid) # check valid input is valid
p3$set(valid) # change value to valid input
print(p3)
# numeric parameter array
p4 <- numeric_parameter_array('dbl_array', c(0.1, 4, -5), letters[1:3])
print(p4) # print it
p4$get() # get value
```

as.Id

```
    p4$id # get id
    invalid <- data.frame(value = c(NA, 1, 2), row.names=letters[1:3]) # invalid
    p4$validate(invalid) # check invalid input is invalid
    valid <- data.frame(value = c(1, 2, 3), row.names=letters[1:3]) # valid
    p4$validate(valid) # check valid input is valid
    p4$set(valid) # change value to valid input
    print(p4)
    # numeric parameter array with lower bounds
    p5 <- numeric_parameter_array('b_dbl_array', c(0.1, 4, -5), letters[1:3],
                        lower_limit=c(0, 1, 2))
    print(p5) # print it
    p5$get() # get value
    p5$id# get id
    invalid <- data.frame(value = c(-1, 5, 5), row.names=letters[1:3]) # invalid
    p5$validate(invalid) # check invalid input is invalid
    valid <- data.frame(value = c(0, 1, 2), row.names=letters[1:3]) # valid
    p5$validate(valid) # check valid input is valid
    p5$set(valid) # change value to valid input
    print(p5)
```

as.Id
Coerce object to another object

Description

Coerce an object.

Usage

as. $\operatorname{Id}(x, \ldots)$
\#\# S3 method for class 'character'
as. $\operatorname{Id}(x, \ldots)$
\#\# S3 method for class 'Parameters'
as.list(x, ...)
\#\# S3 method for class 'Zones'
as.list(x, ...)

Arguments

x
... unused arguments.

Value

An object.

```
as.list.OptimizationProblem
```


Description

Convert OptimizationProblem to list

Usage

\#\# S3 method for class 'OptimizationProblem'
as.list(x, ...)

Arguments

x	OptimizationProblem object.
\ldots	not used.

Value

list() object.

```
binary_stack Binarystack
```


Description

Convert a RasterLayer object containing categorical identifiers into a RasterStack object where each layer corresponds to a different identifier and values indicate the presence/absence of that category in the input object.

Usage

binary_stack(x)

Arguments

x
Raster object containing a single layer.

Details

This function is provided to help manage data that encompass multiple management zones. For instance, this function may be helpful for preparing raster data for add_locked_in_constraints() and add_locked_out_constraints() since they require binary RasterStack objects as input arguments.

Value

RasterStack object.

See Also

```
    category_layer().
```


Examples

```
# create raster with categorical identifers
x <- raster(matrix(c(1, 2, 3, 1, NA, 1), nrow = 3))
# convert to binary stack
y <- binary_stack(x)
# plot categorical raster and binary stack representation
## Not run:
plot(stack(x, y), main = c("x", "y[[1]]", "y[[2]]", "y[[3]]"), nr = 1)
## End(Not run)
```

boundary_matrix Boundary matrix

Description

Generate a matrix describing the amount of shared boundary length between different planning units, and the amount of exposed edge length each planning unit exhibits.

Usage

```
boundary_matrix(x, str_tree)
## S3 method for class 'Raster'
boundary_matrix(x, str_tree = FALSE)
## S3 method for class 'SpatialPolygons'
boundary_matrix(x, str_tree = FALSE)
## S3 method for class 'SpatialLines'
boundary_matrix(x, str_tree = FALSE)
## S3 method for class 'SpatialPoints'
boundary_matrix(x, str_tree = FALSE)
## S3 method for class 'sf'
boundary_matrix(x, str_tree = FALSE)
```

```
## Default S3 method:
boundary_matrix(x, str_tree = FALSE)
```


Arguments

Details

This function returns a dsCMatrix symmetric sparse matrix. Cells on the off-diagonal indicate the length of the shared boundary between two different planning units. Cells on the diagonal indicate length of a given planning unit's edges that have no neighbors (e.g. for edges of planning units found along the coastline). This function assumes the data are in a coordinate system where Euclidean distances accurately describe the proximity between two points on the earth. Thus spatial data in a longitude/latitude coordinate system (i.e. WGS84) should be reprojected to another coordinate system before using this function. Note that for Raster objects boundaries are missing for cells that have NA values in all cells.

Value

dsCMatrix symmetric sparse matrix object. Each row and column represents a planning unit. Cells values indicate the shared boundary length between different pairs of planning units.

Examples

```
# load data
data(sim_pu_raster, sim_pu_polygons)
# subset data to reduce processing time
r <- crop(sim_pu_raster, c(0, 0.3, 0, 0.3))
ply <- sim_pu_polygons[c(1:2, 10:12, 20:22), ]
ply2 <- st_as_sf(ply)
# create boundary matrix using raster data
bm_raster <- boundary_matrix(r)
# create boundary matrix using polygon (Spatial) data
bm_ply1 <- boundary_matrix(ply)
# create boundary matrix using polygon (sf) data
bm_ply2 <- boundary_matrix(ply2)
# create boundary matrix with polygon (Spatial) data and GEOS STR query trees
```

```
# to speed up processing
bm_ply3 <- boundary_matrix(ply, TRUE)
# plot raster and boundary matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "raster", axes = FALSE, box = FALSE)
plot(raster(as.matrix(bm_raster)), main = "boundary matrix",
    axes = FALSE, box = FALSE)
## End(Not run)
# plot polygons and boundary matrices
## Not run:
par(mfrow = c(1, 3))
plot(r, main = "polygons (Spatial)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(bm_ply1)), main = "boundary matrix", axes = FALSE,
    box = FALSE)
plot(r, main = "polygons (sf)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(bm_ply2)), main = "boundary matrix", axes = FALSE,
    box = FALSE)
plot(raster(as.matrix(bm_ply3)), main = "boundary matrix (Spatial, STR)",
            axes = FALSE, box = FALSE)
## End(Not run)
```

branch_matrix Branch matrix

Description

Phylogenetic trees depict the evolutionary relationships between different species. Each branch in a phylogenetic tree represents a period of evolutionary history. Species that are connected to the same branch both share that same period of evolutionary history. This function creates a matrix that shows which species are connected with branch. In other words, it creates a matrix that shows which periods of evolutionary history each species have experienced.

Usage

branch_matrix(x)
\#\# Default S3 method:
branch_matrix(x)
\#\# S3 method for class 'phylo'
branch_matrix(x)

Arguments

x ape: : phylo() tree object.

Value

dgCMatrix sparse matrix object. Each row corresponds to a different species. Each column corresponds to a different branch. Species that inherit from a given branch are denoted with a one.

Examples

```
    # load data
    data(sim_phylogeny)
    # generate species by branch matrix
    m <- branch_matrix(sim_phylogeny)
    # plot data
    ## Not run:
    par(mfrow = c(1,2))
    plot(sim_phylogeny, main = "phylogeny")
    plot(raster(as.matrix(m)), main = "branch matrix", axes = FALSE,
        box = FALSE)
    ## End(Not run)
```

 category_layer Category layer

Description

Convert a RasterStack object where each layer corresponds to a different identifier and values indicate the presence/absence of that category into a RasterLayer object containing categorical identifiers.

Usage

category_layer(x)

Arguments

x
Raster object containing a multiple layers. Note that pixels must be 0,1 or NA values.

Details

This function is provided to help manage data that encompass multiple management zones. For instance, this function may be helpful for interpreting solutions for problems associated with multiple zones that have binary decisions.

Value

RasterLayer object.

See Also

binary_stack().

Examples

```
    # create a binary raster stack
    x <- stack(raster(matrix(c(1, 0, 0, 1, NA, 0), nrow = 3)),
            raster(matrix(c(0, 1, 0, 0, NA, 0), nrow = 3)),
            raster(matrix(c(0, 0, 1, 0, NA, 1), nrow = 3)))
    # convert to binary stack
    y <- category_layer(x)
    # plot categorical raster and binary stack representation
    ## Not run:
    plot(stack(x, y), main = c("x[[1]]", "x[[2]]", "x[[3]]", "y"), nr = 1)
    ## End(Not run)
```

```
category_vector Category vector
```


Description

Convert an object containing binary (integer) fields (columns) into a integer vector indicating the column index where each row is 1 .

Usage

```
category_vector(x)
## S3 method for class 'data.frame'
category_vector(x)
## S3 method for class 'sf'
category_vector(x)
## S3 method for class 'Spatial'
category_vector(x)
    ## S3 method for class 'matrix'
    category_vector(x)
```


Arguments

x
matrix, data.frame, Spatial, or sf::sf() object.

Details

This function is conceptually similar to base : : max.col() except that rows with no values equal to 1 values are assigned a value of zero. Also, note that in the argument to x, each row must contain only a single value equal to 1 .

Value

integer vector.

See Also

```
base::max.col()
```


Examples

\# create matrix with logical fields
$x<-\operatorname{matrix}(c(1,0,0, N A, 0,1,0, N A, 0,0,0, N A), n c o l=3)$
\# print matrix
print(x)
\# convert to category vector
y <- category_vector (x)
\# print category vector
print(y)

Collection-class Collection prototype

Description

This prototype represents a collection of ConservationModifier objects.

Fields

\$... ConservationModifier objects stored in the collection.

Usage

x\$print()
x\$show()
x\$repr ()
x\$ids()
x\$length()
x\$add
compile
x\$remove(id)
x\$get_parameter(id)
x\$set_parameter(id, value)

Arguments

id id object.
value any object.

Details

print print the object.
show show the object.
repr character representation of object.
ids character ids for objects inside collection.
length integer number of objects inside collection.
find character id for object inside collection which contains the input id.
find_parameter character id for object inside collection which contains the input character object as a parameter.
add add ConservationModifier object.
remove remove an item from the collection.
get_parameter retrieve the value of a parameter in the object using an id object.
set_parameter change the value of a parameter in the object to a new object.

See Also

Constraint, Penalty.

```
compile Compile a problem
```


Description

Compile a conservation planning problem() into an (potentially mixed) integer linear programming problem.

Usage

compile(x, ...)
\#\# S3 method for class 'ConservationProblem'
compile(x, compressed_formulation = NA, ...)

Arguments

X problem() (i.e. ConservationProblem) object.
... not used.
compressed_formulation
logical should the conservation problem compiled into a compressed version of a planning problem? If TRUE then the problem is expressed using the compressed formulation. If FALSE then the problem is expressed using the expanded formulation. If NA, then the compressed is used unless one of the constraints requires the expanded formulation. This argument defaults to NA.

Details

This function might be useful for those interested in understanding how their conservation planning problem() is expressed as a mathematical problem. However, if the problem just needs to be solved, then the solve() function should just be used.

Please note that in nearly all cases, the default argument to formulation should be used. The only situation where manually setting the argument to formulation is desirable is during testing. Manually setting the argument to formulation will at best have no effect on the problem. At worst, it may result in an error, a misspecified problem, or unnecessarily long solve times.

Value

OptimizationProblem object.

Examples

```
# build minimal conservation problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1)
# compile the conservation problem into an optimization problem
o <- compile(p)
# print the optimization problem
print(o)
```

connectivity_matrix Connectivity matrix

Description

Create a matrix showing the connectivity between planning units. Connectivity is calculated as the average conductance of two planning units multiplied by the amount of shared boundary between the two planning units. Thus planning units that each have higher a conductance and share a greater boundary are associated with greater connectivity.

Usage

```
connectivity_matrix(x, y, ...)
## S4 method for signature 'Spatial,Raster'
connectivity_matrix(x, y, ...)
## S4 method for signature 'Spatial,character'
connectivity_matrix(x, y, ...)
## S4 method for signature 'sf,character'
connectivity_matrix(x, y, ...)
## S4 method for signature 'sf,Raster'
connectivity_matrix(x, y, ...)
## S4 method for signature 'Raster,Raster'
connectivity_matrix(x, y, ...)
```


Arguments

x
y Raster object showing the conductance of different areas across the study area, or a character object denoting a column name in the attribute table of x that contains the conductance values. Note that argument to y can only be a character object if the argument to x is a Spatial or sf::sf() object. Also, note that if the argument to x is a Raster object then argument to y must have the same spatial properties as it (i.e. coordinate system, extent, resolution).
... additional arguments passed to fast_extract () for extracting and calculating the conductance values for each planning unit. These arguments are only used if argument to x is a link[sp]\{Spatial-class\} or sf::sf() object and argument to y is a Raster object.

Details

Shared boundary calculations are performed using boundary_matrix().

Value

dsCMatrix symmetric sparse matrix object. Each row and column represents a planning unit. Cells values indicate the connectivity between different pairs of planning units. To reduce computational burden, cells among the matrix diagonal are set to zero. Furthermore, if the argument to x is a Raster object, then cells with NA values are set to zero too.

Examples

\# load data

```
data(sim_pu_raster, sim_pu_sf, sim_features)
# create connectivity matrix using raster planning unit data using
# the raster cost values to represent conductance
## extract 9 planning units
r <- crop(sim_pu_raster, c(0, 0.3, 0, 0.3))
## extract conductance data for the 9 planning units
cd <- crop(sim_features, r)
## make connectivity matrix using the habitat suitability data for the
## second feature to represent the planning unit conductance data
cm_raster <- connectivity_matrix(r, cd[[2]])
## plot data and matrix
## Not run:
par(mfrow = c(1,3))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(cd[[2]], main = "conductivity", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_raster)), lower = 1e-5, useValues = FALSE),
    main = "connectivity", axes = FALSE, box = FALSE)
## End(Not run)
# create connectivity matrix using polygon planning unit data using
# the habitat suitability data for the second feature to represent
# planning unit conductances
## subset data to 9 polygons
ply <- sim_pu_sf[c(1:2, 10:12, 20:22), ]
## make connectivity matrix
cm_ply <- connectivity_matrix(ply, sim_features[[2]])
## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(st_geometry(ply), main = "planning units (sf)")
plot(clamp(raster(as.matrix(cm_ply)), lower = 1e-5, useValues = FALSE),
    main = "connectivity", axes = FALSE, box = FALSE)
## End(Not run)
# create connectivity matrix using habitat suitability data for each feature,
# this could be useful if prioritisations should spatially clump
# together adjacent planning units that have suitable habitat
# for the same species (e.g. to maintain functional connectivity)
## let's use the raster data for this example, and we can generate the
## connectivity matrix that we would use in the prioritization by
## (1) generating a connectivity matrix for each feature separately, and
## and then (2) then summing the values together
cm_sum <- lapply(as.list(cd), connectivity_matrix, x = r) # make matrices
cm_sum <- Reduce("+", cm_sum) # sum matrices together
```

```
## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_sum)), lower = 1e-5, useValues = FALSE),
    main = "connectivity", axes = FALSE, box = FALSE)
## End(Not run)
## we could take this example one step further, and use weights to indicate
## relative importance of maintaining functional connectivity
## for each feature (i.e. use the weighted sum instead of the sum)
## let's pretend that the first feature is 20 times more important
## than all the other species
weights <- c(20, 1, 1, 1, 1)
## calculate connectivity matrix using weighted sum
cm_wsum <- lapply(as.list(cd), connectivity_matrix, x = r) # make matrices
cm_wsum <- Map("*", cm_wsum, weights) # multiply by weights
cm_wsum <- Reduce("+", cm_wsum) # sum matrices together
## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_wsum)), lower = 1e-5, useValues = FALSE),
    main = "connectivity", axes = FALSE, box = FALSE)
## End(Not run)
## since the statistical distribution of the connectivity values
## for each feature (e.g. the mean and standard deviation of the
## connectivity values) are different, it might make sense -- depending
## on the goal of the conservation planning exercise and the underlying
## data -- to first normalize the conductance values before applying the
## weights and summing the data for feature together
## one approach would be to linearly rescale the values between 0.01 and 1
## note that we wouldn't want to rescale them between 0 and 1 since
## a value of zero means that there is no connectivity at all (and
## and not a relatively small amount of connectivity)
## Not run:
### define helper function
library(scales) # load scales library for rescale
rescale_matrix <- function(x) {x@x <- rescale(x@x, c(0.01, 1)); x}
\#\#\# calculate functional connectivity matrix using the weighted sum of \#\#\# connectivity values that have been normalized by linearly re-scaling \#\#\# values
cm_lwsum <- lapply(as.list(cd), connectivity_matrix, x = r) \# make matrices
cm_lwsum <- lapply(cm_lwsum, rescale_matrix) # rescale matrices to [0.01, 1]
cm_lwsum <- Map("*", cm_lwsum, weights) # multiply by weights
```

```
cm_lwsum <- Reduce("+", cm_lwsum) # sum matrices together
## End(Not run)
## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_lwsum)), lower = 1e-5, useValues = FALSE),
        main = "connectivity", axes = FALSE, box = FALSE)
## End(Not run)
## another approach for normalizing the data could be using z-scores
## note that after normalizing the data we would need to add a constant
## value so that none of the connectivity values are negative
### define helper functions
zscore <- function(x) {x@x <- (x@x - mean(x@x)) / sd(x@x); x}
min_non_zero_value <- function(x) min(x@x)
add_non_zero_value <- function(x, y) {x@x <- x@x + y; x}
### calculate functional connectivity matrix using the weighted sum of
### connectivity values that have been normalized using z-scores,
### and transformed to account for negative values
cm_zwsum <- lapply(as.list(cd), connectivity_matrix, x = r) # make matrices
cm_zwsum <- lapply(cm_zwsum, zscore) # normalize using z-scores
min_value <- min(sapply(cm_zwsum, min_non_zero_value)) # find min value
min_value <- abs(min_value) + 0.01 # prepare constant for adding to matrices
cm_zwsum <- lapply(cm_zwsum, add_non_zero_value, min_value) # add constant
cm_zwsum <- Map("*", cm_zwsum, weights) # multiply by weights
cm_zwsum <- Reduce("+", cm_zwsum) # sum matrices together
## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_zwsum)), lower = 1e-5, useValues = FALSE),
    main = "connectivity", axes = FALSE, box = FALSE)
## End(Not run)
```

ConservationModifier-class

Conservation problem modifier prototype

Description

This super-prototype is used to represent prototypes that in turn are used to modify a ConservationProblem object. Specifically, the Constraint, Decision, Objective, and Target prototypes inherit from
this class. Only experts should interact with this class directly because changes to these class will have profound and far reaching effects.

Fields

\$name character name of object.
\$parameters list object used to customize the modifier.
\$data list object with data.
\$compressed_formulation logical can this constraint be applied to the compressed version of the conservation planning problem?. Defaults to TRUE.

Usage

x\$print()
x\$show()
x\$repr()
x\$get_data(name)
x\$set_data(name,value)
x\$calculate (cp)
x\$output()
x\$apply (op, cp)
x\$get_parameter(id)
x\$get_all_parameters()
x\$set_parameter(id, value)

Arguments

name character name for object
value any object
id id or name of parameter
cp ConservationProblem object
op OptimizationProblem object

Details

print print the object.
show show the object.
repr return character representation of the object.
get_data return an object stored in the data field with the corresponding name. If the object is not present in the data field, a waiver object is returned.
set_data store an object stored in the data field with the corresponding name. If an object with that name already exists then the object is overwritten.
calculate function used to perform preliminary calculations and store the data so that they can be reused later without performing the same calculations multiple times. Data can be stored in the data slot of the input ConservationModifier or ConservationProblem objects.
output function used to generate an output from the object. This method is only used for Target objects.
apply function used to apply the modifier to an OptimizationProblem object. This is used by Constraint, Decision, and Objective objects.
get_parameter retrieve the value of a parameter.
get_all_parameters generate list containing all the parameters.
set_parameter change the value of a parameter to new value.

```
ConservationProblem-class
```

Conservation problem class

Description

This class is used to represent conservation planning problems. A conservation planning problem has spatially explicit planning units. A prioritization involves making a decision on each planning unit (e.g. is the planning unit going to be turned into a protected area?). Each planning unit is associated with a cost that represents the cost incurred by applying the decision to the planning unit. The problem also has a set of representation targets for each feature. Further, it also has constraints used to ensure that the solution meets additional objectives (e.g. certain areas are locked into the solution). Finally, a conservation planning problem-unlike an optimization problem-also requires a method to solve the problem. This class represents a planning problem, to actually build and then solve a planning problem, use the problem() function. Only experts should use this class directly.

Fields

\$data list object containing data.
\$objective Objective object used to represent how the targets relate to the solution.
\$decisions Decision object used to represent the type of decision made on planning units.
\$targets Target object used to represent representation targets for features.
\$penalties Collection object used to represent additional penalties that the problem is subject to.
\$constraints Collection object used to represent additional constraints that the problem is subject to.
\$portfolio Portfolio object used to represent the method for generating a portfolio of solutions.
\$solver Solver object used to solve the problem.

Usage

> x\$print()
x\$show()
x\$repr()
x\$get_data(name)
x\$set_data(name, value)
x\$number_of_total_units()
x\$number_of_planning_units()
x\$planning_unit_indices()
x\$planning_unit_indices_with_finite_costs()
x\$planning_unit_costs()
x\$number_of_features()
x\$feature_names()
x\$feature_abundances_in_planning_units()
x\$feature_abundances_in_total_units()
x\$feature_targets()
x\$number_of_zones()
x\$zone_names()
x\$add_objective(obj)
x\$add_decisions(dec)
x\$add_portfolio(pol)
x\$add_solver (sol)
x\$add_constraint(con)
x\$add_targets(targ)
x\$get_constraint_parameter(id)
x\$set_constraint_parameter(id,value)
x\$get_objective_parameter(id)
x\$set_objective_parameter(id, value)
x\$get_solver_parameter(id)
x\$set_solver_parameter(id,value)
x\$get_portfolio_parameter(id)
x\$set_portfolio_parameter(id,value)
x\$get_penalty_parameter(id)
x\$set_penalty_parameter(id,value)

Arguments

name character name for object.
value an object.
obj Objective object.
dec Decision object.
con Constraint object.
pol Portfolio object.
sol Solver object.
targ Target object.
cost RasterLayer, SpatialPolygonsDataFrame, or SpatialLinesDataFrame object showing spatial representation of the planning units and their cost.
features Zones or data.frame object containing feature data.
id Id object that refers to a specific parameter.
value object that the parameter value should become.

Details

print print the object.
show show the object.
repr return character representation of the object.
get_data return an object stored in the data field with the corresponding name. If the object is not present in the data field, a waiver object is returned.
set_data store an object stored in the data field with the corresponding name. If an object with that name already exists then the object is overwritten.
number_of_planning_units integer number of planning units.
planning_unit_indices integer indices of the planning units in the planning unit data.
planning_unit_indices_with_finite_costs list of integer indices of planning units in each zone that have finite cost data.
number_of_total_units integer number of units in the cost data including units that have N cost data.
planning_unit_costs matrix cost of allocating each planning unit to each zone. Each column corresponds to a different zone and each row corresponds to a different planning unit.
number_of_features integer number of features.
feature_names character names of features in problem.
feature_abundances_in_planning_units matrix total abundance of each feature in planning units available in each zone. Each column corresponds to a different zone and each row corresponds to a different feature.
feature_abundances_in_total_units matrix total abundance of each feature in each zone. Each column corresponds to a different zone and each row corresponds to a different feature.
feature_targets tibble::tibble() with feature targets.
number_of_zones integer number of zones.
zone_names character names of zones in problem.
add_objective return a new ConservationProblem with the objective added to it.
add_decisions return a new ConservationProblem object with the decision added to it.
add_portfolio return a new ConservationProblem object with the portfolio method added to it.
add_solver return a new ConservationProblem object with the solver added to it.
add_constraint return a new ConservationProblem object with the constraint added to it.
add_targets return a copy with the targets added to the problem.
get_constraint_parameter get the value of a parameter (specified by argument id) used in one of the constraints in the object.
set_constraint_parameter set the value of a parameter (specified by argument id) used in one of the constraints in the object to value.
get_objective_parameter get the value of a parameter (specified by argument id) used in the object's objective.
set_objective_parameter set the value of a parameter (specified by argument id) used in the object's objective to value.
get_solver_parameter get the value of a parameter (specified by argument id) used in the object's solver.
set_solver_parameter set the value of a parameter (specified by argument id) used in the object's solver to value.
get_portfolio_parameter get the value of a parameter (specified by argument id) used in the object's portfolio.
set_portfolio_parameter set the value of a parameter (specified by argument id) used in objects' solver to value.

Constraint-class Constraint prototype

Description

This prototype is used to represent the constraints used when making a prioritization. This prototype represents a recipe, to actually add constraints to a planning problem, see the help page on constraints. Only experts should use this class directly. This prototype inherits from the ConservationModifier.

See Also

ConservationModifier.

constraints Conservation problem constraints

Description

A constraint can be added to a conservation planning problem() to ensure that solutions exhibit a specific characteristic.

Details

Constraints can be used to ensure that solutions exhibit a range of different characteristics. For instance, they can be used to lock in or lock out certain planning units from the solution, such as protected areas or degraded land (respectively). Additionally, similar to the penalties functions, some of the constraint functions can be used to increase connectivity in a solution. The key difference between a penalty and a constraint, however, is that constraints work by invalidating solutions that do not exhibit a specific characteristic, whereas penalty functions work by than penalizing solutions which do not meet a specific characteristic. Thus constraints do not affect the objective function. The following constraints are available.

The following constraints can be added to a conservation planning problem():
add_locked_in_constraints() Add constraints to ensure that certain planning units are selected in the solution.
add_locked_out_constraints() Add constraints to ensure that certain planning units are not selected in the solution.
add_neighbor_constraints() Add constraints to ensure that all selected planning units have at least a certain number of neighbors.
add_contiguity_constraints() Add constraints to a ensure that all selected planning units are spatially connected to each other and form a single contiguous unit.
add_feature_contiguity_constraints() Add constraints to ensure that each feature is represented in a contiguous unit of dispersible habitat. These constraints are a more advanced version of those implemented in the add_contiguity_constraints() function, because they ensure that each feature is represented in a contiguous unit and not that the entire solution should form a contiguous unit.
add_linear_constraints() Add constraints to ensure that all selected planning units meet certain criteria. For example, they can be used to add multiple budgets, or limit the number of planning units selected in different administrative areas within a study region (e.g. different countries).
add_mandatory_allocation_constraints() Add constraints to ensure that every planning unit is allocated to a management zone in the solution. This function can only be used with problems that contain multiple zones.

See Also

Other overviews: decisions, importance, objectives, penalties, portfolios, solvers, summaries, targets

Examples

```
# load data
data(sim_pu_raster, sim_features, sim_locked_in_raster,
    sim_locked_out_raster)
# create minimal problem with only targets and no additional constraints
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem with locked in constraints
p2 <- p1 %>% add_locked_in_constraints(sim_locked_in_raster)
# create problem with locked in constraints
p3 <- p1 %>% add_locked_out_constraints(sim_locked_out_raster)
# create problem with neighbor constraints
p4 <- p1 %>% add_neighbor_constraints(2)
# create problem with contiguity constraints
p5 <- p1 %>% add_contiguity_constraints()
# create problem with feature contiguity constraints
p6 <- p1 %>% add_feature_contiguity_constraints()
## Not run:
# solve problems
s <- stack(lapply(list(p1, p2, p3, p4, p5, p6), solve))
# plot solutions
plot(s, box = FALSE, axes = FALSE, nr = 2,
    main = c("minimal problem", "locked in", "locked out",
        "neighbor", "contiguity", "feature contiguity"))
## End(Not run)
```

Decision-class Decision prototype

Description

This prototype used to represent the type of decision that is made when prioritizing planning units. This prototype represents a recipe to make a decision, to actually specify the type of decision in a planning problem, see the help page on decisions. Only experts should use this class directly. This class inherits from the ConservationModifier.

See Also

ConservationModifier.

Description

Conservation planning problems involve making decisions on how different planning units will be managed. These decisions might involve turning an entire planning unit into a protected area, turning part of a planning unit into a protected area, or allocating a planning unit to a specific management zone. If no decision is explicitly added to a problem(), then binary decisions will be used by default.

Details

Only a single type of decision can be added to a conservation planning problem(). Note that if multiple decisions are added to a problem, then the last one added will be used.
The following decisions can be added to a conservation planning problem():
add_binary_decisions() Add a binary decision to a conservation planning problem. This is the classic decision of either prioritizing or not prioritizing a planning unit. Typically, this decision has the assumed action of buying the planning unit to include in a protected area network. If no decision is added to a problem object then this decision class will be used by default.
add_proportion_decisions() Add a proportion decision to a conservation planning problem. This is a relaxed decision where a part of a planning unit can be prioritized, as opposed to the default of the entire planning unit. Typically, this decision has the assumed action of buying a fraction of a planning unit to include in a protected area network.
add_semicontinuous_decisions() Add a semi-continuous decision to a conservation planning problem. This decision is similar to add_proportion_decision except that it has an upper bound parameter. By default, the decision can range from prioritizing none (0%) to all (100%) of a planning unit. However, a upper bound can be specified to ensure that at most only a fraction (e.g. 80%) of a planning unit can be preserved. This type of decision may be useful when it is not practical to conserve the entire area encompassed by any single planning unit.

See Also

Other overviews: constraints, importance, objectives, penalties, portfolios, solvers, summaries, targets

Examples

```
# load data
data(sim_pu_raster, sim_features)
# create basic problem and using the default decision types (binary)
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
```

```
        add_default_solver(verbose = FALSE)
    # create problem with manually specified binary decisions
p2 <- p1 %>% add_binary_decisions()
# create problem with proportion decisions
p3 <- p1 %>% add_proportion_decisions()
# create problem with semicontinuous decisions
p4 <- p1 %>% add_semicontinuous_decisions(upper_limit = 0.5)
## Not run:
# solve problem
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4))
# plot solutions
plot(s, main = c("default (binary)", "binary", "proportion",
    "semicontinuous (upper = 0.5)"))
## End(Not run)
```

```
distribute_load Distribute load
```


Description

Utility function for distributing computations among a pool of workers for parallel processing.

Usage

distribute_load(x, n = 1)

Arguments

$\begin{array}{ll}\mathrm{x} & \text { integer number of item to process. } \\ \mathrm{n} & \text { integer number of threads }\end{array}$
n integer number of threads.

Details

This function returns a list containing an element for each worker. Each element contains a integer vector specifying the indices that the worker should process.

Value

list object.

Examples

```
## Not run:
# imagine that we have 10 jobs that need processing. For simplicity,
# our jobs will involve adding 1 to each element in 1:10.
values <- 1:10
# we could complete this processing using the following vectorized code
result <- 1 + 1:10
print(result)
# however, if our jobs were complex then we would be better off using
# functionals
result <- lapply(1:10, function(x) x + 1)
print(result)
# we could do one better, and use the "plyr" package to handle the
# processing
result <- plyr::llply(1:10, function(x) x + 1)
print(result)
# we could also use the parallel processing options available through "plyr"
# to use more computation resources to complete the jobs (note that since
# these jobs are very quick to process this is actually slower).
cl <- parallel::makeCluster(2, "PSOCK")
doParallel::registerDoParallel(cl)
result <- plyr::llply(1:10, function(x) x + 1, .parallel = TRUE)
cl <- parallel::stopCluster(cl)
print(result)
# however this approach iterates over each element individually, we could
# use the distribute_load function to split the N jobs up into K super
# jobs, and evaluate each super job using vectorized code.
x <- 1:10
cl <- parallel::makeCluster(2, "PSOCK")
parallel::clusterExport(cl, 'x', envir = environment())
doParallel::registerDoParallel(cl)
l <- distribute_load(length(x), n = 2)
result <- plyr::llply(l, function(i) x[i] + 1, .parallel = TRUE)
cl <- parallel::stopCluster(cl)
print(result)
## End(Not run)
```


Description

Calculate the exposed boundary length (perimeter) associated with a solution to a conservation planning problem(). This summary statistic is useful for evaluating the spatial fragmentation of planning units selected within a solution.

```
Usage
    eval_boundary_summary(x, ...)
    ## Default S3 method:
    eval_boundary_summary(x, ...)
    ## S3 method for class 'ConservationProblem'
    eval_boundary_summary(
    x,
    solution,
    edge_factor = rep(0.5, number_of_zones(x)),
    zones = diag(number_of_zones(x)),
    data = NULL,
)
```


Arguments

x
... not used.
solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. The argument should be in the same format as the planning unit cost data in the argument to x. See the Solution format section for more information.
edge_factor numeric proportion to scale planning unit edges (borders) that do not have any neighboring planning units. For example, an edge factor of 0.5 is commonly used to avoid overly penalizing planning units along a coastline. Note that this argument must have an element for each zone in the argument to x.
zones matrix or Matrix object describing the clumping scheme for different zones. Each row and column corresponds to a different zone in the argument to x, and cell values indicate the relative importance of clumping planning units that are allocated to a combination of zones. Cell values along the diagonal of the matrix represent the relative importance of clumping planning units that are allocated to the same zone. Cell values must range between 1 and -1 , where negative values favor solutions that spread out planning units. The default argument to zones is an identity matrix (i.e. a matrix with ones along the matrix diagonal and zeros elsewhere), so that penalties are incurred when neighboring planning units are not assigned to the same zone. If the cells along the matrix diagonal contain markedly smaller values than those found elsewhere in the matrix, then solutions are preferred that surround planning units with those allocated to different zones (i.e. greater spatial fragmentation).
data NULL, data.frame, matrix, or Matrix object containing the boundary data. These data describe the total amount of boundary (perimeter) length for each planning unit, and the amount of boundary (perimeter) length shared between different planning units (i.e. planning units that are adjacent to each other). See the Data format section for more information.

Details

This summary statistic is equivalent to the Connectivity_Edge metric reported by the Marxan software (Ball et al. 2009). It is calculated using the same equations used to penalize solutions according to their total exposed boundary (i.e. add_boundary_penalties()). See the Examples section for examples on how differences zone arguments can be used to calculate boundaries for different combinations of zones.

Value

tibble:: tibble() object containing the boundary length of the solution. It contains the following columns:
summary character description of the summary statistic. The statistic associated with the "overall" value in this column is calculated using the entire solution (including all management zones if there are multiple zones). If multiple management zones are present, then summary statistics are also provided for each zone separately (indicated using zone names).
boundary numeric exposed boundary length value. Greater values correspond to solutions with greater boundary length and, in turn, greater spatial fragmentation. Thus conservation planning exercises typically prefer solutions with smaller values.

Data format

The argument to data can be specified using the following formats. Note that boundary data must always describe symmetric relationships between planning units.
data as a NULL value indicating that the data should be automatically calculated using the boundary_matrix() function. This argument is the default. Note that the boundary data must be supplied using one of the other formats below if the planning unit data in the argument to x do not explicitly contain spatial information (e.g. planning unit data are a data.frame or numeric class).
data as a matrix/Matrix object where rows and columns represent different planning units and the value of each cell represents the amount of shared boundary length between two different planning units. Cells that occur along the matrix diagonal represent the amount of exposed boundary associated with each planning unit that has no neighbor (e.g. these value might pertain to boundaries along a coastline).
data as a data. frame object with the columns "id1", "id2", and "boundary". The "id1" and "id2" columns contain identifiers (indices) for a pair of planning units, and the "boundary" column contains the amount of shared boundary length between these two planning units. This format follows the the standard Marxan format for boundary data (i.e. per the "bound.dat" file).

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data.frame planning units The argument to solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with sf: :sf() data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:$: sf () data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $s f:: s f()$ planning units The argument to solution must be a $s f:: s f()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $s f:: s f()$ object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

References

Ball IR, Possingham HP, and Watts M (2009) Marxan and relatives: Software for spatial conservation prioritisation in Spatial conservation prioritisation: Quantitative methods and computational
tools. Eds Moilanen A, Wilson KA, and Possingham HP. Oxford University Press, Oxford, UK.

See Also

See summaries for an overview of all functions for summarizing solutions. Also, see add_boundary_penalties() to penalize solutions with high boundary length.
Other summaries: eval_connectivity_summary (), eval_cost_summary (), eval_feature_representation_summary () eval_n_summary(), eval_target_coverage_summary()

Examples

```
## Not run:
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_pu_sf, sim_features,
    sim_pu_zones_sf, sim_features_zones)
# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s1 <- solve(p1)
# print solution
print(s1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# calculate boundary associated with the solution
r1 <- eval_boundary_summary(p1, s1)
print(r1)
# build minimal conservation problem with polygon (sf) data
p2 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s2 <- solve(p2)
# print first six rows of the attribute table
print(head(s2))
```

eval_boundary_summary

```
# plot solution
plot(s2[, "solution_1"])
# calculate boundary associated with the solution
r2 <- eval_boundary_summary(p2, s2[, "solution_1"])
print(r2)
# build multi-zone conservation problem with polygon (sf) data
p3 <- problem(sim_pu_zones_sf, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                    ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s3 <- solve(p3)
# print first six rows of the attribute table
print(head(s3))
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s3$solution <- category_vector(
    s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
s3$solution <- factor(s3$solution)
# plot solution
plot(s3[, "solution"])
# calculate boundary associated with the solution
# here we will use the default argument for zones which treats each
# zone as completely separate, meaning that the "overall"
# boundary is just the sum of the boundaries for each zone
r3 <- eval_boundary_summary(
    p3, s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
print(r3)
# let's calculate the overall exposed boundary across the entire
# solution, assuming that the shared boundaries between planning
# units allocated to different zones "count" just as much
# as those for planning units allocated to the same zone
# in other words, let's calculate the overall exposed boundary
# across the entire solution by "combining" all selected planning units
# together (regardless of which zone they are allocated to in the solution)
r3_combined <- eval_boundary_summary(
    p3, zones = matrix(1, ncol = 3, nrow = 3),
    s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
print(r3_combined)
# we can see that the "overall" boundary is now less than the
```

```
# sum of the individual zone boundaries, because it does not
# consider the shared boundary between two planning units allocated to
# different zones as "exposed" when performing the calculations
## End(Not run)
```

eval_connectivity_summary

Evaluate solution connectivity

Description

Calculate the connectivity held within a solution to a conservation planning problem(). This summary statistic evaluates the connectivity of a solution using pair-wise connectivity values between combinations of planning units.

Usage

```
## S4 method for signature 'ConservationProblem,ANY,ANY,matrix'
eval_connectivity_summary(x, solution, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,Matrix'
eval_connectivity_summary(x, solution, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,data.frame'
eval_connectivity_summary(x, solution, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,dgCMatrix'
eval_connectivity_summary(x, solution, zones, data)
## S4 method for signature 'ConservationProblem,ANY,ANY,array'
eval_connectivity_summary(x, solution, zones, data)
```


Arguments

X
problem() (i.e. ConservationProblem) object.
solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. The argument should be in the same format as the planning unit cost data in the argument to x. See the Solution format section for more information.
zones matrix or Matrix object describing the level of connectivity between different zones. Each row and column corresponds to a different zone in the argument to x , and cell values indicate the level of connectivity between each combination of zones. Cell values along the diagonal of the matrix represent the level of connectivity between planning units allocated to the same zone. Cell values must lay between 1 and -1 , where negative values favor solutions with weak connectivity. The default argument to zones is an identity matrix (i.e. a matrix with ones along the matrix diagonal and zeros elsewhere), so that planning units
are only considered to be connected when they are allocated to the same zone. This argument is required when the argument to data is a matrix or Matrix object. If the argument to data is an array or data. frame with zone data, this argument must explicitly be set to NULL otherwise an error will be thrown.
data matrix, Matrix, data.frame, or array object containing connectivity data. The connectivity values correspond to the strength of connectivity between different planning units. Thus connections between planning units that are associated with higher values are more favorable in the solution. See the Data format section for more information.

Details

This summary statistic is comparable to the Connectivity_In metric reported by the Marxan software (Ball et al. 2009). It is calculated using the same equations used to penalize solutions with connectivity data (i.e. add_connectivity_penalties()). Specifically, it is calculated as the sum of the pair-wise connectivity values in the argument to data, weighted by the value of the planning units in the solution.

Value

tibble::tibble() object describing the connectivity of the solution. It contains the following columns:
summary character description of the summary statistic. The statistic associated with the "overall" value in this column is calculated using the entire solution (including all management zones if there are multiple zones). If multiple management zones are present, then summary statistics are also provided for each zone separately (indicated using zone names).
connectivity numeric connectivity value. Greater values correspond to solutions associated with greater connectivity. Thus conservation planning exercises typically prefer solutions with greater values.

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution,
extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data. frame planning units The argument to solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $s f:: s f()$ data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $s f:: s f()$ data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $s f:: s f()$ planning units The argument to solution must be a $s f:: s f()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the sf::sf() object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

Data format

The argument to data can be specified using several different formats. These formats can be used to describe symmetric or asymmetric relationships between planning units.
data as a matrix/Matrix object where rows and columns represent different planning units and the value of each cell represents the strength of connectivity between two different planning units. Cells that occur along the matrix diagonal are treated as weights which indicate that planning units are more desirable in the solution. The argument to zones can be used to control the strength of connectivity between planning units in different zones. The default argument for zones is to treat planning units allocated to different zones as having zero connectivity.
data as a data. frame object containing the fields (columns) "id1", "id2", and "boundary". Here, each row denotes the connectivity between two planning units following the Marxan format. The data can be used to denote symmetric or asymmetric relationships between planning units. By default, input data is assumed to be symmetric unless asymmetric data is also included (e.g. if data is present for planning units 2 and 3, then the same amount of connectivity is expected for planning units 3 and 2 , unless connectivity data is also provided for planning units 3 and 2). If the argument to x contains multiple zones, then the columns "zone1" and "zone2" can optionally be provided to manually specify the connectivity values between planning units when they are allocated to specific zones. If the columns "zone1" and "zone2" are present, then the argument to zones must be NULL.
data as an array object containing four-dimensions where cell values indicate the strength of connectivity between planning units when they are assigned to specific management zones. The first two dimensions (i.e. rows and columns) indicate the strength of connectivity between different planning units and the second two dimensions indicate the different management zones. Thus the data[1, 2, 3, 4] indicates the strength of connectivity between planning unit 1 and planning unit 2 when planning unit 1 is assigned to zone 3 and planning unit 2 is assigned to zone 4.

References

Ball IR, Possingham HP, and Watts M (2009) Marxan and relatives: Software for spatial conservation prioritisation in Spatial conservation prioritisation: Quantitative methods and computational tools. Eds Moilanen A, Wilson KA, and Possingham HP. Oxford University Press, Oxford, UK.

See Also

See summaries for an overview of all functions for summarizing solutions. Also, see add_connectivity_penalties() to penalize solutions with low connectivity.
Other summaries: eval_boundary_summary(), eval_cost_summary (), eval_feature_representation_summary(), eval_n_summary(), eval_target_coverage_summary()

Examples

```
## Not run:
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_pu_sf, sim_features,
    sim_pu_zones_sf, sim_features_zones)
# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s1 <- solve(p1)
# print solution
print(s1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# simulate a connectivity matrix to describe the relative strength
# of connectivity between different planning units
# for brevity, we will use cost data here so that pairs
# of adjacent planning units with higher cost values will have a
```

```
# higher connectivity value
# (but see ?connectivity_matrix for more information)
cm1 <- connectivity_matrix(sim_pu_raster, sim_pu_raster)
# calculate connectivity associated with the solution
r1 <- eval_connectivity_summary(p1, s1, data = cm1)
print(r1)
# build minimal conservation problem with polygon (sf) data
p2 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s2 <- solve(p2)
# print first six rows of the attribute table
print(head(s2))
# plot solution
plot(s2[, "solution_1"])
# simulate connectivity matrix
# here, we will generate connectivity values randomly
# between all pairs of planning units
cm2 <- matrix(runif(nrow(sim_pu_sf) ^ 2), nrow = nrow(sim_pu_sf))
# calculate connectivity associated with the solution
r2 <- eval_connectivity_summary(p2, s2[, "solution_1"], data = cm2)
print(r2)
# build multi-zone conservation problem with polygon (sf) data
p3 <- problem(sim_pu_zones_sf, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                                    ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s3 <- solve(p3)
# print first six rows of the attribute table
print(head(s3))
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s3$solution <- category_vector(
    s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
s3$solution <- factor(s3$solution)
```

```
    # plot solution
    plot(s3[, "solution"])
    # simulate connectivity matrix
    # here, we will add a new column to sim_pu_zones_sf with
    # randomly simulated values and create a connectivity matrix
    # based on the average simulated values of adjacent planning units
    sim_pu_zones_sf$con <- runif(nrow(sim_pu_zones_sf))
    cm3 <- connectivity_matrix(sim_pu_zones_sf, "con")
    # calculate connectivity associated with the solution
    r3 <- eval_connectivity_summary(
        p3, s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")],
        data = cm3)
    print(r3)
    ## End(Not run)
```

 eval_cost_summary Evaluate solution cost

Description

Calculate the total cost of a solution to a conservation planning problem(). For example, if the planning unit cost data describe land acquisition costs (USD), then the total cost would be net cost (USD) needed to acquire all planning units selected within the solution.

Usage

```
    eval_cost_summary(x, solution)
```

 \#\# Default S3 method:
 eval_cost_summary(x, solution)
 \#\# S3 method for class 'ConservationProblem'
 eval_cost_summary(x, solution)

Arguments

x
problem() (i.e. ConservationProblem) object.
solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. The argument should be in the same format as the planning unit cost data in the argument to x. See the Solution format section for more information.

Details

This metric is equivalent to the Cost metric reported by the Marxan software (Ball et al. 2009). Specifically, the cost of a solution is defined as the sum of the cost values, supplied when creating a problem() object (e.g. using the cost_column argument), weighted by the status of each planning unit in the solution.

Value

tibble: : tibble() object containing the solution cost. It contains the following columns:
summary character description of the summary statistic. The statistic associated with the "overall" value in this column is calculated using the entire solution (including all management zones if there are multiple zones). If multiple management zones are present, then summary statistics are also provided for each zone separately (indicated using zone names).
cost numeric cost value. Greater values correspond to solutions that are more costly to implement. Thus conservation planning exercises typically prefer solutions with smaller values, because they are cheaper to implement (assuming all other relevant factors, such as feature representation, are equal).

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x . Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data. frame planning units The argument to solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $s f:: s f()$ data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:: \mathrm{sf}()$ data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $s f:: s f()$ planning units The argument to solution must be a $s f: s f()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $\mathrm{sf}:: \mathrm{sf}()$ object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

References

Ball IR, Possingham HP, and Watts M (2009) Marxan and relatives: Software for spatial conservation prioritisation in Spatial conservation prioritisation: Quantitative methods and computational tools. Eds Moilanen A, Wilson KA, and Possingham HP. Oxford University Press, Oxford, UK.

See Also

See summaries for an overview of all functions for summarizing solutions.
Other summaries: eval_boundary_summary(), eval_connectivity_summary(), eval_feature_representation_summe eval_n_summary(), eval_target_coverage_summary()

Examples

```
## Not run:
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_pu_sf, sim_features,
    sim_pu_zones_sf, sim_features_zones)
# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s1 <- solve(p1)
# print solution
```

```
print(s1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# calculate cost of the solution
r1 <- eval_cost_summary(p1, s1)
print(r1)
# build minimal conservation problem with polygon (sf) data
p2 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s2 <- solve(p2)
# plot solution
plot(s2[, "solution_1"])
# print first six rows of the attribute table
print(head(s2))
# calculate cost of the solution
r2 <- eval_cost_summary(p2, s2[, "solution_1"])
print(r2)
# manually calculate cost of the solution
r2_manual <- sum(s2$solution * sim_pu_sf$cost, na.rm = TRUE)
print(r2_manual)
# build multi-zone conservation problem with polygon (sf) data
p3 <- problem(sim_pu_zones_sf, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
        add_min_set_objective() %>%
        add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s3 <- solve(p3)
# print first six rows of the attribute table
print(head(s3))
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s3$solution <- category_vector(
    s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
s3$solution <- factor(s3$solution)
```

```
# plot solution
plot(s3[, "solution"])
# calculate cost of the solution
r3 <- eval_cost_summary(
    p3, s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
print(r3)
## End(Not run)
```

```
eval_feature_representation_summary
```

 Evaluate feature representation

Description

Calculate how well features are represented by a solution to a conservation planning problem(). These summary statistics are reported for each and every feature, and each and every zone, within a conservation planning problem.

Usage

```
    eval_feature_representation_summary(x, solution)
    ## S4 method for signature 'ConservationProblem,numeric'
    eval_feature_representation_summary(x, solution)
    ## S4 method for signature 'ConservationProblem,matrix'
    eval_feature_representation_summary(x, solution)
    ## S4 method for signature 'ConservationProblem,data.frame'
    eval_feature_representation_summary(x, solution)
    ## S4 method for signature 'ConservationProblem,Spatial'
    eval_feature_representation_summary(x, solution)
    ## S4 method for signature 'ConservationProblem,sf'
    eval_feature_representation_summary(x, solution)
    ## S4 method for signature 'ConservationProblem,Raster'
    eval_feature_representation_summary(x, solution)
```


Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. The argument should be in the same format as the planning unit cost data in the argument to x. See the Solution format section for more information.

Value
tibble::tibble() object describing feature representation. Here, each row describes a specific summary statistic (e.g. different management zone) for a specific feature. It contains the following columns:
summary character description of the summary statistic. The statistic associated with the "overall" value in this column is calculated using the entire solution (including all management zones if there are multiple zones). If multiple management zones are present, then summary statistics are also provided for each zone separately (indicated using zone names).
feature character name of the feature.
total_amount numeric total amount of each feature available in the entire conservation planning problem (not just planning units selected within the solution). It is calculated as the sum of the feature data, supplied when creating a problem() object (e.g. presence/absence values).
absolute_held numeric total amount of each feature secured within the solution. It is calculated as the sum of the feature data, supplied when creating a problem() object (e.g. presence/absence values), weighted by the status of each planning unit in the solution (e.g. selected or not for prioritization).
relative_held numeric proportion of each feature secured within the solution. It is calculated by dividing values in the "absolute_held" column by those in the "total_amount" column.

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data. frame planning units The argument to solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $s f:: s f()$ data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:$: sf() data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $s f:: s f()$ planning units The argument to solution must be a $s f:: s f()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $\mathrm{sf}:: \mathrm{sf}()$ object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

See Also

See summaries for an overview of all functions for summarizing solutions.
Other summaries: eval_boundary_summary(), eval_connectivity_summary(), eval_cost_summary(), eval_n_summary(), eval_target_coverage_summary()

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_pu_polygons, sim_pu_zones_sf, sim_features,
    sim_pu_zones_stack, sim_features_zones)
# create a simple conservation planning dataset so we can see exactly
# how feature representation is calculated
pu <- data.frame(id = seq_len(10), cost = c(0.2, NA, runif(8)),
                        spp1 = runif(10), spp2 = c(rpois(9, 4), NA))
# create problem
p1 <- problem(pu, c("spp1", "spp2"), cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create a solution
# specifically, a data.frame with a single column that contains
# binary values indicating if each planning units was selected or not
s1 <- data.frame(s = c(1, NA, rep(c(1, 0), 4)))
print(s1)
```

```
# calculate feature representation
r1 <- eval_feature_representation_summary(p1, s1)
print(r1)
# let's verify that feature representation calculations are correct
# by manually performing the calculations and compare the results with r1
## calculate total amount for each feature
print(setNames(
    c(sum(pu$spp1, na.rm = TRUE),
        sum(pu$spp2, na.rm = TRUE)),
    c("spp1", "spp2")))
## calculate absolute amount held for each feature
print(setNames(
    c(sum(pu$spp1 * s1$s, na.rm = TRUE),
        sum(pu$spp2 * s1$s, na.rm = TRUE)),
    c("spp1", "spp2")))
## calculate relative amount held for each feature
print(setNames(
    c(sum(pu$spp1 * s1$s, na.rm = TRUE) / sum(pu$spp1, na.rm = TRUE),
        sum(pu$spp2 * s1$s, na.rm = TRUE) / sum(pu$spp2, na.rm = TRUE)),
    c("spp1", "spp2")))
## Not run:
# solve the problem using an exact algorithm solver
s1_2 <- solve(p1)
print(s1_2)
# calculate feature representation in this solution
r1_2 <- eval_feature_representation_summary(
    p1, s1_2[, "solution_1", drop = FALSE])
print(r1_2)
# build minimal conservation problem with raster data
p2 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s2 <- solve(p2)
# print solution
print(s2)
# calculate feature representation in the solution
r2 <- eval_feature_representation_summary(p2, s2)
print(r2)
# plot solution
plot(s2, main = "solution", axes = FALSE, box = FALSE)
```

```
## End(Not run)
# build minimal conservation problem with polygon (Spatial) data
p3 <- problem(sim_pu_polygons, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s3 <- solve(p3)
# print first six rows of the attribute table
print(head(s3))
# calculate feature representation in the solution
r3 <- eval_feature_representation_summary(p3, s3[, "solution_1"])
print(r3)
# plot solution
spplot(s3, zcol = "solution_1", main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# build multi-zone conservation problem with raster data
p4 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                            ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s4 <- solve(p4)
# print solution
print(s4)
# calculate feature representation in the solution
r4 <- eval_feature_representation_summary(p4, s4)
print(r4)
# plot solution
plot(category_layer(s4), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# build multi-zone conservation problem with polygon (sf) data
p5 <- problem(sim_pu_zones_sf, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
    ncol = 3)) %>%
    add_binary_decisions() %>%
```

```
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s5 <- solve(p5)
# print first six rows of the attribute table
print(head(s5))
# calculate feature representation in the solution
r5 <- eval_feature_representation_summary(
    p5, s5[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
print(r5)
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s5$solution <- category_vector(
    s5[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
s5$solution <- factor(s5$solution)
# plot solution
plot(s5[, "solution"])
## End(Not run)
```

```
eval_ferrier_importance
```

Evaluate solution importance using Ferrier scores

Description

Calculate importance scores for planning units selected in a solution following Ferrier et al. (2000).

Usage

```
eval_ferrier_importance(x, solution)
## S4 method for signature 'ConservationProblem,numeric'
eval_ferrier_importance(x, solution)
    ## S4 method for signature 'ConservationProblem,matrix'
    eval_ferrier_importance(x, solution)
    ## S4 method for signature 'ConservationProblem,data.frame'
    eval_ferrier_importance(x, solution)
    ## S4 method for signature 'ConservationProblem,Spatial'
    eval_ferrier_importance(x, solution)
    ## S4 method for signature 'ConservationProblem,sf'
```

```
eval_ferrier_importance(x, solution)
## S4 method for signature 'ConservationProblem,Raster'
eval_ferrier_importance(x, solution)
```


Arguments

```
X
```

 problem() (i.e. ConservationProblem) object.
 solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. The argument should be in the same format as the planning unit cost data in the argument to x. See the Solution format section for more information.

Details

Importance scores are reported separately for each feature within each planning unit. Additionally, a total importance score is also calculated as the sum of the scores for each feature. Note that this function only works for problems with a minimum set objective and a single zone. It will throw an error for problems that do not meet this criteria.
Please note that the mathematical formulation for computing these scores needs verification, and so this functionality should be considered experimental at this point in time.

Value

A matrix, tibble::tibble(), RasterLayer, or Spatial object containing the scores for each planning unit selected in the solution. Specifically, the returned object is in the same format (except if the planning units are a numeric vector) as the planning unit data in the argument to x .

Notes

In previous versions, the documentation for this function had a warning indicating that the mathematical formulation for this function required verification. The mathematical formulation for this function has since been corrected and verified, so now this function is recommended for general use.

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data. frame planning units The argument to solution must be a data. frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $s f:: s f()$ data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:: \mathrm{sf}()$ data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $\mathrm{sf}:: \mathrm{sf}()$ planning units The argument to solution must be a $\mathrm{sf}:: \mathrm{sf}()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $\mathrm{sf}:: \mathrm{sf}()$ object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

References

Ferrier S, Pressey RL, and Barrett TW (2000) A new predictor of the irreplaceability of areas for achieving a conservation goal, its application to real-world planning, and a research agenda for further refinement. Biological Conservation, 93: 303-325.

See Also

See importance for an overview of all functions for evaluating the importance of planning units selected in a solution.

Other importances: eval_rare_richness_importance(), eval_replacement_importance()

Examples

```
# seed seed for reproducibility
set.seed(600)
# load data
```

```
data(sim_pu_raster, sim_features)
# create minimal problem with binary decisions
p1 <- problem(sim_pu_raster, sim_features) %>%
        add_min_set_objective() %>%
        add_relative_targets(0.1) %>%
        add_binary_decisions() %>%
        add_default_solver(gap = 0, verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# print solution
print(s1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# calculate importance scores using Ferrier et al. 2000 method
fs1 <- eval_ferrier_importance(p1, s1)
# print importance scores,
# each planning unit has an importance score for each feature
# (as indicated by the column names) and each planning unit also
# has an overall total importance score (in the "total" column)
print(fs1)
# plot total importance scores
plot(fs1, main = "Ferrier scores", axes = FALSE, box = FALSE)
# create minimal problem with polygon (sf) planning units
p2 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.05) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve problem
s2 <- solve(p2)
# print solution
print(s2)
# plot solution
plot(s2[, "solution_1"], main = "solution")
# calculate importance scores
fs2 <- eval_ferrier_importance(p2, s2[, "solution_1"])
# plot importance scores
plot(fs2, main = "Ferrier scores")
```

```
## End(Not run)
```

```
eval_n_summary Evaluate number of planning units selected
```


Description

Calculate the number of planning units selected within a solution to a conservation planning problem().

Usage

```
eval_n_summary(x, solution)
## Default S3 method:
eval_n_summary(x, solution)
    ## S3 method for class 'ConservationProblem'
    eval_n_summary(x, solution)
```


Arguments

x
problem() (i.e. ConservationProblem) object.
solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. The argument should be in the same format as the planning unit cost data in the argument to x. See the Solution format section for more information.

Details

This summary statistic is calculated as the sum of the values in the solution. As a consequence, this metric can produce a non-integer value (e.g. 4.3) for solutions containing proportion values (e.g. generated by solving a problem() built using the add_proportion_decisions() function).

Value

tibble: :tibble() object containing the number of planning units selected within a solution. It contains the following columns:
summary character description of the summary statistic. The statistic associated with the "overall" value in this column is calculated using the entire solution (including all management zones if there are multiple zones). If multiple management zones are present, then summary statistics are also provided for each zone separately (indicated using zone names).
n numeric number of selected planning units.

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x . Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data.frame planning units The argument to solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with sf::sf() data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:$: sf () data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $s f:: s f()$ planning units The argument to solution must be a $s f: s f()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $s f:: s f()$ object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

See Also

See summaries for an overview of all functions for summarizing solutions.

Other summaries: eval_boundary_summary(), eval_connectivity_summary(), eval_cost_summary(), eval_feature_representation_summary(), eval_target_coverage_summary()

Examples

```
## Not run:
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_pu_sf, sim_features,
    sim_pu_zones_sf, sim_features_zones)
# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s1 <- solve(p1)
# print solution
print(s1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# calculate number of selected planning units within solution
r1 <- eval_n_summary(p1, s1)
print(r1)
# build minimal conservation problem with polygon (sf) data
p2 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s2 <- solve(p2)
# plot solution
plot(s2[, "solution_1"])
# print first six rows of the attribute table
print(head(s2))
# calculate number of selected planning units within solution
r2 <- eval_n_summary(p2, s2[, "solution_1"])
print(r2)
```

```
# manually calculate number of selected planning units
r2_manual <- sum(s2$solution, na.rm = TRUE)
print(r2_manual)
# build multi-zone conservation problem with polygon (sf) data
p3 <- problem(sim_pu_zones_sf, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
            add_min_set_objective() %>%
            add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                                    ncol = 3)) %>%
            add_binary_decisions() %>%
            add_default_solver(verbose = FALSE)
# solve the problem
s3 <- solve(p3)
# print first six rows of the attribute table
print(head(s3))
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s3$solution <- category_vector(
            s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
s3$solution <- factor(s3$solution)
# plot solution
plot(s3[, "solution"])
# calculate number of selected planning units within solution
r3 <- eval_n_summary(
        p3, s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
print(r3)
## End(Not run)
```

eval_rare_richness_importance

Evaluate solution importance using rarity weighted richness scores

Description

Calculate importance scores for planning units selected in a solution using rarity weighted richness scores (based on Williams et al. 1996). This method is only recommended for large-scaled conservation planning exercises (i.e. more than 100,000 planning units) where importance scores cannot be calculated using other methods in a feasible period of time. This is because rarity weighted richness scores cannot (i) account for the cost of different planning units, (ii) account for multiple management zones, and (iii) identify truly irreplaceable planning units- unlike the replacement cost metric which does not suffer any of these limitations.

```
Usage
eval_rare_richness_importance(x, solution, ...)
\#\# S4 method for signature 'ConservationProblem, numeric'
    eval_rare_richness_importance(x, solution, rescale, ...)
    ## S4 method for signature 'ConservationProblem,matrix'
    eval_rare_richness_importance(x, solution, rescale, ...)
    ## S4 method for signature 'ConservationProblem,data.frame'
    eval_rare_richness_importance(x, solution, rescale, ...)
    ## S4 method for signature 'ConservationProblem,Spatial'
    eval_rare_richness_importance(x, solution, rescale, ...)
    ## S4 method for signature 'ConservationProblem,sf'
    eval_rare_richness_importance(x, solution, rescale, ...)
    ## S4 method for signature 'ConservationProblem,Raster'
    eval_rare_richness_importance(x, solution, rescale, ...)
```


Arguments

x	problem() (i.e. ConservationProblem) object.
solution	numeric, matrix, data.frame, Raster, Spatial, or sf: :sf() object. The argument should be in the same format as the planning unit cost data in the argument to x. See the Solution format section for more information.
\ldots	not used.
rescale	logical flag indicating if replacement cost values-excepting infinite (Inf) and zero values-should be rescaled to range between 0.01 and 1. Defaults to TRUE.

Details

Rarity weighted richness scores are calculated using the following terms. Let I denote the set of planning units (indexed by i), let J denote the set of conservation features (indexed by j), let $r_{i j}$ denote the amount of feature j associated with planning unit i, and let m_{j} denote the maximum value of feature j in $r_{i j}$ in all planning units $i \in I$. To calculate the rarity weighted richness $(R W R)$ for planning unit k :

$$
R W R_{k}=\sum_{j}^{J} \frac{\frac{r_{i k}}{m_{j}}}{\sum_{i}^{I} r_{i j}}
$$

Value

A numeric, matrix, data.frame RasterLayer, Spatial, or sf::sf() object containing the importance scores for each planning unit in the solution. Specifically, the returned object is in the same format as the planning unit data in the argument to x.

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data.frame planning units The argument to solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with sf: :sf() data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:$: sf () data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $s f:: s f()$ planning units The argument to solution must be a $s f: s f()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $s f:: s f()$ object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

References

Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, and Pressey RL (1996) A comparison of richness hotspots, rarity hotspots and complementary areas for conserving diversity using British
birds. Conservation Biology, 10: 155-174.

See Also

See importance for an overview of all functions for evaluating the importance of planning units selected in a solution.

Other importances: eval_ferrier_importance(), eval_replacement_importance()

Examples

```
## Not run:
# seed seed for reproducibility
set.seed(600)
# load data
data(sim_pu_raster, sim_pu_sf, sim_features)
# create minimal problem with raster planning units
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve problem
s1 <- solve(p1)
# print solution
print(s1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# calculate importance scores
rwr1 <- eval_rare_richness_importance(p1, s1)
# print importance scores
print(rwr1)
# plot importance scores
plot(rwr1, main = "rarity weighted richness", axes = FALSE, box = FALSE)
# create minimal problem with polygon (sf) planning units
p2 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.05) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve problem
s2 <- solve(p2)
```

eval_replacement_importance

```
# print solution
print(s2)
# plot solution
plot(s2[, "solution_1"], main = "solution")
# calculate importance scores
rwr2 <- eval_rare_richness_importance(p2, s2[, "solution_1"])
# plot importance scores
plot(rwr2, main = "rarity weighted richness")
## End(Not run)
```

eval_replacement_importance

Evaluate solution importance using replacement cost scores

Description

Calculate importance scores for planning units selected in a solution based on the replacement cost method (Cabeza and Moilanen 2006).

Usage

```
eval_replacement_importance(x, solution, ...)
## S4 method for signature 'ConservationProblem,numeric'
eval_replacement_importance(x, solution, rescale, run_checks, force, threads,...)
## S4 method for signature 'ConservationProblem,matrix'
eval_replacement_importance(x, solution, rescale, run_checks, force, threads,...)
## S4 method for signature 'ConservationProblem,data.frame'
eval_replacement_importance(x, solution, rescale, run_checks, force, threads, ...)
## S4 method for signature 'ConservationProblem,Spatial'
eval_replacement_importance(x, solution, rescale, run_checks, force, threads,...)
## S4 method for signature 'ConservationProblem,sf'
eval_replacement_importance(x, solution, rescale, run_checks, force, threads, ...)
## S4 method for signature 'ConservationProblem,Raster'
eval_replacement_importance(x, solution, rescale, run_checks, force, threads,...)
```


Arguments

x
solution
... rescale
force
threads

run_checks logical flag indicating whether presolve checks should be run prior solving the
problem() (i.e. ConservationProblem) object.
numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. The argument should be in the same format as the planning unit cost data in the argument to x . See the Solution format section for more information.
not used.
logical flag indicating if replacement cost values-excepting infinite (Inf) and zero values-should be rescaled to range between 0.01 and 1 . Defaults to TRUE. problem. These checks are performed using the presolve_check() function. Defaults to TRUE. Skipping these checks may reduce run time for large problems.
logical flag indicating if an attempt to should be made to solve the problem even if potential issues were detected during the presolve checks. Defaults to FALSE.
integer number of threads to use for the optimization algorithm. Defaults to 1 such that only a single thread is used.

Details

This function implements a modified version of the replacement cost method (Cabeza and Moilanen 2006). Specifically, the score for each planning unit is calculated as the difference in the objective value of a solution when each planning unit is locked out and the optimization processes rerun with all other selected planning units locked in. In other words, the replacement cost metric corresponds to change in solution quality incurred if a given planning unit cannot be acquired when implementing the solution and the next best planning unit (or set of planning units) will need to be considered instead. Thus planning units with a higher score are more important (and irreplaceable). For example, when using the minimum set objective function (add_min_set_objective()), the replacement cost scores correspond to the additional costs needed to meet targets when each planning unit is locked out. When using the maximum utility objective function (add_max_utility_objective(), the replacement cost scores correspond to the reduction in the utility when each planning unit is locked out. Infinite values mean that no feasible solution exists when planning units are locked out-they are absolutely essential for obtaining a solution (e.g. they contain rare species that are not found in any other planning units or were locked in). Zeros values mean that planning units can swapped with other planning units and this will have no effect on the performance of the solution at all (e.g. because they were only selected due to spatial fragmentation penalties).
These calculations can take a long time to complete for large or complex conservation planning problems. As such, we using this method for small or moderate-sized conservation planning problems (e.g. < 30,000 planning units). To reduce run time, we recommend calculating these scores without additional penalties (e.g. add_boundary_penalties()) or spatial constraints (e.g. add_contiguity_constraints()). To further reduce run time, we recommend using proportiontype decisions when calculating the scores (see below for an example).

Value

A numeric, matrix, data.frame RasterLayer, Spatial, or $s f: s f()$ object containing the importance scores for each planning unit in the solution. Specifically, the returned object is in the same format as the planning unit data in the argument to x.

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data.frame planning units The argument to solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with sf: :sf() data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $\mathrm{sf}:$: sf () data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $s f:: s f()$ planning units The argument to solution must be a $s f:: s f()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $s f:: s f()$ object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

References

Cabeza M and Moilanen A (2006) Replacement cost: A practical measure of site value for costeffective reserve planning. Biological Conservation, 132: 336-342.

See Also

See importance for an overview of all functions for evaluating the importance of planning units selected in a solution.
Other importances: eval_ferrier_importance(), eval_rare_richness_importance()

Examples

```
## Not run:
# seed seed for reproducibility
set.seed(600)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem with binary decisions
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve problem
s1 <- solve(p1)
# print solution
print(s1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# calculate importance scores
rc1 <- eval_replacement_importance(p1, s1)
# print importance scores
print(rc1)
# plot importance scores
plot(rc1, main = "replacement cost", axes = FALSE, box = FALSE)
# since replacement cost scores can take a long time to calculate with
# binary decisions, we can calculate them using proportion-type
# decision variables. Note we are still calculating the scores for our
# previous solution (s1), we are just using a different optimization
# problem when calculating the scores.
p2 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_proportion_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# calculate importance scores using proportion type decisions
rc2 <- eval_replacement_importance(p2, s1)
```

```
# print importance scores based on proportion type decisions
print(rc2)
# plot importance scores based on proportion type decisions
# we can see that the importance values in rc1 and rc2 are similar,
# and this confirms that the proportion type decisions are a good
# approximation
plot(rc2, main = "replacement cost", axes = FALSE, box = FALSE)
# create minimal problem with polygon (sf) planning units
p3 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.05) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve problem
s3 <- solve(p3)
# print solution
print(s3)
# plot solution
plot(s3[, "solution_1"], main = "solution")
# calculate importance scores
rc3 <- eval_rare_richness_importance(p3, s3[, "solution_1"])
# plot importance scores
plot(rc3, main = "replacement cost")
# build multi-zone conservation problem with raster data
p4 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                            ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve the problem
s4 <- solve(p4)
# print solution
print(s4)
# plot solution
# each panel corresponds to a different zone, and data show the
# status of each planning unit in a given zone
plot(s4, main = paste0("zone ", seq_len(nlayers(s4))), axes = FALSE,
    box = FALSE)
# calculate importance scores
rc4 <- eval_replacement_importance(p4, s4)
```

```
# plot importance
# each panel corresponds to a different zone, and data show the
# importance of each planning unit in a given zone
plot(rc4, main = paste0("zone ", seq_len(nlayers(s4))), axes = FALSE,
    box = FALSE)
## End(Not run)
```

```
eval_target_coverage_summary
```


Evaluate target coverage

Description

Calculate how well feature representation targets are met by a solution to a conservation planning problem(). It is useful for understanding if features are adequately represented by a solution. Note that this function can only be used with problems that contain targets.

Usage

```
    eval_target_coverage_summary(x, solution, include_zone, include_sense)
    ## Default S3 method:
    eval_target_coverage_summary(x, solution, include_zone, include_sense)
    ## S3 method for class 'ConservationProblem'
    eval_target_coverage_summary(
        x,
        solution,
        include_zone = number_of_zones(x) > 1,
        include_sense = number_of_zones(x) > 1
    )
```


Arguments

$x \quad$ problem() (i.e. ConservationProblem) object.
solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. The argument should be in the same format as the planning unit cost data in the argument to x. See the Solution format section for more information.
include_zone logical include the zone column in the output? Defaults to TRUE for problems that contain multiple zones.
include_sense logical include the sense column in the output? Defaults to TRUE for problems that contain multiple zones.

Value

tibble::tibble() object. Here, each row describes information for a different target. It contains the following columns:
feature character name of the feature associated with each target.
zone list of character zone names associated with each target. This column is in a list-column format because a single target can correspond to multiple zones (see add_manual_targets() for details and examples). For an example of converting the list-column format to a standard character column format, please see the Examples section. This column is only included if the argument to include_zones is TRUE.
sense character sense associated with each target. Sense values specify the nature of the target. Typically (e.g. when using the add_absolute_targets() or add_relative_targets() functions), targets are specified using sense values indicating that the total amount of a feature held within a solution (ideally) be greater than or equal to a threshold amount (i.e. a sense value of " $>=$ "). Additionally, targets (i.e. using the add_manual_targets() function) can also be specified using sense values indicating that the total amount of a feature held within a solution must be equal to a threshold amount (i.e. a sense value of "=") or smaller than or equal to a threshold amount (i.e. a sense value of "<="). This column is only included if the argument to include_sense is TRUE.
total_amount numeric total amount of the feature available across the entire conservation planning problem for meeting each target (not just planning units selected within the solution). For problems involving a single zone, this column is calculated as the sum of all of the values for a given feature (similar to values in the total_amount column produced by the eval_feature_representation_summary () function). For problems involving multiple zones, this column is calculated as the sum of the values for the feature associated with target (per the "feature" column), across the zones associated with the target (per the "zone" column).
absolute_target numeric total threshold amount associated with each target.
absolute_held numeric total amount held within the solution for the feature and (if relevant) zones associated with each target (per the "feature" and "zone" columns, respectively). This column is calculated as the sum of the feature data, supplied when creating a problem() object (e.g. presence/absence values), weighted by the status of each planning unit in the solution (e.g. selected or not for prioritization).
absolute_shortfall numeric total amount by which the solution fails to meet each target. This column is calculated as the difference between the total amount held within the solution for the feature and (if relevant) zones associated with the target (i.e. "absolute_held" column) and the target total threshold amount (i.e. "absolute_target" column), with values set to zero depending on the sense specified for the target (e.g. if the target sense is $>=$ then the difference is set to zero if the value in the "absolute_held" is smaller than that in the "absolute_target" column).
relative_target numeric proportion threshold amount associated with each target. This column is calculated by dividing the total threshold amount associated with each target (i.e. "absolute_target" column) by the total amount associated with each target (i.e. "total_amount" column).
relative_held numeric proportion held within the solution for the feature and (if relevant) zones associated with each target (per the "feature" and "zone" columns, respectively). This column is calculated by dividing the total amount held for each target (i.e. "absolute_held" column) by the total amount for with each target (i.e. "total_amount" column).
relative_shortfall numeric proportion by which the solution fails to meet each target. This column is calculated by dividing the total shortfall for each target (i.e. "absolute_shortfall" column) by the total amount for each target (i.e. "total_amount" column).
met logical indicating if each target is met by the solution. This column is calculated by checking if the total shortfall associated with each target (i.e. "absolute_shortfall" column) is equal to zero.

Solution format

Broadly speaking, the argument to solution must be in the same format as the planning unit data in the argument to x. Further details on the correct format are listed separately for each of the different planning unit data formats:
x has numeric planning units The argument to solution must be a numeric vector with each element corresponding to a different planning unit. It should have the same number of planning units as those in the argument to x. Additionally, any planning units missing cost (NA) values should also have missing (NA) values in the argument to solution.
x has matrix planning units The argument to solution must be a matrix vector with each row corresponding to a different planning unit, and each column correspond to a different management zone. It should have the same number of planning units and zones as those in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have a missing (NA) values in the argument to solution.
x has Raster planning units The argument to solution be a Raster object where different grid cells (pixels) correspond to different planning units and layers correspond to a different management zones. It should have the same dimensionality (rows, columns, layers), resolution, extent, and coordinate reference system as the planning units in the argument to x. Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has data.frame planning units The argument to solution must be a data.frame with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if a data.frame object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with $s f:: s f()$ data). Additionally, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has Spatial planning units The argument to solution must be a Spatial object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the Spatial object containing the solution also contains additional columns, then these columns will need to be subsetted prior to using this function (see below for example with sf::sf() data). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.
x has $\mathrm{sf}:: \mathrm{sf}()$ planning units The argument to solution must be a $\mathrm{sf}:: \mathrm{sf}()$ object with each column corresponding to a different zone, each row corresponding to a different planning unit, and cell values corresponding to the solution value. This means that if the $s f:: s f()$ object containing the solution also contains additional columns, then these columns will need to be
subsetted prior to using this function (see below for example). Additionally, the argument to solution must also have the same coordinate reference system as the planning unit data. Furthermore, any planning units missing cost (NA) values for a particular zone should also have missing (NA) values in the argument to solution.

See Also

See summaries for an overview of all functions for summarizing solutions.
Other summaries: eval_boundary_summary(), eval_connectivity_summary(), eval_cost_summary(), eval_feature_representation_summary(), eval_n_summary()

Examples

```
## Not run:
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_pu_sf, sim_features,
    sim_pu_zones_sf, sim_features_zones)
# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s1 <- solve(p1)
# print solution
print(s1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# calculate target coverage by the solution
r1 <- eval_target_coverage_summary(p1, s1)
print(r1, width = Inf) # note: `width = Inf` tells R to print all columns
# build minimal conservation problem with polygon (sf) data
p2 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s2 <- solve(p2)
# print first six rows of the attribute table
```

```
print(head(s2))
# plot solution
plot(s2[, "solution_1"])
# calculate target coverage by the solution
r2 <- eval_target_coverage_summary(p2, s2[, "solution_1"])
print(r2, width = Inf)
# build multi-zone conservation problem with polygon (sf) data
p3 <- problem(sim_pu_zones_sf, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                            ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve the problem
s3 <- solve(p3)
# print first six rows of the attribute table
print(head(s3))
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s3$solution <- category_vector(
    s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
s3$solution <- factor(s3$solution)
# plot solution
plot(s3[, "solution"])
# calculate target coverage by the solution
r3 <- eval_target_coverage_summary(
    p3, s3[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
print(r3, width = Inf)
# create a new column with character values containing the zone names,
# by extracting these data out of the zone column
# (which is in list-column format)
r3$zone2 <- vapply(r3$zone, FUN.VALUE = character(1), paste, sep = " & ")
# print r3 again to show the new column
print(r3, width = Inf)
## End(Not run)
```

fast_extract Fast extract

Description

Extract data from a Raster object.

Usage

```
fast_extract(x, y, ...)
## S4 method for signature 'Raster,SpatialPolygons'
fast_extract(x, y, fun = "mean", ...)
## S4 method for signature 'Raster,SpatialPoints'
fast_extract(x, y, fun = "mean", ...)
## S4 method for signature 'Raster,SpatialLines'
fast_extract(x, y, fun = "mean", ...)
## S4 method for signature 'Raster,sfc'
fast_extract(x, y, fun = "mean", ...)
## S4 method for signature 'Raster,sf'
fast_extract(x, y, fun = "mean", ...)
```


Arguments

x Raster object.
$y \quad$ Spatial or sf::sf() object.
... not used.
fun character name of statistic to summarize data. Defaults to "mean". Available options include "sum" or "mean". Defaults to "mean".

Details

This function is simply a wrapper that uses raster: : extract () to extract data for SpatialPoints and SpatialLines and non-polygonal $s f:: s f()$ data, and exactextractr::exact_extract() for SpatialPolygons and polygonal sf::sf() data.

Value

matrix containing the summary amount of each feature within each planning unit. Rows correspond to different spatial features in the argument to y and columns correspond to different raster layers in the argument to x.

See Also

raster::extract(), exactextractr::exact_extract().

Examples

```
# load data
data(sim_pu_sf, sim_features)
# extract data
result <- fast_extract(sim_features, sim_pu_sf)
# show result
print(head(result))
```

```
feature_abundances Feature abundances
```


Description

Calculate the total abundance of each feature found in the planning units of a conservation planning problem.

Usage

feature_abundances(x, na.rm)
\#\# S3 method for class 'ConservationProblem'
feature_abundances(x, na.rm = FALSE)

Arguments

x
na.rm logical should planning units with NA cost data be excluded from the abundance calculations? The default argument is FALSE.

Details

Planning units can have cost data with finite values (e.g. $0.1,3,100$) and NA values. This functionality is provided so that locations which are not available for protected area acquisition can be included when calculating targets for conservation features (e.g. when targets are specified using add_relative_targets()). If the total amount of each feature in all the planning units is required-including the planning units with NA cost data-then the the na.rm argument should be set to FALSE. However, if the planning units with NA cost data should be excluded-for instance, to calculate the highest feasible targets for each feature-then the na.rm argument should be set to TRUE.

Value

tibble::tibble() object containing the total amount ("absolute_abundance") and proportion ("relative_abundance") of the distribution of each feature in the planning units. Here, each row contains data that pertain to a specific feature in a specific management zone (if multiple zones are present). This object contains the following columns:
feature character name of the feature.
zone character name of the zone (not included when the argument to x contains only one management zone).
absolute_abundance numeric amount of each feature in the planning units. If the problem contains multiple zones, then this column shows how well each feature is represented in a each zone.
relative_abundance numeric proportion of the feature's distribution in the planning units. If the argument to na.rm is FALSE, then this column will only contain values equal to one. Otherwise, if the argument to na.rm is TRUE and planning units with NA cost data contain non-zero amounts of each feature, then this column will contain values between zero and one.

See Also

problem(), eval_feature_representation_summary().

Examples

```
# load data
data(sim_pu_raster, sim_features)
# create a simple conservation planning dataset so we can see exactly
# how the feature abundances are calculated
pu <- data.frame(id = seq_len(10), cost = c(0.2, NA, runif(8)),
    spp1 = runif(10), spp2 = c(rpois(9, 4), NA))
# create problem
p1 <- problem(pu, c("spp1", "spp2"), cost_column = "cost")
# calculate feature abundances; including planning units with NA costs
a1 <- feature_abundances(p1, na.rm = FALSE) # (default)
print(a1)
# calculate feature abundances; excluding planning units with NA costs
a2 <- feature_abundances(p1, na.rm = TRUE)
print(a2)
# verify correctness of feature abundance calculations
all.equal(a1$absolute_abundance,
    c(sum(pu$spp1), sum(pu$spp2, na.rm = TRUE)))
all.equal(a1$relative_abundance,
    c(sum(pu$spp1) / sum(pu$spp1),
        sum(pu$spp2, na.rm = TRUE) / sum(pu$spp2, na.rm = TRUE)))
```

```
all.equal(a2$absolute_abundance,
    c(sum(pu$spp1[!is.na(pu$cost)]),
        sum(pu$spp2[!is.na(pu$cost)], na.rm = TRUE)))
all.equal(a2$relative_abundance,
    c(sum(pu$spp1[!is.na(pu$cost)]) / sum(pu$spp1, na.rm = TRUE),
        sum(pu$spp2[!is.na(pu$cost)], na.rm = TRUE) / sum(pu$spp2,
                                    na.rm = TRUE)))
# initialize conservation problem with raster data
p3 <- problem(sim_pu_raster, sim_features)
# calculate feature abundances; including planning units with NA costs
a3 <- feature_abundances(p3, na.rm = FALSE) # (default)
print(a3)
# create problem using total amounts of features in all the planning units
# (including units with NA cost data)
p4 <- p3 %>%
    add_min_set_objective() %>%
    add_relative_targets(a3$relative_abundance) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# attempt to solve the problem, but we will see that this problem is
# infeasible because the targets cannot be met using only the planning units
# with finite cost data
## Not run:
s4 <- try(solve(p4))
## End(Not run)
# calculate feature abundances; excluding planning units with NA costs
a5 <- feature_abundances(p3, na.rm = TRUE)
print(a5)
# create problem using total amounts of features in the planning units with
# finite cost data
p5 <- p3 %>%
    add_min_set_objective() %>%
    add_relative_targets(a5$relative_abundance) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s5 <- solve(p5)
# plot the solution
# this solution contains all the planning units with finite cost data (i.e.
# cost data that do not have NA values)
plot(s5)
## End(Not run)
```

```
feature_names Feature names
```


Description

Extract the names of the features in an object.

Usage

```
feature_names(x)
## S4 method for signature 'ConservationProblem'
feature_names(x)
## S4 method for signature 'ZonesRaster'
feature_names(x)
## S4 method for signature 'ZonesCharacter'
feature_names(x)
```


Arguments

x problem() (i.e. ConservationProblem) or Zones() object.

Value

character feature names.

Examples

```
# load data
data(sim_pu_raster, sim_features)
# create problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions()
# print feature names
print(feature_names(p))
```


Description

Importance scores (also known as irreplaceability scores) can be used to assess the relative importance of planning units selected in a solution to a conservation planning problem().

Details

The following methods are available for calculating importance scores:
eval_replacement_importance() Calculate importance scores using replacement costs (based on Cabeza and Moilanen 2006). These scores quantify the change in the objective function (e.g. additional costs required to meet feature targets) of the optimal solution if a given planning unit in a solution cannot be acquired. They can (i) account for the cost of different planning units, (ii) account for multiple management zones, (iii) apply to any objective function, and (iv) identify truly irreplaceable planning units (denoted with infinite values).
eval_ferrier_importance() Calculate importance scores following Ferrier et al. (2000). These scores measure importance based on how critical planning units are for meeting targets. They can only be applied to conservation problems with a minimum set objective and a single zone (i.e. the classic Marxan-type problem). Furthermore-unlike the replacement cost scoresthese scores provide a score for each feature within each planning unit, providing insight into why certain planning units are more important than other planning units.
eval_rare_richness_importance() Calculate importance scores using the rarity weighted richness metric (based on Williams et al. 1996). These score are simply a measure of biodiversity. They do not account for planning costs, multiple management zones, objective functions, or feature targets (or weightings). They merely describe the spatial patterns of biodiversity, and do not account for many of the factors needed to quantify the importance of a planning unit for achieving conservation goals.

Broadly speaking, we recommend using replacement cost scores where possible. This is because they can be applied to any type of conservation planning problem - regardless of the objective function or number of zones considered in the problem - and measure planning unit importance based on degradation of the prioritization. Although the replacement cost scores can be calculated for small and moderate sized problems (e.g. less than 30,000 planning units), they may not be feasible for particularly large problems (e.g. more than 100,000 planning units). In such cases, we recommend calculating importance scores using the Ferrier method. This is because the Ferrier method can be calculated relatively quickly for large-sized problems and it explicitly accounts for representation targets. We only recommend using the rarity weighted richness metric when neither of the other two methods can be used.

References

Cabeza M and Moilanen A (2006) Replacement cost: A practical measure of site value for costeffective reserve planning. Biological Conservation, 132: 336-342.

Ferrier S, Pressey RL, and Barrett TW (2000) A new predictor of the irreplaceability of areas for achieving a conservation goal, its application to real-world planning, and a research agenda for further refinement. Biological Conservation, 93: 303-325.

Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, and Pressey RL (1996) A comparison of richness hotspots, rarity hotspots and complementary areas for conserving diversity using British birds. Conservation Biology, 10: 155-174.

See Also

Other overviews: constraints, decisions, objectives, penalties, portfolios, solvers, summaries, targets

Examples

```
## Not run:
# load data
data(sim_pu_raster, sim_pu_polygons, sim_features)
# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0, verbose = FALSE)
# solve the problem
s1 <- solve(p1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
# calculate importance scores using replacement cost scores
ir1 <- eval_replacement_importance(p1, s1)
# calculate importance scores using Ferrier et al }2000\mathrm{ method,
# and extract the total importance scores
ir2 <- eval_ferrier_importance(p1, s1)[["total"]]
# calculate importance scores using rarity weighted richness scores
ir3 <- eval_rare_richness_importance(p1, s1)
# plot importance scores
plot(stack(ir1, ir2, ir3), axes = FALSE, box = FALSE,
    main = c("replacement cost", "Ferrier score",
            "rarity weighted richness"))
## End(Not run)
```

```
intersecting_units Find intersecting units
```


Description

Find which of the units in a spatial data object intersect with the units in another spatial data object.

Usage

```
intersecting_units(x, y)
## S4 method for signature 'Raster,Raster'
intersecting_units(x, y)
## S4 method for signature 'Spatial,Spatial'
intersecting_units(x, y)
## S4 method for signature 'sf,Spatial'
intersecting_units(x, y)
## S4 method for signature 'Spatial,Raster'
intersecting_units(x, y)
## S4 method for signature 'Spatial,sf'
intersecting_units(x, y)
## S4 method for signature 'Raster,Spatial'
intersecting_units(x, y)
## S4 method for signature 'sf,sf'
intersecting_units(x, y)
## S4 method for signature 'Raster,sf'
intersecting_units(x, y)
## S4 method for signature 'sf,Raster'
intersecting_units(x, y)
## S4 method for signature 'data.frame,ANY'
intersecting_units(x, y)
```


Arguments

X
y Spatial or Raster object.

Value

integer indices of the units in x that intersect with y.

See Also

fast_extract().

Examples

```
# create data
r <- raster(matrix(1:9, byrow = TRUE, ncol=3))
r_with_holes <- r
r_with_holes[c(1, 5, 9)] <- NA
ply <- rasterToPolygons(r)
ply_with_holes <- st_as_sf(rasterToPolygons(r_with_holes))
# intersect raster with raster
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "x=Raster")
plot(r_with_holes, main = "y=Raster")
## End(Not run)
print(intersecting_units(r, r_with_holes))
# intersect raster with polygons (sf)
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "x=Raster")
plot(ply_with_holes, main = "y=sf", key.pos = NULL, reset = FALSE)
## End(Not run)
print(intersecting_units(r, ply_with_holes))
# intersect polygons (Spatial) with raster
## Not run:
par(mfrow = c(1, 2))
plot(ply, main = "x=Spatial")
plot(r_with_holes, main = "y=Raster")
## End(Not run)
print(intersecting_units(ply, r_with_holes))
# intersect polygons (Spatial) with polygons (sf)
## Not run:
par(mfrow = c(1, 2))
plot(ply, main = "x=Spatial")
plot(ply_with_holes, main = "y=sf", key.pos = NULL, reset = FALSE)
## End(Not run)
print(intersecting_units(ply, ply_with_holes))
```

is.Id Is it?

Description

Test if an object inherits from a class.

Usage

$$
\text { is. } \operatorname{Id}(x)
$$

is.Waiver(x)

Arguments

x

Object.

Value

logical indicating if it inherits from the class.

```
loglinear_interpolation
    Log-linear interpolation
```


Description

Log-linearly interpolate values between two thresholds.

Usage

loglinear_interpolation(x ,
coordinate_one_x,
coordinate_one_y,
coordinate_two_x,
coordinate_two_y
)

Arguments

```
    x numeric x values for which interpolate y values.
    coordinate_one_x
            numeric value for lower x-coordinate.
    coordinate_one_y
            numeric value for lower y-coordinate.
    coordinate_two_x
            numeric value for upper x-coordinate.
    coordinate_two_y
            numeric value for upper y-coordinate.
```


Details

Values are log-linearly interpolated at the x-coordinates specified in x using the lower and upper coordinate arguments to define the line. Values lesser or greater than these numbers are assigned the minimum and maximum y coordinates.

Value

numeric values.

Examples

```
# create series of x-values
x <- seq(0, 1000)
# interpolate y-values for the x-values given the two reference points:
# (200, 100) and (900, 15)
y <- loglinear_interpolation(x, 200, 100, 900, 15)
# plot the interpolated values
## Not run:
plot(y ~ x)
# add the reference points to the plot (shown in red)
points(x = c(200, 900), y = c(100, 15), pch = 18, col = "red", cex = 2)
## End(Not run)
# this function can also be used to calculate representation targets
# following Rodrigues et al. (2014). For example, let's say that
# we had a set of species we were interested in calculating representation
# targets for and we had information on their range sizes (in km^2).
spp_range_size_km2 <- seq(0.01, 15000000, by = 100)
# we can now use this function to calculate representation targets
# (expressed as a percentage of the species' range sizes) using
# the thresholds and cap sizes reported by Rodrigues et al. 2014
spp_target_percentage_rodrigues <-
    loglinear_interpolation(
```

```
        x = spp_range_size_km2,
        coordinate_one_x = 1000,
        coordinate_one_y = 1,
        coordinate_two_x = 250000,
        coordinate_two_y = 0.1) * 100
# it is also common to apply a cap to the representation targets,
# so let's apply the cap these targets following Butchart et al. (2015)
spp_target_percentage_butchart <- ifelse(
    spp_range_size_km2 >= 10000000,
    (1000000 / spp_range_size_km2) * 100,
    spp_target_percentage_rodrigues)
# plot species range sizes and representation targets
plot(spp_target_percentage_butchart ~ spp_range_size_km2,
    xlab = "Range size km^2" , ylab = "Representation target (%)", type = "l")
# plot species range sizes and representation targets on a log10 scale
plot(spp_target_percentage_butchart ~ log10(spp_range_size_km2),
    xlab = "Range size km^2" , ylab = "Representation target (%)",
    type = "l", xaxt = "n")
axis(1, pretty(log10(spp_range_size_km2)),
    10^pretty(log10(spp_range_size_km2)))
```

marxan_boundary_data_to_matrix
Convert Marxan boundary data to a matrix format

Description

Convert a data.frame object that follows the Marxan format to a matrix format. This function is useful for converting data.frame objects to matrix or array objects that are used by the various penalties and constraints functions. If the boundary data contains data for a single zone, then a matrix object is returned. Otherwise if the boundary data contains data for multiple zones, then an array is returned.

Usage

marxan_boundary_data_to_matrix(x, data)

Arguments

x
problem() (i.e. ConservationProblem) object that contains planning unit and zone data to ensure that the argument to data is converted correctly. This argument can be set to NULL if checks are not required (not recommended).
data data.frame object with the columns "id1", "id2", and "boundary". The columns "zone1" and "zone2" can also be provided to indicate zone data.

Value

array or dgCMatrix sparse matrix object.

Examples

```
# create marxan boundary with four planning units and one zone
bldf1 <- expand.grid(id1 = seq_len(4), id2 = seq_len(4))
bldf1$boundary <- 1
bldf1$boundary[bldf1$id1 == bldf1$id2] <- 0.5
# convert to matrix
m1 <- marxan_boundary_data_to_matrix(NULL, bldf1)
# visualize matrix
## Not run:
image(m1)
## End(Not run)
# create marxan boundary with three planning units and two zones
bldf2 <- expand.grid(id1 = seq_len(3), id2 = seq_len(3),
    zone1 = c("z1", "z2"),
    zone2 = c("z1", "z2"))
bldf2$boundary <- 1
bldf2$boundary[bldf2$id1 == bldf2$id2 & bldf2$zone1 == bldf2$zone2] <- 0.5
bldf2$boundary[bldf2$id1 == bldf2$id2 & bldf2$zone1 != bldf2$zone2] <- 0
# convert to array
m2 <- marxan_boundary_data_to_matrix(NULL, bldf2)
# print array
print(m2)
```

marxan_problem Marxan conservation problem

Description

Create a conservation planning problem() following the mathematical formulations used in Marxan (detailed in Beyer et al. 2016). Note that these problems are solved using exact algorithms and not simulated annealing (i.e. the Marxan software).

Usage

marxan_problem(x, ...)
\#\# Default S3 method:
marxan_problem(x, ...)
\#\# S3 method for class 'data.frame'

```
marxan_problem(x, spec, puvspr, bound \(=\) NULL, blm \(=0, \ldots\) )
\#\# S3 method for class 'character'
marxan_problem(x, ...)
```


Arguments

X
. .
puvspr data.frame containing information on the amount of each feature in each planning unit. The argument to puvspr must follow the conventions used in the Marxan input data file (conventionally called "puvspr.dat"). It must contain the following columns:
pu integer planning unit identifier.
species integer feature identifier.
amount numeric amount of the feature in the planning unit.
bound NULL object indicating that no boundary data is required for the conservation planning problem, or a data.frame containing information on the planning units' boundaries. The argument to bound must follow the conventions used in the Marxan input data file (conventionally called "bound. dat"). It must contain the following columns:
id1 integer planning unit identifier.
id2 integer planning unit identifier.
boundary numeric length of shared boundary between the planning units identified in the previous two columns.
blm numeric boundary length modifier. This argument only has an effect when argument to x is a data.frame. The default argument is zero.

Details

This function is provided as a convenient wrapper for solving Marxan problems using prioritizr.

Value

problem() (i.e. ConservationProblem) object.

Notes

In early versions, this function could accommodate asymmetric connectivity data. This functionality is no longer supported. To specify asymmetric connectivity, please see the add_connectivity_penalties() function.

References

Ball IR, Possingham HP, and Watts M (2009) Marxan and relatives: Software for spatial conservation prioritisation in Spatial conservation prioritisation: Quantitative methods and computational tools. Eds Moilanen A, Wilson KA, and Possingham HP. Oxford University Press, Oxford, UK.
Beyer HL, Dujardin Y, Watts ME, and Possingham HP (2016) Solving conservation planning problems with integer linear programming. Ecological Modelling, 228: 14-22.

See Also

For more information on the correct format for for Marxan input data, see the official Marxan website and Ball et al. (2009).

Examples

```
# create Marxan problem using Marxan input file
input_file <- system.file("extdata/input.dat", package = "prioritizr")
p1 <- marxan_problem(input_file) %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s1 <- solve(p1)
# print solution
head(s1)
## End(Not run)
# create Marxan problem using data.frames that have been loaded into R
## load in planning unit data
pu_path <- system.file("extdata/input/pu.dat", package = "prioritizr")
```

```
pu_dat <- data.table::fread(pu_path, data.table = FALSE)
head(pu_dat)
## load in feature data
spec_path <- system.file("extdata/input/spec.dat", package = "prioritizr")
spec_dat <- data.table::fread(spec_path, data.table = FALSE)
head(spec_dat)
## load in planning unit vs feature data
puvspr_path <- system.file("extdata/input/puvspr.dat",
    package = "prioritizr")
puvspr_dat <- data.table::fread(puvspr_path, data.table = FALSE)
head(puvspr_dat)
## load in the boundary data
bound_path <- system.file("extdata/input/bound.dat", package = "prioritizr")
bound_dat <- data.table::fread(bound_path, data.table = FALSE)
head(bound_dat)
# create problem without the boundary data
p2 <- marxan_problem(pu_dat, spec_dat, puvspr_dat) %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s2 <- solve(p2)
# print solution
head(s2)
## End(Not run)
# create problem with the boundary data and a boundary length modifier
# set to 5
p3 <- marxan_problem(pu_dat, spec_dat, puvspr_dat, bound_dat, 5) %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s3 <- solve(p3)
# print solution
head(s3)
## End(Not run)
```

matrix_parameters Matrix parameters

Description

Create a parameter that represents a matrix object.

Usage

```
    numeric_matrix_parameter(
        name,
        value,
        lower_limit = .Machine$double.xmin,
        upper_limit = .Machine$double.xmax,
        symmetric = FALSE
    )
```

 binary_matrix_parameter(name, value, symmetric = FALSE)

Arguments

name character name of parameter.
value matrix object.
lower_limit numeric values denoting the minimum acceptable value in the matrix. Defaults to the smallest possible number on the system.
upper_limit numeric values denoting the maximum acceptable value in the matrix. Defaults to the smallest possible number on the system.
symmetric logical must the must be matrix be symmetric? Defaults to FALSE.

Value

MiscParameter object.

Examples

```
    # create matrix
    m <- matrix(runif(9), ncol = 3)
    colnames(m) <- letters[1:3]
    rownames(m) <- letters[1:3]
    # create a numeric matrix parameter
    p1 <- numeric_matrix_parameter("m", m)
    print(p1) # print it
    p1$get() # get value
    p1$id # get id
    p1$validate(m[, -1]) # check if parameter can be updated
    p1$set(m + 1) # set parameter to new values
    p1$print() # print it again
    # create a binary matrix parameter
    m <- matrix(round(runif(9)), ncol = 3)
    colnames(m) <- letters[1:3]
    rownames(m) <- letters[1:3]
    # create a binary matrix parameter
    p2 <- binary_matrix_parameter("m", m)
    print(p2) # print it
```

```
p2$get() # get value
p2$id # get id
p2$validate(m[, -1]) # check if parameter can be updated
p2$set(m + 1) # set parameter to new values
p2$print() # print it again
```

MiscParameter-class Miscellaneous parameter prototype

Description

This prototype is used to represent a parameter that can be any object. Only experts should interact directly with this prototype.

Fields

\$id character identifier for parameter.
\$name character name of parameter.
\$value tibble::tibble() object.
\$validator list object containing a function that is used to validate changes to the parameter.

Usage

x\$print()
x\$show()
$x \$ v a l i d a t e(x)$
x\$get ()
x\$set (x)
$x \$$ reset ()

Arguments

\mathbf{x} object used to set a new parameter value.

Details

print print the object.
show show the object.
validate check if a proposed new parameter is valid.
get extract the parameter value.
set update the parameter value.
reset update the parameter value to be the default value.

See Also

Parameter.

```
misc_parameter Miscellaneous parameter
```


Description

Create a parameter that consists of a miscellaneous object.

Usage

misc_parameter(name, value, validator)

Arguments

name	character name of parameter.
value	object.
validator	function to validate changes to the parameter. This function must have a single argument and return either TRUE or FALSE depending on if the argument is valid candidate for the parameter.

Value

MiscParameter object.

Examples

```
# load data
data(iris, mtcars)
# create table parameter can that can be updated to any other object
p1 <- misc_parameter("tbl", iris, function(x) TRUE)
print(p1) # print it
p1$get() # get value
p1$id # get id
p1$validate(mtcars) # check if parameter can be updated
p1$set(mtcars) # set parameter to mtcars
p1$print() # print it again
# create table parameter with validation function that requires
# all values in the first column to be less then 200 and that the
# parameter have the same column names as the iris dataset
p2 <- misc_parameter("tbl2", iris,
    function(x) all(names(x) %in% names(iris)) &&
                                    all(x[[1]] < 200))
print(p2) # print it
p2$get() # get value
p2$id # get id
p2$validate(mtcars) # check if parameter can be updated
iris2 <- iris; iris2[1,1] <- 300 # create updated iris dataset
p2$validate(iris2) # check if parameter can be updated
```

```
iris3 <- iris; iris2[1,1] <- 100 # create updated iris dataset
p2$set(iris3) # set parameter to iris3
p2$print() # print it again
```

 new_id
 Identifier

Description

Generate a new unique identifier.

Usage

```
new_id()
```


Details

Identifiers are made using the uuid: :UUIDgenerate().

Value

Id object.

See Also

uuid: :UUIDgenerate().

Examples

```
# create new id
i <- new_id()
# print id
print(i)
# convert to character
as.character(i)
# check if it is an Id object
is.Id(i)
```

```
new_optimization_problem
Optimization problem
```


Description

Generate a new empty OptimizationProblem object.

Usage

new_optimization_problem()

Value

OptimizationProblem object.

See Also

OptimizationProblem-methods

Examples

```
    # create empty OptimizationProblem object
    x <- new_optimization_problem()
    # print new object
    print(x)
```

new_waiver Waiver

Description

Create a waiver object.

Usage

new_waiver()

Details

This object is used to represent that the user has not manually specified a setting, and so defaults should be used. By explicitly using a new_waiver(), this means that NULL objects can be a valid setting. The use of a "waiver" object was inspired by the ggplot2 package.

Value

Object of class Waiver.

Examples

\# create new waiver object
w <- new_waiver()
\# print object
print(w)
\# is it a waiver object?
is.Waiver(w)
number_of_features Number of features

Description

Extract the number of features in an object.

Usage

number_of_features(x)
\#\# S4 method for signature 'ConservationProblem'
number_of_features(x)
\#\# S4 method for signature 'OptimizationProblem'
number_of_features(x)
\#\# S4 method for signature 'ZonesRaster'
number_of_features(x)
\#\# S4 method for signature 'ZonesCharacter'
number_of_features(x)

Arguments

x
problem() (i.e. ConservationProblem), OptimizationProblem, or Zones() object.

Value

integer number of features.
number_of_planning_units

Examples

```
    # load data
    data(sim_pu_raster, sim_features)
    # create problem
    p <- problem(sim_pu_raster, sim_features) %>%
        add_min_set_objective() %>%
        add_relative_targets(0.2) %>%
        add_binary_decisions()
# print number of features
print(number_of_features(p))
```

number_of_planning_units
Number of planning units

Description

Extract the number of planning units in an object.

Usage

number_of_planning_units(x)
\#\# S4 method for signature 'ConservationProblem' number_of_planning_units(x)
\#\# S4 method for signature 'OptimizationProblem' number_of_planning_units(x)

Arguments

x problem() (i.e. ConservationProblem), OptimizationProblem, or Zones() object.

Value

integer number of planning units.

Examples

```
# load data
data(sim_pu_raster, sim_features)
# create problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
```

```
add_relative_targets(0.2) %>%
add_binary_decisions()
    # print number of planning units
    print(number_of_planning_units(p))
```

```
number_of_total_units Number of total units
```


Description

Extract the number of total units in an object.

Usage

number_of_total_units(x)
\#\# S4 method for signature 'ConservationProblem'
number_of_total_units(x)

Arguments

x
problem() (i.e. ConservationProblem), OptimizationProblem, or Zones() object.

Value

integer number of total units.

Examples

```
# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)
# create problem with one zone
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions()
# print number of planning units
print(number_of_planning_units(p1))
# print number of total units
print(number_of_total_units(p1))
# create problem with multiple zones
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
```

number_of_zones

```
add_relative_targets(matrix(0.2, ncol = 3, nrow = 5)) %>%
add_binary_decisions()
```

\# print number of planning units
print(number_of_planning_units(p2))
\# print number of total units
print(number_of_total_units(p2))
number_of_zones Number of zones

Description

Extract the number of zones in an object.

Usage

number_of_zones(x)
\#\# S4 method for signature 'ConservationProblem'
number_of_zones(x)
\#\# S4 method for signature 'OptimizationProblem'
number_of_zones(x)
\#\# S4 method for signature 'ZonesRaster'
number_of_zones(x)
\#\# S4 method for signature 'ZonesCharacter'
number_of_zones(x)

Arguments

x
problem() (i.e. ConservationProblem), OptimizationProblem, or Zones() object.

Value

integer number of zones.

Examples

\# load data
data(sim_pu_zones_stack, sim_features_zones)
\# print number of zones in a Zones object
print(number_of_zones(sim_features_zones))
\# create problem with multiple zones

```
p <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(0.2, ncol = 3, nrow = 5)) %>%
    add_binary_decisions()
# print number of zones in the problem
print(number_of_zones(p))
```

```
Objective-class Objective prototype
```


Description

This prototype is used to represent an objective that can be added to a ConservationProblem object. This prototype represents a recipe to make an objective, to actually add an objective to a planning problem: see objectives. Only experts should use this class directly.

```
objectives Add an objective
```


Description

An objective is used to specify the overall goal of a conservation planning problem(). All conservation planning problems involve minimizing or maximizing some kind of objective. For instance, the planner may require a solution that conserves enough habitat for each species while minimizing the overall cost of the reserve network. Alternatively, the planner may require a solution that maximizes the number of conserved species while ensuring that the cost of the reserve network does not exceed the budget.

Details

Please note that all conservation planning problems formulated using the prioritizr package require an objective function-failing to do so will return an error message when attempting to solve problem.

The following objectives can be added to a conservation planning problem():
add_min_set_objective() Minimize the cost of the solution whilst ensuring that all targets are met. This objective is similar to that used in Marxan.
add_max_cover_objective() Represent at least one instance of as many features as possible within a given budget.
add_max_features_objective() Fulfill as many targets as possible while ensuring that the cost of the solution does not exceed a budget.
add_min_shortfall_objective() Minimize the overall (weighted sum) shortfall for as many targets as possible while ensuring that the cost of the solution does not exceed a budget.
add_min_largest_shortfall_objective() Minimize the largest (maximum) shortfall among all targets while ensuring that the cost of the solution does not exceed a budget.
add_max_phylo_div_objective() Maximize the phylogenetic diversity of the features represented in the solution subject to a budget.
add_max_phylo_end_objective() Maximize the phylogenetic endemism of the features represented in the solution subject to a budget.
add_max_utility_objective() Secure as much of the features as possible without exceeding a budget.

See Also

Other overviews: constraints, decisions, importance, penalties, portfolios, solvers, summaries, targets

Examples

```
# load data
data(sim_pu_raster, sim_features, sim_phylogeny)
# create base problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
    # create problem with added minimum set objective
p1 <- p %>% add_min_set_objective()
# create problem with added maximum coverage objective
# note that this objective does not use targets
p2 <- p %>% add_max_cover_objective(500)
# create problem with added maximum feature representation objective
p3 <- p %>% add_max_features_objective(1900)
# create problem with added minimum shortfall objective
p4 <- p %>% add_min_shortfall_objective(1900)
# create problem with added minimum largest shortfall objective
p5 <- p %>% add_min_largest_shortfall_objective(1900)
# create problem with added maximum phylogenetic diversity objective
p6 <- p %>% add_max_phylo_div_objective(1900, sim_phylogeny)
# create problem with added maximum phylogenetic diversity objective
p7 <- p %>% add_max_phylo_end_objective(1900, sim_phylogeny)
# create problem with added maximum utility objective
# note that this objective does not use targets
p8 <- p %>% add_max_utility_objective(1900)
```

```
## Not run:
# solve problems
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4), solve(p5), solve(p6),
    solve(p7), solve(p8))
# plot solutions
plot(s, axes = FALSE, box = FALSE,
        main = c("min set", "max coverage", "max features",
            "min shortfall", "min largest shortfall",
            "max phylogenetic diversity",
            "max phylogenetic endemism", "max utility"))
## End(Not run)
```

OptimizationProblem-class
Optimization problem class

Description

The OptimizationProblem class is used to represent an optimization problem. Data are stored in memory and accessed using an external pointer. Only experts should interact with this class directly.

Fields

\$ptr externalptr object.

Usage

```
x$print()
x$show()
x$repr()
x$ncol()
x$nrow()
x$ncell()
x$modelsense()
x$vtype()
x$obj()
x$A()
x$rhs()
x$sense()
x$lb()
x$ub()
```

```
x$number_of_planning_units()
x$number_of_features()
x$number_of_zones()
x$row_ids()
x$col_ids()
x$compressed_formulation()
```


Arguments

ptr externalptr object.

Details

print print the object.
show show the object.
repr character representation of object.
ncol integer number of columns (variables) in model matrix.
nrow integer number of rows (constraints) in model matrix.
ncell integer number of cells in model matrix.
modelsense character model sense.
vtype character vector of variable types.
obj numeric vector of objective function.
A dgCMatrix model matrix
rhs numeric vector of right-hand-side constraints.
sense character vector of constraint senses.
lb numeric vector of lower bounds for each decision variable.
ub numeric vector of upper bounds for each decision variable.
number_of_features integer number of features in the problem.
number_of_planning_units integer number of planning units in the problem.
number_of_zones integer number of zones in the problem.
col_ids character names describing each decision variable (column) in the model matrix.
row_ids character names describing each constraint (row) in in the model matrix.
compressed_formulation is the optimization problem formulated using a compressed version of the rij matrix?
shuffle_columns randomly shuffle the columns in the problem. This should almost never be called manually and only should only be called after the optimization problem has been fully constructed.

OptimizationProblem-methods
Optimization problem methods

Description

These functions are used to access data from an OptimizationProblem object.

Usage

nrow (x)
\#\# S4 method for signature 'OptimizationProblem' nrow (x)
$n \operatorname{col}(x)$
\#\# S4 method for signature 'OptimizationProblem' ncol(x)
ncell(x)
\#\# S4 method for signature 'OptimizationProblem'
ncell(x)
modelsense(x)
\#\# S4 method for signature 'OptimizationProblem' modelsense(x)
vtype(x)
\#\# S4 method for signature 'OptimizationProblem'
vtype(x)
obj(x)
\#\# S4 method for signature 'OptimizationProblem' obj(x)

A(x)
\#\# S4 method for signature 'OptimizationProblem' A(x)
rhs(x)

```
## S4 method for signature 'OptimizationProblem'
rhs(x)
sense(x)
## S4 method for signature 'OptimizationProblem'
sense(x)
lb(x)
## S4 method for signature 'OptimizationProblem'
lb(x)
ub(x)
## S4 method for signature 'OptimizationProblem'
ub(x)
col_ids(x)
## S4 method for signature 'OptimizationProblem'
col_ids(x)
row_ids(x)
## S4 method for signature 'OptimizationProblem'
row_ids(x)
compressed_formulation(x)
## S4 method for signature 'OptimizationProblem'
compressed_formulation(x)
```


Arguments

x OptimizationProblem object.

Details

The functions return the following data:
nrow integer number of rows (constraints).
ncol integer number of columns (decision variables).
ncell integer number of cells.
modelsense character describing if the problem is to be maximized ("max") or minimized ("min").
vtype character describing the type of each decision variable: binary ("B"), semi-continuous ("S"), or continuous ("C")
obj numeric vector specifying the objective function.

A dgCMatrix matrix object defining the problem matrix.
rhs numeric vector with right-hand-side linear constraints
sense character vector with the senses of the linear constraints ("<=", ">=", "=").
lb numeric lower bound for each decision variable. Missing data values (NA) indicate no lower bound for a given variable.
ub numeric upper bounds for each decision variable. Missing data values (NA) indicate no upper bound for a given variable.
number_of_planning_units integer number of planning units in the problem.
number_of_features integer number of features the problem.

Value

dgCMatrix, numeric vector, numeric vector, or scalar integer depending on the method used.

```
Parameter-class Parameter class
```


Description

This class is used to represent a parameter that has multiple values. Each value has a different label to differentiate values. Only experts should interact directly with this class.

Fields

\$id Id identifier for parameter.
\$name character name of parameter.
\$value numeric vector of values.
\$default numeric vector of default values.
\$class character name of the class that the values inherit from (e.g. "integer".
\$lower_limit numeric vector specifying the minimum permitted value for each element in \$value.
\$upper_limit numeric vector specifying the maximum permitted value for each element in \$value.

Usage

$\mathrm{x} \$ \mathrm{print}()$
x\$show()
x \$reset()

Details

print print the object.
show show the object.
reset change the parameter values to be the default values.

See Also

ScalarParameter.
parameters Parameters

Description

Create a new collection of Parameter objects.

Usage

parameters(...)

Arguments

$$
\ldots \quad \text { Parameter objects. }
$$

Value

Parameters object.

See Also

array_parameters(), scalar_parameters().

Examples

```
# create two Parameter objects
p1 <- binary_parameter("parameter one", 1)
print(p1)
p2 <- numeric_parameter("parameter two", 5)
print(p2)
# store Parameter objects in a Parameters object
p <- parameters(p1, p2)
print(p)
```


Description

This class represents a collection of Parameter objects. It provides methods for accessing and updating the parameters stored inside it.

Fields

\$parameters list object containing Parameter objects.

Usage

x\$print()
x\$show()
x\$repr()
x\$names()
$x \$ i d s()$
x\$length()
x\$get(id)
x\$set(id, value)
$x \$$ add (p)

Arguments

id Id object.
p Parameter object.
value any object.

Details

print print the object.
show show the object.
repr character representation of object.
names return character names of parameters.
ids return character parameter unique identifiers.
length return integer number of parameters in object.
get retrieve the value of a parameter in the object using an Id object.
set change the value of a parameter in the object to a new object.
penalties Add a penalty

Description

A penalty can be applied to a conservation planning problem() to penalize solutions according to a specific metric. Penalties-unlike constraints-act as an explicit trade-off with the objective being minimized or maximized (e.g. solution cost when used with add_min_set_objective()).

Details

Both penalties and constraints can be used to modify a problem and identify solutions that exhibit specific characteristics. Constraints work by invalidating solutions that do not exhibit specific characteristics. On the other hand, penalties work by specifying trade-offs against the main problem objective and are mediated by a penalty factor.
The following penalties can be added to a conservation planning problem():
add_boundary_penalties() Add penalties to a conservation problem to favor solutions that have planning units clumped together into contiguous areas.
add_connectivity_penalties() Add penalties to a conservation problem to favor solutions that select planning units with high connectivity between them.
add_linear_penalties() Add penalties to a conservation problem to favor solutions that avoid selecting planning units based on a certain variable (e.g. anthropogenic pressure).

See Also

Other overviews: constraints, decisions, importance, objectives, portfolios, solvers, summaries, targets

Examples

```
# load data
data(sim_pu_raster, sim_features)
# create basic problem
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_default_solver(verbose = FALSE)
# create problem with boundary penalties
p2 <- p1 %>% add_boundary_penalties(5, 1)
# create connectivity matrix based on spatial proximity
    scm <- as.data.frame(sim_pu_raster, xy = TRUE, na.rm = FALSE)
    scm <- 1 / (as.matrix(dist(scm)) + 1)
# remove weak and moderate connections between planning units to reduce
```

```
# run time
scm[scm < 0.85] <- 0
# create problem with connectivity penalties
p3 <- p1 %>% add_connectivity_penalties(25, data = scm)
# create problem with linear penalties,
# here the penalties will be based on random numbers to keep it simple
## Not run:
# simulate penalty data
# (note this requires the RandomFields package to be installed)
sim_penalty_raster <- simulate_cost(sim_pu_raster)
# plot penalty data
plot(sim_penalty_raster, main = "penalty data", axes = FALSE, box = FALSE)
# create problem with linear penalties, with a penalty scaling factor of 100
p4 <- p1 %>% add_linear_penalties(100, data = sim_penalty_raster)
# solve problems
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4))
# plot solutions
plot(s, axes = FALSE, box = FALSE,
    main = c("basic solution", "boundary penalties",
    "connectivity penalties", "linear penalties"))
## End(Not run)
```

 Penalty-class Penalty prototype

Description

This prototype is used to represent penalties that are added to the objective function when making a conservation problem. This prototype represents a recipe, to actually add penalties to a planning problem, see the help page on penalties. Only experts should use this class directly. This prototype inherits from the ConservationModifier.

See Also

ConservationModifier.

Description

This prototype is used to represent methods for generating portfolios of optimization problems. This class represents a recipe to create portfolio generating method and is only recommended for use by expert users. To customize the method used to generate portfolios, please see the help page on portfolios.

Fields

\$name character name of portfolio method.
\$parameters Parameters object with parameters used to customize the the portfolio.
\$run function used to generate a portfolio.

Usage

> x\$print()
x\$show()
x\$repr()
x\$run(op,sol)

Arguments

x Solver object.
op OptimizationProblem object.

Details

print print the object.
show show the object.
repr character representation of object.
run solve an OptimizationProblem object using this object and a Solver object.

Description

Conservation planning exercises rarely have access to all the data needed to identify the truly perfect solution. This is because available data may lack important details (e.g. land acquisition costs may be unavailable), contain errors (e.g. species presence/absence data may have false positives), or key objectives may not be formally incorporated into the prioritization process (e.g. future land use requirements). As such, conservation planners can help decision makers by providing them with a portfolio of solutions to inform their decision.

Details

The following portfolios can be added to a conservation planning problem(). Note that all methods for generating portfolios return solutions that are within the specified optimality gap.
add_extra_portfolio() Generate a portfolio of solutions by storing feasible solutions found during the optimization process. This method is useful for quickly obtaining multiple solutions, but does not provide any guarantees on the number of solutions, or the quality of solutions. Note that it requires the Gurobi solver.
add_top_portfolio() Generate a portfolio of solutions by finding a pre-specified number of solutions that are closest to optimality (i.e the top solutions). This is useful for examining differences among near-optimal solutions. It can also be used to generate multiple solutions and, in turn, to calculate selection frequencies for small problems. Note that it requires the Gurobi solver.
add_gap_portfolio() Generate a portfolio of solutions by finding a certain number of solutions that are all within a pre- specified optimality gap. This method is useful for generating multiple solutions that can be used to calculate selection frequencies for moderate and large-sized problems (similar to Marxan). Note that it requires the Gurobi solver.
add_cuts_portfolio() Generate a portfolio of distinct solutions within a pre-specified optimality gap using Bender's cuts. This is recommended as a replacement for add_top_portfolio() when the Gurobi software is not available.
add_shuffle_portfolio() Generate a portfolio of solutions by randomly reordering the data prior to attempting to solve the problem. This is recommended as a replacement for add_gap_portfolio() when the Gurobi software is not available.

See Also

Other overviews: constraints, decisions, importance, objectives, penalties, solvers, summaries, targets

Examples

```
# load data
data(sim_pu_raster, sim_features)
# create problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(gap = 0.02, verbose = FALSE)
# create problem with cuts portfolio with 4 solutions
p1 <- p %>% add_cuts_portfolio(4)
# create problem with shuffle portfolio with 4 solutions
p2 <- p %>% add_shuffle_portfolio(4)
## Not run:
# create problem with extra portfolio
p3 <- p %>% add_extra_portfolio()
# create problem with top portfolio with 4 solutions
p4 <- p %>% add_top_portfolio(4)
# create problem with gap portfolio with 4 solutions within 50% of optimality
p5 <- p %>% add_gap_portfolio(4, 0.5)
# solve problems and create solution portfolios
s <- list(solve(p1), solve(p2), solve(p3), solve(p4), solve(p5))
# plot solutions from extra portfolio
plot(stack(s[[1]]), axes = FALSE, box = FALSE)
# plot solutions from top portfolio
plot(stack(s[[2]]), axes = FALSE, box = FALSE)
# plot solutions from gap portfolio
plot(stack(s[[3]]), axes = FALSE, box = FALSE)
# plot solutions from cuts portfolio
plot(stack(s[[4]]), axes = FALSE, box = FALSE)
# plot solutions from shuffle portfolio
plot(stack(s[[5]]), axes = FALSE, box = FALSE)
## End(Not run)
```

 pproto Create a new pproto object

Description

Construct a new object with pproto. This object system is inspired from the ggproto system used in the ggplot2 package.

Usage

```
pproto(`_class` = NULL, `_inherit` = NULL, ...)
```


Arguments

_class	Class name to assign to the object. This is stored as the class attribute of the object. This is optional: if NULL (the default), no class name will be added to the object.
_inherit	pproto object to inherit from. If NULL, don"t inherit from any object.
\ldots	A list of members to add to the new pproto object.

Examples

```
Adder <- pproto("Adder",
        x = 0,
        add = function(self, n) {
            self$x <- self$x + n
        self$x
    }
)
Adder$add(10)
Adder$add(10)
Abacus <- pproto("Abacus", Adder,
    subtract = function(self, n) {
        self$x <- self$x - n
        self$x
    }
)
Abacus$add(10)
Abacus$subtract(10)
```

 predefined_optimization_problem
 Predefined optimization problem

Description

Create a new OptimizationProblem object.

Usage

predefined_optimization_problem(x)

Arguments

$x \quad$ list object containing data to construct the problem.

Details

The argument to x must be a list that contains the following elements:
modelsense character model sense.
number_of_features integer number of features in problem.
number_of_planning_units integer number of planning units.
A_i integer row indices for problem matrix.
$\mathbf{A}_{\mathbf{J}} \mathbf{j}$ integer column indices for problem matrix.
$\mathbf{A}_{-} \mathbf{x}$ numeric values for problem matrix.
obj numeric objective function values.
lb numeric lower bound for decision values.
ub numeric upper bound for decision values.
rhs numeric right-hand side values.
sense numeric constraint senses.
vtype character variable types. These are used to specify that the decision variables are binary ("B") or continuous ("C").
row_ids character identifiers for the rows in the problem matrix.
col_ids character identifiers for the columns in the problem matrix.

Examples

```
# create list with problem data
l <- list(modelsense = "min", number_of_features = 2,
        number_of_planning_units = 3, number_of_zones = 1,
        A_i = c(0L, 1L, 0L, 1L, 0L, 1L), A_j = c(0L, 0L, 1L, 1L, 2L, 2L),
        A_x = c(2, 10, 1, 10, 1, 10), obj = c(1, 2, 2), lb = c(0, 1, 0),
        ub = c(0, 1, 1), rhs = c(2, 10), compressed_formulation = TRUE,
        sense = c(">=", ">="), vtype = c("B", "B", "B"),
        row_ids = c("spp_target", "spp_target"),
        col_ids = c("pu", "pu", "pu"))
# create OptimizationProblem object
x <- predefined_optimization_problem(l)
# print new object
print(x)
```

```
presolve_check Presolve check
```


Description

Check a conservation planning problem() for potential issues before trying to solve it. Specifically, problems are checked for (i) values that are likely to result in "strange" solutions and (ii) values that are likely to cause numerical instability issues and lead to unreasonably long run times when solving it. Although these checks are provided to help diagnose potential issues, please be aware that some detected issues may be false positives. Please note that these checks will not be able to verify if a problem has a feasible solution or not.

Usage

presolve_check(x)
\#\# S3 method for class 'ConservationProblem' presolve_check(x)
\#\# S3 method for class 'OptimizationProblem'
presolve_check(x)

Arguments

x
problem() (i.e. ConservationProblem) or OptimizationProblem object.

Details

This function checks for issues that are likely to result in "strange" solutions. Specifically, it checks if (i) all planning units are locked in, (ii) all planning units are locked out, and (iii) all planning units have negative cost values (after applying penalties if any were specified). Although such conservation planning problems are mathematically valid, they are generally the result of a coding mistake when building the problem (e.g. using an absurdly high penalty value or using the wrong dataset to lock in planning units). Thus such issues, if they are indeed issues and not false positives, can be fixed by carefully checking the code, data, and parameters used to build the conservation planning problem.

This function then checks for values that may lead to numerical instability issues when solving the problem. Specifically, it checks if the range of values in certain components of the optimization problem are over a certain threshold (i.e. 1×10^{9}) or if the values themselves exceed a certain threshold (i.e. 1×10^{10}). In most cases, such issues will simply cause an exact algorithm solver to take a very long time to generate a solution. In rare cases, such issues can cause incorrect calculations which can lead to exact algorithm solvers returning infeasible solutions (e.g. a solution to the minimum set problem where not all targets are met) or solutions that exceed the specified optimality gap (e.g. a suboptimal solution when a zero optimality gap is specified).

What can you do if a conservation planning problem fails to pass these checks? Well, this function will have thrown some warning messages describing the source of these issues, so read them carefully. For instance, a common issue is when a relatively large penalty value is specified for boundary (add_boundary_penalties()) or connectivity penalties (add_connectivity_penalties()). This can be fixed by trying a smaller penalty value. In such cases, the original penalty value supplied was so high that the optimal solution would just have selected every single planning unit in the solution-and this may not be especially helpful anyway (see below for example). Another common issue is that the planning unit cost values are too large. For example, if you express the costs of the planning units in terms of USD then you might have some planning units that cost over one billion dollars in large-scale planning exercises. This can be fixed by rescaling the values so that they are smaller (e.g. multiplying the values by a number smaller than one, or expressing them as a fraction of the maximum cost). Let's consider another common issue, let's pretend that you used habitat suitability models to predict the amount of suitable habitat in each planning unit for each feature. If you calculated the amount of suitable habitat in each planning unit in square meters then this could lead to very large numbers. You could fix this by converting the units from square meters to square kilometers or thousands of square kilometers. Alternatively, you could calculate the percentage of each planning unit that is occupied by suitable habitat, which will yield values between zero and one hundred.

But what can you do if you can't fix these issues by simply changing the penalty values or rescaling data? You will need to apply some creative thinking. Let's run through a couple of scenarios. Let's pretend that you have a few planning units that cost a billion times more than any other planning unit so you can't fix this by rescaling the cost values. In this case, it's extremely unlikely that these planning units will be selected in the optimal solution so just set the costs to zero and lock them out. If this procedure yields a problem with no feasible solution, because one (or several) of the planning units that you manually locked out contains critical habitat for a feature, then find out which planning unit(s) is causing this infeasibility and set its cost to zero. After solving the problem, you will need to manually recalculate the cost of the solutions but at least now you can be confident that you have the optimal solution. Now let's pretend that you are using the maximum features objective (i.e. add_max_features_objective()) and assigned some really high weights to the targets for some features to ensure that their targets were met in the optimal solution. If you set the weights for these features to one billion then you will probably run into numerical instability issues. Instead, you can calculate minimum weight needed to guarantee that these features will be represented in the optimal solution and use this value instead of one billion. This minimum weight value can be calculated as the sum of the weight values for the other features and adding a small number to it (e.g. 1). Finally, if you're running out of ideas for addressing numerical stability issues you have one remaining option: you can use the numeric_focus argument in the add_gurobi_solver() function to tell the solver to pay extra attention to numerical instability issues. This is not a free lunch, however, because telling the solver to pay extra attention to numerical issues can substantially increase run time. So, if you have problems that are already taking an unreasonable time to solve, then this will not help at all.

Value

logical value indicating if all checks are passed successfully.

See Also

problem(), solve(), https://www.gurobi.com/documentation/9.1/refman/numerics_gurobi_ guidelines.html.

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features)
# create minimal problem with no issues
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions()
# run presolve checks
# note that no warning is thrown which suggests that we should not
# encounter any numerical stability issues when trying to solve the problem
print(presolve_check(p1))
# create a minimal problem, containing cost values that are really
# high so that they could cause numerical instability issues when trying
# to solve it
sim_pu_raster2 <- sim_pu_raster
sim_pu_raster2[1] <- 1e+15
p2 <- problem(sim_pu_raster2, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions()
# run presolve checks
# note that a warning is thrown which suggests that we might encounter
# some issues, such as long solve time or suboptimal solutions, when
# trying to solve the problem
print(presolve_check(p2))
# create a minimal problem with connectivity penalties values that have
# a really high penalty value that is likely to cause numerical instability
# issues when trying to solve the it
cm <- adjacency_matrix(sim_pu_raster)
p3 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_connectivity_penalties(1e+15, data = cm) %>%
    add_binary_decisions()
# run presolve checks
# note that a warning is thrown which suggests that we might encounter
# some numerical instability issues when trying to solve the problem
print(presolve_check(p3))
## Not run:
# let's forcibly solve the problem using Gurobi and tell it to
# be extra careful about numerical instability problems
s3 <- p3 %>%
```

```
        add_gurobi_solver(numeric_focus = TRUE) %>%
        solve(force = TRUE)
    # plot solution
    # we can see that all planning units were selected because the connectivity
    # penalty is so high that cost becomes irrelevant, so we should try using
    # a much lower penalty value
    plot(s3, main = "solution", axes = FALSE, box = FALSE)
    ## End(Not run)
```

print Print

Description

Display information about an object.

Usage

```
## S3 method for class 'ConservationProblem'
print(x, ...)
    ## S3 method for class 'ConservationModifier'
    print(x, ...)
    ## S3 method for class 'Id'
    print(x, ...)
    ## S4 method for signature 'Id'
    print(x)
    ## S3 method for class 'OptimizationProblem'
    print(x, ...)
    ## S3 method for class 'ScalarParameter'
    print(x, ...)
    ## S3 method for class 'ArrayParameter'
    print(x, ...)
    ## S3 method for class 'Solver'
    print(x, ...)
    ## S3 method for class 'Zones'
    print(x, ...)
    ## S4 method for signature 'tbl_df'
    print(x)
```


Arguments

X
Any object.
... not used

Value

None.

See Also

base::print().

Examples

```
a <- 1:4
```

print(a)

```
prioritizr prioritizr: Systematic Conservation Prioritization in R
```


Description

The prioritizr \mathbf{R} package uses mixed integer linear programming (MILP) techniques to provide a flexible interface for building and solving conservation planning problems (Rodrigues et al. 2000; Billionnet 2013). It supports a broad range of objectives, constraints, and penalties that can be used to custom-tailor conservation planning problems to the specific needs of a conservation planning exercise. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. In contrast to the algorithms conventionally used to solve conservation problems, such as heuristics or simulated annealing (Ball et al. 2009), the exact algorithms used here are guaranteed to find optimal solutions. Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. Finally, this package has the functionality to read input data formatted for the Marxan conservation planning program (Ball et al. 2009), and find much cheaper solutions in a much shorter period of time than Marxan (Beyer et al. 2016). See the online code repository for more information.

Details

This package contains several vignettes that are designed to showcase its functionality. To view them, please use the code vignette("name", package = "prioritizr") where "name" is the name of the desired vignette (e.g. "gurobi_installation").
prioritizr Background information on systematic conservation planning and a comprehensive overview of the package and its usage.
tasmania Tutorial using Tasmania, Australia as a case-study. This tutorial uses vector-based planning unit data and is written for individuals familiar with the Marxan decision support tool.
saltspring Tutorial using Salt Spring Island, Canada as a case-study. This tutorial uses raster-based planning unit data.
zones Tutorial on using multiple management actions or zones to create detailed prioritizations.
gurobi_installation Instructions for installing and setting up the Gurobi optimization software for use with the package.
solver_benchmark Reports run times for solving conservation planning problems of varying size and complexity using different solvers.
publication_record List of publications that have cited the package.

References

Ball IR, Possingham HP, and Watts M (2009) Marxan and relatives: Software for spatial conservation prioritisation in Spatial conservation prioritisation: Quantitative methods and computational tools. Eds Moilanen A, Wilson KA, and Possingham HP. Oxford University Press, Oxford, UK.
Beyer HL, Dujardin Y, Watts ME, and Possingham HP (2016) Solving conservation planning problems with integer linear programming. Ecological Modelling, 228: 14-22.
Billionnet A (2013) Mathematical optimization ideas for biodiversity conservation. European Journal of Operational Research, 231: 514-534.
Rodrigues AS, Cerdeira OJ, and Gaston KJ (2000) Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems. Ecography, 23: 565-574.

```
prioritizr-deprecated Deprecation notice
```


Description

The functions listed here are deprecated. This means that they once existed in earlier versions of the of the prioritizr package, but they have since been removed entirely, replaced by other functions, or renamed as other functions in newer versions. To help make it easier to transition to new versions of the prioritizr package, we have listed alternatives for deprecated the functions (where applicable). If a function is described as being renamed, then this means that only the name of the function has changed (i.e. the inputs, outputs, and underlying code remain the same).

Usage

add_connected_constraints(...)
add_corridor_constraints(...)
set_number_of_threads(...)
get_number_of_threads(...)
is.parallel(...)

```
add_pool_portfolio(...)
connected_matrix(...)
feature_representation(...)
replacement_cost(...)
rarity_weighted_richness(...)
ferrier_score(...)
```


Arguments

$$
\cdots \quad \text { not used. }
$$

Details

The following functions have been deprecated:
add_connected_constraints() renamed as the add_contiguity_constraints() function.
add_corridor_constraints() replaced by the add_feature_contiguity_constraints() function.
set_number_of_threads() no longer needed used with the implementation of superior data extraction.
get_number_of_threads() no longer needed used with the implementation of superior data extraction.
is. parallel() no longer needed used with the implementation of superior data extraction.
add_pool_portfolio() replaced by the add_extra_portfolio() and add_top_portfolio().
connected_matrix() renamed as the adjacency_matrix() function.
feature_representation() replaced by the eval_feature_representation_summary() function for consistency with other functions.
replacement_cost() renamed as the eval_replacement_importance() function for consistency with other functions for evaluating solutions.
rarity_weighted_richness() renamed as the eval_rare_richness_importance() function for consistency with other functions for evaluating solutions.
ferrier_score() renamed as the eval_ferrier_importance() function for consistency with other functions for evaluating solutions.
problem Conservation planning problem

Description

Create a systematic conservation planning problem. This function is used to specify the basic data used in a spatial prioritization problem: the spatial distribution of the planning units and their costs, as well as the features (e.g. species, ecosystems) that need to be conserved. After constructing this ConservationProblem-class object, it can be customized to meet specific goals using objectives, targets, constraints, and penalties. After building the problem, the solve() function can be used to identify solutions. Note that problems require an objective, and failing to specify an an objective will throw an error when attempting to solve it.

```
Usage
    problem(x, features, ...)
    ## S4 method for signature 'Raster,Raster'
    problem(x, features, run_checks, ...)
    ## S4 method for signature 'Raster,ZonesRaster'
    problem(x, features, run_checks, ...)
    ## S4 method for signature 'Spatial,Raster'
    problem(x, features, cost_column, run_checks, ...)
    ## S4 method for signature 'Spatial,ZonesRaster'
    problem(x, features, cost_column, run_checks, ...)
    ## S4 method for signature 'Spatial,character'
    problem(x, features, cost_column, ...)
    ## S4 method for signature 'Spatial,ZonesCharacter'
    problem(x, features, cost_column, ...)
    ## S4 method for signature 'data.frame,character'
    problem(x, features, cost_column, ...)
    ## S4 method for signature 'data.frame,ZonesCharacter'
    problem(x, features, cost_column, ...)
    ## S4 method for signature 'data.frame,data.frame'
    problem(x, features, rij, cost_column, zones, ...)
    ## S4 method for signature 'numeric,data.frame'
    problem(x, features, rij_matrix, ...)
```

```
## S4 method for signature 'matrix,data.frame'
problem(x, features, rij_matrix, ...)
## S4 method for signature 'sf,Raster'
problem(x, features, cost_column, run_checks, ...)
## S4 method for signature 'sf,ZonesRaster'
problem(x, features, cost_column, run_checks, ...)
## S4 method for signature 'sf,character'
problem(x, features, cost_column, ...)
## S4 method for signature 'sf,ZonesCharacter'
problem(x, features, cost_column, ...)
```


Arguments

X
features The feature data can be specified in a variety of ways. The specific formats that can be used depend on the cost data format (i.e. argument to x) and whether the problem should have a single zone or multiple zones. If the problem should have a single zone, then the feature data can be specified following:

- $x=$ RasterLayer-class, or $x=$ Spatial-class, or $x=s f:: s t _s f(): y$ $=$ Raster-class object showing the distribution of conservation features. Missing values (i.e. NA values) can be used to indicate the absence of a feature in a particular cell instead of explicitly setting these cells to zero. Note that this argument type for features can only be used to specify data for problems involving a single zone.
- x = Spatial-class, or $x=s f:: s t _s f()$, or $x=$ data.frame: $y=$ character vector with column names that correspond to the abundance or occurrence of different features in each planning unit. Note that this argument type can only be used to create problems involving a single zone.
- $x=$ data.frame, or $x=$ numeric vector, or $x=$ matrix: $y=$ data.frame object containing the names of the features. Note that if this type of argument is supplied to features then the argument rij or rij_matrix must also be supplied. This type of argument should follow the conventions used by Marxan, wherein each row corresponds to a different feature. It must also contain the following columns:
id integer unique identifier for each feature These identifiers are used in the argument to rij.
name character name for each feature.
prop numeric relative target for each feature (optional).
amount numeric absolute target for each feature (optional).
If the problem should have multiple zones, then the feature data can be specified following:
- $\mathrm{x}=$ RasterStack-class, or $\mathrm{x}=$ RasterBrick-class, or $\mathrm{x}=$ Spatial-class, or $x=s f:: s t _s f(): y=$ ZonesRaster: object showing the distribution of conservation features in multiple zones. As above, missing values (i.e. NA values) can be used to indicate the absence of a feature in a particular cell instead of explicitly setting these cells to zero.
- $x=$ Spatial-class, or $x=s f:: s t _s f()$, or or $x=$ data.frame: $y=$ ZonesCharacter object with column names that correspond to the abundance or occurrence of different features in each planning unit in different zones.
run_checks logical flag indicating whether checks should be run to ensure the integrity of the input data. These checks are run by default; however, for large datasets they may increase run time. If it is taking a prohibitively long time to create the prioritization problem, it is suggested to try setting run_checks to FALSE.
cost_column character name or integer indicating the column(s) with the cost data. This argument must be supplied when the argument to x is a Spatial or data.frame object. This argument should contain the name of each column containing cost data for each management zone when creating problems with multiple zones. To create a problem with a single zone, then set the argument to cost_column as a single column name.
rij data.frame containing information on the amount of each feature in each planning unit assuming each management zone. Similar to data. frame arguments for features, the data.frame objects must follow the conventions used by Marxan. Note that the "zone" column is not needed for problems involving a single management zone. Specifically, the argument should contain the following columns:
pu integer planning unit identifier.
species integer feature identifier.
zone integer zone identifier (optional for problems involving a single zone).
amount numeric amount of the feature in the planning unit.
zones data.frame containing information on the zones. This argument is only used when argument to x and y are both data.frame objects and the problem being built contains multiple zones. Following conventions used in MarZone, this argument should contain the following columns: columns:
id integer zone identifier.
name character zone name.
rij_matrix list of matrix or dgCMatrix objects specifying the amount of each feature (rows) within each planning unit (columns) for each zone. The list elements denote different zones, matrix rows denote features, and matrix columns denote planning units. For convenience, the argument to rij_matrix can be a single matrix or dgCMatrix when specifying a problem with a single management zone. This argument is only used when the argument to x is a numeric or matrix object.

Details

A systematic conservation planning exercise leverages data to help inform conservation decision making. To help ensure that the data - and resulting prioritizations - are relevant to the over-arching goals of the exercise, you should decide on the management action (or set of actions) that need be considered in the exercise. For example, these actions could include establishing protected areas, selecting land for conservation easements, restoring habitat, planting trees for carbon sequestration, eradicating invasive species, or some combination of the previous actions. If the exercise involves multiple different actions, they can be incorporated by using multiple zones (see the Management Zones vignette for details). After deciding on the management action(s), you can compile the following data.

First, you will need to create a set of planning units (i.e. discrete spatial areas) to inform decision making. Planning units are often created by subdividing a study region into a set square or hexagonal cells. They can also be created using administrative boundaries (e.g. provinces), land management boundaries (e.g. property boundaries derived from cadastral data), or ecological boundaries (e.g. based on ecosystem classification data). The size (i.e. spatial grain) of the planning units is often determined based on a compromise between the scale needed to inform decision making, the spatial accuracy (resolution) of available datasets, and the computational resources available for generating prioritizations (e.g. RAM and number of CPUs on your computer).

Second, you will need data to quantify the cost of implementing implementing each management action within each planning unit. Critically, the cost data should reflect the management action(s) considered in the exercise. For example, costs are often specified using data that reflect economic expenditure (e.g. land acquisition cost), socioeconomic conditions (e.g. human population density), opportunity costs of foregone commercial activities (e.g. logging or agriculture), or opportunity costs of foregone recreational activities (e.g. recreational fishing) activities, In some cases - depending on the management action(s) considered - it can make sense to use a constant cost value (e.g. all planning units are assigned a cost value equal to one) or use a cost value based on spatial extent (e.g. each planning unit is assigned a cost value based on its total area). Also, in most cases, you want to avoid negative cost values. This because a negative value means that a place is desirable for implementing a management action, and such places will almost always be selected for prioritization even if they provide no benefit.
Third, you will need data to quantify the benefits of implementing management actions within planning units. To achieve this, you will need to select a set of conservation features that relate to the over-arching goals of the exercise. For example, conservation features often include species (e.g. Clouded Leopard), habitats (e.g. mangroves or cloud forest), or ecosystems. The benefit that each feature derives from a planning unit can take a variety of forms, but is typically occupancy (i.e. presence or absence), area of occurrence within each planning unit (e.g. based on species' geographic range data), or a measure of habitat suitability (e.g. estimated using a statistical model). After compiling these data, you have the minimal data need to generate a prioritization.
A systematic conservation planning exercise involves prioritizing a set of management actions to be implemented within certain planning units. Critically, this prioritization should ideally optimize the trade-off between benefits and costs. To accomplish this, the prioritizr package uses input data to formulate optimization problems (see Optimization section for details). Broadly speaking, the goal of an optimization problem is to minimize (or maximize) an objective function over a set of decision variables, subject to a series of constraints. Here, an objective function specifies the metric for evaluating conservation plans. The decision variables are what we control, and usually there is one binary variable for each planning unit to specify whether that unit is selected or not (but other approaches are available, see decisions). The constraints can be thought of as rules that must be
followed. For example, constraints can be used to ensure a prioritization must stay within a certain budget. These constraints can also leverage additional data to help ensure that prioritizations meet the over-arching goals of the exercise. For example, to account for existing conservation efforts, you could obtain data delineating the extent of existing protected areas and use constraints to lock in planning units that are covered by them (see add_locked_in_constraints).

Value

ConservationProblem object containing data for a prioritization.

Optimization

The prioritizr package uses exact algorithms to solve reserve design problems (see solvers for details). To achieve this, it internally formulates mathematical optimization problems using mixed integer linear programming (MILP). The general form of such problems can be expressed in matrix notation using the following equation.

$$
\text { Minimize } \mathbf{c}^{\mathbf{T}} \mathbf{x} \text { subjectto } \mathbf{A} \mathbf{x} \geq=o r \leq \mathbf{b}
$$

Here, x is a vector of decision variables, c and b are vectors of known coefficients, and A is the constraint matrix. The final term specifies a series of structural constraints where relational operators for the constraint can be either $\geq,=$, or \leq the coefficients. For example, in the minimum set cover problem, c would be a vector of costs for each planning unit, b a vector of targets for each conservation feature, the relational operator would be \geq for all features, and A would be the representation matrix with $A_{i j}=r_{i j}$, the representation level of feature i in planning unit j. If you wish to see exactly how a conservation planning problem is formulated as mixed integer linear programming problem, you can use the write_problem() function to save the optimization problem to a plain-text file on your computer and then view it using a standard text editor (e.g. Notepad).
Please note that this function internally computes the amount of each feature in each planning unit when this data is not supplied (using the rij_matrix function). As a consequence, it can take a while to initialize large-scale conservation planning problems that involve millions of planning units.

See Also

See solve() for details on solving a problem to generate solutions. Also, see objectives, penalties, targets, constraints, decisions, portfolios, solvers for information on customizing problems. Additionally, see summaries and importance for information on evaluating solutions.

Examples

```
# load data
data(sim_pu_raster, sim_pu_polygons, sim_pu_lines, sim_pu_points,
    sim_pu_sf, sim_features)
# create problem using raster planning unit data
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
```

```
## Not run:
# create problem using polygon (Spatial) planning unit data
p2 <- problem(sim_pu_polygons, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem using line (Spatial) planning unit data
p3 <- problem(sim_pu_lines, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem using point (Spatial) planning unit data
p4 <- problem(sim_pu_points, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create problem using polygon (sf) planning unit data
p5 <- problem(sim_pu_sf, sim_features, "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# since geo-processing can be slow for large spatial vector datasets
# (e.g. polygons, lines, points), it can be worthwhile to pre-process the
# planning unit data so that it contains columns indicating the amount of
# each feature inside each planning unit
# (i.e. each column corresponds to a different feature)
# calculate the amount of each species within each planning unit
# (i.e. SpatialPolygonsDataFrame object)
pre_proc_data <- rij_matrix(sim_pu_polygons, sim_features)
# add extra columns to the polygon (Spatial) planning unit data
# to indicate the amount of each species within each planning unit
pre_proc_data <- as.data.frame(t(as.matrix(pre_proc_data)))
names(pre_proc_data) <- names(sim_features)
sim_pu_polygons@data <- cbind(sim_pu_polygons@data, pre_proc_data)
# create problem using the polygon (Spatial) planning unit data
# with the pre-processed columns
p6 <- problem(sim_pu_polygons, features = names(pre_proc_data), "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
```

```
# this strategy of pre-processing columns can be used for sf objects too
pre_proc_data2 <- rij_matrix(sim_pu_sf, sim_features)
pre_proc_data2 <- as.data.frame(t(as.matrix(pre_proc_data2)))
names(pre_proc_data2) <- names(sim_features)
sim_pu_sf <- cbind(sim_pu_sf, pre_proc_data2)
# create problem using the polygon (sf) planning unit data
# with pre-processed columns
p7 <- problem(sim_pu_sf, features = names(pre_proc_data2), "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# in addition to spatially explicit data, pre-processed aspatial data
# can also be used to create a problem
# (e.g. data created using external spreadsheet software)
costs <- sim_pu_polygons$cost
features <- data.frame(id = seq_len(nlayers(sim_features)),
            name = names(sim_features))
rij_mat <- rij_matrix(sim_pu_polygons, sim_features)
p8 <- problem(costs, features, rij_matrix = rij_mat) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.2) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
s4 <- solve(p4)
s5 <- solve(p5)
s6 <- solve(p6)
s7 <- solve(p7)
s8 <- solve(p8)
# plot solutions for problems associated with spatial data
par(mfrow = c(3, 2), mar = c(0, 0, 4.1, 0))
plot(s1, main = "raster data", axes = FALSE, box = FALSE, legend = FALSE)
plot(s2, main = "polygon data")
plot(s2[s2$solution_1 > 0.5, ], col = "darkgreen", add = TRUE)
plot(s3, main = "line data")
lines(s3[s3$solution_1 > 0.5, ], col = "darkgreen", lwd = 2)
plot(s4, main = "point data", pch = 19)
points(s4[s4$solution_1 > 0.5, ], col = "darkgreen", cex = 2, pch = 19)
# note that as_Spatial() is for convenience to plot all solutions together
plot(as_Spatial(s5), main = "sf (polygon) data", pch = 19)
```

```
plot(as_Spatial(s5[s5$solution_1 > 0.5, ]), col = "darkgreen", add = TRUE)
plot(s6, main = "preprocessed data (polygon data)", pch = 19)
plot(s6[s6$solution_1 > 0.5, ], col = "darkgreen", add = TRUE)
# show solutions for problems associated with aspatial data
str(s8)
## End(Not run)
# create some problems with multiple zones
# first, create a matrix containing the targets for multi-zone problems
# here each row corresponds to a different feature, each
# column corresponds to a different zone, and values correspond
# to the total (absolute) amount of a given feature that needs to be secured
# in a given zone
targets <- matrix(rpois(15, 1),
                    nrow = number_of_features(sim_features_zones),
    ncol = number_of_zones(sim_features_zones),
    dimnames = list(feature_names(sim_features_zones),
                                    zone_names(sim_features_zones)))
# print targets
print(targets)
# create a multi-zone problem with raster data
p8 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_absolute_targets(targets) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s8 <- solve(p8)
# plot solution
# here, each layer/panel corresponds to a different zone and pixel values
# indicate if a given planning unit has been allocated to a given zone
par(mfrow = c(1, 1))
plot(s8, main = c("zone 1", "zone 2", "zone 3"), axes = FALSE, box = FALSE)
# alternatively, the category_layer function can be used to create
# a new raster object containing the zone ids for each planning unit
# in the solution (note this only works for problems with binary decisions)
par(mfrow = c(1, 1))
plot(category_layer(s8), axes = FALSE, box = FALSE)
# create a multi-zone problem with polygon data
p9 <- problem(sim_pu_zones_polygons, sim_features_zones,
                cost_column = c("cost_1", "cost_2", "cost_3")) %>%
    add_min_set_objective() %>%
    add_absolute_targets(targets) %>%
    add_binary_decisions() %>%
```

```
    add_default_solver(verbose = FALSE)
# solve problem
s9 <- solve(p9)
# create column containing the zone id for which each planning unit was
# allocated to in the solution
s9$solution <- category_vector(s9@data[, c("solution_1_zone_1",
                                    "solution_1_zone_2",
                                    "solution_1_zone_3")])
s9$solution <- factor(s9$solution)
# plot solution
spplot(s9, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)
# create a multi-zone problem with polygon planning unit data
# and where fields (columns) in the attribute table correspond
# to feature abundances
# first fields need to be added to the planning unit data
# which indicate the amount of each feature in each zone
# to do this, the fields will be populated with random counts
sim_pu_zones_polygons$spp1_z1 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp2_z1 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp3_z1 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp1_z2 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp2_z2 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp3_z2 <- rpois(nrow(sim_pu_zones_polygons), 1)
# create problem with polygon planning unit data and use field names
# to indicate feature data
# additionally, to make this example slightly more interesting,
# the problem will have prfoportion-type decisions such that
# a proportion of each planning unit can be allocated to each of the
# two management zones
p10 <- problem(sim_pu_zones_polygons,
            zones(c("spp1_z1", "spp2_z1", "spp3_z1"),
                    c("spp1_z2", "spp2_z2", "spp3_z2"),
                    zone_names = c("z1", "z2")),
                    cost_column = c("cost_1", "cost_2")) %>%
    add_min_set_objective() %>%
    add_absolute_targets(targets[1:3, 1:2]) %>%
    add_proportion_decisions() %>%
    add_default_solver(verbose = FALSE)
# solve problem
s10 <- solve(p10)
# plot solution
spplot(s10, zcol = c("solution_1_z1", "solution_1_z2"), main = "solution",
    axes = FALSE, box = FALSE)
## End(Not run)
```

```
proximity_matrix Proximity matrix
```


Description

Create a matrix showing which planning units are within a certain spatial proximity to each other.

```
Usage
proximity_matrix(x, distance)
## S3 method for class 'Raster'
proximity_matrix(x, distance)
## S3 method for class 'SpatialPolygons'
proximity_matrix(x, distance)
## S3 method for class 'SpatialLines'
proximity_matrix(x, distance)
## S3 method for class 'SpatialPoints'
proximity_matrix(x, distance)
## S3 method for class 'sf'
proximity_matrix(x, distance)
## Default S3 method:
proximity_matrix(x, distance)
```


Arguments

$x \quad$ Raster, Spatial, or $\mathrm{sf}:: \mathrm{sf}()$ object representing planning units.
distance numeric distance threshold. Planning units that are further apart from each other than this threshold are not treated as being within proximity of each other.

Details

Proximity calculations are performed using sf::st_is_within_distance().

Value

dsCMatrix symmetric sparse matrix object. Each row and column represents a planning unit. Cells values indicate if the pair-wise distances between different planning units are within the distance threshold or not (using ones and zeros). To reduce computational burden, cells among the matrix diagonal are set to zero. Furthermore, if the argument to x is a Raster object, then cells with NA values are set to zero too.

Examples

```
# load data
data(sim_pu_raster, sim_pu_sf, sim_pu_lines, sim_pu_points)
# create proximity matrix using raster data
## crop raster to 9 cells to provide a small example
r <- crop(sim_pu_raster, c(0, 0.3, 0, 0.3))
## make proximity matrix using a distance threshold of 2
cm_raster <- proximity_matrix(r, distance = 2)
# create proximity matrix using polygon (sf) data
## subset 9 polygons to provide a small example
ply <- sim_pu_sf[c(1:2, 10:12, 20:22), ]
## make proximity matrix using a distance threshold of 2
cm_ply <- proximity_matrix(ply, distance = 2)
# create proximity matrix using line (Spatial) data
## subset 9 lines to provide a small example
lns <- sim_pu_lines[c(1:2, 10:12, 20:22), ]
## make proximity matrix
cm_lns <- proximity_matrix(lns, distance = 2)
## create proximity matrix using point (Spatial) data
## subset 9 points to provide a small example
pts <- sim_pu_points[c(1:2, 10:12, 20:22), ]
# make proximity matrix
cm_pts <- proximity_matrix(pts, distance = 2)
# plot data and the proximity matrices
## Not run:
par(mfrow = c(4,2))
## plot raster and proximity matrix
plot(r, main = "raster", axes = FALSE, box = FALSE)
plot(raster(as.matrix(cm_raster)), main = "proximity matrix", axes = FALSE,
    box = FALSE)
## plot polygons and proximity matrix
plot(r, main = "polygons (sf)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(cm_ply)), main = "proximity matrix", axes = FALSE,
    box = FALSE)
## plot lines and proximity matrix
plot(r, main = "lines (Spatial)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(cm_lns)), main = "proximity matrix", axes = FALSE,
    box = FALSE)
## plot points and proximity matrix
```

```
    plot(r, main = "points (Spatial)", axes = FALSE, box = FALSE)
    plot(raster(as.matrix(cm_pts)), main = "proximity matrix", axes = FALSE,
        box = FALSE)
## End(Not run)
```

rij_matrix
Feature by planning unit matrix

Description

Generate a matrix showing the amount of each feature in each planning unit (also known as an rij matrix).

Usage

```
    rij_matrix(x, y, ...)
    ## S4 method for signature 'Raster,Raster'
    rij_matrix(x, y, ...)
    ## S4 method for signature 'Spatial,Raster'
    rij_matrix(x, y, fun, ...)
    ## S4 method for signature 'sf,Raster'
    rij_matrix(x, y, fun, ...)
```


Arguments

x Raster, Spatial, or sf: :sf() object representing the planning units.
$y \quad$ Raster object representing the features.
... not used.
fun character for summarizing values inside each planning unit. This parameter is only used when the argument to x is a Spatial or $s f:: s f()$ object. Defaults to "sum".

Details

Generally, processing vector (i.e. Spatial or $s f: s f())$ data takes much longer to process then Raster data, so it is recommended to use Raster data for planning units where possible.

Value

dgCMatrix sparse matrix object. The sparse matrix represents the spatial intersection between the planning units and the features. Rows correspond to features, and columns correspond to planning units. Values correspond to the amount (or presence/absence) of the feature in the planning unit. For example, the amount of the third species in the second planning unit would be stored in the third column and second row.

Examples

```
# load data
data(sim_pu_raster, sim_pu_polygons, sim_pu_sf, sim_pu_zones_stack)
# create rij matrix using raster layer planning units
rij_raster <- rij_matrix(sim_pu_raster, sim_features)
print(rij_raster)
# create rij matrix using polygon (Spatial) planning units
rij_polygons <- rij_matrix(sim_pu_polygons, sim_features)
print(rij_polygons)
# create rij matrix using polygon (sf) planning units
rij_sf <- rij_matrix(sim_pu_sf, sim_features)
print(rij_sf)
# create rij matrix using raster stack planning units
rij_zones_raster <- rij_matrix(sim_pu_zones_stack, sim_features)
print(rij_zones_raster)
```


Description

Execute preliminary calculations in a conservation problem and store the results for later use. This function is useful when creating slightly different versions of the same conservation planning problem that involve the same pre-processing steps (e.g. calculating boundary data), because means that the same calculations will not be run multiple times.

Usage

run_calculations(x)

Arguments

x
problem() (i.e. ConservationProblem) object.

Details

This function is used for the effect of modifying the input ConservationProblem object. As such, it does not return anything. To use this function with pipe() operators, use the $\% \mathrm{~T}>\%$ operator and not the $\%>\%$ operator.

Value

Invisible TRUE indicating success.

Examples

```
## Not run:
# Let us imagine a scenario where we wanted to understand the effect of
# setting different targets on our solution.
# create a conservation problem with no targets
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_boundary_penalties(10, 0.5) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
# create a copies of p and add targets
p1 <- p %>% add_relative_targets(0.1)
p2 <- p %>% add_relative_targets(0.2)
p3 <- p %>% add_relative_targets(0.3)
# now solve each of the different problems and record the time spent
# solving them
s1 <- system.time({solve(p1); solve(p2); solve(p3)})
# This approach is inefficient. Since these problems all share the same
# planning units it is actually performing the same calculations three times.
# To avoid this, we can use the "run_calculations" function before creating
# the copies. Normally, R runs the calculations just before solving the
# problem
# recreate a conservation problem with no targets and tell R run the
# preliminary calculations. Note how we use the %T>% operator here.
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_boundary_penalties(10, 0.5) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE) %T>%
    run_calculations()
# create a copies of p and add targets just like before
p1 <- p %>% add_relative_targets(0.1)
p2 <- p %>% add_relative_targets(0.2)
p3 <- p %>% add_relative_targets(0.3)
# solve each of the different problems and record the time spent
# solving them
s2 <- system.time({solve(p1); solve(p2); solve(p3)})
# now lets compare the times
print(s1) # time spent without running preliminary calculations
print(s2) # time spent after running preliminary calculations
# As we can see, we can save time by running the preliminary
# calculations before making copies of the problem with slightly
# different constraints. Although the time saved in this example
```

\# is rather small, this is because the example data are very small.
\# We would expect larger time savings for larger datasets.
\#\# End(Not run)

ScalarParameter-class Scalar parameter prototype

Description

This prototype is used to represent a parameter has a single value. Only experts should interact directly with this prototype.

Fields

\$id character identifier for parameter.
\$name character name of parameter.
\$value numeric scalar value.
\$default numeric scalar default value.
\$class character name of the class that \$value should inherit from (e.g. integer).
\$lower_limit numeric scalar value that is the minimum value that \$value is permitted to be.
\$upper_limit numeric scalar value that is the maximum value that $\$$ value is permitted to be.

Usage

x\$print()
x\$show()
$x \$ v a l i d a t e(x)$
x\$get()
$\mathrm{x} \$ \operatorname{set}(\mathrm{x})$
$x \$ r e s e t()$

Arguments

\mathbf{x} object used to set a new parameter value.

Details

print print the object.
show show the object.
validate check if a proposed new set of parameters are valid.
get extract the parameter value.
set update the parameter value.
reset update the parameter value to be the default value.

See Also

Parameter, ArrayParameter.

```
scalar_parameters Scalar parameters
```


Description

These functions are used to create parameters that consist of a single number. Parameters have a name, a value, a defined range of acceptable values, a default value, and a class. If values are supplied to a parameter that are unacceptable then an error is thrown.

Usage

```
proportion_parameter(name, value)
binary_parameter(name, value)
integer_parameter(
    name,
    value,
    lower_limit = as.integer(-.Machine$integer.max),
    upper_limit = as.integer(.Machine$integer.max)
)
numeric_parameter(
    name,
    value,
    lower_limit = .Machine$double.xmin,
    upper_limit = .Machine$double.xmax
)
```


Arguments

name character name of parameter.
value integer or double value depending on the parameter.
lower_limit integer or double value representing the smallest acceptable value for value. Defaults to the smallest possible number on the system.
upper_limit integer or double value representing the largest acceptable value for value. Defaults to the largest possible number on the system.

Details

Below is a list of parameter generating functions and a brief description of each.
proportion_parameter A parameter that is a double and bounded between zero and one.
integer_parameter A parameter that is a integer.
numeric_parameter A parameter that is a double.
binary_parameter A parameter that is restricted to integer values of zero or one.

Value

ScalarParameter object.

Examples

```
# proportion parameter
p1 <- proportion_parameter('prop', 0.5) # create new object
print(p1) # print it
p1$get() # get value
p1$id # get id
p1$validate(5) # check if 5 is a validate input
p1$validate(0.1) # check if 0.1 is a validate input
p1$set(0.1) # change value to 0.1
print(p1)
# binary parameter
p2 <- binary_parameter('bin', 0) # create new object
print(p2) # print it
p2$get() # get value
p2$id # get id
p2$validate(5) # check if 5 is a validate input
p2$validate(1L) # check if 1L is a validate input
p2$set(1L) # change value to 1L
print(p1) # print it again
# integer parameter
p3 <- integer_parameter('int', 5L) # create new object
print(p3) # print it
p3$get() # get value
p3$id # get id
p3$validate(5.6) # check if 5.6 is a validate input
p3$validate(2L) # check if 2L is a validate input
p3$set(2L) # change value to 2L
print(p3) # print it again
# numeric parameter
p4 <- numeric_parameter('dbl', -7.6) # create new object
print(p4) # print it
p4$get() # get value
p4$id # get id
p4$validate(NA) # check if NA is a validate input
p4$validate(8.9) # check if 8.9 is a validate input
p4$set(8.9) # change value to 8.9
print(p4) # print it again
# numeric parameter with lower bounds
p5 <- numeric_parameter('bdbl', 6, lower_limit=0) # create new object
```

```
print(p5) # print it
p5$get() # get value
p5$id # get id
p5$validate(-10) # check if -10 is a validate input
p5$validate(90) # check if 90 is a validate input
p5$set(90) # change value to 8.9
print(p5) # print it again
```

show Show

Description

Display information about an object.

Usage

```
## S4 method for signature 'ConservationModifier'
```

show (x)
\#\# S4 method for signature 'ConservationProblem'
show (x)
\#\# S4 method for signature 'Id'
show(x)
\#\# S4 method for signature 'OptimizationProblem'
show (x)
\#\# S4 method for signature 'Parameter'
show (x)
\#\# S4 method for signature 'Solver'
show (x)

Arguments

x Any object.

Value

None.

See Also

```
methods::show().
```

```
simulate_cost Simulate cost data
```


Description

This function generates cost layers using random field models. By default, it returns spatially autocorrelated integer values.

Usage

```
simulate_cost(
        x,
        n = 1,
        model = RandomFields::RPpoisson(RandomFields::RMtruncsupport(radius = raster::xres(x)
            * 10, RandomFields::RMgauss())),
        transform = identity,
        ...
    )
```


Arguments

x
n
model RandomFields::RP() model object to use for simulating data.
transform function to transform values output from the random fields simulation.
... additional arguments passed to RandomFields: :RFsimulate().

Value

RasterStack object.

See Also

```
simulate_data().
```


Examples

```
## Not run:
# create raster
r <- raster(ncol=10, nrow=10, xmn=0, xmx=1, ymn=0, ymx=1)
values(r) <- 1
# simulate data
# (note this requires the RandomFields package to be installed)
cost <- simulate_cost(r)
# plot simulated species
```

```
plot(cost, main = "simulated cost data")
## End(Not run)
```

```
simulate_data Simulate data
```


Description

Simulate spatially auto-correlated data.

Usage

simulate_data(x, n, model, transform = identity, \ldots)

Arguments

x	RasterLayer object to use as a template.
n	integer number of species to simulate.
model	RandomFields : : RP() model object to use for simulating data.
transform	function to transform values output from the random fields simulation.
\ldots	additional arguments passed to RandomFields: :RFsimulate().

Value

RasterStack object with a layer for each species.

See Also

RandomFields: :RFsimulate(), simulate_cost(), simulate_species().

Examples

```
## Not run:
# create raster
r <- raster(ncol=10, nrow=10, xmn=0, xmx=1, ymn=0, ymx=1)
values(r) <- 1
# simulate data using a Gaussian field
# (note this requires the RandomFields package to be installed)
d <- simulate_data(r, n = 1, model = RandomFields::RMgauss())
# plot simulated data
plot(d, main = "random Gaussian field")
## End(Not run)
```

simulate_species

Description

Generates a random set of species using random field models. By default, the output will contain values between zero and one.

Usage

simulate_species(x , $\mathrm{n}=1$, model = RandomFields::RMgauss(), transform = stats::plogis,
)

Arguments

X
n model RandomFields: RP () model object to use for simulating data. transform function to transform values output from the random fields simulation. ... additional arguments passed to RandomFields::RFsimulate().

Value

RasterStack object.

See Also

```
simulate_data().
```


Examples

```
## Not run:
# create raster
r <- raster(ncol=10, nrow=10, xmn=0, xmx=1, ymn=0, ymx=1)
values(r) <- 1
# simulate data for 4 species
# (note this requires the RandomFields package to be installed)
spp <- simulate_species(r, 4)
# plot simulated species
plot(spp, main = "simulated species distributions")
```

```
    ## End(Not run)
```

 sim_data Simulated conservation planning data

Description

Simulated data for making spatial prioritizations.

Usage

data(sim_pu_polygons)
data(sim_pu_zones_polygons)
data(sim_pu_points)
data(sim_pu_lines)
data(sim_pu_sf)
data(sim_pu_zones_sf)
data(sim_pu_raster)
data(sim_locked_in_raster)
data(sim_locked_out_raster)
data(sim_pu_zones_stack)
data(sim_features)
data(sim_features_zones)
data(sim_phylogeny)

Format

sim_pu_polygons SpatialPolygonsDataFrame object.
sim_pu_zones_polygons SpatialPolygonsDataFrame object.
sim_pu_sf sf: :sf() object.
sim_pu_zones_sf sf::sf() object.
sim_pu_lines SpatialLinesDataFrame object.
sim_pu_points SpatialPointsDataFrame object.
sim_pu_raster RasterLayer object.
sim_pu_zones_stack RasterStack object.
sim_locked_in_raster RasterLayer object.
sim_locked_out_raster RasterLayer object.
sim_features RasterStack object.
sim_features_zones ZonesRaster() object.
sim_phylogeny ape::phylo() object.

Details

sim_pu_raster Planning units are represented as raster data. Pixel values indicate planning unit cost and NA values indicate that a pixel is not a planning unit.
sim_pu_zones_stack Planning units are represented as raster stack data. Each layer indicates the cost for a different management zone. Pixels with NA values in a given zone indicate that a planning unit cannot be allocated to that zone in a solution. Additionally, pixels with NA values in all layers are not a planning unit.
sim_locked_in_raster Planning units are represented as raster data. Pixel values are binary and indicate if planning units should be locked in to the solution.
sim_locked_out_raster Planning units are represented as raster data. Pixel values are binary and indicate if planning units should be locked out from the solution.
sim_pu_polygons Planning units represented as polygon data. The attribute table contains fields (columns) indicating the expenditure required for prioritizing each planning unit ("cost" field), if the planning units should be selected in the solution ("locked_in" field), and if the planning units should never be selected in the solution ("locked_out" field).
sim_pu_points Planning units represented as point data. The attribute table follows the same conventions as for sim_pu_polygons.
sim_pu_lines Planning units represented as line data. The attribute table follows the same conventions as for sim_pu_polygons.
sim_pu_sf Planning units represented as polygon data using the $s f:: s f()$ package. The attribute table follows the same conventions as for sim_pu_polygons.
sim_pu_zones_polygons Planning units represented as polygon data. The attribute table contains fields (columns) indicating the expenditure required for prioritizing each planning unit under different management zones ("cost_1", "cost_2", and "cost_3" fields), and a series of fields indicating the value that each planning unit that should be assigned in the solution ("locked_1", "locked_2", "locked_3" fields). In these locked fields, planning units that should not be locked to a specific value are assigned a NA value.
sim_pu_zones_sf Planning units represented as polygon data using the sf::sf() package. The attribute tables follows the same conventions as for sim_pu_zone_polygons.
sim_features The simulated distribution of ten species. Pixel values indicate habitat suitability.
sim_features_zones The simulated distribution for five species under three different management zones.
sim_phylogeny The phylogenetic tree for the ten species.

Examples

\# load data
data(sim_pu_polygons, sim_pu_lines, sim_pu_points, sim_pu_raster, sim_locked_in_raster, sim_locked_out_raster, sim_phylogeny,
sim_features, sim_pu_sf)
\# plot example Spatial-class planning unit data
\#\# Not run:
$\operatorname{par}($ mfrow $=c(2,3))$
plot(sim_pu_raster, main = "planning units (raster)")
plot(sim_locked_in_raster, main = "locked in units (raster)")
plot(sim_locked_out_raster, main = "locked out units (raster)")
plot(sim_pu_polygons, main = "planning units (polygons)")
plot(sim_pu_lines, main = "planning units (lines)")
plot(sim_pu_points, main = "planning units (points)")
\# plot example sf-class planning unit data
plot(sim_pu_sf)
\# plot example phylogeny data
$\operatorname{par}($ mfrow $=c(1,1))$
ape::plot.phylo(sim_phylogeny, main = "simulated phylogeny")
\# plot example feature data
$\operatorname{par}($ mfrow $=c(1,1))$
plot(sim_features)
\# plot example management zone cost data
$\operatorname{par}($ mfrow $=c(1,1))$
plot(sim_pu_zones_stack)
\# plot example feature data for each management zone
plot(do.call(stack, sim_features_zones), main = paste0("Species ",
rep(seq_len(number_of_zones(sim_features_zones)), number_of_features(sim_features_zones)),
" (zone ",
rep(seq_len(number_of_features(sim_features_zones)), each = number_of_zones(sim_features_zones)),
")"))
\#\# End(Not run)
solve Solve

Description

Solve a conservation planning problem().

Usage

```
\#\# S4 method for signature 'OptimizationProblem, Solver'
solve(a, b, ...)
\#\# S4 method for signature 'ConservationProblem,missing'
solve(a, b, ..., run_checks = TRUE, force = FALSE)
```


Arguments

a
b
... arguments passed to compile().
run_checks logical flag indicating whether presolve checks should be run prior solving the problem. These checks are performed using the presolve_check() function. Defaults to TRUE. Skipping these checks may reduce run time for large problems.
force logical flag indicating if an attempt to should be made to solve the problem even if potential issues were detected during the presolve checks. Defaults to FALSE.

Details

After formulating a conservation planning problem(), it can be solved using an exact algorithm solver (see solvers for available solvers). If no solver has been explicitly specified, then the best available exact algorithm solver will be used by default (see add_default_solver(). Although these exact algorithm solvers will often display a lot of information that isn't really that helpful (e.g. nodes, cutting planes), they do display information about the progress they are making on solving the problem (e.g. the performance of the best solution found at a given point in time). If potential issues were detected during the presolve checks (see presolve_check()) and the problem is being forcibly solved (i.e. with force = TRUE), then it is also worth checking for any warnings displayed by the solver to see if these potential issues are actually causing issues (e.g. Gurobi can display warnings that include "Warning: Model contains large matrix coefficient range" and "Warning: Model contains large rhs").
The object returned from this function depends on the argument to a. If the argument to a is an OptimizationProblem object, then the solution is returned as a logical vector showing the status of each planning unit in each zone. However, in most cases, the argument to a will be a ConservationProblem object, and so the type of object returned depends on the number of solutions generated and the data format used to specify the planning units:
a has numeric planning units The solution will be returned as a numeric vector. Here, each element in the vector corresponds to a different planning unit. Note that if a portfolio is used to generate multiple solutions, then a list of such numeric vectors will be returned.
a has matrix planning units The solution will be returned as a matrix object. Here, rows correspond to different planning units, and fields (columns) correspond to different management zones. Note that if a portfolio is used to generate multiple solutions, then a list of such matrix objects will be returned.
a has Raster planning units The solution will be returned as a Raster object. If the argument to x contains a single management zone, then a RasterLayer object will be returned. Otherwise, if the argument to x contains multiple zones, then a RasterStack object will be returned containing a different layer for each management zone. Note that if a portfolio is used to generate multiple solutions, then a list of such Raster objects will be returned.
a has Spatial, $s f:: s f()$, or data. frame planning units The solution will be returned in the same data format as the planning units. Here, each row corresponds to a different planning unit, and fields contain solutions. If the argument to a contains a single zone, then the solution object will contain fields (columns) that solution the values. Specifically, the field name(s) containing the solution values be will named as "solution_XXX" where "XXX" corresponds to a solution identifier (e.g. "solution_1"). If the argument to a contains multiple zones, then the fields containing solutions will be named as "solution_XXX_YYY" where "XXX" corresponds to the solution identifier and " YYY " is the name of the management zone (e.g. "solution_1_zone1").

Value

A numeric, matrix, RasterLayer, Spatial, or $s f:: s f()$ object containing the solution to the problem. Additionally, the returned object will have the following additional attributes: "objective" containing the solution's objective, "runtime" denoting the number of seconds that elapsed while solving the problem, and "status" describing the status of the solution (e.g. "OPTIMAL" indicates that the optimal solution was found). In most cases, the first solution (e.g. "solution_1") will contain the best solution found by the solver (note that this may not be an optimal solution depending on the gap used to solve the problem and noting that the default gap is 0.1).

See Also

See problem() to create conservation planning problems, and presolve_check() to check problems for potential issues. Also, see the category_layer() and category_vector() function to reformat solutions that contain multiple zones.

Examples

```
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_pu_polygons, sim_pu_sf, sim_features,
    sim_pu_zones_stack, sim_pu_zones_sf, sim_features_zones)
# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s1 <- solve(p1)
```

```
# print solution
print(s1)
# print attributes describing the optimization process and the solution
print(attr(s1, "objective"))
print(attr(s1, "runtime"))
print(attr(s1, "status"))
# calculate feature representation in the solution
r1 <- eval_feature_representation_summary(p1, s1)
print(r1)
# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# build minimal conservation problem with polygon (Spatial) data
p2 <- problem(sim_pu_polygons, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s2 <- solve(p2)
# print first six rows of the attribute table
print(head(s2))
# calculate feature representation in the solution
r2 <- eval_feature_representation_summary(p2, s2[, "solution_1"])
print(r2)
# plot solution
spplot(s2, zcol = "solution_1", main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# build minimal conservation problem with polygon (sf) data
p3 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s3 <- solve(p3)
# print first six rows of the attribute table
print(head(s3))
# calculate feature representation in the solution
r3 <- eval_feature_representation_summary(p3, s3[, "solution_1"])
```

```
print(r3)
# plot solution
plot(s3[, "solution_1"])
## End(Not run)
# build multi-zone conservation problem with raster data
p4 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                        ncol = 3)) %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s4 <- solve(p4)
# print solution
print(s4)
# calculate feature representation in the solution
r4 <- eval_feature_representation_summary(p4, s4)
print(r4)
# plot solution
plot(category_layer(s4), main = "solution", axes = FALSE, box = FALSE)
## End(Not run)
# build multi-zone conservation problem with polygon (sf) data
p5 <- problem(sim_pu_zones_sf, sim_features_zones,
            cost_column = c("cost_1", "cost_2", "cost_3")) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
                        ncol = 3)) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve the problem
s5 <- solve(p5)
# print first six rows of the attribute table
print(head(s5))
# calculate feature representation in the solution
r5 <- eval_feature_representation_summary(
    p5, s5[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")])
print(r5)
# create new column representing the zone id that each planning unit
# was allocated to in the solution
s5$solution <- category_vector(s5[, c("solution_1_zone_1",
                            "solution_1_zone_2",
```

s5\$solution <- factor(s5\$solution)
\# plot solution
plot(s5[, "solution"])
\#\# End(Not run)

```
Solver-class Solver prototype
```


Description

This prototype is used to generate objects that represent methods for solving optimization problems. This class represents a recipe to create solver and and is only recommended for use by expert users. To customize the method used to solve optimization problems, please see the help page on solvers.

Fields

\$name character name of solver.
\$data list object optimization problem data.
\$parameters Parameters object with parameters used to customize the the solver.
\$solve function used to solve a OptimizationProblem object.

Usage

```
x$print()
x$show()
x$repr()
x$get_data(name)
x$set_data(name,value)
x$set_variable_ub(index,value)
x$set_variable_lb(index,value)
x$calculate(op)
x$run()
x$solve(op)
```

Arguments
x Solver object.
op OptimizationProblem object.

Details

print print the object.
show show the object.
repr character representation of object.
get_data return an object stored in the data field with the corresponding name. If the object is not present in the data field, a waiver object is returned.
set_data store an object stored in the data field with the corresponding name. If an object with that name already exists then the object is overwritten.
set_variable_ub set the upper bounds on decision variables in a pre-calculated optimization problem stored in the solver.
set_variable_lb set the lower bounds on decision variables in a pre-calculated optimization problem stored in the solver.
calculate ingest a general purpose OptimizationProblem object and convert it to the correct format for the solver.
run run the solver and output a solution
solve solve an OptimizationProblem using this object.

```
solvers Problem solvers
```


Description

Specify the software and configuration used to solve a conservation planning problem(). By default, the best available software currently installed on the system will be used. For information on the performance of different solvers, please see Schuster et al. (2020) for benchmarks comparing the run time and solution quality of some of these solvers when applied to different sized datasets.

Details

The following solvers can be used to find solutions for a conservation planning problem():
add_default_solver() This solver uses the best software currently installed on the system.
add_gurobi_solver() Gurobi is a state-of-the-art commercial optimization software with an R package interface. We recommend using this solver if at all possible. It is by far the fastest of the solvers available for generating prioritizations, however, it is not freely available. That said, licenses are available to academics at no cost. The gurobi package is distributed with the Gurobi software suite. This solver uses the gurobi package to solve problems.
add_cplex_solver() IBM CPLEX is a commercial optimization software. It is faster than the open source solvers available for generating prioritizations, however, it is not freely available. Similar to the Gurobi software, licenses are available to academics at no cost. This solver uses the cplexAPI package to solve problems using IBM CPLEX.
add_cbc_solver() CBC is an open-source mixed integer programming solver that is part of the Computational Infrastructure for Operations Research (COIN-OR) project. Preliminary benchmarks indicate that it is the fastest open source solver currently supported. We recommend using this solver if both Gurobi and $I B M C P L E X$ are unavailable. It requires the rcbc package, which is currently only available on GitHub.
add_lpsymphony_solver() SYMPHONY is an open-source mixed integer programming solver that is also part of the COIN-OR project. Although both SYMPHONY and CBC are part of the COIN-OR project, they are different software. The Ipsymphony package provides an interface to the SYMPHONY software, and is distributed through Bioconductor. We recommend using this solver if the CBC solver cannot be installed. This solver can use parallel processing to solve problems, so it is faster than Rsymphony package interface (see below).
add_rsymphony_solver () This solver provides an alternative interface to the SYMPHONY solver using the Rsymphony package. Unlike other solvers, the Rsymphony package can be installed directly from the Comprehensive R Archive Network (CRAN). It is also the slowest of the available solvers.

References

Schuster R, Hanson JO, Strimas-Mackey M, and Bennett JR (2020). Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ, 8: e9258.

See Also

Other overviews: constraints, decisions, importance, objectives, penalties, portfolios, summaries, targets

Examples

```
## Not run:
# load data
data(sim_pu_raster, sim_features)
# create basic problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_proportion_decisions()
# create vector to store plot titles
titles <- c()
# create empty stack to store solutions
s <- stack()
# if gurobi is installed: create problem with added gurobi solver
if (require("gurobi")) {
    titles <- c(titles, "gurobi")
    p3 <- p %>% add_gurobi_solver(verbose = FALSE)
    s <- addLayer(s, solve(p3))
```

```
}
# if cplexAPI is installed: create problem with added CPLEX solver
if (require("cplexAPI")) {
    titles <- c(titles, "CPLEX")
    p4 <- p %>% add_cplex_solver(verbose = FALSE)
    s <- addLayer(s, solve(p4))
}
# if rcbc is installed: create problem with added cbc solver
if (require("rcbc")) {
    titles <- c(titles, "CBC")
    p6 <- p %>% add_cbc_solver(verbose = FALSE)
    s <- addLayer(s, solve(p6))
}
# create problem with added rsymphony solver
if (require("Rsymphony")) {
    titles <- c(titles, "Rsymphony")
    p2 <- p %>% add_rsymphony_solver(verbose = FALSE)
    s <- addLayer(s, solve(p2))
}
# if lpsymphony is installed: create problem with added lpsymphony solver
if (require("lpsymphony")) {
    titles <- c(titles, "lpsymphony")
    p5 <- p %>% add_lpsymphony_solver(verbose = FALSE)
    s <- addLayer(s, solve(p5))
}
# plot solutions
plot(s, main = titles, axes = FALSE, box = FALSE)
## End(Not run)
```

```
summaries
```

Evaluate solutions using summary statistics

Description

After generating a solution to a conservation planning problem(), it can be useful to evaluate how well it performs. These functions can be used to evaluate a solution according to various different summary statistics.

Details

The following functions can be used to summarize the performance of a solution to a conservation planning problem():
eval_n_summary () Calculate the number of planning units selected within a solution.
eval_cost_summary () Calculate the total cost of a solution.
eval_feature_representation_summary () Calculate how well features are represented by a solution. This function can be used for all problems.
eval_target_coverage_summary () Calculate how well feature representation targets are met by a solution. This function can only be used with problems contain targets.
eval_boundary_summary () Calculate the exposed boundary length (perimeter) associated with a solution.
eval_connectivity_summary() Calculate the connectivity held within a solution.

See Also

Other overviews: constraints, decisions, importance, objectives, penalties, portfolios, solvers, targets

Examples

```
# load data
data(sim_pu_raster, sim_features)
# create a minimal problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions() %>%
    add_default_solver(verbose = FALSE)
## Not run:
# solve problem
s <- solve(p)
# evaluate number of selected planning units in solution
eval_n_summary(p, s)
# evaluate solution cost
eval_cost_summary(p, s)
# evaluate feature representation by solution
eval_feature_representation_summary(p, s)
# evaluate target coverage by solution
eval_target_coverage_summary(p, s)
# evaluate exposed boundary (perimeter) length by solution
eval_boundary_summary(p, s)
# create a connectivity matrix to describe pair-wise connectivity
# values between combinations of planning units,
# see ?connectivity_matrix for more information
```

```
# for brevity, we will do this using the cost data
# cost valuers have high connectivity between them
cm <- connectivity_matrix(sim_pu_raster, sim_pu_raster)
# evaluate connectivity of solution
eval_connectivity_summary(p, s, data = cm)
## End(Not run)
```

Target-class Target prototype

Description

This prototype is used to represent the targets used when making a prioritization. This prototype inherits from the ConservationModifier. This class represents a recipe, to actually add targets to a planning problem, see the help page on targets. Only experts should use this class directly.

See Also
ConservationModifier.

```
targets Add representation targets
```


Description

Targets are used to specify the minimum amount or proportion of a feature's distribution that should (ideally) be covered (represented) by a solution.

Details

Please note that most objectives require targets, and attempting to solve a problem that requires targets will throw an error.

The following functions can be used to specify targets for a conservation planning problem():
add_relative_targets() Set targets as a proportion (between 0 and 1) of the total amount of each feature in the the study area.
add_absolute_targets() Set targets that denote the minimum amount of each feature required in the prioritization.
add_loglinear_targets() Set targets as a proportion (between 0 and 1) that are calculated using log-linear interpolation.
add_manual_targets() Set targets manually.

See Also

Other overviews: constraints, decisions, importance, objectives, penalties, portfolios, solvers, summaries

Examples

```
    # load data
    data(sim_pu_raster, sim_features)
    # create base problem
    p <- problem(sim_pu_raster, sim_features) %>%
        add_min_set_objective() %>%
        add_binary_decisions() %>%
        add_default_solver(verbose = FALSE)
    # create problem with added relative targets
    p1 <- p %>% add_relative_targets(0.1)
    # create problem with added absolute targets
    p2 <- p %>% add_absolute_targets(3)
    # create problem with added loglinear targets
    p3 <- p %>% add_loglinear_targets(10, 0.9, 100, 0.2)
    # create problem with manual targets that equate to 10% relative targets
    p4 <- p %>% add_manual_targets(data.frame(feature = names(sim_features),
        target = 0.1,
        type = "relative"))
    ## Not run:
    # solve problem
    s <- stack(solve(p1), solve(p2), solve(p3), solve(p4))
    # plot solution
    plot(s, axes = FALSE, box = FALSE,
        main = c("relative targets", "absolute targets", "loglinear targets",
            "manual targets"))
## End(Not run)
```

 tibble-methods
 Manipulate tibbles

Description

Assorted functions for manipulating tibble: : tibble() objects.

Usage

\#\# S4 method for signature 'tbl_df'
nrow (x)
\#\# S4 method for signature 'tbl_df'
$n \operatorname{col}(x)$
\#\# S4 method for signature 'tbl_df'
as.list(x)

Arguments

x
tibble:: tibble() object.

Details

The following methods are provided from manipulating tibble: :tibble() objects.
nrow extract integer number of rows.
ncol extract integer number of columns.
as.list convert to a list.
print print the object.

Examples

```
    # load tibble package
    require(tibble)
    # make tibble
    a <- tibble(value = seq_len(5))
    # number of rows
    nrow(a)
    # number of columns
    ncol(a)
    # convert to list
    as.list(a)
```

 write_problem Write problem

Description

Save the mathematical formulation for a conservation planning problem() to a file for mixed integer programming solvers. Note that this function requires the Rsymphony package to be installed.

Usage

write_problem(x, path)

Arguments

x
problem() (i.e. ConservationProblem) object.
path character file path to save the problem formulation. The argument should contain a ". lp" or .mps" file extension to specify whether the problem formulation will be saved in the LP or MPS format (respectively).

Value

Invisible TRUE indicating success.

Examples

```
## Not run:
# set seed for reproducibility
set.seed(500)
# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)
# create minimal problem
p <- problem(sim_pu_raster, sim_features) %>%
    add_min_set_objective() %>%
    add_relative_targets(0.1) %>%
    add_binary_decisions()
# save problem to file (using the Rsymphony package)
write_problem(p, "model.lp")
## End(Not run)
```

 zones Management zones

Description

Organize data for multiple features for multiple management zones. Specifically, the data should describe the expected amount of each feature within each planning unit given each management zone. For example, the data could describe the occupancy (e.g. presence/absence), probability of occurrence, or abundance expected for each feature when each planning unit is allocated to a different zone.

Usage

```
zones(..., zone_names = NULL, feature_names = NULL)
```


Arguments

\ldots.	raster: : raster () or character objects that pertain to the biodiversity data. See Details for more information.
zone_names	character names of the management zones. Defaults to NULL which results in sequential integers.
feature_names	character names of the features zones. Defaults to NULL which results in se- quential integers.

Details

This function is used to store and organize data for use in a conservation planning problem() that has multiple management zones. In all cases, the data for each zone is input as a separate argument. The correct arguments depends on the type of planning unit data used when building the conservation planning problem().
planning unit data are a Raster or Spatial object Raster object can be supplied to specify the expected amount of each feature within each planning unit under each management zone. Data for each zone should be specified as separate arguments, and the data for each feature in a given zone are specified in separate layers in a raster: :stack() object. Note that all layers for a given zone must have NA values in exactly the same cells.
planning unit data are a Spatial or data. frame object character vector containing column names can be supplied to specify the expected amount of each feature under each zone. Note that these columns must not contain any NA values.
planning unit data are a Spatial, data.frame, or matrix object data.frame object can be supplied to specify the expected amount of each feature under each zone. Following conventions used in Marxan, the data. frame object should contain the following columns.
pu integer planning unit identifier.
species integer feature identifier.
amount numeric amount of the feature in the planning unit for a given zone.
Note that data for each zone are specified in a separate argument, and the data contained in a single data.frame object should correspond to a single zone. Also, note that data are not required for all combinations of planning units, features, and zones. The expected amount of features in planning units under management zones that are missing from the table are assumed to be zero.

Value

Zones object.

See Also

```
problem().
```


Examples

```
## Not run:
# load planning unit data
data(sim_pu_raster)
# (note this requires the RandomFields package to be installed)
zone_1 <- simulate_species(sim_pu_raster, 3)
zone_2 <- simulate_species(sim_pu_raster, 3)
# create zones using two raster stack objects
# each object corresponds to a different zone and each layer corresponds to
# a different species
z <- zones(zone_1, zone_2, zone_names = c("zone_1", "zone_2"),
    feature_names = c("feature_1", "feature_2", "feature_3"))
print(z)
# note that the do.call function can also be used to create a Zones object
# this method for creating a Zones object can be helpful when there are many
# management zones
l <- list(zone_1, zone_2, zone_names = c("zone_1", "zone_2"),
    feature_names = c("feature_1", "feature_2", "feature_3"))
z <- do.call(zones, l)
print(z)
# create zones using character vectors that represent the names of
# fields (columns) in a data.frame or Spatial object that contain the amount
# of each species expected different management zones
z <- zones(c("spp1_zone1", "spp2_zone1"),
    c("spp1_zone2", "spp2_zone2"),
    c("spp1_zone3", "spp2_zone3"),
    zone_names = c("zone1", "zone2", "zone3"),
    feature_names = c("spp1", "spp2"))
print(z)
## End(Not run)
```

zone_names

Zone names

Description

Extract the names of zones in an object.

Usage

```
zone_names(x)
## S4 method for signature 'ConservationProblem'
zone_names(x)
```

```
## S4 method for signature 'ZonesRaster'
zone_names(x)
## S4 method for signature 'ZonesCharacter'
zone_names(x)
```


Arguments

x problem() (i.e. ConservationProblem) or Zones()

Value

character zone names.

Examples

```
    # load data
    data(sim_pu_zones_stack, sim_features_zones)
    # print names of zones in a Zones object
    print(zone_names(sim_features_zones))
    # create problem with multiple zones
    p <- problem(sim_pu_zones_stack, sim_features_zones) %>%
    add_min_set_objective() %>%
    add_relative_targets(matrix(0.2, ncol = 3, nrow = 5)) %>%
    add_binary_decisions()
    # print zone names in problem
    print(zone_names(p))
```

\%>\%
Pipe operator

Description

This package uses the pipe operator $(\backslash \%>\backslash \%)$ to express nested code as a series of imperative procedures.

Arguments

lhs, rhs An object and a function.

Value

An object.

See Also

```
magrittr::%>%(), tee().
```


Examples

\# set seed for reproducibility
set.seed(500)
\# generate 100 random numbers and calculate the mean
mean(runif(100))
\# reset the seed
set.seed(500)
\# repeat the previous procedure but use the pipe operator instead of nesting \# function calls inside each other.
runif(100) \%>\% mean()
$\% \mathrm{~T}>\% \quad$ Tee operator

Description

This package uses the "tee" operator $(\backslash \% \mathrm{~T}>\backslash \%)$ to modify objects.

Arguments

> lhs, rhs An object and a function.

Value

An object.

See Also

magrittr::\%T>\%(), pipe().

Examples

```
# the tee operator returns the left-hand side of the result and can be
# useful when dealing with mutable objects. In this example we want
# to use the function "f" to modify the object "e" and capture the
# result
# create an empty environment
e <- new.env()
# create a function to modify an environment and return NULL
f <- function(x) {x$a <- 5; return(NULL)}
# if we use the pipe operator we won't capture the result since "f"()
# returns a NULL
```

```
e2 <- e %>% f()
print(e2)
# but if we use the tee operator then the result contains a copy of "e"
e3 <- e %T>% f()
print(e3)
```


Index

```
* constraints
    add_contiguity_constraints, 26
    add_feature_contiguity_constraints,
        37
    add_linear_constraints, 51
    add_locked_in_constraints,60
    add_locked_out_constraints,64
    add_mandatory_allocation_constraints,
        73
    add_manual_bounded_constraints, 75
    add_manual_locked_constraints, 78
* datasets
    sim_data, 260
* decisions
    add_binary_decisions, }
    add_default_decisions, 34
    add_proportion_decisions, 110
    add_semicontinuous_decisions, 116
* deprecated
    prioritizr-deprecated, 237
* importances
    eval_ferrier_importance, 170
    eval_rare_richness_importance, 177
    eval_replacement_importance, 181
* objectives
    add_max_cover_objective, 85
    add_max_features_objective, }8
    add_max_phylo_div_objective, 90
    add_max_phylo_end_objective, 94
    add_max_utility_objective, 98
    add_min_largest_shortfall_objective,
        100
    add_min_set_objective, 102
    add_min_shortfall_objective, 104
* overviews
    constraints, 146
    decisions,148
    importance, }19
    objectives,216
```

penalties, 225
portfolios, 228
solvers, 268
summaries, 270
targets, 272

* penalties
add_boundary_penalties, 10
add_connectivity_penalties, 18
add_feature_weights, 41
add_linear_penalties, 56
* portfolios
add_cuts_portfolio, 32
add_extra_portfolio, 35
add_gap_portfolio, 45
add_shuffle_portfolio, 118
add_top_portfolio, 120
* solvers
add_cbc_solver, 15
add_cplex_solver, 30
add_default_solver, 34
add_gurobi_solver, 47
add_lsymphony_solver, 71
add_rsymphony_solver, 114
* summaries
eval_boundary_summary, 150
eval_connectivity_summary, 156
eval_cost_summary, 161
eval_feature_representation_summary, 165
eval_n_summary, 174
eval_target_coverage_summary, 186
* targets
add_absolute_targets, 6
add_loglinear_targets, 69
add_manual_targets, 80
add_relative_targets, 112
\%>\%, 278
$\% \mathrm{~T}>\%, 279$
A (OptimizationProblem-methods), 220

A, OptimizationProblem-method (OptimizationProblem-methods), 220
add_absolute_targets, 6, 70, 82, 113
add_absolute_targets(), 81, 82, 187, 272
add_absolute_targets,ConservationProblem, character-me(tadod_contiguity_constraints), (add_absolute_targets), $6 \quad 26$
add_absolute_targets,ConservationProblem, matrádAmeđhoiddor_constraints (add_absolute_targets), 6 (prioritizr-deprecated), 237
add_absolute_targets, ConservationProblem, numeqdenfeqdsolver, 17, 30, 35, 50, 73, 116 (add_absolute_targets), $6 \quad$ add_cplex_solver(), 35, 268
add_absolute_targets-method (add_absolute_targets), 6
add_binary_decisions, 9, 34, 111, 117
add_binary_decisions(), 34, 46, 78, 116, 148
add_boundary_penalties, $10,21,42,58$
add_boundary_penalties(), 152, 154, 182, 225, 233
add_cbc_solver, 15, 31, 35, 50, 73, 116
add_cbc_solver(), 35, 269
add_connected_constraints (prioritizr-deprecated), 237
add_connectivity_penalties, $13,18,42$, 58
add_connectivity_penalties(), 12, 157, 159, 205, 225, 233
add_connectivity_penalties, ConservationProblem, ANY, ANY7, array-method (add_connectivity_penalties), add_feature_contiguity_constraints, ConservationProblem, ANY 18

26
add_contiguity_constraints, ConservationProblem, ANY, data.fr (add_contiguity_constraints), 26
add_contiguity_constraints, ConservationProblem, ANY, matrix-
add_cuts_portfolio, 32, 36, 46, 119, 120
add_cuts_portfolio(), 228
add_default_decisions, 9, 34, 111, 117
add_default_solver, $17,31,34,50,73,116$
add_default_solver(), 263, 268
add_extra_portfolio, 33, 35, 46, 119, 120
add_extra_portfolio(), 228, 238
add_feature_contiguity_constraints, 28 , 37, 53, 61, 66, 74, 76, 79, 108
add_feature_contiguity_constraints(), 146, 238
add_feature_contiguity_constraints, ConservationProblem, ANY (add_feature_contiguity_constraints), 37
add_feature_contiguity_constraints, ConservationProblem, ANY (add_feature_contiguity_constraints),
add_connectivity_penalties, ConservationProblem, ANY, AN $\mathcal{Y} 7$, data.frame-method (add_connectivity_penalties), add_feature_contiguity_constraints, ConservationProblem, ANY 18
add_connectivity_penalties, ConservationProblem, ANY, ANB7, dgCMatrix-method (add_connectivity_penalties), add_feature_weights, 13, 21, 41, 58 18 add_feature_weights(), 85, 86, 88, 89, 92,
 (add_connectivity_penalties), 18
add_feature_weights, ConservationProblem, matrix-method (add_feature_weights), 41
add_connectivity_penalties, ConservationProbleaddNFfedAlir, elaterightne thonlservationProblem, numeric-method (add_connectivity_penalties), 18
add_contiguity_constraints, 26, 39, 53, 61, 66, 74, 76, 79
add_contiguity_constraints(), 37, 146, 182, 238
add_contiguity_constraints, ConservationProbleaddANYiAAld femeđhstraints, 28, 39, 51, 61, 66, (add_contiguity_constraints),
(add_feature_weights), 41
add_gap_portfolio, 33, 36, 45, 119, 120
add_gap_portfolio(), 32, 228
add_gurobi_solver, 17, 31, 35, 47, 73, 116
add_gurobi_solver(), 31, 33, 35, 36, 46, 120, 233, 268 74, 76, 79, 108
add_linear_constraints(), 146
128, 146
add_linear_constraints, ConservationProblem, ANđddNYQcheatacteremedtholints, ConservationProblem, character-m
(add_linear_constraints), 51 (add_locked_out_constraints),
add_linear_constraints, ConservationProblem, ANY, ANY, dg6Alatrix-method
(add_linear_constraints), 51 add_locked_out_constraints, ConservationProblem,logical-met
add_linear_constraints, ConservationProblem, ANY, ANY, Ma(tardid_hreedkeed_out_constraints),
(add_linear_constraints), 5164
 (add_linear_constraints), 51 (add_locked_out_constraints),
add_linear_constraints, ConservationProblem, ANY, ANY, numeric-method
(add_linear_constraints), 51 add_locked_out_constraints, ConservationProblem, numeric-met
add_linear_constraints, ConservationProblem, ANY, ANY, Ra(satder_-hreetheerl_out_constraints),
(add_linear_constraints), 51
add_linear_penalties, $13,21,42,56$
add_linear_penalties(), 225
add_linear_penalties, ConservationProblem, ANY, characte 4 method
(add_linear_penalties), 56
add_linear_penalties, ConservationProblem, ANY, dgCMatri(xadmetlhoedked_out_constraints), (add_linear_penalties), 56
add_linear_penalties, ConservationProblem, ANY, \&iderliqekecthodt_constraints, ConservationProblem, Spatial-met (add_linear_penalties), 56
(add_locked_out_constraints),
add_linear_penalties, ConservationProblem, ANY, matrix-méthod
(add_linear_penalties), 56 add_loglinear_targets, 7, 69, 82, 113

(add_linear_penalties), 56 add_lpsymphony_solver
add_linear_penalties,ConservationProblem, ANY, Raster-meetchedl symphony_solver), 71
(add_linear_penalties), 56 add_lpsymphony_solver(), 31, 35, 269
add_locked_in_constraints, 28, 39, 53, 60, add_lsymphony_solver, 17, 31, 35, 50, 71, 66, 74, 76, 79, 108, 243
add_locked_in_constraints(), 78, 128, add_mandatory_allocation_constraints, 146 73
add_locked_in_constraints, ConservationProblemadthanarcedetemetabilocation_constraints(), (add_locked_in_constraints), 60

146
add_locked_in_constraints, ConservationProblemaddgixamdatnethoalllocation_constraints, ConservationProblem-m (add_locked_in_constraints), 60 (add_mandatory_allocation_constraints),
add_locked_in_constraints, ConservationProblem, matrix-雨ethod (add_locked_in_constraints), $60 \quad$ add_manual_bounded_constraints, 28, 39,
add_locked_in_constraints, ConservationProblem, numericFmeđh,o66, 74, 75, 79, 108 (add_locked_in_constraints), 60 add_manual_bounded_constraints, ConservationProblem, data.fr
add_locked_in_constraints, ConservationProblem, Raster-(neethnomal_bounded_constraints), (add_locked_in_constraints), 6075
add_locked_in_constraints, ConservationProblemądf_mmarthåd_bounded_constraints, ConservationProblem, tbl_df(add_locked_in_constraints), 60 (add_manual_bounded_constraints),
add_locked_in_constraints, ConservationProblem, Spatial7method
(add_locked_in_constraints), $60 \quad$ add_manual_locked_constraints, 28, 39,
add_locked_out_constraints, 28, 39, 53, 61, 64, 74, 76, 79, 108
add_locked_out_constraints(), 60, 64, 78,
add_manual_locked_constraints(), 60, 64, 75
add_manual_locked_constraints, ConservationProbdemneláglabđiramensmertaionlts, 106
(add_manual_locked_constraints), add_neighbor_constraints(), 146 78
add_neighbor_constraints, ConservationProblem, ANY, ANY, ANY-m
add_manual_locked_constraints, ConservationProblem, tbl(adfot_nmeetighbor_constraints), 106 (add_manual_locked_constraints), add_neighbor_constraints, ConservationProblem, ANY, ANY, array 78
add_manual_targets, $7,70,80,113$
add_manual_targets(), $7,42,81,112,187$,
272
(add_neighbor_constraints), 106
add_manual_targets, ConservationProblem, data. frame-met(raotd_neighbor_constraints), 106
(add_manual targets), 80
add_pool_portfolio
add_manual_targets, ConservationProblem, tbl_df-method (prioritizr-deprecated), 237
(add_manual_targets), $80 \quad$ add_proportion_decisions, 9, 34, 110, 117
add_manual_targets-method (add_manual_targets), 80
add_max_cover_objective, 85, 89, 92, 96, 99, 101, 103, 105
add_max_cover_objective(), 7, 42, 70, 81, 88, 112, 216
add_max_features_objective, $86,87,92$, 96, 99, 101, 103, 105
add_max_features_objective(), 85, 90, 94, 216, 233
add_max_phylo_div_objective, 86, 89, 90, 96, 99, 101, 103, 105
add_max_phylo_div_objective(), 42, 217
add_max_phylo_end_objective, $86,89,92$, 94, 99, 101, 103, 105
add_max_phylo_end_objective(), 94, 217
add_max_phylo_objective (add_max_phylo_div_objective), 90
add_max_utility_objective, 86, 89, 92, 96, 98, 101, 103, 105
add_max_utility_objective(), $7,81,86$, 112, 182, 217
add_min_largest_shortfall_objective, 86, 89, 92, 96, 99, 100, 103, 105
add_min_largest_shortfall_objective(), 217
add_min_set_objective, 86, 89, 92, 96, 99, 101, 102, 105
add_min_set_objective(), 11, 19, 56, 88, 182, 216, 225
add_min_shortfall_objective, 86, 89, 92, 96, 99, 101, 103, 104
add_min_shortfall_objective(), 52, 100, 216
add_proportion_decisions(), $78,116,148$, 174
add_relative_targets, $7,70,82,112$
add_relative_targets(), 81, 82, 187, 192, 272
add_relative_targets, ConservationProblem, character-method (add_relative_targets), 112
add_relative_targets, ConservationProblem, matrix-method (add_relative_targets), 112
add_relative_targets, ConservationProblem, numeric-method (add_relative_targets), 112
add_relative_targets-method (add_relative_targets), 112
add_rsymphony_solver, $17,31,35,50,73$, 114
add_rsymphony_solver(), 16, 31, 35, 72, 269
add_semicontinuous_decisions, 9, 34, 111, 116
add_semicontinuous_decisions(), 148
add_shuffle_portfolio, 33, 36, 46, 118, 120
add_shuffle_portfolio(), 228
add_top_portfolio, 33, 36, 46, 119, 120
add_top_portfolio(), 118, 228, 238
adjacency_matrix, 121
adjacency_matrix(), 27, 38, 107, 108, 238
ape::phylo(), 131, 261
array_parameters, 125
array_parameters(), 223
ArrayParameter, 126, 254
ArrayParameter (ArrayParameter-class), 123
ArrayParameter-class, 123
as (as.Id), 127
as.Id, 127
as.list,tbl_df-method (tibble-methods), 273
as.list.OptimizationProblem, 128
base: : data.frame(), 124
base: :max.col(), 134
base::print(), 236
binary_matrix_parameter (matrix_parameters), 206
binary_parameter (scalar_parameters), 254
binary_parameter_array (array_parameters), 125
binary_stack, 128
binary_stack(), 133
boundary_matrix, 129
boundary_matrix(), 12, 137, 152
branch_matrix, 131
category_layer, 132
category_layer(), 129, 264
category_vector, 133
category_vector(), 264
col_ids (OptimizationProblem-methods), 220
col_ids,OptimizationProblem-method (OptimizationProblem-methods), 220
Collection, 142
Collection (Collection-class), 134
Collection-class, 134
compile, 135
compile(), 263
compressed_formulation (OptimizationProblem-methods), 220
compressed_formulation,OptimizationProblem-method (OptimizationProblem-methods), 220
connected_matrix (prioritizr-deprecated), 237
connectivity_matrix, 136
connectivity_matrix, Raster, Raster-method (connectivity_matrix), 136
connectivity_matrix,sf, character-method (connectivity_matrix), 136
connectivity_matrix,sf,Raster-method (connectivity_matrix), 136
connectivity_matrix, Spatial, character-method (connectivity_matrix), 136
connectivity_matrix,Spatial,Raster-method (connectivity_matrix), 136
ConservationModifier, 134, 135, 145, 147, 226, 272
ConservationModifier (ConservationModifier-class), 140
ConservationModifier-class, 140
ConservationProblem, 6, 7, 9, 11, 12, 15, 16, 19, 26, 27, 30-32, 34-38, 41, 42, 45, $46,48,49,52,56,57,60,61,65$, 69-75, 78, 81, 85, 88, 90, 91, 94, 95, 98, 100-105, 107, 110-113, 115, 117-120, 136, 140, 141, 145, 151, $156,161,165,171,174,178,182$, 186, 192, 195, 202, 205, 212-216, 232, 243, 251, 263, 275, 278
ConservationProblem (ConservationProblem-class), 142
ConservationProblem-class, 142
Constraint, 135, 140, 142, 144
Constraint (Constraint-class), 145
Constraint-class, 145
constraints, 28, 39, 53, 61, 66, 74, 76, 79, $108,142,145,146,148,197,202$, 217, 225, 228, 239, 243, 269, 271, 273
data.frame(), 124, 240
Decision, 140, 142, 144
Decision (Decision-class), 147
Decision-class, 147
decisions, 9, 34, 86, 88, 91, 95, 98, 101, 103, 105, 111, 117, 146, 147, 148, 197, 217, 225, 228, 242, 243, 269, 271, 273
dgCMatrix, 132, 203, 219, 222, 241, 250
distribute_load, 149
dsCMatrix, 122, 130, 137, 248
eval_boundary_summary, 150, 159, 163, 167, 176, 189
eval_boundary_summary (), 271
eval_connectivity_summary, 154, 156, 163, 167, 176, 189
eval_connectivity_summary(), 271
eval_connectivity_summary, ConservationProbleme, AAl|, filir, éerajnmperthadce, ConservationProblem, Raster-method
(eval_connectivity_summary), 156
(eval_ferrier_importance), 170
eval_ferrier_importance, ConservationProblem,sf-method
eval_connectivity_summary, ConservationProblem, ANY, ANY(,edetla_fferamiermeithmoertance), 170
(eval_connectivity_summary), eval_ferrier_importance, ConservationProblem, Spatial-method 156 (eval_ferrier_importance), 170

(eval_connectivity_summary), eval_n_summary(), 271
156 eval_rare_richness_importance, 172, 177,
eval_connectivity_summary, ConservationProblem, ANY, ANY引, \& (eval_connectivity_summary), eval_rare_richness_importance(), 196, 156

238
eval_connectivity_summary, ConservationProblem AAM, AAMY matciaxe (eval_connectivity_summary), 156
eval_cost_summary, 154, 159, 161, 167, 176, 189
eval_cost_summary(), 271
eval_feature_representation_summary, $154,159,163,165,176,189$
eval_feature_representation_summary(), 187, 193, 238, 271 (eval_rare_richness_importance), 177
eval_rare_richness_importance, ConservationProblem, matrix-m (eval_rare_richness_importance), 177
eval_rare_richness_importance, ConservationProblem, numeric(eval_rare_richness_importance), 177
eval_rare_richness_importance, ConservationProblem, Raster-m eval_feature_representation_summary, ConservationProbl(env,adlatraa.feramiectmmestssodi mportance), (eval_feature_representation_summary), 177
eval_rare_richness_importance,ConservationProblem,sf-metho eval_feature_representation_summary, ConservationProbl(eatv,anatrrairye-meithtoress_importance), (eval_feature_representation_summary), 177 165
eval_rare_richness_importance, ConservationProblem, Spatial-
eval_feature_representation_summary, ConservationProbl(env,aluurearie_mieethneess_importance), (eval_feature_representation_summary), 177 165 eval_replacement_importance, 172, 180,
eval_feature_representation_summary, ConservationProbl\&81, Raster-method (eval_feature_representation_summary),eval_replacement_importance(), 196, 238 165 eval_replacement_importance,ConservationProblem, data.frame eval_feature_representation_summary, ConservationProbleanzalif_nteqtihacement_importance), (eval_feature_representation_summary), 181 165
eval_replacement_importance, ConservationProblem, matrix-met eval_feature_representation_summary, ConservationProbl(env,aipateipalachenthadimportance), (eval_feature_representation_summary), 181 165
eval_ferrier_importance, 170,180,184
eval_replacement_importance, ConservationProblem, numeric-me (eval_replacement_importance),
eval_ferrier_importance(), 196, 238 181
eval_ferrier_importance, ConservationProblem, dewal fremeamentwot_importance, ConservationProblem, Raster-met (eval_ferrier_importance), 170 (eval_replacement_importance),
eval_ferrier_importance, ConservationProblem, matrix-met\&bd (eval_ferrier_importance), 170 eval_replacement_importance,ConservationProblem,sf-method eval_ferrier_importance, ConservationProblem, numeric-meetheold_replacement_importance), (eval_ferrier_importance), 170
eval_replacement_importance, ConservationProblema §pađiairmens thonlesCharacter-me thod
(eval_replacement_importance), 181
eval_target_coverage_summary, 154, 159, $163,167,176,186$
eval_target_coverage_summary (), 271
 (eval_target_coverage_summary), 237 186
 (eval_target_coverage_summary), (prioritizr-deprecated), 237 186
eval_target_coverage_summary, ConservationProbly (eval_target_coverage_summary), 186
eval_target_coverage_summary, ConservationProblimportance, 146, 148, 172, 180, 184, 196,
(eval_target_coverage_summary), 186
integer_parameter (scalar_parameters), 254
eval_target_coverage_summary, ConservationProblem, sf-method
(eval_target_coverage_summary),
186
eval_target_coverage_summary, ConservationProblintersecting_units, 198
(eval_target_coverage_summary), 186
eval_target_coverage_summary.ConservationProblem (intersecting_units), 198
(eval_target_coverage_summary), 186
eval_target_coverage_summary.default (eval_target_coverage_summary), 186
exactextractr::exact_extract(), 191
fast_extract, 190
fast_extract(), 137, 199
fast_extract, Raster,sf-method (fast_extract), 190
fast_extract, Raster, sfc-method (fast_extract), 190
fast_extract,Raster,SpatialLines-method (fast_extract), 190
fast_extract,Raster, SpatialPoints-method (fast_extract), 190
fast_extract,Raster,SpatialPolygons-method (fast_extract), 190
feature_abundances, 192
feature_abundances(), 70, 112
feature_names, 195
feature_names, ConservationProblem-method (feature_names), 195
(array_parameters), 125
intersecting_units(), 61,66
intersecting_units, data.frame, ANY-method
intersecting_units, Raster, Raster-method (intersecting_units), 198
intersecting_units, Raster, sf-method (intersecting_units), 198
intersecting_units,Raster, Spatial-method (intersecting_units), 198
intersecting_units,sf, Raster-method (intersecting_units), 198
intersecting_units,sf,sf-method
(intersecting_units), 198
intersecting_units,sf,Spatial-method (intersecting_units), 198
intersecting_units, Spatial, Raster-method (intersecting_units), 198
intersecting_units,Spatial,sf-method (intersecting_units), 198
intersecting_units,Spatial,Spatial-method (intersecting_units), 198
irreplaceability (importance), 196
is (is.Id), 200
is.Id, 200
is. parallel (prioritizr-deprecated), 237
lb (OptimizationProblem-methods), 220
lb,OptimizationProblem-method (OptimizationProblem-methods), 220
loglinear_interpolation, 200
magrittr::\%>\%(), 278
magrittr::\%T>\%(), 279
marxan_boundary_data_to_matrix, 202
marxan_problem, 203
matrix(), 240
matrix_parameters, 206
methods::show(), 256
misc_parameter, 209
MiscParameter, 207, 209
MiscParameter (MiscParameter-class), 208
MiscParameter-class, 208
modelsense
(OptimizationProblem-methods), 220
modelsense, OptimizationProblem-method (OptimizationProblem-methods), 220
ncell (OptimizationProblem-methods), 220
ncell,OptimizationProblem-method (OptimizationProblem-methods), 220
ncol (OptimizationProblem-methods), 220
ncol,OptimizationProblem-method
(OptimizationProblem-methods), 220
ncol, tbl_df-method (tibble-methods), 273
new_id, 210
new_optimization_problem, 211
new_waiver, 211
nrow (OptimizationProblem-methods), 220
nrow, OptimizationProblem-method (OptimizationProblem-methods), 220
nrow, tbl_df-method (tibble-methods), 273 number_of_features, 212
number_of_features, ConservationProblem-methodOptimizationProblem-class, 218 (number_of_features), 212 OptimizationProblem-methods, 211, 220
number_of_features,OptimizationProblem-method (number_of_features), $212 \quad$ Parameter, 124, 208, 223, 224, 254
(number_of_features), 212
number_of_features, ZonesCharacter-method (number_of_features), 212
number_of_features,ZonesRaster-method (number_of_features), 212

Parameter (Parameter-class), 222
Parameter-class, 222
Parameters, 223
Parameters (Parameters-class), 224
number_of_planning_units, 213
number_of_planning_units, ConservationProblem-method (number_of_planning_units), 213
number_of_planning_units,OptimizationProblem-method (number_of_planning_units), 213
number_of_total_units, 214
number_of_total_units, ConservationProblem-method (number_of_total_units), 214
number_of_zones, 215
number_of_zones, ConservationProblem-method (number_of_zones), 215
number_of_zones,OptimizationProblem-method (number_of_zones), 215
number_of_zones,ZonesCharacter-method (number_of_zones), 215
number_of_zones,ZonesRaster-method (number_of_zones), 215
numeric(), 240
numeric_matrix_parameter
(matrix_parameters), 206
numeric_parameter (scalar_parameters), 254
numeric_parameter_array
(array_parameters), 125
obj (OptimizationProblem-methods), 220
obj,OptimizationProblem-method (OptimizationProblem-methods), 220
Objective, 140 , 142, 144
Objective (Objective-class), 216
Objective-class, 216
objectives, $86,89,92,95,99,101,103,105$, 146, 148, 197, 216, 216, 225, 228, 239, 243, 269, 271, 273
OptimizationProblem, 128, 136, 141, 142, 211-215, 220, 221, 227, 230, 232, 263, 267, 268
OptimizationProblem (OptimizationProblem-class), 218
parameters, 223
Parameters-class, 224
penalties, 13, 21, 42, 58, 142, 146, 148, 197, 202, 217, 225, 226, 228, 239, 243, 269, 271, 273
Penalty, 135
Penalty (Penalty-class), 226
Penalty-class, 226
phylo(), 90, 94
pipe (\%>\%), 278
pipe(), 251, 279
Portfolio, 142, 144
Portfolio (Portfolio-class), 227
Portfolio-class, 227
portfolios, $33,36,46,119,120,146,148$, 197, 217, 225, 227, 228, 243, 269, 271, 273
pproto, 229
predefined_optimization_problem, 230
presolve_check, 232
presolve_check(), 182, 263, 264
print, 235
print, Id-method (print), 235
print, tbl_df-method (print), 235
print.ArrayParameter (print), 235
print.ConservationModifier (print), 235
print. ConservationProblem (print), 235
print.Id (print), 235
print. OptimizationProblem (print), 235
print.ScalarParameter (print), 235
print. Solver (print), 235
print. Zones (print), 235
prioritizr, 236
prioritizr-deprecated, 237
problem, 239
problem(), 6, 9-11, 15, 18, 19, 26, 30, 32, 34, $35,37,41,45,47,48,51,52,56,60$, 64, 65, 69-71, 73-75, 78, 80, 81, 85, $88,90,94,98,100,102,104,107$, $110,112,115-118,120,135,136$, $142,146,148,151,156,161,162$, $165,166,171,174,178,182,186$, 187, 192, 193, 195, 196, 202, 203, 205, 212-216, 225, 228, 232, 233, 251, 262-264, 268, 270, 272, 274-276, 278
problem, data.frame, character-method (problem), 239
problem, data.frame, data.frame-method (problem), 239
problem, data.frame,ZonesCharacter-method (problem), 239
problem, matrix, data.frame-method (problem), 239
problem, numeric, data.frame-method (problem), 239
problem, Raster, Raster-method (problem), 239
problem, Raster, ZonesRaster-method (problem), 239
problem, sf, character-method (problem), 239
problem, sf,Raster-method (problem), 239
problem, sf,ZonesCharacter-method (problem), 239
problem, sf,ZonesRaster-method (problem), 239
problem, Spatial, character-method (problem), 239
problem, Spatial, Raster-method (problem), 239
problem, Spatial,ZonesCharacter-method (problem), 239
problem, Spatial,ZonesRaster-method (problem), 239
proportion_parameter (scalar_parameters), 254
proportion_parameter_array (array_parameters), 125
proximity_matrix, 248
RandomFields::RFsimulate(), 257-259
RandomFields: :RP(), 257-259
rarity_weighted_richness (prioritizr-deprecated), 237
Raster, $16,17,48,49,52,53,57,61,65,66$, $122,128,130,132,137,151,153$, $156,157,161,162,165,166,171$, $172,174,175,178,179,182,183$, 186, 188, 191, 198, 240, 248, 250, 264, 276
raster::adjacent(), 122
raster::extract(), 191
raster::raster(), 276
raster::stack(), 276
RasterLayer, 128, 132, 144, 171, 178, 182, 257-259, 261, 264

RasterStack, 128, 129, 132, 257-259, 261, 264
replacement_cost (prioritizr-deprecated), 237
rgeos::gUnarySTRtreeQuery(), 130
rhs (OptimizationProblem-methods), 220
rhs, OptimizationProblem-method (OptimizationProblem-methods), 220
rij_matrix, 243, 250
rij_matrix, Raster, Raster-method (rij_matrix), 250
rij_matrix,sf,Raster-method (rij_matrix), 250
rij_matrix, Spatial,Raster-method (rij_matrix), 250
row_ids (OptimizationProblem-methods), 220
row_ids,OptimizationProblem-method (OptimizationProblem-methods), 220
run_calculations, 251
scalar_parameters, 254
scalar_parameters(), 223
ScalarParameter, 124, 223, 255
ScalarParameter
(ScalarParameter-class), 253
ScalarParameter-class, 253
sense (OptimizationProblem-methods), 220
sense, OptimizationProblem-method (OptimizationProblem-methods), 220
set_number_of_threads (prioritizr-deprecated), 237
sf::sf(), 16, 17, 48-50, 52, 53, 57, 61, 66, $122,130,133,137,151,153,156$, 158, 161-163, 165-167, 171, 172, $174,175,178,179,182,183,186$, 188, 191, 248, 250, 260, 261, 264
sf::st_intersects(), 122
sf::st_is_within_distance(), 248
sf::st_sf(), 240
show, 256
show, ConservationModifier-method (show), 256
show, ConservationProblem-method (show), 256
show, Id-method (show), 256
show, OptimizationProblem-method (show), 256
show, Parameter-method (show), 256
show, Solver-method (show), 256
sim_data, 260
sim_features (sim_data), 260
sim_features_zones (sim_data), 260
sim_locked_in_raster (sim_data), 260
sim_locked_out_raster (sim_data), 260
sim_phylogeny (sim_data), 260
sim_pu_lines (sim_data), 260
sim_pu_points (sim_data), 260
sim_pu_polygons (sim_data), 260
sim_pu_raster (sim_data), 260
sim_pu_sf (sim_data), 260
sim_pu_zones_polygons (sim_data), 260
sim_pu_zones_sf (sim_data), 260
sim_pu_zones_stack (sim_data), 260
simulate_cost, 257
simulate_cost(), 258
simulate_data, 258
simulate_data(), 257, 259
simulate_species, 259
simulate_species(), 258
solve, 262
solve(), 136, 233, 239, 243
solve, ConservationProblem, missing-method (solve), 262
solve, OptimizationProblem, Solver-method (solve), 262
Solver, 142, 144, 227, 263, 267
Solver (Solver-class), 267
Solver-class, 267
solvers, $17,31,35,50,73,116,146,148$, 197, 217, 225, 228, 243, 263, 267, 268, 271, 273
sp: :SpatialPolygonsDataFrame(), 130
Spatial, 16, 17, 48, 50, 52, 53, 57, 61, 66, $122,133,137,151,153,156,158$, $161,163,165,167,171,172,174$, $175,178,179,182,183,186,188$, 191, 198, 241, 248, 250, 264, 276
SpatialLines, 122, 130, 191
SpatialLinesDataFrame, 137, 144, 240, 260
SpatialPoints, 191
SpatialPointsDataFrame, 240, 261
SpatialPolygons, 122, 130, 191
SpatialPolygonsDataFrame, 137, 144, 240,

260
summaries, $146,148,154,159,163,167,175$, 189, 197, 217, 225, 228, 243, 269, 270, 273

Target, $140,142,144$
Target (Target-class), 272
Target-class, 272
targets, $7,70,82,89,92,95,101-105,113$, 146, 148, 186, 197, 217, 225, 228, 239, 243, 269, 271, 272, 272
tee (\%T>\%), 279
tee(), 278
tibble-methods, 273
tibble::tibble(), 75, 78, 81, 144, 152, 157, 162, 166, 171, 174, 187, 193, 208, 273, 274
ub (OptimizationProblem-methods), 220
ub,OptimizationProblem-method (OptimizationProblem-methods), 220
uuid: :UUIDgenerate(), 210
vtype (OptimizationProblem-methods), 220
vtype,OptimizationProblem-method (OptimizationProblem-methods), 220
write_problem, 274
write_problem(), 243

```
x = sf::st_sf(), 240, 241
y = ZonesCharacter, 241
y = ZonesRaster, 241
zone_names, 277
zone_names,ConservationProblem-method
        (zone_names), 277
zone_names,OptimizationProblem-method
        (zone_names), 277
zone_names,ZonesCharacter-method
        (zone_names), 277
zone_names,ZonesRaster-method
        (zone_names), 277
Zones, 144, 276
Zones (zones), 275
zones,275
Zones(), 195, 212-215, 278
```


[^0]: x
 problem() (i.e. ConservationProblem) object.
 targets Object that specifies the targets for each feature. See the Targets format section for more information.

[^1]: Arguments
 x
 gap numeric gap to optimality. This gap is relative and expresses the acceptable deviance from the optimal objective. For example, a value of 0.01 will result in the solver stopping when it has found a solution within 1% of optimality. Additionally, a value of 0 will result in the solver stopping when it has found an optimal solution. The default value is 0.1 (i.e. 10% from optimality).
 time_limit numeric time limit (seconds) for generating solutions. The solver will return the current best solution when this time limit is exceeded. The default value is the largest integer value (i.e. .Machine\$integer.max), effectively meaning that solver will keep running until a solution within the optimality gap is found.
 presolve integer number indicating how intensively the solver should try to simplify the problem before solving it. Available options are: (-1) automatically determine the intensity of pre-solving, (0) disable pre-solving, (1) conservative level of pre-solving, and (2) very aggressive level of pre-solving. The default value is 2.
 threads integer number of threads to use for the optimization algorithm. The default value is 1 .
 first_feasible logical should the first feasible solution be be returned? If first_feasible is set to TRUE, the solver will return the first solution it encounters that meets all the constraints, regardless of solution quality. Note that the first feasible solution is not an arbitrary solution, rather it is derived from the relaxed solution, and is therefore often reasonably close to optimality. Defaults to FALSE.
 numeric_focus logical should extra attention be paid to verifying the accuracy of numerical calculations? This may be useful when dealing problems that may suffer from numerical instability issues. Beware that it will likely substantially increase run time (sets the Gurobi NumericFocus parameter to 3). Defaults to FALSE.
 node_file_start
 numeric threshold amount of memory (in GB). Once the amount of memory (RAM) used to store information for solving the optimization problem exceeds this parameter value, the solver will begin storing this information on disk (using the *Gurobi(NodeFileStart parameter). This functionality is useful if the system has insufficient memory to solve a given problem (e.g. solving the problem with default settings yields the OUT OF MEMORY error message) and a system with more memory is not readily available. For example, a value of 4 indicates that the solver will start using the disk after it uses more than 4 GB of memory to store information on solving the problem. Defaults to Inf such that the solver will not attempt to store information on disk when solving a given problem.
 start_solution NULL or object containing the starting solution for the solver. Defaults to NULL such that no starting solution is used. To specify a starting solution, the argument to start_solution should be in the same format as the planning units (i.e. a NULL, numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object). See the Start solution format section for more information.
 verbose logical should information be printed while solving optimization problems? Defaults to TRUE.

