Package ‘projpred’

April 3, 2022
Encoding UTF-8
Title Projection Predictive Feature Selection
Version 2.1.1
Date 2022-04-02

Description Performs projection predictive feature selection for generalized linear
models and generalized linear and additive multilevel models (see Piironen,
Paasiniemi and Vehtari, 2020, <doi:10.1214/20-EJS1711>; Catalina, Biirkner
and Vehtari, 2020, <arXiv:2010.06994>). The package is compatible with the
'rstanarm’ and 'brms' packages, but other reference models can also be used.
See the documentation as well as the package vignette for more information
and examples.

License GPL-3 | file LICENSE
URL https://mc-stan.org/projpred/, https://discourse.mc-stan.org

BugReports https://github.com/stan-dev/projpred/issues/
Depends R (>=3.5.0)

Imports methods, dplyr, loo (>= 2.0.0), rstantools (>= 2.0.0), Ime4,
mvtnorm, ggplot2, Rcpp, utils, magrittr, mgev, gamm4, rlang

Suggests rstanarm, brms, testthat, knitr, rmarkdown, glmnet, bayesplot
(>= 1.5.0), optimx, posterior, parallel, foreach, iterators,
doParallel, future, future.callr, doFuture

LinkingTo Rcpp, ReppArmadillo
LazyData TRUE

RoxygenNote 7.1.2
VignetteBuilder knitr, rmarkdown
NeedsCompilation yes

Author Juho Piironen [aut],
Markus Paasiniemi [aut],
Alejandro Catalina [aut],
Frank Weber [cre, aut],
Aki Vehtari [aut],

https://doi.org/10.1214/20-EJS1711
https://arxiv.org/abs/2010.06994
https://mc-stan.org/projpred/
https://discourse.mc-stan.org
https://github.com/stan-dev/projpred/issues/

2 projpred-package
Jonah Gabry [ctb],
Marco Colombo [ctb],
Paul-Christian Biirkner [ctb],
Hamada S. Badr [ctb]
Maintainer Frank Weber <fweberi144@protonmail.com>
Repository CRAN
Date/Publication 2022-04-03 19:30:05 UTC
R topics documented:
projpred-package e e e e e 2
aS.MAriX.Projection o o Lo e e e e e e 5
break_up_matrix_term L. e e e e e 6
ev-INdICeS e e e e e e e e 7
cv_varsel ... L e 8
df binom e 12
df_gaussian L e e 12
extend_familyo 13
extra-families L e e e e 13
MESQUITE . .« . o v v v e e e e e e e e e e e e e e e e 14
plot.vsel L e e e e 15
pred-projection L. e e e e e e e 16
predictrefmodel 19
print.vsel ..o oL e e e e 20
print.vselsummary e e e 21
PIOJEC « « o o o o e e e e e 21
refmodel-init-get L e e 24
SOIULION_tEIrMS o i o e e e e e e e e e 29
SUZEESL_SIZE e e 30
summary.vsel 32
varsel .. oL e e e e 34
Index 38
projpred-package Projection predictive feature selection
Description

projpred is an R package for performing a projection predictive variable (or "feature") selection for
generalized linear models (GLMs), generalized linear multilevel (or "mixed") models (GLMMs),
generalized additive models (GAMs), and generalized additive multilevel (or "mixed") models
(GAMMs), with the support for additive models still being experimental. Note that the term "gen-
eralized" includes the Gaussian family as well.

The package is compatible with rstanarm and brms, but developers of other packages are wel-
come to add new get_refmodel () methods (which enable the compatibility of their packages with

projpred-package 3

projpred). Custom reference models can also be used via init_refmodel(). It is via custom ref-
erence models that projpred supports the projection onto candidate models whose predictor terms
are not a subset of the reference model’s predictor terms. However, for rstanarm and brms refer-
ence models, projpred only supports the projection onto submodels of the reference model. For the
sake of simplicity, throughout this package, we use the term "submodel" for all kinds of candidate
models onto which the reference model is projected, even though this term is not always appropriate
for custom reference models.

Currently, the supported families are gaussian(), binomial () (and—viabrms: :get_refmodel.brmsfit()—
also brms: :bernoulli()), as well as poisson().

The projection of the reference model onto a submodel can be run on multiple CPU cores in parallel
(across the projected draws). This is powered by the foreach package. Thus, you can use any paral-
lel (or sequential) backend compatible with foreach, e.g., the backends from packages doParallel,
doMPI, or doFuture. Using the global option projpred.prll_prj_trigger, you can modify the
number of projected draws below which no parallelization is used (even if a parallel backend is reg-
istered). Such a "trigger" threshold exists because of the computational overhead of a parallelization
which makes parallelization only useful for a sufficiently large number of projected draws. By de-
fault, parallelization is turned off, which can also be achieved by supplying Inf (or NULL) to option
projpred.prll_prj_trigger. Note that we cannot recommend parallelizing the projection on
Windows because in our experience, the parallelization overhead is larger there, causing a parallel
run to take longer than a sequential run. Also note that the parallelization works well for GLMs, but
for GLMMs, GAMs, and GAMMs, the fitted model objects are quite big, which—when running in
parallel—may lead to an excessive memory usage which in turn may crash the R session. Thus, we
currently cannot recommend the parallelization for GLMMs, GAMs, and GAMMs.

The vignettes (currently, there is only a single one) illustrate how to use the projpred functions in
conjunction. Shorter examples are included here in the documentation.

Some references relevant for this package are given in section "References” below. See citation(package
= "projpred") for details on citing projpred.

Functions

init_refmodel (), get_refmodel() For setting up a reference model (only rarely needed explic-
itly).
varsel (), cv_varsel() For variable selection, possibly with cross-validation (CV).

summary.vsel (), print.vsel(), plot.vsel(), suggest_size.vsel(), solution_terms.vsel()
For post-processing the results from the variable selection.

project() For projecting the reference model onto submodel(s). Typically, this follows the vari-
able selection, but it can also be applied directly (without a variable selection).

as.matrix.projection() For extracting projected parameter draws.

proj_linpred(), proj_predict() For making predictions from a submodel (after projecting the
reference model onto it).
Author(s)

Maintainer: Frank Weber <fweber144@protonmail.com>

Authors:

https://mc-stan.org/projpred/articles/

4 projpred-package

¢ Juho Piironen <juho.t.piironen@gmail.com>
e Markus Paasiniemi

* Alejandro Catalina <alecatfel@gmail.com>

AKki Vehtari
Other contributors:

* Jonah Gabry [contributor]
e Marco Colombo [contributor]
e Paul-Christian Biirkner [contributor]

e Hamada S. Badr [contributor]

References

Goutis, C. and Robert, C. P. (1998). Model choice in generalised linear models: A Bayesian ap-
proach via Kullback—Leibler projections. Biometrika, 85(1):29-37.

Dupuis, J. A. and Robert, C. P. (2003). Variable selection in qualitative models via an entropic
explanatory power. Journal of Statistical Planning and Inference, 111(1-2):77-94. doi: 10.1016/
S03783758(02)002860.

Piironen, J. and Vehtari, A. (2017). Comparison of Bayesian predictive methods for model selec-
tion. Statistics and Computing, 27(3):711-735. doi: 10.1007/s112220169649y.

Piironen, J., Paasiniemi, M., and Vehtari, A. (2020). Projective inference in high-dimensional
problems: Prediction and feature selection. Electronic Journal of Statistics, 14(1):2155-2197.
doi: 10.1214/20EJS1711.

Catalina, A., Biirkner, P.-C., and Vehtari, A. (2020). Projection predictive inference for generalized
linear and additive multilevel models. arXiv:2010.06994. URL: https://arxiv.org/abs/2010.
06994.

See Also

Useful links:

e https://mc-stan.org/projpred/
* https://discourse.mc-stan.org

* Report bugs at https://github.com/stan-dev/projpred/issues/

https://doi.org/10.1016/S0378-3758(02)00286-0
https://doi.org/10.1016/S0378-3758(02)00286-0
https://doi.org/10.1007/s11222-016-9649-y
https://doi.org/10.1214/20-EJS1711
https://arxiv.org/abs/2010.06994
https://arxiv.org/abs/2010.06994
https://mc-stan.org/projpred/
https://discourse.mc-stan.org
https://github.com/stan-dev/projpred/issues/

as.matrix.projection 5

as.matrix.projection Extract projected parameter draws

Description

This is the as.matrix() method for projection objects (returned by project(), possibly as
elements of a 1ist). It extracts the projected parameter draws and returns them as a matrix.

Usage
S3 method for class 'projection'
as.matrix(x, nm_scheme = "auto”, ...)
Arguments
X An object of class projection (returned by project(), possibly as elements
of alist).
nm_scheme The naming scheme for the columns of the output matrix. Either "auto”, "rstanarm”,

or "brms”, where "auto” chooses "rstanarm” or "brms"” based on the class of
the reference model fit (and uses "rstanarm” if the reference model fit is of an
unknown class).

Currently ignored.

Value

An Sprj X () matrix of projected draws, with Sprj denoting the number of projected draws and ()
the number of parameters.

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

Projection onto an arbitrary combination of predictor terms (with a small

value for ‘nclusters®, but only for the sake of speed in this example;

this is not recommended in general):

prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,
seed = 9182)

prjmat <- as.matrix(prj)

6 break_up_matrix_term

For further post-processing (e.g., via packages ‘bayesplot‘ and
‘posterior‘), we will here ignore the fact that clustering was used
(due to argument ‘nclusters above). CAUTION: Ignoring the clustering
is not recommended and only shown here for demonstrative purposes. A
better solution for the clustering case is explained below.
If the ‘bayesplot' package is installed, the output from
as.matrix.projection() can be used there. For example:
if (requireNamespace("bayesplot”, quietly = TRUE)) {

print(bayesplot::mcmc_intervals(prjmat))
3
If the ‘posterior" package is installed, the output from
as.matrix.projection() can be used there. For example:
if (requireNamespace("posterior”, quietly = TRUE)) {

prjdrws <- posterior::as_draws_matrix(prjmat)

print(posterior::summarize_draws(

prjdrws,
"median”, "mad", function(x) quantile(x, probs = c(0.025, 0.975))

)
3
Better solution for post-processing clustered draws (e.g., via
‘bayesplot‘ or ‘posterior‘): Don't ignore the fact that clustering was
used. Instead, resample the clusters according to their weights (e.g.,
via posterior::resample_draws()). However, this requires access to the
cluster weights which is not implemented in ‘projpred‘ yet. This
example will be extended as soon as those weights are accessible.

break_up_matrix_term Break up matrix terms

Description

Sometimes there can be terms in a formula that refer to a matrix instead of a single predictor. This
function breaks up the matrix term into individual predictors to handle separately, as that is probably
the intention of the user.

Usage

break_up_matrix_term(formula, data)

Arguments

formula A formula for a valid model.

data The original data. frame with a matrix as predictor.
Value

A list containing the expanded formula and the expanded data. frame.

cv-indices 7

cv-indices Create cross-validation folds

Description

These are helper functions to create cross-validation (CV) folds, i.e., to split up the indices from 1
to n into K subsets ("folds") for K-fold CV. These functions are potentially useful when creating
the cvfits and cvfun arguments for init_refmodel(). The return value is different for these two
methods, see below for details.

Usage

cvfolds(n, K, seed = sample.int(.Machine$integer.max, 1))

cv_ids(
n ’
K,
out = c("foldwise”, "indices"),
seed = sample.int(.Machine$integer.max, 1)
)
Arguments
n Number of observations.
K Number of folds. Must be at least 2 and not exceed n.
seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. If NULL, no seed is set and therefore, the results are
not reproducible. See set.seed() for details.
out Format of the output, either "foldwise” or "indices". See below for details.
Value

cvfolds() returns a vector of length n such that each element is an integer between 1 and k denoting
which fold the corresponding data point belongs to. The return value of cv_ids() depends on the
out argument. If out = "foldwise"”, the return value is a 1ist with k elements, each being a 1ist
with elements tr and ts giving the training and test indices, respectively, for the corresponding
fold. If out = "indices”, the return value is a 1ist with elements tr and ts each being a list
with k elements giving the training and test indices, respectively, for each fold.

Examples

n <- 100

set.seed(1234)

y <= rnorm(n)

cv <- cv_ids(n, K = 5, seed = 9876)

Mean within the test set of each fold:

cvmeans <- sapply(cv, function(fold) mean(y[fold$ts]))

cv_varsel

cv_varsel Variable selection with cross-validation

Description

Perform the projection predictive variable selection for GLMs, GLMMs, GAMs, and GAMMs.
This variable selection consists of a search part and an evaluation part. The search part determines
the solution path, i.e., the best submodel for each submodel size (number of predictor terms). The
evaluation part determines the predictive performance of the submodels along the solution path. In
contrast to varsel(), cv_varsel() performs a cross-validation (CV) by running the search part
with the training data of each CV fold separately (an exception is explained in section "Note" below)
and running the evaluation part on the corresponding test set of each CV fold.

Usage

cv_varsel(object, ...)

Default S3 method:
cv_varsel(object, ...)

S3 method for class 'refmodel’
cv_varsel(

object,

method = NULL,

cv_method = if (!inherits(object, "datafit”)) "LO0" else "kfold",
ndraws = NULL,

nclusters = 20,

ndraws_pred = 400,

nclusters_pred = NULL,

refit_prj = !inherits(object, "datafit"),
nterms_max = NULL,

penalty = NULL,

verbose = TRUE,

nloo = NULL,

K = if (!inherits(object, "datafit"”)) 5 else 10,
lambda_min_ratio = 1e-05,

nlambda = 150,

thresh = 1e-06,

regul = 1e-04,

validate_search = TRUE,

seed = sample.int(.Machine$integer.max, 1),
search_terms = NULL,

cv_varsel

Arguments

object

method

cv_method

ndraws

nclusters

ndraws_pred

nclusters_pred

refit_prj

nterms_max

penalty

verbose

nloo

An object of class refmodel (returned by get_refmodel() or init_refmodel())
or an object that can be passed to argument object of get_refmodel ().

Arguments passed to get_refmodel() as well as to the divergence minimizer
(during a forward search and also during the evaluation part, but the latter only
if refit_prj is TRUE).

The method for the search part. Possible options are "L1" for L1 search and
"forward” for forward search. If NULL, then "forward" is used if the reference
model has multilevel or additive terms and "L1" otherwise. See also section
"Details" below.

The CV method, either "LO0" or "kfold". In the "L0OO" case, a Pareto-smoothed
importance sampling leave-one-out CV (PSIS-LOO CV) is performed, which
avoids refitting the reference model nloo times (in contrast to a standard LOO
CV). In the "kfold" case, a K{-fold CV is performed.

Number of posterior draws used in the search part. Ignored if nclusters is not
NULL or in case of L1 search (because L1 search always uses a single cluster).
If both (nclusters and ndraws) are NULL, the number of posterior draws from
the reference model is used for ndraws. See also section "Details" below.

Number of clusters of posterior draws used in the search part. Ignored in case
of L1 search (because L1 search always uses a single cluster). For the meaning
of NULL, see argument ndraws. See also section "Details" below.

Only relevant if refit_prj is TRUE. Number of posterior draws used in the eval-
uation part. Ignored if nclusters_pred is not NULL. If both (nclusters_pred
and ndraws_pred) are NULL, the number of posterior draws from the reference
model is used for ndraws_pred. See also section "Details" below.

Only relevant if refit_prj is TRUE. Number of clusters of posterior draws used
in the evaluation part. For the meaning of NULL, see argument ndraws_pred.
See also section "Details" below.

A single logical value indicating whether to fit the submodels along the solution
path again (TRUE) or to retrieve their fits from the search part (FALSE) before
using those (re-)fits in the evaluation part.

Maximum number of predictor terms until which the search is continued. If
NULL, then min(19,D) is used where D is the number of terms in the reference
model (or in search_terms, if supplied). Note that nterms_max does not count
the intercept, so use nterms_max = @ for the intercept-only model. (Correspond-
ingly, D above does not count the intercept.)

Only relevant for L1 search. A numeric vector determining the relative penalties
or costs for the predictors. A value of @ means that those predictors have no cost
and will therefore be selected first, whereas Inf means those predictors will
never be selected. If NULL, then 1 is used for each predictor.

A single logical value indicating whether to print out additional information
during the computations.

Caution: Still experimental. Only relevant if cv_method == "L00". Number of
subsampled LOO CV folds, i.e., number of observations used for the LOO CV

10 cv_varsel

(anything between 1 and the original number of observations). Smaller values
lead to faster computation but higher uncertainty in the evaluation part. If NULL,
all observations are used, but for faster experimentation, one can set this to a
smaller value.

K Only relevant if cv_method == "kfold" and if the reference model was created
with cvfits being NULL (which is the case for get_refmodel.stanreg() and
brms: :get_refmodel.brmsfit()). Number of folds in K-fold CV.

lambda_min_ratio
Only relevant for L1 search. Ratio between the smallest and largest lambda in
the L1-penalized search. This parameter essentially determines how long the
search is carried out, i.e., how large submodels are explored. No need to change
this unless the program gives a warning about this.

nlambda Only relevant for L1 search. Number of values in the lambda grid for L1-
penalized search. No need to change this unless the program gives a warning
about this.

thresh Only relevant for L1 search. Convergence threshold when computing the L1

path. Usually, there is no need to change this.

regul A number giving the amount of ridge regularization when projecting onto (i.e.,
fitting) submodels which are GLMs. Usually there is no need for regularization,
but sometimes we need to add some regularization to avoid numerical problems.

validate_search
Only relevant if cv_method == "L00". A single logical value indicating whether
to cross-validate also the search part, i.e., whether to run the search separately for
each CV fold (TRUE) or not (FALSE). We strongly do not recommend setting this
to FALSE, because this is known to bias the predictive performance estimates of
the selected submodels. However, setting this to FALSE can sometimes be useful
because comparing the results to the case where this argument is TRUE gives
an idea of how strongly the variable selection is (over-)fitted to the data (the
difference corresponds to the search degrees of freedom or the effective number
of parameters introduced by the search).

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. If NULL, no seed is set and therefore, the results
are not reproducible. See set.seed() for details. Here, this seed is used for
clustering the reference model’s posterior draws (if !is.null(nclusters)),
for subsampling LOO CV folds (if nloo is smaller than the number of obser-
vations), for sampling the folds in K-fold CV, and for drawing new group-level
effects when predicting from a multilevel submodel (however, not yet in case of
a GAMM).

search_terms A custom character vector of terms to consider for the search. The intercept
("1") needs to be included explicitly. The default considers all the terms in the
reference model’s formula.

Details

Arguments ndraws, nclusters, nclusters_pred, and ndraws_pred are automatically truncated
at the number of posterior draws in the reference model (which is 1 for datafits). Using less
draws or clusters in ndraws, nclusters, nclusters_pred, or ndraws_pred than posterior draws

cv_varsel 11

in the reference model may result in slightly inaccurate projection performance. Increasing these
arguments affects the computation time linearly.

For argument method, there are some restrictions: For a reference model with multilevel or additive
formula terms, only the forward search is available.

L1 search is faster than forward search, but forward search may be more accurate. Furthermore,
forward search may find a sparser model with comparable performance to that found by L1 search,
but it may also start overfitting when more predictors are added.

An L1 search may select interaction terms before the corresponding main terms are selected. If this
is undesired, choose the forward search instead.

Value

An object of class vsel. The elements of this object are not meant to be accessed directly but
instead via helper functions (see the vignette or type ?projpred).

Note

The case cv_method == "L0O0" && !validate_search constitutes an exception where the search
part is not cross-validated. In that case, the evaluation part is based on a PSIS-LOO CV.

References

Magnusson, M., Andersen, M., Jonasson, J., and Vehtari, A. (2019). Bayesian leave-one-out cross-
validation for large data. In Proceedings of the 36th International Conference on Machine Learning,
4244-4253. URL: https://proceedings.mlr.press/v97/magnussoni9a.html.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413-1432. doi: 10.1007/
s1122201696964.

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2021). Pareto smoothed importance
sampling. arXiv:1507.02646. URL: https://arxiv.org/abs/1507.02646.

See Also

varsel()

Examples

Note: The code from this example is not executed when called via example().
To execute it, you have to copy and paste it manually to the console.
if (requireNamespace("rstanarm”, quietly = TRUE)) {

Data:

dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

https://proceedings.mlr.press/v97/magnusson19a.html
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.02646

12 df_gaussian

QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

Variable selection with cross-validation (with small values

for ‘nterms_max‘, ‘nclusters‘, and ‘nclusters_pred‘, but only for the

sake of speed in this example; this is not recommended in general):

cvvs <- cv_varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,
seed = 5555)

Now see, for example, ‘?print.vsel®, ‘?plot.vsel‘, ‘?suggest_size.vsel",

and ‘?solution_terms.vsel' for possible post-processing functions.

df_binom Binomial toy example

Description

Binomial toy example

Usage
df_binom

Format

A simulated classification dataset containing 100 observations.

y response, O or 1.

x predictors, 30 in total.

Source

https://web.stanford.edu/~hastie/glmnet/glmnetData/BNExample.RData

df_gaussian Gaussian toy example

Description

Gaussian toy example

Usage

df_gaussian

https://web.stanford.edu/~hastie/glmnet/glmnetData/BNExample.RData

extend_family 13

Format
A simulated regression dataset containing 100 observations.

y response, real-valued.

x predictors, 20 in total. Mean and SD are approximately 0 and 1, respectively.

Source

https://web.stanford.edu/~hastie/glmnet/glmnetData/QSExample.RData

extend_family Extend a family

Description
This function adds some internally required elements to a family object. It is called internally by
init_refmodel(), so you will rarely need to call it yourself.

Usage
extend_family(family)

Arguments

family A family object.

Value

The family object extended in the way needed by projpred.

extra-families Extra family objects

Description

Family objects not in the set of default family objects.

Usage
Student_t(link = "identity”, nu = 3)

Arguments

link Name of the link function. In contrast to the default family objects, this has to
be a character string here.

nu Degrees of freedom for the Student-¢ distribution.

https://web.stanford.edu/~hastie/glmnet/glmnetData/QSExample.RData

14 mesquite

Value

A family object analogous to those described in family.

Note

Support for the Student_t () family is still experimental.

mesquite Mesquite data set

Description

The mesquite bushes yields dataset from Gelman and Hill (2006) (http://www.stat.columbia.
edu/~gelman/arm/).

Usage

mesquite

Format

The response variable is the total weight (in grams) of photosynthetic material as derived from
actual harvesting of the bush. The predictor variables are:

diam1 diameter of the canopy (the leafy area of the bush) in meters, measured along the longer
axis of the bush.

diam2 canopy diameter measured along the shorter axis.

canopy height height of the canopy.

total height total height of the bush.

density plant unit density (# of primary stems per plant unit).

group group of measurements (0 for the first group, 1 for the second group).

Source

http://www.stat.columbia.edu/~gelman/arm/examples/mesquite/mesquite.dat

References

Gelman, A. and Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Mod-
els. Cambridge University Press. doi: 10.1017/CB0O9780511790942.

http://www.stat.columbia.edu/~gelman/arm/
http://www.stat.columbia.edu/~gelman/arm/
http://www.stat.columbia.edu/~gelman/arm/examples/mesquite/mesquite.dat
https://doi.org/10.1017/CBO9780511790942

plot.vsel

15

plot.vsel

Plot summary statistics of a variable selection

Description

This is the plot () method for vsel objects (returned by varsel() or cv_varsel()).

Usage

S3 method for class 'vsel'

plot(
X’

nterms_max

NULL,

stats = "elpd”,

deltas =
alpha =
baseline

Arguments

X

nterms_max

stats

deltas

alpha

FALSE,

if (linherits(x$refmodel, "datafit"”)) "ref"” else "best”,

An object of class vsel (returned by varsel() or cv_varsel()).

Maximum submodel size for which the statistics are calculated. Note that nterms_max
does not count the intercept, so use nterms_max = @ for the intercept-only model.
For plot.vsel(), nterms_max must be at least 1.

One or more character strings determining which statistics to calculate. Avail-
able statistics are:

e "elpd"”: (expected) sum of log predictive densities.

* "mlpd"”: mean log predictive density, that is, "elpd” divided by the number
of observations.

n

* "mse": mean squared error.

* "rmse"”: root mean squared error. For the corresponding standard error,
bootstrapping is used.

e "acc” (orits alias, "pctcorr”): classification accuracy (binomial() fam-
ily only).

e "auc”: area under the ROC curve (binomial() family only). For the cor-
responding standard error, bootstrapping is used.

If TRUE, the submodel statistics are estimated as differences from the baseline
model (see argument baseline) instead of estimating the actual values of the
statistics.

A number determining the (nominal) coverage 1 -alpha of the normal-approximation
confidence intervals. For example, alpha = .32 corresponds to a coverage of
68%, i.e., one-standard-error intervals (because of the normal approximation).

16 pred-projection

baseline For summary.vsel(): Only relevant if deltas is TRUE. For plot.vsel(): Al-
ways relevant. Either "ref” or "best”, indicating whether the baseline is the
reference model or the best submodel found (in terms of stats[1]), respec-
tively.

Arguments passed to the internal function which is used for bootstrapping (if ap-
plicable; see argument stats). Currently, relevant arguments are b (the number
of bootstrap samples, defaulting to 2000) and seed (see set.seed(), defaulting
to sample.int(.Machine$integer.max,1)).

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

Variable selection (here without cross-validation and with small values
for ‘nterms_max‘, ‘nclusters‘, and ‘nclusters_pred‘, but only for the
sake of speed in this example; this is not recommended in general):

vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,

seed = 5555)
print(plot(vs))
3
pred-projection Predictions from a submodel (after projection)
Description

After the projection of the reference model onto a submodel, proj_linpred() gives the linear
predictor (possibly transformed to response scale) for all projected draws of such a submodel.
proj_predict() draws from the predictive distribution of such a submodel. If the projection has
not been performed, both functions also perform the projection. Both functions can also handle
multiple submodels at once (if the input object is of class vsel).

Usage

proj_linpred(
object,
newdata = NULL,

pred-projection 17

offsetnew = NULL,

weightsnew = NULL,

filter_nterms = NULL,

transform = FALSE,

integrated = FALSE,

.seed = sample.int(.Machine$integer.max, 1),

)

proj_predict(
object,
newdata = NULL,
offsetnew = NULL,
weightsnew = NULL,
filter_nterms = NULL,
nresample_clusters = 1000,
.seed = sample.int(.Machine$integer.max, 1),

)
Arguments

object An object returned by project() or an object that can be passed to argument
object of project().

newdata Passed to argument newdata of the reference model’s extract_model_data
function (see init_refmodel()). Provides the predictor (and possibly also the
response) data for the new (or old) observations. May also be NULL (see argu-
ment extract_model_data of init_refmodel()). If not NULL, any NAs will
trigger an error.

offsetnew Passed to argument orhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the offsets for the new (or old) obser-
vations.

weightsnew Passed to argument wrhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the weights for the new (or old) ob-
servations.

filter_nterms Only applies if object is an object returned by project(). In thatcase, filter_nterms
can be used to filter object for only those elements (submodels) with a number
of solution terms in filter_nterms. Therefore, needs to be a numeric vector
or NULL. If NULL, use all submodels.

transform For proj_linpred() only. A single logical value indicating whether the linear
predictor should be transformed to response scale using the inverse-link function
(TRUE) or not (FALSE).

integrated For proj_linpred() only. A single logical value indicating whether the output

should be averaged across the projected posterior draws (TRUE) or not (FALSE).

.seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. If NULL, no seed is set and therefore, the results are

18 pred-projection

not reproducible. See set.seed() for details. Here, this seed is used for draw-
ing new group-level effects in case of a multilevel submodel (however, not yet
in case of a GAMM) and for drawing from the predictive distribution of the sub-
model(s) in case of proj_predict(). If a clustered projection was performed,
then in proj_predict(), .seed is also used for drawing from the set of the
projected clusters of posterior draws (see argument nresample_clusters).

Arguments passed to project() if object is not already an object returned by
project().
nresample_clusters

For proj_predict() with clustered projection only. Number of draws to return
from the predictive distribution of the submodel. Not to be confused with ar-
gument nclusters of project(): nresample_clusters gives the number of
draws (with replacement) from the set of clustered posterior draws after projec-
tion (with this set being determined by argument nclusters of project()).

Value

Let Spr' denote the number of (possibly clustered) projected posterior draws (short: the number of
projected draws) and /N the number of observations. Then, if the prediction is done for one sub-
model only (i.e., length(nterms) ==1 || !is.null(solution_terms) inthe call to project()):

e proj_linpred() returns a list with elements pred (predictions) and 1pd (log predictive
densities). Both elements are Sprj x N matrices.

e proj_predict() returns an Sprj x N matrix of predictions where Sprj denotes nresample_clusters

in case of clustered projection.

If the prediction is done for more than one submodel, the output from above is returned for each
submodel, giving a named 1ist with one element for each submodel (the names of this 1ist being
the numbers of solutions terms of the submodels when counting the intercept, too).

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

Projection onto an arbitrary combination of predictor terms (with a small

value for ‘nclusters®, but only for the sake of speed in this example;

this is not recommended in general):

prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,
seed = 9182)

predict.refmodel 19

Predictions (at the training points) from the submodel onto which the
reference model was projected:

prjl <- proj_linpred(prj)

prjp <- proj_predict(prj, .seed = 7364)

predict.refmodel Predictions or log predictive densities from a reference model

Description

This is the predict () method for refmodel objects (returned by get_refmodel () or init_refmodel()).
It offers three types of output which are all based on the reference model and new (or old) observa-

tions: Either the linear predictor on link scale, the linear predictor transformed to response scale, or

the log predictive density.

Usage

S3 method for class 'refmodel’
predict(

object,

newdata = NULL,

ynew = NULL,

offsetnew = NULL,

weightsnew = NULL,

type = "response”,
)
Arguments

object An object of class refmodel (returned by get_refmodel () or init_refmodel()).

newdata Passed to argument newdata of the reference model’s extract_model_data
function (see init_refmodel()). Provides the predictor (and possibly also the
response) data for the new (or old) observations. May also be NULL (see argu-
ment extract_model_data of init_refmodel()). If not NULL, any NAs will
trigger an error.

ynew If not NULL, then this needs to be a vector of new (or old) response values. See
section "Value" below.

offsetnew Passed to argument orhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the offsets for the new (or old) obser-
vations.

weightsnew Passed to argument wrhs of the reference model’s extract_model_data func-

tion (see init_refmodel()). Used to get the weights for the new (or old) ob-
servations.

20 print.vsel

type Only relevant if is.null(ynew). The scale on which the predictions are re-
turned, either "1ink"” or "response” (see predict.glm() but note that predict.refmodel ()
does not adhere to the typical R convention of a default prediction on link scale).
For both scales, the predictions are averaged across the posterior draws.

Currently ignored.

Details

Argument weightsnew is only relevant if !is.null(ynew).

Value

Either a vector of predictions (with the scale depending on argument type) or, if !is.null(ynew),
a vector of log predictive densities evaluated at ynew.

print.vsel Print results (summary) of variable selection

Description

This is the print () method for vsel objects (returned by varsel() or cv_varsel()). It displays a
summary of the results of the projection predictive variable selection by first calling summary.vsel ()
and then print.vselsummary().

Usage
S3 method for class 'vsel'
print(x, ...)
Arguments
X An object of class vsel (returned by varsel() or cv_varsel()).
Further arguments passed to summary.vsel() (apart from argument digits
which is passed to print.vselsummary()).
Value

The output of summary.vsel() (invisible).

print.vselsummary 21

print.vselsummary Print summary of variable selection

Description

This is the print () method for summary objects created by summary.vsel(). It displays a sum-
mary of the results of the projection predictive variable selection.

Usage
S3 method for class 'vselsummary'
print(x, digits =1, ...)
Arguments
X An object of class vselsummary.
digits Number of decimal places to be reported.

Currently ignored.

Value

The output of summary.vsel() (invisible).

project Projection onto submodel(s)

Description

Project the posterior of the reference model onto the parameter space of a single submodel con-
sisting of a specific combination of predictor terms or (after variable selection) onto the parameter
space of a single or multiple submodels of specific sizes.

Usage

project(
object,
nterms = NULL,
solution_terms = NULL,
refit_prj = TRUE,
ndraws = 400,
nclusters = NULL,
seed = sample.int(.Machine$integer.max, 1),
regul = 1e-04,

22

Arguments

object

nterms

solution_terms

refit_prj

ndraws

nclusters

seed

regul

Details

project

An object which can be used as input to get_refmodel () (in particular, objects
of class refmodel).

Only relevant if object is of class vsel (returned by varsel() or cv_varsel()).
Ignored if !is.null(solution_terms). Number of terms for the submodel
(the corresponding combination of predictor terms is taken from object). If a
numeric vector, then the projection is performed for each element of this vector.
IfNULL (and is.null(solution_terms)), then the value suggested by the vari-
able selection is taken (see function suggest_size()). Note that nterms does
not count the intercept, so use nterms = @ for the intercept-only model.

If not NULL, then this needs to be a character vector of predictor terms for the
submodel onto which the projection will be performed. Argument nterms is
ignored in that case. For an object which is not of class vsel, solution_terms
must not be NULL.

A single logical value indicating whether to fit the submodels (again) (TRUE) or
to retrieve the fitted submodels from object (FALSE). For an object which is
not of class vsel, refit_prj must be TRUE.

Only relevant if refit_prj is TRUE. Number of posterior draws to be projected.
Ignored if nclusters is not NULL or if the reference model is of class datafit
(in which case one cluster is used). If both (nclusters and ndraws) are NULL,
the number of posterior draws from the reference model is used for ndraws. See
also section "Details" below.

Only relevant if refit_prj is TRUE. Number of clusters of posterior draws to
be projected. Ignored if the reference model is of class datafit (in which case
one cluster is used). For the meaning of NULL, see argument ndraws. See also
section "Details" below.

Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. If NULL, no seed is set and therefore, the results
are not reproducible. See set.seed() for details. Here, this seed is used for
clustering the reference model’s posterior draws (if ! is.null(nclusters))and
for drawing new group-level effects when predicting from a multilevel submodel
(however, not yet in case of a GAMM).

A number giving the amount of ridge regularization when projecting onto (i.e.,
fitting) submodels which are GLMs. Usually there is no need for regularization,
but sometimes we need to add some regularization to avoid numerical problems.

Arguments passed to get_refmodel () (if get_refmodel() is actually used;
see argument object) as well as to the divergence minimizer (if refit_prj is
TRUE).

Arguments ndraws and nclusters are automatically truncated at the number of posterior draws
in the reference model (which is 1 for datafits). Using less draws or clusters in ndraws or
nclusters than posterior draws in the reference model may result in slightly inaccurate projec-
tion performance. Increasing these arguments affects the computation time linearly.

project 23

Value

If the projection is performed onto a single submodel (i.e., length(nterms) ==1 || !is.null(solution_terms)),
an object of class projection which is a 1ist containing the following elements:

dis Projected draws for the dispersion parameter.
kl The KL divergence from the submodel to the reference model.
weights Weights for the projected draws.

solution_terms A character vector of the submodel’s predictor terms, ordered in the way in which
the terms were added to the submodel.

submodl A list containing the submodel fits (one fit per projected draw).

p_type A single logical value indicating whether the reference model’s posterior draws have been
clustered for the projection (TRUE) or not (FALSE).

refmodel The reference model object.

If the projection is performed onto more than one submodel, the output from above is returned for
each submodel, giving a 1ist with one element for each submodel.

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter®, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

QR = TRUE, chains = 2, iter = 500, refresh = @, seed = 9876
)

Variable selection (here without cross-validation and with small values

for ‘nterms_max‘, ‘nclusters‘, and ‘nclusters_pred‘, but only for the

sake of speed in this example; this is not recommended in general):

vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,
seed = 5555)

Projection onto the best submodel with 2 predictor terms (with a small
value for ‘nclusters®, but only for the sake of speed in this example;
this is not recommended in general):

prj_from_vs <- project(vs, nterms = 2, nclusters = 10, seed = 9182)

Projection onto an arbitrary combination of predictor terms (with a small

value for “nclusters®, but only for the sake of speed in this example;

this is not recommended in general):

prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,
seed = 9182)

24

refmodel-init-get

refmodel-init-get Reference model structure

Description

Function get_refmodel () is a generic function for creating the reference model structure from a
specific object. The methods for get_refmodel () usually call init_refmodel() which is the
underlying workhorse (and may also be used directly without a call to get_refmodel()). Some
arguments are for K -fold cross-validation (K -fold CV) only; see cv_varsel() for the use of K-

fold CV in projpred.

Usage

get_refmodel(object, ...)

S3 method for class 'refmodel’
get_refmodel(object, ...)

S3 method for class 'vsel'
get_refmodel(object, ...)

Default S3 method:

get_refmodel (object, formula, family = NULL, ...)
S3 method for class 'stanreg'
get_refmodel(object, ...)
init_refmodel(
object,
data,
formula,
family,
ref_predfun = NULL,
div_minimizer = NULL,
proj_predfun = NULL,
extract_model_data,
cvfun = NULL,
cvfits = NULL,
dis = NULL,
cvrefbuilder = NULL,
)
Arguments
object Object from which the reference model is created. For init_refmodel(),

an object on which the functions from arguments extract_model_data and

refmodel-init-get 25

ref_predfun can be applied, with a NULL object being treated specially (see
section "Value" below). For get_refmodel.default(), an object on which
function family () can be applied to retrieve the family (if argument family is
NULL), additionally to the properties required for init_refmodel(). For non-
default methods of get_refmodel (), an object of the corresponding class.

For get_refmodel.default() and get_refmodel.stanreg(): arguments passed
to init_refmodel(). For the get_refmodel() generic: arguments passed to
the appropriate method. Else: ignored.

formula Reference model’s formula. For general information on formulas in R, see
formula. For multilevel formulas, see also package Ime4 (in particular, func-
tions 1lme4: :Imer () and 1me4: : glmer ()). For additive formulas, see also pack-
ages mgcev (in particular, function mgecv: :gam()) and gamm4 (in particular,
function gamm4: : gamm4 ()) as well as the notes in section "Formula terms" be-
low.

family A family object representing the observational model (i.e., the distributional
family for the response).

data Data used for fitting the reference model. Any contrasts attributes of the
dataset’s columns are silently removed.

ref_predfun Prediction function for the linear predictor of the reference model, including
offsets (if existing). See also section "Arguments ref_predfun, proj_predfun,
and div_minimizer" below. If object is NULL, ref_predfun is ignored and an
internal default is used instead.

div_minimizer A function for minimizing the Kullback-Leibler (KL) divergence from a sub-
model to the reference model (i.e., for performing the projection of the refer-
ence model onto a submodel). The output of div_minimizer is used, e.g., by
proj_predfun’s argument fits. See also section "Arguments ref_predfun,
proj_predfun, and div_minimizer" below.

proj_predfun Prediction function for the linear predictor of a submodel onto which the refer-
ence model is projected. See also section "Arguments ref_predfun, proj_predfun,
and div_minimizer" below.

extract_model_data
A function for fetching some variables (response, observation weights, offsets)
from the original dataset (i.e., the dataset used for fitting the reference model) or
from a new dataset. See also section "Argument extract_model_data" below.

cvfun For K-fold CV only. A function that, given a fold indices vector, fits the ref-
erence model separately for each fold and returns the K model fits as a 1ist.
Each of the K model fits needs to be a 1ist. If object is NULL, cvfun may be
NULL for using an internal default. Only one of cvfits and cvfun needs to be
provided (for K -fold CV). Note that cvfits takes precedence over cvfun, i.e.,
if both are provided, cvfits is used.

cvfits For K-fold CV only. A list containing a sub-list called fits containing the
K model fits from which reference model structures are created. The cvfits
list (i.e., the super-1ist) needs to have attributes K and folds: K has to be a
single integer giving the number of folds and folds has to be an integer vec-
tor giving the fold indices (one fold index per observation). Each element of
cvfits$fits (i.e., each of the K model fits) needs to be a list. Only one of

26

refmodel-init-get

cvfits and cvfun needs to be provided (for K-fold CV). Note that cvfits
takes precedence over cvfun, i.e., if both are provided, cvfits is used.

dis A vector of posterior draws for the dispersion parameter (if existing). May be
NULL if the model has no dispersion parameter or if the model does have a dis-
persion parameter, but object is NULL (in which case 0 is used for dis). Note
that for the gaussian() family, dis is the standard deviation, not the variance.

cvrefbuilder For K-fold CV only. A function that, given a reference model fit for fold
k € {1,..., K'} (this model fit is the k-th element of the return value of cvfun or
the k-th element of cvfits$fits, extended by elements omitted (containing
the indices of the left-out observations in that fold) and projpred_k (contain-
ing the integer k)), returns an object of the same type as init_refmodel ()
does. Argument cvrefbuilder may be NULL for using an internal default:
get_refmodel () if object is not NULL and a function calling init_refmodel ()
appropriately (with the assumption dis = @) if object is NULL.

Value

An object that can be passed to all the functions that take the reference model fit as the first ar-
gument, such as varsel(), cv_varsel(), project(), proj_linpred(), and proj_predict().
Usually, the returned object is of class refmodel. However, if object is NULL, the returned ob-
ject is of class datafit as well as of class refmodel (with datafit being first). Objects of class
datafit are handled differently at several places throughout this package.

Formula terms

For additive models (still an experimental feature), only mgcv: :s() and mgev: : t2() are currently
supported as smooth terms. Furthermore, these need to be called without any arguments apart from
the predictor names (symbols). For example, for smoothing the effect of a predictor x, only s(x)
or t2(x) are allowed. As another example, for smoothing the joint effect of two predictors x and z,
only s(x,z) or t2(x,z) are allowed (and analogously for higher-order joint effects, e.g., of three
predictors).

Arguments ref_predfun, proj_predfun, and div_minimizer

Arguments ref_predfun, proj_predfun, and div_minimizer may be NULL for using an internal
default. Otherwise, let NV denote the number of observations (in case of CV, these may be reduced
to each fold), Sref the number of posterior draws for the reference model’s parameters, and Sprj
the number of (possibly clustered) parameter draws for projection (short: the number of projected
draws). Then the functions supplied to these arguments need to have the following prototypes:

e ref_predfun: ref_predfun(fit,newdata = NULL) where:

— fit accepts the reference model fit as given in argument object (but possibly re-fitted to
a subset of the observations, as done in K -fold CV).

— newdata accepts either NULL (for using the original dataset, typically stored in fit) or
data for new observations (at least in the form of a data. frame).

e proj_predfun: proj_predfun(fits,newdata) where:

refmodel-init-get 27

— fits accepts a list of length Sprj containing this number of submodel fits. This list
is the same as that returned by project() in its output element submodl (which in turn
is the same as the return value of div_minimizer, except if project() was used with an
object of class vsel based on an L1 search as well as with refit_prj = FALSE).

— newdata accepts data for new observations (at least in the form of a data. frame).

e div_minimizer does not need to have a specific prototype, but it needs to be able to be called
with the following arguments:

— formula accepts either a standard formula with a single response (if Sy; = 1) or a
formula with Sprj > 1 response variables cbind()-ed on the left-hand side in which
case the projection has to be performed for each of the response variables separately.

— data accepts a data. frame to be used for the projection.

— family accepts a family object.

— weights accepts either observation weights (at least in the form of a numeric vector) or
NULL (for using a vector of ones as weights).

— projpred_var accepts an N X Sprj matrix of predictive variances (necessary for pro-
jpred’s internal GLM fitter).

— projpred_regul accepts a single numeric value as supplied to argument regul of project(),
for example.

— ... accepts further arguments specified by the user.

The return value of these functions needs to be:

 ref_predfun: an N X S matrix.

e proj_predfun: an N x S_ .. matrix.

p1j
e div_minimizer: a list of length Sprj containing this number of submodel fits.

Argument extract_model_data
The function supplied to argument extract_model_data needs to have the prototype
extract_model_data(object, newdata, wrhs = NULL, orhs = NULL, extract_y = TRUE)
where:

* object accepts the reference model fit as given in argument object (but possibly re-fitted to
a subset of the observations, as done in K -fold CV).

* newdata accepts either NULL (for using the original dataset, typically stored in object) or data
for new observations (at least in the form of a data. frame).

* wrhs accepts at least either NULL (for using a vector of ones) or a right-hand side formula
consisting only of the variable in newdata containing the weights.

* orhs accepts at least either NULL (for using a vector of zeros) or a right-hand side formula
consisting only of the variable in newdata containing the offsets.

* extract_y accepts a single logical value indicating whether output element y (see below)
shall be NULL (TRUE) or not (FALSE).

The return value of extract_model_data needs to be a list with elements y, weights, and
offset, each being a numeric vector containing the data for the response, the observation weights,
and the offsets, respectively. An exception is that y may also be NULL (depending on argument
extract_y).

28 refmodel-init-get

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

Define the reference model explicitly:

ref <- get_refmodel(fit)

print(class(ref)) # gives ‘"refmodel”*

Now see, for example, ‘?varsel‘, ‘?cv_varsel‘, and ‘?project‘ for

possible post-processing functions. Most of the post-processing functions
call get_refmodel() internally at the beginning, so you will rarely need
to call get_refmodel() yourself.

A

A custom reference model which may be used in a variable selection where
the candidate predictors are not a subset of those used for the reference
model's predictions:
ref_cust <- init_refmodel(
fit,
data = dat_gauss,
formula =y ~ X6 + X7,
family = gaussian(),
extract_model_data = function(object, newdata = NULL, wrhs = NULL,
orhs = NULL, extract_y = TRUE) {
if (lextract_y) {
resp_form <- NULL
} else {
resp_form <- ~ vy

}

if (is.null(newdata)) {
newdata <- dat_gauss

3

args <- projpred:::nlist(object, newdata, wrhs, orhs, resp_form)
return(projpred: :do_call(projpred:::.extract_model_data, args))
1
cvfun = function(folds) {
kfold(
fit, K = max(folds), save_fits = TRUE, folds = folds, cores = 1
Y$fits[, "fit"]
1,
dis = as.matrix(fit)[, "sigma"]
)

Now, the post-processing functions mentioned above (for example,

solution_terms 29

varsel(), cv_varsel(), and project()) may be applied to ‘ref_cust".

}

solution_terms Retrieve predictor solution path or predictor combination

Description

This function retrieves the "solution terms" from an object. For vsel objects (returned by varsel ()
or cv_varsel()), this is the predictor solution path of the variable selection. For projection
objects (returned by project(), possibly as elements of a 1ist), this is the predictor combination
onto which the projection was performed.

Usage

solution_terms(object, ...)

S3 method for class 'vsel'
solution_terms(object, ...)

S3 method for class 'projection'

solution_terms(object, ...)
Arguments
object The object from which to retrieve the solution terms. Possible classes may be

inferred from the names of the corresponding methods (see also the description).

Currently ignored.

Value

A character vector of solution terms.

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

30 suggest_size

Variable selection (here without cross-validation and with small values

for ‘nterms_max‘, ‘nclusters‘, and ‘nclusters_pred‘, but only for the

sake of speed in this example; this is not recommended in general):

vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,
seed = 5555)

print(solution_terms(vs))

Projection onto an arbitrary combination of predictor terms (with a small
value for “nclusters®, but only for the sake of speed in this example;

this is not recommended in general):

prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,

seed = 9182)
print(solution_terms(prj)) # gives ‘c("X1", "X3", "X5")*
3
suggest_size Suggest submodel size
Description

This function can suggest an appropriate submodel size based on a decision rule described in section
"Details" below. Note that this decision is quite heuristic and should be interpreted with caution. It
is recommended to examine the results via plot.vsel() and/or summary.vsel() and to make the
final decision based on what is most appropriate for the problem at hand.

Usage

suggest_size(object, ...)

S3 method for class 'vsel'
suggest_size(

object,

stat = "elpd”,

pct = 0,

type = "upper”,

warnings = TRUE,

Arguments

object An object of class vsel (returned by varsel() or cv_varsel()).

Arguments passed to summary.vsel (), except for object, stats (which is set
to stat), type, and deltas (which is set to TRUE). See section "Details" below
for some important arguments which may be passed here.

stat Statistic used for the decision. See summary.vsel() for possible choices.

suggest_size 31

pct A number giving the relative proportion (not percents) between baseline model
and null model utilities one is willing to sacrifice. See section "Details" below
for more information.

type Either "upper” or "lower"” determining whether the decision is based on the
upper or lower confidence interval bound, respectively. See section "Details"
below for more information.

warnings Mainly for internal use. A single logical value indicating whether to throw warn-
ings if automatic suggestion fails. Usually there is no reason to set this to FALSE.

Details

The suggested model size is the smallest model size for which either the lower or upper bound (de-
pending on argument type) of the normal-approximation confidence interval (with nominal cover-
age 1 -alpha, see argument alpha of summary.vsel()) for uy — Up,qe (With uy denoting the k-th
submodel’s utility and uyp,q denoting the baseline model’s utility) falls above (or is equal to)

pet * (up — Upqge)

where ug denotes the null model utility. The baseline is either the reference model or the best
submodel found (see argument baseline of summary.vsel()).

For example, alpha = 0.32, pct = 0, and type = "upper"” means that we select the smallest model
size for which the upper bound of the confidence interval for ug, — up,e With coverage 68% exceeds
(or is equal to) zero, that is, for which the submodel’s utility is at most one standard error smaller
than the baseline model’s utility.

Note

Loss statistics like the root mean-squared error (RMSE) and the mean-squared error (MSE) are
converted to utilities by multiplying them by -1, so a call such as suggest_size(object,stat =
"rmse”, type = "upper") finds the smallest model size whose upper confidence interval bound for
the negative RMSE or MSE exceeds the cutoff (or, equivalently, has the lower confidence interval
bound for the RMSE or MSE below the cutoff). This is done to make the interpretation of argument
type the same regardless of argument stat.

The intercept is not counted by suggest_size(), so a suggested size of zero stands for the intercept-
only model.

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

QR = TRUE, chains = 2, iter = 500, refresh = @, seed = 9876
)

32 summary.vsel

Variable selection (here without cross-validation and with small values
for ‘nterms_max‘, ‘nclusters®, and ‘nclusters_pred*, but only for the
sake of speed in this example; this is not recommended in general):

vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,

seed = 5555)
print(suggest_size(vs))
3
summary.vsel Summary statistics of a variable selection
Description

This is the summary () method for vsel objects (returned by varsel() or cv_varsel()).

Usage

S3 method for class 'vsel'
summary (
object,
nterms_max = NULL,
stats = "elpd”,
type = c("mean”, "se", "diff", "diff.se"),
deltas = FALSE,
alpha = 0.32,
baseline = if (!inherits(object$refmodel, "datafit"”)) "ref"” else "best”,

)
Arguments
object An object of class vsel (returned by varsel() or cv_varsel()).
nterms_max Maximum submodel size for which the statistics are calculated. Note that nterms_max
does not count the intercept, so use nterms_max = @ for the intercept-only model.
For plot.vsel(), nterms_max must be at least 1.
stats One or more character strings determining which statistics to calculate. Avail-

able statistics are:

* "elpd": (expected) sum of log predictive densities.

* "mlpd"”: mean log predictive density, that is, "elpd” divided by the number
of observations.

* "mse"”: mean squared error.

* "rmse"”: root mean squared error. For the corresponding standard error,
bootstrapping is used.

e "acc” (orits alias, "pctcorr”): classification accuracy (binomial() fam-

ily only).

summary.vsel 33

n

* "auc": area under the ROC curve (binomial() family only). For the cor-
responding standard error, bootstrapping is used.

non

type One or more items from "mean”, "se”, "lower”, "upper”, "diff"”, and "diff.se’
indicating which of these to compute for each item from stats (mean, stan-
dard error, lower and upper confidence interval bounds, mean difference to
the corresponding statistic of the reference model, and standard error of this
difference, respectively). The confidence interval bounds belong to normal-
approximation confidence intervals with (nominal) coverage 1 -alpha. Items
"diff" and "diff.se" are only supported if deltas is FALSE.

I

deltas If TRUE, the submodel statistics are estimated as differences from the baseline
model (see argument baseline) instead of estimating the actual values of the
statistics.

alpha A number determining the (nominal) coverage 1 -alpha of the normal-approximation

confidence intervals. For example, alpha = 0.32 corresponds to a coverage of
68%, i.e., one-standard-error intervals (because of the normal approximation).

baseline For summary.vsel(): Only relevant if deltas is TRUE. For plot.vsel(): Al-
ways relevant. Either "ref” or "best”, indicating whether the baseline is the
reference model or the best submodel found (in terms of stats[1]), respec-
tively.

Arguments passed to the internal function which is used for bootstrapping (if ap-
plicable; see argument stats). Currently, relevant arguments are b (the number
of bootstrap samples, defaulting to 2000) and seed (see set.seed(), defaulting
to sample.int(.Machine$integer.max,1)).

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

Variable selection (here without cross-validation and with small values

for ‘nterms_max‘, ‘nclusters‘, and ‘nclusters_pred‘, but only for the

sake of speed in this example; this is not recommended in general):

vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,
seed = 5555)

print(summary(vs))

34 varsel

varsel Variable selection (without cross-validation)

Description

Perform the projection predictive variable selection for GLMs, GLMMs, GAMs, and GAMMs.
This variable selection consists of a search part and an evaluation part. The search part determines
the solution path, i.e., the best submodel for each submodel size (number of predictor terms). The
evaluation part determines the predictive performance of the submodels along the solution path.

Usage
varsel(object, ...)

Default S3 method:
varsel(object, ...)

S3 method for class 'refmodel’

varsel(
object,
d_test = NULL,
method = NULL,
ndraws = NULL,

nclusters = 20,

ndraws_pred = 400,

nclusters_pred = NULL,

refit_prj = !inherits(object, "datafit"),
nterms_max = NULL,

verbose = TRUE,

lambda_min_ratio = 1e-05,

nlambda = 150,

thresh = 1e-06,

regul = 1e-04,

penalty = NULL,

search_terms = NULL,

seed = sample.int(.Machine$integer.max, 1),

Arguments

object An object of class refmodel (returned by get_refmodel() or init_refmodel())
or an object that can be passed to argument object of get_refmodel ().

Arguments passed to get_refmodel() as well as to the divergence minimizer
(during a forward search and also during the evaluation part, but the latter only
if refit_prj is TRUE).

varsel 35

d_test For internal use only. A 1list providing information about the test set which is
used for evaluating the predictive performance of the reference model. If not
provided, the training set is used.

method The method for the search part. Possible options are "L1" for L1 search and
"forward"” for forward search. If NULL, then "forward" is used if the reference
model has multilevel or additive terms and "L1" otherwise. See also section
"Details" below.

ndraws Number of posterior draws used in the search part. Ignored if nclusters is not
NULL or in case of L1 search (because L1 search always uses a single cluster).
If both (nclusters and ndraws) are NULL, the number of posterior draws from
the reference model is used for ndraws. See also section "Details" below.

nclusters Number of clusters of posterior draws used in the search part. Ignored in case
of L1 search (because L1 search always uses a single cluster). For the meaning
of NULL, see argument ndraws. See also section "Details" below.

ndraws_pred Only relevant if refit_prjis TRUE. Number of posterior draws used in the eval-
uation part. Ignored if nclusters_pred is not NULL. If both (nclusters_pred
and ndraws_pred) are NULL, the number of posterior draws from the reference
model is used for ndraws_pred. See also section "Details" below.

nclusters_pred Only relevant if refit_prj is TRUE. Number of clusters of posterior draws used
in the evaluation part. For the meaning of NULL, see argument ndraws_pred.
See also section "Details" below.

refit_prj A single logical value indicating whether to fit the submodels along the solution
path again (TRUE) or to retrieve their fits from the search part (FALSE) before
using those (re-)fits in the evaluation part.

nterms_max Maximum number of predictor terms until which the search is continued. If
NULL, then min(19,D) is used where D is the number of terms in the reference
model (or in search_terms, if supplied). Note that nterms_max does not count
the intercept, so use nterms_max = @ for the intercept-only model. (Correspond-
ingly, D above does not count the intercept.)

verbose A single logical value indicating whether to print out additional information
during the computations.

lambda_min_ratio
Only relevant for L1 search. Ratio between the smallest and largest lambda in
the L1-penalized search. This parameter essentially determines how long the
search is carried out, i.e., how large submodels are explored. No need to change
this unless the program gives a warning about this.

nlambda Only relevant for L1 search. Number of values in the lambda grid for L1-
penalized search. No need to change this unless the program gives a warning
about this.

thresh Only relevant for L1 search. Convergence threshold when computing the L1

path. Usually, there is no need to change this.

regul A number giving the amount of ridge regularization when projecting onto (i.e.,
fitting) submodels which are GLMs. Usually there is no need for regularization,
but sometimes we need to add some regularization to avoid numerical problems.

36

varsel

penalty Only relevant for L1 search. A numeric vector determining the relative penalties
or costs for the predictors. A value of @ means that those predictors have no cost
and will therefore be selected first, whereas Inf means those predictors will
never be selected. If NULL, then 1 is used for each predictor.

search_terms A custom character vector of terms to consider for the search. The intercept
("1") needs to be included explicitly. The default considers all the terms in the
reference model’s formula.

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. If NULL, no seed is set and therefore, the results
are not reproducible. See set.seed() for details. Here, this seed is used for
clustering the reference model’s posterior draws (if ! is.null(nclusters))and
for drawing new group-level effects when predicting from a multilevel submodel
(however, not yet in case of a GAMM).

Details

Arguments ndraws, nclusters, nclusters_pred, and ndraws_pred are automatically truncated
at the number of posterior draws in the reference model (which is 1 for datafits). Using less
draws or clusters in ndraws, nclusters, nclusters_pred, or ndraws_pred than posterior draws
in the reference model may result in slightly inaccurate projection performance. Increasing these
arguments affects the computation time linearly.

For argument method, there are some restrictions: For a reference model with multilevel or additive
formula terms, only the forward search is available.

L1 search is faster than forward search, but forward search may be more accurate. Furthermore,
forward search may find a sparser model with comparable performance to that found by L1 search,
but it may also start overfitting when more predictors are added.

An L1 search may select interaction terms before the corresponding main terms are selected. If this
is undesired, choose the forward search instead.

Value

An object of class vsel. The elements of this object are not meant to be accessed directly but
instead via helper functions (see the vignette or type ?projpred).

See Also

cv_varsel()

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg” fit which will be used as the reference model (with small
values for ‘chains® and ‘iter‘, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,

varsel

QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

Variable selection (here without cross-validation and with small values
for ‘nterms_max‘, ‘nclusters‘, and ‘nclusters_pred‘, but only for the
sake of speed in this example; this is not recommended in general):
vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,

seed = 5555)
Now see, for example, ‘?print.vsel®, ‘?plot.vsel‘, ‘?suggest_size.vsel",
and ‘?solution_terms.vsel' for possible post-processing functions.

37

Index

+ datasets
df_binom, 12
df_gaussian, 12
mesquite, 14

as.matrix(), 5
as.matrix.projection, 5
as.matrix.projection(), 3

binomial(), 3, 15, 32, 33
break_up_matrix_term, 6

brms: :bernoulli(), 3

brms: :get_refmodel.brmsfit(), 3, 10

cbind(), 27

cv-indices, 7

cv_ids (cv-indices), 7

cv_ids(),7

cv_varsel, 8

cv_varsel(), 3,8, 15, 20, 22, 24, 26, 29, 30,
32, 36

cvfolds (cv-indices), 7

cvfolds(), 7

df_binom, 12
df_gaussian, 12

extend_family, 13
extra-families, 13

family, 13, 14, 25,27
family(), 25
formula, 6, 25, 27

gamm4: :gamm4 (), 25

gaussian(), 3, 26

get_refmodel (refmodel-init-get), 24
get_refmodel(), 2, 3, 9, 19, 22, 24-26, 34
get_refmodel.default(), 25
get_refmodel.stanreg(), 10, 25

38

init_refmodel (refmodel-init-get), 24
init_refmodel(), 3,7,9, 13,17, 19, 24-26,
34

Ime4: :glmer(), 25
Ime4: :1mer(), 25

mesquite, 14
mgcv: :gam(), 25
mgev::s(), 26
mgev: :t2(), 26

plot(), 15

plot.vsel, 15
plot.vsel(), 3, 15, 16, 30, 32, 33
poisson(), 3
pred-projection, 16
predict(), 19
predict.glm(), 20
predict.refmodel, 19
predict.refmodel(), 20
print(Q), 20, 21

print.vsel, 20

print.vsel(), 3
print.vselsummary, 21
print.vselsummary(), 20
proj_linpred (pred-projection), 16
proj_linpred(), 3, 1618, 26
proj_predict (pred-projection), 16
proj_predict(), 3, 16, 18, 26
project, 21
project(), 3,5, 17, 18, 26, 27, 29
projpred (projpred-package), 2
projpred-package, 2

refmodel-init-get, 24

set.seed(), 7, 10, 16, 18, 22, 33, 36
solution_terms, 29
solution_terms.vsel(), 3
Student_t (extra-families), 13

INDEX

Student_t(), 14

suggest_size, 30
suggest_size(), 22, 31
suggest_size.vsel(), 3

summary (), 32

summary.vsel, 32
summary.vsel(), 3, 16, 20, 21, 30, 31, 33

varsel, 34
varsel(), 3,8, 11, 15, 20, 22, 26, 29, 30, 32

39

	projpred-package
	as.matrix.projection
	break_up_matrix_term
	cv-indices
	cv_varsel
	df_binom
	df_gaussian
	extend_family
	extra-families
	mesquite
	plot.vsel
	pred-projection
	predict.refmodel
	print.vsel
	print.vselsummary
	project
	refmodel-init-get
	solution_terms
	suggest_size
	summary.vsel
	varsel
	Index

