Package 'protoclass'

February 20, 2015

Maintainer Jacob Bien <jbien@cornell.edu>
Author Jacob Bien and Robert Tibshirani
Version 1.0
License GPL-3
Title Interpretable classification with prototypes
Description Greedy algorithm described in Bien and Tibshirani (2011) Prototype Selection for Interpretable Classification. Annals of Applied Statistics. 5(4). 2403-2424
Depends class
Suggests testthat, roxygen2
Collate 'protoclass.r' 'protoclass-package.r'
NeedsCompilation no
Repository CRAN

Date/Publication 2013-05-31 11:11:41

R topics documented:

Index

dist2	. 2
plot.protoclass	. 2
predict.protoclass	. 3
predictwithd.protoclass	. 3
print.protoclass	. 4
protoclass	. 4
	7

dist2

Description

Given (n1)-by-p and (n2)-by-p matrices, computes (n1)-by-(n2) matrix of Euclidean distances

Usage

dist2(x, xx)

Arguments

х	a (n1)-by-p matrix
xx	a (n2)-by-p matrix

plot.protoclass Plots prototypes with data

Description

This function is only for two-dimensional data.

Usage

```
## S3 method for class 'protoclass'
plot(x, xtr, y, z = NULL,
    circleFLAG = TRUE, boundFLAG = FALSE, res = NULL,
    main = NULL, ...)
```

Arguments

Х	output of protoclass function
xtr	n by p matrix of training features.
У	n-vector of labels of the training data.
z	set of potential prototypes (only required if protoclass was not run with z=x).
circleFLAG	indicates whether to draw circles around each prototype.
boundFLAG	indicates whether to draw classification boundary. This can be computationally expensive.
res	resolution of the classification boundary. Computation increases with res. Try 100.
main	optional main title for plot.
	other arguments to pass to plot.

predict.protoclass

See Also

protoclass

predict.protoclass Make predictions based on prototypes

Description

Performs nearest-prototype classification on newx.

Usage

```
## S3 method for class 'protoclass'
predict(object, newx, z, ...)
```

Arguments

object	output of protoclass function
newx	features from some new data that we want to make predictions on.
Z	potential prototype positions z (often taken to be x, the training data)
	ignore this argument.

See Also

protoclass predictwithd.protoclass

predictwithd.protoclass

Make predictions based on prototypes

Description

Performs nearest-prototype classification like predict.protoclass, except only requires the ntest-bym matrix of distances between test features and z rather than requiring these matrices themselves. (Using this saves repeated computation of the pairwise distances...)

Usage

predictwithd.protoclass(object, d.test.z)

Arguments

object	output of protoclass function
d.test.z	ntest-by-m matrix of distances between test features and z

See Also

predict.protoclass

print.protoclass Prints an object of class protoclass

Description

Prints an object of class protoclass

Usage

S3 method for class 'protoclass'
print(x, ...)

Arguments

х	object of class protoclass.
	ignore this argument.

protoclass

Greedy algorithm for prototype selection

Description

Selects prototypes for each class in a greedy manner as described in 'Bien and Tibshirani (2011) Prototype Selection for Interpretable Classification. Annals of Applied Statistics. 5(4). 2403-2424.' protoclass

Usage

```
protoclass(x, y, z, dxz, eps, lambda = 1/n)
```

Arguments

х	n by p matrix of training features (optional, see dxz).
у	n-vector of labels of the training data.
z	set of potential prototypes (optional, see dxz).
dxz	instead of x and z, you can give dxz, the matrix of pairwise dissimilarities be- tween x and z, with ij-th element giving the dissimilarity between training point x_i and prototype-candidate z_j .
eps	size of covering balls.
lambda	cost of adding a prototype.

4

protoclass

Details

It's more efficient to compute dxz just once on your own rather than have protoclass repeatedly compute the pairwise distances on each call.

Value

An object of class "protoclass," which has the following elements:

- alpha: Matrix of dimensions nrow(z)-by-nclass. alpha[j,k] indicates whether jth potential prototype has been chosen as a prototype for class k.
- classes: Names of classes
- proto.order: The sequence of prototypes that were selected.
- ncovered: nproto-by-nclass matrix with ncovered[j,k] giving the number of class k training points covered by the jth prototype's ball.
- coverlist: n-by-nclass matrix with row i giving number of each type of prototype covering point i.
- uncovered: Indicates whether a training point is not covered by a prototype of its own class.
- wrongcover: Number of prototypes from other classes covering each training point.
- nproto: nclass-vector giving the number of prototypes in each class.

See Also

predict.protoclass

Examples

```
# generate some data:
set.seed(1)
n <- 200
p <- 2
x <- matrix(rnorm(n * p), n, p)</pre>
y <- rep(c("A","B"), each=n/2)</pre>
x[y=="A", ] <- x[y=="A", ] + 3
itr <- sample(n, n/2)</pre>
xtr <- x[itr, ] # train</pre>
ytr <- y[itr]</pre>
xte <- x[-itr, ] # test</pre>
yte <- y[-itr]</pre>
# take prototype candidates identical to training points:
z <- xtr
dxz <- dist2(xtr, z)</pre>
# run protoclass:
prot <- protoclass(dxz=dxz, y=ytr, eps=2, lambda=1/n)</pre>
## Not run:
plot(prot,xtr,y=1+(ytr=="A"))
## End(Not run)
```

get predictions on test data:

protoclass

```
pred1 <- predict(prot, xte, z=xtr)
# get predictions on test data using pairwise distances:
pred2 <- predictwithd.protoclass(prot, dist2(xte, z))</pre>
```

Index

dist2,2

plot.protoclass, 2
predict.protoclass, 3, 4, 5
predictwithd.protoclass, 3, 3
print.protoclass, 4
protoclass, 3, 4
protoclass-package (protoclass), 4