How to use the psych package to display item and scale correlations

William Revelle

March 18, 2022

Contents

1 Overview of this and related documents 3
1.1 Jump starting the psych package-a guide for the impatient 3
1.2 For the not impatient 4
2 Multiple regression and mediation 4
3 Regression using setCor 5
3.1 Comparison with 1 m on complete data 5
3.1.1 It is important to know your data by describing it first 5
3.1.2 Now do the regressions 5
3.2 From a correlation matrix 6
3.3 The Hotelling example 8
3.4 Moderated multiple regression 12
3.5 Plotting the interactions 13
3.6 Comparisons to 1 m 14
4 Mediation using the mediate function 16
4.1 Simple mediation 17
4.2 Multiple mediators 20
4.3 Serial mediators 21
4.4 Single mediators, multiple covariates 22
4.5 Single predictor, single criterion, multiple covariates 24
4.6 Multiple predictors, single criterion 25
5 Mediation and moderation 25
5.1 To center or not to center, that is the question 30
5.2 Another example of moderated medation 32
5.3 Graphic Displays of Interactions 33
6 Partial Correlations 35
6.1 Partial some variables from the rest of the variables 36
6.2 Partial everything from everything 36
7 Related packages 37
8 Development version and a users guide 39
9 Psychometric Theory 39
10 SessionInfo 39

1 Overview of this and related documents

To do basic and advanced personality and psychological research using R is not as complicated as some think. This is one of a set of "How To" to do various things using R (R Core Team, 2020), particularly using the $p s y c h$ (Revelle, 2020) package.

The current list of How To's includes:

1. An introduction (vignette) of the psych package
2. An overview (vignette) of the p sych package
3. Installing R and some useful packages
4. Using R and the psych package to find omega h_{h} and ω_{t}.
5. Using R and the psych for factor analysis and principal components analysis.
6. Using the scoreItems function to find scale scores and scale statistics.
7. Using mediate and setCor to do mediation, moderation and regression analysis (this document)

1.1 Jump starting the psych package-a guide for the impatient

You have installed psych and you want to use it without reading much more. What should you do?

1. Activate the $p s y c h$ and $p s y c h T o o l s$ packages.
```
> library (psych)
> library(psychTools)
```

2. Input your data. If your file name ends in .sav, .text, .txt, .csv, .xpt, .rds, .Rds, .rda, or .RDATA, then just read it in directly using read. file. Or you can go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into $p s y c h$ using the read.clipboard.tab command:
```
myData <- read.file() #this will open a search window on your machine
# and read or load the file.
#or
#first copy your file to your clipboard and then
myData <- read.clipboard.tab() #if you have an excel file
```

3. Make sure that what you just read is right. Describe it and perhaps look at the first and last few lines. If you want to "view" the first and last few lines using a spreadsheet like viewer, use quickView.
```
describe (myData)
headTail (myData)
#or
quickView(myData)
```

4. Look at the patterns in the data. If you have fewer than about 10 variables, look at the SPLOM (Scatter Plot Matrix) of the data using pairs.panels.

5. Find the correlations of all of your data.

- Descriptively (just the values)

- Graphically

```
corPlot(myData) #does not show the values of the correlations
corPlot(myData, numbers=TRUE) #show the numbers,\
    #scales the character size by "significance"
corPlot(myData, numbers=TRUE,scale=FALSE) #show the numbers,
    # all characters the same size
corPlot(lowerCor(myData), numbers =TRUE) #print the correlations
    # and show them graphically
```


1.2 For the not impatient

The following pages are meant to lead you through the use of the setcor and mediate functions. The assumption is that you have already made psych active and want some example code.

2 Multiple regression and mediation

Mediation and moderation are merely different uses of the linear model $\hat{Y}=\mu+\beta_{y . x} X$ and are implemented in $p s y c h$ with two functions: setCor and mediate.

Given a set of predictor variables, X and a set of criteria variables, Y, multiple regression solves the equation $\hat{Y}=\mu+\beta_{y . x} X$ by finding $\beta_{y \cdot x}=C_{x x}{ }^{-1} C_{y x}$ where $C_{x x}$ is the covariances of the X variables and $C_{y x}$ is the covariances of predictors and the criteria.
Although typically done using the raw data, clearly this can also be done by using the covariance or correlation matrices. setCor was developed to handle the correlation matrix solution but has been generalized to the case of raw data. In the later case, it assumes a Missing Completely at Random (MCAR) structure, and thus uses all the data and finds pair.wise complete correlations. For complete data sets, the results are identical to using 1 m . By default, setCor uses standardized variables, but to compare with 1 m , it can use unstandardized variables.

3 Regression using setCor

Although typically done from a raw data matrix (using the 1 m function), it is sometimes useful to do the regression from a correlation or covariance matrix. setCor was developed for this purpose. From a correlation/covariance matrix, it will do normal regression as well as regression on partialled correlation matrices. With the raw data, it will also do moderated regression (centered or non-centered). In particular, for the raw data, it will work with missing data.

An interesting option, if using categorical or dichotomous data is first find the appropriate polychoric, tetrachoric, or poly-serial correlations using mixedCor and then use the resulting correlation matrix for analysis. The resulting correlations and multiple correlations will not match those of the 1 m analysis.

3.1 Comparison with 1 m on complete data

We use the attitude data set for our first example.

3.1.1 It is important to know your data by describing it first

3.1.2 Now do the regressions

Compare this solution with the results of the 1 m function.

R code

> summary(lm(rating ~ complaints + privileges, data=attitude))

```
Call:
lm(formula = rating ~ complaints + privileges, data = attitude)
```

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-12.7887	-5.6893	-0.0284	6.2745	9.9726

Coefficients:

Residual standard error: 7.102 on 27 degrees of freedom
Multiple R-squared: 0.6831, Adjusted R-squared: 0.6596
F-statistic: 29.1 on 2 and 27 DF, p-value: 1.833e-07

The graphic for the standardized regression is shown in (Figure 1).

```
Call: setCor(y = rating ~ complaints + privileges, data = attitude)
Multiple Regression from raw data
\begin{tabular}{lrrrrrrr} 
DV \(=\) rating & & & & & \\
& slope & se & \(t\) & lower.ci upper.ci & VIF \\
(Intercept) & 0.00 & 0.11 & 0.00 & \(1.0 e+00\) & -0.22 & 0.22 & 1.00 \\
complaints & 0.85 & 0.13 & 6.54 & \(5.2 e-07\) & 0.59 & 1.12 & 1.45 \\
privileges & -0.05 & 0.13 & -0.39 & \(7.0 e-01\) & -0.32 & 0.22 & 1.45 \\
\\
Residual Standard Error \(=\) & 0.58 with & 27 & degrees of freedom
\end{tabular}
Multiple Regression
    R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p
rating 0.83 0.68 0.71 0.5 0.0.0.66 0.08 0.0.0.1 29.1 2 27 1.83e-07
pdf
    2
```


3.2 From a correlation matrix

Perhaps most usefully, setCor will find the beta weights between a set of X variables, and a set of Y variables. Consider seven variables in the atttitude data set. We first find the correlation matrix (normally, this could just be supplied by the user). Then we find the regressions from the correlation matrix. Compare this regression to the (standardized) solution shown above. By specifying the number of observations (n.obs), we are able to apply various inferential tests.

A simple regression model

Figure 1: A simple multiple regression using the attitude data set (standardized solution is shown).

Compare this solution (from the correlation matrix) with the standardized solution for the raw data. set Cor does several things:

- Finds the regression weights (betas) between the predictor variables and each of the criterion variables.
- If the number of subjects is specified, or if the raw data are used, it also compares each of these betas to its standard error, finds a t statistic, and reports the probability of the $t>0$.
- It reports the Multiple R and R^{2} based upon these beta weights. In addition, following the tradition of the robust beauty of the improper linear models (Dawes, 1979) it also reports the unit weighted multiple correlations.
- The canonical correlations between the two sets (Hotelling, 1936) is reported.
- Cohen's set correlation (Cohen, 1982) as well as the unweighted correlation between the two sets of variables are reported.

3.3 The Hotelling example

```
                                    R code
> \#the second Kelley data from Hotelling
\(>\) kelley <- structure (list (speed \(=c(1,0.4248,0.042,0.0215,0.0573)\), power \(=c(0.4248\),
\(+1,0.1487,0.2489,0.2843)\), words \(=c(0.042,0.1487,1,0.6693\),
\(+0.4662)\), symbols \(=c(0.0215,0.2489,0.6693,1,0.6915)\), meaningless \(=c(0.0573\),
```

```
0.2843, 0.4662, 0.6915, 1)), .Names = c("speed", "power", "words",
+ "symbols", "meaningless"), class = "data.frame", row.names = c("speed",
+ "power", "words", "symbols", "meaningless"))
> #first show the correlations
> lowerMat (kelley)
```

speed power words symbl mnngl						
speed	1.00					
power	0.42	1.00				
words	0.04	0.15	1.00			
symbols	0.02	0.25	0.67	1.00		
meaningless	0.06	0.28	0.47	0.69	1.00	
> sc <- setCor (power + speed ~ words + symbols + meaningless, data=kelley) \#formula mode $>$ sc \#show it						
Call: setCor (y = power + speed \sim words + symbols + meaningless, data = kelley)						
Multiple Regression from matrix input						

DV $=$ power		
	slope	VIF
words	-0.03	1.81
symbols	0.12	2.72
meaningless	0.22	1.92

Multiple Regression
R
$R 2$ Ruw R2uw
power 0.290 .090 .260 .07
DV $=$ speed
slope VIF
words $\quad 0.051 .81$
symbols $\quad-0.072 .72$
meaningless 0.081 .92
Multiple Regression
R R2 Ruw R2uw
speed 0.070 .010 .050
Various estimates of between set correlations
Squared Canonical Correlations
[1] 0.09460 .0035
Average squared canonical correlation $=0.05$
Cohen's Set Correlation R2 $=0.1$
Unweighted correlation between the two sets $=0.18$

A plot of the regression model is shown as well (Figure 2).

pdf

2
But, we can also do multiple predictors and multiple criteria in the same call:

```
pdf
    2
```


The Kelley data set

Figure 2: The relationship between three predictors and two criteria from setcor. The data are from the Kelley data set reported by Hotelling (1936).

Regression Models

Figure 3: The relationship between three predictors and three criteria from setCor. The data are from the sat. act data set.

3.4 Moderated multiple regression

If we have the raw data, we can also find interactions (known as moderated multiple regression). This is done by zero centering the data (Cohen et al., 2003) and then multiplying the two terms of the interaction. As an option, we can not zero center the data (Hayes, 2013) which results in different "main effects" but the same interaction term. To show the equivalence of the interaction terms, we also must not standardize the results.


```
Call: setCor(y = SATQ ~ SATV * gender + ACT, data = sat.act, std = FALSE,
```

 plot \(=\) FALSE, zero \(=\) FALSE \()\)
 Multiple Regression from raw data

$D V=S A T Q$								
	slope	se	t	p	lower.ci	upper.ci	VIF	
(Intercept)	130.26	60.73	2.14	3.2e-02	11.02	249.50	394.41	
SATV	0.52	0.10	5.20	$2.7 e-07$	0.32	0.71	411.75	
gender	-18.71	35.31	-0.53	6.0e-01	-88.03	50.61	392.12	
АСт	7.72	0.77	10.05	$2.8 \mathrm{e}-22$	6.22	9.23	52.96	
SATV*gender	-0.03	0.06	-0.47	$6.4 \mathrm{e}-01$	-0.14	0.08	389.41	
Residual Standard Error $=80.91$ with 695 degrees of freedom								
Multiple Regression								
R	R2 Ruw	R2uw	Shrunk	en R2 S	of R2 o	verall F	df1 df2	p
SATQ 0.720	. 510.42	0.17		0.51	0.03	183.23	4695	$3.84 e-107$
pdf								
2								
pdf								

Another example of moderated mediation

Figure 4: Showing a moderated multiple regression using setcor. The data are from the sat. act data set.

3.5 Plotting the interactions

To visualize the effect of zero (mean) centering, it is useful to plot the various elements that go into the linear model. setCor returns the product terms as well as the original data. I combine the two datasets to make it clearer. Note that the correlations of the centered SATQ, SATV, and gender with the uncentered are 1.0 , but that the correlations with the product terms depend upon centering versus not. I drop the ACT variables from the figure for clarity (Figure 6).

```
pdf
```

 2

Figure 5: The difference between 0 and not 0 centering set Cor. The data are from the sat. act data set. In both cases, the data are not standarized.

3.6 Comparisons to lm

The setcor function duplicates the functionality of the 1 m function for complete data, although 1 m does not zero center and setcor will (by default). In addition, setcor finds correlations based upon pair.wise deletion of missing data, while 1 m does case.wise deletion. We compare the $l \mathrm{~m}$ and setCor results for complete data by setting the use $=$ "complete" option.

```
> lm(SATQ ~ SATV*gender + ACT, data=sat.act)
```

Call:
lm(formula $=$ SATQ ~ SATV * gender + ACT, data = sat.act)

| Coefficients: | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | | | | |
| 138.52395 | SATV | gender | ACT | SATV: gender |
| | 0.50280 | -22.24995 | 7.71702 | -0.01984 |

$>\bmod <-$ setCor (SATQ ~ SATV*gender + ACT, data=(sat.act), zero=FALSE, std=FALSE, use="complete")
> print (mod, digits=5)

```
Call: setCor(y = SATQ ~ SATV * gender + ACT, data = (sat.act), use = "complete",
    std = FALSE, zero = FALSE)
Multiple Regression from raw data
    DV = SATQ
\begin{tabular}{lrrrrrrr} 
& slope & se & \(t\) & p & lower.ci & upper.ci & VIF \\
(Intercept) & 138.72572 & 60.61339 & 2.28870 & \(2.2396 e-02\) & 19.71841 & 257.73303 & 390.24174 \\
SATV & 0.50280 & 0.09936 & 5.06050 & \(5.3589 \mathrm{e}-07\) & 0.30772 & 0.69788 & 406.47704 \\
gender & -22.24995 & 35.25783 & -0.63106 & \(5.2821 \mathrm{e}-01\) & -91.47457 & 46.97468 & 388.53343
\end{tabular}
```


Figure 6: The effect of not mean centering versus mean centering on the product terms. The first four variables were not zero centered, the second four were.

```
ACT [lllllllll
SATV*gender -0.01984 0.05652 -0.35105 7.2566e-01 
Residual Standard Error = 81.18031 with }695\mathrm{ degrees of freedom
Multiple Regression
```


4 Mediation using the mediate function

Mediation analysis is just linear regression reorganized slightly to show the direct effects of an X variable upon Y , partialling out the effect of a "mediator" (Figure 7). Although the statistical "significance" of the (c) path and the (c') path are both available from standard regression, the mediation effect (ab) is best found by boot strapping the regression model and displaying the empirical confidence intervals.

Figure 7: The classic mediation model. The Direct Path from X -> Y (c) is said to be mediated by the indirect path (a) to the mediator ($\mathrm{X}->\mathrm{M}$) and (b) from the mediator to $\mathrm{Y}(\mathrm{M}->\mathrm{Y})$. The mediation effect is (ab).

A number of papers discuss how to test for the effect of mediation and there are some very popular 'macros' for SPSS and SAS to do so (Hayes, 2013; Preacher and Hayes, 2004; Preacher et al., 2007; Preacher, 2015). A useful discussion of mediation and moderation with sample data sets is found in Hayes (2013). More recently, the processR package (Moon, 2020) has been released with these data sets. Although these data used to be be available from http://www.afhayes.com/public/hayes2018data.zip
this now longer seems to be case. ${ }^{1}$. I use these for comparisons with the results in Hayes (2013). Four of these data sets are now included in the psych package with the kind permission of their authors: Garcia is from Garcia et al. (2010), and Tal_Or is from Tal-Or et al. (2010), The Pollack correlation matrix is taken from an article by ?. The globalWarm data set is the glbwarm data set in the processR package and added to psychTools with the kind permission of the original author, Erik Nisbet.

To find the confidence intervals of the effect of mediation (the reduction between the c and c ' paths, where $c^{\prime}=c-a b$), I bootstrap the results by randomly sampling from the data with replacement (n.iter $=5000$) times.

For these examples, the data files Garcia (Garcia et al., 2010) and Tal_Or (Tal-Or et al., 2010) are included in the psych package. The estrss data set and glbwarm were originally downloaded from the Hayes (2013) data seta and stored in a local directory on my computer. They are now available from the process R package Moon (2020).

The syntax is that $y \sim x+(m)$ where m is the mediating variable. By default the output is to two decimals, as is the graphic output. This can be increased by returning the output to an object and then printing that object with the desired number of decimals.

4.1 Simple mediation

The first example (Hayes, 2013, mod.4.5) is taken from (Tal-Or et al., 2010) and examines the mediating effect of "Presumed Media Influence" (pmi) on the intention to act (reaction) based upon the importance of a message (import). The data are in the Tal_Or data set in psych (with the kind permission of Nurit Tal-Or, Jonanathan Cohen, Yariv Tasfati, and Albert Gunther). In the Hayes (2013) book, this is the pmi data set.

> data(Tal.Or) > psych::describe(Tal_Or) \#descriptive statistics												
	vars n	mean	sd	median	trimmed	mad	min	max		skew	tosis	se
cond	1123	0.47	0.50	0.00	0.46	0.00	0	1	1	0.11	-2.00	0.05
pmi	2123	5.60	1.32	6.00	5.78	1.48	1	7	6	-1.17	1.30	0.12
import	3123	4.20	1.74	4.00	4.26	1.48	1	7	6	-0.26	-0.89	0.16
reaction	4123	3.48	1.55	3.25	3.44	1.85	1	7	6	0.21	-0.90	0.14
gender	5123	1.65	0.48	2.00	1.69	0.00	1	2	1	-0.62	-1. 62	0.04
age	6123	24.63	5.80	24.00	23.76	1.48	18	61	43	4.71	24.76	0.52
```> mod4.4 <- mediate(reaction ~ cond + (pmi), data =Tal_Or) > mod4.4```												

Mediation/Moderation Analysis
Call: mediate ( $y=$ reaction $\sim$ cond + (pmi), data $=$ Tal_Or)

[^0]```
The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = pmi .
Total effect(c) of cond on reaction = 0.5 S.E. = 0.28 t = 1.79 df= 121 with p = 0.077
Direct effect (c') of cond on reaction removing pmi = 0.25 S.E. = 0.26 t = 0.99 df= 120
Indirect effect (ab) of cond on reaction through pmi = 0.24
Mean bootstrapped indirect effect = 0.24 with standard error = 0.13 Lower CI = 0 Upper CI = 0.52
R=0.45 R2 = 0.21 F = 15.56 on 2 and 120 DF p-value: 1.31e-08
To see the longer output, specify short = FALSE in the print statement or ask for the summary
R code
> #print(mod4.4, digits = 4) # in order to get the precision of the Hayes (2013) p 99 example
pdf
    2
```

Mediation model

Figure 8: A simple mediation model (Hayes, 2013, p 99) with data derived from Tal-Or et al. (2010). The effect of a salience manipulation (cond) on the intention to buy a product (reaction) is mediated through the presumed media influence (pmi).

A second example from (Hayes, 2013) is an example of moderated mediated effect. The data are from (Garcia et al., 2010) and report on the effect of protest on reactions to a case of sexual discrimination.

```
> data(GSBE) #alias to Garcia data set
> #compare two models (bootstrapping n.iter set to 50 for speed
> # 1) mean center the variables prior to taking product terms
> mod1 <- mediate (respappr ~ prot2 * sexism +(sexism), data=Garcia,n.iter=50
+ ,main="Moderated mediation (mean centered)")
> # 2) do not mean center
> mod2 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE, n.iter=50,
        main="Moderated mediation (not centered")
> summary (mod1)
```

Call: mediate (y = respappr \sim prot 2 * sexism + (sexism), data = Garcia,
n.iter $=50$, main $=$ "Moderated mediation (mean centered)")
Direct effect estimates (traditional regression) (c') $X+M$ on Y
respappr se t df Prob
Intercept $\quad-0.01 \quad 0.10-0.12125 \quad 9.07 \mathrm{e}-01$
prot2 $1.46 \quad 0.22 \quad 6.73 \quad 125 \quad 5.52 \mathrm{e}-10$
prot2*sexism $\quad 0.81 \quad 0.28 \quad 2.871254 .78 \mathrm{e}-03$
$\begin{array}{llllll}\text { sexism } & 0.02 \quad 0.13 & 0.18 \quad 125 & 8.56 e-01\end{array}$
$R=0.54 \mathrm{R} 2=0.3 \quad \mathrm{~F}=17.53$ on 3 and 125 DF p -value: $1.46 \mathrm{e}-09$

| Total effect estimates | (c) | (X on | Y) | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | respappr | se | t | df | Prob |
| Intercept | -0.01 | 0.10 | -0.12 | 126 | $9.06 e-01$ |
| prot2 | 1.46 | 0.22 | 6.77 | 126 | $4.43 e-10$ |
| prot2*sexism | 0.81 | 0.28 | 2.89 | 126 | $4.49 e-03$ |

| 'a' effect | estimates (X on M) | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | sexism | se | t | df | Prob |
| Intercept | 0.00 | 0.07 | -0.02 | 126 | 0.986 |
| prot2 | 0.07 | 0.15 | 0.47 | 126 | 0.642 |
| prot2*sexism | 0.09 | 0.19 | 0.44 | 126 | 0.661 |

 'b' effect estimates (\(M\) on \(Y\) controlling for \(X\))
 respappr se t df Prob
sexism $\quad 0.02 \quad 0.13 \quad 0.18 \quad 125 \quad 0.856$
'ab' effect estimates (through mediators)
respappr boot sd lower upper

| | respappr | boot | sd lower | upper | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| prot 2 | 0 | 0 | 0.02 | -0.04 | 0.04 |
| prot $2 *$ sexism | 0 | 0 | 0.04 | -0.07 | 0.06 |

Compare the $a b$ estimates for each mediator
mean.diff sd.diff low high
sexism*prot2*sexism x sexism*prot2 $\quad 0 \quad 0.03-0.070 .07$
> summary (mod2)
Call: mediate (y = respappr \sim prot 2 * sexism + (sexism), data = Garcia,
n.iter $=50$, zero $=$ FALSE, main $=$ "Moderated mediation (not centered")
Direct effect estimates (traditional regression) (c') $X+M$ on Y

```
        respappr se t df Prob
Intercept 6.57 1.21 5.43 125 2.83e-07
prot2 -2.69 1.45 -1.85 125 6.65e-02
prot2*sexism 0.81 0.28 2.87 125 4.78e-03
sexism -0.53 0.24 -2.24 125 2.67e-02
R=0.54 R2 = 0.3 F = 17.53 on 3 and 125 DF p-value: 1.46e-09
\begin{tabular}{lrlrlr} 
Total effect estimates & (c) & (X on & Y) & \\
& respappr & se & t & df & Prob \\
Intercept & 3.88 & 0.18 & 21.39 & 126 & \(9.14 \mathrm{e}-44\) \\
prot2 & 0.00 & 0.84 & 0.00 & 126 & \(9.96 \mathrm{e}-01\) \\
prot2*sexism & 0.28 & 0.16 & 1.79 & 126 & \(7.56 \mathrm{e}-02\)
\end{tabular}
\begin{tabular}{lrrrrrr} 
'a' effect estimates (X on M) & & \\
& sexism & se & t & df & Prob \\
Intercept & 5.07 & 0.07 & 75.12 & 126 & \(1.69 \mathrm{e}-106\) \\
prot2 & -5.07 & 0.31 & -16.33 & 126 & \(6.81 \mathrm{e}-33\) \\
prot2*sexism & 1.00 & 0.06 & 17.15 & 126 & \(9.41 \mathrm{e}-35\)
\end{tabular}
    'b' effect estimates (M on Y controlling for X)
        respappr se t df Prob
sexism -0.53 0.24 -2.24 125 0.0267
    'ab' effect estimates (through mediators)
            respappr boot sd lower upper
prot2 2.68 2.28 1.86 -1.08 5.38
prot2*sexism -0.53 -0.45 0.37 -1.06 0.22
Compare the ab estimates for each mediator
    mean.diff sd.diff low high
sexism*prot2*sexism x sexism*prot2 -2.73 2.22 -6.45 1.3
```


4.2 Multiple mediators

It is trivial to show the effect of multiple mediators. I do this by adding the second (or third) mediator into our equation. I use the Tal_Or data set (Tal-Or et al., 2010) again. I show the graphical representation in Figure 9.

Hayes example 5.3

Figure 9: A mediation model with two mediators (Hayes, 2013, p 131). The data are data derived from Tal-Or et al. (2010). The effect of a salience manipulation (cond) on the intention to buy a product (reaction) is mediated through the presumed media influence (pmi) and importance of the message (import).

4.3 Serial mediators

The example from Hayes (2013) for two mediators, where one effects the second, is a bit more complicated and currently can be done by combining two separate analyses. The first is just model 5.4, the second is the effect of cond on pmi mediated by import.

Combining the two results leads to the output found on (Hayes, 2013, page 153).

```
pdf
    2
> #model 5.4 + mod5.7 is the two chained mediator model
> mod5.7 <- mediate(pmi ~ cond + (import) , data = Tal_Or)
> summary(mod5.7, digits=4)
Call: mediate(y = pmi ~ cond + (import), data = Tal_Or)
Direct effect estimates (traditional regression) (c') X + M on Y
            pmi se t df Prob
Intercept 4.6104 0.3057 15.0836 120 1.7543e-29
cond 0.3536 0.2325 1.5207 120 1.3096e-01
import 0.1961 0.0671 2.9228 120 4.1467e-03
R = 0.3114 R2 = 0.097 F = 6.4428 on 2 and 120 DF p-value: 0.0021989
    Total effect estimates (c) (X on Y)
            pmi se t df Prob
Intercept 5.3769 0.1618 33.2222 121 1.1593e-62
cond 0.4765 0.2357 2.0218 121 4.5401e-02
    'a' effect estimates (X on M)
    import se t df Prob
Intercept 3.9077 0.2127 18.3704 121 8.3936e-37
cond 0.6268 0.3098 2.0234 121 4.5235e-02
    'b' effect estimates (M on Y controlling for X)
    pmi se t df Prob
import 0.1961 0.0671 2.9228 120 0.0041467
    'ab' effect estimates (through mediators)
    pmi boot sd lower upper
cond 0.1229 0.1253 0.0842 1e-04 0.3199
```


4.4 Single mediators, multiple covariates

The Pollack data set (Pollack et al., 2012) is used as an example of multiple covariates (included in psychTools as a correlation matrix). The raw data are available from the process package as estress. Confidence in executive decision making ("Entrepeneurial self-efficacy), gender (sex), and length of time in business (tenure) are used as covariates. There are two ways of doing this: enter them as predictors of the criterion or to partial them out. The first approach estimates their effects, the second just removes them.


```
social.ties 0.07 -0.06 0.01 0.19 0.13 1.00
economic.stress -0.15 0.09 0.07 -0.16 -0.09 -0.07 1.00
depression 
withdrawal 
R code
+ data=Pollack, n.obs=262)
> summary(mod6.2)
```

Call: mediate (y = withdrawal ~ economic.stress + self.efficacy + sex +
tenure + (depression), data $=$ Pollack, $\mathrm{n} . \mathrm{obs}=262$)
Direct effect estimates (traditional regression) (c') $X+M$ on Y
withdrawal se t df Prob
Intercept $\quad 0.000 .06 \quad 0.002561 .00 \mathrm{e}+00$
economic.stress $\quad-0.110 .06-1.82256$ 6.99e-02
self.efficacy $\quad-0.150 .06-2.67 \quad 256 \quad 8.01 e-03$
sex
-0.03 0.06-0.50 256 6.15e-01
tenure
$-0.010 .06-0.212568 .37 e-01$
depression $\quad 0.42 \quad 0.06 \quad 6.83 \quad 256 \quad 6.05 \mathrm{e}-11$
$R=0.45 \mathrm{R} 2=0.21 \quad \mathrm{~F}=13.35$ on 5 and $256 \mathrm{DF} \quad \mathrm{p}$-value: $1.45 \mathrm{e}-11$

| Total effect estimates (c) | (X on | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| withdrawal | se | t | df | Prob | |
| | 0.00 | 0.06 | 0.00 | 257 | 1.000000 |
| Intercept | 0.02 | 0.06 | 0.34 | 257 | 0.737000 |
| economic.stress | -0.24 | 0.06 | -3.92 | 257 | 0.000113 |
| self.efficacy | -0.03 | 0.06 | -0.49 | 257 | 0.624000 |
| sex | -0.05 | 0.06 | -0.91 | 257 | 0.366000 |

| 'a' effect es | imates (X depression | $\begin{array}{r} \text { on M) } \\ \text { se } \end{array}$ | t | df | Prob |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | 0.00 | 0.06 | 0.00 | 257 | $1.00 \mathrm{e}+00$ |
| economic.stress | 0.31 | 0.06 | 5.36 | 257 | $1.88 \mathrm{e}-07$ |
| self.efficacy | -0.21 | 0.06 | -3.56 | 257 | 4.36e-04 |
| sex | 0.00 | 0.06 | -0.07 | 257 | $9.46 e-01$ |
| tenure | -0.10 | 0.06 | -1.82 | 257 | 6.98e-02 |

'b' effect estimates (M on Y controlling for X)

$$
\text { withdrawal se } t \text { df Prob }
$$

depression $\quad 0.42 \quad 0.06 \quad 6.83256 \quad 6.05 e-11$

| 'ab' effect estimates (through mediators) | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | withdrawal | boot | sd lower | upper | |
| | 0.13 | 0.08 | 0.02 | 0.04 | 0.13 |
| economic.stress | -0.09 | -0.09 | 0.02 | -0.14 | -0.04 |
| self.efficacy | 0.00 | 0.01 | 0.02 | -0.02 | 0.04 |
| sex | -0.04 | -0.05 | 0.02 | -0.09 | -0.02 |

Compare the ab estimates for each mediator

| | mean.diff | sd.diff | low | high |
| :--- | ---: | ---: | ---: | ---: |
| depression*self.efficacy x depression*economic.stress | -0.17 | 0.04 | -0.25 | -0.09 |
| depression*sex \times depression*economic.stress | -0.07 | 0.03 | -0.13 | -0.02 |
| depression*sex \times depression*self.efficacy | 0.10 | 0.03 | 0.05 | 0.16 |
| depression*tenure x depression*economic.stress | -0.13 | 0.04 | -0.21 | -0.07 |
| depression*tenure x depression*self.efficacy | 0.03 | $0.02-0.01$ | 0.08 | |
| depression*tenure x depression*sex | -0.06 | 0.03 | -0.12 | -0.02 |

pdf 2

The graphical output (Figure 10) looks a bit more complicated than the figure in (Hayes, 2013, p 177) because I are showing the covariates as causal paths.

Simple mediation, 3 covariates

Figure 10: A mediation model with three covariates (Hayes, 2013, p 177). Compare this to the solution in which they are partialled out. (Figure 11).

4.5 Single predictor, single criterion, multiple covariates

An alternative way to display the previous results is to remove the three covariates from the mediation model. I do this by partialling out the covariates. This is represented in the mediate code by a negative sign. (Figure 11)

```
R code
> mod6.2a <- mediate (withdrawal ~ economic.stress -self.efficacy - sex - tenure + (depression),
+ data=Pollack, n.obs=262)
> summary (mod6.2a)
Call: mediate(y = withdrawal ~ economic.stress - self.efficacy - sex -
    tenure + (depression), data = Pollack, n.obs = 262)
Direct effect estimates (traditional regression) (c') X + M on Y
withdrawal* se t df Prob
Intercept 0.00 0.06 0.00 256 1.00e+00
economic.stress -0.11 0.06 -1.80 256 7.23e-02
depression 0.42 0.06 6.78 256 8.50e-11
R = 0.39 R2 = 0.15 F = 23.41 on 2 and 256 DF p-value: 4.6e-10
Total effect estimates (c) (X on Y)
```



```
economic.stress 0.02 0.06 0.34 257 0.737
    'a' effect estimates (X on M)
        depression se t df Prob
Intercept 0.00 0.06 0.00 257 1.00e+00
economic.stress 0.31 0.06 5.36 257 1.88e-07
    'b' effect estimates (M on Y controlling for X)
        withdrawal* se t df Prob
depression 0.42 0.06 6.83 256 6.05e-11
    'ab' effect estimates (through mediators)
        withdrawal* boot sd lower upper
economic.stress 0.13 0.15 0.03 0.09 0.22
pdf
    2
```


4.6 Multiple predictors, single criterion

It is straightforward to use multiple predictors see (Hayes, 2013, p196) and in fact I did so in the previous example where the predictors were treated as covariates. mediate also allows for multiple criteria.

5 Mediation and moderation

We already saw how to do moderation in the discussion of setCor. Combining the concepts of mediation with moderation is done in mediate. That is, I can find the linear model of product terms as they are associated with dependent variables and regressed on the mediating variables.

The Garcia data set (Garcia et al., 2010) can be used for an example of moderation. (This was taken from (Hayes, 2013) but is used with kind permission of Donna M. Garcia, Michael T. Schmitt,

Simple mediation, 3 covariates (partialled out)

Figure 11: Show the mediation model from Figure 10 with the covariates (ese, sex, tenure) removed.

Nyla R. Branscombe, and Naomi Ellemers.) Just as setCor and lm will find the interaction term by forming a product, so will mediate. Notice that by default, setCor reports zero centered and standardized regressions, mediate reports zero centered but not standardized regressions, and some of the examples from Hayes (2013) do not zero center the data. Thus, I specify zero=FALSE to get the Hayes (2013) results.

It is important to note that the protest data set discussed here is from the 2013 examples and not the more recent 2018 examples available from afhayes.com. The 2013 data have a dichotomous protest variable, while the 2018 data set has three levels for the protest variable. The Garcia data set is composed of the 2018 data set with the addition of a dichotomous variable (prot2) to match the 2013 exampes.

We consider how the interaction of sexism with protest affects the mediation effect of sexism (Hayes, 2013, p 362), I contrast the lm, setCor and mediate approaches. For reasons to be discussed in the next section, I do not zero center the variables. The graphic output is in Figure 12 and the output is below. For comparison purposes, I show the results from the 1 m as well as setCor and mediate.


```
Call:
lm(formula = respappr ~ prot2 * sexism, data = Garcia)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-3.4984 & -0.7540 & 0.0801 & 0.8301 & 3.1853
\end{tabular}
Coefficients:
```



```
Residual standard error: 1.144 on 125 degrees of freedom
Multiple R-squared: 0.2962, Adjusted R-squared: 0.2793
F-statistic: 17.53 on 3 and 125 DF, p-value: 1.456e-09
> #show the setCor analysis
> setCor(respappr ~ prot2* sexism ,data=Garcia,zero=FALSE,main="Moderation",std=FALSE)
Call: setCor(y = respappr ~ prot2 * sexism, data = Garcia, std = FALSE,
    main = "Moderation", zero = FALSE)
Multiple Regression from raw data
    DV = respappr
\begin{tabular}{lrrrrrrr} 
& slope & se & t & p lower.ci & upper.ci & VIF \\
(Intercept) & 6.57 & 1.21 & 5.43 & \(2.8 \mathrm{e}-07\) & 4.17 & 8.96 & 144.06 \\
prot2 & -2.69 & 1.45 & -1.85 & \(6.7 e-02\) & -5.56 & 0.19 & 141.55
\end{tabular}
```

```
lrrrism rexism re.53 0.24 -2.24 2.7e-02 
Residual Standard Error = 1.14 with }125\mathrm{ degrees of freedom
Multiple Regression
R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 P
respappr 0.54 0.3 0.41 0.17 0.28 0.0.06 17 17.53 3 125 1.46e-09
    #then show the mediate results
modgarcia <-mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia, zero=FALSE,main="Moderated mediation")
> summary(modgarcia)
```

Call: mediate (y = respappr \sim prot 2 * sexism + (sexism), data = Garcia,
zero = FALSE, main $=$ "Moderated mediation")
Direct effect estimates (traditional regression) (c') $X+M$ on Y
respappr se t df Prob
Intercept $\quad 6.57 \quad 1.21 \quad 5.43 \quad 125 \quad 2.83 \mathrm{e}-07$
prot2 -2.69 1.45-1.85 125 6.65e-02
prot2*sexism $\quad 0.81 \quad 0.28 \quad 2.87 \quad 125 \quad 4.78 \mathrm{e}-03$
sexism -0.53 0.24 -2.24 125 2.67e-02
$R=0.54 \mathrm{R} 2=0.3 \quad \mathrm{~F}=17.53$ on 3 and 125 DF p -value: $1.46 \mathrm{e}-09$

| Total effect estimates | (c) | (X on | Y) | | |
| :--- | ---: | :--- | ---: | ---: | ---: |
| | respappr | se | t | df | Prob |
| Intercept | 3.88 | 0.18 | 21.39 | 126 | $9.14 \mathrm{e}-44$ |
| prot2 | 0.00 | 0.84 | 0.00 | 126 | $9.96 \mathrm{e}-01$ |
| prot2*sexism | 0.28 | 0.16 | 1.79 | 126 | $7.56 \mathrm{e}-02$ |

'a' effect estimates (X on M)

| | sexism | se | t | $d f$ | Prob |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Intercept | 5.07 | 0.07 | 75.12 | 126 | $1.69 \mathrm{e}-106$ |
| prot2 | -5.07 | 0.31 | -16.33 | 126 | $6.81 \mathrm{e}-33$ |
| prot2*sexism | 1.00 | 0.06 | 17.15 | 126 | $9.41 \mathrm{e}-35$ |

 'b' effect estimates (M on \(Y\) controlling for \(X\))
 respappr se \(t\) df Prob
 sexism $\quad-0.53 \quad 0.24 \quad$-2.24 1250.0267
'ab' effect estimates (through mediators)
respappr boot sd lower upper
$\begin{array}{llllll}\text { prot2 } 2.68 \quad 2.69 & 1.63 & -0.66 & 5.58\end{array}$
prot2*sexism $\quad-0.53-0.53 \quad 0.32-1.10 \quad 0.13$
Compare the ab estimates for each mediator

sexism*prot $2 \star$ sexism \times sexism*prot2 | mean. diff sd.diff | low high | | |
| ---: | ---: | ---: | ---: | ---: |
| -3.22 | 1.95 | -6.68 | 0.78 |

$>$
pdf
2

An example of moderated mediation

Figure 12: Moderated mediation from (Hayes, 2013, p 362). The data are from Garcia et al. (2010).

5.1 To center or not to center, that is the question

We have discussed the difference between zero centering and not zero centering. Although Hayes (2013) seems to prefer not centering, some of his examples are in fact centered. So, when we examine Table 8.2 and try to replicate the regression, we need to zero center the data.

With the global warming data from Hayes (2013), the default (uncentered) regression does not reproduce his Table, but zero centering does. To this in 1 m requires two steps, but we can do this in setCor with the zero=TRUE or zero=FALSE option.

R code

> lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm)

```
Call:
lm(formula = govact ~ age * negemot + posemot + ideology + sex,
    data = globalWarm)
Coefficients:
\begin{tabular}{rrrrrrrr} 
(Intercept) & age & negemot & posemot & ideology & sex & age: negemot \\
5.173849 & -0.023879 & 0.119583 & -0.021419 & -0.211515 & -0.011191 & 0.006331 \\
& & &
\end{tabular}
> # but zero center and try again
> glbwarmc <-data.frame(scale(globalWarm,scale=FALSE))
> lm(govact ~ age * negemot + posemot + ideology + sex, data=glbwarmc)
Call:
lm(formula = govact ~ age * negemot + posemot + ideology + sex,
    data = glbwarmc)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (Intercept) & age & negemot & posemot & ideology & sex & age: negemot \\
\hline 0.008979 & -0.001354 & 0.433184 & -0.021419 & -0.211515 & -0.011191 & 0.006331 \\
\hline
\end{tabular}
```

```
> mod.glb <- setCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,zero=FALSE,std=FALSE)
> print(mod.glb,digits=6)
```

Call: setCor $(y=$ govact \sim age $*$ negemot + posemot + ideology + sex,
data $=$ globalWarm, std $=$ FALSE, zero $=$ FALSE)
Multiple Regression from raw data
DV = govact

| | slope | se | t | p | lower.ci | upper.ci | VIF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 5.173849 | 0.338451 | 15.286838 | $1.58157 \mathrm{e}-46$ | 4.509502 | 5.838197 | 83.562746 |
| age | -0.023879 | 0.005980 | -3.992944 | $7.12038 \mathrm{e}-05$ | -0.035618 | -0.012140 | 70.969029 |
| negemot | 0.119583 | 0.082535 | 1.448881 | $1.47759 \mathrm{e}-01$ | -0.042425 | 0.281591 | 74.502022 |
| posemot | -0.021419 | 0.027904 | -0.767597 | 4.42951e-01 | -0.076193 | 0.033354 | 6.601203 |
| ideology | -0.211515 | 0.026833 | -7.882678 | $1.03603 \mathrm{e}-14$ | -0.264185 | -0.158845 | 9.956941 |
| sex | -0.011191 | 0.076003 | -0.147240 | 8.82979e-01 | -0.160378 | 0.137997 | 2.057840 |
| age*negemot | 0.006331 | 0.001543 | 4.103542 | 4.48155e-05 | 0.003302 | 0.009359 | 69.525233 |
| Residual Standard Error $=1.056984$ with 808 degrees of freedom | | | | | | | |

Multiple Regression

R code

> mod.glb0 <- setCor (govact ~ age * negemot + posemot + ideology + sex, data=globalWarm, std=FALSE) > print (mod.glb0,digits=6)

Call: setCor $(y=$ govact \sim age * negemot + posemot + ideology + sex,
data $=$ globalWarm, std = FALSE)
Multiple Regression from raw data

| | slope | se | t | p | lower.ci | upper.ci | VIF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 0.008979 | 0.037089 | 0.242103 | 8.08762e-01 | -0.063823 | 0.081782 | 1.003493 |
| age | -0.001354 | 0.002348 | -0.576864 | 5.64192e-01 | -0.005963 | 0.003254 | 1.071058 |
| negemot | 0.433184 | 0.026243 | 16.506679 | 5.75775e-53 | 0.381671 | 0.484696 | 1.172207 |
| posemot | -0.021419 | 0.027904 | -0.767597 | 4.42951e-01 | -0.076193 | 0.033354 | 1.028663 |
| ideology | -0.211515 | 0.026833 | -7.882678 | $1.03603 \mathrm{e}-14$ | -0.264185 | -0.158845 | 1.198910 |
| sex | -0.011191 | 0.076003 | -0.147240 | 8.82979e-01 | -0.160378 | 0.137997 | 1.052907 |
| age*negemot | 0.006331 | 0.001543 | 4.103542 | 4.48155e-05 | 0.003302 | 0.009359 | 1.018237 |

Residual Standard Error $=1.056984$ with 808 degrees of freedom

Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
$\begin{array}{lllllllllllllll}\text { govact } 0.633093 & 0.400806 & 0.458776 & 0.210475 & 0.396357 & 0.026299 & 90.07983 & 6 & 808 & 1.824604 e-86\end{array}$
So, when we do the mediated moderation model, we need to use the zero centered option to match the Hayes (2013) results from Figure 8.5.
R code
> \#by default, mediate zero centers before finding the products
$>$ mod.glb <- mediate (govact ~ age * negemot + posemot + ideology + sex + (age), data=globalWarm, zero=TRUE) > summary (mod.glb, digits=4)

```
Call: mediate(y = govact ~ age * negemot + posemot + ideology + sex +
```

 (age), data \(=\) globalWarm, zero \(=\) TRUE)

| Total effect estimates (c) | | | | | | | (X on Y) | |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| | govact | se | t | df | Prob | | | |
| Intercept | 0.0090 | 0.0371 | 0.2420 | 809 | $8.0881 e-01$ | | | |
| negemot | 0.4328 | 0.0262 | 16.5043 | 809 | $5.8181 e-53$ | | | |
| posemot | -0.0220 | 0.0279 | -0.7890 | 809 | $4.3036 e-01$ | | | |
| ideology | -0.2145 | 0.0263 | -8.1510 | 809 | $1.3690 e-15$ | | | |
| sex | -0.0173 | 0.0752 | -0.2304 | 809 | $8.1783 e-01$ | | | |
| age*negemot | 0.0063 | 0.0015 | 4.1025 | 809 | $4.4999 e-05$ | | | |

'a' effect estimates (X on M)

| | ge | se | | df | rob |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | 0.0044 | 0.5554 | 0.0079 | 809 9.936 | 6e-01 |
| egemot | 0.2757 | 0.3929 | 0.7017 | 8094.830 | 5e-01 |
| posemot | 0.4232 | 0.4176 | 1.0135 | 8093.11 | e-01 |
| ideology | 2.2079 | 0.3943 | 5.6002 | 8092.93 | e-08 |
| x | 4.5345 | 1.1269 | 4.0238 | 8096.2 | e-05 |
| age*negemot | 0.0031 | 0.0231 | 0.1346 | 8098.9 | e-01 |
| 'b' effect estimates (M on Y controlling for X) govact se t df Prob | | | | | |
| age -0.0014 | 0.0023 | -0.5769 | 8080 | 419 | |
| 'ab' effect estimates (through mediators) | | | | | |
| | govact | boot | sd | lower | upper |
| negemot | -0.0004 | 0e+00 | 0.0001 | -0.0002 | 0.0002 |
| posemot | -0.0006 | -6e-04 | 0.0015 | -0.0041 | 0.0019 |
| ideology | -0.0030 | -3e-03 | 0.0051 | -0.0132 | . 0068 |
| sex | -0.0061 | -6e-03 | 0.0105 | -0.0275 | 0.0142 |
| age*negemot | 0.0000 | 0e+00 | 0.0001 | -0.0002 | 0.0002 |

| ompare the ab estimates for each mediator | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | dis | sd.diff | low | high |
| t x age*negemot | -0.0006 | 0.0015 | -0.0041 | 0.0019 |
| age*ideology x age*negemot | -0.0030 | 0.0051 | -0.0132 | 0.0068 |
| age*ideology x age*pos | -0.0024 | 0.0043 | -0.0114 | 0.0055 |
| ge*sex x age*negemot | -0.0060 | 0.0104 | -0.0274 | 0.0141 |
| e*sex x age*posemot | -0.0054 | 0.0096 | -0.0260 | . 0130 |
| e*sex x age*ideology | -0.0030 | 0.0061 | -0.0167 | 0.0084 |
| ge*age*negemot x age*negemot | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| age*age*negemot x age*posemot | 0.0006 | 0.0015 | -0.0019 | 0.0041 |
| age*age*negemot x age*ideology | 0.0030 | 0.0051 | -0.0068 | 0.0132 |
| gemot x age*sex | 0.0060 | 0.010 | -0.0141 | 0.0274 |

Compare this output to that of Table 8.2 and Figure 8.5 (p 258-259).

5.2 Another example of moderated medation

The Garcia data set (protest in Hayes (2013)) is another example of a moderated analysis. We can use either set Cor or mediate to examine this data set. The defaults for these two differ, in that setcor assumes we want to zero center and standardize, while mediate defaults to not standardizing but also defaults to zero (mean) centering. Note that in the next examples we specify we do not want to standardize nor to mean center.


```
Call:
lm(formula = liking ~ prot2 * sexism + respappr, data = Garcia)
Coefficients:
\begin{tabular}{rrrrrr} 
(Intercept) & prot2 & sexism & respappr & prot2:sexism \\
5.3471 & -2.8075 & -0.2824 & 0.3593 & 0.5426
\end{tabular}
> setCor(liking ~ prot2* sexism + respappr, data = Garcia, zero=FALSE,std=FALSE)
Call: setCor(y = liking ~ prot2 * sexism + respappr, data = Garcia,
        std = FALSE, zero = FALSE)
Multiple Regression from raw data
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & slope & se & t & p & lower.ci & upper.ci & VIF \\
\hline (Intercept) & 5.35 & 1.06 & 5.04 & 1.6e-06 & 3.25 & 7.45 & 178.04 \\
\hline prot2 & -2.81 & 1.16 & -2.42 & \(1.7 e-02\) & -5.10 & -0.51 & 145.43 \\
\hline sexism & -0.28 & 0.19 & -1.49 & \(1.4 \mathrm{e}-01\) & -0.66 & 0.09 & 152.73 \\
\hline respappr & 0.36 & 0.07 & 5.09 & 1.3e-06 & 0.22 & 0.50 & 20.08 \\
\hline prot2*sexism & 0.54 & 0.23 & 2.36 & 2.0e-02 & 0.09 & 1.00 & 153.84 \\
\hline esidual Sta & rd & O & 0.9 & 9 with & 124 deg & es of & edom \\
\hline
\end{tabular}
    Multiple Regression
```



```
Call: mediate(y = liking ~ prot2 * sexism + respappr, data = Garcia,
```

Call: mediate(y = liking ~ prot2 * sexism + respappr, data = Garcia,
zero = FALSE)
No mediator specified leads to traditional regression

| | liking | se | t | df | Prob |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Intercept | 5.35 | 1.06 | 5.04 | 124 | $1.60 \mathrm{e}-06$ |
| prot2 | -2.81 | 1.16 | -2.42 | 124 | $1.70 \mathrm{e}-02$ |
| sexism | -0.28 | 0.19 | -1.49 | 124 | $1.39 \mathrm{e}-01$ |
| respappr | 0.36 | 0.07 | 5.09 | 124 | $1.28 \mathrm{e}-06$ |
| prot2*sexism | 0.54 | 0.23 | 2.36 | 124 | $1.97 \mathrm{e}-02$ |

R=0.53 R2 = 0.28 F = 12.26 on 4 and 124 DF p-value: 1.99e-08
pdf

```

\subsection*{5.3 Graphic Displays of Interactions}

In order to graphically display interactions, particularly if one of the variable is categorical, we can plot separate regression lines for each value of the categorical variable. We do this for the Garcia data set to show the interaction of protest with sexism. (see Figure 14). This is just an example of how to use Core-R to do graphics and is not a feature of psych.
```

Garcia\$protest: 0
NULL

```

\section*{Another example of moderated mediation}


Figure 13: A simple moderated regression analysis of the protest data set. The data were not zero centered. This shows the strength of the three regressions. Figure 14 shows the actual data and the three regression lines.
```

Garcia\$protest: 1

```
NULL
Garcia\$protest: 2
NULL
pdf
2


Figure 14: Showing the interaction between type of protest and sexism from the Garcia data set. The strength of the regression effects is shown in Fig 13.

\section*{6 Partial Correlations}

Although not strickly speaking part of mediation or moderation, the use of partial correlations can be addressed here.

\subsection*{6.1 Partial some variables from the rest of the variables}

Given a set of X variables and a set of Y variables, we can control for an additional set of Z variables when we find the correlations between X and Y . This is effectively what happens when we want to add covariates into a model. We see this when we compare the regression model for government action as a function of the iteraction of ideology and age with some covariates, or when we partial them out first.
```

\#first, the more complicated model
mod.glb <- setCor(govact ~ age * negemot + posemot + ideology + sex,
+
data=globalWarm, std=FALSE)
> print(mod.glb,digits=3)

```
```

Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex,
data = globalWarm, std = FALSE)
Multiple Regression from raw data
DV = govact

```

```

age -0.001 0.002 -0.577 5.64e-01 -0.006 0.003 1.071
negemot 0.433 0.026 16.507 5.76e-53 0.0.382 0.485 1.172
posemot -0.021 0.028 -0.768 4.43e-01 -0.076 0.033 1.029
ideology -0.212 0.027 -7.883 1.04e-14 -0.264 -0.159 1.199
sex -0.011 0.076 -0.147 8.83e-01 -0.160 0.138 1.053
age*negemot 0.006 0.002 4.104 4.48e-05 0.003 0.009 1.018
Residual Standard Error = 1.057 with 808 degrees of freedom
Multiple Regression

```


Note how the beta weights for the age, negemot and interaction terms are identical.

\subsection*{6.2 Partial everything from everything}

Sometimes we want to examine just the independent effects of all our variables. That is to say, we want to partial all the variables from all the other variables. I do this with the partial.r function. To show the results, I compare the partialed rs to the original rs. I show the lower off diagonal matrix using lowerMat. Then to compare the partial matrix to the original matrix, I form the square matrix where the lower off diagonal is the original matrix and the upper off diagonal is the partial matrix.


\section*{7 Related packages}
mediate and setcor are just two functions in the \(p\) sych package. There are several additional packages available in R to do mediation. The mediation package (Tingley et al., 2014) seems the most powerful, in that is tailor made for mediation. MBESS (Kelley, 2017) has a mediation function. Steven Short has a nice tutorial on mediation analysis available for download that discusses how to use R for mediation. And, of course, the lavaan package (Rosseel, 2012) is the recommended package to do SEM and path models.


Figure 15: Correlations (below diagonal) and partial correlations (above the diagonal)

\section*{8 Development version and a users guide}

The psych package is available from the CRAN repository. However, the most recent development version of the psych package is available as a source file at the repository maintained at http://personality-project.org/r. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To install this development version, either for PCs or Macs,

\section*{R code}
install.packages("psych", repos = "http://personality-project.org/r", type = "source")

After doing this, it is important to restart R to get the new package.
Although the individual help pages for the psych package are available as part of R and may be accessed directly (e.g. ?psych), the full manual for the psych package is also available as a pdf at http://personality-project.org/r/psych_manual.pdf

News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news,
R code
> news (Version >-= "2.0.12", package="psych")

\section*{9 Psychometric Theory}

The psych package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (http://personality-project.org/ r/book An introduction to Psychometric Theory with Applications in R (Revelle, prep) More information about the use of some of the functions may be found in the book.

For more extensive discussion of the use of psych in particular and R in general, consult http: //personality-project.org/r/r.guide.html A short guide to R.

\section*{10 SessionInfo}

This document was prepared using the following settings.
> sessionInfo()
R Under development (unstable) (2022-03-17 r81925)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macos Monterey 12.2 .1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
```

locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] psychTools_2.2.3 psych_2.1.9
loaded via a namespace (and not attached):
[1] compiler_4.2.0 parallel_4.2.0
[8] mnormt_2.0.2 grid_4.2.0
tools_4.2.0
foreign_0.8-82
lavaan_0.6-9
pbivnorm_0.6.0
knitr_1.36
xfun_0.28

```

\section*{References}

Cohen, J. (1982). Set correlation as a general mulitivariate data-analytic method. Multivariate Behavioral Research, 17(3):301-341.

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition.

Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34(7):571-582.

Garcia, D. M., Schmitt, M. T., Branscombe, N. R., and Ellemers, N. (2010). Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. European Journal of Social Psychology, 40(5):733745.

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press, New York.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4):321-377.
Kelley, K. (2017). MBESS: The MBESS R Package. R package version 4.4.1.
Pollack, J. M., Vanepps, E. M., and Hayes, A. F. (2012). The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress. Journal of Organizational Behavior, 33(6):789-810.

Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66:825-852.

Preacher, K. J. and Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, \& Computers, 36(4):717731.

Preacher, K. J., Rucker, D. D., and Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate behavioral research, 42(1):185-227.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Revelle, W. (2020). psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. R package version 2.0.9.

Revelle, W. (in prep). An introduction to psychometric theory with applications in R. Springer.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2):1-36.

Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A. C. (2010). Testing causal direction in the influence of presumed media influence. Communication Research, 37(6):801-824.
Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R package for causal mediation analysis. Journal of Statistical Software, 59(5):1-38.

\section*{References}

Cohen, J. (1982). Set correlation as a general mulitivariate data-analytic method. Multivariate Behavioral Research, 17(3):301-341.

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition.

Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34(7):571-582.

Garcia, D. M., Schmitt, M. T., Branscombe, N. R., and Ellemers, N. (2010). Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. European Journal of Social Psychology, 40(5):733745.

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press, New York.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4):321-377.
Kelley, K. (2017). MBESS: The MBESS R Package. R package version 4.4.1.
Pollack, J. M., Vanepps, E. M., and Hayes, A. F. (2012). The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress. Journal of Organizational Behavior, 33(6):789-810.

Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66:825-852.

Preacher, K. J. and Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, \& Computers, 36(4):717731.

Preacher, K. J., Rucker, D. D., and Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate behavioral research, 42(1):185-227.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Keon-Woong Moon (2020). processR: Implementation of the 'PROCESS' Macro. https://CRAN.Rproject.org/package=processR

Revelle, W. (2020). psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. R package version 2.0.12.

Revelle, W. (in prep). An introduction to psychometric theory with applications in R. Springer.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2):1-36.

Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A. C. (2010). Testing causal direction in the influence of presumed media influence. Communication Research, 37(6):801-824.

Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R package for causal mediation analysis. Journal of Statistical Software, 59(5):1-38.```


[^0]:    ${ }^{1}$ The Hayes data sets (2018) do not correspond exactly with those from the 2013 book. Those data files were at http://www.afhayes.com/public/hayes2013data.zip.

