Package 'pyinit'

October 20, 2021

Type Package

Title Pena-Yohai Initial Estimator for Robust S-Regression

Version 1.1.2

Date 2021-10-19

Encoding UTF-8

Maintainer David Kepplinger <david.kepplinger@gmail.com>

Description Deterministic Pena-Yohai initial estimator for robust S estimators of regression. The procedure is described in detail in Pena, D., & Yohai, V. (1999) <doi:10.2307/2670164>.

Imports robustbase

Suggests testthat

License GPL (>= 2)

URL https://github.com/dakep/pyinit

BugReports https://github.com/dakep/pyinit/issues

NeedsCompilation yes

Biarch true

Copyright See the file COPYRIGHTS for copyright details on some of the functions.

RoxygenNote 7.1.1

Author David Kepplinger [aut, cre], Matias Salibian-Barrera [aut], Gabriela Cohen Freue [aut]

Repository CRAN

Date/Publication 2021-10-20 07:20:02 UTC

R topics documented:

pyinit	mscale	 	 •			•			•																2
15	pyinit	 •	 •			•	•	• •	•		•	•	•		•	•	•		•	•	•	•		•	3

5

Index

mscale

Description

Compute the M-estimate of scale using the MAD as initial estimate.

Usage

```
mscale(
    x,
    delta = 0.5,
    rho = c("bisquare", "huber", "gauss"),
    cc,
    eps = 1e-08,
    maxit = 200
)
```

Arguments

x	numeric vector.
delta	desired value for the right-hand side of the M-estimation equation.
rho	rho function to use in the M-estimation equation. Valid options are bisquare, huber and gauss.
сс	non-negative constant for the chosen rho function. If missing, it will be chosen such that the expected value of the rho function under the normal model is equal to delta.
eps	threshold for convergence. Defaults to 1e-8.
maxit	maximum number of iterations. Defaults to 200.

Details

This solves the M-estimation equation given by

$$\sum_{i=1}^n \rho(x_i/s_n;cc) = ndelta$$

All NA values in x are removed before calculating the scale.

Value

Numeric vector of length one containing the solution s_n to the equation above.

pyinit

Description

Computes the PY initial estimates for S-estimates of regression.

Usage

```
pyinit(
 х,
 у,
  intercept = TRUE,
 delta = 0.5,
  cc,
 maxit = 10,
 psc_keep,
  resid_keep_method = c("threshold", "proportion"),
  resid_keep_prop,
  resid_keep_thresh,
 eps = 1e-08,
 mscale_maxit = 200,
 mscale_tol = eps,
 mscale_rho_fun = c("bisquare", "huber", "gauss")
)
```

Arguments

х	a matrix with the data, each observation in a row.					
У	the response vector.					
intercept	logical, should an intercept be included in the model? Defaults to TRUE.					
delta, cc	parameters for the M-scale estimator equation. If cc is missing it will be set to yield consistency under the Normal model for the given delta (right-hand side of the M-scale equation).					
maxit	the maximum number of iterations to perform.					
psc_keep	proportion of observations to keep based on PSCs.					
resid_keep_met	hod					
	how to clean the data based on large residuals. If "threshold", all observa- tions with scaled residuals larger than resid_keep_thresh will be removed (resid_keep_thresh corresponds to the constant C_1 from equation (21) in Pena & Yohai (1999). If "proportion", observations with the largest resid_keep_prop residuals will be removed.					
resid_keep_prop, resid_keep_thresh						
	see parameter resid_keep_method for details.					
eps	the relative tolerance for convergence. Defaults to 1e-8.					

mscale_maxit	maximum number of iterations allowed for the M-scale algorithm. Defaults to 200.
<pre>mscale_tol</pre>	convergence threshold for the m-scale
mscale_rho_fun	A string containing the name of the rho function to use for the M-scale. Valid options are bisquare, huber and gauss.

Value

coefficients	numeric matrix with coefficient vectors in columns. These are regression esti- mators based on "cleaned" subsets of the data. The M-scales of the correspond- ing residuals are returned in the entry objective. The regression coefficients with smallest estimated residual scale is in the first column, but the others need not be ordered.
objective	vector of values of the M-scale estimate of the residuals associated with each vector of regression coefficients in the columns of coefficients.

References

Pena, D., & Yohai, V. (1999). A Fast Procedure for Outlier Diagnostics in Large Regression Problems. *Journal of the American Statistical Association*, 94(446), 434-445. <doi:10.2307/2670164>

Examples

```
# generate a simple synthetic data set for a linear regression model
# with true regression coefficients all equal to one "(1, 1, 1, 1, 1)"
set.seed(123)
x <- matrix(rnorm(100*4), 100, 4)</pre>
y \leq rnorm(100) + rowSums(x) + 1
# add masked outliers
a <- svd(var(x))$v[,4]</pre>
x <- rbind(x, t(outer(a, rnorm(20, mean=4, sd=1))))</pre>
y <- c(y, rnorm(20, mean=-2, sd=.2))</pre>
# these outliers are difficult to find
plot(lm(y~x), ask=FALSE)
# use pyinit to obtain estimated regression coefficients
tmp <- pyinit(x=x, y=y, resid_keep_method='proportion', psc_keep = .5, resid_keep_prop=.5)</pre>
# the vector of regression coefficients with smallest residuals scale
# is returned in the first column of the "coefficients" element
tmp$coefficients[,1]
# compare that with the LS estimator on the clean data
coef(lm(y~x, subset=1:100))
# compare it with the LS estimator on the full data
coef(lm(y~x))
```

Index

mscale, 2

pyinit, 3