Package 'qat'

July 24, 2016

Type Package
Title Quality Assurance Toolkit
Version 0.74
Date 2016-07-21
Author Andre Duesterhus
Maintainer Andre Duesterhus <andre.duesterhus@uni-hamburg.de></andre.duesterhus@uni-hamburg.de>
Encoding latin1
Description Functions for a scientific quality assurance of meteorological data.
Depends R (>= 2.6.1)
Imports ncdf4, gplots, XML, gdata, moments, boot, fields
License GPL-2
<pre>URL http://www.aduesterhus.net/qat</pre>
NeedsCompilation no
Repository CRAN

R topics documented:

Date/Publication 2016-07-24 16:11:04

1at-package	4
at_add_algorithm	6
at_add_all_algorithms	7
at_add_all_descriptions	8
lat_add_comment	9
lat_add_description	10
pat_add_resultfile	11
pat_analyse_block_distribution_1d	12
pat_analyse_block_distribution_2d	13
at_analyse_boot_distribution_1d	15
pat_analyse_boot_distribution_2d	16
at_analyse_distribution_1d	17
pat_analyse_distribution_2d	18

qat_analyse_histogram_test_1d	. 20
qat_analyse_histogram_test_2d	
qat_analyse_histogram_test_emd_1d	
qat_analyse_histogram_test_emd_2d	
qat_analyse_histogram_test_jsd_1d	. 25
qat_analyse_histogram_test_jsd_2d	. 27
qat_analyse_histogram_test_kld_1d	. 28
qat_analyse_histogram_test_kld_2d	. 29
qat_analyse_histogram_test_ms_1d	. 31
qat_analyse_histogram_test_ms_2d	. 32
qat_analyse_histogram_test_rms_1d	. 33
qat_analyse_histogram_test_rms_2d	. 34
qat_analyse_lim_rule_dynamic_1d	. 36
qat_analyse_lim_rule_dynamic_2d	
qat_analyse_lim_rule_sigma_1d	
qat_analyse_lim_rule_sigma_2d	
qat_analyse_lim_rule_static_1d	
qat_analyse_lim_rule_static_2d	
qat_analyse_noc_rule_1d	
qat_analyse_noc_rule_2d	
qat_analyse_roc_rule_dynamic_1d	
qat_analyse_roc_rule_dynamic_2d	
qat_analyse_roc_rule_static_1d	
qat_analyse_roc_rule_static_2d	
qat_analyse_set_addup_1d	
qat_analyse_set_addup_2d	
qat_analyse_set_mean_1d	
qat_analyse_set_mean_2d	
qat_analyse_set_nans_1d	
qat_analyse_set_nans_2d	
qat_analyse_set_nans_above_1d	
qat_analyse_set_nans_above_2d	
qat_analyse_set_nans_below_1d	
qat_analyse_set_nans_below_2d	
qat_analyse_slide_distribution_1d	. 62
qat_analyse_slide_distribution_2d	
qat_analyse_trimmed_distribution_1d	. 64
qat_analyse_trimmed_distribution_2d	. 65
qat_call_block_distribution	. 67
qat_call_boot_distribution	. 68
qat_call_distribution	. 69
qat_call_histogram_test	. 70
qat_call_lim_rule	. 70
qat_call_noc_rule	. 72
qat_call_plot_block_distribution	. 73
qat_call_plot_boot_distribution	
qat_call_plot_distribution	
$\mathbf{I} = -\mathbf{I} = -\mathbf{I}$	
qat_call_plot_histogram_test	. /0

qat_call_plot_lim_rule	
qat_call_plot_noc_rule	81
qat_call_plot_roc_rule	82
qat_call_plot_slide_distribution	84
qat_call_plot_trimmed_distribution	85
qat_call_roc_rule	
qat_call_save_block_distribution	
qat_call_save_boot_distribution	
qat_call_save_distribution	
qat_call_save_histogram_test	
qat_call_save_lim_rule	
qat_call_save_noc_rule	
qat_call_save_noc_rule	
qat_call_save_set_addup	
qat_call_save_set_mean	
qat_call_save_set_nans	
qat_call_save_slide_distribution	
qat_call_save_trimmed_distribution	
$qat_call_set_addup \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
qat_call_set_mean	106
qat_call_set_nans	107
qat_call_slide_distribution	108
qat_call_trimmed_distribution	109
qat_config_read_workflow	111
qat_config_write_workflow	
qat_data_close_ncdf	
qat_data_nameofvars_ncdf	
qat_data_numofvars_ncdf	
qat_data_read_ncdf	
qat_data_varcontent_ncdf	
qat_uata_varcontent_neur	
qat_plot_block_distribution_1d	
qat_plot_block_distribution_2d	
qat_plot_boot_distribution_1d	
qat_plot_distribution_1d	
qat_plot_histogram_test	
$qat_plot_lim_rule_dynamic_1d \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
qat_plot_lim_rule_dynamic_2d	
qat_plot_lim_rule_sigma_1d	
qat_plot_lim_rule_sigma_2d	128
qat_plot_lim_rule_static_1d	129
qat_plot_lim_rule_static_2d	130
qat_plot_noc_rule_1d	132
qat_plot_noc_rule_2d	
qat_plot_roc_rule_dynamic_1d	
qat_plot_roc_rule_dynamic_2d	
qat_plot_roc_rule_static_1d	
qat_plot_roc_rule_static_2d	
$\operatorname{val}_{\operatorname{prot}_{\operatorname{100}}\operatorname{state}_{\operatorname{20}}\operatorname{state}_{\operatorname{20}}$	138

179

qat_plot_slide_distribution_1d
qat_plot_slide_distribution_2d
qat_plot_trimmed_distribution_1d141
qat_plot_trimmed_distribution_2d142
qat_read_parameter
qat_run_workflow_check
qat_run_workflow_plot
qat_run_workflow_save
qat_save_block_distribution_1d148
qat_save_block_distribution_2d149
qat_save_boot_distribution_1d
qat_save_boot_distribution_2d
qat_save_distribution_1d
qat_save_histogram_test
qat_save_lim_rule_dynamic_1d
qat_save_lim_rule_dynamic_2d
qat_save_lim_rule_sigma_1d
qat_save_lim_rule_sigma_2d
qat_save_lim_rule_static_1d
qat_save_lim_rule_static_2d
qat_save_noc_rule_1d
qat_save_noc_rule_2d
qat_save_result_ncdf
qat_save_roc_rule_dynamic_1d164
qat_save_roc_rule_dynamic_2d 165
qat_save_roc_rule_static_1d
qat_save_roc_rule_static_2d
qat_save_set_addup_1d
qat_save_set_mean_1d
qat_save_set_nans_1d
qat_save_set_nans_above_1d
qat_save_set_nans_below_1d
qat_save_slide_distribution_1d
qat_save_slide_distribution_2d
qat_save_trimmed_distribution_1d
qat_save_trimmed_distribution_2d
qat_style_plot

Index

qat-package

Quality Assurance Toolkit

Description

This package helps to provide a quality assurance on data.

qat-package

Details

Package:	qat
Type:	Package
Version:	0.72
Date:	2013-06-13
License:	GPL-2

Author(s)

Andre Duesterhus Maintainer: Andre Duesterhus <andue@uni-bonn.de>

Examples

```
library("qat")
# define testvector
testvector<-rnorm(200)</pre>
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- qat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=200)</pre>
minlim <- seq(-1,-3,length.out=200)</pre>
uproc <- seq(1,3,length.out=200)</pre>
downroc <- seq(3,1,length.out=200)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce some plots of the result in teh current directory
qat_run_workflow_plot(rlist, measurement_name="Test", basename="test")
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)</pre>
workflowlist <- qat_add_all_algorithms(workflowlist)</pre>
workflowlist <- qat_add_comment(workflowlist, 1, "No problems")</pre>
filename_out <- "myworkflow_result.xml"</pre>
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)
```

qat_add_algorithm Algorithm of a check

Description

For each check in the workflow it is possible to add a algorithm of the test. This will be saved into the XML result file under agolgorithm. This function adds a new or replace an existing algorithm.

Usage

```
qat_add_algorithm(workflowlist, listelem, algorithm_text)
```

Arguments

workflowlist	A workflowlist like it will be created by qat_config_read_workflow
listelem	Number of check, where the algorithm should be added.
algorithm_text	Text of the algorithm.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow

Examples

```
library("qat")
## read in workflow from systemfiles
# filename_in <- system.file("extdata/workflowexample.xml", package="qat")
# workflowlist <- qat_config_read_workflow(filename_in)
## add some more informations for the workflow
# workflowlist <- qat_add_algorithm(workflowlist, 1, "Algorithm information")
# filename_out <- "myworkflow_result.xml"
## write edited workflow in current directory
# qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_add_all_algorithms

Adds all algorithms to a workflow

Description

For each check in the workflow it is possible to add a algorithm of the test. This will be saved into the XML result file under agolgorithm. This function adds for each test the known algorithm-information.

Usage

qat_add_all_algorithms(workflowlist)

workflowlist A workflowlist like it will be created by qat_config_read_workflow

Details

This function use the informatio, which is stored in the system file qat_basetools.xml.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow

Examples

```
library("qat")
# read in workflow from systemfiles
# filename_in <- system.file("extdata/workflowexample.xml", package="qat")
# workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
# workflowlist <- qat_add_all_descriptions(workflowlist)
# workflowlist <- qat_add_all_algorithms(workflowlist)
# filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
# qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_add_all_descriptions

Adds all descriptions to a workflow

Description

For each check in the workflow it is possible to add a description of the test. This will be saved into the XML result file under the description. This function adds for each test the known descriptioninformation.

Usage

qat_add_all_descriptions(workflowlist)

workflowlist A workflowlist like it will be created by qat_config_read_workflow

Details

This function use the informatio, which is stored in the system file qat_basetools.xml.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)
workflowlist <- qat_add_all_algorithms(workflowlist)
filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory</pre>
```

qat_config_write_workflow(workflowlist, output_filename=filename_out)

qat_add_comment Comment on result

Description

For each check in the workflow it is possible to add a comment on the result of the test. This will be saved into the XML result file under the tag result/comment_on_result. This function adds a new or replace an existing comment.

Usage

```
qat_add_comment(workflowlist, listelem, comment_text)
```

workflowlist	A workflowlist like it will be created by qat_config_read_workflow
listelem	Number of check, which should be commented.
comment_text	Text of the comment

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_comment(workflowlist, 1, "No problems")
filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_add_description Description of a check

Description

For each check in the workflow it is possible to add a description of the test. This will be saved into the XML result file under the description. This function adds a new or replace an existing description.

Usage

```
qat_add_description(workflowlist, listelem, description_text)
```

Arguments

workflowlist	A workflowlist like it will be created by qat_config_read_workflow
listelem	Number of check, where the description should be added.
description_te>	(t
	Text of the description.

```
qat_add_resultfile
```

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_description(workflowlist, 1, "How the test works...")
filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_add_resultfile Resultfile of a check

Description

For each check in the workflow it is possible to add one or more result files of the test. This will be saved into the XML result file under result/_file. This function adds a new resultfile.

Usage

```
qat_add_resultfile(workflowlist, listelem, resultfile_text)
```

Arguments

```
workflowlist A workflowlist like it will be created by qat\_config\_read\_workflow.
listelem Number of check, where the resultfile should be added.
resultfile_text
Text of the monthfle
```

Text of the resultfile.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_resultfile(workflowlist, 1, "filename.png")
filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
gat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

Description

The measurement vector will be splitted into blocks, and on every block some statistical parameters will be calculated.

Usage

qat_analyse_block_distribution_1d(measurement_vector, blocksize)

Arguments

measurement_vector		
	The measurement vector, which should be tested	
blocksize	Length of the blocks	

Details

The measurement vector will be splitted into blocks, with the length of the given blocksize parameter. After this some statistical parameters will be calculated for every block. As a result a list will be given back, with these parameters, where every entry got a length of the length of the measurement vector divided by the blocksize, which is rounded down to the next integer.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector
second_moment	Second moment of the measurement vector
third_moment	Third moment of the measurement vector

qat_analyse_block_distribution_2d

fourth_moment standard_devia	Fourth moment of the measurement vector tion
	Standard deviation of the measurement vector
skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector
p5_quantile	5 percent quantile of the measurement vector
p95_quantile	95 percent quantile of the measurement vector
p25_quantile	25 percent quantile of the measurement vector
p75_quantile	75 percent quantile of the measurement vector
blocksize	Length of the used blocks

Author(s)

Andre Duesterhus

See Also

qat_plot_block_distribution_1d

Examples

vec <- rnorm(1000)
result <- qat_analyse_block_distribution_1d(vec, 50)</pre>

Description

The measurement vector will be splitted into blocks in the direction of the first dimension. After this on every block some statistical parameters will be calculated.

Usage

qat_analyse_block_distribution_2d(measurement_vector, blocksize)

Arguments

measurement_vector		
	The measurement vector (2d array), which should be tested	
blocksize	Length of the blocks	

Details

The measurement vector will be splitted into blocks for each element of the second dimension, with the length of the given blocksize parameter. After this some statistical parameters will be calculated for each block. As a result a list will be given back, with these parameters, where every entry got the dimension of the measurement vector, where the first dimension is divided by the blocksize, which is rounded down to the next integer.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector
second_moment	Second moment of the measurement vector
third_moment	Third moment of the measurement vector
fourth_moment	Fourth moment of the measurement vector
standard_devia	tion
	Standard deviation of the measurement vector
skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector
p5_quantile	5 percent quantile of the measurement vector
p95_quantile	95 percent quantile of the measurement vector
p25_quantile	25 percent quantile of the measurement vector
p75_quantile	75 percent quantile of the measurement vector
blocksize	Length of the used blocks

Author(s)

Andre Duesterhus

See Also

qat_analyse_block_distribution_1d, qat_plot_block_distribution_2d

Examples

```
vec <- array(rnorm(500),c(25,20))
result <- qat_analyse_block_distribution_2d(vec, 5)</pre>
```

Description

The measurement vector will be bootstrapped and statistical parameters will be determined.

Usage

qat_analyse_boot_distribution_1d(measurement_vector, bootruns)

Arguments

 measurement_vector
 The measurement vector, which should be tested

 bootruns
 Number of bootstrap runs, which should be performed

Details

The measurement vector will be bottstrapped with the number of runs, which is given by the parameter bootruns. From each runs, some statistical parameters will be calculated and given back in the resultlist.

Value

It returns a list with the following entries:

first_moment	First moments of the bootstrapped measurement vector
<pre>second_moment</pre>	Second moments of the bootstrapped measurement vector
third_moment	Third moments of the bootstrapped measurement vector
fourth_moment	Fourth moments of the bootstrapped measurement vector
standard_devia	tion
	Standard deviations of the bootstrapped measurement vector
skewness	Skewness of the bootstrapped measurement vector
kurtosis	Kurtosis of the bootstrapped measurement vector
median	Medians of the bootstrapped measurement vector
p5_quantile	5 percent quantiles of the bootstrapped measurement vector
p95_quantile	95 percent quantiles of the bootstrapped measurement vector
p25_quantile	25 percent quantiles of the bootstrapped measurement vector
p75_quantile	75 percent quantiles of the bootstrapped measurement vector

Author(s)

Andre Duesterhus

See Also

qat_plot_boot_distribution_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_boot_distribution_1d(vec, 1000)</pre>
```

Description

The measurement vector will be bootstrapped and statistical parameters will be determined.

Usage

```
qat_analyse_boot_distribution_2d(measurement_vector, bootruns)
```

Arguments

measurement_vector		
	The measurement vector (2d array), which should be tested	
bootruns	Number of bootstrap runs, which should be performed	

Details

The measurement vector will be bottstrapped in direction of the first dimension with the number of runs, which is given by the parameter bootruns. From each runs, some statistical parameters will be calculated and given back in the resultlist.

Value

It returns a list with the following entries:

first_moment	First moments of the bootstrapped measurement vector	
<pre>second_moment</pre>	Second moments of the bootstrapped measurement vector	
third_moment	Third moments of the bootstrapped measurement vector	
fourth_moment	Fourth moments of the bootstrapped measurement vector	
standard_deviation		
	Standard deviations of the bootstrapped measurement vector	
skewness	Skewness of the bootstrapped measurement vector	
kurtosis	Kurtosis of the bootstrapped measurement vector	
median	Medians of the bootstrapped measurement vector	

p5_quantile	5 percent quantiles of the bootstrapped measurement vector
p95_quantile	95 percent quantiles of the bootstrapped measurement vector
p25_quantile	25 percent quantiles of the bootstrapped measurement vector
p75_quantile	75 percent quantiles of the bootstrapped measurement vector

Author(s)

Andre Duesterhus

See Also

qat_analyse_boot_distribution_1d, qat_plot_boot_distribution_1d

Examples

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_boot_distribution_2d(vec, 50)</pre>
```

Description

This check makes a histogram and gives back some statistical parameters of the given measurement vector.

Usage

qat_analyse_distribution_1d(measurement_vector, numofbars)

Arguments

measurement_vector		
	The measurement vector, which should be tested	
numofbars	Numbers of bars of the histogram plot	

Details

From a given measurement vector a histogram will be performed. The number of bars of this will be given by the parameter numofbars. Additionally some statistical parameters, like the first moments and some quantiles will be calculated.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector
second_moment	Second moment of the measurement vector
third_moment	Third moment of the measurement vector
fourth_moment standard_devia	Fourth moment of the measurement vector tion
	Standard deviation of the measurement vector
skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector
p5_quantile	5 percent quantile of the measurement vector
p95_quantile	95 percent quantile of the measurement vector
p25_quantile	25 percent quantile of the measurement vector
p75_quantile	75 percent quantile of the measurement vector
numofbars	Number of bars of the histogram
	Elements of the histogram

Author(s)

Andre Duesterhus

See Also

qat_plot_distribution_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_distribution_1d(vec, 15)</pre>
```

Description

This check makes a histogram and gives back some statistical parameters of the given measurement vector.

Usage

qat_analyse_distribution_2d(measurement_vector, numofbars)

<pre>measurement_ve</pre>	ctor
	The measurement vector (2d array), which should be tested
numofbars	Numbers of bars of the histogram plot

Details

From a given measurement vector (2d array) a histogram will be performed. The number of bars of this will be given by the parameter numofbars. Additionally some statistical parameters, like the first moments and some quantiles will be calculated.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector
second_moment	Second moment of the measurement vector
third_moment	Third moment of the measurement vector
fourth_moment standard_deviat	Fourth moment of the measurement vector tion
	Standard deviation of the measurement vector
skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector
p5_quantile	5 percent quantile of the measurement vector
p95_quantile	95 percent quantile of the measurement vector
p25_quantile	25 percent quantile of the measurement vector
p75_quantile	75 percent quantile of the measurement vector
numofbars	Number of bars of the histogram
	Elements of the histogram

Author(s)

Andre Duesterhus

See Also

qat_analyse_distribution_1d, qat_plot_distribution_1d

Examples

```
vec <- array(rnorm(500),c(25,20))
result <- qat_analyse_distribution_2d(vec, 10)</pre>
```

qat_analyse_histogram_test_1d

Perform a histogram test with a given metric

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using a given metric.

Usage

```
qat_analyse_histogram_test_1d(measurement_vector,
co_measurement_vector=measurement_vector, metric="EMD", blocksize=100, numofbars=65,
factorofbar=100)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested.	
co_measurement_	vector	
	An optional second measurement vector, which is compared to the first. The default is the first measurement vector.	
metric	Metric of the comparison. Details see below.	
blocksize	Number of elements, which should be used for each block.	
numofbars	Number of bins of the histogram.	
factorofbar	Correction factor for non-value bins.	

Details

The field will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison one of the following five options are usable: EMD: Earth Mover's Distance (default); KLD: Kullback-Leibler Distance; JSD: Jenson-Shannon Distance; RMS: Root Mean Square; MS: Mean Square. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

qat_analyse_histogram_test_2d

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 2
result <- qat_analyse_histogram_test_2d(vec, metric="EMD", blocksize=4, numofbars=65)
qat_plot_histogram_test(result$field, "test_emd_2d", result$blocksize, result$numofbars,
"emd", result$runs)</pre>
```

qat_analyse_histogram_test_2d

Perform a histogram test with a given metric

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using a given metric.

Usage

```
qat_analyse_histogram_test_2d(measurement_vector, co_measurement_vector=
measurement_vector, metric="EMD", blocksize=100, numofbars=65, factorofbar=100)
```

Arguments

measurement_vector		
	The measurement vector (2d array), which should be tested.	
co_measurement_vector		
	An optional second measurement vector (2d array), which is compared to the frst. The default is the first measurement vector.	
metric	Metric of the comparison. Details see below.	
blocksize	Number of elements in the first dimension, which should be used for each block.	
numofbars	Number of bins of the histogram.	
factorofbar	Correction factor for non-value bins.	

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison one of the following five options are usable: EMD: Earth Mover's Distance (default); KLD: Kullback-Leibler Distance; JSD: Jenson-Shannon Distance; RMS: Root Mean Square; MS: Mean Square. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

qat_analyse_histogram_test_1d

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 2
result <- qat_analyse_histogram_test_2d(vec, metric="EMD", blocksize=4, numofbars=65)
qat_plot_histogram_test(result$field, "test_emd_2d", result$blocksize, result$numofbars,
"emd", result$runs)</pre>
```

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Earth Movers Distance.

Usage

```
qat_analyse_histogram_test_emd_1d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector

	The measurement vector, which should be tested	
blocksize	Number of elements in the first dimension, which should be used for each block	
numofbars	Number of bins of the histogram	

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Earth Movers Distance is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_emd_2d, qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_
qat_analyse_histogram_test_rms_1d, qat_analyse_histogram_test_ms_1d
```

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
result <- qat_analyse_histogram_test_emd_1d(vec, 50, 65)
qat_plot_histogram_test(result$field, "test_emd_1d", result$blocksize,
result$numofbars, "emd", result$runs)</pre>
```

qat_analyse_histogram_test_emd_2d

Perform a histogram test with the metric EMD

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Earth Movers Distance.

Usage

qat_analyse_histogram_test_emd_2d(measurement_vector, blocksize, numofbars)

Arguments

measurement_vector		
	The measurement vector (2d array), which should be tested	
blocksize	Number of elements in the first dimension, which should be used for each block	
numofbars	Number of bins of the histogram	

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Earth Movers Distance is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_emd_1d, qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_jsd_
qat_analyse_histogram_test_rms_2d, qat_analyse_histogram_test_ms_2d
```

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 1
result <- qat_analyse_histogram_test_emd_2d(vec, 4, 65)
qat_plot_histogram_test(result$field, "test_emd_2d", result$blocksize,
result$numofbars, "emd", result$runs)</pre>
```

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Jenson-Shannon Divergence.

Usage

```
qat_analyse_histogram_test_jsd_1d(measurement_vector, blocksize, numofbars,
factorofbar)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
blocksize	Number of elements in the first dimension, which should be used for each block	
numofbars	Number of bins of the histogram	
factorofbar	Correction factor for non-value bins	

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Jenson-Shannon Divergence is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
factorofbar	Correction factor used for the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_jsd_2d, qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_rms_
qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_emd_1d
```

Examples

```
vec <- c(rnorm(1000), round(rnorm(1000)))
result <- qat_analyse_histogram_test_jsd_1d(vec, 50, 65, 100)
qat_plot_histogram_test(result$field, "test_jsd_1d", result$blocksize, result$numofbars,
result$factorofbar, "jsd", result$runs)</pre>
```

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Jenson-Shannon Divergence.

Usage

```
qat_analyse_histogram_test_jsd_2d(measurement_vector, blocksize, numofbars,
factorofbar)
```

Arguments

measurement_vector

	The measurement vector (2d array), which should be tested
blocksize	Number of elements in the first dimension, which should be used for each block
numofbars	Number of bins of the histogram
factorofbar	Correction factor for non-value bins

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Jenson-Shannon Divergence is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
factorofbar	Correction factor used for the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

qat_analyse_histogram_test_jsd_1d, qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_rms_ qat_analyse_histogram_test_ms_2d, qat_analyse_histogram_test_emd_2d

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- round(vec[51:100, ])
result <- qat_analyse_histogram_test_jsd_2d(vec, 4, 65, 100)
qat_plot_histogram_test(result$field, "test_jsd_2d", result$blocksize,
result$numofbars, result$factorofbar, "jsd", result$runs)</pre>
```

qat_analyse_histogram_test_kld_1d

Perform a histogram test with the metric KLD

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Kullback-Leibler Divergence.

Usage

```
qat_analyse_histogram_test_kld_1d(measurement_vector, blocksize =
floor(length(measurement_vector)/20), numofbars = 65, factorofbar = 100)
```

Arguments

measurement_vector

	The measurement vector, which should be tested
blocksize	Number of elements in the first dimension, which should be used for each block
numofbars	Number of bins of the histogram
factorofbar	Correction factor for non-value bins

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Kullback-Leibler Divergence is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
factorofbar	Correction factor used for the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_jsd_1d, qat_analyse_histogram_test_rms_
qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_emd_1d
```

Examples

```
vec <- c(rnorm(1000), round(rnorm(1000)))
result <- qat_analyse_histogram_test_kld_1d(vec, 50, 65, 100)
qat_plot_histogram_test(result$field, "test_kld_1d", result$blocksize,
result$numofbars, result$factorofbar, "kld", result$runs)</pre>
```

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Kullback-Leibler Divergence.

Usage

```
qat_analyse_histogram_test_kld_2d(measurement_vector, blocksize =
floor(length(measurement_vector)/20), numofbars = 65, factorofbar = 100)
```

measurement_vector		
	The measurement vector (2d array), which should be tested	
blocksize	Number of elements in the first dimension, which should be used for each block	
numofbars	Number of bins of the histogram	
factorofbar	Correction factor for non-value bins	

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Kullback-Leibler Divergence is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
factorofbar	Correction factor used for the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_2d, qat_analyse_histogram_test_rms_ qat_analyse_histogram_test_ms_2d, qat_analyse_histogram_test_emd_2d

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- round(vec[51:100, ])
result <- qat_analyse_histogram_test_kld_2d(vec, 4, 65, 100)
qat_plot_histogram_test(result$field, "test_kld_2d", result$blocksize,
result$numofbars, result$factorofbar, "kld", result$runs)</pre>
```

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Mean Square.

Usage

```
qat_analyse_histogram_test_ms_1d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector

	The measurement vector, which should be tested
blocksize	Number of elements in the first dimension, which should be used for each block
numofbars	Number of bins of the histogram

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Mean Square is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_ms_2d, qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_1
qat_analyse_histogram_test_rms_1d, qat_analyse_histogram_test_emd_1d
```

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+2)
result <- qat_analyse_histogram_test_ms_1d(vec, 50, 65)
qat_plot_histogram_test(result$field, "test_ms_1d", result$blocksize,
result$numofbars, "ms", result$runs)</pre>
```

qat_analyse_histogram_test_ms_2d

Perform a histogram test with the metric MS

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Mean Square.

Usage

```
qat_analyse_histogram_test_ms_2d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector	
	The measurement vector (2d array), which should be tested
blocksize	Number of elements in the first dimension, which should be used for each block
numofbars	Number of bins of the histogram

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Mean Square is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_jsd_2d
qat_analyse_histogram_test_rms_2d, qat_analyse_histogram_test_emd_2d
```

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 2
result <- qat_analyse_histogram_test_ms_2d(vec, 4, 65)
qat_plot_histogram_test(result$field, "test_ms_2d", result$blocksize,
result$numofbars, "ms", result$runs)</pre>
```

qat_analyse_histogram_test_rms_1d

Perform a histogram test with the metric RMS

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Root-Mean Square.

Usage

```
qat_analyse_histogram_test_rms_1d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector	
	The measurement vector, which should be tested
blocksize	Number of elements in the first dimension, which should be used for each block
numofbars	Number of bins of the histogram

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Root-Mean Square is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_rms_2d, qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_
qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_emd_1d
```

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+2)
result <- qat_analyse_histogram_test_rms_1d(vec, 50, 65)
qat_plot_histogram_test(result$field, "test_rms_1d", result$blocksize,
result$numofbars, "rms", result$runs)</pre>
```

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Root-Mean Square.

Usage

qat_analyse_histogram_test_rms_2d(measurement_vector, blocksize, numofbars)

measurement_vector	
	The measurement vector (2d array), which should be tested
blocksize	Number of elements in the first dimension, which should be used for each block
numofbars	Number of bins of the histogram

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Root-Mean Square is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field	Result matrix of the comparison.
blocksize	Size of blocks in the first dimension.
numofbars	Number of bins of the used histograms.
metric	Used metric in the comparisons.
runs	Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

qat_analyse_histogram_test_rms_1d, qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_jsd_ qat_analyse_histogram_test_ms_2d, qat_analyse_histogram_test_emd_2d

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 2
result <- qat_analyse_histogram_test_rms_2d(vec, 4, 65)
qat_plot_histogram_test(result$field, "test_rms_2d", result$blocksize,
result$numofbars, "rms", result$runs)</pre>
```

qat_analyse_lim_rule_dynamic_1d

Perform a dynamic lim-rule-check

Description

This check tests data on whether it exceeds a dynamic threshold.

Usage

```
qat_analyse_lim_rule_dynamic_1d(measurement_vector, min_vector = NULL,
max_vector = NULL, min_vector_name = NULL, max_vector_name = NULL,
min_vector_identifier = NULL, max_vector_identifier = NULL)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
min_vector	A vector which consists of the minimum threshold values, with the same dimen- sion like the measurement vector	
<pre>max_vector</pre>	A vector which consists of the maximum threshold values, with the same di- mension like the measurement vector	
min_vector_name		
	A name or title of the minimum vector, which will be given back in the result	
max_vector_name		
	A name or title of the maximum vector, which will be given back in the result	
max_vector_identifier		
	The identifier of the maximum vector	
min_vector_identifier		
	The identifier of the minimum vector	

Details

This tests tests every element, on whether it exceeds the minimum or maximum threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every element of the measurement vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a 0, when no exceeding has happend. NaN-values in the measurement vector are considered as not existing. There is no checking, if the maximum-vector is greater than the minimum-vector.

Value

It returns a list with the following entries:

flagvector	A vector of length of measurement vector. For every element of the measurement vector the flagvector contains a -1, if its exceeding its dedicated minimum
	vector element, a 1, if its exceeding its dedicated maximum vector element, or a
	0, when no exceeding has happend.
<pre>min_vector</pre>	Give back the given min_vector
<pre>max_vector</pre>	Give back the given max_vector
<pre>min_vector_nam</pre>	e
	Give back the given min_vector_name
max_vector_name	
	Give back the given max_vector_name

Warning

There is no checking, if the maximum-vector is greater than the minimum-vector.

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_plot_lim_rule_dynamic_1d, qat_call_lim_rule, qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_s

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
result <- qat_analyse_lim_rule_dynamic_1d(vec, min_vector, max_vector,
min_vector_name="minimum vector", max_vector_name="maximum vector")</pre>
```

qat_analyse_lim_rule_dynamic_2d

Perform a dynamic lim-rule-check

Description

This check tests data on whether it exceeds a dynamic threshold.

Usage

```
qat_analyse_lim_rule_dynamic_2d(measurement_vector, min_vector = NULL,
max_vector = NULL, min_vector_name = NULL, max_vector_name = NULL,
min_vector_identifier = NULL, max_vector_identifier = NULL)
```

Arguments

tor		
The measurement vector (2d array), which should be tested		
A 2d array which consists of the minimum threshold values, with the same di- mensions like the measurement vector		
A 2d array which consists of the maximum threshold values, with the same dimensions like the measurement vector		
min_vector_name		
A name or title of the minimum vector, which will be given back in the result		
A name or title of the maximum vector, which will be given back in the result		
tifier		
The identifier of the maximum vector		
tifier		
The identifier of the minimum vector		

Details

This tests tests every element, on whether it exceeds the minimum or maximum threshold. The result will be given back as a list, which contains the result of the test as a flagvector (2d array) and its parameters. For every element of the measurement vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a 0, when no exceeding has happend. NaN-values in the measurement vector will be given back as a 0 in the flagvector, NaN-values in the minimum or maximum-vector are considered as not existing. There is no checking, if the maximum-vector is greater than the minimum-vector.

Value

It returns a list with the following entries:

-	A vector of length of measurement vector. For every element of the measurement vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a 0, when no exceeding has happend.
min_vector	Give back the given min_vector
max_vector	Give back the given max_vector
<pre>min_vector_name</pre>	
	Give back the given min_vector_name
<pre>max_vector_name</pre>	
	Give back the given max_vector_name

Warning

There is no checking, if the maximum-vector is greater than the minimum-vector.

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_analyse_lim_rule_dynamic_1d, qat_plot_lim_rule_dynamic_2d, qat_call_lim_rule, qat_analyse_lim_rule_static_2d, qat_analyse_lim_rule_sigma_2d

Examples

```
vec <- array(rnorm(100),c(5,20))
min_vector<-array(rnorm(100)-2,c(5,20))
max_vector<-array(rnorm(100)+2,c(5,20))
result <- qat_analyse_lim_rule_dynamic_2d(vec, min_vector, max_vector,
min_vector_name="minimum vector", max_vector_name="maximum vector")</pre>
```

qat_analyse_lim_rule_sigma_1d

Perform a sigma lim-rule-check

Description

This check tests data on whether it exceeds a threshold formed by multiple standard derviations away from the mean.

Usage

```
qat_analyse_lim_rule_sigma_1d(measurement_vector, sigma_factor)
```

Arguments

measurement_vector
The measurement vector, which should be tested
sigma_factor
Multiplier of standard derivation, which determin the maximum allowed deviation from the mean

Details

First the mean and the standard derivation of the measurement vector will be calculated. After this the limits will be determined by

 $lim_{\pm} = \mu \pm f\sigma,$

where f is the given sigma factor.

Value

It returns a list with the following entries:

flagvector	A vector of length of measurement vector. For every element of the measure- ment vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a 0, when no exceeding has happend.
sigma_factor	Give back the given sigma_factor
meanofvector	Give back the calculated mean of the measurement vector
sdofvector	Give back the calculated standard deviation of the measurement vector

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_plot_lim_rule_sigma_1d, qat_call_lim_rule, qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_dy

Examples

vec <- rnorm(1000)
result <- qat_analyse_lim_rule_sigma_1d(vec, 2)</pre>

qat_analyse_lim_rule_sigma_2d

Perform a sigma lim-rule-check

Description

This check tests data on whether it exceeds a threshold formed by multiple standard derviations away from the mean.

Usage

qat_analyse_lim_rule_sigma_2d(measurement_vector, sigma_factor)

Arguments

measurement_vector	
	The measurement vector (2d array), which should be tested
sigma_factor	Multiplier of standard derivation, which determin the maximum allowed devia-
	tion from the mean

Details

First the mean and the standard derivation of the measurement vector will be calculated. After this the limits will be determined by

$$lim_{\pm} = \mu \pm f\sigma,$$

where f is the given sigma factor.

Value

It returns a list with the following entries:

flagvector	A vector of length of measurement vector. For every element of the measurement vector the flagvector (2d array) contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a 0, when no exceeding has happenned.
sigma_factor	Give back the given sigma_factor
meanofvector	Give back the calculated mean of the measurement vector
sdofvector	Give back the calculated standard deviation of the measurement vector

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_analyse_lim_rule_sigma_1d, qat_plot_lim_rule_sigma_2d, qat_call_lim_rule, qat_analyse_lim_rule_star
qat_analyse_lim_rule_dynamic_2d
```

Examples

```
vec <- array(rnorm(100),c(5,20))
result <- qat_analyse_lim_rule_sigma_2d(vec, 2)</pre>
```

Description

This check tests data on whether it exceeds a static threshold.

Usage

```
qat_analyse_lim_rule_static_1d(measurement_vector, min_value, max_value)
```

Arguments

measurement_vector	
	The measurement vector, which should be tested
min_value	The minimum threshold
max_value	The maximum threshold

Details

This check tests every element, on whether it exceeds the minimum or maximum threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every element of the measurement vector the flagvector contains a -1, if its exceeding the minimum value, a 1, if its exceeding the maximum value, or a 0, when no exceeding has happend.

Value

It returns a list with the following entries:

flagvector	A vector of length of measurement vector. For every element of the measure-
	ment vector the flagvector contains a -1, if its exceeding the minimum value, a
	1, if its exceeding the maximum value, or a 0, when no exceeding has happend.
min_value	Give back the given min_value
max_value	Give back the given max_value

Warning

There is no checking, if the maximum-value is greater than the minimum-value.

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_plot_lim_rule_static_1d, qat_call_lim_rule, qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_static_1d

```
vec <- rnorm(1000)
result <- qat_analyse_lim_rule_static_1d(vec, -2,2)</pre>
```

qat_analyse_lim_rule_static_2d

Perform a static lim-rule-check

Description

This check tests data on whether it exceeds a static threshold.

Usage

```
qat_analyse_lim_rule_static_2d(measurement_vector, min_value, max_value)
```

Arguments

measurement_vector	
	The measurement vector (2d array), which should be tested
min_value	The minimum threshold
<pre>max_value</pre>	The maximum threshold

Details

This check tests every element, on whether it exceeds the minimum or maximum threshold. The result will be given back as a list, which contains the result of the test as a flagvector (2d array) and its parameters. For every element of the measurement vector the flagvector contains a -1, if its exceeding the minimum value, a 1, if its exceeding the maximum value, or a 0, when no exceeding has happend.

Value

It returns a list with the following entries:

flagvector	A vector of length of measurement vector. For every element of the measurement vector the flagvector contains a -1, if its exceeding the minimum value, a 1, if its exceeding the maximum value, or a 0, when no exceeding has happend.
<pre>min_value</pre>	Give back the given min_value
<pre>max_value</pre>	Give back the given max_value

Warning

There is no checking, if the maximum-value is greater than the minimum-value.

Author(s)

Andre Duesterhus

References

```
Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, 
\_Agricultural and Forest Meteorology\_, *69* (1-2), 85-109.
```

See Also

qat_analyse_lim_rule_static_1d, qat_plot_lim_rule_static_2d, qat_call_lim_rule, qat_analyse_lim_rule_dy
qat_analyse_lim_rule_sigma_2d

Examples

```
vec <- array(rnorm(100),c(5,20))
result <- qat_analyse_lim_rule_static_2d(vec, -2,2)</pre>
```

qat_analyse_noc_rule_1d

Perform a noc-rule-check

Description

This check tests data on whether it changes after a given amount of values.

Usage

```
qat_analyse_noc_rule_1d(measurement_vector, max_return_elements)
```

Arguments

measurement_vector
 The measurement vector, which should be tested
max_return_elements
 Number of coherent elements, which are allowed to have no change between the
 single values, without indicate an error

Details

This check tests the given measurement vector from the beginning to the end, on how much values in a row got the same value. If the number of values, which is defined by max_return_elements prior to the actual element got the same value as the actual element, the resulting flagvector will be set to 1 on the actual position. Else it will be set to 0.

Value

It returns a list with the following entries:

flagvector flagvektor with the dimension of measurement vector, where a 0 indicates no error and a 1 that there is a repetition error

max_return_elements

Give back the given max_return_elements

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_plot_noc_rule_1d, qat_call_noc_rule

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
result <- gat_analyse_noc_rule_1d(vec, 1)</pre>
```

qat_analyse_noc_rule_2d

Perform a noc-rule-check

Description

This check tests data on whether it changes after a given amount of values.

Usage

qat_analyse_noc_rule_2d(measurement_vector, max_return_elements)

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

max_return_elements

Number of coherent elements, which are allowed to have no change between the single values, without indicate an error

Details

This check tests the given measurement vector (2d array) in direction of the first dimension, on how much values in a row gut the same value. If the number of values, which is defined by max_return_elements prior to the actual element got the same value as the actual element, the resulting flagvector will be set to 1 on the actual position. Else it will be set to 0.

Value

It returns a list with the following entries:

flagvector	flagvektor (2d array) with the dimension of measurement vector, where a 0 in-
	dicates no error and a 1 that there is a repetition error
<pre>max_return_ele</pre>	ments

Give back the given max_return_elements

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_plot_noc_rule_1d, qat_call_noc_rule

Examples

```
vec <- array(c(1,1,1,2,2),c(5,20))
result <- qat_analyse_noc_rule_2d(vec, 2)</pre>
```

Description

This check tests data on whether the change between two consecutive data points exceeds a dynamic threshold.

Usage

```
qat_analyse_roc_rule_dynamic_1d(measurement_vector, max_upward_vector = NULL,
max_downward_vector = NULL, upward_vector_name = NULL, downward_vector_name = NULL,
upward_vector_identifier = NULL, downward_vector_identifier = NULL)
```

Arguments

measurement_vector

The measurement vector, which should be tested

max_upward_vector

A vector which consists of the threshold values for upward changes, with the same dimension like the measurement vector

max_downward_vector

A vector which consists of the threshold values for downward changes, with the same dimension like the measurement vector and have to be positive definite

upward_vector_name

A name or title of the upward vector, which will be given back in the result downward_vector_name

A name or title of the downward vector, which will be given back in the result upward_vector_identifier

The identifier of the upward vector

downward_vector_identifier

The identifier of the downward vector

Details

This check tests two consecutive elements, on wether the change of values between those two exceeds the upward or downward threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding its dedicated downward vector element, a 1, if its exceeding its dedicated upward vector element, or a 0, when no exceeding has happend. NaN-values in the measurement vector will be given back as a 0 in the flagvector, NaN-values in the upward or downward-vector are considered as not existing.

Value

It returns a list with the following entries:

flagvector	A vector of length of measurement vector. For every change between two ele- ments of the measurement vector the flagvector contains a -1, if its exceeding its dedicated downward vector element, a 1, if its exceeding its dedicated upward vector element, or a 0, when no exceeding has happend.	
max_upward_vector		
	Give back the given max_upward_vector	
max_downward_vector		
	Give back the given max_downward_vector	
upward_vector_name		
	Give back the given upward_vector_name	
downward_vector_name		
	Give back the given downward_vector_name	

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_plot_roc_rule_dynamic_1d, qat_call_roc_rule, qat_analyse_roc_rule_static_1d

Examples

```
vec <- rnorm(100)
min_vector<-seq(1,2,length.out=100)
max_vector<-seq(1,2,length.out=100)
result <- qat_analyse_roc_rule_dynamic_1d(vec, min_vector, max_vector,
upward_vector_name="upward vector", downward_vector_name="downward vector")</pre>
```

qat_analyse_roc_rule_dynamic_2d

Perform a dynamic roc-rule-check

Description

This check tests data on whether the change between two consecutive data points exceeds a dynamic threshold.

Usage

```
qat_analyse_roc_rule_dynamic_2d(measurement_vector, max_upward_vector = NULL,
max_downward_vector = NULL, upward_vector_name = NULL, downward_vector_name = NULL,
upward_vector_identifier = NULL, downward_vector_identifier = NULL)
```

Arguments

```
measurement_vector
```

The measurement vector (2d array), which should be tested

max_upward_vector

A vector (2d array) which consists of the threshold values for upward changes, with the same dimensions like the measurement vector

max_downward_vector

A vector (2d array) which consists of the threshold values for downward changes, with the same dimension like the measurement vector and have to be positive definite

upward_vector_name

A name or title of the upward vector, which will be given back in the result

downward_vector_name

A name or title of the downward vector, which will be given back in the result

upward_vector_identifier The identifier of the upward vector downward_vector_identifier The identifier of the downward vector

Details

This check tests two consecutive elements (in the direction of the first dimension), on wether the change of values between those two exceeds the upward or downward threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding its dedicated downward vector element, a 1, if its exceeding its dedicated upward vector element, or a 0, when no exceeding has happend. NaN-values in the measurement vector will be given back as a 0 in the flagvector, NaN-values in the upward or downward-vector are considered as not existing.

Value

It returns a list with the following entries:

flagvector A 2d array with the dimensions of the measurement vector. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding its dedicated downward vector element, a 1, if its exceeding its dedicated upward vector element, or a 0, when no exceeding has happend.

max_upward_vector

Give back the given max_upward_vector

max_downward_vector

Give back the given max_downward_vector

upward_vector_name

Give back the given upward_vector_name

downward_vector_name

Give back the given downward_vector_name

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_analyse_roc_rule_dynamic_1d, qat_plot_roc_rule_dynamic_2d, qat_call_roc_rule,
qat_analyse_roc_rule_static_2d
```

Examples

```
vec <- array(rnorm(100),c(5,20))
min_vector<-array(rnorm(100)+2,c(5,20))
max_vector<-array(rnorm(100)+2,c(5,20))
result <- qat_analyse_roc_rule_dynamic_2d(vec, min_vector, max_vector, upward_vector_name=
"upward vector", downward_vector_name="downward vector")</pre>
```

qat_analyse_roc_rule_static_1d

Perform a static roc-rule-check

Description

This check tests data on whether the change between two consecutive data points exceeds a static threshold.

Usage

```
qat_analyse_roc_rule_static_1d(measurement_vector, max_upward_value,
max_downward_value)
```

Arguments

measurement_vector
 The measurement vector, which should be tested
max_upward_value
 The upward threshold
max_downward_value

The downward threshold, which should be positive definite

Details

This check tests two consecutive elements, on wether the change of values between those two exceeds the upward or downward threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding the downward value, a 1, if its exceeding the upward value, or a 0, when no exceeding has happend.

Value

It returns a list with the following entries:

flagvector A vector of length of measurement vector. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding the downward value, a 1, if its exceeding the upward value, or a 0, when no exceeding has happend.

max_upward_value

Give back the given max_upward_value

50

max_downward_value

Give back the given max_downward_value

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_plot_roc_rule_static_1d, qat_call_roc_rule, qat_analyse_roc_rule_dynamic_1d

Examples

```
vec <- rnorm(100)
result <- qat_analyse_roc_rule_static_1d(vec, 2,2)</pre>
```

Description

This check tests data on whether the change between two consecutive data points exceeds a static threshold.

Usage

```
qat_analyse_roc_rule_static_2d(measurement_vector, max_upward_value,
max_downward_value)
```

Arguments

measurement_vector The measurement vector (2d array), which should be tested

max_upward_value

The upward threshold

max_downward_value

The downward threshold, which should be positive definite

Details

This check tests two consecutive elements (in the direction of the first dimension), on wether the change of values between those two exceeds the upward or downward threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding the downward value, a 1, if its exceeding the upward value, or a 0, when no exceeding has happend.

Value

It returns a list with the following entries:

flagvector	A vector with the dimensions of the measurement vector. For every change
	between two elements of the measurement vector the flagvector contains a -1, if
	its exceeding the downward value, a 1, if its exceeding the upward value, or a 0,
	when no exceeding has happend.

max_upward_value

Give back the given max_upward_value

max_downward_value

Give back the given max_downward_value

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_analyse_roc_rule_static_1d, qat_plot_roc_rule_static_2d, qat_call_roc_rule, qat_analyse_roc_rule_d

Examples

```
vec <- array(rnorm(100),c(5,20))
result <- qat_analyse_roc_rule_static_2d(vec, 2,2)</pre>
```

qat_analyse_set_addup_1d

Addup values of a vector

Description

This function adds up sucessive values of a given vector

52

Usage

qat_analyse_set_addup_1d(measurement_vector, blocksize)

Arguments

measurement_vector	
	The measurement vector, which should be tested
blocksize	Number of elements, which should be added up

Details

Starting with the first element the measurement vector will be splitted up into blocks of the size of the parameter block size. In a second step the elements of these blocks will be summed up. If the last block haven't the size of block size, this block will be ignored.

Value

Give back a list, which includes the vector with the results of the blocks.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_mean_1d, qat_analyse_set_nans_1d

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_addup_1d(vec, 3)</pre>
```

qat_analyse_set_addup_2d

Addup values of a vector

Description

This function adds up successive values of a given vector

Usage

```
qat_analyse_set_addup_2d(measurement_vector, blocksize)
```

Arguments

measurement_vector	
	The measurement vector, which should be tested
blocksize	Number of elements, which should be added up

Details

Starting with the first element the measurement vector will be split up into blocks of the size of the parameter block size. In a second step the elements of these blocks will be summed up. If the last block haven't the size of block size, this block will be ignored.

Value

Give back a list, which includes the vector with the results of the blocks.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_mean_2d, qat_analyse_set_nans_2d

Examples

```
vec <- array(rnorm(144), c(12,12))
result <- qat_analyse_set_addup_2d(vec, 3)</pre>
```

qat_analyse_set_mean_1d

Mean of values of a vector

Description

This function makes a mean of sucessive values of a given vector.

Usage

```
qat_analyse_set_mean_1d(measurement_vector, blocksize)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
blocksize	Number of elements, which should be added up	

Details

Starting with the first element the measurement vector will be splitted up into blocks of the size of the parameter block size. In a second step a mean will be formed with the elements of these blocks. If the last block haven't the size of block size, this block will be ignored.

54

Value

Give back a list, which includes the vector with the results of the blocks.

Author(s)

Andre Duesterhus

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_mean_1d(vec, 3)</pre>
```

qat_analyse_set_mean_2d

Mean of values of a vector

Description

This function makes a mean of successive values of a given vector.

Usage

qat_analyse_set_mean_2d(measurement_vector, blocksize)

Arguments

measurement_vector	
	The measurement vector, which should be tested
blocksize	Number of elements, which should be added up

Details

Starting with the first element the measurement vector will be split up into blocks of the size of the parameter block size. In a second step a mean will be formed with the elements of these blocks. If the last block haven't the size of block size, this block will be ignored.

Value

Give back a list, which includes the vector with the results of the blocks.

Author(s)

Andre Duesterhus

```
vec <- array(rnorm(144), c(12,12))
result <- qat_analyse_set_mean_2d(vec, 3)</pre>
```

qat_analyse_set_nans_1d

Set given values of a vector to NaN

Description

This function set a specified value of a vector to NaN.

Usage

```
qat_analyse_set_nans_1d(measurement_vector, nan_value)
```

Arguments

measurement_vector	
	The measurement vector, which should be worked on
nan_value	Value, which should be replaced by NaN

Details

In the given measurement vector, the value, which is specified by nan_value, will be replaced by NaN.

Value

Retrun a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_addup_1d, qat_analyse_set_mean_1d

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_nans_1d(vec, 4)</pre>
```

qat_analyse_set_nans_2d

Set given values of a vector to NaN

Description

This function set a specified value of a vector to NaN.

Usage

```
qat_analyse_set_nans_2d(measurement_vector, nan_value)
```

Arguments

measurement_vector	
	The measurement vector, which should be worked on
nan_value	Value, which should be replaced by NaN

Details

In the given measurement vector, the value, which is specified by nan_value, will be replaced by NaN.

Value

Retrun a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_addup_2d, qat_analyse_set_mean_2d

```
vec <- array(c(1,2,3,4,5,4,3,2,1), c(3,3))
result <- qat_analyse_set_nans_2d(vec, 4)</pre>
```

qat_analyse_set_nans_above_1d

Set values above threshold to NaN

Description

This function set a values of a vector above a given value to NaN.

Usage

```
qat_analyse_set_nans_above_1d(measurement_vector, nan_above)
```

Arguments

measurement_vector	
	The measurement vector, which should be worked on
nan_above	Value, above the values should be replaced by NaN

Details

In the given measurement vector, the values, which are above nan_above, will be replaced by NaN.

Value

Return a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_addup_1d, qat_analyse_set_mean_1d, qat_analyse_set_nans_1d, qat_analyse_set_nans_below_

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_nans_above_1d(vec, 4)</pre>
```

qat_analyse_set_nans_above_2d

Set values above threshold to NaN

Description

This function set a values of a vector above a given value to NaN.

Usage

```
qat_analyse_set_nans_above_2d(measurement_vector, nan_above)
```

Arguments

measurement_vector	
	The measurement vector, which should be worked on
nan_above	Value, above the values should be replaced by NaN

Details

In the given measurement vector, the values, which are above nan_above, will be replaced by NaN.

Value

Return a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_addup_2d, qat_analyse_set_mean_2d, qat_analyse_set_nans_2d, qat_analyse_set_nans_below.

```
vec <- array(c(1,2,3,4,5,4,3,2,1), c(3,3))
result <- qat_analyse_set_nans_above_2d(vec, 4)</pre>
```

qat_analyse_set_nans_below_1d

Set values below threshold to NaN

Description

This function set a values of a vector below a given value to NaN.

Usage

```
qat_analyse_set_nans_below_1d(measurement_vector, nan_below)
```

Arguments

measurement_vector	
	The measurement vector, which should be worked on
nan_below	Value, below the values should be replaced by NaN

Details

In the given measurement vector, the values, which are below nan_below, will be replaced by NaN.

Value

Return a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_addup_1d, qat_analyse_set_mean_1d, qat_analyse_set_nans_1d, qat_analyse_set_nans_above

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_nans_below_1d(vec, 4)</pre>
```

qat_analyse_set_nans_below_2d

Set values below threshold to NaN

Description

This function set a values of a vector below a given value to NaN.

Usage

```
qat_analyse_set_nans_below_2d(measurement_vector, nan_below)
```

Arguments

measurement_vector	
	The measurement vector, which should be worked on
nan_below	Value, below the values should be replaced by NaN

Details

In the given measurement vector, the values, which are below nan_below, will be replaced by NaN.

Value

Return a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_addup_2d, qat_analyse_set_mean_2d, qat_analyse_set_nans_2d, qat_analyse_set_nans_above

```
vec <- array(c(1,2,3,4,5,4,3,2,1), c(3,3))
result <- qat_analyse_set_nans_below_2d(vec, 4)</pre>
```

Description

The measurement vector will be scanned stepwise by a sliding window, and on every step some statistical parameters will be calculated.

Usage

```
qat_analyse_slide_distribution_1d(measurement_vector, blocksize)
```

Arguments

measurement_vector The measurement vector, which should be tested blocksize Length of the sliding window

Details

The measurement vector will be scanned stepwise by a sliding window, which got a length of the given parameter blocksize. At every step some statistical parameters will be calculated for the actual window. As a result a list will be given back, with these parameters, where every entry got a length of the length of the measurement vector minus the blocksize plus one.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector
second_moment	Second moment of the measurement vector
third_moment	Third moment of the measurement vector
fourth_moment standard_deviat	Fourth moment of the measurement vector
	Standard deviation of the measurement vector
skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector
p5_quantile	5 percent quantile of the measurement vector
p95_quantile	95 percent quantile of the measurement vector
p25_quantile	25 percent quantile of the measurement vector
p75_quantile	75 percent quantile of the measurement vector
blocksize	Length of the used blocks

Author(s)

Andre Duesterhus

See Also

qat_plot_slide_distribution_1d

Examples

```
vec <- rnorm(100)
result <- qat_analyse_slide_distribution_1d(vec, 10)</pre>
```

Description

The measurement vector will be scanned stepwise by a sliding window, and on every step some statistical parameters will be calculated.

Usage

```
qat_analyse_slide_distribution_2d(measurement_vector, blocksize)
```

Arguments

measurement_vector The measurement vector (2d array), which should be tested blocksize Length of the sliding window

Details

The measurement vector will be scanned stepwise by a sliding window for each element of the second dimension, which got a length of the given parameter blocksize. At every step some statistical parameters will be calculated for the actual window. As a result a list will be given back, with these parameters, where every entry got the same dimension like the measurement vector, where the first dimension is reduced by the blocksize plus one.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector
second_moment	Second moment of the measurement vector
third_moment	Third moment of the measurement vector
fourth_moment	Fourth moment of the measurement vector

standard_deviation

	Standard deviation of the measurement vector
skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector
p5_quantile	5 percent quantile of the measurement vector
p95_quantile	95 percent quantile of the measurement vector
p25_quantile	25 percent quantile of the measurement vector
p75_quantile	75 percent quantile of the measurement vector
blocksize	Length of the used blocks

Author(s)

Andre Duesterhus

See Also

qat_analyse_slide_distribution_1d, qat_plot_slide_distribution_2d

Examples

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_slide_distribution_2d(vec, 5)</pre>
```

Description

The measurement vector will be trimmed at each side stepwise and at every step some statistical parameters will be calculated.

Usage

qat_analyse_trimmed_distribution_1d(measurement_vector)

Arguments

 $measurement_vector$

The measurement vector, which should be tested

Details

The measurement vector will be trimmed at each side stepwise, with a step of 1 percent. At each step some statistical parameters will be calculated. As a result a list will be given back, with these parameters, where every entry got a length of 50.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector
second_moment	Second moment of the measurement vector
third_moment	Third moment of the measurement vector
fourth_moment standard_devia	Fourth moment of the measurement vector tion
	Standard deviation of the measurement vector
skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector
p5_quantile	5 percent quantile of the measurement vector
p95_quantile	95 percent quantile of the measurement vector
p25_quantile	25 percent quantile of the measurement vector
p75_quantile	75 percent quantile of the measurement vector

Author(s)

Andre Duesterhus

See Also

qat_plot_trimmed_distribution_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_trimmed_distribution_1d(vec)</pre>
```

Description

The measurement vector (2d array) will be handled separately for every element in the direction of the second dimension. Each vector will be trimmed stepwise at each side and at every step some statistical parameters will be calculated.

Usage

qat_analyse_trimmed_distribution_2d(measurement_vector)

Arguments

measurement_vector

The measurement vector, which should be tested

Details

The measurement vector will be trimmed, in direction of the first dimension, at each side stepwise, with a step of 1 percent. At each step some statistical parameters will be calculated. As a result a list will be given back, with these parameters, where every entry got the first dimension of 50 and as the second the second dimension of the measurement vector.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector
second_moment	Second moment of the measurement vector
third_moment	Third moment of the measurement vector
fourth_moment standard_deviat	Fourth moment of the measurement vector tion
	Standard deviation of the measurement vector
skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector
p5_quantile	5 percent quantile of the measurement vector
p95_quantile	95 percent quantile of the measurement vector
p25_quantile	25 percent quantile of the measurement vector
p75_quantile	75 percent quantile of the measurement vector

Author(s)

Andre Duesterhus

See Also

qat_analyse_trimmed_distribution_1d, qat_plot_trimmed_distribution_2d

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_trimmed_distribution_2d(vec)</pre>
```

qat_call_block_distribution

Perform a block distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_block_distribution_1d.

Usage

```
qat_call_block_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector	
	The measurement vector, which should be tested
workflowlist_part	
	A list with the parameters of the check
element	Element-identifier for the result, which will be given back in the resultlist
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist	A list with results of tests
resultlistcounter	
	Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_block_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

qat_analyse_slide_distribution_1d

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(blocksize=50)
result <- qat_call_block_distribution(vec, workflowlist_part)</pre>
```

```
qat_call_boot_distribution
```

Perform a bootstrapped distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_boot_distribution_1d.

Usage

```
qat_call_boot_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector	
	The measurement vector, which should be tested
workflowlist_p	art
	A list with the parameters of the check
element	Element-identifier for the result, which will be given back in the resultlist
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist resultlistcoun	A list with results of tests ter
	Number of elements of the resultlist

Number of elements of the resultlist

68

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_boot_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

qat_analyse_boot_distribution_1d

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(bootruns=1000)
result <- qat_call_boot_distribution(vec, workflowlist_part)</pre>
```

qat_call_distribution Perform a distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_distribution_1d.

Usage

```
qat_call_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vec	tor
	The measurement vector, which should be tested
workflowlist_part	
	A list with the parameters of the check
element	Element-identifier for the result, which will be given back in the resultlist
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector

lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist	A list with results of tests
resultlistcounter	
	Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

qat_analyse_distribution_1d

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(numofbars=15)
result <- qat_call_distribution(vec, workflowlist_part)</pre>
```

qat_call_histogram_test

Perform a LIM Rule Check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_histogram_test_xxx_xd.

Usage

```
qat_call_histogram_test(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector	
	The measurement vector, which should be tested
workflowlist_part	
	A list with the parameters of the check
element	Element-identifier for the result, which will be given back in the resultlist
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist resultlistcount	A list with results of tests
	Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_static_1d and qat_analyse_lim_rule_sigma_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_1d, qat_analyse_histogram_test_rms_1
qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_emd_1d, qat_analyse_histogram_test_kld_2d
qat_analyse_histogram_test_jsd_2d, qat_analyse_histogram_test_rms_2d, qat_analyse_histogram_test_ms_2d
qat_analyse_histogram_test_emd_2d
```

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
workflowlist_part <- list(blocksize=50, numofbars=65, metric="emd")
resultlist <- qat_call_histogram_test(vec, workflowlist_part, element=1)
savelist <- qat_call_save_histogram_test(resultlist[[2]])</pre>
```

qat_call_lim_rule Perform a LIM Rule Check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_static_1d and qat_analyse_lim_rule_sigma_1d.

Usage

```
qat_call_lim_rule(measurement_vector, workflowlist_part, element = -999, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector	
	The measurement vector, which should be tested
workflowlist_part	
	A list with the parameters of the check
element	Element-identifier for the result, which will be given back in the resultlist
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist resultlistcount	A list with results of tests er
	Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_static_1d and qat_analyse_lim_rule_sigma_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

72

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_sigma_1d,
qat_plot_lim_rule_dynamic_1d, qat_plot_lim_rule_static_1d, qat_plot_lim_rule_sigma_1d
```

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(minimum_value=-2, maximum_value=2,minimum_vector="vec1",
maximum_vector="vec2",minimum_vector_name="minimum vector",maximum_vector_name="maximum vector",
sigma_factor=2)
result <- qat_call_lim_rule(vec, workflowlist_part, vec1=min_vector, vec2=max_vector)</pre>
```

qat_call_noc_rule Perform a NOC Rule Check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_noc_rule_1d.

Usage

```
qat_call_noc_rule(measurement_vector, workflowlist_part, element = -999, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
workflowlist_p	art	
	A list with the parameters of the check	
element	Element-identifier for the result, which will be given back in the resultlist	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	

lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist resultlistcoun	A list with results of tests
	Number of elements of the resultlist

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_noc_rule_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

qat_plot_noc_rule_1d

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
workflowlist_part <- list(max_return_elements=1)
result <- qat_call_noc_rule(vec, workflowlist_part)</pre>
```

 ${\tt qat_call_plot_block_distribution}$

Plot a result of a block distribution check

Description

A result of qat_analyse_block_distribution_1d will be plotted.

Usage

```
qat_call_plot_block_distribution(resultlist_part, measurement_vector = NULL, time=NULL,
height= NULL, lat=NULL, lon=NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part		
	A list with the result, which is directly or indirectly produced by qat_analyse_block_distribution_1d.	
measurement_ve	ctor	
	The measurement vector, which was tested	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
measurement_name		
	Name of the data, which will be used as an indicator on the plot	
directoryname	Definition of the directory, where the plot should be stored	
basename	Basic name of the resulting file	
plotstyle	A list with a qat color scheme	

Details

A plot will be produced, which base on the resulting list of qat_analyse_block_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_block_distribution_1d

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(blocksize=50)
resultlist <- qat_call_block_distribution(vec, workflowlist_part, element=1)
# this example produce the files exampleplot_1_blockdist_1.png, exampleplot_1_blockdist_2.png
# and exampleplot_1_blockdist_3.png in the current directory
qat_call_plot_block_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

qat_call_plot_boot_distribution

Plot a result of a bootstrapped distribution check

Description

A result of qat_analyse_boot_distribution_1d will be plotted.

• • •

Usage

```
qat_call_plot_boot_distribution(resultlist_part, measurement_vector = NULL,
time = NULL, height = NULL, lat = NULL, lon = NULL, measurement_name = "",
directoryname = "", basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

		A list with the result, which is directly or indirectly produced by qat_analyse_boot_distribution_Id.
measurement_vector		
		The measurement vector, which was tested
	time	A vector of time elements with the length of the measurement vector
	height	A vector of height elements with the length of the measurement vector
	lat	A vector of latitude elements with the length of the measurement vector
	lon	A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator on the plot

directoryname	Definition of	the directory.	where the	plot should	be stored

basename Basic name of the resulting file

plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_boot_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_boot_distribution_1d

Examples

```
vec <- rnorm(500)
workflowlist_part <- list(bootruns=100)
resultlist <- qat_call_boot_distribution(vec, workflowlist_part, element=1)
# this example produce the file exampleplot_1_bootdist.png in the current directory
qat_call_plot_boot_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

Description

A result of qat_analyse_distribution_1d will be plotted.

Usage

```
qat_call_plot_distribution(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part		
	A list with the result, which is directly or indirectly produced by qat_analyse_distribution_1d.	
<pre>measurement_ve</pre>	ctor	
	The measurement vector, which was tested	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
measurement_name		
	Name of the data, which will be used as an indicator on the plot	
directoryname	Definition of the directory, where the plot should be stored	
basename	Basic name of the resulting file	
plotstyle	A list with a qat color scheme	

A plot will be produced, which base on the resulting list of qat_analyse_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_distribution_1d

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(numofbars=15)
resultlist <- qat_call_distribution(vec, workflowlist_part, element=1)
# this example produce a file exampleplot_1_dist.png in the current directory
qat_call_plot_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

Description

A result of qat_analyse_histogram_test_xxx_xd will be plotted.

Usage

```
qat_call_plot_histogram_test(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part		
	A list with the result, which is directly or indirectly produced by qat_analyse_histogram_test_xxx_xd.	
measurement_ve	ctor	
	The measurement vector, which was tested	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
measurement_name		
	Name of the data, which will be used as an indicator on the plot	
directoryname	Definition of the directory, where the plot should be stored	
basename	Basic name of the resulting file	
plotstyle	A list with a qat color scheme	

Details

A plot will be produced, which base on the resulting list of qat_analyse_histogram_test_xxx_xd. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
workflowlist_part <- list(blocksize=50, numofbars=65, metric="emd")
resultlist <- qat_call_histogram_test(vec, workflowlist_part, element=1)
# this example produce the file exampleplot_1_histogramtest_emd.png in the current
# directory
qat_call_plot_histogram_test(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

qat_call_plot_lim_rule

Plot a result of a LIM rule check

Description

A result of qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_sigma_1d or qat_analyse_lim_rule_dynamics_ will be plotted.

Usage

```
qat_call_plot_lim_rule(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_lim_rule_static_1d
qat_analyse_lim_rule_sigma_1d or qat_analyse_lim_rule_dynamics_1d.

measurement_vector		
	The measurement vector, which was tested	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
measurement_name		
	Name of the data, which will be used as an indicator in the plot	
directoryname	Definition of the directory, where the plot should be stored	
basename	Basic name of the resulting file	
plotstyle	A list with a qat color scheme	

Details

A plot will be produced, which base on the resulting list of qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_sigma_1d or qat_analyse_lim_rule_dynamics_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plot-style is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_lim_rule_dynamic_1d, qat_plot_lim_rule_static_1d, qat_plot_lim_rule_sigma_1d

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(minimum_value=-2, maximum_value=2,minimum_vector="vec1",
maximum_vector="vec2",minimum_vector_name="minimum vector",
maximum_vector_name="maximum vector", sigma_factor=2)
resultlist <- qat_call_lim_rule(vec, workflowlist_part, element=1, vec1=min_vector,
vec2=max_vector)
# this example produce the files exampleplot_1_lim_sigma.png, exampleplot_1_lim_static.png
# and exampleplot_1_lim_dynamic.png in the current directory
for (ii in 2:4) {
    qat_call_plot_lim_rule(resultlist[[ii]], measurement_vector=vec,
    measurement_name="Result of Check", basename="exampleplot")
}</pre>
```

qat_call_plot_noc_rule

Plot a result of a NOC rule check

Description

A result of qat_analyse_noc_rule_1d will be plotted.

Usage

```
qat_call_plot_noc_rule(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

```
resultlist_part
```

	A list with the result, which is directly or indirectly produced by qat_analyse_noc_rule_1d.	
measurement_vector		
	The measurement vector, which was tested	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	

lon	A vector of longitude elements with the length of the measurement vector	
measurement_name		
	Name of the data, which will be used as an indicator on the plot	
directoryname	Definition of the directory, where the plot should be stored	
basename	Basic name of the resulting file	
plotstyle	A list with a qat color scheme	

A plot will be produced, which base on the resulting list of qat_analyse_noc_rule_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_noc_rule_1d

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
workflowlist_part <- list(max_return_elements=1)
resultlist <- qat_call_noc_rule(vec, workflowlist_part,element=1)
# this example produce a file exampleplot_1_noc.png in the current directory
qat_call_plot_noc_rule(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

qat_call_plot_roc_rule

Plot a result of a ROC rule check

Description

A result of qat_analyse_roc_rule_static_1d or qat_analyse_roc_rule_dynamics_1d will be plotted.

Usage

```
qat_call_plot_roc_rule(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part		
	A list with the result, which is directly or indirectly produced by qat_analyse_roc_rule_static_1d or qat_analyse_roc_rule_dynamics_1d.	
<pre>measurement_vec</pre>	ctor	
	The measurement vector, which was tested	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
<pre>measurement_nam</pre>	measurement_name	
	Name of the data, which will be used as an indicator in the plot	
directoryname	Definition of the directory, where the plot should be stored	
basename	Basic name of the resulting file	
plotstyle	A list with a qat color scheme	

Details

A plot will be produced, which base on the resulting list of qat_analyse_roc_rule_static_1d or qat_analyse_roc_rule_dynamics_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_roc_rule_dynamic_1d, qat_plot_roc_rule_static_1d

Examples

```
vec <- rnorm(100)
downward_vector<-seq(1,2,length.out=100)
upward_vector<-seq(1,2,length.out=100)
workflowlist_part <- list(downward_value=2, upward_value=2,downward_vector="vec1",
upward_vector="vec2",downward_vector_name="downward vector",
upward_vector_name="upward vector")
resultlist <- qat_call_roc_rule(vec, workflowlist_part, element=1, vec1=downward_vector,
vec2=upward_vector)
# this example produce the files exampleplot_1_roc_static.png and
# exampleplot_1_roc_dynamic.png in the current directory
for (ii in 2:3) {
    qat_call_plot_roc_rule(resultlist[[ii]], measurement_vector=vec,
    measurement_name="Result of Check", basename="exampleplot")
}</pre>
```

qat_call_plot_slide_distribution

Plot a result of a slide distribution check

Description

A result of qat_analyse_slide_distribution_1d will be plotted.

Usage

```
qat_call_plot_slide_distribution(resultlist_part, measurement_vector = NULL,
time = NULL, height = NULL, lat = NULL, lon = NULL, measurement_name = "",
directoryname = "", basename = "", plotstyle = NULL)
```

Arguments

resultlist_part		
	A list with the result, which is directly or indirectly produced by qat_analyse_slide_distribution_1d.	
<pre>measurement_ve</pre>	octor	
	The measurement vector, which was tested	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
measurement_name		
	Name of the data, which will be used as an indicator on the plot	
directoryname	Definition of the directory, where the plot should be stored	
basename	Basic name of the resulting file	
plotstyle	A list with a qat color scheme	

A plot will be produced, which base on the resulting list of qat_analyse_slide_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_slide_distribution_1d

Examples

```
vec <- rnorm(100)
workflowlist_part <- list(blocksize=10)
resultlist <- qat_call_slide_distribution(vec, workflowlist_part, element=1)
# this example produce the files exampleplot_1_slidedist_1.png, exampleplot_1_slidedist_2.png
# and exampleplot_1_slidedist_3.png in the current directory
qat_call_plot_slide_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

Description

A result of qat_analyse_trimmed_distribution_1d will be plotted.

Usage

```
qat_call_plot_trimmed_distribution(resultlist_part, measurement_vector = NULL,
time = NULL, height = NULL, lat = NULL, lon = NULL, measurement_name = "",
directoryname = "", basename = "", plotstyle = NULL)
```

Arguments

resultlist_part		
	A list with the result, which is directly or indirectly produced by qat_analyse_trimmed_distribution_1d.	
measurement_ve	ctor	
	The measurement vector, which was tested	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
measurement_name		
	Name of the data, which will be used as an indicator on the plot	
directoryname	Definition of the directory, where the plot should be stored	
basename	Basic name of the resulting file	
plotstyle	A list with a qat color scheme	

Details

A plot will be produced, which base on the resulting list of qat_analyse_trimmed_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_trimmed_distribution_1d

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list()
resultlist <- qat_call_trimmed_distribution(vec, workflowlist_part, element=1)
# this example produce a file exampleplot_1_trimmeddist.png in the current directory
qat_call_plot_trimmed_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

qat_call_roc_rule Perform a ROC Rule Check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_roc_rule_dynamic_1d and qat_analyse_roc_rule_static_1d.

Usage

```
qat_call_roc_rule(measurement_vector, workflowlist_part, element = -999, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
workflowlist_pa	art	
	A list with the parameters of the check	
element	Element-identifier for the result, which will be given back in the resultlist	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
resultlist A list with results of tests		
	Number of elements of the resultlist	

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_roc_rule_dynamic_1d and qat_analyse_roc_rule_static_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_roc_rule_static_1d, qat_analyse_roc_rule_dynamic_1d, qat_plot_roc_rule_dynamic_1d,
qat_plot_roc_rule_static_1d
```

Examples

```
vec <- rnorm(100)
downward_vector<-seq(1,2,length.out=1000)
upward_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(downward_value=2, upward_value=2,downward_vector="vec1",
upward_vector="vec2",downward_vector_name="downward vector", upward_vector_name="upward vector")
result <- qat_call_roc_rule(vec, workflowlist_part,vec1=downward_vector,vec2=upward_vector)</pre>
```

```
qat_call_save_block_distribution
```

Produce a savelist-entry for a Block Distribution Test

Description

This function calls qat_save_block_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_block_distribution(resultlist_part, element = -999, dim_mv=1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part	
	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3

vec4	An additional vector, which is named as vec4
baseunit	The unit of the original measurement vector
savelist	A list with save elements
savelistcounter	
	Numbers of elements of the savelist

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_block_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_block_distribution_1d, qat_run_workflow_save

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(blocksize=50)
resultlist <- qat_call_block_distribution(vec, workflowlist_part, element=1)
savelist <- qat_call_save_block_distribution(resultlist[[2]])</pre>
```

qat_call_save_boot_distribution

Produce a savelist-entry for a Boot Distribution Test

Description

This function calls qat_save_boot_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_boot_distribution(resultlist_part, element = -999, dim_mv=1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part		
	A list with the results of the check	
element	Element-identifier for the result, which will be given back in the savelist	
dim_mv	Dimension of the measurement vector.	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
baseunit	The unit of the original measurement vector	
savelist savelistcounter	A list with save elements	
	Numbers of elements of the savelist	

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_boot_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_boot_distribution_1d, qat_run_workflow_save

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(bootruns=1000)
resultlist <- qat_call_boot_distribution(vec, workflowlist_part, element=1)
savelist <- qat_call_save_boot_distribution(resultlist[[2]])</pre>
```

qat_call_save_distribution

Produce a savelist-entry for a Distribution Test

Description

This function calls qat_save_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_distribution(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
baseunit	The unit of the original measurement vector
savelist savelistcounter	A list with save elements
	Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_distribution_1d, qat_run_workflow_save

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(numofbars=15)
resultlist <- qat_call_distribution(vec, workflowlist_part, element=1)
qat_call_plot_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")
savelist <- qat_call_save_distribution(resultlist[[2]])</pre>
```

qat_call_save_histogram_test

Produce a savelist-entry for a Histogram Test

Description

This function calls qat_save_histogram_test. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_histogram_test(resultlist_part, element = -999, dim_mv = 1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part	
	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_m∨	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3

vec4	An additional vector, which is named as vec4	
baseunit	The unit of the original measurement vector	
savelist	A list with save elements	
savelistcounter		
	Numbers of elements of the savelist	

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called functions are qat_save_histogram_test. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_histogram_test, qat_run_workflow_save

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
workflowlist_part <- list(blocksize=50, numofbars=65, metric="emd")
resultlist <- qat_call_histogram_test(vec, workflowlist_part, element=1)
savelist <- qat_call_save_histogram_test(resultlist[[2]])</pre>
```

qat_call_save_lim_rule

Produce a savelist-entry for a LIM-RULE Test

Description

This function calls qat_save_lim_rule_static_1d, qat_save_lim_rule_sigma_1d or qat_save_lim_rule_dynamic_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_lim_rule(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part		
	A list with the results of the check	
element	Element-identifier for the result, which will be given back in the savelist	
dim_mv	Dimension of the measurement vector.	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
baseunit	The unit of the original measurement vector	
savelist savelistcounter	A list with save elements	
	Numbers of elements of the savelist	

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called functions are qat_save_lim_rule_static_1d, qat_save_lim_rule_sigma_1d or qat_save_lim_rule_dynamic_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_lim_rule_static_1d, qat_save_lim_rule_sigma_1d, qat_save_lim_rule_dynamic_1d, qat_run_workflow_save

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(minimum_value=-2, maximum_value=2,minimum_vector="vec1",
maximum_vector="vec2",minimum_vector_name="minimum vector",
maximum_vector_name="maximum vector", sigma_factor=2)</pre>
```

```
resultlist <- qat_call_lim_rule(vec, workflowlist_part, element=1, vec1=min_vector,
vec2=max_vector)
savelist <- list()
savelistcounter <- 1
for (ii in 2:4) {
savelist <- qat_call_save_lim_rule(resultlist[[ii]], savelist=savelist,
savelistcounter=savelistcounter)
if (length(which(names(savelist)=="element"))==0) {
savelistcounter<-length(savelist)
} else {
savelistcounter<-1
}
```

```
qat_call_save_noc_rule
```

Produce a savelist-entry for a NOC RULE Test

Description

This function calls qat_save_noc_rule_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_noc_rule(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
baseunit	The unit of the original measurement vector
savelist savelistcounter	A list with save elements
	Numbers of elements of the savelist

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_noc_rule_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_noc_rule_1d, qat_run_workflow_save

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
workflowlist_part <- list(max_return_elements=1)
resultlist <- qat_call_noc_rule(vec, workflowlist_part,element=1)
savelist <- qat_call_save_noc_rule(resultlist[[2]])</pre>
```

qat_call_save_roc_rule

Produce a savelist-entry for a ROC-Rule Test

Description

This function calls qat_save_roc_rule_static_1d or qat_save_roc_rule_dynamic_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_roc_rule(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector

height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
baseunit	The unit of the original measurement vector
savelist	A list with save elements
savelistcounter	r de la companya de la
	Numbers of elements of the savelist

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called functions are qat_save_roc_rule_static_1d and qat_save_roc_rule_static_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_roc_rule_static_1d, qat_save_roc_rule_dynamic_1d, qat_run_workflow_save

Examples

```
vec <- rnorm(100)
downward_vector<-seq(1,2,length.out=1000)
upward_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(downward_value=2, upward_value=2,downward_vector="vec1",
upward_vector="vec2",downward_vector_name="downward vector",
upward_vector_name="upward vector")
resultlist <- qat_call_roc_rule(vec, workflowlist_part, element=1,
vec1=downward_vector, vec2=upward_vector)
savelist <- list()
savelistcounter <- 1
for (ii in 2:3) {
    savelist <- qat_call_save_roc_rule(resultlist[[ii]], savelist=savelist,
    savelistcounter=savelistcounter)
    if (length(which(names(savelist)=="element"))==0) {
        savelistcounter<-length(savelist)
    }
}
</pre>
```

```
} else {
savelistcounter<-1
}
}
```

qat_call_save_set_addup

Produce a savelist-entry for a set Addup

Description

This function calls qat_save_set_addup_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_set_addup(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
baseunit	The unit of the original measurement vector
savelist savelistcounter	A list with save elements
	Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_set_addup_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_set_addup_1d, qat_run_workflow_save

Examples

still to come

qat_call_save_set_mean

Produce a savelist-entry for a Set Mean

Description

This function calls qat_save_set_mean_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_set_mean(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part	
	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_m∨	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3

vec4	An additional vector, which is named as vec4	
baseunit	The unit of the original measurement vector	
savelist	A list with save elements	
savelistcounter		
	Numbers of elements of the savelist	

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_set_mean_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_set_mean_1d, qat_run_workflow_save

Examples

still to come

qat_call_save_set_nans

Produce a savelist-entry for a set NAN

Description

This function calls qat_save_set_nans_1d, qat_save_set_nans_above_1d or qat_save_set_nans_below_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_set_nans(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part		
	A list with the results of the check	
element	Element-identifier for the result, which will be given back in the savelist	
dim_mv	Dimension of the measurement vector.	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
baseunit	The unit of the original measurement vector	
savelist	A list with save elements	
savelistcounter		
	Numbers of elements of the savelist	

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called functions are qat_save_set_nans_1d, qat_save_set_nans_above_1d or qat_save_set_nans_below_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_set_nans_1d, qat_save_set_nans_above_1d, qat_save_set_nans_below_1d, qat_run_workflow_save

Examples

still to come

qat_call_save_slide_distribution

Produce a savelist-entry for a Slide Distribution Test

Description

This function calls qat_save_slide_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_slide_distribution(resultlist_part, element = -999, dim_mv=1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(),
savelistcounter = 1)
```

Arguments

resultlist_part

	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_m∨	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
baseunit	The unit of the original measurement vector
savelist savelistcounter	A list with save elements
	Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_slide_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_slide_distribution_1d, qat_run_workflow_save

Examples

```
vec <- rnorm(100)
workflowlist_part <- list(blocksize=10)
resultlist <- qat_call_slide_distribution(vec, workflowlist_part, element=1)
savelist <- qat_call_save_slide_distribution(resultlist[[2]])</pre>
```

Description

This function calls qat_save_trimmed_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_trimmed_distribution(resultlist_part, element = -999, dim_mv=1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(),
savelistcounter = 1)
```

Arguments

resultlist_part

	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4

baseunit	The unit of the original measurement vector
savelist	A list with save elements
savelistcounter	
	Numbers of elements of the savelist

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_trimmed_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_trimmed_distribution_1d, qat_run_workflow_save

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(bootruns=1000)
resultlist <- qat_call_boot_distribution(vec, workflowlist_part, element=1)
savelist <- qat_call_save_boot_distribution(resultlist[[2]])</pre>
```

qat_call_set_addup Addup values of a vector

Description

This function adds up sucessive values of a given vector

Usage

```
qat_call_set_addup(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
workflowlist_part		
	A list with the parameters of the check	
element	Element-identifier for the result, which will be given back in the resultlist	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
resultlist	A list with results of tests	
resultlistcounter		
	Number of elements of the resultlist	

Details

This function calls the described method, which are defined by the parameters in the workflowlist_part. The possible called function is qat_analyse_set_addup_1d. As a result the function will give back a list, which include the corrected measurement vector.

Value

Give back a list, which include the vector with the results of the block.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_addup_1d

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
workflowlist_part <- list(blocksize=3)
result <- qat_call_set_addup(vec, workflowlist_part)</pre>
```

qat_call_set_mean Mean of values of a vector

Description

This function make a mean of sucessive values of a given vector.

Usage

```
qat_call_set_mean(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

	The measurement vector, which should be tested	
workflowlist_part		
	A list with the parameters of the check	
element	Element-identifier for the result, which will be given back in the resultlist	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
resultlist A list with results of tests resultlistcounter		
	Number of elements of the resultlist	

Details

This function calls the described method, which are defined by the parameters in the workflowlist_part. The possible called function is qat_analyse_set_mean_1d. As a result the function will give back a list, which include the corrected measurement vector.

Value

Give back a list, which include the vector with the results of the block.

Author(s)

Andre Duesterhus

qat_call_set_nans

See Also

qat_analyse_set_mean_1d

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
workflowlist_part <- list(blocksize=3)
result <- qat_call_set_mean(vec, workflowlist_part)</pre>
```

qat_call_set_nans Set given values of a vector to NaN

Description

This function set a specified value of a vector to NaN.

Usage

```
qat_call_set_nans(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
workflowlist_part		
	A list with the parameters of the check	
element	Element-identifier for the result, which will be given back in the resultlist	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
resultlist	A list with results of tests	
resultlistcounter		
	Number of elements of the resultlist	

This function calls the described method, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_set_nans_1d, qat_analyse_set_nans_above_1d and qat_analyse_set_nans_below_1d. As a result the function will give back a list, which include the corrected measurement vector.

Value

Give back a list, which include the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

qat_analyse_set_nans_1d

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
workflowlist_part <- list(nan_value=4)
result <- qat_call_set_nans(vec, workflowlist_part)</pre>
```

qat_call_slide_distribution

Perform a slide distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_slide_distribution_1d.

Usage

```
qat_call_slide_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
workflowlist_part		
	A list with the parameters of the check	
element	Element-identifier for the result, which will be given back in the resultlist	
time	A vector of time elements with the length of the measurement vector	

height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist	A list with results of tests
resultlistcoun	ter
	Number of elements of the resultlist

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_slide_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

qat_analyse_slide_distribution_1d

Examples

```
vec <- rnorm(100)
workflowlist_part <- list(blocksize=10)
result <- qat_call_slide_distribution(vec, workflowlist_part)</pre>
```

qat_call_trimmed_distribution

Perform a trimmed distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_trimmed_distribution_1d.

Usage

```
qat_call_trimmed_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector		
	The measurement vector, which should be tested	
workflowlist_pa	nt	
	A list with the parameters of the check	
element	Element-identifier for the result, which will be given back in the resultlist	
time	A vector of time elements with the length of the measurement vector	
height	A vector of height elements with the length of the measurement vector	
lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
resultlist resultlistcount	A list with results of tests ter	
	Number of elements of the resultlist	

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_trimmed_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

qat_analyse_trimmed_distribution_1d

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list()
result <- qat_call_trimmed_distribution(vec, workflowlist_part)</pre>
```

qat_config_read_workflow

Read an XML workflow

Description

This functions read a XML-workflow-file.

Usage

qat_config_read_workflow(filename)

Arguments

filename Path and filename of the xml-file, in which the workflow is defined

Details

This functions read a file, which got a XML-workflow in it. This will be transformed to a work-flowlist, which may be processed by qat_run_workflow_check.

Value

A workflowlist, which consists of the tests and its parameters, which should be performed.

Author(s)

Andre Duesterhus

See Also

qat_run_workflow_check

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)</pre>
```

qat_config_write_workflow

Write a result

Description

A workflowlist will be stored into a XML-file.

Usage

```
qat_config_write_workflow(workflowlist, name = "", description = "",
author = "", date = "", sample_time_start = "", sample_time_stop = "",
sample_place = "", config_filename = "", output_filename = "")
```

Arguments

workflowlist	A workflowlist, which may be loaded by qat_config_read_workflow and used for tests.
name	Name of the tests, which were performed with this workflowlist
description	Description of the workflowlist
author	Author who used the workflowlist for a test.
date sample_time_sta	Date of the test. art
	Start time of the sample, which was tested
<pre>sample_time_sto</pre>	q
	End time of the sample, which was tested
<pre>sample_place</pre>	Location of the sample, which was tested
config_filename	
output_filename	A filename of the configuration file, which was read in at qat_config_read_workflow.
	Filename, where the result should be stored.

Details

The workflow will be stored at the location of output_filename. As additional information in the header of this file, the other arguments will be used.

Value

The information, which was stored, will be given back.

Author(s)

Andre Duesterhus

qat_data_close_ncdf

See Also

qat_config_read_workflow

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)
workflowlist <- qat_add_all_algorithms(workflowlist)
filename_out <- "myworkflow_result.xml"</pre>
```

```
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)
```

qat_data_close_ncdf Close an open netCDF-file

Description

An open netCDF file will be closed.

Usage

qat_data_close_ncdf(obj)

Arguments

obj An open netCDF object.

Value

None.

Author(s)

Andre Duesterhus

See Also

qat_data_read_ncdf, qat_data_nameofvars_ncdf, qat_data_numofvars_ncdf, qat_data_varcontent_ncdf

Examples

#still to come

qat_data_nameofvars_ncdf

Variable names of ncdf object

Description

Give back the names of the variables in a netCDF-object.

Usage

```
qat_data_nameofvars_ncdf(obj)
```

Arguments

obj A netcdf object, which will be produced by qat_data_read_ncdf.

Details

The names of the variables, which are stored in the ncdf-object will be given back as a list.

Value

List of names.

Author(s)

Andre Duesterhus

See Also

qat_data_read_ncdf, qat_data_numofvars_ncdf, qat_data_varcontent_ncdf

Examples

#still to come

qat_data_numofvars_ncdf

Nomber of Variables of ncdf object

Description

Give back the number of the variables in a netCDF-object.

Usage

qat_data_numofvars_ncdf(obj)

Arguments

obj A netcdf object, which will be produced by qat_data_read_ncdf.

Details

The number of variables, which are stored in the ncdf-obect will be given back.

Value

Number of variables.

Author(s)

Andre Duesterhus

See Also

qat_data_read_ncdf, qat_data_nameofvars_ncdf qat_data_varcontent_ncdf

Examples

#still to come

qat_data_read_ncdf Read in netCDF-file

Description

A netCDF file will be read in and a ncdf-object will be given back.

Usage

qat_data_read_ncdf(filename)

Arguments

filename Path and filename of the netCDF-file, which should be read in.

Value

A ncdf-Object, with the content of the file.

Author(s)

Andre Duesterhus

See Also

qat_data_nameofvars_ncdf, qat_data_numofvars_ncdf, qat_data_varcontent_ncdf

Examples

#still to come

qat_data_varcontent_ncdf

Content of a variable

Description

Give back the content of a specified variable of an ncdf-object.

Usage

qat_data_varcontent_ncdf(obj, numofvar)

Arguments

obj	A netcdf object, which will be produced by qat_data_read_ncdf.
numofvar	Number of variable, which content should be delivered.

The content of the variable, which is specified by its number in numofvars will be given back.

Value

The content of the variable.

Author(s)

Andre Duesterhus

See Also

qat_data_read_ncdf, qat_data_nameofvars_ncdf qat_data_numofvars_ncdf

Examples

#still to come

qat_measure_histogram_difference

Perform a comparison of two datasets by means of its histograms with a given metric

Description

This function compares two datasets by calculating their histograms and compares them by a given metric.

Usage

```
qat_measure_histogram_difference(data1, data2, metric="EMD", breakvector=NULL,
numofbars=65, factorofbar=100)
```

Arguments

data1	The first dataset.
data2	The second dataset.
metric	Metric of the comparison. Details see below.
breakvector	Breakvector for the histograms. When not given (NULL), an equidistant breakvec- tor between the minimum and maximum of the two datasets with the given num- ber of bars will be generated.
numofbars	Number of bins of the histogram, when no breakvector is given.
factorofbar	Correction factor for non-value bins.

For both datasets the histograms are computed and compared by means of a given metric. As a metric for the comparison one of the following five options are usable: EMD: Earth Mover's Distance (default); KLD: Kullback-Leibler Distance; JSD: Jenson-Shannon Distance; RMS: Root Mean Square; MS: Mean Square. As a result the distance between the two histograms calculated by the metric is given.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

qat_analyse_histogram_test_1d, qat_analyse_histogram_test_2d

Examples

```
vec1 <- array(rnorm(1000), c(100, 20))
vec2 <- vec1 + 1
result <- qat_measure_histogram_difference(vec1, vec2, metric="EMD", numofbars=65)</pre>
```

qat_plot_block_distribution_1d

```
Plot a block distribution check result
```

Description

A plot of the result of a block distribution check will be produced.

Usage

```
qat_plot_block_distribution_1d(resultlist, filename, blocksize = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist	List of results from qat_analyse_block_distribution_1d	
filename	Name of the file without extension.	
blocksize	Length of the blocks	
measurement_name		
	Name of the measurement.	
directoryname	Directory, where the resulted file should be stored.	
plotstyle	A list with a qat color scheme.	

A plot will be produced, which base on the resulting flagvector of qat_analyse_block_distribution_1d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_block_distribution_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_block_distribution_1d(vec, 50)
# this example produce a file exampleplot_blockdist.png in the current directory
qat_plot_block_distribution_1d(result$stat, "exampleplot_blockdist",
blocksize=result$blocksize, measurement_name="Result of Check")</pre>
```

qat_plot_block_distribution_2d

Plot a block distribution check result

Description

A plot of the result of a block distribution check will be produced.

Usage

```
qat_plot_block_distribution_2d(resultlist, filename, blocksize = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist	List of results from qat_analyse_block_distribution_2d	
filename	Name of the file without extension.	
blocksize	Length of the blocks	
measurement_name		
	Name of the measurement.	
directoryname	Directory, where the resulted file should be stored.	
plotstyle	A list with a qat color scheme.	

A plot will be produced, which base on the resulting flagvector of qat_analyse_block_distribution_2d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_block_distribution_1d

Examples

```
vec <- array(rnorm(500),c(25,20))
result <- qat_analyse_block_distribution_2d(vec, 5)
# this example produce a file exampleplot_blockdist.png in the current directory
qat_plot_block_distribution_2d(result$stat, "exampleplot_blockdist",
blocksize=result$blocksize, measurement_name="Result of Check")</pre>
```

qat_plot_boot_distribution_1d

Plot a bootstrapped distribution check result

Description

A plot of the result of a booted distribution check will be produced.

Usage

```
qat_plot_boot_distribution_1d(resultlist_stat, filename, bootruns = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist_sta	t
	List of results from qat_analyse_boot_distribution_1d
filename	Name of the file without extension.
bootruns	Number of bootstrap runs used in the test.

measurement_name

	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting vectors of qat_analyse_boot_distribution_1d. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_boot_distribution_1d

Examples

```
vec <- rnorm(500)
result <- qat_analyse_boot_distribution_1d(vec, 100)
# this example produce a file exampleplot_bootdist.png in the current directory
qat_plot_boot_distribution_1d(result$stat, "exampleplot_bootdist",
bootruns=result$bootruns, measurement_name="Result of Check")</pre>
```

qat_plot_distribution_1d

Plot a distribution check result

Description

A plot of the result of a distribution check will be produced.

Usage

```
qat_plot_distribution_1d(resultlist_hist, filename, resultlist_stat,
numofbars = -1, measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist_hist	
	Result of a hist function.
filename	Name of the file without extension.
resultlist_sta	t
	List of statistical parameters.
numofbars	Numbers of bars of the histogram plot.
measurement_na	me
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_distribution_1d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_distribution_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_distribution_1d(vec, 15)
# this example produce a file exampleplot_dist.png in the current directory
qat_plot_distribution_1d(result$hist, "exampleplot_dist", result$stat,
numofbars=result$numofbars, measurement_name="Result of Check")</pre>
```

qat_plot_histogram_test

Plot a histogram test result

Description

A plot of the result of a histogram test will be produced.

Usage

```
qat_plot_histogram_test(resultfield, filename, blocksize = -1, numofbars = -1,
factorofbar = -1, metric = NULL, runs = NULL, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

resultfield	The resulting matrix of qat_analyse_histogram_test_xxx_xd	
filename	Name of the file without extension.	
blocksize	Length of a block.	
numofbars	Number of bins of the histograms.	
factorofbar	Correction factor for non-value bins.	
metric	Metric used for the comparison of the histograms.	
runs	Number of used blocks.	
measurement_name		
	Name of the measurement.	
directoryname	Directory, where the resulted file should be stored.	
plotstyle	A list with a qat color scheme.	

Details

A plot will be produced, which base on the resulting field of qat_analyse_histogram_test_xxx_xd. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
result <- qat_analyse_histogram_test_emd_1d(vec, 50, 65)
qat_plot_histogram_test(result$field, "test_emd_1d", result$blocksize,
result$numofbars, "emd", result$runs)</pre>
```

qat_plot_lim_rule_dynamic_1d

Plot a dynamic LIM rule result

Description

A plot of the result of a dynamic LIM rule check will be produced.

Usage

```
qat_plot_lim_rule_dynamic_1d(flagvector, filename, measurement_vector = NULL,
min_vector = NULL, max_vector = NULL, min_vector_name = NULL, max_vector_name = NULL,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_lim_rule_dynamic_1d	
filename	Name of the file without extension.	
measurement_ve	ctor	
	The measurement vector, which should be plotted	
<pre>min_vector</pre>	The vector with the minimum values.	
max_vector	The vector with the maximum values.	
min_vector_name		
	Name of the vector of the minimum values.	
<pre>max_vector_name</pre>	2	
	Name of the vector of the minimal values.	
measurement_name		
	Name of the measurement.	
directoryname	Directory, where the resulted file should be stored.	
plotstyle	A list with a qat color scheme.	

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_dynamic_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_lim_rule_dynamic_1d,qat_plot_lim_rule_static_1d,qat_plot_lim_rule_sigma_1d

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
result <- qat_analyse_lim_rule_dynamic_1d(vec, min_vector, max_vector,
min_vector_name="minimum vector", max_vector_name="maximum vector")
# this example produce a file exampleplot_lim_dyn.png in the current directory
qat_plot_lim_rule_dynamic_1d(result$flagvector, "exampleplot_lim_dyn",
measurement_vector=vec, min_vector=result$min_vector, max_vector=result$max_vector,
min_vector_name=result$min_vector_name, max_vector_name=result$max_vector_name,
measurement_name="Result of Check")</pre>
```

Description

A plot of the result of a dynamic LIM rule check will be produced.

Usage

```
qat_plot_lim_rule_dynamic_2d(flagvector, filename, measurement_vector = NULL,
min_vector = NULL, max_vector = NULL, min_vector_name = NULL, max_vector_name = NULL,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_lim_rule_dynamic_2d	
filename	Name of the file without extension.	
measurement_vector		
	The measurement vector, which should be plotted	
<pre>min_vector</pre>	The vector (2d array) with the minimum values.	
<pre>max_vector</pre>	The vector (2d array) with the maximum values.	

min_vector_name	
	Name of the vector of the minimum values.
<pre>max_vector_name</pre>	2
	Name of the vector of the minimal values.
<pre>measurement_nar</pre>	ne
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_dynamic_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_lim_rule_dynamic_1d, qat_analyse_lim_rule_dynamic_2d, qat_plot_lim_rule_static_2d, qat_plot_lim_rule_sigma_2d

Examples

```
vec <- array(rnorm(500),c(25,20))
min_vector <- array(rnorm(500)-2, c(25,20))
max_vector <- array(rnorm(500)+2, c(25,20))
result <- qat_analyse_lim_rule_dynamic_2d(vec, min_vector, max_vector,
min_vector_name="minimum vector", max_vector_name="maximum vector")
# this example produce a file exampleplot_lim_dyn.png in the current directory
qat_plot_lim_rule_dynamic_2d(result$flagvector, "exampleplot_lim_dyn",
measurement_vector=vec, min_vector=result$min_vector, max_vector=result$max_vector,
min_vector_name=result$min_vector_name, max_vector_name=result$max_vector_name,
measurement_name="Result of Check")</pre>
```

qat_plot_lim_rule_sigma_1d

Plot a sigma LIM rule result

Description

A plot of the result of a dynamic lim rule check will be produced.

Usage

```
qat_plot_lim_rule_sigma_1d(flagvector, filename, measurement_vector = NULL,
sigma_factor = NULL, meanofvector = NaN, sdofvector = NULL, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_lim_rule_sigma_1d
filename measurement_ve	Name of the file without extension. ctor
	The measurement vector, which should be plotted
sigma_factor	The sigma factor, which was used, when the test were performed.
meanofvector	The mean of the measurement vector
sdofvector measurement_na	The standard deviation of the measurement vector me
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_sigma_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value

Author(s)

Andre Duesterhus

See Also

qat_analyse_lim_rule_static_1d,qat_plot_lim_rule_dynamic_1d,qat_plot_lim_rule_sigma_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_lim_rule_sigma_1d(vec, 2)
# this example produce a file exampleplot_lim_sig.png in the current directory
qat_plot_lim_rule_sigma_1d(result$flagvector, "exampleplot_lim_sig", measurement_vector=vec,
sigma_factor=result$sigma_factor, meanofvector=result$meanofvector, sdofvector=result$sdofvector,
measurement_name="Result of Check")</pre>
```

Description

A plot of the result of a dynamic lim rule check will be produced.

Usage

```
qat_plot_lim_rule_sigma_2d(flagvector, filename, measurement_vector = NULL,
sigma_factor = NULL, meanofvector = NaN, sdofvector = NULL, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_lim_rule_sigma_2d
filename measurement_ve	Name of the file without extension. ctor
	The measurement vector, which should be plotted
sigma_factor	The sigma factor, which was used, when the test were performed.
meanofvector	The mean of the measurement vector
sdofvector measurement_na	The standard deviation of the measurement vector me
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_sigma_1d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value

Author(s)

Andre Duesterhus

See Also

```
qat_plot_lim_rule_static_1d, qat_analyse_lim_rule_static_2d, qat_plot_lim_rule_dynamic_2d,
qat_plot_lim_rule_sigma_2d
```

Examples

```
vec <- array(rnorm(500), c(25,20))
result <- qat_analyse_lim_rule_sigma_2d(vec, 2)
# this example produce a file exampleplot_lim_sig.png in the current directory
qat_plot_lim_rule_sigma_2d(result$flagvector, "exampleplot_lim_sig",
measurement_vector=vec, sigma_factor=result$sigma_factor,
meanofvector=result$meanofvector, sdofvector=result$sdofvector,
measurement_name="Result of Check")</pre>
```

qat_plot_lim_rule_static_1d

Plot a static lim rule result

Description

A plot of the result of a dynamic LIM rule check will be produced.

Usage

```
qat_plot_lim_rule_static_1d(flagvector, filename, measurement_vector = NULL,
min_value = NULL, max_value = NULL, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_lim_rule_static_1d
filename measurement_veo	Name of the file without extension.
	The measurement vector, which should be plotted
min_value	The used minimum value of the test.
<pre>max_value measurement_nar</pre>	The used maximum value of the test.
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_static_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_lim_rule_static_1d,qat_plot_lim_rule_dynamic_1d,qat_plot_lim_rule_sigma_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_lim_rule_static_1d(vec, -2,2)
# this example produce a file exampleplot_lim_sta.png in the current directory
qat_plot_lim_rule_static_1d(result$flagvector, "exampleplot_lim_sta",
measurement_vector=vec, min_value=result$min_value, max_value=result$max_value,
measurement_name="Testresult")</pre>
```

qat_plot_lim_rule_static_2d

Plot a static lim rule result

Description

A plot of the result of a dynamic LIM rule check will be produced.

Usage

```
qat_plot_lim_rule_static_2d(flagvector, filename, measurement_vector = NULL,
min_value = NULL, max_value = NULL, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_lim_rule_static_2d
filename	Name of the file without extension.
<pre>measurement_ve</pre>	ctor
	The measurement vector, which should be plotted
min_value	The used minimum value of the test.
<pre>max_value</pre>	The used maximum value of the test.
<pre>measurement_na</pre>	me
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_static_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_lim_rule_static_1d, qat_analyse_lim_rule_static_2d, qat_plot_lim_rule_dynamic_2d,
qat_plot_lim_rule_sigma_2d
```

Examples

```
vec <- array(rnorm(500),c(25,20))
result <- qat_analyse_lim_rule_static_2d(vec, -2, 2)
# this example produce a file exampleplot_lim_sta.png in the current directory
qat_plot_lim_rule_static_2d(result$flagvector, "exampleplot_lim_sta",
measurement_vector=vec, min_value=result$min_value, max_value=result$max_value,
measurement_name="Testresult")</pre>
```

Description

A plot of the result of a NOC rule check will be produced.

Usage

```
qat_plot_noc_rule_1d(flagvector, filename, measurement_vector = NULL,
max_return_elements = 0, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_noc_rule_1d	
filename measurement_vec	Name of the file without extension.	
	The measurement vector, which should be plotted	
<pre>max_return_elements</pre>		
	The number of maximum reruning elements, which was used in the test.	
measurement_name		
	Name of the measurement.	
directoryname	Directory, where the resulted file should be stored.	
plotstyle	A list with a qat color scheme.	

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_noc_rule_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_noc_rule_1d

qat_plot_noc_rule_2d

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
result <- qat_analyse_noc_rule_1d(vec, 1)
# this example produce a file exampleplot_noc.png in the current directory
qat_plot_noc_rule_1d(result$flagvector, "exampleplot_noc", measurement_vector=vec,
max_return_elements=result$max_return_elements, measurement_name="Result of Check")</pre>
```

qat_plot_noc_rule_2d Plot a NOC rule result

Description

A plot of the result of a NOC rule check will be produced.

Usage

```
qat_plot_noc_rule_2d(flagvector, filename, measurement_vector = NULL,
max_return_elements = 0, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_noc_rule_2d	
filename	Name of the file without extension.	
measurement_veo		
	The measurement vector, which should be plotted	
<pre>max_return_elements</pre>		
	The number of maximum reruning elements, which was used in the test.	
measurement_name		
	Name of the measurement.	
directoryname	Directory, where the resulted file should be stored.	
plotstyle	A list with a qat color scheme.	

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_noc_rule_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_noc_rule_1d, qat_analyse_noc_rule_2d

Examples

```
vec <- array(c(1,1,1,2,2), c(25,20))
result <- qat_analyse_noc_rule_2d(vec, 1)
# this example produce a file exampleplot_noc.png in the current directory
qat_plot_noc_rule_2d(result$flagvector, "exampleplot_noc", measurement_vector=vec,
max_return_elements=result$max_return_elements, measurement_name="Result of Check")</pre>
```

qat_plot_roc_rule_dynamic_1d

Plot a dynamic ROC rule result

Description

A plot of the result of a dynamic ROC rule check will be produced.

Usage

```
qat_plot_roc_rule_dynamic_1d(flagvector, filename, measurement_vector = NULL,
max_upward_vector = NULL, max_downward_vector = NULL, upward_vector_name = NULL,
downward_vector_name = NULL, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_roc_rule_dynamic_1d	
filename measurement_ve	Name of the file without extension.	
	The measurement vector, which should be plotted	
<pre>max_upward_vec</pre>	tor	
	The vector with the upward values.	
<pre>max_downward_v</pre>	ector	
	The vector with the downward values.	
upward_vector_name		
	Name of the vector of the upward values.	
downward_vector	r_name	
	Name of the vector of the downward values.	
measurement_name		
	Name of the measurement.	
directoryname	Directory, where the resulted file should be stored.	
plotstyle	A list with a qat color scheme.	

A plot will be produced, which base on the resulting flagvector of qat_analyse_roc_rule_dynamic_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_roc_rule_dynamic_1d,qat_plot_roc_rule_static_1d

Examples

```
vec <- rnorm(100)
min_vector<-seq(1,2,length.out=100)
max_vector<-seq(1,2,length.out=100)
result <- qat_analyse_roc_rule_dynamic_1d(vec, min_vector, max_vector,
upward_vector_name="upward vector", downward_vector_name="downward vector")
# this example produce a file exampleplot_roc_dyn.png in the current directory
qat_plot_roc_rule_dynamic_1d(result$flagvector, "exampleplot_roc_dyn",
measurement_vector=result$max_downward_vector, upward_vector_name=result$upward_vector_name,
downward_vector_name=result$downward_vector, measurement_name="Result of Check")</pre>
```

qat_plot_roc_rule_dynamic_2d

Plot a dynamic ROC rule result

Description

A plot of the result of a dynamic ROC rule check will be produced.

Usage

```
qat_plot_roc_rule_dynamic_2d(flagvector, filename, measurement_vector = NULL,
max_upward_vector = NULL, max_downward_vector = NULL, upward_vector_name = NULL,
downward_vector_name = NULL, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_roc_rule_dynamic_2d
filename	Name of the file without extension.
measurement_ve	ctor
	The measurement vector, which should be plotted
<pre>max_upward_vec</pre>	tor
	The vector (2d array) with the upward values.
<pre>max_downward_v</pre>	ector
	The vector (2d array) with the downward values.
upward_vector_name	
	Name of the vector of the upward values.
downward_vector_name	
	Name of the vector of the downward values.
measurement_name	
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_roc_rule_dynamic_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_plot_roc_rule_dynamic_1d, qat_analyse_roc_rule_dynamic_2d, qat_plot_roc_rule_static_2d

Examples

```
vec <- array(rnorm(500), c(25,20))
min_vector <- array(rnorm(500)+2, c(25,20))
max_vector <- array(rnorm(500)+2, c(25,20))
result <- qat_analyse_roc_rule_dynamic_2d(vec, min_vector, max_vector,
upward_vector_name="upward vector", downward_vector_name="downward vector")
# this example produce a file exampleplot_roc_dyn.png in the current directory
qat_plot_roc_rule_dynamic_2d(result$flagvector, "exampleplot_roc_dyn",
measurement_vector=vec, max_upward_vector=result$max_upward_vector,</pre>
```

max_downward_vector=result\$max_downward_vector, upward_vector_name=result\$upward_vector_name,
downward_vector_name=result\$downward_vector_name, measurement_name="Result of Check")

Description

A plot of the result of a static ROC rule check will be produced.

Usage

```
qat_plot_roc_rule_static_1d(flagvector, filename, measurement_vector = NULL,
max_upward_value = 0, max_downward_value = 0, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_roc_rule_static_1d
filename	Name of the file without extension.
measurement_vec	ctor
	The measurement vector, which should be plotted
<pre>max_upward_valu</pre>	Je
	The used maximum upward value.
<pre>max_downward_va</pre>	alue
	The used maximum downward value.
measurement_nam	ne
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_roc_rule_static_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_roc_rule_static_1d,qat_plot_roc_rule_dynamic_1d
```

Examples

```
vec <- rnorm(100)
result <- qat_analyse_roc_rule_static_1d(vec, 2,2)
# this example produce a file exampleplot_roc_sta.png in the current directory
qat_plot_roc_rule_static_1d(result$flagvector, "exampleplot_roc_sta",
measurement_vector=vec, max_upward_value=result$max_upward_value,
max_downward_value=result$max_downward_value, measurement_name="Result of Check")</pre>
```

Description

A plot of the result of a static ROC rule check will be produced.

Usage

```
qat_plot_roc_rule_static_2d(flagvector, filename, measurement_vector = NULL,
max_upward_value = 0, max_downward_value = 0, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

flagvector	The resulting flagvector of qat_analyse_roc_rule_static_2d
filename measurement_ve	Name of the file without extension. ctor
	The measurement vector, which should be plotted
<pre>max_upward_val</pre>	ue
	The used maximum upward value.
<pre>max_downward_v</pre>	alue
	The used maximum downward value.
measurement_na	me
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_roc_rule_static_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_roc_rule_static_1d, qat_analyse_roc_rule_static_2d, qat_plot_roc_rule_dynamic_2d
```

Examples

```
vec <- array(rnorm(500), c(25,20))
result <- qat_analyse_roc_rule_static_2d(vec, 2,2)
# this example produce a file exampleplot_roc_sta.png in the current directory
qat_plot_roc_rule_static_2d(result$flagvector, "exampleplot_roc_sta",
measurement_vector=vec, max_upward_value=result$max_upward_value,
max_downward_value=result$max_downward_value, measurement_name="Result of Check")</pre>
```

qat_plot_slide_distribution_1d

Plot a slide distribution check result

Description

A plot of the result of a slide distribution check will be produced.

Usage

```
qat_plot_slide_distribution_1d(resultlist, filename, blocksize = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist	List of results from qat_analyse_slide_distribution_1d
filename	Name of the file without extension.
blocksize	Length of the blocks
measurement_name	
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

A plot will be produced, which base on the resulting flagvector of qat_analyse_slide_distribution_1d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_slide_distribution_1d

Examples

```
vec <- rnorm(100)
result <- qat_analyse_slide_distribution_1d(vec, 10)
# this example produce a file exampleplot_slidedist.png in the current directory
qat_plot_slide_distribution_1d(result$stat, "exampleplot_slidedist",
blocksize=result$blocksize, measurement_name="Result of Check")</pre>
```

qat_plot_slide_distribution_2d

Plot a slide distribution check result

Description

A plot of the result of a slide distribution check will be produced.

Usage

```
qat_plot_slide_distribution_2d(resultlist, filename, blocksize = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist	List of results from qat_analyse_slide_distribution_2d
filename	Name of the file without extension.
blocksize	Length of the blocks
measurement_name	
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

A plot will be produced, which base on the resulting flagvector of qat_analyse_slide_distribution_2d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_slide_distribution_1d

Examples

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_slide_distribution_2d(vec, 5)
# this example produce a file exampleplot_slidedist.png in the current directory
qat_plot_slide_distribution_2d(result$stat, "exampleplot_slidedist",
blocksize=result$blocksize, measurement_name="Result of Check")</pre>
```

qat_plot_trimmed_distribution_1d

Plot a trimmed distribution check result

Description

A plot of the result of a trimmed distribution check will be produced.

Usage

```
qat_plot_trimmed_distribution_1d(resultlist, filename, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

resultlist	List of results from qat_analyse_trimmed_distribution_1d
filename	Name of the file without extension.
measurement_name	
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

A plot will be produced, which base on the resulting flagvector of qat_analyse_trimmed_distribution_1d. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_trimmed_distribution_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_trimmed_distribution_1d(vec)
# this example produce a file exampleplot_trimmeddist.png in the current directory
qat_plot_trimmed_distribution_1d(result$stat, "exampleplot_trimmeddist",
measurement_name="Result of Check")</pre>
```

Description

A plot of the result of a trimmed distribution check will be produced.

Usage

```
qat_plot_trimmed_distribution_2d(resultlist, filename, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

resultlist	List of results from qat_analyse_trimmed_distribution_2d
filename	Name of the file without extension.
measurement_name	
	Name of the measurement.
directoryname	Directory, where the resulted file should be stored.
plotstyle	A list with a qat color scheme.

qat_read_parameter

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_trimmed_distribution_2d. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_analyse_trimmed_distribution_2d

Examples

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_trimmed_distribution_2d(vec)
# this example produce a file exampleplot_trimmeddist.png in the current directory
qat_plot_trimmed_distribution_2d(result$stat, "exampleplot_trimmeddist",
measurement_name="Result of Check")</pre>
```

qat_read_parameter Informations on a method

Description

This functions delivers informations of methods, which are stored under the given filename.

Usage

qat_read_parameter(filename, methodname)

Arguments

filename	Filename of the file with the descriptions of the methods
methodname	Name of the method, where informations are required.

Details

This functions delivers informations of methods, which are stored under the given filename. For this the methodname will be used as a search parameter. The informations will be given back as a list.

Value

A list with the following elements:

name	Name of the method, may be corrected to standard name.	
analysis_function		
	Name of the analysis function, which should be called for this method	
plot_function	Name of the plot function, which should be called for this method	
manipulation_function		
	Name of the manipulation function, which should be called for this method	
description	Description of the method	
algorithm	Algorithm of the method	

Author(s)

Andre Duesterhus

Examples

#still to come

qat_run_workflow_check

Perform a workflow of checks

Description

This function performs a workflow of checks by a given workflowlist on a given vector.

Usage

qat_run_workflow_check(measurement_vector, workflowlist, time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL, vec4 = NULL)

Arguments

measurement_vector

	The measurement vector, which should be tested
workflowlist	The workflowlist, which should be performed.
time	A time vector of the measurment_vector
height	A height vector of the measurment_vector
lat	A latitude vector of the measurment_vector
lon	A longitude vector of the measurment_vector
vec1	A potential additional vector
vec2	A potential additional vector
vec3	A potential additional vector
vec4	A potential additional vector

Details

This function performs a workflow of checks by a given workflowlist on a given measurement vector. Additional vectors can be used in the tests.

Value

A resultlist, with the results of the performed tests will be given back.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow, qat_run_workflow_plot

Examples

```
library("qat")
# define testvector
testvector<-rnorm(500)</pre>
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- gat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=500)</pre>
minlim <- seq(-1,-3,length.out=500)</pre>
uproc <- seq(1,3,length.out=500)</pre>
downroc <- seq(3,1,length.out=500)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce some plots of the result in teh current directory
gat_run_workflow_plot(rlist, measurement_name="Test", basename="test")
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)</pre>
workflowlist <- qat_add_all_algorithms(workflowlist)</pre>
workflowlist <- qat_add_comment(workflowlist, 1, "No problems")</pre>
filename_out <- "myworkflow_result.xml"</pre>
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)
```

qat_run_workflow_plot Produce plots of a workflow

Description

This function produces plots of the results, which were produced by a workflow.

Usage

```
qat_run_workflow_plot(resultlist, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist	The results, which are produced by qat_run_workflow_check	
measurement_name		
	The measurement vector, which is used at the tests	
directoryname	Directory, where the resulting plots should be stored	
basename	Basic name of the filename	
plotstyle	A list with a qat color scheme.	

Details

The resultlist contains the parameters and results of the tests. From this the plots will be constructed and stored in the given directory. As filename the basename is used, with further extensions to indicate the tests. When no plotstyle is defined the standard-colorscheme will be used.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_run_workflow_check

Examples

```
library("qat")
# define testvector
testvector<-rnorm(500)</pre>
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- qat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=500)</pre>
minlim <- seq(-1,-3,length.out=500)</pre>
uproc <- seq(1,3,length.out=500)</pre>
downroc <- seq(3,1,length.out=500)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce some plots of the result in teh current directory
qat_run_workflow_plot(rlist, measurement_name="Test", basename="test")
# add some more informations for the workflow
```

146

```
workflowlist <- qat_add_all_descriptions(workflowlist)
workflowlist <- qat_add_all_algorithms(workflowlist)
workflowlist <- qat_add_comment(workflowlist, 1, "No problems")
filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_run_workflow_save Performing a workflow of constructing saving elements by a given resultlist

Description

This function performs a workflow of constructing a savelist by a given resultlist.

Usage

qat_run_workflow_save(resultlist, baseunit = "", time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL, vec4 = NULL)

Arguments

resultlist	Resultlist with results of checks
baseunit	Unit of the original measurement vector
time	A time vector of the measurment_vector
height	A height vector of the measurment_vector
lat	A latitude vector of the measurment_vector
lon	A longitude vector of the measurment_vector
vec1	A potential additional vector
vec2	A potential additional vector
vec3	A potential additional vector
vec4	A potential additional vector

Details

This function performs a workflow of constructing a savelist by a given resultlist. This can be used to build netCDF-files by the function qat_save_result_ncdf.

Value

A savelist, with the results of the performed tests will be given back.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow, qat_run_workflow_check, qat_run_workflow_plot

Examples

```
library("qat")
# define testvector
testvector<-rnorm(500)</pre>
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- qat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=500)</pre>
minlim <- seq(-1,-3,length.out=500)</pre>
uproc <- seq(1,3,length.out=500)</pre>
downroc <- seq(3,1,length.out=500)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce the savelist
savelist <- gat_run_workflow_save(rlist)</pre>
filename_out <- "myresults"</pre>
# write netCDF-file of the results in current directory
## Not run:
qat_save_result_ncdf(testvector, savelist=savelist, filename_out,
workflowlist=workflowlist ,vec1=maxlim, vec2=minlim, vec3=uproc, vec4=downroc)
## End(Not run)
```

Description

This function takes the results, produced by qat_analyse_block_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_block_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part A list with the results of the check baseunit The unit of the original measurement vector

148

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_block_distribution, qat_run_workflow_save

Examples

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_block_distribution_1d(vec, 50))
savelist <- qat_save_block_distribution_1d(result)</pre>
```

```
qat_save_block_distribution_2d
```

Produce a savelist from a resultlist for a Block Distribution Test

Description

This function takes the results, produced by qat_analyse_block_distribution_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_block_distribution_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part A list with the results of the check baseunit The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_block_distribution, qat_run_workflow_save

Examples

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_block_distribution_2d(vec, 5))
savelist <- qat_save_block_distribution_2d(result)</pre>
```

qat_save_boot_distribution_1d

Produce a savelist from a resultlist for a Boot Distribution Test

Description

This function takes the results, produced by qat_analyse_boot_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_boot_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part A list with the results of the check baseunit The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

150

qat_save_boot_distribution_2d

See Also

qat_call_save_boot_distribution, qat_run_workflow_save

Examples

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_boot_distribution_1d(vec, 1000))
savelist <- qat_save_boot_distribution_1d(result)</pre>
```

qat_save_boot_distribution_2d

Produce a savelist from a resultlist for a Boot Distribution Test

Description

This function takes the results, produced by qat_analyse_boot_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_boot_distribution_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part		
	A list with the results of the check	
baseunit	The unit of the original measurement vector	

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_boot_distribution, qat_run_workflow_save

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_boot_distribution_2d(vec, 10))
savelist <- qat_save_boot_distribution_2d(result)</pre>
```

```
qat_save_distribution_1d
```

Produce a savelist from a resultlist for a Distribution Test

Description

This function takes the results, produced by qat_analyse_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_distribution, qat_run_workflow_save

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_distribution_1d(vec, 15))
savelist <- qat_save_distribution_1d(result)</pre>
```

qat_save_histogram_test

Produce a savelist from a resultlist for a Histogram Test

Description

This function takes the results, produced by qat_analyse_histogram_test_xxx_xd and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_histogram_test(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

A list with the results of the check

baseunit The unit of the original measurement vector

Details

This function takes the resultslist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_histogram_test, qat_run_workflow_save

```
vec <- c(rnorm(1000), rnorm(1000)+1)
workflowlist_part <- list(blocksize=50, numofbars=65, metric="emd")
resultlist <- qat_call_histogram_test(vec, workflowlist_part, element=1)
savelist <- qat_save_histogram_test(resultlist[[2]])</pre>
```

```
qat_save_lim_rule_dynamic_1d
```

Produce a savelist from a resultlist for a LIM Rule Dynamic Test

Description

This function takes the results, produced by qat_analyse_lim_rule_dynamic_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_dynamic_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part		
	A list with the results of the check	
baseunit	The unit of the original measurement vector	

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_lim_rule, qat_run_workflow_save

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
result <- list(result=qat_analyse_lim_rule_dynamic_1d(vec, min_vector,
max_vector, min_vector_name="minimum vector", max_vector_name="maximum vector"))
savelist <- qat_save_lim_rule_dynamic_1d(result)</pre>
```

qat_save_lim_rule_dynamic_2d

Produce a savelist from a resultlist for a LIM Rule Dynamic Test

Description

This function takes the results, produced by qat_analyse_lim_rule_dynamic_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_dynamic_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part		
	A list with the results of the check	
baseunit	The unit of the original measurement vector	

Details

This function takes the resultlist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_lim_rule, qat_run_workflow_save

```
vec <- array(rnorm(1000), c(10, 100))
min_vector<-array(seq(-1,-2,length.out=1000), c(10, 100))
max_vector<-array(seq(1,2,length.out=1000), c(10, 100))
result <- list(result=qat_analyse_lim_rule_dynamic_2d(vec, min_vector,
max_vector, min_vector_name="minimum vector", max_vector_name="maximum vector"))
savelist <- qat_save_lim_rule_dynamic_2d(result)</pre>
```

```
qat_save_lim_rule_sigma_1d
```

Produce a savelist from a resultlist for a LIM Rule Sigma Test

Description

This function takes the results, produced by qat_analyse_lim_rule_sigma_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_sigma_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_lim_rule, qat_run_workflow_save

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_lim_rule_sigma_1d(vec, 2))
savelist <- qat_save_lim_rule_sigma_1d(result)</pre>
```

qat_save_lim_rule_sigma_2d

Produce a savelist from a resultlist for a LIM Rule Sigma Test

Description

This function takes the results, produced by qat_analyse_lim_rule_sigma_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_sigma_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_lim_rule, qat_run_workflow_save

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_lim_rule_sigma_2d(vec, 2))
savelist <- qat_save_lim_rule_sigma_2d(result)</pre>
```

```
qat_save_lim_rule_static_1d
```

Produce a savelist from a resultlist for a LIM Rule Static Test

Description

This function takes the results, produced by qat_analyse_lim_rule_static_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_static_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_lim_rule, qat_run_workflow_save

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_lim_rule_static_1d(vec, -2,2))
savelist <- qat_save_lim_rule_static_1d(result)</pre>
```

qat_save_lim_rule_static_2d

Produce a savelist from a resultlist for a LIM Rule Static Test

Description

This function takes the results, produced by qat_analyse_lim_rule_static_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_static_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_lim_rule, qat_run_workflow_save

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_lim_rule_static_2d(vec, -2,2))
savelist <- qat_save_lim_rule_static_2d(result)</pre>
```

qat_save_noc_rule_1d Produce a savelist from a resultlist for a NOC Rule Test

Description

This function takes the results, produced by qat_analyse_noc_rule_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_noc_rule_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part		
	A list with the results of the check	
baseunit	The unit of the original measurement vector	

Details

This function takes the resultslist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_noc_rule, qat_run_workflow_save

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
result <- list(result=qat_analyse_noc_rule_1d(vec, 1))
savelist <- qat_save_noc_rule_1d(result)</pre>
```

qat_save_noc_rule_2d Produce a savelist from a resultlist for a NOC Rule Test

Description

This function takes the results, produced by qat_analyse_noc_rule_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_noc_rule_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part		
	A list with the results of the check	
baseunit	The unit of the original measurement vector	

Details

This function takes the resultslist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_noc_rule, qat_run_workflow_save

```
vec <- array(c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,11), c(5,3))
result <- list(result=qat_analyse_noc_rule_2d(vec, 1))
savelist <- qat_save_noc_rule_2d(result)</pre>
```

qat_save_result_ncdf Writing a savelist to a netCDF-file

Description

A savelist, which is constructed by the function qat_run_workflow_save will be written to a given filename in netCDF format. Additional needed informations are the workflowlist, which constructed the savelist.

Usage

```
qat_save_result_ncdf(measurement_vector, savelist, filename, workflowlist = NULL,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, store_mes_vec = TRUE, baseunit = "unitless",
addunits = c("minutes", "metres", "degrees", "degrees", "unitless",
"unitless", "unitless", "unitless"), directoryname = "", nan_value = -999,
variable_name = "", transformationonvariable = "", authorname = "",
original_filename = "", data_level = "", workflow_filename = "")
```

Arguments

measurement_vector

	The measurement vector, which was tested
savelist	The resulted savelist
filename	The name of the file, which should be written
workflowlist	The used workflowlist for the tests
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
<pre>store_mes_vec</pre>	A bolean variable if the measurement vector should also be stored
baseunit	Unit of the measurement vector
addunits	Vector of units for the other vectors
directoryname	Directory, where the resulting file should be stored
nan_value	Fill value for NaN in vectors
variable_name	Name of the original variable
transformation	onvariable
	Information on transformation of the original variable

authorname	Name of the author who performed the tests
original_filena	me
	Filename, where the original data was stored
data_level	Data level of the original variable
workflow_filena	me
	Filename of the workflow

Details

The savelist, which is a result of the function qat_run_workflow_save, which transformed the resultlist of qat_run_workflow_check to a here usable formate, delivers all necessary information to construct a netCDF-file. The workflowlist is needed, because further informations, like algorithms, descriptions and comments on results are simpler to edit in this list. This can be also saved by qat_config_write_workflow to a XML-format. The netCDF-format used here is the QAD-convention. This allows to store the modifications of a tests and also the results into one file.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

qat_run_workflow_save

```
library("qat")
# define testvector
testvector<-rnorm(500)</pre>
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- qat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=500)</pre>
minlim <- seq(-1,-3,length.out=500)</pre>
uproc <- seq(1,3,length.out=500)</pre>
downroc <- seq(3,1,length.out=500)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce the savelist
savelist <- qat_run_workflow_save(rlist)</pre>
filename_out <- "myresults"</pre>
# write netCDF-file of the results in current directory
## Not run:
qat_save_result_ncdf(testvector, savelist=savelist, filename_out,
workflowlist=workflowlist,vec1=maxlim, vec2=minlim, vec3=uproc, vec4=downroc)
```

End(Not run)

qat_save_roc_rule_dynamic_1d

Produce a savelist from a resultlist for a ROC Rule Dynamic Test

Description

This function takes the results, produced by qat_analyse_roc_rule_dynamic_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_roc_rule_dynamic_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_roc_rule, qat_run_workflow_save

Examples

```
vec <- rnorm(100)
min_vector<-seq(1,2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
result <- list(result=qat_analyse_roc_rule_dynamic_1d(vec, min_vector,
max_vector, upward_vector_name="upward vector",
downward_vector_name="downward vector"))
savelist <- qat_save_roc_rule_dynamic_1d(result)</pre>
```

164

qat_save_roc_rule_dynamic_2d

Produce a savelist from a resultlist for a ROC Rule Dynamic Test

Description

This function takes the results, produced by qat_analyse_roc_rule_dynamic_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_roc_rule_dynamic_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_par	t
	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the resultslist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_roc_rule, qat_run_workflow_save

```
vec <- array(rnorm(1000), c(10, 100))
min_vector<-array(seq(-1,-2,length.out=1000), c(10, 100))
max_vector<-array(seq(1,2,length.out=1000), c(10, 100))
result <- list(result=qat_analyse_roc_rule_dynamic_2d(vec, min_vector,
max_vector, upward_vector_name="upward vector", downward_vector_name="downward vector"))
savelist <- qat_save_roc_rule_dynamic_2d(result)</pre>
```

```
qat_save_roc_rule_static_1d
```

Produce a savelist from a resultlist for a ROC Rule Static Test

Description

This function takes the results, produced by qat_analyse_roc_rule_static_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_roc_rule_static_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_roc_rule, qat_run_workflow_save

```
vec <- rnorm(100)
result <- list(result=qat_analyse_roc_rule_static_1d(vec, 2,2))
savelist <- qat_save_roc_rule_static_1d(result)</pre>
```

qat_save_roc_rule_static_2d

Produce a savelist from a resultlist for a ROC Rule Static Test

Description

This function takes the results, produced by qat_analyse_roc_rule_static_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_roc_rule_static_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_roc_rule, qat_run_workflow_save

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_roc_rule_static_2d(vec, 2,2))
savelist <- qat_save_roc_rule_static_2d(result)</pre>
```

qat_save_set_addup_1d Produce a savelist from a resultlist for a Set Addup

Description

This function takes the results, produced by qat_analyse_set_addup_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_addup_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part	
	A list with the results of the check

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_set_addup

Examples

qat_save_set_mean_1d Produce a savelist from a resultlist for a Set Mean

Description

This function takes the results, produced by qat_analyse_set_mean_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_mean_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part	
-----------------	--

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_set_mean

Examples

qat_save_set_nans_1d Produce a savelist from a resultlist for a Set NAN

Description

This function takes the results, produced by qat_analyse_set_nan_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_nans_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part	
-----------------	--

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_set_nans

Examples

qat_save_set_nans_above_1d

Produce a savelist from a resultlist for a Set NAN above

Description

This function takes the results, produced by qat_analyse_set_nan_above_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_nans_above_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_par	t
	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_set_nans

Examples

```
qat_save_set_nans_below_1d
```

Produce a savelist from a resultlist for a Set NAN below

Description

This function takes the results, produced by qat_analyse_set_nan_below_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_nans_below_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part		
	A list with the results of the check	
baseunit	The unit of the original measurement vector	

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_set_nans

Examples

qat_save_slide_distribution_1d

Produce a savelist from a resultlist for a Slide Distribution Test

Description

This function takes the results, produced by qat_analyse_slide_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_slide_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_slide_distribution, qat_run_workflow_save

```
vec <- rnorm(100)
result <- list(result=qat_analyse_slide_distribution_1d(vec, 10))
savelist <- qat_save_slide_distribution_1d(result)</pre>
```

```
qat_save_slide_distribution_2d
```

Produce a savelist from a resultlist for a Slide Distribution Test

Description

This function takes the results, produced by qat_analyse_slide_distribution_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_slide_distribution_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the resultslist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_slide_distribution, qat_run_workflow_save

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_slide_distribution_2d(vec, 5))
savelist <- qat_save_slide_distribution_2d(result)</pre>
```

qat_save_trimmed_distribution_1d

Produce a savelist from a resultlist for a Trimmed Distribution Test

Description

This function takes the results, produced by qat_analyse_trimmed_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_trimmed_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_trimmed_distribution, qat_run_workflow_save

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_trimmed_distribution_1d(vec))
savelist <- qat_save_trimmed_distribution_1d(result)</pre>
```

```
qat_save_trimmed_distribution_2d
```

Produce a savelist from a resultlist for a Trimmed Distribution Test

Description

This function takes the results, produced by qat_analyse_trimmed_distribution_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_trimmed_distribution_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

	A list with the results of the check
baseunit	The unit of the original measurement vector

Details

This function takes the results ist and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

qat_call_save_trimmed_distribution, qat_run_workflow_save

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_trimmed_distribution_2d(vec))
savelist <- qat_save_trimmed_distribution_2d(result)</pre>
```

177

Description

Loads a plotstyle, when a filename is given. When not a standard plotstyle will be given back

Usage

```
qat_style_plot(filename = "")
```

Arguments

filename Filename of a plotstyle-XML

Details

A plotstyle is a possibility to include a colorsheme in every plot, which is produced by the qatpackage. With given filename a certain plotstyle will be loaded. Without a standard sheme will be used.

Value

A list with the inforantion of the colorsheme.

Author(s)

Andre Duesterhus

See Also

qat_run_workflow_plot

```
library("qat")
# define testvector
testvector<-rnorm(500)
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# define some additional vectors
maxlim <- seq(3,1,length.out=500)
minlim <- seq(-1,-3,length.out=500)
uproc <- seq(3,1,length.out=500)
downroc <- seq(3,1,length.out=500)
# load plotstyle
filename_ps <- system.file("extdata/plotstyle1.xml", package="qat")
ps<-qat_style_plot(filename_ps)</pre>
```

run the workflow on the testvector rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim, vec3=uproc, vec4=downroc) # produce some plots of the result in teh current directory with new plotstyle qat_run_workflow_plot(rlist, measurement_name="Test", basename="test", plotstyle=ps) # add some more informations for the workflow workflowlist <- qat_add_all_descriptions(workflowlist) workflowlist <- qat_add_all_algorithms(workflowlist) workflowlist <- qat_add_comment(workflowlist, 1, "No problems")</pre>

Index

*Topic IO qat_config_read_workflow, 111 qat_config_write_workflow, 112 qat_data_close_ncdf, 113 qat_data_read_ncdf, 116 qat_read_parameter, 143 qat_style_plot, 177 *Topic **iplot** qat_style_plot, 177 *Topic **manip** qat_add_algorithm, 6 qat_add_all_algorithms, 7 qat_add_all_descriptions, 8 qat_add_comment, 9 qat_add_description, 10 qat_add_resultfile, 11 gat_analyse_set_addup_1d, 52 qat_analyse_set_addup_2d, 53 qat_analyse_set_mean_1d, 54 qat_analyse_set_mean_2d, 55 qat_analyse_set_nans_1d, 56 qat_analyse_set_nans_2d, 57 qat_analyse_set_nans_above_1d, 58 qat_analyse_set_nans_above_2d, 59 qat_analyse_set_nans_below_1d, 60 qat_analyse_set_nans_below_2d, 61 *Topic package qat-package, 4 *Topic **ts** qat_analyse_block_distribution_1d, 12 qat_analyse_block_distribution_2d, 13 qat_analyse_boot_distribution_1d, 15 qat_analyse_boot_distribution_2d, 16 qat_analyse_distribution_1d, 17 qat_analyse_distribution_2d, 18

qat_analyse_histogram_test_1d, 20 qat_analyse_histogram_test_2d, 21 qat_analyse_histogram_test_emd_1d, 23 qat_analyse_histogram_test_emd_2d, 24 qat_analyse_histogram_test_jsd_1d, 25 qat_analyse_histogram_test_jsd_2d, 27 qat_analyse_histogram_test_kld_1d, 28 qat_analyse_histogram_test_kld_2d, 29 qat_analyse_histogram_test_ms_1d, 31 qat_analyse_histogram_test_ms_2d, 32 qat_analyse_histogram_test_rms_1d, 33 qat_analyse_histogram_test_rms_2d, 34 qat_analyse_lim_rule_dynamic_1d, 36 qat_analyse_lim_rule_dynamic_2d, 37 qat_analyse_lim_rule_sigma_1d, 39 qat_analyse_lim_rule_sigma_2d, 40 qat_analyse_lim_rule_static_1d, 41 qat_analyse_lim_rule_static_2d, 43 qat_analyse_noc_rule_1d, 44 qat_analyse_noc_rule_2d, 45 qat_analyse_roc_rule_dynamic_1d, 46 qat_analyse_roc_rule_dynamic_2d, 48 qat_analyse_roc_rule_static_1d, 50 qat_analyse_roc_rule_static_2d, 51 qat_analyse_set_addup_1d, 52

```
qat_analyse_set_addup_2d, 53
qat_analyse_set_mean_1d, 54
qat_analyse_set_mean_2d, 55
qat_analyse_set_nans_1d, 56
qat_analyse_set_nans_2d, 57
qat_analyse_set_nans_above_1d, 58
qat_analyse_set_nans_above_2d, 59
qat_analyse_set_nans_below_1d, 60
qat_analyse_set_nans_below_2d, 61
qat_analyse_slide_distribution_1d,
    62
qat_analyse_slide_distribution_2d,
   63
qat_analyse_trimmed_distribution_1d,
    64
qat_analyse_trimmed_distribution_2d,
    65
qat_call_set_addup, 104
qat_call_set_mean, 106
qat_measure_histogram_difference,
    117
qat_plot_block_distribution_1d,
    118
qat_plot_block_distribution_2d,
    119
qat_plot_boot_distribution_1d, 120
qat_plot_distribution_1d, 121
qat_plot_histogram_test, 123
qat_plot_lim_rule_dynamic_1d, 124
gat_plot_lim_rule_dynamic_2d, 125
qat_plot_lim_rule_sigma_1d, 127
qat_plot_lim_rule_sigma_2d, 128
qat_plot_lim_rule_static_1d, 129
qat_plot_lim_rule_static_2d, 130
qat_plot_noc_rule_1d, 132
qat_plot_noc_rule_2d, 133
qat_plot_roc_rule_dynamic_1d, 134
qat_plot_roc_rule_dynamic_2d, 135
qat_plot_roc_rule_static_1d, 137
gat_plot_roc_rule_static_2d, 138
qat_plot_slide_distribution_1d,
    139
qat_plot_slide_distribution_2d,
    140
qat_plot_trimmed_distribution_1d,
    141
qat_plot_trimmed_distribution_2d,
    142
```

```
*Topic utilities
   qat_call_block_distribution, 67
   gat_call_boot_distribution, 68
   qat_call_distribution, 69
   qat_call_histogram_test, 70
   gat_call_lim_rule, 72
   qat_call_noc_rule, 73
   qat_call_plot_block_distribution,
        74
   qat_call_plot_boot_distribution,
        76
   qat_call_plot_distribution, 77
   qat_call_plot_histogram_test, 78
   qat_call_plot_lim_rule, 80
   qat_call_plot_noc_rule, 81
   qat_call_plot_roc_rule, 82
   qat_call_plot_slide_distribution,
        84
   qat_call_plot_trimmed_distribution,
        85
   qat_call_roc_rule, 87
   qat_call_save_block_distribution,
        88
   qat_call_save_boot_distribution,
        89
   gat_call_save_distribution, 91
   qat_call_save_histogram_test, 92
   qat_call_save_lim_rule, 93
   qat_call_save_noc_rule, 95
   qat_call_save_roc_rule, 96
   gat_call_save_set_addup, 98
   qat_call_save_set_mean, 99
   qat_call_save_set_nans, 100
   qat_call_save_slide_distribution,
        102
   gat_call_save_trimmed_distribution,
        103
   qat_call_set_nans, 107
   qat_call_slide_distribution, 108
   gat_call_trimmed_distribution, 109
   qat_data_nameofvars_ncdf, 114
   qat_data_numofvars_ncdf, 115
   qat_data_varcontent_ncdf, 116
   gat_read_parameter, 143
   qat_run_workflow_check, 144
   qat_run_workflow_plot, 145
   gat_run_workflow_save, 147
   qat_save_block_distribution_1d,
```

148 qat_save_block_distribution_2d, 149 qat_save_boot_distribution_1d, 150 qat_save_boot_distribution_2d, 151 qat_save_distribution_1d, 152 qat_save_histogram_test, 153 gat_save_lim_rule_dynamic_1d, 154 qat_save_lim_rule_dynamic_2d, 155 qat_save_lim_rule_sigma_1d, 156 gat_save_lim_rule_sigma_2d, 157 qat_save_lim_rule_static_1d, 158 qat_save_lim_rule_static_2d, 159 qat_save_noc_rule_1d, 160 qat_save_noc_rule_2d, 161 qat_save_result_ncdf, 162 qat_save_roc_rule_dynamic_1d, 164 qat_save_roc_rule_dynamic_2d, 165 qat_save_roc_rule_static_1d, 166 qat_save_roc_rule_static_2d, 167 qat_save_set_addup_1d, 168 qat_save_set_mean_1d, 169 qat_save_set_nans_1d, 170 qat_save_set_nans_above_1d, 171 qat_save_set_nans_below_1d, 172 qat_save_slide_distribution_1d, 173 qat_save_slide_distribution_2d, 174 qat_save_trimmed_distribution_1d, 175 qat_save_trimmed_distribution_2d, 176

qat_analyse_distribution_1d, 17, 19, 70, 122 gat_analyse_distribution_2d, 18 qat_analyse_histogram_test_1d, 20, 22, 118 qat_analyse_histogram_test_2d, 21, 21, 118 qat_analyse_histogram_test_emd_1d, 23, 25, 26, 29, 32, 34, 71 qat_analyse_histogram_test_emd_2d, 24, 24, 28, 30, 33, 35, 71 qat_analyse_histogram_test_jsd_1d, 24, 25, 28, 29, 32, 34, 71 qat_analyse_histogram_test_jsd_2d, 25, 26, 27, 30, 33, 35, 71 qat_analyse_histogram_test_kld_1d, 24, 26, 28, 30, 32, 34, 71 qat_analyse_histogram_test_kld_2d, 25, 28, 29, 29, 33, 35, 71 qat_analyse_histogram_test_ms_1d, 24, 26, 29, 31, 33, 34, 71 qat_analyse_histogram_test_ms_2d, 25, 28, 30, 32, 32, 35, 71 qat_analyse_histogram_test_rms_1d, 24, 26, 29, 32, 33, 35, 71 qat_analyse_histogram_test_rms_2d, 25, 28, 30, 33, 34, 34, 71 qat_analyse_lim_rule_dynamic (qat_analyse_lim_rule_dynamic_1d), 36 qat_analyse_lim_rule_dynamic_1d, 36, 39, 40, 42, 73, 125 qat_analyse_lim_rule_dynamic_2d, 37, 41, 44, 126 qat_analyse_lim_rule_sigma_1d, 37, 39, 41, 42, 73 qat_analyse_lim_rule_sigma_2d, 39, 40, 44 qat_analyse_lim_rule_static_1d, 37, 40, 41, 44, 73, 127, 130 qat_analyse_lim_rule_static_2d, 39, 41, 43, 129, 131 qat_analyse_noc_rule_1d, 44, 132 qat_analyse_noc_rule_2d, 45, 134 qat_analyse_roc_rule_dynamic_1d, 46, 49, 51.88.135 qat_analyse_roc_rule_dynamic_2d, 48, 52,

136

qat_analyse_roc_rule_static_1d, 48, 50, 52, 88, 138 qat_analyse_roc_rule_static_2d, 49, 51, 139 qat_analyse_set_addup_1d, 52, 56, 58, 60, 105 qat_analyse_set_addup_2d, 53, 57, 59, 61 qat_analyse_set_mean_1d, 53, 54, 56, 58, 60.107 qat_analyse_set_mean_2d, 54, 55, 57, 59, 61 qat_analyse_set_nans_1d, 53, 56, 58, 60, 108 qat_analyse_set_nans_2d, 54, 57, 59, 61 qat_analyse_set_nans_above_1d, 58, 60 qat_analyse_set_nans_above_2d, 59, 61 qat_analyse_set_nans_below_1d, 58, 60 qat_analyse_set_nans_below_2d, 59, 61 qat_analyse_slide_distribution_1d, 62, 64, 68, 109, 140, 141 qat_analyse_slide_distribution_2d, 63 qat_analyse_trimmed_distribution_1d, 64, 66, 110, 142 qat_analyse_trimmed_distribution_2d, 65. 143 gat_call_block_distribution, 67 qat_call_boot_distribution, 68 qat_call_distribution, 69 qat_call_histogram_test, 70 qat_call_lim_rule, 37, 39-42, 44, 72 qat_call_noc_rule, 45, 46, 73 qat_call_plot_block_distribution, 74 qat_call_plot_boot_distribution, 76 qat_call_plot_distribution, 77 gat_call_plot_histogram_test, 78 qat_call_plot_lim_rule, 80 qat_call_plot_noc_rule, 81 qat_call_plot_roc_rule, 82 qat_call_plot_slide_distribution, 84 qat_call_plot_trimmed_distribution, 85 qat_call_roc_rule, 48, 49, 51, 52, 87 qat_call_save_block_distribution, 88, 149, 150 qat_call_save_boot_distribution, 89, 151 qat_call_save_distribution, 91, 152 qat_call_save_histogram_test, 92, 153 qat_call_save_lim_rule, 93, 154–159

qat_call_save_noc_rule, 95, 160, 161 gat_call_save_roc_rule, 96, 164-167 qat_call_save_set_addup, 98, 168 qat_call_save_set_mean, 99, 169 qat_call_save_set_nans, 100, 170–172 gat_call_save_slide_distribution, 102, 173, 174 qat_call_save_trimmed_distribution, 103, 175, 176 qat_call_set_addup, 104 qat_call_set_mean, 106 qat_call_set_nans, 107 qat_call_slide_distribution, 108 qat_call_trimmed_distribution, 109 qat_config_read_workflow, 7–12, 111, 113, 145.148 qat_config_write_workflow, 112 qat_data_close_ncdf, 113 qat_data_nameofvars_ncdf, 113, 114, 115-117 qat_data_numofvars_ncdf, 113, 114, 115, 116, 117 qat_data_read_ncdf, *113–115*, 116, *117* qat_data_varcontent_ncdf, 113-116, 116 qat_measure_histogram_difference, 117 qat_plot_block_distribution_1d, 13, 75, 118 qat_plot_block_distribution_2d, 14, 119 qat_plot_boot_distribution_1d, 16, 17, 77.120 qat_plot_distribution_1d, 18, 19, 78, 121 qat_plot_histogram_test, 123 qat_plot_lim_rule_dynamic_1d, 37, 73, 81, 124, 126, 127, 130 qat_plot_lim_rule_dynamic_2d, 39, 125, 129, 131 qat_plot_lim_rule_sigma_1d, 40, 73, 81, 125, 127, 127, 130 qat_plot_lim_rule_sigma_2d, 41, 126, 128, 129.131 qat_plot_lim_rule_static_1d, 42, 73, 81, 125, 129, 129, 131 qat_plot_lim_rule_static_2d, 44, 126, 130 qat_plot_noc_rule_1d, 45, 46, 74, 82, 132, 134 qat_plot_noc_rule_2d, 133 qat_plot_roc_rule_dynamic_1d, 48, 83, 88,

134, 136, 138 qat_plot_roc_rule_dynamic_2d, 49, 135, 139 qat_plot_roc_rule_static_1d, 51, 83, 88, 135, 137, 139 qat_plot_roc_rule_static_2d, 52, 136, 138 qat_plot_slide_distribution_1d, 63, 85, 139 qat_plot_slide_distribution_2d, 64, 140 qat_plot_trimmed_distribution_1d, 65, 86.141 qat_plot_trimmed_distribution_2d, 66, 142 qat_read_parameter, 143 gat_run_workflow_check, 111, 144, 146, 148 gat_run_workflow_plot, 145, 145, 148, 177 qat_run_workflow_save, 89, 90, 92-94, 96, 97, 99–101, 103, 104, 147, 149–161, 163-167, 173-176 qat_save_block_distribution_1d, 89, 148 gat_save_block_distribution_2d, 149 qat_save_boot_distribution_1d, 90, 150 qat_save_boot_distribution_2d, 151 gat_save_distribution_1d, 92, 152 qat_save_histogram_test, 93, 153 qat_save_lim_rule_dynamic_1d, 94, 154 qat_save_lim_rule_dynamic_2d, 155 qat_save_lim_rule_sigma_1d, 94, 156 qat_save_lim_rule_sigma_2d, 157 qat_save_lim_rule_static_1d, 94, 158 qat_save_lim_rule_static_2d, 159 qat_save_noc_rule_1d, 96, 160 qat_save_noc_rule_2d, 161 gat_save_result_ncdf, 162 qat_save_roc_rule_dynamic_1d, 97, 164 qat_save_roc_rule_dynamic_2d, 165 qat_save_roc_rule_static_1d, 97, 166 qat_save_roc_rule_static_2d, 167 qat_save_set_addup_1d, 99, 168 qat_save_set_mean_1d, 100, 169 qat_save_set_nans_1d, 101, 170 qat_save_set_nans_above_1d, 101, 171 qat_save_set_nans_below_1d, 101, 172 qat_save_slide_distribution_1d, 103, 173 qat_save_slide_distribution_2d, 174

qat_save_trimmed_distribution_2d, 176
qat_style_plot, 177