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ah House Price

Description

House Price of America

ais Australia Institute of Sport data

Description

Data on 102 male and 100 female athletes collected at the Austrialian Institute of Sports
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Format

A data frame with 202 observations on the following 14 variables

Sex 0 = male, 1 = female
Ht height(cm)
Wt weightkg
LBM lean body mass
RCC red cell count
WCC white cell count
Hc Hematocrit
Hg Hemoglobin
Ferr plasma ferritin concentration
BMI body mass index, weight/(height)^2
SSF sum of skin folds
Bfat Percent body fat
Label Case Lables
Sport Sport

References

S.Weisberg(2005). Applied Linear Regression, 3rd edition. New York, Section 6.4.

ALDqr_case_deletion Calculate the case-deletion coefficience of the MLE estimation of
quantile regression

Description

Calculate the case-deletion coefficience of the MLE estimation of quantile regression

Usage

ALDqr_case_deletion(y, x, tau, error, iter)

Arguments

y Response variable in quantile regression model
x Predictors in quantile regression model. Note that: x is the independent variable

matrix which including the intercept. That means, if the dimension of indepen-
dent variables is p and the sample size is n, x is a n times p+1 matrix with the
first column being one.

tau Quantile
error The EM algorithm accuracy of error used in MLE estimation
iter The iteration frequancy for EM algorithm used in MLE estimation
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ALDqr_GCD Generalized Cook’s distance for each observation in quantile regres-
sion model

Description

Generalized Cook’s distance for each observation in quantile regression model

Usage

ALDqr_GCD(y, x, tau, error, iter)

Arguments

y Dependent variable in quantile regression. Note that: we suppose y follows
asymmetric laplace distribution.

x indepdent variables in quantile regression. Note that: x is the independent vari-
able matrix which including the intercept. That means, if the dimension of in-
dependent variables is p and the sample size is n, x is a n times p+1 matrix with
the first column being one.

tau quantile

error the EM algorithm accuracy of error used in MLE estimation

iter the iteration frequancy for EM algorithm used in MLE estimation

Details

Gerneralized Cook’s distance is a commonly used estimate of the influence of a data point when
performing regression analysis. It involves the log-likelihood function based on the complete data
and case-deletion data. To assess the influence of the ith case with estimate θ̂, we compare ˆθ(i)

and θ̂, and if ˆθ(i) is far from ˆθ(i), then the ith case is regarded as influential. We consider here the
following generalized Cook’s distance:

GCDi = ( ˆθ(i) − θ̂i)
′
−Q(θ̂|θ̂)( ˆθ(i) − θ̂i)

Q(i)(θ|θ̂) = Eθ̂[lc(θ|Yc(i))|y]

More details please refer to the paper in references

References

Benites L E, Lachos V H, Vilca F E.(2015)“Case-Deletion Diagnostics for Quantile Regression
Using the Asymmetric Laplace Distribution,arXiv preprint arXiv:1509.05099.

See Also

ALDqr_QD
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ALDqr_QD Q-function distance for each observation in quantile regression model

Description

Q-function distance for each observation in quantile regression model

Usage

ALDqr_QD(y, x, tau, error, iter)

Arguments

y Dependent variable in quantile regression. Note that: we suppose y follows
asymmetric laplace distribution.

x Indepdent variables in quantile regression. Note that: x is the independent vari-
able matrix which including the intercept. That means, if the dimension of in-
dependent variables is p and the sample size is n, x is a n times p+1 matrix with
the first column is one.

tau Quantile

error The EM algorithm accuracy of error used in MLE estimation

iter The iteration frequancy for EM algorithm used in MLE estimation

Details

Measure of the influence of the ith case is the following Q-distance function, similar to the likeli-
hood distance LDi (Cook and Weisberg, 1982), defined as

QDi = 2Q(θ̂|θ̂)−Q( ˆθ(i))

References

Benites L E, Lachos V H, Vilca F E.(2015)“Case-Deletion Diagnostics for Quantile Regression
Using the Asymmetric Laplace Distribution,arXiv preprint arXiv:1509.05099.

See Also

ALDqr_GCD
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baseball Baseball Hitter Data

Description

Major League Baseball Data from the 1986 and 1987 seasons

Format

Data frame with 322 rows and 22 columns

AtBat Number of times at bat in 1986

Hits Number of hits in 1986

HmRun Number of home runs in 1986

Runs Number of runs in 1986

RBI Number of runs batted in in 1986

Walks Number of walks in 1986

Years Number of years in the major leagues

CAtBat Number of times at bat during his career

CHits Number of hits during his career

CHmRun Number of home runs during his career

CRuns Number of runs during his career

CRBI Number of runs batted in during his career

CWalks Number of walks during his career

League A factor with levels A and N indicating player’s league at the end of 1986

Division A factor with levels E and W indicating player’s division at the end of 1986

PutOuts Number of put outs in 1986

Assists Number of assists in 1986

Errors Number of errors in 1986

Salary 1987 annual salary on opening day in thousands of dollars

NewLeague A factor with levels A and N indicating player league at the beginning of 1987
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bayesKL Kullback-Leibler divergence for each observation in Baysian quantile
regression model

Description

Kullback-Leibler divergence for each observation in Baysian quantile regression model

Usage

bayesKL(y, x, tau, M, burn)

Arguments

y vector, dependent variable in quantile regression

x matrix, design matrix in quantile regression.

tau quantile

M the iteration frequancy for MCMC used in Baysian Estimation

burn burned MCMC draw

Details

Method to address the differences between the posterior distributions from the distinct latent vari-
ables in the model, we suggest the use of the Kullback- Leibler divergence as a more precise method
of measuring the distance between those latent variables in the Bayesian quantile regression frame-
work. In this posterior information, the divergence is defined as

K(fi, fj) =

∫
log(

fi(x)

fj(x)
)fi(x)dx

where fi could be the posterior conditional distribution of vi and fj the poserior conditional distri-
bution of vj . We should average this divergence for one observation based on the distance from all
others, i.e,

KL(fi) =
1

n− 1

∑
K(fi, fj)

We expect that when an observation presents a higher value for this divergence, it should also
present a high probability value of being an outlier. Based on the MCMC draws from the posterior
of each latent vaiable, we estimate the densities using a normal kernel and we compute the integral
using the trapezoidal rule.

More details please refer to the paper in references

References

Santos B, Bolfarine H.(2016)“On Baysian quantile regression and outliers,arXiv:1601.07344
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See Also

bayesProb

bayesProb Mean posterior probability for each observation in Baysian quantile
regression model

Description

Mean posterior probability for each observation in Baysian quantile regression model

Usage

bayesProb(y, x, tau, M, burn)

Arguments

y vector, dependent variable in quantile regression

x matrix, design matrix in quantile regression

tau quantile

M MCMC draws

burn burned MCMC draws

Details

If we define the variable O_i, which takes value equal to 1 when ith observation is an outlier, and 0
otherwise, then we propose to calculate the probability of an observation being an outlier as:

P (Oi = 1) =
1

n− 1

∑
P (vi > vj |data) (1)

We believe that for points, which are not outliers, this probability should be small, possibly close
to zero. Given the natrual ordering of the residuals, it is expected that some observations present
greater values for this probability in comparison to others. What we think that should be deemed
as an outlier, ought to be those observations with a higher P (Oi = 1), and possibly one that is
particularly distant from the others.

The probability in the equation can be approximated given the MCMC draws, as follows

P (Oi = 1) =
1

M

∑
I(v

(l)
i > maxvkj )

where M is the size of the chain of vi after the burn-in period and v(l)j is the lth draw of chain.

More details please refer to the paper in references
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References

Santos B, Bolfarine H.(2016)“On Baysian quantile regression and outliers,arXiv:1601.07344

See Also

bayesKL

Examples

## Not run:
ais_female <- subset(ais, Sex == 1)
y <- ais_female$BMI
x <- cbind(1, ais_female$LBM)
tau <- 0.5
M <- 5000
burn <- 1000
prob <- bayesProb(y, x, tau, M, burn)
case <- 1:100
dat <- data.frame(case, prob)
ggplot(dat, aes(case, prob))+
geom_point() +
geom_text(data = subset(dat, prob > mean(prob) + 2*sd(prob)),

## End(Not run)

frame_ald Density function plot of the error term for quantile regression model
using asymmetric Laplace distribution

Description

density function plot of the error term on each quantile

Usage

frame_ald(y, x, tau, smooth, error, iter)

Arguments

y vector, dependent variable of quantile regression

x matrix, matrix consisted independent variables of quantie regression

tau sigle number or vector, quantiles

smooth sigular, default is 100, the larger the smoother of density function

error the convergence maximum error

iter maximum iterations of the EM algorithm
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Value

dataframe to plot the density function of the error term

Examples

library(ggplot2)
data(ais)
x <- matrix(ais$LBM, ncol = 1)
y <- ais$BMI
tau = c(0.1, 0.5, 0.9)
ald_data <- frame_ald(y, x, tau, smooth = 10, error = 1e-6,

iter = 2000)
ggplot(ald_data) +

geom_line(aes(x = r, y = d, group = obs, colour = tau_flag)) +
facet_wrap(~tau_flag, ncol = 1, scale = "free") +
xlab('') +
ylab('Asymmetric Laplace Distribution Density Function')

frame_ald_weight Weighting Matrix of Quantile regression using Asymmetric Laplace
Distrubtion

Description

This function calulate the weighting matrix

Usage

frame_ald_weight(y, x, tau, error, iter)

Arguments

y dependent variable of quantile regression

x design matrix of quantile regression

tau quantile must be a scaler

error The EM algorithm accuracy of error used in MLE estimation

iter The iteration frequancy for EM algorithm used in MLE estimation

Details

In the estimation procedure in EM algorithm, we can see that ε is inversely proportional to di =

|yi − x
′

iβ
(k)
p |/σ. Hence, ui(θk) = ε−1i(θ

(k)) can be interpreted as a type of weight for ith case in
the estimates of β(k)p , which tends to be small for outlying observations.

Author(s)

Wenjing Wang <wenjingwangr@gmail.com>
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Examples

library(ggplot2)
library(dplyr)
library(ALDqr)
data(ais)
y <- ais$BMI
x <- cbind(1, ais$LBM)
tau <- c(0.1, 0.5, 0.9)
error <- 1e-06
iter <- 100
weights <- frame_ald_weight(y, x, tau, error, iter)
weights

frame_bayes Mean probability of posterior distribution and Kullback-Leibler diver-
gence for observations in Bayesian quantile regression model

Description

This function give the dataframe to plot the mean probability of posterior and Kullback-leibler diver-
gence of quantile regression model with asymmetric laplace distribution based on bayes estimation
procedure.

Usage

frame_bayes(y, x, tau, M, burn, method = c("bayes.prob", "bayes.kl"))

Arguments

y vector, dependent variable in quantile regression

x matrix, design matrix for quantile regression. For quantile regression model
with intercept, the firt column of x is 1.

tau sigular or vector, quantiles

M the iteration frequancy for MCMC used in Baysian estimation

burn burned MCMC draw

method the diagnostic method for outlier detection

Value

Mean probability or Kullback-Leibler divergence for observations in Bayesian quantile regression
model

Author(s)

Wenjing Wang <wenjingwangr@gmail.com>
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Examples

## Not run:
library(ggplot2)
ais_female <- subset(ais, Sex == 1)
y <- ais_female$BMI
x <- matrix(ais_female$LBM, 1)
tau <- c(0.1, 0.5, 0.9)
case <- rep(1:length(y), length(tau))
prob <- frame_bayes(y, x, tau, M = 5000, burn = 1000,

method = 'bayes.prob')
prob_m <- cbind(case, prob)
ggplot(prob_m, aes(x = case, y = value )) +

geom_point() +
geom_text(aes(label = case)) +
facet_wrap(~variable, scale = 'free') +
xlab("case number") +
ylab("Mean probability of posterior distribution")

It takes time to run the following code.
kl <- frame_bayes(y, x, tau, M = 50, burn = 10,

method = 'bayes.kl')
kl_m <- cbind(case, kl)
ggplot(kl_m, aes(x = case, y = value)) +

geom_point() +
geom_text(aes(label = case)) +
facet_wrap(~variable, scale = 'free')+
xlab('case number') +
ylab('Kullback-Leibler')

## End(Not run)

frame_br Visualization of quantile regression model fitting: br algorithem

Description

get the observation used in br algorithem

Usage

frame_br(object, tau)

Arguments

object quantile regression model using br method

tau quantiles can be a single quantile or a vector of quantiles
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Details

This is a function that can be used to create point plot for the observations used in quantile regression
fitting based on ’br’method.

Value

All observations and the observations used in quantile regression fitting using br algorithem

Author(s)

Wenjing Wang <wenjingwangr@gmail.com>

Examples

library(ggplot2)
library(quantreg)
data(ais)
tau <- c(0.1, 0.5, 0.9)
object1 <- rq(BMI ~ LBM, tau, method = 'br', data = ais)
data_plot <- frame_br(object1, tau)$all_observation
choose <- frame_br(object1, tau)$fitting_point
ggplot(data_plot,
aes(x=value, y=data_plot[,2])) +
geom_point(alpha = 0.1) +
ylab('y') +
xlab('x') +
facet_wrap(~variable, scales = "free_x", ncol = 2) +
geom_point(data = choose, aes(x = x, y = y,

group = tau_flag,
colour = tau_flag,
shape = obs))

object2 <- rq(BMI ~ Ht + LBM + Wt, tau, method = 'br',
data = ais)

data_plot <- frame_br(object2, tau)$all_observation
choose <- frame_br(object2, tau)$fitting_point
ggplot(data_plot,
aes(x=value, y=data_plot[,2])) +
geom_point(alpha = 0.1) +
ylab('y') +
xlab('x') +
facet_wrap(~variable, scales = "free_x", ncol = 2) +
geom_point(data = choose, aes(x = x, y = y,

group = tau_flag,
colour = tau_flag,
shape = obs))
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frame_distance Residual-robust distance plot of quantile regression model

Description

the standardized residuals from quantile regression against the robust MCD distance. This display
is used to diagnose both vertical outlier and horizontal leverage points. Function frame_distance
only work for linear quantile regression model. With non-linear model, use frame_distance_implement

Usage

frame_distance(object, tau)

Arguments

object model, quantile regression model

tau singular or vectors, quantile

Details

The generalized MCD algorithm based on the fast-MCD algorithm formulated by Rousseeuw and
Van Driessen(1999), which is similar to the algorithm for least trimmed squares(LTS). The canoni-
cal Mahalanobis distance is defined as

MD(xi) = [(xi − x̄)T C̄(X)−1(xi − x̄)]1/2

where x̄ = 1
n

∑n
i=1 xi and C̄(X) = 1

n−1
∑n
i=1(xi − x̄)T (xi − x̄) are the empirical multivariate

location and scatter, respectively. Here xi = (xi1, ..., xip)
T exclueds the intercept. The relation

between the Mahalanobis distance MD(xi) and the hat matrix H = (hij) = X(XTX)−1XT is

hii =
1

n− 1
MD2

i +
1

n

The canonical robust distance is defined as

RD(xi) = [(xi − T (X))TC(X)−1(xi − T (X))]1/2

where T (X) and C(X) are the robust multivariate location and scatter, respectively, obtained by
MCD. To achieve robustness, the MCD algorithm estimates the covariance of a multivariate data set
mainly through as MCD h-point subset of data set. This subset has the smallest sample-covariance
determinant among all the possible h-subsets. Accordingly, the breakdown value for the MCD
algorithm equals (n−h)

n . This means the MCD estimates is reliable, even if up to 100(n−h)
n set are

contaminated.

Value

dataframe for residual-robust distance plot
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Author(s)

Wenjing Wang <wenjingwangr@gmail.com>

See Also

function frame_distance_complex

Examples

library(quantreg)
library(ggplot2)
library(ALDqr)
library(purrr)
library(robustbase)
library(tidyr)
library(gridExtra)
tau = c(0.1, 0.5, 0.9)
ais_female <- subset(ais, Sex == 1)
object <- rq(BMI ~ LBM + Ht, data = ais_female, tau = tau)
plot_distance <- frame_distance(object, tau = c(0.1, 0.5, 0.9))
distance <- plot_distance[[1]]
cutoff_v <- plot_distance[[2]]
cutoff_h <- plot_distance[[3]]
n <- nrow(object$model)
case <- rep(1:n, length(tau))
distance <- cbind(case, distance)
distance$residuals <- abs(distance$residuals)
distance1 <- subset(distance, tau_flag == "tau0.1")
p1 <- ggplot(distance1, aes(x = rd, y = residuals)) +
geom_point() +
geom_hline(yintercept = cutoff_h[1], colour = "red") +
geom_vline(xintercept = cutoff_v, colour = "red") +
geom_text(data = subset(distance1, residuals > cutoff_h[1]|rd > cutoff_v),

aes(label = case), hjust = 0, vjust = 0) +
xlab("Robust Distance") +
ylab("|Residuals|")

distance2 <- subset(distance, tau_flag == "tau0.5")

p2 <- ggplot(distance1, aes(x = rd, y = residuals)) +
geom_point() +
geom_hline(yintercept = cutoff_h[2], colour = "red") +
geom_vline(xintercept = cutoff_v, colour = "red") +
geom_text(data = subset(distance1, residuals > cutoff_h[2]|rd > cutoff_v),

aes(label = case), hjust = 0, vjust = 0) +
xlab("Robust Distance") +
ylab("|Residuals|")

distance3 <- subset(distance, tau_flag == "tau0.9")

p3 <- ggplot(distance1, aes(x = rd, y = residuals)) +
geom_point() +
geom_hline(yintercept = cutoff_h[3], colour = "red") +
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geom_vline(xintercept = cutoff_v, colour = "red") +
geom_text(data = subset(distance1, residuals > cutoff_h[3]|rd > cutoff_v),

aes(label = case), hjust = 0, vjust = 0) +
xlab("Robust Distance") +
ylab("|Residuals|")

grid.arrange(p1, p2, p3, ncol = 3)

frame_distance_complex

Residual-robust distance plot of quantile regression model

Description

the standardized residuals from quantile regression against the robust MCD distance. This display
is used to diagnose both vertical outlier and horizontal leverage points. Function frame_distance
only work for linear quantile regression model. With non-linear model, use frame_distance_complex

Usage

frame_distance_complex(x, resid, tau)

Arguments

x matrix, covariate of quantile regression model

resid matrix, residuals of quantile regression models

tau singular or vectors, quantile

Details

The generalized MCD algorithm based on the fast-MCD algorithm formulated by Rousseeuw and
Van Driessen(1999), which is similar to the algorithm for least trimmed squares(LTS). The canoni-
cal Mahalanobis distance is defined as

MD(xi) = [(xi − x̄)T C̄(X)−1(xi − x̄)]1/2

where x̄ = 1
n

∑n
i=1 xi and C̄(X) = 1

n−1
∑n
i=1(xi − x̄)T (xi − x̄) are the empirical multivariate

location and scatter, respectively. Here xi = (xi1, ..., xip)
T exclueds the intercept. The relation

between the Mahalanobis distance MD(xi) and the hat matrix H = (hij) = X(XTX)−1XT is

hii =
1

n− 1
MD2

i +
1

n

The canonical robust distance is defined as

RD(xi) = [(xi − T (X))TC(X)−1(xi − T (X))]1/2

where T (X) and C(X) are the robust multivariate location and scatter, respectively, obtained by
MCD. To achieve robustness, the MCD algorithm estimates the covariance of a multivariate data set
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mainly through as MCD h-point subset of data set. This subset has the smallest sample-covariance
determinant among all the possible h-subsets. Accordingly, the breakdown value for the MCD
algorithm equals (n−h)

n . This means the MCD estimates is reliable, even if up to 100(n−h)
n set are

contaminated.

Value

dataframe for residual-robust distance plot

Author(s)

Wenjing Wang <wenjingwangr@gmail.com>

frame_fn_obs Visualization of quantile regression model fitting: interior point algo-
rithm

Description

observations used in quantile regression fitting

minb∈Rp

n∑
i=1

ρτ (yi − x
′

ib)

where ρτ (r) = r[τ − I(r < 0)] for τ ∈ (0, 1). This yields the modified linear program

min(τe
′
u+ (1− τ)e

′
v|y = Xb+ u− v, (u, v) ∈ R2n

+ )

Adding slack variables, s, satisfying the constrains a+ s = e, we obtain the barrier function

B(a, s, u) = y
′
a+ µ

n∑
i=1

(logai + logsi)

which should be maximized subject to the constrains X
′
a = (1 − τ)X

′
e and a + s = e. The

Newton step δa solving

maxy
′
δa + µδ

′

a(A−1 − S−1)e− 1

2
µδ

′

a(A−2 + S−2)δa

subject to X ′δa = 0, satisfies

y + µ(A−1 − S−1)e− µ(A−2 + S−2)δa = Xb

for some b ∈ Rp, and δa such that X
′
δa = 0. Using the constraint, we can solve explicitly for the

vector b,



18 frame_fn_obs

b = (X
′
WX)−1X

′
W [y + µ(A−1 − S−1)e]

where W = (A−2 + S−2)−1. This is a form of the primal log barrier algorithm described above.
Setting µ = 0 in each step yields an affine scaling variant of the algorithm. The basic linear algebra
of each iteration is essentially unchanged, only the form of the diagonal weighting matrix W has
chagned.

Usage

frame_fn_obs(object, tau)

Arguments

object quantile regression model using interior point method for estimating

tau quantile

Details

This function used to illustrate data used in fitting process of quantile regression based on interior
point method. Koenker and Bassett(1978) introduced asymmetric weight on positive and negative
residuals, and solves the slightly modified l1-problem.

Value

Weighted observations in quantile regression fitting using interior point algorithm

Author(s)

Wenjing Wang <wenjingwangr@gmail.com>

References

Portnoy S, Koenker R. The Gaussian hare and the Laplacian tortoise: computability of squared-error
versus absolute-error estimators. Statistical Science, 1997, 12(4): 279-300.

Examples

library(ggplot2)
library(quantreg)
library(tidyr)
library(dplyr)
library(gridExtra)
data(ais)
tau <- c(0.1, 0.5, 0.9)
object <- rq(BMI ~ LBM + Ht, data = ais, tau = tau, method = 'fn')
fn <- frame_fn_obs(object, tau)
##For tau = 0.1, plot the observations used in quantile regression
##fitting based on interior point method
fn1 <- fn[ ,1]



frame_fn_path 19

case <- 1:length(fn1)
fn1 <- cbind(case, fn1)
m <- data.frame(y = ais$BMI, x1 = ais$LBM, x2 = ais$Ht, fn1)
p <- length(attr(object$coefficients, "dimnames")[[1]])
m_f <- m %>% gather(variable, value, -case, -fn1, -y)
mf_a <- m_f %>%
group_by(variable) %>%
arrange(variable, desc(fn1)) %>%
filter(row_number() %in% 1:p )

p1 <- ggplot(m_f, aes(x = value, y = y)) +
geom_point(alpha = 0.1) +
geom_point(data = mf_a, size = 3) +
facet_wrap(~variable, scale = "free_x")

## For tau = 0.5, plot the observations used in quantile regression
##fitting based on interior point method
fn2 <- fn[,2]
case <- 1: length(fn2)
fn2 <- cbind(case, fn2)
m <- data.frame(y = ais$BMI, x1 = ais$LBM, x2 = ais$Ht, fn2)
p <- length(attr(object$coefficients, "dimnames")[[1]])
m_f <- m %>% gather(variable, value, -case, -fn2, -y)
mf_a <- m_f %>%

group_by(variable) %>%
arrange(variable, desc(fn2)) %>%
filter(row_number() %in% 1:p )

p2 <- ggplot(m_f, aes(x = value, y = y)) +
geom_point(alpha = 0.1) +
geom_point(data = mf_a, size = 3) +
facet_wrap(~variable, scale = "free_x")

## For tau = 0.9
fn3 <- fn[,3]
case <- 1: length(fn3)
fn3 <- cbind(case, fn3)
m <- data.frame(y = ais$BMI, x1 = ais$LBM, x2 = ais$Ht, fn3)
p <- length(attr(object$coefficients, "dimnames")[[1]])
m_f <- m %>% gather(variable, value, -case, -fn3, -y)
mf_a <- m_f %>%

group_by(variable) %>%
arrange(variable, desc(fn3)) %>%
filter(row_number() %in% 1:p )

p3 <- ggplot(m_f, aes(x = value, y = y)) +
geom_point(alpha = 0.1) +
geom_point(data = mf_a, size = 3) +
facet_wrap(~variable, scale = "free_x")

grid.arrange(p1, p2, p3, ncol = 1)

frame_fn_path Visualization of the fitting path of quantile regression: interior point
method
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Description

observations used in quantile regression fitting

minb∈Rp

n∑
i=1

ρτ (yi − x
′

ib)

where ρτ (r) = r[τ − I(r < 0)] for τ ∈ (0, 1). This yields the modified linear program

min(τe
′
u+ (1− τ)e

′
v|y = Xb+ u− v, (u, v) ∈ R2n

+ )

Adding slack variables, s, satisfying the constrains a+ s = e, we obtain the barrier function

B(a, s, u) = y
′
a+ µ

n∑
i=1

(logai + logsi)

which should be maximized subject to the constrains X
′
a = (1 − τ)X

′
e and a + s = e. The

Newton step δa solving

maxy
′
δa + µδ

′

a(A−1 − S−1)e− 1

2
µδ

′

a(A−2 + S−2)δa

subject to X ′δa = 0, satisfies

y + µ(A−1 − S−1)e− µ(A−2 + S−2)δa = Xb

for some b ∈ Rp, and δa such that X
′
δa = 0. Using the constraint, we can solve explicitly for the

vector b,

b = (X
′
WX)−1X

′
W [y + µ(A−1 − S−1)e]

where W = (A−2 + S−2)−1. This is a form of the primal log barrier algorithm described above.
Setting µ = 0 in each step yields an affine scaling variant of the algorithm. The basic linear algebra
of each iteration is essentially unchanged, only the form of the diagonal weighting matrix W has
chagned.

Usage

frame_fn_path(object, tau)

Arguments

object quantile regression model using interior point method

tau quantile
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Details

This function used to illustrate the fitting process of quantile regression using interior point method.
Koenker and Bassett(1978) introduced asymmetric weight on positive and negative residuals, and
solves the slightly modified l1-problem.

Value

The fitting path of quantile regression model using interior point method

Author(s)

Wenjing Wang <wenjingwangr@gmail.com>

References

Portnoy S, Koenker R. The Gaussian hare and the Laplacian tortoise: computability of squared-error
versus absolute-error estimators. Statistical Science, 1997, 12(4): 279-300.

Examples

## Not run:
library(ggplot2)
library(quantreg)
data(ais)
tau <- c(0.1, 0.5, 0.9)
object <-rq(BMI ~ LBM + Ht, tau = tau, data = ais, method = 'fn')
frame_fn <- frame_fn_path(object, tau)
#plot the path
frame_fn1 <- frame_fn[[1]]
ggplot(frame_fn1, aes(x = value, y = objective)) +

geom_point() +
geom_path() +
facet_wrap(~ variable, scale = 'free')

## End(Not run)

frame_mle General Cook’s distance or Q-function distance of quantile regression

Description

dataframe used to plot generalized Cook’s distance or Q-function distance for observations.

Usage

frame_mle(y, x, tau, error = 1e-06, iter = 100,
method = c("cook.distance", "qfunction"))
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Arguments

y vector, dependent variable for quantile regression

x matrix, design matrix for quantile regression. For quantile regression model
with intercept, the firt column of x is 1.

tau sigular or vector, quantiles

error the EM algorithm accuracy of error used in MLE estimation

iter the iteration frequancy for EM algorithm used in MLE estimation

method use method ’cook.distance’ or ’qfunction’

Details

Gerneralized Cook’s distance and Q-function distance are commonly used in detecting the influ-
ence data point when performing regression analysis. They involve the log-likelihood function and
estimations of based on the complete and case-deletion data. We used EM algorithm to estimate the
coefficiences of quantile regression with asymmetric Laplace distribution.

Value

generalized Cook’s distance or Q-function distance for multiple quantiles

Author(s)

Wenjing Wangwenjingwangr@gmail.com

Examples

library(ggplot2)
data(ais)
ais_female <- subset(ais, Sex == 1)
y <- ais_female$BMI
x <- cbind(1, ais_female$LBM, ais_female$Bfat)
tau <- c(0.1, 0.5, 0.9)
case <- rep(1:length(y), length(tau))
GCD <- frame_mle(y, x, tau, error = 1e-06, iter = 10000,

method = 'cook.distance')
GCD_m <- cbind(case, GCD)
ggplot(GCD_m, aes(x = case, y = value )) +

geom_point() +
facet_wrap(~variable, scale = 'free') +
geom_text(data = subset(GCD_m, value > mean(value) + 2*sd(value)),

aes(label = case), hjust = 0, vjust = 0) +
xlab("case number") +
ylab("Generalized Cook Distance")

QD <- frame_mle(y, x, tau, error = 1e-06, iter = 10000,
method = 'qfunction')

QD_m <- cbind(case, QD)
ggplot(QD_m, aes(x = case, y = value)) +

geom_point() +

mailto:wenjingwangr@gmail.com
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facet_wrap(~variable, scale = 'free')+
geom_text(data = subset(QD_m, value > mean(value) + sd(value)),

aes(label = case), hjust = 0, vjust = 0) +
xlab('case number') +
ylab('Qfunction Distance')

frame_nlrq Visualization of fitting process of non-linear quantile regression: inte-
rior point algorithm

Description

This function explore the fitting process of nonlinear quantile regression

Usage

frame_nlrq(formula, data, tau, start)

Arguments

formula non-linear quantile regression model

data data frame

tau quantiles

start the initial value of all parameters to estimate, must be a list

Details

To extentd the linear programming method to the case of non-linear response functions, Koenker &
Park(1996) considered the nonlinear l1 problem

mint∈Rp

∑
|fi(t)|

where, for example,
fi(t) = yi − f0(xi, t)

As noted by El Attar et al(1979) a necessary condition for t∗ to solve mint∈Rp

∑
|fi(t)| is that

there exists a vector d ∈ [−1, 1]n such that

J(t∗)
′
d = 0

f(t∗)
′
d =

∑
|fi(t∗)|

where f(t) = (fi(t)) and J(t) = (∂fi(t)/∂tj). Thus, as proposed by Osborne and Watson(1971),
one approach to solving mint∈Rp

∑
|fi(t)| is to solve a succession of linearized l1 problems mini-

mizing ∑
|fi(t)− Ji(t)

′
δ|
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Value

Weighted observations in non-linear quantile regression model fitting using interior algorithm

Author(s)

Wenjing Wang <wenjingwangr@gmail.com>

Examples

library(tidyr)
library(ggplot2)
library(purrr)
x <- rep(1:25, 20)
y <- SSlogis(x, 10, 12, 2) * rnorm(500, 1, 0.1)
Dat <- data.frame(x = x, y = y)
formula <- y ~ SSlogis(x, Aysm, mid, scal)
nlrq_m <- frame_nlrq(formula, data = Dat, tau = c(0.1, 0.5, 0.9))
weights <- nlrq_m$weights
m <- data.frame(Dat, weights)
m_f <- m %>% gather(tau_flag, value, -x, -y)
ggplot(m_f, aes(x = x, y = y)) +

geom_point(aes(size = value, colour = tau_flag)) +
facet_wrap(~tau_flag)

qrod_bayes Outlier Dignostic for Quantile Regression Based on Bayesian Estima-
tion

Description

This function cacluate the mean probability of posterior of Baysian quantile regression model with
asymmetric laplace distribution

Usage

qrod_bayes(y, x, tau, M, burn, method = c("bayes.prob", "bayes.kl"))

Arguments

y dependent variable in quantile regression

x matrix, design matrix for quantile regression. For quantile regression model
with intercept, the firt column of x is 1.

tau quantile

M the iteration frequancy for MCMC used in Baysian Estimation

burn burned MCMC draw

method the diagnostic method for outlier detection
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Details

If we define the variable Oi, which takes value equal to 1 when ith observation is an outlier, and 0
otherwise, then we propose to calculate the probability of an observation being an outlier as:

P (Oi = 1) =
1

n− 1

∑
P (vi > vj |data) (1)

We believe that for points, which are not outliers, this probability should be small, possibly close
to zero. Given the natrual ordering of the residuals, it is expected that some observations present
greater values for this probability in comparison to others. What we think that should be deemed
as an outlier, ought to be those observations with a higher P (Oi = 1), and possibly one that is
particularly distant from the others.

The probability in the equation can be approximated given the MCMC draws, as follows

P (Oi = 1) =
1

M

∑
I(v

(l)
i > maxvkj )

where M is the size of the chain of vi after the burn-in period and v(l)j is the lth draw of chain.

Another proposal to address these differences between the posterior distributions from the distinct
latent variables in the model, we suggest the use of the Kullback- Leibler divergence proposed by
Kullback and Leibler(1951), as a more precise method of measuring the distance between those
latent variables in the Bayesian quantile regression framework. In this posterior information, the
divergence is defined as

K(fi, fj) =

∫
log(

fi(x)

fj(x)
)fi(x)dx

where fi could be the posterior conditional distribution of vi and fj the poserior conditional distri-
bution of vj . Similar to the probability proposal in the previous subsection, we should average this
divergence for one observation based on the distance from all others, i.e,

KL(fi) =
1

n− 1

∑
K(fi, fj)

We expect that when an observation presents a higher value for this divergence, it should also
present a high probability value of being an outlier. Based on the MCMC draws from the posterior
of each latent vaiable, we estimate the densities using a normal kernel and we compute the integral
using the trapezoidal rule.

Value

Mean probability or Kullback-Leibler divergence for observations in Bayesian quantile regression
model

Author(s)

Wenjing Wang <wenjingwangr@gmail.com>
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References
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See Also

qrod_mle

qrod_mle Outlier Dignostic for Quantile Regression with Asymmetric Laplace
Distribution

Description

This function cacluate the generalized cook distance and q function distance of quantile regression
model with asymmetric laplace distribution.

Usage

qrod_mle(y, x, tau, error, iter, method = c("cook.distance", "qfunction"))

Arguments

y Dependent variable in quantile regression
x Indepdent variables in quantile regression. Note that: x is the independent vari-

able matrix which including the intercept. That means, if the dimension of in-
dependent variables is p and the sample size is n, x is a n times p+1 matrix with
the first column being one.

tau quantile
error The EM algorithm accuracy of error used in MLE estimation
iter the iteration frequancy for EM algorithm used in MLE estimation
method the diagnostic method for outlier detection

Details

please refer to the reference paper

Value

Generalized Cook’s distance or Q-function distance for multiple quantiles
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trout Fish habbit of trout

Description

The data set trout, which follows, includes the average numbers of Lahontan cutthroat trout per
meter of stream, and the width-to-depth ratios for 71 samples

Format

A data frame with with 71 rows and 2 columns

wdratio Width-to-depth ratio of trout

density Numbers of Lahontan cutthroat trout per meter of stream
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