Package 'r2glmm'

August 5, 2017

Type Package

Title Computes R Squared for Mixed (Multilevel) Models
Date 2017-08-04
Version 0.1.2
Description The model R squared and semi-partial R squared for the linear and generalized linear mixed model (LMM and GLMM) are computed with confidence limits. The R squared measure from Edwards et.al (2008) DOI:10.1002/sim.3429 is extended to the GLMM using penalized quasi-likelihood (PQL) estimation (see Jaeger et al. 2016 DOI:10.1080/02664763.2016.1193725). Three methods of computation are provided and described as follows. First, The Kenward-Roger approach. Due to some inconsistency between the 'pbkrtest' package and the 'glmmPQL' function, the Kenward-Roger approach in the 'r2glmm' package is limited to the LMM. Second, The method introduced by Nakagawa and Schielzeth (2013) DOI:10.1111/j.2041-210x.2012.00261.x and later extended by Johnson (2014) DOI:10.1111/2041-210X.12225. The 'r2glmm' package only computes marginal R squared for the LMM and does not generalize the statistic to the GLMM; however, confidence limits and semi-partial R squared for fixed effects are useful additions. Lastly, an approach using standardized generalized variance (SGV) can be used for covariance model selection. Package installation instructions can be found in the readme file.
Imports mgcv, ImerTest, Matrix, pbkrtest, ggplot2, afex, stats, MASS, gridExtra, grid, data.table, dplyr
Suggests lme4, nlme, testhat
License GPL-2
LazyData TRUE
RoxygenNote 6.0.1
URL https://github.com/bcjaeger/r2glmm
BugReports https://github.com/bcjaeger/r2glmm/issues
NeedsCompilation no
Author Byron Jaeger [aut, cre]

```
Maintainer Byron Jaeger <byron.jaeger@gmail.com>
Repository CRAN
Date/Publication 2017-08-05 10:26:17 UTC
```


R topics documented:

calc_sgv 2
cmp_R2 3
glmPQL 4
is.CompSym 5
make.partial.C 5
plot.R2 6
pqlmer 7
print.R2 8
r2beta 8
r2dt 10
Index 12
calc_sgv

Compute the standardized generalized variance (SGV) of a blocked
diagonal matrix.

Description

Compute the standardized generalized variance (SGV) of a blocked diagonal matrix.

Usage

calc_sgv(nblocks = NULL, blksizes = NULL, vmat)

Arguments

nblocks	Number of blocks in the matrix.
blksizes	vector of block sizes
vmat	The blocked covariance matrix

Value

The SGV of the covariance matrix vmat.

Examples

```
library (Matrix)
v1 = matrix(c(1, 0.5, 0.5,1), nrow = 2)
v2 = matrix(c(1,0.2,0.1,0.2,1,0.3,0.1,0.3,1), nrow = 3)
v3 \(=\) matrix \((c(1,0.1,0.1,0.1,1,0.2,0.1,0.2,1)\), nrow \(=3)\)
calc_sgv(nblocks = 3, blksizes = c(2,3,3), vmat = Matrix::bdiag(v1,v2,v3))
```


Description

Compute R 2 with a specified C matrix

Usage

cmp_R2(c, x, SigHat, beta, method, obsperclust $=$ NULL, nclusts $=$ NULL)

Arguments

c
x
SigHat
beta fixed effects estimates
method the method for computing r2beta
obsperclust number of observations per cluster (i.e. subject)
nclusts number of clusters (i.e. subjects)

Value

A vector with the Wald statistic (ncp), approximate Wald F statistic (F), numerator degrees of freedom (v1), denominator degrees of freedom (v2), and the specified r squared value (Rsq)

Examples

```
library(nlme)
library(lme4)
library(mgcv)
lmemod = lme(distance ~ age*Sex, random = ~1|Subject, data = Orthodont)
X = model.matrix(lmemod, data = Orthodont)
SigHat = extract.lme.cov(lmemod, data = Orthodont)
beta = fixef(lmemod)
p = length(beta)
obsperclust = as.numeric(table(lmemod$data[,'Subject']))
nclusts = length(obsperclust)
C = cbind(rep(0, p-1),diag(p-1))
partial.c = make.partial.C(p-1,p,2)
cmp_R2(c=C, x=X, SigHat=SigHat, beta=beta, obsperclust = obsperclust,
nclusts = nclusts, method = 'sgv')
cmp_R2(c=partial.c, x=X, SigHat=SigHat, beta=beta, obsperclust = obsperclust,
nclusts = nclusts, method = 'sgv')
```

Compute PQL estimates for fixed effects from a generalized linear model.

Description

Compute PQL estimates for fixed effects from a generalized linear model.

Usage

glmPQL(glm.mod, niter $=20$, data $=$ NULL)

Arguments

$$
\begin{array}{ll}
\text { glm.mod } & \text { a generalized linear model fitted with the glm function. } \\
\text { niter } & \text { maximum number of iterations allowed in the PQL algorithm. } \\
\text { data } & \text { The data used by the fitted model. This argument is required for models with } \\
\text { special expressions in their formula, such as offset, log, cbind(sucesses, trials), } \\
\text { etc. }
\end{array}
$$

Value

A glmPQL object (i.e. a linear model using pseudo outcomes).

Examples

```
# Load the datasets package for example code
library(datasets)
library(dplyr)
# We'll model the number of world changing discoveries per year for the
# last 100 years as a poisson outcome. First, we set up the data
dat = data.frame(discoveries) %>% mutate(year = 1:length(discoveries))
# Fit the GLM with a poisson link function
mod <- glm(discoveries~year+I(year^2), family = 'poisson', data = dat)
# Find PQL estimates using the original GLM
mod.pql = glmPQL(mod)
# Note that the PQL model yields a higher R Squared statistic
# than the fit of a strictly linear model. This is attributed
# to correctly modelling the distribution of outcomes and then
# linearizing the model to measure goodness of fit, rather than
# simply fitting a linear model
summary(mod.pql)
```

summary(linfit <- lm(discoveries~year+I (year^2), data = dat))
r2beta(mod.pql)
r2beta(linfit)

```
is.CompSym Checks if a matrix is Compound Symmetric.
```


Description

Checks if a matrix is Compound Symmetric.

Usage

is.CompSym(mat, tol = 1e-05)

Arguments

mat The matrix to be tested.
tol a number indicating the smallest acceptable difference between off diagonal values.

Value

True if the matrix is compound symmetric.

Examples

```
gcmat <- matrix(c(1,0.2,0.1,0.2,1,0.3,0.1,0.3,1), nrow = 3)
csmat <- matrix(c(1,0.2,0.2,0.2,1,0.2,0.2,0.2,1), nrow = 3)
is.CompSym(csmat)
```

make.partial.C
Generate partial contrast matrices

Description

Generate partial contrast matrices

Usage

make.partial.C(rows, cols, index)

Arguments

rows Number of rows in the contrast matrix
cols Number of columns in the contrast matrix
index A number corresponding to the position of the fixed effect in the vector of fixed effect parameter estimates.

Value

A contrast matrix designed to test the fixed effect corresponding to index in the vector of fixed effects.

Examples

```
make.partial.C(4, 5, 2)
make.partial.C(4, 5, 3)
make.partial.C(4, 5, 2:4)
```

```
plot.R2 Visualize standardized effect sizes and model R squared
```


Description

Visualize standardized effect sizes and model R squared

Usage

\#\# S3 method for class 'R2'
plot (x, y = NULL, txtsize = 10, maxcov = 3, r2labs = NULL, r2mthd = "sgv", cor = TRUE, ...)

Arguments

x
y
txtsize
maxcov
r2labs
r2mthd
cor
. . .

An R2 object from the r2beta function.
An R2 object from the r2beta function.
The text size of the axis labels.
Maximum number of covariates to include in the semi-partial plots.
a character vector containing labels for the models. The labels are printed as subscripts on a covariance model matrix.

The method used to compute R2
An argument to be passed to the r2dt function. Only relevant if comparing two R2 objects.
Arguments to be passed to plot

Value

A visual representation of the model and semi-partial R squared from the r 2 object provided.

Examples

```
library(nlme)
library(r2glmm)
data(Orthodont)
# Linear mixed model
lmemod = lme(distance ~ age*Sex, random = ~1|Subject, data = Orthodont)
r2 = r2beta(model=lmemod,partial=TRUE,method='sgv')
plot(x=r2)
```

pqlmer pqlmer

Description

Fit a GLMM model with multivariate normal random effects using Penalized Quasi-Likelihood for mermod objects.

Usage

pqlmer(formula, family, data, niter $=40$, verbose $=T$)

Arguments

formula	The lme4 model formula.
family	a family function of the error distribution and link function to be used in the model.
data	the dataframe containing the variables in the model.
niter	Maximum number of iterations to perform.
verbose	if TRUE, iterations are printed to console.

Value

A pseudo linear mixed model of class "lme".

See Also

glmmPQL

Examples

\# Compare lmer PQL with lme PQL
library (MASS)
$1 m e P Q L=\operatorname{lmmPQL}(y \sim \operatorname{trt}+$ week $+\mathrm{I}($ week $>2)$, random $=\sim 1 \mid \mathrm{ID}$, family = binomial, data = bacteria, verbose $=$ FALSE)
merPQL= pqlmer $(y \sim \operatorname{trt}+$ week $+\mathrm{I}($ week $>2)+(1 \mid \mathrm{ID})$,
family = binomial, data = bacteria,
verbose $=$ FALSE)
summary(lmePQL)
summary(merPQL)
print.R2
Print the contents of an $R 2$ object

Description

Print the contents of an R2 object

Usage

\#\# S3 method for class 'R2'
print(x, ...)

Arguments

X an object of class R2
... other arguments passed to the print function.
r2beta r2beta Compute R Squared for Mixed Models

Description

Computes coefficient of determination (R squared) from edwards et al., 2008 and the generalized R squared from Jaeger et al., 2016. Currently implemented for linear mixed models with lmer and lme objects. For generalized linear mixed models, only glmmPQL are supported.

Usage

r2beta(model, partial $=$ TRUE, method $=" s g v "$, data $=$ NULL)

Arguments

$$
\begin{array}{ll}
\text { model } & \text { a fitted mermod, lme, or glmmPQL model. } \\
\text { partial } & \text { if TRUE, semi-partial R squared are calculated for each fixed effect in the mixed } \\
\text { model. } \\
\text { method } & \begin{array}{l}
\text { Specifies the method of computation for R squared beta: if method = 'sgv' then } \\
\text { the standardized generalized variance approach is applied. This method is rec- } \\
\text { ommended for covariance model selection. if method = 'kr', then the Kenward } \\
\text { Roger approach is applied. This option is only available for lme models. if } \\
\text { method = 'nsj',then the Nakagawa and Schielzeth approach is applied. This op- } \\
\text { tion is available for lmer and lme objects. if method = 'lm', the classical R } \\
\text { squared from the linear model is computed. This method should only be used } \\
\text { on glm and lm object. }
\end{array} \\
\text { data } & \begin{array}{l}
\text { The data used by the fitted model. This argument is required for models with } \\
\text { special expressions in their formula, such as offset, log, cbind(sucesses, trials), } \\
\text { etc. }
\end{array}
\end{array}
$$

Value

A dataframe containing the model F statistic, numerator and denominator degrees of freedom, noncentrality parameter, and R squared statistic with 95 If partial $=$ TRUE, then the dataframe also contains partial R squared statistics for all fixed effects in the model.

References

Edwards, Lloyd J., et al. "An R2 statistic for fixed effects in the linear mixed model." Statistics in medicine 27.29 (2008): 6137-6157.
Nakagawa, Shinichi, and Holger Schielzeth. "A general and simple method for obtaining R2 from generalized linear mixed effects models." Methods in Ecology and Evolution 4.2 (2013): 133-142.

Jaeger, Byron C., et al., "An R Squared Statistic for Fixed Effects in the Generalized Linear Mixed Model." Journal of Applied Statistics (2016).

Examples

```
library(nlme)
library(lme4)
data(Orthodont)
# Linear mixed models
mermod = lmer(distance ~ age*Sex + (1|Subject), data = Orthodont)
lmemod = lme(distance ~ age*Sex, random = ~1|Subject, data = Orthodont)
# The Kenward-Roger approach
r2beta(mermod, method = 'kr')
# Standardized Generalized Variance
r2beta(mermod, method = 'sgv')
r2beta(lmemod, method = 'sgv')
```

```
# The marginal R squared by Nakagawa and Schielzeth (extended by Johnson)
r2beta(mermod, method = 'nsj')
# linear and generalized linear models
library(datasets)
dis = data.frame(discoveries)
dis$year = 1:nrow(dis)
lmod = lm(discoveries ~ year + I(year^2), data = dis)
glmod = glm(discoveries ~ year + I(year^2), family = 'poisson', data = dis)
# Using an inappropriate link function (normal) leads to
# a poor fit relative to the poisson link function.
r2beta(lmod)
r2beta(glmod)
# PQL models
# Currently only SGV method is supported
library(MASS)
PQL_bac = glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
    family = binomial, data = bacteria,
    verbose = FALSE)
r2beta(PQL_bac, method='sgv')
```

r2dt $\quad R$ Squared Difference Test (R2DT). Test for a statistically significant difference in generalized explained variance between two candidate models.

Description

R Squared Difference Test (R2DT). Test for a statistically significant difference in generalized explained variance between two candidate models.

Usage

```
r2dt(x, y = NULL, cor = TRUE, fancy = FALSE, onesided = TRUE,
    clim = 95, nsims = 2000, mu = NULL)
```


Arguments

x
y

An R2 object from the r2beta function.
An R2 object from the r2beta function. If y is not specified, Ho: $E[x]=m u$ is tested (mu is specified by the user).

cor	if TRUE, the R squared statistics are assumed to be positively correlated and a simulation based approach is used. If FALSE, the R squared are assumed independent and the difference of independent beta distributions is used. This only needs to be specified when two R squared measures are being considered.
fancy	if TRUE, the output values are rounded and changed to characters. if TRUE, the alternative hypothesis is that one model explains a larger propor- tion of generalized variance. If false, the alternative is that the amount of gener- alized variance explained by the two candidate models is not equal.
clim	Desired confidence level for interval estimates regarding the difference in gen- eralized explained variance.
nsims	number of samples to draw when simulating correlated non-central beta random nu\quadvariables. This parameter is only relevant if cor=TRUE.
Used to test Ho: E[x]=mu.	

Value

A confidence interval for the difference in R Squared statistics and a p-value corresponding to the null hypothesis of no difference.

Examples

```
library(nlme)
library(lme4)
library(r2glmm)
data(Orthodont)
# Comparing two linear mixed models
m1 = lmer(distance ~ age*Sex+(1|Subject), Orthodont)
m2 = lmer(distance ~ age*Sex+(1+age|Subject), Orthodont)
m1r2 = r2beta(model=m1,partial=FALSE)
m2r2 = r2beta(model=m2,partial=FALSE)
# Accounting for correlation can make a substantial difference.
r2dt(x=m1r2, y = m2r2, cor = TRUE)
r2dt(x=m1r2, y = m2r2, cor = FALSE)
```


Index

```
calc_sgv, 2
cmp_R2, 3
glmmPQL, 7, 8
glmPQL,4
is.CompSym,5
lme, 8, }
lmer, 8, }
make.partial.C,5
plot.R2,6
pqlmer,7
print.R2,8
r2beta,8
r2dt,10
```

