Package 'rARPACK'

August 29, 2016
Type Package
Title Solvers for Large Scale Eigenvalue and SVD Problems
Version 0.11-0
Date 2016-03-07
Author Yixuan Qiu, Jiali Mei and authors of the ARPACK library. See file AUTHORS for details.
Maintainer Yixuan Qiu yixuan.qiu@cos.name
Description Previously an R wrapper of the 'ARPACK' library http://www.caam.rice.edu/software/ARPACK/, and now a shell of the R package 'RSpectra', an R interface to the 'Spectra' library http://yixuan.cos.name/spectra/ for solving large scale eigenvalue/vector problems. The current version of 'rARPACK' simply imports and exports the functions provided by 'RSpectra'. New users of 'rARPACK' are advised to switch to the 'RSpectra' package.
License BSD_3_clause + file LICENSE
Copyright see file COPYRIGHTS
URL https://github.com/yixuan/rARPACK
BugReports https://github.com/yixuan/rARPACK/issues
Imports RSpectra
Suggests Matrix (>= 1.1-0)
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-03-10 00:06:16
R topics documented:
eigs . 2
svds . 5
Index 8

Description

This function is a simple wrapper of the eigs() function in the RSpectra package. Also see the documentation there.

Given an n by n matrix A, function eigs() can calculate a limited number of eigenvalues and eigenvectors of A. Users can specify the selection criteria by argument which, e.g., choosing the k largest or smallest eigenvalues and the corresponding eigenvectors.
Currently eigs() supports matrices of the following classes:
matrix The most commonly used matrix type, defined in base package.
dgeMatrix General matrix, equivalent to matrix, defined in Matrix package.
dgCMatrix Column oriented sparse matrix, defined in Matrix package.
dgRMatrix Row oriented sparse matrix, defined in Matrix package.
dsyMatrix Symmetrix matrix, defined in Matrix package.
function Implicitly specify the matrix through a function that has the effect of calculating $f(x)=A x$. See section Funct
eigs_sym() assumes the matrix is symmetric, and only the lower triangle (or upper triangle, which is controlled by the argument lower) is used for computation, which guarantees that the eigenvalues and eigenvectors are real, and in some cases reduces the workload. One exception is when A is a function, in which case the user is responsible for the symmetry of the operator.
eigs_sym() supports "matrix", "dgeMatrix", "dgCMatrix", "dgRMatrix" and "function" typed matrices.

Usage

eigs(A, k, which = "LM", sigma = NULL, opts = list(), ...)
eigs_sym(A, k, which = "LM", sigma = NULL, opts = list(),
lower = TRUE, ...)

Arguments
A
The matrix whose eigenvalues/vectors are to be computed. It can also be a function which receives a vector x and calculates $A x$. See section Function Interface for details.
k Number of eigenvalues requested.
which Selection criteria. See Details below.
sigma Shift parameter. See section Shift-And-Invert Mode.
opts Control parameters related to the computing algorithm. See Details below.
lower For symmetric matrices, should the lower triangle or upper triangle be used.
... Additional arguments such as n and args that are related to the Function Interface. See eigs() in the RSpectra package.

Details

The which argument is a character string that specifies the type of eigenvalues to be computed.
Possible values are:
"LM" The k eigenvalues with largest magnitude. Here the magnitude means the Euclidean norm of complex numbers.
"SM" The k eigenvalues with smallest magnitude.
"LR" The k eigenvalues with largest real part.
"SR" The k eigenvalues with smallest real part.
"LI" The k eigenvalues with largest imaginary part.
"SI" The k eigenvalues with smallest imaginary part.
"LA" The k largest (algebraic) eigenvalues, considering any negative sign.
"SA" The k smallest (algebraic) eigenvalues, considering any negative sign.
"BE" Compute k eigenvalues, half from each end of the spectrum. When k is odd, compute more from the high and then fr

```
eigs() with matrix type "matrix", "dgeMatrix", "dgCMatrix" and "dgRMatrix" can use "LM",
``` "SM", "LR", "SR", "LI" and "SI".
eigs_sym(), and eigs() with matrix type "dsyMatrix" can use "LM", "SM", "LA", "SA" and "BE".

The opts argument is a list that can supply any of the following parameters:
ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but with greater memory use. For general matrix, ncv must satisfy \(k+2 \leq n c v \leq n\), and for symmetric matrix, the constraint is \(k<n c v \leq n\). Default is \(\min (\mathrm{n}, \max (2 * \mathrm{k}+1,20)\)).
tol Precision parameter. Default is \(1 \mathrm{e}-10\).
maxitr Maximum number of iterations. Default is 1000.
retvec Whether to compute eigenvectors. If FALSE, only calculate and return eigenvalues.

\section*{Value}

A list of converged eigenvalues and eigenvectors.
values Computed eigenvalues.
vectors Computed eigenvectors. vectors[, j] corresponds to values[j].
nconv Number of converged eigenvalues.
niter Number of iterations used in the computation.
nops Number of matrix operations used in the computation.

\section*{Shift-And-Invert Mode}

The sigma argument is used in the shift-and-invert mode.
When sigma is not NULL, the selection criteria specified by argument which will apply to
\[
\frac{1}{\lambda-\sigma}
\]
where \(\lambda\) 's are the eigenvalues of \(A\). This mode is useful when user wants to find eigenvalues closest to a given number. For example, if \(\sigma=0\), then which \(=\) "LM" will select the largest values of \(1 /|\lambda|\), which turns out to select eigenvalues of \(A\) that have the smallest magnitude. The result of using which = "LM", sigma \(=0\) will be the same as which \(=\) "SM", but the former one is preferable in that ARPACK is good at finding large eigenvalues rather than small ones. More explanation of the shift-and-invert mode can be found in the SciPy document, http://docs.scipy.org/doc/scipy/ reference/tutorial/arpack.html.

\section*{Function Interface}

The matrix \(A\) can be specified through a function with the definition
```

function(x, args)
{
\#\# should return A %*% x
}

```
which receives a vector x as an argument and returns a vector of the same length. The function should have the effect of calculating \(A x\), and extra arguments can be passed in through the args parameter. In eigs(), user should also provide the dimension of the implicit matrix through the argument n .

\section*{Author(s)}

Yixuan Qiu http://statr.me
Jiali Mei <vermouthmjl@gmail.com>

\section*{See Also}
eigen(), svd(), svds()

\section*{Examples}
```

library(Matrix)
n = 20
k = 5

## general matrices have complex eigenvalues

set.seed(111)
A1 = matrix(rnorm(n^2), n) \#\# class "matrix"
A2 = Matrix(A1) \#\# class "dgeMatrix"
eigs(A1, k)
eigs(A2, k, opts = list(retvec = FALSE)) \#\# eigenvalues only

## sparse matrices

A1[sample(n^2, n^2 / 2)] = 0
A3 = as(A1, "dgCMatrix")
A4 = as(A1, "dgRMatrix")

```
```

eigs(A3, k)
eigs(A4, k)

## function interface

f = function(x, args)
{
as.numeric(args %*% x)
}
eigs(f, k, n = n, args = A3)

## symmetric matrices have real eigenvalues

A5 = crossprod(A1)
eigs_sym(A5, k)

## find the smallest (in absolute value) k eigenvalues of A5

eigs_sym(A5, k, which = "SM")

## another way to do this: use the sigma argument

eigs_sym(A5, k, sigma = 0)

## The results should be the same,

## but the latter method is far more stable on large matrices

```

\section*{svds}

Find the Largest \(k\) Singular Values/Vectors of a Matrix

\section*{Description}

This function is a simple wrapper of the svds() function in the RSpectra package. Also see the documentation there.
Given an \(m\) by \(n\) matrix \(A\), function svds() can find its largest \(k\) singular values and the corresponding singular vectors. It is also called the Truncated Singular Value Decomposition since it only contains a subset of the whole singular triplets.

Currently svds() supports matrices of the following classes:
\(\begin{array}{ll}\text { matrix } & \text { The most commonly used matrix type, defined in base package. } \\ \text { dgeMatrix } & \text { General matrix, equivalent to matrix, defined in Matrix package. } \\ \text { dgCMatrix } & \text { Column oriented sparse matrix, defined in Matrix package. } \\ \text { dgRMatrix } & \text { Row oriented sparse matrix, defined in Matrix package. } \\ \text { dsyMatrix } & \text { Symmetrix matrix, defined in Matrix package. }\end{array}\)

Note that when \(A\) is symmetric, SVD reduces to eigen decomposition, so you may consider using eigs() instead.

\section*{Usage}
\(\operatorname{svds}(\mathrm{A}, \mathrm{k}, \mathrm{nu}=\mathrm{k}, \mathrm{nv}=\mathrm{k}, \mathrm{opts}=\operatorname{list}(), \ldots\))

\section*{Arguments}

A
k Number of singular values requested.
nu \(\quad\) Number of left singular vectors to be computed. This must be between 0 and \(k\).
nv \(\quad\) Number of right singular vectors to be computed. This must be between 0 and k.
opts Control parameters related to the computing algorithm. See Details below.
... Currently not used.

\section*{Details}

The opts argument is a list that can supply any of the following parameters:
ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but with greater memory use. ncv must be satisfy \(k<n c v \leq p\) where \(\mathrm{p}=\min (\mathrm{m}, \mathrm{n})\). Default is \(\min (p, \max (2 * k+1,20))\).
tol Precision parameter. Default is \(1 \mathrm{e}-10\).
maxitr Maximum number of iterations. Default is 1000.

\section*{Value}

A list with the following components:
d A vector of the computed singular values.
\(u \quad\) An m by nu matrix whose columns contain the left singular vectors. If nu \(==0\), NULL will be returned.
v An \(n\) by \(n v\) matrix whose columns contain the right singular vectors. If \(n v==0\), NULL will be returned.
nconv Number of converged singular values.
niter Number of iterations used.
nops \(\quad\) Number of matrix-vector multiplications used.

\section*{Author(s)}

Yixuan Qiu <http://statr.me>

\section*{See Also}
eigen(), svd(), eigs().

\section*{Examples}
\(m=100\)
\(n=20\)
\(\mathrm{k}=5\)
set. seed(111)
\(A=\operatorname{matrix}(r n o r m(m * n), m)\)
\(\operatorname{svds}(A, k)\)
\(\operatorname{svds}(\mathrm{t}(\mathrm{A}), \mathrm{k}, \mathrm{nu}=0, \mathrm{nv}=3)\)
\#\# Sparse matrices
library (Matrix)
A[sample(m * n, m * n / 2)] \(=0\)
Asp1 = as(A, "dgCMatrix")
Asp2 = as(A, "dgRMatrix")
svds(Asp1, k)
svds(Asp2, k, nu \(=0, \mathrm{nv}=0)\)

\section*{Index}
*Topic array
eigs, 2
svds, 5
eigen, 4, 6
eigs, \(2,2,5,6\)
eigs_sym (eigs), 2
svd, 4, 6
svds, 4, 5, 5```

