
Package ‘rDNAse’
July 14, 2016

Type Package

Version 1.1-1

Date 2016-6-24

Title Generating Various Numerical Representation Schemes of DNA
Sequences

Description Comprehensive toolkit for generating various numerical representa-
tion schemes of DNA sequence. The descriptors and similarity
scores included are extensively used in bioinformatics and chemogenomics.

Author Min-feng Zhu <wind2zhu@163.com>, Jie Dong <biomed@csu.edu.cn>,
Dong-sheng Cao <oriental-cds@163.com>

Maintainer Min-feng Zhu <wind2zhu@163.com>

License GPL (>= 2)

URL https://github.com/wind22zhu/rDNAse

BugReports https://github.com/wind22zhu/rDNAse/issues

LazyData yes

Suggests Biostrings, GOSemSim, foreach, doParallel, RCurl,
org.Hs.eg.db

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-07-14 07:18:52

R topics documented:
dnacheck . 2
extrDAC . 3
extrDACC . 4
extrDCC . 5
extrPseDNC . 6
extrPseKNC . 8

1

https://github.com/wind22zhu/rDNAse
https://github.com/wind22zhu/rDNAse/issues

2 dnacheck

extrTAC . 9
extrTACC . 10
extrTCC . 11
getGenbank . 12
kmer . 13
make_idkmer_vec . 14
make_kmer_index . 15
parGOSim . 16
parSeqSim . 17
readFASTA . 19
revchars . 20
twoGOSim . 21
twoSeqSim . 22

Index 24

dnacheck Check if the DNA sequence are in the 4 default types

Description

Check if the DNA sequence are in the 4 default types

Usage

dnacheck(x)

Arguments

x A character vector, as the input DNA sequence.

Details

This function checks if the DNA sequence types are in the 4.

Value

Logical. TRUE if all of the DNA types of the sequence are within the 4 default types.

The result character vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
dnacheck(x) # TRUE
dnacheck(paste(x, 'Z', sep = '')) # FALSE

extrDAC 3

extrDAC The Dinucleotide-based Auto Covariance Descriptor

Description

The Dinucleotide-based Auto Covariance Descriptor

Usage

extrDAC(x, index = c("Twist", "Tilt"), nlag = 2, normaliztion = FALSE,
customprops = NULL, allprop = FALSE)

Arguments

x the input data, which should be a list or file type.

index the physicochemical indices, it should be a list and there are 38 different physic-
ochemical indices (Table 1), which the users can choose.

nlag an integer larger than or equal to 0 and less than or equal to L-2 (L means the
length of the shortest DNA sequence in the dataset). It represents the distance
between two dinucleotides.

normaliztion with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

customprops the users can use their own indices to generate the feature vector. It should be a
dict, the key is dinucleotide (string), and its corresponding value is a list type.

allprop all the 38 physicochemical indices will be employed to generate the feature vec-
tor. Its default value is False.

Details

This function calculates the dinucleotide-based auto covariance descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

4 extrDACC

References

Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on
autocross-covariance transformation. Bioinformatics, 2009, 25(20): 2655-2662.

See Also

See extrDCC and extrDACC

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDAC(x)

extrDACC The Dinucleotide-based Auto-cross Covariance Descriptor

Description

The Dinucleotide-based Auto-cross Covariance Descriptor

Usage

extrDACC(x, index = c("Twist", "Tilt"), nlag = 2, normaliztion = FALSE,
customprops = NULL, allprop = FALSE)

Arguments

x the input data, which should be a list or file type.

index the physicochemical indices, it should be a list and there are 38 different physic-
ochemical indices (Table 1), which the users can choose.

nlag an integer larger than or equal to 0 and less than or equal to L-2 (L means the
length of the shortest DNA sequence in the dataset). It represents the distance
between two dinucleotides.

normaliztion with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

customprops the users can use their own indices to generate the feature vector. It should be a
dict, the key is dinucleotide (string), and its corresponding value is a list type.

allprop all the 38 physicochemical indices will be employed to generate the feature vec-
tor. Its default value is False.

Details

This function calculates the dinucleotide-based auto-cross covariance descriptor

extrDCC 5

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on
autocross-covariance transformation. Bioinformatics, 2009, 25(20): 2655-2662.

See Also

See extrDAC and extrDCC

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDACC(x)

extrDCC The Dinucleotide-based Cross Covariance Descriptor

Description

The Dinucleotide-based Cross Covariance Descriptor

Usage

extrDCC(x, index = c("Twist", "Tilt"), nlag = 2, normaliztion = FALSE,
customprops = NULL, allprop = FALSE)

Arguments

x the input data, which should be a list or file type.

index the physicochemical indices, it should be a list and there are 38 different physic-
ochemical indices (Table 1), which the users can choose.

nlag an integer larger than or equal to 0 and less than or equal to L-2 (L means the
length of the shortest DNA sequence in the dataset). It represents the distance
between two dinucleotides.

6 extrPseDNC

normaliztion with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

customprops the users can use their own indices to generate the feature vector. It should be a
dict, the key is dinucleotide (string), and its corresponding value is a list type.

allprop all the 38 physicochemical indices will be employed to generate the feature vec-
tor. Its default value is False.

Details

This function calculates the dinucleotide-based cross covariance descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on
autocross-covariance transformation. Bioinformatics, 2009, 25(20): 2655-2662.

See Also

See extrDAC and extrDACC

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDCC(x)

extrPseDNC The Pseudo Dinucleotide Composition Descriptor

Description

The Pseudo Dinucleotide Composition Descriptor

Usage

extrPseDNC(x, lambda = 3, w = 0.05, normalize = FALSE,
customprops = NULL)

extrPseDNC 7

Arguments

x the input data, which should be a list or file type.

lambda an integer larger than or equal to 0 and less than or equal to L-2 (L means the
length of the shortest sequence in the dataset). It represents the highest counted
rank (or tier) of the correlation along a DNA sequence. Its default value is 3.

w the weight factor ranged from 0 to 1. Its default value is 0.05.

normalize with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

customprops the users can use their own indices to generate the feature vector. It should be a
dict, the key is dinucleotide (string), and its corresponding value is a list type.

Details

This function calculates the pseudo dinucleotide composition Descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Chen W, Feng P M, Lin H, et al. iRSpot-PseDNC: identify recombination spots with pseudo dinu-
cleotide composition. Nucleic acids research, 2013: gks1450.

See Also

See extrPseKNC

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrPseDNC(x)

8 extrPseKNC

extrPseKNC The Pseudo K-tupler Composition Descriptor

Description

The Pseudo K-tupler Composition Descriptor

Usage

extrPseKNC(x, lambda = 1, k = 3, normalize = FALSE, w = 0.5,
customprops = NULL)

Arguments

x the input data, which should be a list or file type.

lambda an integer larger than or equal to 0 and less than or equal to L-2 (L means the
length of the shortest sequence in the dataset). It represents the highest counted
rank (or tier) of the correlation along a DNA sequence. Its default value is 3.

k an integer larger than 0 represents the k-tuple. Its default value is 3.

normalize with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

w the weight factor ranged from 0 to 1. Its default value is 0.05.

customprops the users can use their own indices to generate the feature vector. It should be a
dict, the key is dinucleotide (string), and its corresponding value is a list type.

Details

This function calculates the pseudo k-tupler composition Descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Guo S H, Deng E Z, Xu L Q, et al. iNuc-PseKNC: a sequence-based predictor for predicting
nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics,
2014: btu083.

extrTAC 9

See Also

See extrPseDNC

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrPseKNC(x)

extrTAC The Trinucleotide-based Auto Covariance Descriptor

Description

The Trinucleotide-based Auto Covariance Descriptor

Usage

extrTAC(x, index = c("Dnase I", "Nucleosome"), nlag = 2,
normaliztion = FALSE, customprops = NULL, allprop = FALSE)

Arguments

x the input data, which should be a list or file type.

index the physicochemical indices, it should be a list and there are 12 different physic-
ochemical indices (Table 2), which the users can choose.

nlag an integer larger than or equal to 0 and less than or equal to L-2 (L means the
length of the shortest DNA sequence in the dataset). It represents the distance
between two dinucleotides.

normaliztion with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

customprops the users can use their own indices to generate the feature vector. It should be a
dict, the key is dinucleotide (string), and its corresponding value is a list type.

allprop all the 12 physicochemical indices will be employed to generate the feature vec-
tor. Its default value is False.

Details

This function calculates the trinucleotide-based auto covariance Descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

10 extrTACC

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See extrTCC and extrTACC

Examples

x = x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrTAC(x)

extrTACC The Trinucleotide-based Auto-cross Covariance Descriptor

Description

The Trinucleotide-based Auto-cross Covariance Descriptor

Usage

extrTACC(x, index = c("Dnase I", "Nucleosome"), nlag = 2,
normaliztion = FALSE, customprops = NULL, allprop = FALSE)

Arguments

x the input data, which should be a list or file type.

index the physicochemical indices, it should be a list and there are 12 different physic-
ochemical indices (Table 2), which the users can choose.

nlag an integer larger than or equal to 0 and less than or equal to L-2 (L means the
length of the shortest DNA sequence in the dataset). It represents the distance
between two dinucleotides.

normaliztion with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

customprops the users can use their own indices to generate the feature vector. It should be a
dict, the key is dinucleotide (string), and its corresponding value is a list type.

allprop all the 12 physicochemical indices will be employed to generate the feature vec-
tor. Its default value is False.

Details

This function calculates the trinucleotide-based auto-cross covariance descriptor

Value

A vector

extrTCC 11

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See extrTAC and extrTCC

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrTACC(x)

extrTCC The Trinucleotide-based Cross Covariance Descriptor

Description

The Trinucleotide-based Cross Covariance Descriptor

Usage

extrTCC(x, index = c("Dnase I", "Nucleosome"), nlag = 2,
customprops = NULL, normaliztion = FALSE)

Arguments

x the input data, which should be a list or file type.

index the physicochemical indices, it should be a list and there are 12 different physic-
ochemical indices (Table 2), which the users can choose.

nlag an integer larger than or equal to 0 and less than or equal to L-2 (L means the
length of the shortest DNA sequence in the dataset). It represents the distance
between two dinucleotides.

customprops the users can use their own indices to generate the feature vector. It should be a
dict, the key is dinucleotide (string), and its corresponding value is a list type.

normaliztion with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

Details

This function calculates the trinucleotide-based cross covariance Descriptor

12 getGenbank

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See extrTAC and extrTACC

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrTCC(x)

getGenbank Get DNA/RNA Sequences from Genbank by GI ID

Description

Get DNA/RNA Sequences from Genbank by GI ID

Usage

getGenbank(id)

Arguments

id A character vector, as the GI ID(s).

Details

This function get DNA/RNA sequences from Genbank by GI ID(s).

Value

A list, each component contains one of the DNA/RNA sequences.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

kmer 13

See Also

See readFASTA for reading FASTA format files.

Examples

Network latency may slow down this example
Only test this when your connection is fast enough
require(RCurl)

ids = c(2, 11)
getGenbank(ids)

kmer The Basic Kmer Descriptor

Description

The Basic Kmer Descriptor

Usage

kmer(x, k = 2, upto = FALSE, normalize = FALSE, reverse = FALSE)

Arguments

x the input data, which should be a list or file type.

k the k value of kmer, it should be an integer larger than 0.

upto generate all the kmers: 1mer, 2mer, ..., kmer. The output feature vector is the
combination of all these kmers. The default value of this parameter is False.

normalize with this option, the final feature vector will be normalized based on the total
occurrences of all kmers. Therefore, the elements in the feature vectors represent
the frequencies of kmers. The default value of this parameter is False.

reverse make reverse complements into a single feature, The default value of this pa-
rameter is False. if reverse is True, this method returns the reverse compliment
kmer feature vector.

Details

This function calculates the basic kmer descriptor

Value

A vector

14 make_idkmer_vec

Note

if the parameters normalize and upto are both True, and then the feature vector is the combination
of all these normalized kmers, e.g. the combination of normalized 1-kmer and normalized 2-kmer
when k=2, normalize=True, upto=True.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Noble W S, Kuehn S, Thurman R, et al. Predicting the in vivo signature of human gene regulatory
sequences. Bioinformatics, 2005, 21 Suppl 1, i338-343. Lee D, Karchin R, Beer M A. Discrim-
inative prediction of mammalian enhancers from DNA sequence. Genome research. 2005, 21,
2167-2180.

See Also

See make_kmer_index

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
kmer(x)

make_idkmer_vec The Increment Of Diversity Descriptors

Description

The Increment Of Diversity Descriptors

Usage

make_idkmer_vec(k = 6, x, pos, neg, upto = TRUE)

Arguments

k the k value of kmer, it should be an integer larger than 0,the default value is 6.

x the input data, which should be a list or file type.

pos the positive source data, which should be a or type.

neg the negative source data, which should be or type.

upto generate all the kmers: 1mer, 2mer, ..., kmer. The output feature vector is the
combination of all these kmers. The default value of this parameter is True

make_kmer_index 15

Details

This function calculates the The Basic Kmer Descriptor

Value

if upto is True, A length k * 2 named vector, k is the k value of kmer; if upto is False, A length 2
named vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Chen W, Luo L, Zhang L. The organization of nucleosomes around splice sites. Nucleic acids
research, 2010, 38(9): 2788-2798. Liu G, Liu J, Cui X, et al. Sequence-dependent prediction of
recombination hotspots in Saccharomyces cerevisiae. Journal of theoretical biology, 2012, 293:
49-54.

See Also

See kmer

Examples

pos = readFASTA(system.file('dnaseq/pos.fasta', package = 'rDNAse'))
neg = readFASTA(system.file('dnaseq/neg.fasta', package = 'rDNAse'))
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
make_idkmer_vec(k = 6, x, pos, neg)

make_kmer_index Calculate The Basic Kmer Feature Vector

Description

Calculate The Basic Kmer Feature Vector

Usage

make_kmer_index(k, alphabet = "ACGT")

Arguments

k the k value of kmer, it should be an integer larger than 0.

alphabet the

Details

This function calculate the basic kmer feature vector.

16 parGOSim

Value

The result character vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See kmer

Examples

make_kmer_index(2, alphabet = "ACGT")

parGOSim DNA Sequence Similarity Calculation based on Gene Ontology (GO)
Similarity

Description

DNA Sequence Similarity Calculation based on Gene Ontology (GO) Similarity

Usage

parGOSim(golist, type = c("go", "gene"), ont = "MF", organism = "human",
measure = "Resnik", combine = "BMA")

Arguments

golist A character vector, each component contains a character vector of GO terms or
one Entrez Gene ID.

type Input type of golist, 'go' for GO Terms, 'gene' for gene ID.

ont Default is 'MF', could be one of 'MF', 'BP', or 'CC' subontologies.

organism Default is 'human', could be one of 'anopheles', 'arabidopsis', 'bovine',
'canine', 'chicken', 'chimp', 'coelicolor', 'ecolik12', 'ecsakai', 'fly',
'human', 'malaria', 'mouse', 'pig', 'rat', 'rhesus', 'worm', 'xenopus',
'yeast' or 'zebrafish'.

measure Default is 'Resnik', could be one of 'Resnik', 'Lin', 'Rel', 'Jiang' or
'Wang'.

combine Default is 'BMA', could be one of 'max', 'average', 'rcmax' or 'BMA' for
combining semantic similarity scores of multiple GO terms associated with
DNA.

Details

This function calculates DNA sequence similarity based on Gene Ontology (GO) similarity.

parSeqSim 17

Value

A n x n similarity matrix.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See twoGOSim for calculating the GO semantic similarity between two groups of GO terms or
two Entrez gene IDs. See parSeqSim for paralleled DNA similarity calculation based on Smith-
Waterman local alignment.

Examples

Not run:
Be careful when testing this since it involves GO similarity computation
and might produce unpredictable results in some environments

require(GOSemSim)
require(org.Hs.eg.db)

by GO Terms
go1 = c('GO:0005215', 'GO:0005488', 'GO:0005515', 'GO:0005625', 'GO:0005802', 'GO:0005905') # AP4B1
go2 = c('GO:0005515', 'GO:0005634', 'GO:0005681', 'GO:0008380', 'GO:0031202') # BCAS2
go3 = c('GO:0003735', 'GO:0005622', 'GO:0005840', 'GO:0006412') # PDE4DIP
glist = list(go1, go2, go3)
gsimmat1 = parGOSim(glist, type = 'go', ont = 'CC')
print(gsimmat1)

by Entrez gene id
genelist = list(c('150', '151', '152', '1814', '1815', '1816'))
gsimmat2 = parGOSim(genelist, type = 'gene')
print(gsimmat2)
End(Not run)

parSeqSim Parallellized DNA/RNA Sequence Similarity Calculation based on Se-
quence Alignment

Description

Parallellized DNA/RNA Sequence Similarity Calculation based on Sequence Alignment

Usage

parSeqSim(dnalist, cores = 2, type = "local", submat = "BLOSUM62")

18 parSeqSim

Arguments

dnalist A length n list containing n DNA/RNA sequences, each component of the list is
a character string, storing one DNA/RNA sequence. Unknown sequences should
be represented as ''.

cores Integer. The number of CPU cores to use for parallel execution, default is 2.
Users could use the detectCores() function in the parallel package to see
how many cores they could use.

type Type of alignment, default is 'local', could be 'global' or 'local', where
'global' represents Needleman-Wunsch global alignment; 'local' represents
Smith-Waterman local alignment.

submat Substitution matrix, default is 'BLOSUM62', could be one of 'BLOSUM45', 'BLOSUM50',
'BLOSUM62', 'BLOSUM80', 'BLOSUM100', 'PAM30', 'PAM40', 'PAM70', 'PAM120',
'PAM250'.

Details

This function implemented the parallellized version for calculating DNA/RNA sequence similarity
based on sequence alignment.

Value

A n x n similarity matrix.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See twoSeqSim for DNA/RNA sequence alignment for two DNA/RNA sequences. See parGOSim
for DNA/RNA similarity calculation based on Gene Ontology (GO) semantic similarity.

Examples

Be careful when testing this since it involves parallelisation
and might produce unpredictable results in some environments

require(Biostrings)
require(foreach)
require(doParallel)

s1 = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNA'))[[1]]
s2 = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNA'))[[2]]
s3 = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNA'))[[3]]
s4 = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNA'))[[4]]
s5 = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNA'))[[5]]
plist = list(s1, s2, s3, s4, s5)
psimmat = parSeqSim(plist, cores = 2, type = 'local', submat = 'BLOSUM62')
print(psimmat)

readFASTA 19

readFASTA Read DNA/RNA Sequences in FASTA Format

Description

Read DNA/RNA Sequences in FASTA Format

Usage

readFASTA(file, legacy.mode = TRUE, seqonly = FALSE)

Arguments

file The name of the file which the sequences in fasta format are to be read from. If it
does not contain an absolute or relative path, the file name is relative to the cur-
rent working directory, getwd. The default here is to read the example.fasta
file which is present in the protseq directory of the protr package.

legacy.mode If set to TRUE, lines starting with a semicolon ’;’ are ignored. Default value is
TRUE.

seqonly If set to TRUE, only sequences as returned without attempt to modify them or to
get their names and annotations (execution time is divided approximately by a
factor 3). Default value is FALSE.

Details

This function reads DNA/RNA sequences in FASTA format.

Value

The result character vector

Note

Note

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. Pro-
ceedings of the National Academy of Sciences of the United States of America, 85: 2444-2448

Examples

x = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNAse'))

20 revchars

revchars The Reverse chars

Description

The Reverse chars

Usage

revchars(x)

Arguments

x the input data, which should be a string.

Details

This function calculates Reverse chars

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

Examples

x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
revchars(x)

twoGOSim 21

twoGOSim DNA Similarity Calculation based on Gene Ontology (GO) Similarity

Description

DNA Similarity Calculation based on Gene Ontology (GO) Similarity

Usage

twoGOSim(id1, id2, type = c("go", "gene"), ont = "MF", organism = "human",
measure = "Resnik", combine = "BMA")

Arguments

id1 A character vector. length > 1: each element is a GO term; length = 1: the Entrez
Gene ID.

id2 A character vector. length > 1: each element is a GO term; length = 1: the Entrez
Gene ID.

type Input type of id1 and id2, 'go' for GO Terms, 'gene' for gene ID.

ont Default is 'MF', could be one of 'MF', 'BP', or 'CC' subontologies.

organism Default is 'human', could be one of 'anopheles', 'arabidopsis', 'bovine',
'canine', 'chicken', 'chimp', 'coelicolor', 'ecolik12', 'ecsakai', 'fly',
'human', 'malaria', 'mouse', 'pig', 'rat', 'rhesus', 'worm', 'xenopus',
'yeast' or 'zebrafish'.

measure Default is 'Resnik', could be one of 'Resnik', 'Lin', 'Rel', 'Jiang' or
'Wang'.

combine Default is 'BMA', could be one of 'max', 'average', 'rcmax' or 'BMA' for
combining semantic similarity scores of multiple GO terms associated with
DNA.

Details

This function calculates the Gene Ontology (GO) similarity between two groups of GO terms or
two Entrez gene IDs.

Value

A n x n matrix.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

22 twoSeqSim

See Also

See parGOSim for DNA similarity calculation based on Gene Ontology (GO) semantic similarity.
See parSeqSim for paralleled DNA similarity calculation based on Smith-Waterman local align-
ment.

Examples

Not run:
Be careful when testing this since it involves GO similarity computation
and might produce unpredictable results in some environments

require(GOSemSim)
require(org.Hs.eg.db)

by GO terms
go1 = c("GO:0004022", "GO:0004024", "GO:0004023")
go2 = c("GO:0009055", "GO:0020037")
gsim1 = twoGOSim(go1, go2, type = 'go', ont = 'MF', measure = 'Wang')
print(gsim1)

by Entrez gene id
gene1 = '241'
gene2 = '251'
gsim2 = twoGOSim(gene1, gene2, type = 'gene', ont = 'BP', measure = 'Lin')
print(gsim2)
End(Not run)

twoSeqSim DNA/RNA Sequence Alignment for Two DNA/RNA Sequences

Description

DNA/RNA Sequence Alignment for Two DNA/RNA Sequences

Usage

twoSeqSim(seq1, seq2, type = "local", submat = "BLOSUM62")

Arguments

seq1 A character string, containing one DNA/RNA sequence.

seq2 A character string, containing another DNA/RNA sequence.

type Type of alignment, default is 'local', could be 'global' or 'local', where
'global' represents Needleman-Wunsch global alignment; 'local' represents
Smith-Waterman local alignment.

submat Substitution matrix, default is 'BLOSUM62', could be one of 'BLOSUM45', 'BLOSUM50',
'BLOSUM62', 'BLOSUM80', 'BLOSUM100', 'PAM30', 'PAM40', 'PAM70', 'PAM120',
'PAM250'.

twoSeqSim 23

Details

This function implements the sequence alignment between two DNA/RNA sequences.

Value

An Biostrings object containing the scores and other alignment information.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See parSeqSim for paralleled pairwise DNA/RNA similarity calculation based on sequence align-
ment. See twoGOSim for calculating the GO semantic similarity between two groups of GO terms
or two Entrez gene IDs.

Examples

Be careful when testing this since it involves sequence alignment
and might produce unpredictable results in some environments

require(Biostrings)

s1 = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNA'))[[1]]
s2 = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNA'))[[2]]
seqalign = twoSeqSim(s1, s2)
summary(seqalign)
print(seqalign@score)

Index

∗Topic DACC
extrDACC, 4

∗Topic DAC
extrDAC, 3

∗Topic DCC
extrDCC, 5

∗Topic FASTA
readFASTA, 19

∗Topic GO
parGOSim, 16
twoGOSim, 21

∗Topic Genbank
getGenbank, 12

∗Topic Ontology
parGOSim, 16
twoGOSim, 21

∗Topic PseDNC
extrPseDNC, 6

∗Topic PseKNC
extrPseKNC, 8

∗Topic TACC
extrTACC, 10

∗Topic TAC
extrTAC, 9

∗Topic TCC
extrTCC, 11

∗Topic alignment
parSeqSim, 17
twoSeqSim, 22

∗Topic check
dnacheck, 2

∗Topic diversity
make_idkmer_vec, 14

∗Topic extract
extrDAC, 3
extrDACC, 4
extrDCC, 5
extrPseDNC, 6
extrPseKNC, 8

extrTAC, 9
extrTACC, 10
extrTCC, 11
kmer, 13
make_idkmer_vec, 14
revchars, 20

∗Topic increment
make_idkmer_vec, 14

∗Topic index
make_kmer_index, 15

∗Topic kmer
kmer, 13
make_kmer_index, 15

∗Topic of
make_idkmer_vec, 14

∗Topic parallel
parSeqSim, 17
twoSeqSim, 22

∗Topic read
readFASTA, 19

∗Topic reverse_chars
revchars, 20

∗Topic similarity
parGOSim, 16
parSeqSim, 17
twoGOSim, 21
twoSeqSim, 22

∗Topic the
make_idkmer_vec, 14

dnacheck, 2

extrDAC, 3, 5, 6
extrDACC, 4, 4, 6
extrDCC, 4, 5, 5
extrPseDNC, 6, 9
extrPseKNC, 7, 8
extrTAC, 9, 11, 12
extrTACC, 10, 10, 12
extrTCC, 10, 11, 11

24

INDEX 25

getGenbank, 12
getwd, 19

IncDiv (make_idkmer_vec), 14

kmer, 13, 15, 16

make_idkmer_vec, 14
make_kmer_index, 14, 15

parGOSim, 16, 18, 22
parSeqSim, 17, 17, 22, 23

readFASTA, 13, 19
revchars, 20

twoGOSim, 17, 21, 23
twoSeqSim, 22

	dnacheck
	extrDAC
	extrDACC
	extrDCC
	extrPseDNC
	extrPseKNC
	extrTAC
	extrTACC
	extrTCC
	getGenbank
	kmer
	make_idkmer_vec
	make_kmer_index
	parGOSim
	parSeqSim
	readFASTA
	revchars
	twoGOSim
	twoSeqSim
	Index

