
Package ‘rNOMADS’
September 8, 2020

Type Package

Title An R Interface to the NOAA Operational Model Archive and
Distribution System

Version 2.5.0

Date 2020-09-07

Depends R (>= 4.0), rvest (>= 0.3.2)

Imports stringr (>= 1.2.0), fields (>= 9.0), GEOmap (>= 2.3-5), MBA,
RCurl (>= 1.95-4.7), XML (>= 3.99-0.3), uuid (>= 0.1-2)

Description An interface to the National Oceanic and Atmospheric Administration's Opera-
tional Model Archive and Distribution System (NO-
MADS, see <http://nomads.ncep.noaa.gov/> for more information) that al-
lows R users to quickly and efficiently download global and regional weather model data for pro-
cessing. rNOMADS currently supports a variety of models rang-
ing from global weather data to an altitude of over 40 km, to high resolution re-
gional weather models, to wave and sea ice models. It can also retrieve some archived mod-
els. rNOMADS can retrieve binary data in grib format as well as import ascii data di-
rectly into R by interfacing with the GrADS-DODS system.

License GPL (>= 3)

Maintainer Daniel C. Bowman <danny.c.bowman@gmail.com>

MailingList <rnomads-user@lists.r-forge.r-project.org>

URL <https://bovineaerospace.wordpress.com/category/r/ >,
<https://r-forge.r-project.org/projects/rnomads/ >,
<https://www.r-project.org >

NeedsCompilation no

Author Daniel C. Bowman [aut, cre]

Repository CRAN

Date/Publication 2020-09-08 05:00:03 UTC

R topics documented:
rNOMADS-package . 2

1

https://bovineaerospace.wordpress.com/category/r/
https://r-forge.r-project.org/projects/rnomads/
https://www.r-project.org

2 rNOMADS-package

ArchiveGribGrab . 4
BuildProfile . 6
CheckNOMADSArchive . 8
CrawlModels . 9
DODSGrab . 10
GetClosestForecasts . 12
GetDODSDates . 14
GetDODSModelRunInfo . 15
GetDODSModelRuns . 16
GribGrab . 18
GribInfo . 20
LinkExtractor . 21
MagnitudeAzimuth . 22
ModelGrid . 23
NOMADSArchiveList . 25
NOMADSRealTimeList . 26
ParseModelPage . 27
PlotWindProfile . 28
ReadGrib . 30
SubsetNOMADS . 33
WebCrawler . 35

Index 37

rNOMADS-package An interface to the NOAA Operational Model Archive and Distribution
System

Description

Automatically download forecast data from the National Oceanic and Atmospheric Administra-
tion’s Operational Model Archive and Distribution System (NOMADS) and read it into R. This
can be done in two ways: reading ascii data directly from the server using the DODS-GrADS
system or downloading binary files in GRIB1 or GRIB2 format. The grib capability of rNOMADS
uses an external series of routines called wgrib2 to read operational model data; get wgrib2 at
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/. The package will also attempt to
call another external routine called wgrib if the user wishes to read GRIB1 files; get wgrib at
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html.

Details

Package: rNOMADS
Type: Package
Version: 2.2.0
Date: 2016-03-21
License: GPL v3

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

rNOMADS-package 3

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

References

Bowman, D. C. and Lees, J. M. (2015). Near real time weather and ocean model data access with
rNOMADS. Computers \& Geosciences 78, pp. 88-95.
NOMADS website:
http://nomads.ncep.noaa.gov/
wgrib2 download page:
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
wgrib2 reference:
Ebisuzaki, W, Bokhorst, R., Hyvatti, J., Jovic, D., Nilssen, K, Pfeiffer, K., Romero, P., Schwarb, M.,
da Silva, A., Sondell, N., and Varlamov, S. (2011). wgrib2: read and write GRIB2 files. National
Weather Service Climate Prediction Center,
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
wgrib download page:
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

Examples

#Getting temperature for North Carolina, USA,
#6-12 hours ago depending on when the latest model run was.
#Get values at the ground surface and at the 800 mb level
#Then make a contour plot of the surface temperature.
#We use GrADS-DODS here for compatibility.

#Using the Global Forecast System 0.5x0.5 model
Not run:

urls.out <- GetDODSDates(abbrev = "gfs_0p50")
model.url <- tail(urls.out$url, 1) #Get most recent model date

#Get most recent model run

model.runs <- GetDODSModelRuns(model.url)
model.run <- tail(model.runs$model.run, 1)

#Get ground temperature for the 6 hour prediction
variable <- "tmp2m" #temp at 2 m
time <- c(2,2) #6 hour prediction
lon.dom <- seq(0, 360, by = 0.5) #domain of longitudes in model
lat.dom <- seq(-90, 90, by = 0.5) #domain of latitudes in model
lon <- which((lon.dom >= 360 - 84) & (lon.dom <= 360 - 74)) - 1 #NOMADS indexes start at 0
lat <- which((lat.dom <= 37) & (lat.dom >= 32)) - 1 #NOMADS indexes start at 0
model.data.surface <- DODSGrab(model.url, model.run, variable, time, c(min(lon), max(lon)),

http://nomads.ncep.noaa.gov/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

4 ArchiveGribGrab

c(min(lat), max(lat)))

lev <- c(8, 8) #800 mb level
variable <- "tmpprs"
model.data.800mb <- DODSGrab(model.url, model.run, variable, time, c(min(lon), max(lon)),

c(min(lat), max(lat)), level = lev)

#Make results into arrays
model.array.surface <- ModelGrid(model.data.surface, c(0.5, 0.5))
model.array.800mb <- ModelGrid(model.data.800mb, c(0.5, 0.5))

#Make a contour plot of the temperature around North Carolina, USA:
contour(x = model.array.surface$x - 360, y = model.array.surface$y,

model.array.surface$z[1,1,,] - 273.15, xlab = "Longitude", ylab = "Latitude",
main = paste("North Carolina Surface Temperatures for",
model.array.surface$fcst.date, "UTC in Celsius"))

dev.new()
contour(x = model.array.800mb$x - 360, y = model.array.800mb$y,

model.array.800mb$z[1,1,,] - 273.15, xlab = "Longitude", ylab = "Latitude",
main = paste("North Carolina Temperatures at 800 mb for",
model.array.surface$fcst.date, "UTC in Celsius"))

End(Not run)

ArchiveGribGrab Download archived model data from the NOMADS server.

Description

This function gives access to archived NOMADS model data. The available models can be viewed
by calling NOMADSArchiveList without arguments. The data arrives in grib (gridded binary) format
that can be read with ReadGrib. Some of these files are in GRIB format, others are in GRIB2
format; select the appropriate file type when calling ReadGrib. Note that this is a legacy function
that emulates the archive data retrieval capability when NOMADS NCEP used to host past data
sets. At present the data are hosted on NCEI.

Usage

ArchiveGribGrab(abbrev, model.date, model.run, preds,
local.dir = NULL, file.names = NULL, tidy = FALSE,
verbose = TRUE, download.method = NULL, file.type = "grib2")

Arguments

abbrev Model abbreviation per NOMADSArchiveList.

model.date The year, month, and day of the model run, in YYYYMMDD format

model.run Which hour the model was run (i.e. 00, 06, 12, 18 for GFS)

ArchiveGribGrab 5

preds A scalar or vector of prediction to get (analysis is 00)

local.dir Where to save the grib file, defaults to the current directory.

file.names A list of length length(preds) of file names to which the downloaded GRIB
files are directed to. Default NULL, meaning files will be named per their model
date and time.

tidy If TRUE, remove all files with the suffix ".grb" from local.dir prior to down-
loading a new grib file.

verbose If TRUE, give information on connection status. Default TRUE
download.method

Allows the user to set the download method used by download.file: "internal",
"wget" "curl", "lynx". If NULL (the default), let R decide.

file.type Determine whether to get GRIB1 ("grib1") or GRIB2 ("grib2") file formats.
Sometimes both are available, sometimes only one.

Value
grib.info$file.name

The path and file name of the grib file that was downloaded.

grib.info$url The URL that the grib file was downloaded from

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

References

https://www.ncei.noaa.gov/data/

See Also

CheckNOMADSArchive, NOMADSArchiveList, ReadGrib

Examples

#An example for the Global Forecast System
#Get data for January 1 2014
#Temperature at 2 m above ground
#3 hour prediction
using GRIB

abbrev <- "gfsanl"
model.date <- 20140101
model.run <- 06
preds <- 3

Not run:
model.info <- ArchiveGribGrab(abbrev, model.date,

model.run, preds, file.type = "grib2")
model.data <- ReadGrib(model.info[[1]]$file.name, c("2 m above ground"), c("TMP"))

https://www.ncei.noaa.gov/data/

6 BuildProfile

#Get surface temperature in Chapel Hill, NC
lat <- 35.907605
lon <- -79.052147

profile <- BuildProfile(model.data, lon, lat, TRUE)
print(paste0("The temperature prediction in Chapel Hill was ",

sprintf("%.0f", profile[[1]]$profile.data[1,1,1] - 272.15), " degrees Celsius."))

End(Not run)

BuildProfile Get model data at a specific point.

Description

Takes the output of ReadGrib or DODSGrab and extracts data at a specific point, performing inter-
polation if required.

Usage

BuildProfile(model.data, lon, lat, spatial.average, points = 4)

Arguments

model.data Data structure returned by ReadGrib or DODSGrab.

lon Longitudes of points of interest.

lat Latitudes of points of interest.
spatial.average

Whether to interpolate data using b-splines to obtain value at the requested point
(spatial.average = TRUE) or use the nearest model node (spatial.average
= FALSE).

points How many points to include in the interpolation, will be ignored if spatial.average
= FALSE.

Details

It is much more efficient to download a large chunk of data and extract profile points from that as
opposed to downloading individual small model chunks in the vicinity of each point of interest.

Value

profile A list with as many elements as profile points, with fields:
profile$profile.data

A levels x variables x time matrix with data at a specific point
profile$location

The location for which the profile is generated

BuildProfile 7

profile$forecast.date

What dates and times the profile contains
profile$variables

The variables the profile contains

profile$levels The levels the profile contains

Note

The “outside of model domain” warning may occur if the profile point is very close to the prime
meridian (in the case of a 0-360 longitude definition) or the antipode of the prime meridian (+/- 180
degrees longitude in the case of -180 to 180 degrees definition). For a full download of a global
model (e. g. the GFS), this does not mean the point is actually outside of the model domain. For
example, the 0.5 degree GFS has nodes from 0 to 359.5 degrees longitude; a profile point requested
at 359.9 degrees longitude will cause this warning even though it is within the global GFS model
domain.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

ReadGrib, DODSGrab

Examples

#Get temperature profile in Chapel Hill, NC.

#First, define each location
lon <- -79.052094
lat <- 35.907562

#Get second to latest GFS 0.5 model, use analysis forecast
#(this ensures the data's fully up on NOMADS)

Not run:
model.url <- CrawlModels(abbrev = "gfs_0p50", depth = 2)[2]
pred <- ParseModelPage(model.url)$pred[1]

End(Not run)

#Get levels
pressure <- c(1, 2, 3, 5, 7,
10, 20, 30, 50, 70,
seq(100, 1000, by = 25))
levels <- paste(pressure, " mb", sep = "")

#Variables - temperature and height only
variables <- c("TMP", "HGT")

8 CheckNOMADSArchive

Not run:
grib.info <- GribGrab(model.url, pred, levels, variables,

model.domain = c(-85, -75, 37, 32))
grib.data <- ReadGrib(grib.info[[1]]$file.name, levels, variables)

profile <- BuildProfile(grib.data, lon, lat, TRUE, points = 8)
plot(profile[[1]]$profile.data[,2, 1] - 272.15,

profile[[1]]$profile.data[,1, 1], xlab = "Temperature (C)",
ylab = "Height (m)", main = "Temperature Profile above Chapel Hill, NC")

End(Not run)

CheckNOMADSArchive Check to see if archived data exists.

Description

This function checks to see if data exists for a given date and model. It checks for both GRIB1 or
GRIB2 files.

Usage

CheckNOMADSArchive(abbrev, model.date = NULL)

Arguments

abbrev Model abbreviation per NOMADSArchiveList.

model.date The year, month, and day to check for data, in YYYYMMDD format. If NULL,
check all available dates in NOMADS archive.

Value
available.models$date

What date the file is for, in YYYYMMDD format.
available.models$model.run

At what hour (GMT) the model was run.
available.models$pred

What predictions are available
available.models$file.name

List of file names for available model dates, runs, and predictions

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

References

https://www.ncei.noaa.gov/data/

https://www.ncei.noaa.gov/data/

CrawlModels 9

See Also

NOMADSArchiveList, ArchiveGribGrab

Examples

#See what is available 365 days before today

abbrev <- "gfsanl"
model.date <- paste0(format(Sys.time() - 24 * 60 * 60 * 365, "%Y%m%d"))
Not run:
gfs.available.models <- CheckNOMADSArchive(abbrev, model.date)

End(Not run)

CrawlModels Get Available Model Runs

Description

This function determine which instances of a given model are available for download.

Usage

CrawlModels(abbrev = NULL, model.url = NULL, depth = NULL, verbose = TRUE)

Arguments

abbrev The model abbreviation, see NOMADSRealTimeList. Defaults to NULL.

model.url A URL to use instead of using the abbreviations in NOMADSRealTimeList. De-
faults to NULL.

depth How many model instances to return. This avoids having to download the en-
tire model list (sometimes several hundred) if only the first few instances are
required. Defaults to NULL, which returns everything.

verbose Print out each link as it is discovered. Defaults to TRUE.

Details

This function calls WebCrawler, a recursive algorithm that discovers each link available in the URL
provided. It then searches each link in turn, and follows those links until it reaches a dead end. At
that point, it returns the URL. For the model pages on the NOMADS web site, each dead end is a
model instance that can be examined using ParseModelPage or have data retrieved from it using
GribGrab.

Value

urls.out A list of web page addresses, each of which corresponds to a model instance.

10 DODSGrab

Note

It is a good idea to set depth to a small number rather than leave it at the default value. Some
models (such as the Global Forecast System) have a large number of instances, and crawling each
one can take a lot of time. I recommend depth = 2, since the first URL may not have an active
model on it yet if the model is still being uploaded to the server. In that case,the first URL will
contain no data, and the second URL can be used instead.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

WebCrawler, ParseModelPage, NOMADSRealTimeList, GribGrab

Examples

#Get the latest 5 instances
#for the Global Forecast System 0.5 degree model

Not run: urls.out <- CrawlModels(abbrev = "gfs_0p50", depth = 5)

DODSGrab Download model data from the NOMADS server using the GrADS-
DODS system.

Description

This function interfaces with the NOMADS server to download weather, ocean, and sea ice data.
The available models can be viewed by calling NOMADSRealTimeList and NOMADSArchiveList.
The data arrives in ascii format, so this function can be used to retrieve data on any operating
system.

Usage

DODSGrab(model.url, model.run, variables, time, lon, lat,
levels = NULL, ensembles = NULL, display.url = TRUE,
verbose = FALSE, request.sleep = 1)

Arguments

model.url A model URL for a specific date, probably from GetDODSDates.

model.run A specific model run to get, probably from GetDODSModelRuns.

variables A list of the data types to get.

time A two component vector denoting which time indices to get.

DODSGrab 11

lon A two component vector denoting which longitude indices to get.

lat A two component vector denoting which latitude indices to get.

levels A two component vector denoting which levels to get, if applicable.

ensembles A two component vector denoting which ensemble runs to get, if applicable.

display.url If TRUE, print out the URL for the data request.

verbose If TRUE, give a very detailed description of the download. Default FALSE.

request.sleep If multiple requests are to be sent to the server, pause by this many seconds
between them. This is courteous and also helps prevent timeouts.

Value

model.data A structure with a series of elements containing data extracted from GrADS-
DODS system.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

References

http://nomads.ncep.noaa.gov/

See Also

GetDODSDates, GetDODSModelRuns, GetDODSModelRunInfo

Examples

#An example for the Global Forecast System 0.5 degree model
#Make a world temperature map for the latest model run

Not run:
#Figure out which model is most recent
model.urls <- GetDODSDates("gfs_0p50")
latest.model <- tail(model.urls$url, 1)
model.runs <- GetDODSModelRuns(latest.model)
latest.model.run <- tail(model.runs$model.run, 1)

#Download worldwide temperature data at 2 m
variable <- "tmp2m"
time <- c(0, 0) #Analysis run, index starts at 0
lon <- c(0, 719) #All 720 longitude points
lat <- c(0, 360) #All 361 latitude points
model.data <- DODSGrab(latest.model, latest.model.run,

variable, time, lon, lat)

#Make it into a nice array and plot it
model.grid <- ModelGrid(model.data, c(0.5, 0.5))
image(model.grid$z[1,1,,])

http://nomads.ncep.noaa.gov/

12 GetClosestForecasts

End(Not run)

GetClosestForecasts Get the forecast time closest to a given date for a given model

Description

This function returns which forecast precedes the date and which forecast follows the date for a
given model product. Thus a user can average the two forecasts together to provide a precise
forecast for a given date. It is optimized for grib file retrieval.

Usage

GetClosestForecasts(abbrev, forecast.date, model.date = "latest",
depth = NULL, verbose = TRUE)

Arguments

abbrev The requested model product

forecast.date What date you want a forecast for, as a date/time object. It must be in the UTC
time zone.

model.date Which model run to use, in YYYYMMDDHH, where HH is 00, 06, 12, 18.
Defaults to "latest", which gets the most recent model uploaded to the server.

depth How many model instances to return. This avoids having to download the en-
tire model list (sometimes several hundred) if only the first few instances are
required. Defaults to NULL, which returns everything. This input only makes
sense when model.date != "latest".

verbose Gives a detailed account of progress. Defaults to TRUE.

Value
forecasts$model.url

URL to send to GribGrab for downloading data.
forecasts$model.run.date

When the model was run.
forecasts$back.forecast

Nearest forecast behind requested date.
forecasts$fore.forecast

Nearest forecast after requested date.
forecasts$back.hr

How many hours the back forecast is behind the requested date.
forecasts$fore.hr

How many hours the fore forecast is in front of the requested date.

GetClosestForecasts 13

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

BuildProfile, GribGrab

Examples

#Get the exact temperature profile of Chapel Hill, NC
#by performing a weighted average of GFS model forecasts.

#Figure out which forecasts to use
forecast.date <- as.POSIXlt(Sys.time(), tz = "UTC")
abbrev <- "gfs_0p50"

Not run:
forecasts <- GetClosestForecasts(abbrev = abbrev, forecast.date)

End(Not run)

#Get levels
pressure <- c(1, 2, 3, 5, 7,
10, 20, 30, 50, 70,
seq(100, 1000, by = 25))
levels <- paste(pressure, " mb", sep = "")

#Variables - temperature and height only
variables <- c("TMP", "HGT")

#Location
lon <- c(-79.052083)
lat <- c(35.907492)
model.domain <- c(lon - 1, lon + 1, lat + 1, lat - 1)

Not run:
#Get the data for each
grb.info <- GribGrab(forecasts$model.url,

c(forecasts$fore.forecast, forecasts$back.forecast), levels, variables,
model.domain = model.domain)

fore.data <- ReadGrib(grb.info[[1]]$file.name, levels, variables)
back.data <- ReadGrib(grb.info[[2]]$file.name, levels, variables)

back.profile <- BuildProfile(back.data, lon, lat,
spatial.average = TRUE, points = 8)

fore.profile <- BuildProfile(fore.data, lon, lat,
spatial.average = TRUE, points = 8)

temps <- cbind(back.profile[[1]]$profile.data[, which(back.profile[[1]]$variables == "TMP"),],

14 GetDODSDates

fore.profile[[1]]$profile.data[, which(fore.profile[[1]]$variables == "TMP"),])

heights <- cbind(back.profile[[1]]$profile.data[, which(back.profile[[1]]$variables == "HGT"),],
fore.profile[[1]]$profile.data[, which(fore.profile[[1]]$variables == "HGT"),])

time.gap <- forecasts$fore.hr - forecasts$back.hr
exact.temp <- (temps[,1] * abs(forecasts$fore.hr) + temps[,2] * abs(forecasts$back.hr))/time.gap
exact.hgt <- (heights[,1] * abs(forecasts$fore.hr) + heights[,2] * abs(forecasts$back.hr))/time.gap

#Plot results
plot(c(min(temps), max(temps)), c(min(heights), max(heights)), type = "n",

xlab = "Temperature (C)", ylab = "Height (m)")
points(temps[,1], heights[,1], pch = 1, col = 1)
points(temps[,2], heights[,2], pch = 2, col = 2)
points(exact.temp, exact.hgt, col = 3, lty = 2, pch = 3)
legend("topleft", pch = c(1, 2, 3), col = c(1, 2, 3),

legend = c(forecasts$back.forecast, forecasts$fore.forecast, as.character(Sys.time())))

End(Not run)

GetDODSDates Find available model run dates for data on the GrADS - DODS system.

Description

This function checks the GrADS data server to see what dates and model subsets are available for
model specified by ABBREV

Usage

GetDODSDates(abbrev, request.sleep=1)

Arguments

abbrev A model abbreviation as specified in NOMADSRealTimeList or NOMADSArchiveList.
request.sleep Seconds to pause between HTTP requests when scanning model pages - this

prevents timeouts. Default 1.

Details

This function determines which dates are available for download for a particular model through the
GrADS - DODS system. Once the user determines which dates are available, the output of this
function can be passed to GetDODSModelRuns to determine which model runs can be downloaded.

Value

model The model that was requested.
date A list of model run dates available for download.
url A list of URLs corresponding to the model run dates.

GetDODSModelRunInfo 15

Note

Sometimes, sending lots of HTTP requests in rapid succession can cause errors. If messages resem-
bling "Error: failed to load HTTP resource" appear, try increasing request.sleep. The code
will take longer to execute but it will be more likely to finish successfully.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

GetDODSModelRuns, DODSGrab

Examples

#An example for the Global Forecast System 0.5 degree model

#Get the latest model url and date
abbrev <- "gfs_0p50"
Not run:
urls.out <- GetDODSDates(abbrev)
print(paste("Most recent model run:",tail(urls.out$date, 1)))

End(Not run)

GetDODSModelRunInfo Get model coverage and data information for models on GrADS-
DODS system.

Description

Given a URL from GetDODSDates and a model run from GetDODSModelRuns, get information on
the model domain, levels, and variables.

Usage

GetDODSModelRunInfo(model.url, model.run, download.file=TRUE)

Arguments

model.url A URL for a model on the GrADS - DODS system, probably returned by
GetDODSDates.

model.run A specific model run, probably returned by GetDODSModelRuns

download.file If TRUE, download the DODS .info file and read it in. If FALSE, try and read
the .info file directly from the Internet.

16 GetDODSModelRuns

Details

This routine grabs information about the latitude, longitude, and time coverage of a specific model
instance. It also finds data about levels (if present) and lists all the available variables (though they
may not have data in them). The user can refer to this information to construct calls to the DODS
system via DODSGrab. Note that the XML package has trouble interpreting https from time to time;
this can be circumvented by keeping download.file=TRUE.

Value

model.info Information provided by the GrADS - DODS system about the given model
instance.

Note

This function is very helpful in figuring out what’s inside poorly documented models.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

GetDODSDates, GetDODSModelRuns, DODSGrab

Examples

#An example for the Global Forecast System 0.5 degree model

#Get some information about the latest model url and date, real time server
abbrev <- "gfs_0p50"
Not run:
urls.out <- GetDODSDates(abbrev)
model.url <- tail(urls.out$url, 1)
model.runs <- GetDODSModelRuns(model.url)
model.info <- GetDODSModelRunInfo(model.url, tail(model.runs$model.run, 1))
print(model.info)

End(Not run)

GetDODSModelRuns Find available model runs on the GrADS - DODS system.

Description

Given a URL from GetDODSDates, find which model runs are available for download on the GrADS
- DODS system.

GetDODSModelRuns 17

Usage

GetDODSModelRuns(model.url)

Arguments

model.url A URL for a model on the GrADS - DODS system, probably returned by
GetDODSDates.

Details

This function determines which dates are available for download for a particular model through the
GrADS - DODS system. Once the user determines which dates are available, the output of this
function can be passed to GetDODSModelRuns to determine which model runs can be downloaded.

Value

model.run A list of model runs available for the requested date.

model.run.info Information provided by the GrADS - DODS system about each model run.

Note

To get model run information for archived analysis models, pass URLs directly from NOMADSArchiveList
directly to GetDODSModelRuns.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

GetDODSDates, DODSGrab, GetDODSModelRunInfo

Examples

#An example for the Global Forecast System 0.5 degree model

#Get the latest model url and date, real time server
abbrev <- "gfs_0p50"
Not run:
urls.out <- GetDODSDates(abbrev)
model.url <- tail(urls.out$url, 1)
model.runs <- GetDODSModelRuns(model.url)
print(paste("Latest model run", tail(model.runs$model.run.info, 1)))

End(Not run)

18 GribGrab

GribGrab Download grib file from the NOMADS server.

Description

This function interfaces with the programming API at http://nomads.ncep.noaa.gov/ to down-
load NOMADS model data. The available models can be viewed by calling NOMADSRealTimeList.
The data arrives in grib (gridded binary) format that can be read with ReadGrib.

Usage

GribGrab(model.url, preds, levels, variables,
local.dir = NULL, file.names = NULL,
model.domain = NULL, tidy = FALSE, verbose = TRUE,
check.url = TRUE, download.method = NULL)

Arguments

model.url The address of a model download page, probably from CrawlModels.
preds A vector of predictions (or model times) determined by the specific model from

model.url

levels A list of model levels to download.
variables A list of model variables to download.
local.dir Where to save the grib file, defaults to the current directory.
file.names What to name the grib file, defaults to "fcst.grb".
model.domain A vector of latitudes and longitudes that specify the area to return a forecast for.

This is a rectangle with elements: west longitude, east longitude, north latitude,
south latitude.

tidy If TRUE, remove all files with the suffix ".grb" from local.dir prior to down-
loading a new grib file.

verbose If TRUE, give information on connection status. Default TRUE
check.url If TRUE, verify that the model URL is real and contains data. Default TRUE
download.method

Allows the user to set the download method used by download.file: "internal",
"wget" "curl", "lynx". If NULL (the default), let R decide.

Value
grib.info$file.name

The path and file name of the grib file that was downloaded.
grib.info$url The URL that the grib file was downloaded from

Note

This requires the external programs wgrib2 and\or wgrib to be installed (depending on whether the
files are in GRIB2 or GRIB format).

http://nomads.ncep.noaa.gov/

GribGrab 19

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

References

http://nomads.ncep.noaa.gov/

See Also

CrawlModels, ParseModelPage, ReadGrib

Examples

#An example for the Global Forecast System 0.5 degree model

#Get the latest model url
Not run:
urls.out <- CrawlModels(abbrev = "gfs_0p50", depth = 1)

#Get a list of forecasts, variables and levels
model.parameters <- ParseModelPage(urls.out[1])

#Figure out which one is the 6 hour forecast
#provided by the latest model run
#(will be the forecast from 6-12 hours from the current date)

my.pred <- model.parameters$pred[grep("06$", model.parameters$pred)]

#What region of the atmosphere to get data for
levels <- c("2 m above ground", "800 mb")

#What data to return
variables <- c("TMP", "RH") #Temperature and relative humidity

#Get the data
grib.info <- GribGrab(urls.out[1], my.pred, levels, variables)

#Extract the data
model.data <- ReadGrib(grib.info[[1]]$file.name, levels, variables)

#Reformat it
model.grid <- ModelGrid(model.data, c(0.5, 0.5))

#Show an image of world temperature at ground level
image(model.grid$z[2, 1,,])

End(Not run)

http://nomads.ncep.noaa.gov/

20 GribInfo

GribInfo Get grib file inventory.

Description

Find out what model, date, levels, and variables are contained in a grib file.

Usage

GribInfo(grib.file, file.type = "grib2")

Arguments

grib.file Full path to a grib file.

file.type Whether the file is in grib2 format ("grib2") or grib format ("grib").

Details

This function allows you to find out what is inside an unknown grib file. It does this by performing
a system call to wgrib2 or wgrib.

Value

grib.info Inventory of the grib file. If the input is in grib2 format, you also get the grid
definition.

Note

In order to use this function, you need to have installed wgrib2 (for grib2 files) or wgrib (for grib
files). You can find these here: http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
and http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

ReadGrib, GetDODSModelRunInfo, GribGrab

Examples

Not run:
#An example for the Global Forecast System 0.5 degree model

#Get the second latest model url, for stability
urls.out <- CrawlModels(abbrev = "gfs_0p50", depth = 2)

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

LinkExtractor 21

#Get a list of forecasts, variables and levels
model.parameters <- ParseModelPage(urls.out[2])

#Figure out which one is the 6 hour forecast
#provided by the latest model run
#(will be the forecast from 6-12 hours from the current date)

my.pred <- model.parameters$pred[grep("06$", model.parameters$pred)]

#What region of the atmosphere to get data for
levels <- c("2 m above ground", "800 mb")

#What data to return
variables <- c("TMP", "RH") #Temperature and relative humidity

#Get the data
grib.info <- GribGrab(urls.out[2], my.pred, levels, variables)

#Print out the inventory - it should match the requested data
grib.inv <- GribInfo(grib.info[[1]]$file.name, "grib2")

End(Not run)

LinkExtractor Extracts links from web pages

Description

Parse a web page, capturing and returning any links found.

Usage

LinkExtractor(url)

Arguments

url A URL to scan for links.

Details

This is an internal routine used by several functions in the package.

Value

links A vector of link URLs

22 MagnitudeAzimuth

Note

While it might be fun to try LinkExtractor on a large website such as Google, the results will
be unpredictable and perhaps disastrous if depth is not set. This is because there is no protection
against infinite recursion.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

WebCrawler

Examples

#Find model runs for the
#GFS 0.5x0.5 model

Not run:
urls.out <- LinkExtractor(
"http://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p50.pl")

End(Not run)

MagnitudeAzimuth Convert zonal-meridional wind speeds to magnitude/azimuth.

Description

Given zonal (East-West) and meridional (North-South) wind speeds, calculate magnitude of wind
vector and azimuth from north, in degrees.

Usage

MagnitudeAzimuth(zonal.wind, meridional.wind)

Arguments

zonal.wind A vector of zonal (East-West) winds, west negative.
meridional.wind

A vector of meridional (North-South) winds, south negative.

Value
winds$magnitude

Magnitude of wind vector.

winds$azimuth Azimuth of wind vector in degrees from North

ModelGrid 23

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

Examples

zonal.wind <- c(35.5, -2)
meridional.wind <- c(-5, 15)
winds <- MagnitudeAzimuth(zonal.wind, meridional.wind)
print(winds$magnitude)
print(winds$azimuth)

ModelGrid Transform model data into an array

Description

This function takes output from ReadGrib or DODSGrab and produces an array with dimensions:
levels x variables x longitudes x latitudes. This greatly reduces the size of the data set as well as
makes it easier to manipulate. The data must be in a regular latitude/longitude grid (like the GFS
model, for example).

Usage

ModelGrid(model.data, resolution,
levels = NULL, variables = NULL,
model.domain = NULL)

Arguments

model.data Output from ReadGrib.

resolution Resolution of grid, in degrees if grid.type = "latlon", in kilometers if grid.type
= "cartesian", as a 2 element vector c(East-West,North-South).

levels The model levels to include in the grid, if NULL, include all of them.

variables The model variables to include in grid, if NULL, include all of them.

model.domain A vector c(LEFT LON, RIGHT LON, TOP LAT, BOTTOM LAT) of the region
to include in output. If NULL, include everything.

Details

If you set the spacing of lon.grid and/or lat.grid coarser than the downloaded model grid, you can
reduce the resolution of your model, possibly making it easier to handle.

24 ModelGrid

Value

z An array of dimensions levels x variables x lon x lat; each level x variable con-
tains the model grid of data from that variable and level

x Vector of longitudes

y Vector of latitudes

variables The variables contained in the grid

levels The levels contained in the grid

model.run.date When the forecast model was run

fcst.date The date of the forecast

Note

Only use this function when the model grid is regular. For example, the GFS high resolution model
is 0.5 x 0.5 degree across its domain. I have provided this function as a convenience since I only use
it for manipulating GFS model data. I am not sure how well it works for other models. Consider
yourself warned!

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

ReadGrib, DODSGrab

Examples

Not run:
#Get some example data
urls.out <- CrawlModels(abbrev = "gfs_0p50", depth = 1)
model.parameters <- ParseModelPage(urls.out[1])
levels <- c("2 m above ground", "100 mb")
variables <- c("TMP", "RH") #Temperature and relative humidity
grib.info <- GribGrab(urls.out[1], model.parameters$pred[1], levels, variables)
#Extract the data
model.data <- ReadGrib(grib.info[[1]]$file.name, levels, variables)

#Make it into an array
gfs.array <- ModelGrid(model.data, c(0.5, 0.5))

#What variables and levels we have
print(gfs.array$levels)
print(gfs.array$variables)

#Find minimum temperature at the ground surface, and where it is
min.temp <- min(gfs.array$z[2, 1,,] - 273.15)
sprintf("%.1f", min.temp) #in Celsius

ti <- which(gfs.array$z[2, 1,,] == min.temp + 273.15, arr.ind = TRUE)

NOMADSArchiveList 25

lat <- gfs.array$y[ti[1,2]] #Lat of minimum temp
lon <- gfs.array$x[ti[1,1]] #Lon of minimum temp

#Find maximum temperature at 100 mb atmospheric pressure
max.temp <- max(gfs.array$z[1, 1,,]) - 273.15
sprintf("%.1f", max.temp) #Brrr!

End(Not run)

NOMADSArchiveList Archived models available for download through rNOMADS

Description

A list of abbreviations, names and URLs for the NOMADS models archived on the NCDC web site..
Users can refer to this list to find out more information about the available models, and rNOMADS
uses the abbreviations to determine how to access the archives.

Usage

NOMADSArchiveList(abbrev = NULL)

Arguments

abbrev Return information about the model that this abbreviation refers to. Defaults to
NULL, in which case information about all the models available through rNOMADS.

Value

abbrevs An abbreviation for each model

names A full name for each model

urls The web address of the download page for each model

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

NOMADSRealTimeList

Examples

#The archived model list in rNOMADS

archived.model.list <- NOMADSArchiveList()

26 NOMADSRealTimeList

NOMADSRealTimeList Models available for download through rNOMADS

Description

Scans the NOMADS Real Time web site to generate a list of available model products. Users can
refer to this list to find out more information about the available models, and rNOMADS uses the
abbreviations to determine which URLs to scan and download.

Usage

NOMADSRealTimeList(url.type, abbrev = NULL)

Arguments

url.type Determine whether to return a URL for extracting GRIB files ("grib") or for
getting ascii format data directly from the server ("dods").

abbrev Return information about the model that this abbreviation refers to. Defaults to
NULL, in which case information about all the models available through rNOMADS.

Value

abbrevs An abbreviation for each model
names A full name for each model
urls The web address of the download page for each model

Note

A big thanks to user hrbrmstr at Stack Overflow for helping with the NCEP web site parsing code.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

WebCrawler, ParseModelPage, NOMADSArchiveList, GribGrab, DODSGrab

Examples

Not run:
#Grib filter
model.list <- NOMADSRealTimeList("grib")

#DODS interface
model.list <- NOMADSRealTimeList("dods")

End(Not run)

ParseModelPage 27

ParseModelPage Extract predictions, levels, and variables

Description

This function parses the model download pages on NOMADS, and extracts information on predic-
tions, levels, and variables available for each.

Usage

ParseModelPage(model.url)

Arguments

model.url The URL of the model to extract information from, probably returned by NOMADSRealTimeList.

Details

This function scrapes the web page for a given model and determines which predictions, levels, and
variables are present for each. Predictions are instances returned by each model (for example, the
GFS model produces 3 hour predictions up to 192 hours from the model run). Levels are regions of
the atmosphere, surface of the Earth, or subsurface that the model produces output for (for example
the GFS model has a “2 m above ground” level that has data for temperature, etc, at that height
across the Earth). Variables are types of data (temperature, for example).

Value

pred Model predictions

levels Locations of data points

variables Data types

Note

Many of the names for predictions, levels, and variables are somewhat cryptic.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

WebCrawler, ParseModelPage, GribGrab

28 PlotWindProfile

Examples

#An example for the Global Forecast System 0.5 degree model

#Get the latest model url
Not run:
urls.out <- CrawlModels(abbrev = "gfs_0p50", depth = 1)

#Get a list of forecasts, variables and levels
model.parameters <- ParseModelPage(urls.out[1])

End(Not run)

PlotWindProfile Plot wind speed and direction

Description

Creates a polar plot showing the azimuth, elevation, and magnitude of winds.

Usage

PlotWindProfile(zonal.wind, meridional.wind, height, magnitude = NULL,
magnitude.range = c(0, 50), height.range = c(0, 50000), points = TRUE, lines = FALSE,
radial.axis = TRUE, elev.circles = NULL, elev.labels = NULL, radial.lines = NULL,
colorbar = TRUE, colorbar.label = NULL, north.label = TRUE, invert = FALSE, ...)

Arguments

zonal.wind A vector or list of vectors of zonal (East-West) winds, west negative.
meridional.wind

A vector or list of vectors of meridional (North-South) winds, south negative.

height A vector or list of vectors of height at which each wind measurement was taken.

magnitude A vector or list of vectors of magnitudes to plot at each wind azimuth, instead of
using the wind magnitudes. This allows plotting of other data (such as the speed
of sound) along the wind vectors. Defaults to NULL.

magnitude.range

Ranges of wind speed to plot. Values greater or lesser than these will be satu-
rated. Defaults to c(0,50).

height.range Ranges of heights to plot, values outside of this will not appear. Defaults to
c(0,50000).

points Whether to plot measurements as points. Defaults to TRUE.

lines Whether to connect measurements together with lines. Defaults to FALSE.

PlotWindProfile 29

radial.axis Whether to plot an axis at the outer edge of the diagram. Defaults to TRUE.

elev.circles Plot a dashed circles as elevation scales. Defaults to NULL, which plots nothing.

elev.labels What labels to put on the elevation scales. Defaults to NULL, which means no
labels.

radial.lines Plot lines radiating from the center of the plot showing azimuth directions. De-
faults to NULL, which plots nothing.

colorbar If TRUE, plot a color bar. Defaults to TRUE.

colorbar.label What label to put on the colorbar. Defaults to NULL, which means no label.

north.label If TRUE, put a label denoting the north direction. Defaults to TRUE.

invert Reverses the edge and the center of the plot, making elevations decrease towards
the center. Defaults to FALSE.

... This function supports some optional parameters as well:

• r.axis - radius of plot axis
• tick.len - length of azimuth ticks
• r.axis.ticks - Whether or not to put tick marks on the outer axis
• max.az - If plotting lines and the difference between two segments is greater

than this value, interpolate between them to make things smooth
• color.map - A list of colors to use, defaults to rainbow(n.cols,start=0,end=5/6)

• n.cols - Number of color bins in color map
• sub.col - Color of internal (elevation and azimuth) axes as a vector of length

2
• sub.lty - Type of internal axes, as a vector of length 2
• sub.lwd - Width of internal axes, as a vector of length 2
• elev.labels.az - Which azimuth to plot elevation labels on
• point.cex - size of points, if plotted
• pch - Plot character of points, if plotted
• lty - Line style, if lines are selected
• lwd - Line thickness, if lines are selected
• colorbar.tick - Where to put labels on colorbar

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

Examples

Not run:
download.file("http://www.gmail.com/~haksaeng/rNOMADS/myTA.RDATA",

destfile = "myTA.RDATA")
load("myTA.RDATA")
#Find the latest Global Forecast System model run
model.urls <- GetDODSDates("gfs_0p50")
latest.model <- tail(model.urls$url, 1)
model.runs <- GetDODSModelRuns(latest.model)

30 ReadGrib

latest.model.run <- tail(model.runs$model.run, 1)

#Get model nodes

lons <- seq(0, 359.5, by = 0.5)
lats <- seq(-90, 90, by = 0.5)
lon.ind <- which(lons <= (max(myTA$lon + 360) + 1) & lons >= (min(myTA$lon + 360) - 1))
lat.ind <- which(lats <= (max(myTA$lat) + 1) & lats >= (min(myTA$lat) - 1))
levels <- c(0, 46)
time <- c(0, 0)

#Get data
variables <- c("hgtprs", "ugrdprs", "vgrdprs")
model.data <- DODSGrab(latest.model, latest.model.run,

variables, time, c(min(lon.ind), max(lon.ind)),
c(min(lat.ind), max(lat.ind)), levels)

#Build profiles
profile <- BuildProfile(model.data, myTA$lon + 360, myTA$lat,

spatial.average = FALSE)

#Build profiles
zonal.wind <- NULL
meridional.wind <- NULL
height <- NULL

for(k in 1:length(profile)) {
hgt <- profile[[k]]$profile.data[, which(profile[[k]]$variables == "hgtprs"),]
ugrd <- profile[[k]]$profile.data[, which(profile[[k]]$variables == "ugrdprs"),]
vgrd <- profile[[k]]$profile.data[, which(profile[[k]]$variables == "vgrdprs"),]

synth.hgt <- seq(min(hgt),
max(hgt), length.out = 1000)

ugrd.spline <- splinefun(hgt, ugrd, method = "natural")
vgrd.spline <- splinefun(hgt, vgrd, method = "natural")
zonal.wind[[k]] <- ugrd.spline(synth.hgt)
meridional.wind[[k]] <- vgrd.spline(synth.hgt)
height[[k]] <- synth.hgt

}

#Plot them all
PlotWindProfile(zonal.wind, meridional.wind, height, lines = TRUE,

points = FALSE, elev.circles = c(0, 25000, 50000), elev.labels = c(0, 25, 50),
radial.lines = seq(45, 360, by = 45), colorbar = TRUE, invert = FALSE,
point.cex = 2, pch = 19, lty = 1, lwd = 1,
height.range = c(0, 50000), colorbar.label = "Wind Speed (m/s)")

End(Not run)

ReadGrib Extract data from grib files

ReadGrib 31

Description

This function wraps wgrib2 and wgrib, external grib file readers provided by the National Weather
Service Climate Prediction Center (see http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
and http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html). ReadGrib extracts fore-
cast data into R. It does this by building an argument string, executing a system call to the ap-
propriate external grib file reader, and extracting the result. Note that wgrib2 must be installed
for ReadGrib to work for current grib files, and wgrib may need to be installed when looking at
archived data.

Usage

ReadGrib(file.names, levels, variables,
forecasts = NULL, domain = NULL, domain.type = "latlon",

file.type = "grib2", missing.data = NULL)

Arguments

file.names The path and file name of the grib files to read.

levels The levels to extract.

variables The variables to extract.

forecasts Names of forecasts to extract. If NULL, include everything.

domain Include model nodes in the specified region: c(LEFT LON,RIGHT LON,NORTH
LAT,SOUTH LAT). If NULL, include everything. This argument works for GRIB2
only.

domain.type Either \"latlon\" (the domain argument is a latitude/longitude quadruplet) or
\"index\" (the domain argument is a model node index quadruplet; much faster
but requires you to know the model setup)

file.type Whether the file is in GRIB ("grib1") or GRIB2 ("grib2") format. Default is
"grib2".

missing.data Replace missing data in grib archive with this value. If NULL, leave the data out.
Only works with wgrib2. Default NULL.

Details

This function constructs system calls to wgrib and wgrib2. Therefore, you must have installed these
programs and made it available on the system path. Unless you are interested in accessing archive
data that’s more than a few years old, you can install wgrib2 only. A description of wgrib2 and
installation links are available at http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
and http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html. Also, rNOMADS is fo-
cused towards GRIB2 files; I have included GRIB1 format support as a convenience.

Value

model.data A structure with a series of elements containing data extracted from the grib
files.

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

32 ReadGrib

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

References

Ebisuzaki, W, Bokhorst, R., Hyvatti, J., Jovic, D., Nilssen, K, Pfeiffer, K., Romero, P., Schwarb,
M., da Silva, A., Sondell, N., and Varlamov, S. (2011). wgrib2: read and write GRIB2 files. Na-
tional Weather Service Climate Prediction Center, http://www.cpc.ncep.noaa.gov/products/
wesley/wgrib2/

See Also

GribGrab, ArchiveGribGrab, ModelGrid

Examples

#Operational Forecast Data Extraction
#NCEP output is always in GRIB2 format - this makes things easy for us
#An example for the Global Forecast System 0.5 degree model

#Get the latest model url
Not run:
urls.out <- CrawlModels(abbrev = "gfs_0p50", depth = 1)

#Get a list of forecasts, variables and levels
model.parameters <- ParseModelPage(urls.out[1])

#Figure out which one is the 6 hour forecast
#provided by the latest model run
#(will be the forecast from 6-12 hours from the current date)

my.pred <- model.parameters$pred[grep("06$", model.parameters$pred)]

#What region of the atmosphere to get data for
levels <- c("2 m above ground", "800 mb")

#What data to return
variables <- c("TMP", "RH") #Temperature and relative humidity

#Get the data
model.info <- GribGrab(urls.out[1], my.pred, levels, variables)

#Extract the data
model.data <- ReadGrib(model.info[[1]]$file.name, levels, variables)

#Reformat it
model.grid <- ModelGrid(model.data, c(0.5, 0.5))

#Show an image of world temperature at ground level
image(model.grid$z[2, 1,,])

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/

SubsetNOMADS 33

End(Not run)

SubsetNOMADS Subset model data output

Description

Subset data structure returned by ReadGrib or DODSGrab by variables, levels, etc.

Usage

SubsetNOMADS(model.data, levels = NULL, variables = NULL, lon = NULL,
lat = NULL, ensembles = NULL, forecast.date = NULL, model.run.date = NULL)

Arguments

model.data Data structure from ReadGrib or DODSGrab

levels Vector of levels to keep

variables Vector of variables to keep

lon Vector of longitudes of model nodes to keep

lat Vector of latitudes of model nodes to keep

ensembles Vector of ensemble runs to keep

forecast.date Vector of forecast dates to keep

model.run.date Vector of model run dates to keep

Value

model.data.sub A subset of model.data.

Note

Multiple elements in each argument vector are obviously OR (i.e. variables are “tmpprs” OR “hgt-
prs”) but multiple subset vectors are AND. Thus it is simple to construct a model.data.sub with
variables: tmpprs and hgptprs only from ensemble runs 3 and 4, for example.

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

ReadGrib, DODSGrab, ModelGrid, BuildProfile

34 SubsetNOMADS

Examples

Not run:
#Plot winds from 20 GENS model runs

#Get the latest ensemble model run
model.urls <- GetDODSDates("gens")
latest.model <- tail(model.urls$url, 1)
model.runs <- GetDODSModelRuns(latest.model)
model.run <- tail(model.runs$model.run[grepl("all",

model.runs$model.run)], 1)

#Define region of interest: Chapel Hill, NC
lon <- -79.052104
lat <- 35.907553

lons <- seq(0, 359, by = 1)
lats <- seq(-90, 90, by = 1)

lon.diff <- abs(lon + 360 - lons)
lat.diff <- abs(lat - lats)

model.lon.ind <- which(lon.diff == min(lon.diff)) - 1
model.lat.ind <- which(lat.diff == min(lat.diff)) - 1

#Set up call to NOMADS
time <- c(0, 0) #Analysis(?) model only
node.lon <- c(model.lon.ind - 2, model.lon.ind + 2) #Longitude grid
node.lat <- c(model.lat.ind - 2, model.lat.ind + 2) #Latitude grid
variables <- c("ugrdprs", "vgrdprs", "hgtprs") #Wind speeds, and geopotential height
levels <- c(0, 25) #All available levels
ensembles <- c(0, 20) #All available ensembles

model.data <- DODSGrab(latest.model, model.run, variables, time,
node.lon, node.lat, levels = levels, ensembles = ensembles)

#Plot winds
zonal.wind <- NULL
merid.wind <- NULL
height <- NULL

for(k in ((ensembles[1]:ensembles[2] + 1))) {
model.data.sub <- SubsetNOMADS(model.data, ensembles = c(k),
variables = c("hgtprs", "ugrdprs", "vgrdprs"))
profile <- BuildProfile(model.data.sub, lon + 360, lat)
hgt <- profile[[1]]$profile.data[, which(profile[[1]]$variables == "hgtprs"),]
ugrd <- profile[[1]]$profile.data[, which(profile[[1]]$variables == "ugrdprs"),]
vgrd <- profile[[1]]$profile.data[, which(profile[[1]]$variables == "vgrdprs"),]

synth.hgt <- seq(min(hgt),
max(hgt), length.out = 1000)

ugrd.spline <- splinefun(hgt, ugrd, method = "natural")

WebCrawler 35

vgrd.spline <- splinefun(hgt, vgrd, method = "natural")
zonal.wind[[k]] <- ugrd.spline(synth.hgt)
merid.wind[[k]] <- vgrd.spline(synth.hgt)
height[[k]] <- synth.hgt

}

PlotWindProfile(zonal.wind, merid.wind, height, lines = TRUE,
points = FALSE, elev.circles = c(0, 15000, 30000), elev.labels = c(0, 15, 30),
radial.lines = seq(45, 360, by = 45), colorbar = TRUE, invert = FALSE,
point.cex = 2, pch = 19, lty = 1, lwd = 1,
height.range = c(0, 30000), colorbar.label = "Wind Speed (m/s)")

End(Not run)

WebCrawler Get web pages

Description

Discover all links on a given web page, follow each one, and recursively scan every link found.
Return a list of web addresses whose pages contain no links.

Usage

WebCrawler(url, depth = NULL, verbose = TRUE)

Arguments

url A URL to scan for links.

depth How many links to return. This avoids having to recursively scan hundreds of
links. Defaults to NULL, which returns everything.

verbose Print out each link as it is discovered. Defaults to TRUE.

Details

CrawlModels uses this function to get all links present on a model page.

Value

urls.out A list of web page addresses, each of which corresponds to a model instance.

Note

While it might be fun to try WebCrawler on a large website such as Google, the results will be
unpredictable and perhaps disastrous if depth is not set. This is because there is no protection
against infinite recursion.

36 WebCrawler

Author(s)

Daniel C. Bowman <danny.c.bowman@gmail.com>

See Also

CrawlModels, ParseModelPage

Examples

#Find the first 10 model runs for the
#GFS 0.5x0.5 model

Not run: urls.out <- WebCrawler(
"http://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p50.pl", depth = 10)
End(Not run)

Index

∗ chron
GetClosestForecasts, 12

∗ connection
ArchiveGribGrab, 4
CrawlModels, 9
DODSGrab, 10
GribGrab, 18
LinkExtractor, 21
WebCrawler, 35

∗ documentation
NOMADSArchiveList, 25
NOMADSRealTimeList, 26

∗ file
ReadGrib, 30

∗ hplot
PlotWindProfile, 28

∗ manip
BuildProfile, 6
MagnitudeAzimuth, 22
ModelGrid, 23
SubsetNOMADS, 33

∗ package
rNOMADS-package, 2

∗ utilities
CheckNOMADSArchive, 8
GetDODSDates, 14
GetDODSModelRunInfo, 15
GetDODSModelRuns, 16
GribInfo, 20
ParseModelPage, 27

ArchiveGribGrab, 4, 9, 32

BuildProfile, 6, 13, 33

CheckNOMADSArchive, 5, 8
CrawlModels, 9, 18, 19, 35, 36

DODSGrab, 6, 7, 10, 15–17, 23, 24, 26, 33

GetClosestForecasts, 12

GetDODSDates, 10, 11, 14, 15–17
GetDODSModelRunInfo, 11, 15, 17, 20
GetDODSModelRuns, 10, 11, 14–16, 16, 17
GribGrab, 9, 10, 13, 18, 20, 26, 27, 32
GribInfo, 20

LinkExtractor, 21

MagnitudeAzimuth, 22
ModelGrid, 23, 32, 33

NOMADSArchiveList, 4, 5, 8–10, 14, 17, 25, 26
NOMADSRealTimeList, 9, 10, 14, 18, 25, 26, 27

ParseModelPage, 9, 10, 19, 26, 27, 27, 36
PlotWindProfile, 28

ReadGrib, 4–7, 18–20, 23, 24, 30, 33
rNOMADS (rNOMADS-package), 2
rNOMADS-package, 2

SubsetNOMADS, 33

WebCrawler, 9, 10, 22, 26, 27, 35

37

	rNOMADS-package
	ArchiveGribGrab
	BuildProfile
	CheckNOMADSArchive
	CrawlModels
	DODSGrab
	GetClosestForecasts
	GetDODSDates
	GetDODSModelRunInfo
	GetDODSModelRuns
	GribGrab
	GribInfo
	LinkExtractor
	MagnitudeAzimuth
	ModelGrid
	NOMADSArchiveList
	NOMADSRealTimeList
	ParseModelPage
	PlotWindProfile
	ReadGrib
	SubsetNOMADS
	WebCrawler
	Index

