Package 'radmixture'

March 13, 2017

Title Calculate Population Stratification

Version 0.0.1

Date 2017-02-20

Maintainer Beilei Bian

bianbeilei@wegene.com>

Description Implementation of ADMIXTURE for individual ancestry inference in R. Specifically, ADMIXTURE is a software tool for maximum likelihood estimation of individual ancestries from multilocus SNP genotype datasets, see https://www.genetics.ucla.edu/software/admixture/. Users can use 'radmixture' to calculate ancestry components with different public datasets. It is very convenient and fast for personal genotype data. For more details, see https://github.com/wegenellc/radmixture/blob/master/README.md.

Depends R (>= 3.1.0)

Imports quadprog, plyr, magrittr, MCMCpack

Suggests rmarkdown, knitr, testthat

License MIT + file LICENSE

URL https://github.com/wegene-llc/radmixture

BugReports https://github.com/wegene-llc/radmixture/issues

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

NeedsCompilation yes

VignetteBuilder knitr

ByteCompile true

Author Beilei Bian [aut, cre], Dajun Luo [ctb] (R's C API), Gang Chen [ctb], Senwei Tang [ctb], WeGene [cph]

Repository CRAN

Date/Publication 2017-03-13 19:25:45

R topics documented:

br	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
em																							•											3
fFixBr	•																									•								3
fFixEm																							•											4
fFixQN																																		5
generateG																																		5
initQF																										•								6
qn	•																									•								6
radmixture	•																									•								7
tfrdpub	•		•				•		•		•	•			•	•	•	•	•			•	•	•	•	•		•	•		•		•	7
																																		9

Index

br

Block Relaxation for parameters estimation

Description

This function is also used for estimating Q and F but faster than EM.

Usage

br(g, q, f, acc, max.iter, tol, model)

Arguments

g	Genotype matrix with dimensions np , where n is sample size and p is the number of SNPs.
q	Ancestry coefficient matrix with dimensions nK , where n is sample size and K is the number of populations.
f	Minor allele frequency matrix with dimensions Kp , where K is the number of populations and p is the number of SNPs.
acc	a logical value indicating whether use quasi-Newton accelerated BR or not.
max.iter	If $acc = T$, max.iter must be set, the default is 3. max.iter should greater than 1.
tol	Tolerance, if $acc = F$, tolerance must be set, the default is 1e-4.
model	Choose which model you want to use. Supervised learning or unsupervised learning.

Value

Estimation results of q, f and the loglikelihood value of each iteration.

Description

The EM algorithm could be used for estimating the Q and F matrix.

Usage

em(g, q, f, acc, max.iter, tol, model)

Arguments

g	Genotype matrix with dimensions np , where n is sample size and p is the number of SNPs.
q	Ancestry coefficient matrix with dimensions nK , where n is sample size and K is the number of populations.
f	Minor allele frequency matrix with dimensions Kp , where K is the number of populations and p is the number of SNPs.
асс	a logical value indicating whether use accelerated EM or not.
max.iter	an integer. If acc is TRUE, the number of iterations must be set. max.iter should greater than 1.
tol	Tolerance. If acc is FALSE, tol must be set. The default is 1e-4.
model	Choose which model you want to use. Supervised learning or unsupervised learning.

Value

Estimation results of q, f and the loglikelihood value of each iteration.

fFixBr

Block relaxation when f is fixed

Description

This function can be used for ancestry analysis when frequency matrix is fixed.

Usage

fFixBr(gnew, qnew, f, acc, max.iter, tol, pubdata)

em

Arguments

gnew	Genotype matrix. The number of row present in gnew is 1 and the number of column is the number of SNPs.
qnew	Initial q used in calculation. A vector. Sum(q) must be 1.
f	Allele frequencies matrix learned from the reference panels.
acc	a logical value indicating whether use quasi-Newton accelerated BR or not.
max.iter	If acc = T, max.iter must be set, the default is 3. max.iter should greater than 1.
tol	If $acc = F$, tolerance must be set, the default is 1e-4.
pubdata	You can choose a public dataset here, E11, K13, K4, K12b, K7b, World9. You also can use other public dataset which is not in this package.

Value

Estimation results of q and the loglikelihood value of each iteration.

fFi	хЕm
-----	-----

EM when f is fixed

Description

This function can be used for ancestry analysis when frequency matrix is fixed.

Usage

fFixEm(gnew, qnew, f, acc, max.iter, tol = 1e-4, pubdata)

Arguments

gnew	Genotype matrix. The number of row present in gnew is 1 and the number of column is the number of SNPs.
qnew	Initial q used in calculation. A vector. sum(q) must be 1.
f	Allele frequencies learned from the reference panels.
асс	a logical value indicating whether use quasi-Newton accelerated EM or not.
max.iter	an integer. If acc is TRUE, the number of iterations must be set. max.iter should greater than 1.
tol	Tolerance. If acc is FALSE, tol must be set. The default is 1e-4.
pubdata	You can choose a public dataset here, E11, K13, K4, K12b, K7b, World9. You also can use other public dataset which is not in this package.

Value

Estimation results of q and the loglikelihood value of each iteration.

fFixQN

Description

quasi-Newton for ancestry analysis when F is fixed

Usage

fFixQN(gnew, qnew, f, tol, method, pubdata)

Arguments

gnew	Integer which length is the number of SNPs used in calculation.
qnew	Initial q used in calculation. A vector. sum(q) must be 1.
f	Allele frequencies learned from the reference panels.
tol	Tolerance, the default value is 1e-4.
method	Choose which algorithm you want to use. EM or BR.
pubdata	You can choose a public dataset here, E11, K13, K4, K12b, K7b, World9. You also can use other public dataset which is not in this package.

Value

Estimation results of q and the loglikelihood value of each iteration.

Examples

```
## res <- tfrdpub(genotype, 4, globe4.alleles, globe4.4.F)
## ances <- fFixQN(res$g, res$q, res$f, tol = 1e-4, method = 'BR', pubdata = 'K4')</pre>
```

generateG

Transfer ped file to genotype matrix

Description

This function can be used to transfer a ped file to g matrix

Usage

```
generateG(rawped)
```

Arguments

rawped A data.frame. Standard ped format. Genotype should be transferred to 1,2,3,4 from A,C,G,T. 0 represents missing. '-','_','I','D' should be replaced by 0 by yourself.

Value

genotype matrix

initQF

Initialize Q and F

Description

This function could help you initialize Q and F matrix conveniently especially when you intend to use supervised learning.

Usage

initQF(g, pop = NULL, alpha = NULL, K = NULL, model)

Arguments

g	genotype matrix
рор	A data.frame. If you intend to do supervised learning, you must specify the ancestries of the reference individuals.
alpha	Parameter for dirichlet distribution. Vector of shape parameters, or matrix of shape parameters corresponding to the number of draw.
К	If you intend to do unsupervised learning, set the number of populations you will use.
model	Choose supervised or unsupervised learning.

Value

A list contains q and f matrix.

qn

quasi-Newton algorithm for ancestry analysis

Description

Use quasi-Newton algorithm to accelerate EM or block relaxation.

Usage

qn(g, q, f, tol = 1e-4, method, model)

radmixture

Arguments

g	Genotype matrix with dimensions np , where n is sample size and p is the number of SNPs.
q	Ancestry coefficient matrix with dimensions nK , where n is sample size and K is the number of populations.
f	Minor allele frequency matrix with dimensions Kp , where K is the number of populations and p is the number of SNPs.
tol	Tolerance, the default value is 1e-4.
method	Choose which algorithm you want to use. EM or BR.
model	Choose which model you want to use. Supervised learning or unsupervised learning.

Value

Estimation results of q, f and the loglikelihood value of each iteration.

Examples

qn(g, q, f, tol = 1e-4, method = 'BR', model = 'supervised')

radmixture radmixture

Description

radmixture is an R package for ancestry calculation. It provides both supervised and unsupervised learning with several algorithms for researchers and DNA customers. see README on GitHub

tfrdpub

Transfer personal genotype raw data according public dataset

Description

Transfer personal genotype raw data to g matrix which the number of row is 1 and the number of column is the number of SNPs used here.

Usage

tfrdpub(genotype, K, map, f)

Arguments

genotype	A data.frame contains your genotype information.
К	The number of populations
map	A data.frame, it should contain rsid, major allele and minor allele information for both plus and minus strands. You should download datasets from GitHub.
f	Frequency matrix learned from reference panel. You should download datasets from GitHub.

Details

Please download datasets from GitHub See README.

Value

A list contains g, q, f which can be used for calculation.

Examples

```
## download.file(url = 'https://github.com/wegene-llc/radmixture/
## raw/master/data/globe4.alleles.RData', destfile = 'K4.RData')
## download.file(url = 'https://github.com/wegene-llc/radmixture/
## raw/master/data/globe4.4.F.RData', destfile = 'K4f.RData')
## load('K4.RData')
## load('K4f.RData')
## res <- tfrdpub(genotype, 4, globe4.alleles, globe4.4.F)</pre>
```

Index

br,2 em,3 fFixBr,3 fFixEm,4 fFixQN,5

generateG, 5

initQF,<mark>6</mark>

qn, <mark>6</mark>

radmixture, 7
radmixture-package (radmixture), 7

tfrdpub,7