
Package ‘random.polychor.pa’
July 26, 2020

Title A Parallel Analysis with Polychoric Correlation Matrices

Version 1.1.4-4

Date 2020-07-25

Description The Function performs a parallel analysis using simulated polychoric correlation matri-
ces. The nth-percentile of the eigenvalues distribution obtained from both the randomly gener-
ated and the real data polychoric correlation matrices is returned. A plot compar-
ing the two types of eigenvalues (real and simulated) will help determine the number of real eigen-
values that outperform random data. The function is based on the idea that if real data are non-
normal and the polychoric correlation matrix is needed to perform a Factor Analy-
sis, then the Parallel Analysis method used to choose a non-random number of fac-
tors should also be based on randomly generated polychoric correlation matri-
ces and not on Pearson correlation matrices. Random data sets are simulated assuming or a uni-
form or a multinomial distribution or via the bootstrap method of resampling (i.e., random per-
mutations of cases). Also Multigroup Parallel analysis is made available for random (uni-
form and multinomial distribution and with or without difficulty factor) and bootstrap meth-
ods. An option to choose between default or full output is also available as well as a parame-
ter to print Fit Statistics (Chi-squared, TLI, RMSEA, RMR and BIC) for the factor solutions in-
dicated by the Parallel Analysis. Also weighted correlation matrices may be considered for PA.

Depends psych, nFactors, boot

Imports MASS, mvtnorm, sfsmisc

License GPL (>= 2)

LazyLoad yes

LazyData yes

NeedsCompilation no

Encoding UTF-8

Author Fabio Presaghi [aut, cre],
Marta Desimoni [ctb]

Maintainer Fabio Presaghi <fabio.presaghi@uniroma1.it>

Repository CRAN

Suggests
Date/Publication 2020-07-26 09:50:03 UTC

1

2 NEWS

R topics documented:
NEWS . 2
Parallel-Analysis-of-Polychoric-Correlations . 4
random.polychor.pa . 7

Index 16

NEWS News for Package random.polychor.pa

Description

The function performs a parallel analysis using simulated polychoric correlation matrices. The
function will extract the eigenvalues from each random generated polychoric correlation matrix and
from the polychoric correlation matrix of real data. A plot comparing eigenvalues extracted from
the specified real data with simulated data will help determine which of real eigenvalue outperform
random data. A series of matrices comparing MAP vs PA-Polychoric vs PA-Pearson correlations
methods, FA vs PCA solutions are finally presented. Random data sets are simulated assuming or
a uniform or a multinomial distribution or via the bootstrap method of resampling (i.e., random
permutations of cases). Also Multigroup Parallel analysis is made available for random (uniform
and multinomial distribution and with or without difficulty factor) and bootstrap methods. An
option to choose between default or full output is also available as well as a parameter to print
Fit Statistics (Chi-squared, TLI, RMSEA, RMR and BIC) for the factor solutions indicated by the
Parallel Analysis.

Changes in version 1.1.4-4

Version 1.1.4-4 the following parameters were added: 1) weights allows the reader to pass
a vector of weights to compute a weighted random polychor (or pearson) correlation matrix
and simulate weighted samples. If also bootstrap is selected then weighted samples will be
bootstrapped. Finally if multisample is also selected then the random.polychor.pa function
will simulate weighted random samples for each sub-sample. Version 1.1.4-4 fixed the fol-
lowing issues: 1) if a value is passed for continuity check now the correct values is displayed
in the output, and not the fixed values of .5 as was in previous version; 2) in previous versions
if fit.pa parameter was selected it was not infrequent that the random.polychor.pa() func-
tion unexpectedly stopped after having run part of the simulations. The problem was due to
the fact that for some simulated data, the function found non-valid value for RMSEA and/or
for BIC indices. In the present version a series of checks were added to prevent the function
to stop unxepectedly for these problems linked to fit indices estimation.

Changes in version 1.1.4-3

Version 1.1.4-3 fixed two problems: in example 1 we use bfi data from psych package as data
example. However the datafile has been moved to psychTools so the example is modified
accordingly. The second problem concerns an unexpected crash of random.polychoric.pa
when calling polychoric function (from psych package) due to the correction for continu-
ity that is set by default to 0.5 (i.e. correct=TRUE in polychoric function. Correction for
continuity is used for replacing cells with zero counts. This correction for continuity in some

NEWS 3

situations determines NAs that causes the polychoric function to stop. To handle such prob-
lem we added a parameter to the random.polychor.pa function to set to 0.0 the correction for
continuity. Users are warned that polychoric correlation matrices with and without correction
for continuity differ.

Changes in version 1.1.4-2

Version 1.1.4-2 fixed minor bugs when running the example 1, and when displaying the time
needed to complete the simulations.

Changes in version 1.1.4-1

Version 1.1.4-1 a problem with the psych dependency was fixed:

the option (polycor=TRUE) in the polychoric function was removed and consequently it
is also no more possible to call the polycor function in running the random.polychor.pa
function

Changes in version 1.1.4

• Version 1.1.4 added a number of cahnges:

a parameter distr allows to shift the simulation from uniform distribtuion to multinomial
distribution

•• Bootstrap method (with random permutations of cases) was added

• Multi-Group for random and bootstrap version of the Parallel Analysis is made available

• Fit statistics (Chi-squared, TLI, RMSEA, RMR, BIC) for all factor solution indicated by Par-
allel Analysis

• option to print a default output (number of factors indicated by Parallel Analysis) or a full
output (adds: matrices of simulated and empirical eigenvalues for random, bootstrap, and
multigroup)

Changes in version 1.1.3.6

• In version 1.1.3.6 a check for the range of quantile (between 0 and 1) was added.

Changes in version 1.1.3.5

• The search for zeroes within the provided datafile was removed, so data with zeroes are now
accepted.

Changes in version 1.1.3.5

• In version 1.1.3.5 a paramether was added, diff.fact, in order to simulate random dataset
with the same probability of observing each category for each variable as that observed in the
provided (empirical) dataset.

4 Parallel-Analysis-of-Polychoric-Correlations

Changes in version 1.1.3

Version 1.1.3 tackles two problems signalled by users:

the possibility to make available the results of simulation for plotting them in other software.
Now the random.polychor.pa() will show, upon request, all the data used in the scree-plot.

•• The function polichoric() of the psych() package does not handle data matrices that in-
clude 0 as possible category and will cause the function to stop with error. So a check for
the detection of the 0 code within the provided data.matrix is now added and will cause the
random.polychor.pa function to stop with a warning message.

Changes in version 1.1.2

• Version 1.1.2 simply has updated the function that calculates the polychoric correlation matrix
due to changes in the psych() package.

Changes in version 1.1.1

• Version 1.1.1, fixed a minor bug in the regarding the estimated time needed to complete the
simulation.

• Also in this version, the function is now able to manage supplied data.matrix in which vari-
ables representing factors (i.e., variables with ordered categories) are present and may cause
an error when the Pearson correlation matrix is calculated.

Parallel-Analysis-of-Polychoric-Correlations

A Parallel Analysis with Random Polychoric Correlation Matrices

Description

The function performs a parallel analysis using simulated polychoric correlation matrices. The
function will extract the eigenvalues from each random generated polychoric correlation matrix and
from the polychoric correlation matrix of real data. A plot comparing eigenvalues extracted from
the specified real data with simulated data will help determine which of real eigenvalue outperform
random data. A series of matrices comparing MAP vs PA-Polychoric vs PA-Pearson correlations
methods, FA vs PCA solutions are finally presented.

Details

Package: random.polychor.pa
Type: Package
Version: 1.1.4-4
Date: 2020-02-25
License: GPL Version 2 or later
LazyLoad: yes

Parallel-Analysis-of-Polychoric-Correlations 5

The function perform a parallel analysis (Horn, 1965) using randomly simulated polychoric cor-
relations and generates nrep random samples of the same dimension of the empirical provided
data.matrix(i.e, with the same number of participants and of variables). Items are allowed to have
varying number of categories. The function will extract the eigenvalues from each randomly gener-
ated polychoric matrices and the declared quantile will be extracted. Eigenvalues from polychoric
correlation matrix obtained from real data are also computed and compared, in a (scree) plot, with
the eigenvalues extracted from the simulation (Polychoric matrices). Recently Cho, Li & Bandalos
(2009), showed that in using PA method, it is important to match the type of the correlation matrix
used to recover the eigenvalues from real data with the type of correlation matrix used to estimate
random eigenvalues. Crossing the type of correlations (using Polychoric correlation matrix to es-
timate real eigenvalues and random simulated Pearson correlation matrices) may result in a wrong
decision (i.e., retaining less non-random factors than the needed). A comparison with eigenvalues
extracted from both randomly simulated Pearson correlation matrices and real data is also also in-
cluded. Finally, for both type of correlation matrix (Polychoric vs Pearson), the two versions (the
classic squared coefficient and the 4th power coefficient) of Velicer’s MAP criterion are calculated.
In version 1.1.1, a minor bug in the regarding the estimated time needed to complete the simulation
is fixed. Also in this version, the function is now able to manage supplied data.matrix in which vari-
ables representing factors (i.e., variables with ordered categories) are present and may cause an error
when the Pearson correlation matrix is calculated. As the poly.mat() function used to calculate
the polychoric correlation matrix is going to be deprecated in favor of poly.mat(polychoric()) func-
tion, the random.polychor.pa was consequently updated (version 1.1.2) to account for changes in
psych() package. Version 1.1.3 tackles two problems signaled by users: 1) the possibility to make
available the results of simulation for plotting them in other software. Now the random.polychor.pa
will show, upon request, all the data used in the scree-plot. 2) The function polichoric() of the
psych() package does not handle data matrices that include 0 as possible category and will cause
the function to stop with error. So a check for the detection of the 0 code within the provided
data.matrix is now added and will cause the random.polychor.pa function to stop with a warning
message. In version 1.1.3.5 a parameter was added, diff.fact in order to simulate random data
set with the same probability of observing each category for each variable as that observed in the
provided (empirical) data set. This parameter allows to simulate data sets that have the same item
difficulties distribution as well as the same difficulty factors of the real data (Ledesma and Valero-
Mora, 2007). Finally the search for zeroes within the provided data file was removed, so data with
zeroes are now accepted. In version 1.1.3.6 a check for the range of quantile (between 0 and 1) was
added. In version 1.1.4 was added the possibility to choose between uniform and multinomial dis-
tribution, between random and boostrap distribution and between single or multiple sample parallel
analysis. Also two switches were added: one allows to print or a default output (including only the
number of factors to retain following Parallel Analysis and the scree-plot) or a full output (including
the eigenvalues distributions of simulated and empirical data sets); the other switch allows to print
a further Fit Statistics for the factor solutions indicated by the Parallel Analysis.

The default value of the comparison is set to random and this means that random uniform samples
(runif()) will be computed. Two types of distribution are available: the uniform distribution and
the multinomial distribution (Liu and Rijmen, 2008). To switch between them just set accordingly
the parameter distr. As method of resampling is now also available the bootstrap method that is
based on random permutations of cases obtained via the boot() function.

Multigroup version of random samples may be obtained by setting the parameter comparison to
random-mg. To perform multigroup Parallel Analysis simulating random samples with multinomial
distributions the parameter distr should be set to multinomial. Multigroup Parallel Analysis is
also available for the bootstrap method by setting the comparison parameter to bootstrap-mg.

6 Parallel-Analysis-of-Polychoric-Correlations

When Multigroup Parallel Analysis is used, the first variable (column) of the dataset should be
reserved to the factor used to identify the different samples (i.e., gender, agre groups, nationalities,
etc.).

Fit statistics (Chi-squared, TLI, RMSEA, RMR, BIC) for all factor solutions indicated by Parallel
Analysis are available when the parameter fit.pa is set to TRUE. Consider that in estimating the
these Fit Statistic indexes not allways converge and this may break the computations for the parallel
analysis. In this case switch the parameter off. Moreover the values of these indexes are not allways
within the expected range.

The print.all parameter when set to TRUE will show the table of eigenvalue distributions for sim-
ulated (random or boostrap) and empirical data. For boostrap simulation, also the bias and standard
error will be printed. If the diff.fact is set to TRUE when random simulations are requested, then
also the weighting matrix used to reproduce the item frequencies in random data set will be printed.

The continuity parameter is passed to polychoric() function to handle the correction for continu-
ity. In polychoric() function this correction for continuity is set by default to .5 (i.e. correct=TRUE).
However in some cases this correction for continuity causes the polychorich() function to stop un-
expectedly and consequently also random.polychor.pa() stops. So we added this parameter to allow
users to bypass this problem. This parameter is set by default to 0.0 (i.e., no correction for continuity
applied) and user may add the correction for continuity by setting the value to 0.5.

The wght parameter allows the user to provide a vector of non-negative weights to compute a
weighted random polychor (or pearson) correlation matrix and as well the simulation of weighted
random samples. If bootstrap is also selected, then a weighted bootstrap samples will be extracted.
Finally if multisample is also selected then it will be computed a random weighted samples for
each sub-group.

Author(s)

Fabio Presaghi <fabio.presaghi@uniroma1.it> and Marta Desimoni <marta.desimoni@uniroma1.it>

References

Cho, S.J., Li, F., & Bandalos, D., (2009). Accuracy of the Parallel Analysis Procedure With Poly-
choric Correlations. Educational and Psychological Measurement, 69, 748-759.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,
32, 179-185.

Ledesma RD, Valero-Mora P (2007) Determining the number of factors to retain in EFA: an easy
to use computer program for carrying out parallel analysis. Practical Assessment, Research &
Evaluation 12:1–11

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.

Reckase, M.D. (2009). Multidimensional Item Response Theory. Springer.

Velicer, W. F. (1976). Determining the number of factors from the matrix of partial correlations.
Psychometrika, 41, 321-327.

Velicer, W. F., Eaton, C. A., & Fava, J. L. (2000). Construct explication through factor or component
analysis: A review and evaluation of alternative procedures for determining the number of factors

random.polychor.pa 7

or components. In R. D. Goffin & E. Helmes (Eds.), Problems and solutions in human assessment:
Honoring Douglas N. Jackson at seventy (pp. 41-72). Norwell, MA: Kluwer Academic.

random.polychor.pa A Parallel Analysis with Randomly Generated Polychoric Correlation
Matrices

Description

The function performs a parallel analysis using simulated polychoric correlation matrices. The
eigenvalues (extracted following both FA and PCA methods) from each random generated poly-
choric correlation matrix and from the polychoric correlation matrix of real solutions from Poly-
chorich vs Pearson correlations, FA vs PCA and PA vs MAP are presented. Random data sets are
simulated assuming or a uniform or a multinomial distribution or via the bootstrap method of resam-
pling (i.e., random permutations of cases). Also Multigroup Parallel analysis is made available for
random (uniform and multinomial distribution and with or without difficulty factor) and bootstrap
methods. An option to choose between default or full output is also available as well as a parameter
to print Fit Statistics (Chi-squared, TLI, RMSEA, RMR and BIC) for the factor solutions indicated
by the Parallel Analysis.

Usage

random.polychor.pa(nvar="NULL", n.ss="NULL", nrep, nstep="NULL",
data.matrix, q.eigen, r.seed = "NULL", diff.fact=FALSE, distr="NULL",
comparison = "random", fit.pa=FALSE, print.all=FALSE, continuity=0.0,

wght="NULL")

Arguments

nvar Number of variables (items) in the raw data matrix. From version 1.1 of the
function, it is no more needed to specificy nvar as this information is derived
from the number of columns of the data.matrix. Default value is set to "NULL"
for compatibility with past version of the function

n.ss Number of participants of the raw data matrix. From version 1.1 of the function,
it is no more needed to specify n.ss as this information is derived from the num-
ber of rows of the data.matrix. Default value is set to "NULL" for compatibility
with past version of the function.

nrep Number of random samples that should be simulated

nstep Number of ordered categories of the item (e.g., Likert-like 3 ordered category
item). This information is no longer needed as the new version of the function
(1.1) allows also for items with varying number of categories. The number
of categories from each item is derived directly from the data.matrix. A table
summarizing the different groups of item with different number of categories
will be showed. Default value is set to "NULL" for compatibility with past
version of the function.

8 random.polychor.pa

data.matrix the name of raw data matrix. The raw data.matrix should be numeric and none of
the ordered category should be coded as 0 (zero). No automatic recode routine
is provided within the function to deal with alphanumeric content of the ordered
categories of manifest variables. So the user performs all these recodings before
running the function.

q.eigen a number comprised within the interval of 0 and 1 and indicating the quantile
that is used to choose the number of non-random factors (e.g., .50 or .95 or .99)

r.seed eventually, a preferred number that will be used to initialize the random genera-
tor. Default value: 1335031435.

diff.fact default value is FALSE and in this case the function will estimate random datasets
without trying to reproduce each observed category with the same probability
as that observed in the empirical dataset provided. If the paramether is set on
TRUE, the function will simulate random samples with the same proportion of
each category for each item as that of empirical dataset. This parameter allows
to simulate data sets that have the same item difficulties distribution as well as
the same difficulty factors of the real data (Ledesma and Valero-Mora, 2007)

distr this parameter allows to choose between uniform (that is also the default) or
multinomial distribution for the simulation of random data sets.

comparison four methods are now available: random, bootstrap, multigroup-random, multigroup-
bootstrap. Allowed values are: random for random simulated dataset; bootstrap
for boostrap simulations with permutation as method of resampling; random-mg
for random multi-group simulated datasets; bootstrap-mg for bootstrap multi-
group simulated datasets. When bootstrap method is choosen, the bootstraped
eigenvalue distribution is compared with that obtained from empirical data and
the PA algorithm will indicate the number of empirical eigenvalues that are
greater than the corresponding bootstraped eigenvalues.

fit.pa when set to TRUE, the fit statistics (Chi-squared, TLI, RMSEA, RMR, BIC) for
all factor solutions indicated by Parallel Analysis will be printed. This param-
eter allows a call to the fa() function of the psych package, and passes just
the number of factor to retain with all remaining values set to the default (i.e.,
fm="minres", rotate="oblimin", etc.)

print.all when set to TRUE, all the simulated (random or bootstrap) and empirical eigen-
value distributions will be printed for each samples. When comparison is equal
to bootstrap or bootstrap-mg also the bootstrap bias and standard error esti-
mates will be printed.

continuity by default is set to 0.0 meaning no correction for continuity will be applied.
However if needed users may add the correction for continuity by setting the
parameter to 0.5 to handle zero count cells. The parameter is passed to the
polychoric function of the psych package.

wght a vector of positive and non-zero weights of the same length of the dataset
and with no missing values can be passed to the function in order to compute
a weighted polychoric (or pearson) correlation matrix. The default is set to
"NULL" meaning that weights are all equal to 1/nrow(data.matrix)

random.polychor.pa 9

Details

The function perform a parallel analysis (Horn, 1976) using randomly simulated polychoric corre-
lations and generates nrep random samples of simulated data with the same number of participants
and of variables of the provided data.matrix. The function will read the entered data.matrix and ex-
tracts: the number of units (i.e., number of rows); the number of variables (i.e., number of columns);
and the number of categories of each item. From version 1.1, the function accepts also variables
with varying number of categories (e.g., three items with only two categories and two items with
three categories, etc.). In version 1.1.1, the function is also able to manage supplied data.matrix in
which variables represent factors (i.e., variables with ordered categories) may cause an error when
the Pearson correlation matrix is calculated. The information in the supplied data.matrix are used
to generate the nrep random raw datasets with the same characteristics of the original real data set.
So only three information are needed for the problem to run: the number of replications (nrep), the
data matrix (data.matrix) and the percentile to be used (q.eigen).

A check for missing values within the real dataset is present and if present will be treated LIST-
WISE. In this case a warning message will prompt the user signalling how NA were treated (LIST-
WISE is by now the only treatment considered) and the new sample size. No further checks are
made on the raw data, so out-of-range values are not detected and it is on the behalf of the user to
make a preliminary check on the reliability of data. A table summarizing the groups of items with
different number of categories will be shown along with the main results of the PA.

The function will extract the eigenvalues from each randomly generated polychoric matrices and
the requested percentile is returned. Eigenvalues from polychoric correlation matrix obtained from
real data is also computed and compared with the eigenvalues extracted from the simulation (Poly-
choric matrices) in a (scree) plot. Results from classical Factor Analysis and Principal Component
Analysis are made available. Separated random data sets are simulated for the two analysis.

Recently, Cho, Li & Bandalos (2009) showed that, in using PA method, it is important to match
the type of the correlation matrix used to recover the eigenvalues from real data with the type of
correlation matrix used to estimate random eigenvalues. Crossing the type of correlations (using
Polychoric correlation matrix to estimate real eigenvalues and random simulated Pearson corre-
lation matrices) may result in a wrong decision (i.e., retaining more non-random factors than the
needed). A comparison with eigenvalues extracted from both randomly simulated Pearson correla-
tion matrices and real data is also included.

Finally, for both type of correlation matrix (Polychoric vs Pearson), the two versions (the classic
squared coefficient and the 4th power coefficient) of Velicer’s MAP criterion are calculated (Velicer,
1976; Velicer, Eaton, & Fava, 2000) by implementing under R the code released by O’Connor
(2000) for SPSS, SAS and MATLAB.

As the poly.mat() function used to calculate the polychoric correlation matrix is going to be
deprecated in favour of polychoric() function, the random.polychor.pa was consequently updated
(version 1.1.2) to account for changes in psych() package.

Version 1.1.3 tackles two problems signalled by users: 1) the possibility to make available the results
of simulation for plotting them in other softwares. Now the random.polychor.pa will show, upon
request, all the data used in the scree-plot. 2) The function polichoric() of the psych() package
does not handle data matrices that include 0 as possible category and will cause the function to stop
with error. So a check for the detection of the 0 code within the provided data.matrix is now added
and will cause the random.polychor.pa function to stop with a warning message.

In version 1.1.3.5 a paramether was added, diff.fact, in order to simulate random dataset with
the same probability of observing each category for each variable as that observed in the provided

10 random.polychor.pa

(empirical) dataset. This paramether was added for those reaserchers that want to replicate random
datasets with the same distribution of item difficulties as the real data (Ledesma, Valero-Mora, 2007;
Reckase, 2009, pp.216). Finally the search for zeroes within the provided datafile was removed, so
data with zeroes are now accepted.

In version 1.1.3.6 a check for the range of quantile (beteen 0 and 1) was added.

In version 1.1.4 was added the possibility to choose between uniform and multinomial distribution,
between random and boostrap distribution and between single or multiple sample parallel analysis.
Also two switches were added: one allows to print or a default output (including only the number
of factors to retain following Parallel Analysis and the scree-plot) or a full output (including the
eigenvalues distributions of simulated and empirical data sets); the other switch allows to print a
further Fit Statistics for the factor solutions indicated by the Parallel Analysis.

The default value of the comparison is set to random and this means that random uniform samples
(runif()) will be computed. Two types of distribution are available: the uniform distribution and
the multinomial distribution (Liu and Rijmen, 2008). To switch between them just set accordingly
the parameter distr. As method of resampling is now also available the bootstrap method that is
based on random permutations of cases obtained via the boot() function.

Multigroup version of random uniform samples may be obtained by setting the parameter comparison
to random-mg. To perform multigroup Parallel Analysis simulating random samples with multino-
mial distributions the parameter distr should be set to multinomial. Multigroup Parallel Analysis
is also available for the bootstrap method by setting the comparison parameter to bootstrap-mg.
When Multigroup Parallel Analysis is used, the first variable (column) of the dataset should be re-
served to the factor used to identify the different samples (i.e., gender, agre groups, nationalities,
etc.).

Fit statistics (Chi-squared, TLI, RMSEA, RMR, BIC) for all factor solutions indicated by Parallel
Analysis are available when the parameter fit.pa is set to TRUE. Consider that in estimating the
these Fit Statistic indexes not allways converge and this may break the computations for the parallel
analysis. In this case switch the parameter off. Moreover the values of these indexes are not allways
within the expected range.

The print.all parameter when set to TRUE will show the tables of eigenvalue distributions for sim-
ulated (random or boostrap) and empirical data. For boostrap simulation, also the bias and standard
error will be printed. If the diff.fact is set to TRUE when random simulations are requested, then
also the weighting matrix used to reproduce the item frequencies in random data set will be printed.

The continuity parameter is passed to polychoric function to handle the correction for continu-
ity. In polychoric function this correction for continuity is set by default to .5 (i.e. correct=TRUE).
However in some cases this correction for continuity causes the polychorich function to stop un-
expectedly and consequently also random.polychor.pa function stops unexpectedly. So we added
this parameter to allow users to bypass this problem. This parameter is set by default to 0.0 (i.e.,
no correction for continuity applied) and user may add the correction for continuity by setting the
value to 0.5.

The wght parameter allows to compute a weighted correlation matrix. If a vector of weights is
passed to the function, then a weighted polychoric (pearson) correlation matrix will be computed.
Also simulated data will be weighted as well as bootstrap samples if select. In case of multisample
option, user have to provide a vectors of weights opportunely set accordingly to grouping factor.
Weights will affects all indices computed from Parallel Analysis including MAP

random.polychor.pa 11

Value

The default output (print.all=FALSE) prints the number of factors for Polychoric and Pearson
Correlation PA methods for Factor Analysis and Principal Components Analysis (PCA) methods
along with the number of factors chosen by the two Velicer’s MAP criteria (original and 4th power)
for both Polychoric and Pearson correlation matrices. Furthermore, the function will return the
(scree) plot of the eigenvalues for real (Polychoric vs Pearson correlation matrices) and simulated
data (Polychoric vs Pearson correlation matrices). If the parameter print.all is set to TRUE then
other than the defaul output, it will also be printed the tables of eigenvalue distributions for simu-
lated (random (uniform or multinomial) or boostrap) and empirical data. For boostrap simulation,
also the bias and standard error will be printed. If the diff.fact is set to TRUE when random
simulations are requested, then also the weighting matrix used to reproduce the item frequencies in
random data set will be printed.

Note

In running the random.polychor.pa function it should be reminded that it may take a lot of time
to complete the simulation. This is due in part to the fact that the estimation of the polychoric
correlation matrix is cumbersome and in part to the fact that the code is not optimized, but simply
it does the work.

Occasionally, in calculating the polychoric correlation matrix it may occur an error when the matrix
is non-positive definite. In this case you have to re-run the simulation.

A note should be made concerning the method used (from version 1.1) to read the raw data.matrix
supplied by the user and used to retrieve the three basic information needed to build the random
matrices (number of rows, number of columns and the number of categories for each manifest
variable). The number of categories for each variable is derived from the raw data.matrix, so if the
possible number of categories for a specific item is for example 5, but subjects endorse only three
out of the five categories then the random.polychor.pa function will simulate a variable with only
three categories. This means that the function guarantees that the empirical and the simulated data
matrix are similar, but this also means that by changing the sample of participants the simulated
data will change (even if slightly).

In computing the polychoric correlation matrix for both simulated and empirical data sets, the pa-
rameter global of the polychoric() function is set to FALSE and the text message "The items
do not have an equal number of response alternatives, global set to FALSE" is suppressed with the
suppressMessages() function.

Author(s)

Fabio Presaghi <fabio.presaghi@uniroma1.it> and Marta Desimoni <marta.desimoni@uniroma1.it>

References

Cho, S.J., Li, F., & Bandalos, D., (2009). Accuracy of the Parallel Analysis Procedure With Poly-
choric Correlations. Educational and Psychological Measurement, 69, 748-759.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,
32, 179-185.

12 random.polychor.pa

Ledesma RD, Valero-Mora P (2007) Determining the number of factors to retain in EFA: an easy
to use computer program for carrying out parallel analysis. Practical Assessment, Research &
Evaluation 12:1–11

Liu, O.L., and Rijmen, F., (2008) A modified procedure for parallel analysis of ordered categorical
data. Behavior Research Methods, 40 (2), 556-562. doi: 10.3758/BRM.40.2.556

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.

Reckase, M.D. (2009). Multidimensional Item Response Theory. Springer.

Velicer, W. F. (1976). Determining the number of factors from the matrix of partial correlations.
Psychometrika, 41, 321-327.

Velicer, W. F., Eaton, C. A., & Fava, J. L. (2000). Construct explication through factor or component
analysis: A review and evaluation of alternative procedures for determining the number of factors
or components. In R. D. Goffin & E. Helmes (Eds.), Problems and solutions in human assessment:
Honoring Douglas N. Jackson at seventy (pp. 41-72). Norwell, MA: Kluwer Academic.

See Also

nFactors, psych, paran

Examples

EXAMPLE 1:
basic use of the function with a subset of the bfi data from \code{psychTools}
number of replications is held at minimum just for running the example.
You would raise this number to consitent values
bfi data is attached to the psychTools() package, so if not already loaded,
load the package by running: require(psychTools)
data(bfi)
names(bfi)
bfi.data<-na.exclude(as.matrix(bfi[1:200, 1:5]))
head(bfi.data)
random.polychor.pa(nrep=3, data.matrix=bfi.data, q.eigen=.99)

EXAMPLE 2:
in this example one of the categories of item1 is recoded: 2=1
so this item has 5 categories: 1 (2) 3 4 5 6
category 1 is within brackets as it has frequency=0
so this is a case where empirical data (0 2 3 4 5 6) diverge from
theorethical data (0 1 2 3 4 5 6)
#require(psych)
#data(bfi)
#raw.data.1<-as.matrix(bfi)
#raw.data.1 <- (raw.data.1[1:200,1:25])
#for(i in 1:nrow(raw.data.1)) { if(raw.data.1[i,1]==2) raw.data.1[i,1]<-1}
#test.2<-random.polychor.pa(nrep=100, data.matrix=raw.data.1, q.eigen=.99)
#test.2

EXAMPLE 3:

random.polychor.pa 13

######## for SPSS users ####
the following instructions can used to load a SPSS data file (.sav).
1) load the library to read external datafile (e.g., SPSS datafile)
2) choose the SPSS datafile by pointing directly in the folder
on your hard-disk
3) select only the variables (i.e., the items) needed to for
Parallel Analysis
#> library(foreign) ### load the needed library
#> raw.data <- read.spss(choose.files(), use.value.labels=TRUE,
max.value.labels=Inf, to.data.frame=TRUE)
#> raw.spss.item <- na.exclude(raw.data[,2:4])
#> summary (raw.spss.item)
#> random.polychor.pa(nrep=5, data.matrix=raw.spss.item, q.eigen=.99)

EXAMPLE 4a:
in this case the paramether diff.fact is set to TRUE, so the function
will simulate random dataset with the same probability of occurrence
of each category for each item in the observed dataset.
Dichotomous variables are used in this example.
#require(psych)
#data(bock)
DICHTOMOUS
#random.polychor.pa(nrep=3, data.matrix=lsat6, q.eigen=.99, diff.fact=TRUE)

EXAMPLE 4b:
in this case the paramether diff.fact is set to TRUE, so the function
will simulate random dataset with the same probability of occurrence
of each category for each item in the observed dataset.
Polythomous variables are used in this example.
#require(psych)
#data(bfi)
#raw.data.4a<-as.matrix(bfi)
#raw.data.4a <- (raw.data.4a[1:200,1:25])
POLYTHOMOUS
#random.polychor.pa(nrep=100, data.matrix=raw.data.4a, q.eigen=.99, diff.fact=TRUE)

EXAMPLE 5:
RANDOM VS BOOSTRAP SIMULATED DATA
UNIFORM VS MULTINOMIAL DISTRIBUTION
#require(psych)
#data(bfi)
#names(bfi)
#bfi.data<-na.exclude(as.matrix(bfi[1:200, 1:5]))
#head(bfi.data)
RANDOM samples and UNIFORM distribution
#random.polychor.pa(nrep=100, data.matrix=bfi.data, q.eigen=.95, comparison=c("random"),
distr="uniform", fit.pa=T, print.all=T)
RANDOM samples and MULTINOMIAL distribution
#random.polychor.pa(nrep=100, data.matrix=bfi.data, q.eigen=.95, comparison=c("random"),
distr="multinomial", fit.pa=T, print.all=T)

BOOTSTRAP and UNIFORM distribution
#random.polychor.pa(nrep=100, data.matrix=bfi.data, q.eigen=.95, comparison=c("bootstrap"),

14 random.polychor.pa

distr="uniform", fit.pa=T, print.all=T)
BOOTSTRAP and MULTINOMIAL distribution
#random.polychor.pa(nrep=100, data.matrix=bfi.data, q.eigen=.95, comparison=c("bootstrap"),
distr="multinomial", fit.pa=T, print.all=T)

EXAMPLE 6:
MULTIGROUP PARALLEL ANALYSIS: 2 samples
#require(psych)
#data(bfi)
#names(bfi)
#table(bfi$gender)
#table(bfi$education)
#table(bfi$age)
#bfi.data.gender<-cbind(bfi[1:200, 26], bfi[1:200, 1:5])
#head(bfi.data.gender)

MULTIGROUP PARALLEL ANALYSIS: RANDOM UNIFORM
#random.polychor.pa(nrep=100, data.matrix=bfi.data.gender, q.eigen=.95, comparison=c("random-mg"),
distr="uniform", fit.pa=T, print.all=T)
MULTIGROUP PARALLEL ANALYSIS: RANDOM MULTINOMIAL
#random.polychor.pa(nrep=100, data.matrix=bfi.data.gender, q.eigen=.95, comparison=c("random-mg"),
distr="multinomial", fit.pa=T, print.all=T)

MULTIGROUP PARALLEL ANALYSIS: BOOTSTRAP UNIFORM
#random.polychor.pa(nrep=100, data.matrix=bfi.data.gender, q.eigen=.95,
comparison=c("bootstrap-mg"), distr="uniform", fit.pa=T, print.all=T)
MULTIGROUP PARALLEL ANALYSIS: BOOTSTRAP MULTINOMIAL
#random.polychor.pa(nrep=100, data.matrix=bfi.data.gender, q.eigen=.95,
comparison=c("bootstrap-mg"), distr="multinomial", fit.pa=T, print.all=T)

EXAMPLE 7:
MULTIGROUP PARALLEL ANALYSIS: 11 samples
#require(psych)
#data(bfi)
#names(bfi)
#table(bfi$age)
#raw.data<- subset(bfi, bfi$age>=17 & bfi$age<=27)
#table(raw.data$age)
#bfi.data.age<-cbind(raw.data[, 28], raw.data[, 1:10])
#head(bfi.data.age)

#random.polychor.pa(nrep=100, data.matrix=bfi.data.age, q.eigen=.95, comparison=c("random-mg"))

EXAMPLE 8:
WEIGHTED SAMPLE
#require(psych)
#data(bfi)
#table(bfi$gender)
computing weights for gender assuming gender distribution in population is: 1==.20; 2==.80
#bfi$w.sex<-(bfi$gender == 1)*(0.20)+(bfi$gender == 2)*(0.80)

random.polychor.pa 15

#bfi.data<-na.omit(cbind(bfi[, 1:10],bfi$w.sex))
#random.polychor.pa(nrep=100, data.matrix=bfi.data[, 1:10], q.eigen=.95, wght=bfi.data[,11])

Index

∗ BOOTSTRAP
Parallel-Analysis-of-Polychoric-Correlations,

4
random.polychor.pa, 7

∗ EXPLORATORY FACTOR ANALYSIS
Parallel-Analysis-of-Polychoric-Correlations,

4
random.polychor.pa, 7

∗ FIT INDEXES
Parallel-Analysis-of-Polychoric-Correlations,

4
random.polychor.pa, 7

∗ MULTIGROUP
Parallel-Analysis-of-Polychoric-Correlations,

4
random.polychor.pa, 7

∗ MULTINOMIAL DISTRIBUTION
Parallel-Analysis-of-Polychoric-Correlations,

4
random.polychor.pa, 7

∗ PARALLEL ANALYSIS
Parallel-Analysis-of-Polychoric-Correlations,

4
random.polychor.pa, 7

∗ POLYCHORIC CORRELATION
MATRIX

Parallel-Analysis-of-Polychoric-Correlations,
4

random.polychor.pa, 7
∗ UNIFORM DISTRIBUTION

Parallel-Analysis-of-Polychoric-Correlations,
4

random.polychor.pa, 7
∗ WEIGHTS

Parallel-Analysis-of-Polychoric-Correlations,
4

NEWS, 2

Parallel-Analysis-of-Polychoric-Correlations,

4

random.polychor.pa, 7
random.polychor.pa-package

(Parallel-Analysis-of-Polychoric-Correlations),
4

16

	NEWS
	Parallel-Analysis-of-Polychoric-Correlations
	random.polychor.pa
	Index

