Package 'rateratio.test'

February 20, 2015

Type Package Title Exact rate ratio test Version 1.0-2 Date 2014-01-22 Author Michael Fay <mfay@niaid.nih.gov> Maintainer Michael Fay <mfay@niaid.nih.gov> Depends R (>= 2.4.1), stats Description A function which performs exact rate ratio tests and returns an object of class htest. License GPL NeedsCompilation no Repository CRAN Date/Publication 2014-01-22 21:08:47

R topics documented:

	rateratio.test				 • •	 	1
Index							4
rater	eratio.test An Exact Rate Ratio Test Assuming Po	oissa	on Ca	ounts	 		

Description

Performs the uniformy most powerful unbiased test on the ratio of rates of two Poisson counts with given time (e.g., perons-years) at risk for each count.

Usage

```
rateratio.test(x, n, RR = 1,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95)
```

Arguments

х	a vector of length 2 with counts for the two rates
n	a vector of length 2 with time at risk in each rate
RR	the null rate ratio (two.sided) or the rate ratio on boundary between null and alternative
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
conf.level	confidence level of the returned confidence interval. Must be a single number between 0 and 1.

Details

The rateratio.test tests whether the ratio of the first rate (estimated by x[1]/n[1]) over the second rate (estimated by x[2]/n[2]) is either equal to, less, or greater than RR. Exact confidence intervals come directly from binom.test. The two-sided p-value is defined as either 1 or twice the minimum of the one-sided p-values. See Lehmann (1986, p. 152) or vignette("rateratio.test").

For full discussion of the p-value and confidence interval consistency of inferences, see Fay (2010) and exactci package.

Value

An object of class 'htest' containing the following components:

p.value	the p-value of the test
estimate	a vector with the rate ratio and the two individual rates
null.value	the null rate ratio (two.sided) or the rate ratio on boundary between null and alternative
conf.int	confidence interval
alternative	type of alternative hypothesis
method	description of method
data.name	description of data

Note

Much of the error checking code was taken from prop.test.

Author(s)

Michael Fay

References

Fay, M. P. (2010). Two-sided exact tests and matching confidence intervals for discrete data. R Journal, 2(1), 53-58.

Lehmann, E.L. (1986). Testing Statistical Hypotheses (second edition). Wadsworth and Brooks/Cole, Pacific Grove, California.

rateratio.test

See Also

prop.test, binom.test

Examples

p values and confidence intervals are defined the same way
so there is consistency in inferences
rateratio.test(c(2,9),c(17877,16660))
Small counts and large time values will give results similar to Fisher's exact test
since in that case the rate ratio is approximately equal to the odds ratio
However, for the Fisher's exact test, the two-sided p-value is defined differently from
the way the confidence intervals are defined and may imply different inferences
i.e., p-value may say reject OR=1, but confidence interval says not to reject OR=1
fisher.test(matrix(c(2,9,17877-2,16660-9),2,2))

Index

*Topic htest

rateratio.test,1

binom.test, 3

prop.test, 3

rateratio.test, 1