
Using the RCDD Package

Charles J. Geyer

November 17, 2021

1 The Name of the Game

We call the package rcdd which stands for “C Double Description in R,” our
name being copied from cddlib, the library we call to do the computations.
This library was written by Komei Fukuda and is available at

https://github.com/cddlib/cddlib

Our rcdd package for R provides an interface to most of the functionality of the
cddlib library.

The version of R used to make this document is 4.1.2. The version of the
rcdd package used to make this document is 1.5.

2 Representations

The two descriptions in question are the descriptions of a convex polyhedron
as either

� the intersection of a finite collection of closed half spaces or

� the convex hull of of a finite collection of points and directions.

A direction in Rd can be identified with either a nonzero point x or with the
ray {λx : λ ≥ 0} generated by such a point. The convex hull of a set of points
x1, . . ., xk and a set of directions represented as nonzero points xk+1, . . ., xm
is the set of linear combinations

x =

m∑
i=1

λixi

where the coefficients λi satisfy

λi ≥ 0, i = 1, . . . ,m

and
k∑

i=1

λi = 1

1

(note that only the λi for points, not directions, are in the latter sum). The
fact that these two descriptions characterize the same class of convex sets (the
polyhedral convex sets) is Theorem 19.1 in Rockafellar (1970). The points and
directions are said to be generators of the convex polyhedron. Those who like
eponyms call this the Minkowski-Weyl theorem

http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/node14.html

2.1 The H-representation

In the terminology of the cddlib documentation, the two descriptions are
called the “H-representation” and the “V-representation” (“H” for half space and
“V” for vertex, although, strictly speaking, generators are not always vertices).

For both efficiency and computational stability, the H-representation allows
not only closed half spaces but hyperplanes (which are, of course, the inter-
section of two closed half spaces), or, what is equivalent, the H-representation
characterizes the convex polyhedron as the solution set of a finite set of linear
equalities and inequalities, that is, the set of points x satisfying

A1x ≤ b1 and A2x = b2

where A1 and A2 are matrices and b1 and b2 are vectors and the dimensions are
such that these equations make sense.

In the representation used for our rcdd package for R, these parts of the
specification are combined into one big matrix

M =

(
0 b1 −A1

1 b2 −A2

)
If the dimension of the space in which the polyhedron lives is d, then M has
column dimension d+2 and the first two columns are special. The first column is
an indicator vector, zero indicates an inequality constraint and one an equality
constraint. The second column contains the “right hand side” vectors b1 and b2.
Although we have given an example in which all the inequality rows are on top
of all the equality rows, this is not required. The rows can be in any order.

If m is such a matrix and we let

l <- m[, 1]

b <- m[, 2]

v <- m[, - c(1, 2)]

a <- (- v)

In mathematical notation
M =

(
l b −A

)
where l and b are column vectors and A is a matrix. Then the convex polyhedron
described is the set of points x that satisfy

2

axb <- a %*% x - b

all(axb <= 0)

all(l * axb == 0)

In mathematical notation, if
w = Ax− b

then

wi ≤ 0, for all i

wi = 0, whenever li = 1

2.2 The V-representation

For both efficiency and computational stability, the V-representation allows
not only points and directions, but also lines and something I don’t know the
name of (perhaps “affine generators”).

In R a V-representation is matrix with the same column dimension as the
corresponding H-representation, and again the first two columns are special, but
their interpretation is different. Now the first two columns are both indicators
(zero or one valued). The rest of each row represents a point.

The convex polyhedron described is the set of linear combinations of these
points such that the coefficients are (1) nonnegative if column one is zero and
(2) sum to one where the sum runs over rows having a one in column two.

If m is such an object and we define v, b, and l as in the preceding section
(l is column one, b is column two, and v is the rest), in mathematical notation

M =
(
l b V

)
where l and b are column vectors and V is a matrix, then the polyhedron in
question is the set of points of the form

y <- t(lambda) %*% v

where lambda satisfies the constraints

all(lambda * (1 - l) >= 0)

sum(b * lambda) == max(b)

In mathematical notation, the polyhedron is the set of points of the form

y = λTV

where
λj ≥ 0, when lj = 0

and ∑
j

bjλj = 1, unless all bj are zero.

3

2.3 Fukuda’s Representations

Readers interested in comparing with Fukuda’s documentation should be
aware that cddlib uses different but mathematically equivalent representations.
If our representation is a matrix m, then Fukuda’s representation consists of a
matrix, which is our m[, -1] and a vector (which he calls the linearity), which
is our seq(1, nrow(m))[m[, 1] == 1] (that is the vector of indices of the
rows having a one in our column one).

3 Trying it Out

3.1 A Unit Simplex

Let’s try a really simple example, so we can see what’s going on: the unit
simplex in R3 (essentially copied from the scdd help page, never mind how
makeH works, just look at the matrix qux that it produces, which is an H-
representation).

> library(rcdd)

> d <- 3

> # unit simplex in H-representation

> qux <- makeH(- diag(d), rep(0, d), rep(1, d), 1)

> print(qux)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 -1 -1 -1

[2,] 0 0 1 0 0

[3,] 0 0 0 1 0

[4,] 0 0 0 0 1

attr(,"representation")

[1] "H"

The first row represents the equality constraint sum(x) == 1 and the other three
rows represent the inequality constraints x[i] >= 0 for i in 1:d.

> # unit simplex in V-representation

> out <- scdd(qux)

> print(out)

$output

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0 0 1

[2,] 0 1 0 1 0

[3,] 0 1 1 0 0

attr(,"representation")

[1] "V"

The corresponding V-representation has 3 vertices, (1, 0, 0), (0, 1, 0), (0, 0, 1).

4

> # unit simplex in H-representation

> # note: different from original, but equivalent

> out <- scdd(out$output)

> print(out)

$output

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 -1 -1 0

[2,] 0 0 1 0 0

[3,] 0 0 0 1 0

[4,] 1 -1 1 1 1

attr(,"representation")

[1] "H"

Note that scdd goes both ways. If we toggle back, we get a different H-
representation, but one that still represents the unit simplex.

3.2 Adding a Constraint

Now let us complicate the situation a bit. The unit simplex represents pos-
sible probability vectors. Let the corresponding sample space be x <- 1:d.
So the expected value of the random variable X having probability vector p is
sum(p * x). Let us say we want to look at the subset of the simplex consisting of
the probability vectors p that satisfy the equality constraint sum(p * x) == 2.2.

> # add equality constraint

> quux <- addHeq(1:d, 2.2, qux)

> print(quux)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 1.0 -1 -1 -1

[2,] 0 0.0 1 0 0

[3,] 0 0.0 0 1 0

[4,] 0 0.0 0 0 1

[5,] 1 2.2 -1 -2 -3

attr(,"representation")

[1] "H"

> out <- scdd(quux)

> print(out)

$output

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0.4 0.0 0.6

[2,] 0 1 0.0 0.8 0.2

attr(,"representation")

[1] "V"

5

Adding the equality constraint takes us down a dimension. The unit simplex
was two-dimensional (a triangle). Now the represented convex polyhedron is
one-dimensional (a line segment).

4 Using GMP Rational Arithmetic

4.1 A Simple Example

The cddlib code can also use the GMP (GNU Multiple Precision) Library to
compute results using exact arithmetic with unlimited precision rational num-
bers and we bring this facility to rcdd as well.

In order to use rational arithmetic, we need a rational number format.
Adding a new numeric type to R would be a job of horrendous complexity,
so we don’t even try (this has actually been done in the gmp package but that
package was written long after the rcdd package). We just use the represen-
tation of the rational as a character string, e. g., "3/4" or "-15/32" (perhaps
some day there will be a version of rcdd that uses objects of type bigq from
the gmp package, but the current version cannot).

> quuxq <- d2q(quux)

> print(quuxq)

[,1] [,2] [,3] [,4] [,5]

[1,] "1" "1" "-1" "-1" "-1"

[2,] "0" "0" "1" "0" "0"

[3,] "0" "0" "0" "1" "0"

[4,] "0" "0" "0" "0" "1"

[5,] "1" "2476979795053773/1125899906842624" "-1" "-2" "-3"

attr(,"representation")

[1] "H"

What is that? Well computers count in binary and 2.2 is not a round number
to computers (because 1/10 is not a finite sum of powers of 2). We can see that
the rational representation does make sense

> bar <- as.numeric(unlist(strsplit(quuxq[5,2], "/")))

> print(bar)

[1] 2.47698e+15 1.12590e+15

> bar[1] / bar[2]

[1] 2.2

But we don’t want to check our rational approximations that way because (1)
it’s a pain and (2) big integers needn’t be exactly represented either. So if you’re
willing to take rcdd’s word for it

6

> q2d(quuxq)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 1.0 -1 -1 -1

[2,] 0 0.0 1 0 0

[3,] 0 0.0 0 1 0

[4,] 0 0.0 0 0 1

[5,] 1 2.2 -1 -2 -3

attr(,"representation")

[1] "H"

But that was just a preliminary explanation. The point is that scdd uses
rational representations like quuxq just as well as (actually better than) inexact
floating point representations like quux.

> outq <- scdd(quuxq)

> print(outq)

$output

[,1] [,2] [,3]

[1,] "0" "1" "900719925474099/2251799813685248"

[2,] "0" "1" "0"

[,4] [,5]

[1,] "0" "1351079888211149/2251799813685248"

[2,] "900719925474099/1125899906842624" "225179981368525/1125899906842624"

attr(,"representation")

[1] "V"

Oops! Excuse the verbose mess.

> print(q2d(outq$output))

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0.4 0.0 0.6

[2,] 0 1 0.0 0.8 0.2

attr(,"representation")

[1] "V"

But that too, was not exactly what I wanted to present. It’s not rational
arithmetic that is really messy here, but floating point! Let’s make the rational
approximation to be exactly what we wanted.

> quuxq <- z2q(round(quux * 10), rep(10, length(quux)))

> print(quuxq)

[,1] [,2] [,3] [,4] [,5]

[1,] "1" "1" "-1" "-1" "-1"

[2,] "0" "0" "1" "0" "0"

7

[3,] "0" "0" "0" "1" "0"

[4,] "0" "0" "0" "0" "1"

[5,] "1" "11/5" "-1" "-2" "-3"

attr(,"representation")

[1] "H"

> outq <- scdd(quuxq)

> print(outq)

$output

[,1] [,2] [,3] [,4] [,5]

[1,] "0" "1" "2/5" "0" "3/5"

[2,] "0" "1" "0" "4/5" "1/5"

attr(,"representation")

[1] "V"

Now we have a nice exact representation. It’s the floating point stuff that is
wrong.

> qmq(outq$output, out$output)

[,1] [,2] [,3] [,4]

[1,] "0" "0" "13/90071992547409920" "0"

[2,] "0" "0" "0" "13/45035996273704960"

[,5]

[1,] "-1/11258999068426240"

[2,] "-1/5629499534213120"

attr(,"representation")

[1] "V"

4.2 Warning

The discussion in the preceding section presents rational arithmetic as a
way to get nicer answers, but its main purpose is to get correct answers. In
version 1.1-4 of the package the following warning was added to help pages for
functions that do computational geometry (including scdd).

If you want correct answers, use rational arithmetic. If you do
not, this function may (1) produce approximately correct answers,
(2) fail with an error, (3) give answers that are nowhere near correct
with no error or warning, or (4) crash R losing all work done to
that point. In large simulations (1) is most frequent, (2) occurs
roughly one time in a thousand, (3) occurs roughly one time in
ten thousand, and (4) has only occurred once and only with the
redundant function. So the R floating point arithmetic version does
mostly work, but you cannot trust its results unless you can check
them independently.

8

Using the computer’s default floating point (inexact) arithmetic is more conve-
nient, and usually — but not always — works. In this the rcdd package is no
different from any other R package. The only difference is that some aspects of
the objects (convex polyhedra) are discrete (how many generators), so a small
error in arithmetic may cause a discrete error (integer sized) in the result. But
this is no different from many other calculations in statistics. For example, in
linear regression we need to deal with collinearity, and whether a model matrix
is not full rank is an all-or-nothing proposition. The lm function uses QR de-
composition with the default computer arithmetic to detect collinearity. This
can produce incorrect results. Same issue as with rcdd.

To repeat, if you want correct (provably correct) answers, and you don’t
want to deal with cases (2), (3), and (4) in the warning, you must use rational
arithmetic, despite its inconvenience. And it is merely inconvenient. You can
use it, whatever you want to do.

4.3 Convex Hull

Let’s try to find convex hulls in d dimensions.

> d <- 4

> n <- 100

> set.seed(42)

> x <- matrix(rnorm(d * n), nrow = n)

> foo <- makeV(d2q(x))

> out <- scdd(foo)

> l <- out$output[, 1]

> b <- out$output[, 2]

> v <- out$output[, - c(1, 2)]

> a <- qneg(v)

This code generates a matrix x, each row of which represents a point in Rd.
The H-representation of the convex hull of these points is given by the column
vectors l and b and the matrix A. Actually, the vector l is unnecessary, because
since the convex hull is bounded we know lj = 0 for all j. Note that we use
exact arithmetic.

> axb <- qmatmult(a, t(x))

> axb <- sweep(axb, 1, b, FUN = qmq)

> fred <- apply(axb, 2, function(foo) max(qsign(foo)))

> all(fred <= 0)

[1] TRUE

> sum(fred < 0)

[1] 60

> sum(fred == 0)

9

[1] 40

Here qmatmult(a, t(x)) is the matrix product axT , and axb is the matrix
resulting from subtracting b from each column of axT . Then fred is the vector
that gives for each point −1, 0, or +1 if it is in the interior, boundary, or exterior
of the convex hull, respectively.

The points on the boundary of the convex hull are the rows of x[fred == 0,].
If one only wants to find the set of points on the boundary, then Section 6.2
discusses a more direct way to do this. If one only wants to check whether one
point in the interior or exterior of the convex hull, then Section 5.4 discusses a
more direct way to do this.

If we want to check whether other points are in the hull, this is easy

> y <- matrix(rnorm(2 * n * d), nrow = 2 * n)

> ayb <- qmatmult(a, t(d2q(y)))

> ayb <- sweep(ayb, 1, b, FUN = qmq)

> sally <- apply(ayb, 2, function(foo) max(qsign(foo)))

> sum(sally < 0)

[1] 95

> sum(sally == 0)

[1] 0

> sum(sally > 0)

[1] 105

There are 95 points (rows of y) in the interior of the hull, 0 points on the
boundary, and 105 points in the exterior.

5 Linear Programming

Version 0.8 of the rcdd package adds linear programming. One might think
this is not particularly interesting, because there are already two other R con-
tributed packages that do linear programming, but rcdd can solve linear pro-
grams using exact rational arithmetic and the others cannot.

Here are some simple examples taken from the help page for the lpcdd

function.

5.1 A Problem Having a Solution

> hrep <- rbind(c("0", "0", "1", "1", "0", "0"),

+ c("0", "0", "0", "2", "0", "0"),

+ c("1", "3", "0", "-1", "0", "0"),

+ c("1", "9/2", "0", "0", "-1", "-1"))

> print(hrep)

10

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] "0" "0" "1" "1" "0" "0"

[2,] "0" "0" "0" "2" "0" "0"

[3,] "1" "3" "0" "-1" "0" "0"

[4,] "1" "9/2" "0" "0" "-1" "-1"

> a <- c("2", "3/5", "0", "0")

> out <- lpcdd(hrep, a)

> print(out)

$solution.type

[1] "Optimal"

$primal.solution

[1] "-3" "3" "9/2" "0"

$dual.solution

[1] "-2" "0" "-7/5" "0"

$optimal.value

[1] "-21/5"

The function lpcdd minimizes the linear function x 7→ aTx subject to the ab-
stract constraint that x lie in the polyhedral convex set having H-representation
given by hrep.

In this problem, the linear program (LP) has a solution, which is given by
the out$primal.solution. We can check that this does indeed give the stated
optimal value

> qsum(qxq(a, out$primal.solution))

[1] "-21/5"

Moreover, we can check the Kuhn-Tucker conditions for optimality, one state-
ment of which follows. For the problem

minimize f(x)

subject to g(x) ≤ 0

where f is scalar-valued and g is vector-valued (so g represents a set of inequality
constraints). If there are equality constraints (as in this problem), they can be
represented as two inequality constraints.

Define the Lagrangian function

L(x, u) = f(x) + uT g(x)

where u is a vector of Lagrange multipliers. Specialized to our problem where
f(x) = aTx and g(x) = Ax− b, the Lagrangian is

L(x, u) = aTx+ uTAx− uT b

The a pair (x̄, ū) is optimal if

11

(i) x̄ minimizes x 7→ L(x, ū),

(ii) g(x̄) ≤ 0,

(iii) ū ≥ 0,

(iv) ūT g(x̄) = 0.

Condition (ii) is called primal feasibility, condition (iii) dual feasibility, and
condition (iv) complementary slackness.

Note that for an equality constraint, the corresponding Lagrange multiplier
does not need to be nonnegative, because if the constraint is gi(x) = 0, we could
instead take it to be −gi(x) = 0.

We claim that - out$dual.solution gives the Lagrange multipliers u. Then
dual feasibility is clear. Let’s check primal feasibility

> xbar <- out$primal.solution

> foo <- qmatmult(hrep[, - c(1, 2)], cbind(xbar))

> foo <- qpq(hrep[, 2], foo)

> print(foo)

[1] "0" "6" "0" "0"

We are supposed to check that the components of Ax̄ − b are ≤ 0 for the
inequality constraints and = 0 for the equality constraints. Here foo is −Ax̄+ b
so should check ≥ 0 for the inequality constraints. We do indeed have all
components of foo nonnegative and the last two (which are for the equality
constraints), zero.

Now complementary slackness is also clear. For each row, either the corre-
sponding component of foo should be zero, or the corresponding component of
out$dual.solution.

> qxq(foo, out$dual.solution)

[1] "0" "0" "0" "0"

Finally, we need to check that x̄ minimizes the Lagrangian function, condition
(i). Since the objective function is affine, and the constraints are linear, this
can only happen if the Lagrangian is a constant function of x, in which case its
derivative is zero

> qpq(a, qmatmult(rbind(out$dual.solution), hrep[, -c(1, 2)]))

[1] "0" "0" "0" "0"

The derivative of the Lagrangian is

∇L(x, ū) = aT + uTA

This is what is calculated above (recall that out$dual.solution is −u and
hrep[, -c(1, 2)] is −A).

12

5.2 A Problem with Empty Feasible Region

> hrep <- rbind(c("0", "0", "1", "0"),

+ c("0", "0", "0", "1"),

+ c("0", "-2", "-1", "-1"))

> print(hrep)

[,1] [,2] [,3] [,4]

[1,] "0" "0" "1" "0"

[2,] "0" "0" "0" "1"

[3,] "0" "-2" "-1" "-1"

> a <- c("1", "1")

> out <- lpcdd(hrep, a)

> print(out)

$solution.type

[1] "Inconsistent"

$dual.direction

[1] "1" "1" "1"

The dual direction (1, 1, 1) indicates that the sum of the three inequalities

−x1 − 0 ≤ 0

−x2 − 0 ≤ 0

x1 + x2 − (−2) ≤ 0

is 2 ≤ 0, which is false (hence no point can satisfy the inequalities and the
feasible region is empty).

5.3 A Problem with Unbounded Objective Function

> hrep <- rbind(c("0", "0", "1", "0"),

+ c("0", "0", "0", "1"))

> print(hrep)

[,1] [,2] [,3] [,4]

[1,] "0" "0" "1" "0"

[2,] "0" "0" "0" "1"

> a <- c("1", "1")

> out <- lpcdd(hrep, a, minimize = FALSE)

> print(out)

$solution.type

[1] "DualInconsistent"

$primal.direction

[1] "1" "0"

13

Here the problem is to maximize f(x) = x1 + x2 subject to the constraints

x1 ≥ 0

x2 ≥ 0

The vector out$primal.direction is a direction of recession of the feasible
region C, that is, if we call this direction y, then

x+ sy ∈ C, x ∈ C, s ≥ 0.

To verify that, we need to check that

A(x+ sy) ≤ b, x ∈ C, s ≥ 0,

which, if we assume C is nonempty, is equivalent to

Ay ≤ 0.

> qmatmult(hrep[, - c(1, 2)], cbind(out$primal.direction))

[,1]

[1,] "1"

[2,] "0"

It checks (recall that href[, - c(1, 2)] is −A).
We also need to verify that the objective function increases without bound

in this direction

> qsum(qxq(a, out$primal.direction))

[1] "1"

It does.

5.4 Convex Hull Revisited

If one wants to verify whether a single point q is in or out of the convex hull
of many other points pi, then the “Polyhedral Computation FAQ”

http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html

says there is a more efficient way to do it than the than the calculations in
Section 4.3.

We can prove a point q in in the exterior of the convex hull of a set of points
{ pi : i ∈ I } by finding a strongly separating hyperplane, which is determined
by a vector z and a scalar z0 satisfying

zT pi < z0, i ∈ I
zT q > z0

14

We can do this by solving the following LP

minimize f(z0, z) = zT q − z0
subject to zT pi − z0 ≤ 0, i ∈ I

zT q − z0 ≤ 1

(the last inequality being inserted to make the LP have a bounded solution).
Note that the variable in the LP is the vector (z0, z) which has dimension one
more than q and pi.

If the optimal value is strictly positive, then we have a strongly separating
hyperplane and q is in the exterior of the convex hull. Otherwise q is on the
boundary or in the interior.

Let’s try it. First a point in the interior.

> xin <- x[fred < 0, , drop = FALSE]

> qin <- xin[sample(nrow(xin), 1),]

> qin

[1] 1.0385061 0.4546503 -0.1908165 -1.3859983

> hrep <- cbind(0, 0, 1, - x)

> hrep <- rbind(hrep, c(0, 1, 1, - qin))

> out <- lpcdd(d2q(hrep), d2q(c(-1, qin)), minimize = FALSE)

> out$optimal.value

[1] "0"

So q is not in the exterior.
Now a point in the exterior.

> yout <- y[sally > 0, , drop = FALSE]

> qout <- yout[sample(nrow(yout), 1),]

> qout

[1] 0.05947284 0.81136250 -1.54745197 -0.57726482

> hrep <- cbind(0, 0, 1, - x)

> hrep <- rbind(hrep, c(0, 1, 1, - qout))

> out <- lpcdd(d2q(hrep), d2q(c(-1, qout)), minimize = FALSE)

> out$optimal.value

[1] "1"

So q is in the exterior.

15

6 Redundant Row Elimination

In the section title “row” refers to a row of the matrix that specifies an H-
representation or a V-representation. For an H-representation a row represents
a linear equality or inequality constraint, so this is redundant constraint elimi-
nation. For a V-representation a row represents a generator (point, ray, line, or
affine generator), so this is redundant generator elimination.

6.1 Redundant Constraints

Here is a toy problem from the on-line help for the redundant function.

> hrep <- rbind(c(0, 0, 1, 1, 0),

+ c(0, 0, -1, 0, 0),

+ c(0, 0, 0, -1, 0),

+ c(0, 0, 0, 0, -1),

+ c(0, 0, -1, -1, -1))

> print(hrep)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 1 1 0

[2,] 0 0 -1 0 0

[3,] 0 0 0 -1 0

[4,] 0 0 0 0 -1

[5,] 0 0 -1 -1 -1

> redundant(hrep, representation = "H")

$output

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 1 1 0

[2,] 1 0 -1 0 0

[3,] 0 0 -1 -1 -1

attr(,"representation")

[1] "H"

$implied.linearity

[1] 1 2 3

$redundant

[1] 4

$new.position

[1] 1 2 0 0 3

The output component of the result gives another representation having no
redundant rows of the convex polytope of the same type (H or V) as the input.

16

In this example, the constraints are

−x1 − x2 ≤ 0

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

x1 + x2 + x3 ≤ 0

The first three of these imply equality constraints x1 = x2 = 0. This is indicated
by the implied linearity component of the result. These three inequality
constraints are replaced by two equality constraints

−x1 − x2 − 0

x1 = 0

which also are equivalent to x1 = x2 = 0. That these are now equality con-
straints is indicated by the 1 in the first column of the output matrix. The
forth row of the input implies x3 ≤ 0, and we now see that the fifth row of the
input is redundant, since x1 = x2 = 0, the fifth row implies x3 ≤ 0, which is
already implied by the forth row.

The redundant argument of the result is what is returned by the cddlib

library function (dd_MatrixCanonicalize) that does the work for the R func-
tion redundant. This function has decided to take the fourth row rather than
the fifth as redundant. It does not seem to count rows involved in the “implied
linearity” as redundant here, nor from other examples does it seem to count any
equality constraints as redundant even as it drops them.

However, the new.position component of the result shows which rows of
the input are kept in the output and which not. So we can always tell which
rows of the input were actually dropped from this component.

6.2 Convex Hull Revisited Again

Eliminating redundant generators from a set of points gives the points that
are the vertices or extreme points of the hull.

> foo <- makeV(points = d2q(x))

> out <- redundant(foo)

> nrow(out$output)

[1] 40

> all((out$new.position == 0) == (fred < 0))

[1] TRUE

17

7 Faces

A nonempty face of a convex polyhedron P (Rockafellar, 1970, Chapter 18)
is the subset of P where some affine function achieves its maximum over P . Note
that P itself is a face (the set where constant functions achieve their maxima).
By definition the empty set is also a face. The empty set and P are improper
faces of P . All other faces are proper. Proper faces of the highest dimension
are called facets. Proper faces of the next highest dimension are called ridges.
Proper faces of dimension zero (single points) are called vertices. Proper faces
of dimension one (line segments) are called edges. In this example the convex
polyhedron has dimension 3, so facets have dimension two, and ridges and edges
have dimension one (so are the same thing). But in higher dimensions ridges
and edges are different.

Given an H-representation for a convex polyhedron, the function allfaces

produces a list of faces. Here is a toy problem from the on-line help for the
allfaces function.

> vrep <- rbind(c(0, 1, 1, 1, 0),

+ c(0, 1, 1, -1, 0),

+ c(0, 1, -1, 1, 0),

+ c(0, 1, -1, -1, 0),

+ c(0, 1, 0, 0, 1))

> print(vrep)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 1 1 0

[2,] 0 1 1 -1 0

[3,] 0 1 -1 1 0

[4,] 0 1 -1 -1 0

[5,] 0 1 0 0 1

> hrep <- scdd(vrep, rep = "V")$output

> print(hrep)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 1 0 -1

[2,] 0 1 0 1 -1

[3,] 0 1 -1 0 -1

[4,] 0 1 0 -1 -1

[5,] 0 0 0 0 1

attr(,"representation")

[1] "H"

Here the convex polytope in question is a pyramid with a square base. The base
is in the x-y plane, the square centered at the origin, with sides parallel to the
x and y axes, and vertices of the form (±1,±1, 0). The fifth vertex (the apex)
is above the base on the z axis (0, 0, 1).

18

After conversion, we see that is convex polytope is also characterized by
five inequalities, two of the form z ± x ≤ 1, two of the form z ± y ≤ 1, and
z ≥ 0. If this representation is nonredundant (which is obviously is — we could
check with the redundant function, but won’t), then there will be five faces of
dimension 2 (the base and four sides of the pyramid), eight faces of dimension
1 (the four sides of the base, and the four edges that connect vertices of the
base with the apex), and five faces of dimension zero. Plus there is one face of
dimension 3 (the pyramid itself) and one face of dimension −1 (by convention),
the empty set.

> out <- allfaces(hrep)

> d <- unlist(out$dimension)

> nd <- tabulate(d + 1)

> names(nd) <- seq(0, 3)

> print(nd)

0 1 2 3

5 8 5 1

The empty set is omitted from the list of faces produced by allfaces (it is
always a face but you don’t need a computer to tell you that).

> asl <- sapply(out$active.set, paste, collapse = " ")

> names(asl) <- d

> asl <- asl[order(d)]

> print(asl)

0 0 0 0 0 1 1 1

"3 4 5" "2 3 5" "1 4 5" "1 2 5" "1 2 3 4" "4 5" "3 5" "3 4"

1 1 1 1 1 2 2 2

"2 5" "2 3" "1 5" "1 4" "1 2" "5" "4" "3"

2 2 3

"2" "1" ""

The component active.set of the result of allfaces gives the row numbers of
the active set of constraints for a face (the set of inequalities that are satisfied
with equality on the face). The active set characterizes the face. Here we see
that there are indeed five facets, all of which have one constraint active. Also
there are five vertices, four of which have three constraints active (the vertices
of the base) and one having four constraints active (the apex). There are eight
edges, all of which have two constraints active.

8 Image and Preimage

8.1 Image

In this section we consider the image and preimage of a convex polyhe-
dron under a linear transformation. Since we have H-representations and V-

19

representations of convex polyhedra, we have two sorts of image and preimage
problems.

The simplest of our problems is the image of a V-representation. If

M =
(
l b V

)
(copied from Section 2.2 above) is our V-representation and T is the matrix
representing our linear transformation (that is x 7→ Tx is the linear transforma-
tion), then

Mtrans =
(
l b V TT

)
is a V-representation of the image of the convex polyhedron under T , the set of
points

{Tx, x ∈ P }

where P is the convex polyhedron having V -representation M .
Let’s try an example. In the original theory of completion of exponential

families, due to Barndorff-Nielsen (1978, Theorem 9.15 and surrounding discus-
sion), the MLE exists if and only if the observed value of the canonical statistic
is in the relative interior of the convex support of the canonical statistic. For
a canonical affine submodel (Geyer, 2009, Section 3.9) the submodel canonical
statistic has the form XT y where X is the model matrix for the submodel and
y is the saturated model canonical statistic. Thus we are interested in the case
where T = XT .

Section 6.5.1 of Agresti (2013) introduces a simple logistic regression problem
with data

> x <- seq(10, 90, 10)

> x <- x[x != 50]

> x

[1] 10 20 30 40 60 70 80 90

> y <- as.numeric(x > 50)

> y

[1] 0 0 0 0 1 1 1 1

The convex polyhedron for the saturated model is the unit hypercube. All
components of the response vector for logistic regression have values zero or one,
so the convex polyhedron is [0, 1]8 because 8 is the dimension of this example.
The model matrix has the form X =

(
1 x

)
where x is the vector defined in

the R code above.
So we have 28 vertices of the original convex polytope.

> yy <- matrix(0:1, nrow = 2, ncol = length(x))

> colnames(yy) <- paste0("y", x)

> yy <- expand.grid(as.data.frame(yy))

> head(yy)

20

y10 y20 y30 y40 y60 y70 y80 y90

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0

4 1 1 0 0 0 0 0 0

5 0 0 1 0 0 0 0 0

6 1 0 1 0 0 0 0 0

> nrow(yy)

[1] 256

The vertices of the submodel canonical statistic are in two dimensional space
because the model matrix has two columns.

> yy <- as.matrix(yy) # was data frame

> yy.trans = yy %*% cbind(1, x)

> dim(yy.trans)

[1] 256 2

So this is the V-representation for this example. But of course, it has many
redundant generators. We eliminate them as in Section 5.4 above.

> foo <- makeV(points = d2q(yy.trans))

> out <- redundant(foo)

> nrow(out$output)

[1] 16

> yy.trans <- out$output[, - c(1, 2)]

> dim(yy.trans)

[1] 16 2

We can plot these points as follows. Figure 1 (p. 22) is produced by the
following code

> plot(yy.trans[, 1], yy.trans[, 2], xlab = "sum(y)", ylab = "sum(x * y)")

If we want an H-representation, R function scdd can give it to us.

> out <- scdd(out$output)

> nrow(out$output)

[1] 16

21

0 2 4 6 8

0
10

0
20

0
30

0
40

0

sum(y)

su
m

(x
 *

 y
)

Figure 1: Vertices of Convex Support of Submodel Canonical Statistic

22

But a little thought makes it clear that there is no way to put an H-
representation through a linear transformation. So if we were given the convex
support of the saturated model (the unit hypercube) as an H-representation, we
would have to use R function scdd to convert it to a V-representation, then put
the V-representation through the linear transformation, as above, and then (if
wanted) put the result back through R function scdd to get the H-representation
for the result.

We note that this problem involves extreme computing resources (exponen-
tial in the dimension of the problem) and just does not work for non-toy prob-
lems. Example 2.2 of Geyer (2009) (still a toy problem) has dimension 30 for
the saturated model hence 230 vertices for the unit hypercube. And R just
crashes when it tries to make the V-representation for this example. Thus one
of the main points of Geyer (2009) is to propose methods that work without
doing so much computing (using only V-representation for tangent cones and
R function linearity in R package rcdd). The computing for Geyer (2009)
is fully reproducible, being done in technical reports cited therein, which were
done in Sweave like this vignette.

8.2 Preimage

The preimage of a set S under a function f , denoted f−1(S) whether or not
f is invertible, is the set

{x ∈ dom(f) : f(x) ∈ S }

where dom(f) is the domain of the function f .
A little thought gives no way to put a V-representation through a linear

transformation the other way giving a preimage. So perhaps an H-representation?
If the H-representation is the set of x satisfying

A1x ≤ b1 and A2x = b2

copied from Section 2.1 above, and x = f(y), then the H-representation of the
preimage is

A1f(y) ≤ b1 and A2f(y) = b2

if f is a linear transformation. If T is the matrix representing the transformation,
as in the preceding section, then the H-representation is

A1Ty ≤ b1 and A2Ty = b2

So we have the opposite result from the preceding section.

� Only V-representations can put through a linear transformation in the
forward direction obtaining a V-representation for the image.

� Only H-representations can put through a linear transformation in the
backward direction obtaining an H-representation for the preimage.

23

References

Agresti, A. (2013). Categorical Data Analysis. Wiley, Hoboken, NJ.

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families. Wiley,
Chichester, UK.

Geyer, C. J. (2009). Likelihood inference in exponential families and directions
of recession. Electronic Journal of Statistics, 3, 259–289. doi:10.1214/08-
EJS349.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

24

https://doi.org/10.1214/08-EJS349
https://doi.org/10.1214/08-EJS349

	The Name of the Game
	Representations
	The H-representation
	The V-representation
	Fukuda's Representations

	Trying it Out
	A Unit Simplex
	Adding a Constraint

	Using GMP Rational Arithmetic
	A Simple Example
	Warning
	Convex Hull

	Linear Programming
	A Problem Having a Solution
	A Problem with Empty Feasible Region
	A Problem with Unbounded Objective Function
	Convex Hull Revisited

	Redundant Row Elimination
	Redundant Constraints
	Convex Hull Revisited Again

	Faces
	Image and Preimage
	Image
	Preimage

