Package ‘reda’

April 2, 2021
Title Recurrent Event Data Analysis
Version 0.5.3

Description Contains implementations of recurrent event data analysis routines
including (1) survival and recurrent event data simulation from
stochastic process point of view by the thinning method
proposed by Lewis and Shedler (1979) <doi:10.1002/nav.3800260304>
and the inversion method introduced in Cinlar (1975, ISBN:978-0486497976),
(2) the mean cumulative function (MCF) estimation by the
Nelson-Aalen estimator of the cumulative hazard rate function,
(3) two-sample recurrent event responses comparison with the pseudo-score
tests proposed by Lawless and Nadeau (1995) <doi:10.2307/1269617>,
(4) gamma frailty model with spline rate function following
Fu, et al. (2016) <doi:10.1080/10543406.2014.992524>.

Imports Rcpp, ggplot2, graphics, grDevices, methods, splines2, stats
LinkingTo Rcpp, ReppArmadillo

Suggests knitr, rmarkdown, tinytest

Depends R (>=3.2.3)

License GPL (>=3)

LazyData true

VignetteBuilder knitr

Collate 'RcppExports.R' 'class.R' 'Recur.R' 'Survr.R' 'aic.R’
'baseline.R' 'coef.R' 'data.R' 'mcf-generic.R' 'mcf-formula.R’
'mcf-rateReg.R' 'mcfDiff.R' 'misc.R' ‘plot.R' 'rateReg.R’
'reda.R' 'show.R' 'simEvent.R' 'summary.R' 'zzz.R'

URL https://github.com/wenjie2wang/reda

BugReports https://github.com/wenjie2wang/reda/issues
Encoding UTF-8
RoxygenNote 7.1.1

NeedsCompilation yes

https://github.com/wenjie2wang/reda
https://github.com/wenjie2wang/reda/issues

R topics documented:

Author Wenjie Wang [aut, cre] (<https://orcid.org/0000-0003-0363-3180>),

Haoda Fu [aut],
Sy Han (Steven) Chiou [ctb],
Jun Yan [ctb] (<https://orcid.org/0000-0003-4401-7296>)

Maintainer Wenjie Wang <wang@wwenjie.org>
Repository CRAN
Date/Publication 2021-04-02 15:00:02 UTC

R topics documented:

Index

reda-package L 3
AlC,rateReg-method L 3
as.character,Recur-method 4
baseRate 5
baseRate.rateReg-class 6
BIC,rateReg-method 6
check Recur e 7
coefrateReg-method 8
confintrateReg-method 8
IS Recur e 9
mcf . e 10
mcf.formula-class e 15
mcfrateReg-classo 16
mcfDiff . . e 16
mcfDiff-class e e 18
mcfDiff.test-class e e e e 19
PArAmetrize o it i e e e e e e e e e e e e e e 19
plot-method 20
rateReg e e e 22
rateReg-class L 26
Recur e e 27
Recur-class e e e e 28
Recur-to e 29
show-method 30
simEvent e e e 31
simEvent-class e 36
simuDat e e 37
summary,rateReg-method 37
summary,Recur-method oL o 38
summary.rateReg-class L 39
summary.Recur-class 40
SUIVE . . e e 40
Survr-class L e 41
valveSeats e e e e e e e 42

reda-package 3

reda-package Recurrent Event Data Analysis

Description

The R package reda provides functions for simulating, exploring and modeling recurrent event data.

Details

The main functions are summarized as follows:
* simEventData: Simulating survival, recurrent event, and multiple event data from stochastic
process point of view.

* mcf: Estimating the mean cumulative function (MCF) from a fitted gamma frailty model, or
from a sample recurrent event data by using the nonparametic MCF estimator (the Nelson-
Aelen estimator of the cumulative hazard function).

* mcfDiff: Comparing two-sample MCFs by the pseudo-score tests and estimating their differ-
ence over time.

* rateReg: Fitting Gamma fraitly model with spline baseline rate function.

See the package vignettes for more introduction and demonstration.

AIC,rateReg-method Akaike Information Criterion (AIC)

Description

AIC,rateReg-method is an S4 class method calculating Akaike information criterion (AIC) for one
or several rateReg objects, according to the formula - 2 * log-likelihood + 2 * nPar, where nPar
represents the number of parameters in the fitted model.

Usage
S4 method for signature 'rateReg'
AIC(object, ..., k = 2)

Arguments
object An object used to dispatch a method.

Optionally more fitted model objects.

k An optional numeric value used as the penalty per parameter. The default k = 2
is the classic AIC.

4 as.character,Recur-method

Details

When comparing models fitted by maximum likelihood to the same data, the smaller the AIC, the
better the fit. A friendly warning will be thrown out if the numbers of observation were different in
the model comparison. help(AIC, stats) for other details.

Value

If just one object is provided, a numeric value representing calculated AIC. If multiple objects are
provided, a data frame with rows corresponding to the objects and columns df and AIC, where df
means degree of freedom, which is the number of parameters in the fitted model.

See Also
rateReg for model fitting; summary, rateReg-method for summary of a fitted model; BIC, rateReg-method

for BIC.

Examples

See examples given in function rateReg.

as.character,Recur-method
Convert An Recur Object to A Character Vector

Description

Summarize and convert the recurrent episodes for each subjects into character strings.

Usage
S4 method for signature 'Recur’
as.character(x, ...)

Arguments
X An Recur object.

Other arguments for future usage.

Details

This function is intended to be a helper function for the ‘show()‘ method of ‘Recur‘ objects. To be
precise, the function set the maximum number of recurrent episodes for each subject to be ‘max(2L,
as.integer(getOption("reda.Recur.maxPrint")))‘. By default, at most three recurrent episodes will be
summarized for printing. When subjects having more than three recurrent episodes, the first ‘getOp-
tion("reda.Recur.maxPrint") - 1° number of recurrent episodes and the last one will be summarized.
One may use ‘options()‘ to adjust the setting. For example, the default value is equivalent to ‘op-
tions(reda.Recur.maxPrint = 3)°.

baseRate 5

baseRate Estimated Baseline Rate Function

Description

An S4 class generic function that returns the estimated baseline rate function.

Usage

baseRate(object, ...)

S4 method for signature 'rateReg'

baseRate(object, level = 0.95, control = list(), ...)
Arguments
object An object used to dispatch a method.

Other arguments for future usage.

level An optional numeric value indicating the confidence level required. The default
value is 0.95.

control An optional list to specify the time grid where the baseline rate function is es-
timated. The availble elements of the control list include grid, length.out,
from and to. The time grid can be directly specified via element grid. A dense
time grid is suggested. Element 1ength. out represents the length of grid points.
The dafault value is 1,000. Element from means the starting point of grid with
default 0. Element to represnts the endpoint of grid with the right boundary
knot as default. When grid is missing, the grid will be generated by seq (from
package base) with arguments from, to and length.out.

Value

A baseRate object.

Functions

¢ baseRate,rateReg-method: Estiamted baseline rate from a fitted model.

See Also
rateReg for model fitting; summary, rateReg-method for summary of a fitted model; plot,baseRate.rateReg-method

for ploting method.

Examples

See examples given in function rateReg.

6 BIC,rateReg-method

baseRate.rateReg-class
An 84 Class Representing Estimated Baseline Rate Function

Description
An 54 class that represents the estimated baseline rate function from model. The function baseRate
produces objects of this class.

Slots

baseRate A data frame.

level A numeric value.

See Also

baseRate, rateReg-method

BIC,rateReg-method Bayesian Information Criterion (BIC)

Description

BIC, rateReg-method is an S4 class method calculating Bayesian information criterion (BIC) or
so-called Schwarz’s Bayesian criterion (SBC) for one or several rateReg objects, according to the
formula - 2 * log-likelihood + In(nObs) * nPar, where nPar represents the number of parameters in
the fitted model and nObs is the number of observations.

Usage
S4 method for signature 'rateReg'’
BIC(object, ...)

Arguments
object An object used to dispatch a method.

More fitted model objects.

Details

When comparing models fitted by maximum likelihood to the same data, the smaller the BIC, the
better the fit. help(BIC, stats) for other details.

check Recur 7

Value
If just one object is provided, a numeric value representing calculated BIC. If multiple objects are

provided, a data frame with rows corresponding to the objects and columns df and BIC, where df
means degree of freedom, which is the number of parameters in the fitted model.

See Also

rateReg for model fitting; summary, rateReg-method for summary of a fitted model; AIC, rateReg-method
for AIC.

Examples

See examples given in function rateReg.

check_Recur Checks for Recurrent Event Data

Description

Perform several checks for recurrent event data and update object attributions if some rows of the
contained data (in the .Data slot) have been removed by such as na.action.

Usage
check_Recur(x, check = c("hard”, "soft", "none"))
Arguments
X An Recur object.
check A character value specifying how to perform the checks for recurrent event data.
Errors or warnings will be thrown, respectively, if the check is specified to be
"hard" (by default) or "soft". If check = "none" is specified, no data checking
procedure will be run.
Value

An Recur object invisibly.

8 confint,rateReg-method

coef, rateReg-method Estimated Coefficients of Covariates

Description

coef, rateReg-method is an S4 class method that extracts estimated coefficients of covariates from
rateReg object produced by function rateReg.

Usage
S4 method for signature 'rateReg'
coef(object, ...)

Arguments
object A rateReg object.

Other arguments for future usage.

Value

A named numeric vector.

See Also
rateReg for model fitting; confint, rateReg-method for confidence intervals for covariate coeffi-

cients; summary, rateReg-method for summary of a fitted model.

Examples

See examples given in function rateReg.

confint,rateReg-method
Confidence Intervals for Covariate Coefficients

Description

confint,rateReg-method is an S4 class method for rateReg object, which returns approximate
confidence intervals for all or specified covariates.

Usage

S4 method for signature 'rateReg'
confint(object, parm, level = 0.95, ...)

is.Recur 9

Arguments
object A rateReg object.
parm A specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.
level An optional numeric value to specify the confidence level required. By default,
the value is 0.95, which produces 95% confidence intervals.
Other arguments for future usage.
Details

Under regularity condition (Shao 2003, Theorem 4.16 and Theorem 4.17, page 287, 290), the ap-
proximate confidence intervals are constructed loosely based on Fisher information matrix and es-
timates of coefficients.

Value

A numeric matrix with row names and column names.

References
Shao, J. (2003), Mathematical statistics, Springer texts in statistics, New York: Springer, 2nd Edi-
tion.

See Also
rateReg for model fitting; coef,rateReg-method for point estimates of covariate coefficients;

summary, rateReg-method for summary of a fitted model.

Examples

See examples given in function rateReg.

is.Recur Is the xect from the Recur class?

Description

Return TRUE if the specified xect is from the Recur class, FALSE otherwise.

Usage

is.Recur(x)

Arguments

X An R xect.

10 mcf

Value

A logical value.

mcf Mean Cumulative Function (MCF)

Description

An S4 class generic function that returns the mean cumulative function (MCF) estimates from a
fitted model or returns the nonparametric MCF estimates (by Nelson-Aalen estimator or Cook-
Lawless cumulative sample mean estimator) from the sample data.

Usage

mcf(object, ...)

S4 method for signature 'formula'
mcf (

object,

data,

subset,

na.action,

variance = c("LawlessNadeau”, "Poisson”, "bootstrap”, "CSV", "none"),

logConfInt = FALSE,

adjustRiskset = TRUE,

level = 0.95,

control = 1list(),

)

S4 method for signature 'rateReg'
mcf (

object,

newdata,

groupName,

groupLevels,

level = 0.95,

na.action,

control = list(),

Arguments

object An object used to dispatch a method.

Other arguments for future usage.

mcf

data

subset

na.action

variance

logConfInt

adjustRiskset

level

control

11

A data frame, list or environment containing the variables in the model. If not
found in data, the variables are taken from environment (formula), usually the
environment from which the function is called.

An optional vector specifying a subset of observations to be used in the fitting
process.

A function that indicates what should the procedure do if the data contains NAs.
The default is set by the na.action setting of options. The "factory-fresh" de-
fault is na.omit. Other possible values inlcude na.fail, na.exclude, and
na.pass. help(na.fail) for details.

A character specifying the method for variance estimates. The available options
are "LawlessNadeau” (the default) for Lawless and Nadeau (1995) method,
"Poisson” for Poisson process method, "bootstrap” for bootstrap method,
"CSV" for variance estimates of the corresponding cumulative sample mean
function (CSM) by the cumulative sample variance method (Cook and Lawless,
2007), and "none" for no variance estimates. Partial matching on the names is
allowed.

A logical value. If FALSE (the default), the confidence interval are constructed
based on the normality of the MCF estimates. Otherwise, the confidence inter-
vals of given level are constucted based on the normality of logarithm of the
MCEF estimates.

A logical value indicating whether to adjust the size of risk-set. If TRUE by
default, the size of risk-set will be adjusted based on at-risk indicators and
Nelson-Aalen estimator will be returned. Otherwise, the cumulative sample
mean (CSM) function given by Cook and Lawless (2007) will be returned with-
out adjustment on size of risk-set.

An optional numeric value indicating the confidence level required. The default
value is 0.95.

An optional named list specifying other options. For rateReg object, it can be
used to specify the time grid where the MCF is estimated. The available named
elements are given as follows:

e grid: The time grid where MCF is estimated. A dense grid is suggested
for further using the plot method.
* length.out: The length of grid points. The dafault value is 1,000.
* from: The starting point of grid. The default value is the left boundary
knots (for rateReg object).
* to: The endpoint of grid. The default value is the right boundary knots (for
rateReg object).
The option length.out, from, to will be ignored if grid is specified directly.
Otherwise, the grid will be generated by function seq. int with specified from,
to and length.out.
For formula method, the available named elements are given as follows:
* B: The number of bootstrap replicates for using bootstrap method for vari-
ance estimates of sample MCF estimates. The default value is 200.

* se.method: The method used for SE estimates for bootstrap. The available
methods include "sample.se” (the default) and "normality"”. The former

12 mcf

takes the sample SE of point estimates from bootstrap samples; The latter
estimates SE based on interquantile and normality assumption.

e ci.method: The method used for confidence interval (CI) for bootstrap.
The available options include "normality” (the default) and "percentile”.
The former estimates the CI based on SE estimates and normality assump-
tion; The latter takes percentiles of the bootstrap estimates.

* keep.data: A logical value specifying whether to keep the processed data
in the output object. If TRUE (the default), the processed data will be kept in
the output and available for later usage. Otherwise, an empty data frame ob-
ject will be returned in the data slot. FALSE may be set when the memory
consumption is of concern and we only need MCF estimates. For exam-
ple, the function mcfDiff and mcfDiff.test will not be applicable for the
mcf . formula object with an empty data slot.

verbose: A logical value. The default value is TRUE. If FALSE, possible data
checking messages (not including warnings or errors) will be suppressed.

newdata An optional data frame. If specified, the data frame should have the same col-
umn names as the covariate names appearing in the formula of original fitting.

groupName An optional length-one charactor vector to specify the name for grouping each
unique row in newdata, such as "gender" for "male" and "female". The default
value is "Group".

groupLevels An optional charactor vector to specify the levels for each unique row in newdata,
such as "treatment" and "control". The default values are "Level” followed by
a numeric sequence with length of number of levels.

Details

For formula object with Recur object as response, the covariate specified at the right hand side of
the formula should be either 1 or any "linear" conbination of categorical variable in the data. The
former computes the overall sample MCF. The latter computes the sample MCF for each level of
the combination of the categorical variable(s) specified, respectively.

The MCEF estimates are computed on each unique time point of the sample data. By default, the size
of risk set is adjusted over time based on the at-risk indicators, which results in the Nelson-Aalen
nonparametric estimator (Nelson 2003). If the size of risk set remains a constant (total number of
processes) over time (specified by adjustRiskset = FALSE), the cumulative sample mean (CSM)
function introduced in Chapter 1 of Cook and Lawless (2007) will be computed instead. The point
estimate of sample MCF at each time point does not assume any particular underlying model. The
variance estimates at each time point is computed following the Lawless and Nadeau method (Law-
Less and Nadeau 1995), the Poisson process method, or the bootstrap methods. The approximate
confidence intervals are provided as well, which are constructed based on the asymptotic normality
of the MCF itself (by default) or the logarithm of MCF.

For rateReg object, mcf estimates the baseline MCF and its confidence interval at each time grid if
argument newdata is not specified. Otherwise, mcf estimates MCF and its confidence interval for
the given newdata based on Delta-method.

Value

A mcf.formula or mcf.rateReg object.

mcf

13

A brief description of the slots of a mcf. formula object is given as follows:

formula: Model Formula.

data: Processed data based on the model formula or an empty data frame if keep.data is set
to be FALSE.

MCF: A data frame containing estimates for sample MCF.
origin: Time origins.

multiGroup: A logical value indicating whether MCF is estimated for different groups re-
spectively.

logConfInt: A logical value indicating whether the variance estimates are based on the nor-
mality of logarithm of the MCF estimates.

level: Confidence level specified.

Most slots of amcf. rateReg object are inherited from the input rateReg object. A brief description
of other slots is given as follows:

newdata: Given dataset used to estimate MCF.
MCF: A data frame containing MCF estimates.
level: Confidence level specified.
na.action: The way handling missing values.
control: The control list.

multiGroup: A logical value indicating whether MCF is estimated for different groups re-
spectively.

Functions

mcf, formula-method: Sample MCF from data.
mcf, rateReg-method: Estimated MCF from a fitted model.

References

Cook, R. J., and Lawless, J. (2007). The statistical analysis of recurrent events, Springer Science &
Business Media.

Lawless, J. F. and Nadeau, C. (1995). Some Simple Robust Methods for the Analysis of Recurrent
Events. Technometrics, 37, 158—168.

Nelson, W. B. (2003). Recurrent Events Data Analysis for Product Repairs, Disease Recurrences,
and Other Applications (Vol. 10). STAM.

See Also

rateReg for model fitting; mcfDiff for comparing two-sample MCFs. plot-method for plotting

MCE

14 mcf

Examples

library(reda)

sample MCF

Example 1. valve-seat data

the default variance estimates by Lawless and Nadeau (1995) method

valveMcf@ <- mcf(Recur(Days, ID, No.) ~ 1, data = valveSeats)

plot(valveMcf@, conf.int = TRUE, mark.time = TRUE, addOrigin = TRUE) +
ggplot2::xlab("Days") + ggplot2::theme_bw()

variance estimates following Poisson process model
valveMcf1 <- mcf(Recur(Days, ID, No.) ~ 1,
data = valveSeats, variance = "Poisson”)
variance estimates by bootstrap method (with 1,000 bootstrap samples)
set.seed(123)
valveMcf2 <- mcf(Recur(Days, ID, No.) ~ 1,
data = valveSeats, variance = "bootstrap”,
control = list(B = 200))

comparing the variance estimates from different methods
library(ggplot2)
ciDat <- rbind(cbind(valveMcf@@MCF, Method = "Lawless & Nadeau"),
cbind(valveMcf1@MCF, Method = "Poisson"),
cbind(valveMcf2@MCF, Method = "Bootstrap"”))
ggplot(ciDat, aes(x = time, y = se)) +
geom_step(aes(color = Method, linetype = Method)) +
xlab("Days"”) + ylab("SE estimates”) + theme_bw()

comparing the confidence interval estimates from different methods
ggplot(ciDat, aes(x = time)) +
geom_step(aes(y = MCF)) +
geom_step(aes(y = lower, color = Method, linetype = Method)) +
geom_step(aes(y = upper, color = Method, linetype = Method)) +
xlab("Days") + ylab(”"Confidence intervals”) + theme_bw()

Example 2. the simulated data
simuMcf <- mcf(Recur(time, ID, event) ~ group + gender,
data = simuDat, ID %in% 1 : 50)
plot(simuMcf, conf.int = TRUE, 1ty =1 : 4,
legendName = "Treatment & Gender")

estimate MCF difference between two groups

one sample MCF object of two groups

mcf@ <- mcf(Recur(time, ID, event) ~ group, data = simuDat)
two-sample pseudo-score tests

mcfDiff.test(mcf0)

difference estimates over time

mcf@_diff <- mcfDiff(mcf@, testVariance = "none")
plot(mcfo_diff)

or explicitly ask for the difference of two sample MCF

mcf.formula-class 15

mcf1 <- mcf(Recur(time, ID, event) ~ 1, data = simuDat,
subset = group %in% "Contr")
mcf2 <- mcf(Recur(time, ID, event) ~ 1, data = simuDat,
subset = group %in% "Treat")
perform two-sample tests and estimate difference at the same time
mcf12_diff1 <- mcfDiff(mcf1, mcf2)
mcf12_diff2 <- mcf1 - mcf2 # or equivalently using the ‘-‘ method
stopifnot(all.equal(mcf12_diff1, mcf12_diff2))
mcf12_diff1
plot(mcf12_diff1)

For estimated MCF from a fitted model,
see examples given in function rateReg.

mcf.formula-class An S4 Class Representing Sample MCF

Description

An S4 class that represents sample mean cumulative function (MCF) from data. The function mcf
produces objects of this class.

Slots

formula Formula.

data A data frame.

MCF A data frame.

origin A named numeric vector.
multiGroup A logical value.
variance A character vector.
logConfInt A logical value.

level A numeric value.

See Also

mcf, formula-method.

16 mctDiff

mcf.rateReg-class An S84 Class Respresenting Estimated MCF from a Fitted Model

Description

An S4 class that represents estimated mean cumulative function (MCF) from Models. The function
mcf produces objects of this class.

Slots

call Function call.

formula Formula.

spline A character.

knots A numeric vector.

degree A nonnegative integer.
Boundary.knots A numeric vector.
newdata A numeric matrix.

MCF A data frame.

level A numeric value between 0 and 1.
na.action A length-one character vector.
control A list.

multiGroup A logical value.

See Also

mcf, rateReg-method

mcfDiff Comparing Two-Sample MCFs

Description

This function estimates the sample MCF difference between two groups. Both the point estimates
and the confidence intervals are computed (Lawless and Nadeau 1995). The two-sample pseudo-
score test proposed by Cook, Lawless, and Nadeau (1996) is also performed by default.

Usage
mcfDiff(mcf1, mcf2 = NULL, level = 0.95, ...)

mcfDiff.test(

mcf1,
mcf2 = NULL,
testVariance = c("robust”, "Poisson”, "none"),

mctDiff 17

Arguments
mcf1 A mcf. formula object representing the MCF for one or two groups.
mcf2 An optional second mcf. formula object or NULL.
level A numeric value indicating the confidence level required. The default value is

0.95.
Other arguments passed to mcfDiff. test.

testVariance A character string specifying the method for computing the variance estimate for
the pseudo-score test statistic proposed by Cook, Lawless, and Nadeau (1996).
The applicable options include "robust” (default) for an estimate robust to de-
partures from Poisson assumptions, "Poisson” for an estimate for Poisson pro-
cess, and "none” for not performing any test (if only the difference estimates
are of interest in mcfDiff).

Details

The function mcfDiff estimates the two-sample MCFs’ difference and internally calls function
mcfDiff.test to perform the pseudo-score tests by default. A - method is available as a simple
wrapper for the function mcfDiff for comparing two-sample MCFs from two mcf . formula objects.
For instance, suppose mcf1 and mcf2 are mef . formula objects, each of which represents the sample
MCEF estimates for one group. The function call mcf1 -mcf2 is equivalent to mcfDiff (mcf1,mcf2).

The null hypothesis of the two-sample pseudo-score test is that there is no difference between the
two sample MCFs, while the alternative hypothesis suggests a difference. The test is based on
a family of test statistics proposed by Lawless and Nadeau (1995). The argument testVariance
specifies the method for computing the variance estimates of the test statistics under different model
assumption. See the document of argument testVariance for all applicable options. For the
variance estimates robust to departures from Poisson process assumption, both constant weight
and the linear weight function (with scaling) suggested in Cook, Lawless, and Nadeau (1996) are
implemented. The constant weight is powerful in cases where the two MCFs are approximately
proportional to each other. The linear weight function is originally a(u) = t -u, where u represents
the time variable and t is the first time point when the risk set of either group becomes empty. It is
further scaled by 1 / t for test statistics invariant to the unit of measurement of the time variable.
The linear weight function puts more emphasis on the difference at earily times than later times
and is more powerful for cases where the MCFs are no longer proportional to each other, but not
crossing. Also see Cook and Lawless (2007, Section 3.7.5) for more details.

Value
The function mcfDiff returns a mcfDiff object (of S4 class) that contains the following slots:

e call: Function call.

* MCF: Estimated Mean cumulative function Difference at each time point.
* origin: Time origins of the two groups.

* variance: The method used for variance estimates.

* logConfInt: A logical value indicating whether normality is assumed for 1og (MCF) instead
of MCF itself. For mcfDiff object, it is always FALSE.

* level: Confidence level specified.

18 mctDiff-class

* test: AmcfDiff.test object for the hypothesis test results.

The function mcfDiff. test returns amcfDiff. test object (of S4 class) that contains the following
slots:
* .Data: A numeric matrix (of two rows and five columns) for hypothesis testing results.

* testVariance: A character string (or vector of length one) indicating the method used for the
variance estimates of the test statistic.

References

Lawless, J. F., & Nadeau, C. (1995). Some Simple Robust Methods for the Analysis of Recurrent
Events. Technometrics, 37(2), 158—168.

Cook, R. J., Lawless, J. F., & Nadeau, C. (1996). Robust Tests for Treatment Comparisons Based
on Recurrent Event Responses. Biometrics, 52(2), 557-571.

Cook, R. J., & Lawless, J. (2007). The Statistical Analysis of Recurrent Events. Springer Science
& Business Media.

Examples

See examples given for function mcf.

mcfDiff-class An S4 Class Representing Sample MCF Difference

Description

An S4 class that represents the difference between two sample mean cumulative functions from
data. The function mcfDiff produces objects of this class.

Slots

call A function call.

MCF A data frame.

origin A named numeric vector.
variance A character vector.
logConfInt A logical value.
level A numeric value.

test AmcfDiff.test class object.

See Also
mcfDiff

mcftDiff.test-class 19

mcfDiff.test-class An S4 Class Representing the Two-Sample Pseudo-Score Test Results

Description
An S4 class that represents the results of the two-sample pseudo-score tests between two sample
mean cumulative functions. The function mcfDiff. test produces objects of this class.

Slots

.Data A numeric matrix.

testVariance A character vector.

See Also

mcfDiff. test

parametrize Parametrizations of Covariates and Covariate Coefficients

Description

This function helps the parametrizations of covariates and covariate coeffcients when users specify
a general hazard rate function in function simEvent and simEventData. It applies the specified
function (or the built-in option) FUN to the 7., row of the covariate matrix z and the ¢, row of the
coefficient matrix, iteratively, for ¢ from one to the number of rows of the covariate matrix z.

Usage
parametrize(z, zCoef, FUN = c("exponential”, "linear"”, "excess"), ...)
Arguments
z A numeric matrix, each row of which represents the covariate vector at one
perticular time point.
zCoef A numeric matrix, each row of which represents the covariate coeffcient vector
at one perticular time point.
FUN The parametrization of the model parameter(s) with covariates and covariate

n n

coefficients. The built-in options include "exponential”, "linear”, "excess”
for parametrization in the exponential, linear, excess relative risk model form,
respectively. It can also be a function that at least has argument z and zCoef for
incorporating the covariates and covariate coefficients into the model. The user-
specified function should expect that both the input z and zCoef are numeric
vectors and return a numeric value (or can be convected to a numeric value by
as.numeric).

Other arguments that can be passed to the function FUN.

20

Value

A numeric vector.

See Also

simEvent

Examples

time points

timeVec <- ¢(0.5, 2)
time-variant covariates

zMat <- cbind(0.5, ifelse(timeVec > 1, 1, 0))
time-varying coefficients

zCoefMat <- cbind(sin(timeVec), timeVec)

plot-method

the following three ways are equivalent for the exponential form,

where the first one (using the built-in option) has the best performance
parametrize(zMat, zCoefMat, FUN = "exponential”)

parametrize(zMat, zCoefMat, function(z, zCoef) exp(z %*% zCoef))

sapply(1 : 2, function(i) as.numeric(exp(zMat[i, 1 %*% zCoefMat[i, 1)))

plot-method

Plot Baseline Rate or Mean Cumulative Function (MCF)

Description

S4 class methods plotting sample MCF from data, estimated MCF, or estimated baseline hazard rate
function from a fitted model by using ggplot2 plotting system. The plots generated are thus able
to be further customized properly.

Usage

S4 method for signature 'mcf.formula,missing'’

plot(
X)
Y,
lty,
col,
legendName,
legendLevels

’

conf.int = FALSE,

mark.time =
addOrigin

FALSE,
FALSE,

plot-method 21

S4 method for signature 'mcf.rateReg,missing’
plot(x, y, conf.int = FALSE, 1lty, col, ...)

S4 method for signature 'baseRate.rateReg,missing'’
plot(x, y, conf.int = FALSE, lty, col, ...)

S4 method for signature 'mcfDiff,missing'
plot(

X)

Y,

1ty,

col,

legendName,

legendLevels,

conf.int = TRUE,

addOrigin = FALSE,

)
Arguments

X An object used to dispatch a method.

y An argument that should be missing and ignored now. Its existence is just for sat-
isfying the definition of generaic function plot in package graphics for meth-
ods’ dispatching.

1ty An optional numeric vector indicating line types specified to different groups:
0 = blank, 1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 =
twodash.

col An optional character vector indicating line colors specified to different groups.

legendName An optional length-one charactor vector to specify the name for grouping each

unique row in newdata, such as "gender" for "male" and "female". The default
value is generated from the object.

legendLevels An optional charactor vector to specify the levels for each unique row in newdata,
such as "treatment" and "control". The default values are generated from the

object.

conf.int A logical value indicating whether to plot confidence interval. The default value
is FALSE.

mark.time A logical value with default value FALSE. If TRUE, each censoring time is marked

by "+" on the MCF curves. Otherwise, the censoring time would not be marked.

addOrigin A logical value indicating whether the MCF curves start from origin time. The
default value is FALSE.

Other arguments for further usage.

Value

A ggplot object.

22 rateReg

See Also

mcf for estimation of MCF; rateReg for model fitting.

Examples

See examples given in function mcf and rateReg.

rateReg Recurrent Events Regression Based on Counts and Rate Function

Description

This function fits recurrent event data (event counts) by gamma frailty model with spline rate func-
tion. The default model is the gamma frailty model with one piece constant baseline rate function,
which is equivalent to negative binomial regression with the same shape and rate parameter in the
gamma prior. Spline (including piecewise constant) baseline hazard rate function can be specified
for the model fitting.

Usage

rateReg(
formula,
data,
subset,
df = NULL,
knots = NULL,
degree = 0oL,
na.action,
spline = c("bSplines”, "mSplines”),
start = list(),
control = 1list(),
contrasts = NULL,

)
Arguments

formula Recur object produced by function Recur. The terminal events and risk-free
episodes specified in Recur will be ignored since the model does not support
them.

data An optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment (formula), usu-
ally the environment from which function rateReg is called.

subset An optional vector specifying a subset of observations to be used in the fitting

process.

rateReg 23

df An optional nonnegative integer to specify the degree of freedom of baseline
rate function. If argument knots or degree are specified, df will be neglected
whether it is specified or not.

knots An optional numeric vector that represents all the internal knots of baseline rate
function. The default is NULL, representing no any internal knots.

degree An optional nonnegative integer to specify the degree of spline bases.

na.action A function that indicates what should the procedure do if the data contains NAs.

The default is set by the na.action setting of options. The "factory-fresh" de-
fault is na.omit. Other possible values inlcude na.fail, na.exclude, and
na.pass. help(na.fail) for details.

spline An optional character that specifies the flavor of splines. The possible option is
bSplines for B-splines or mSplines for M-splines.

start An optional list of starting values for the parameters to be estimated in the
model. See more in Section details.

control An optional list of parameters to control the maximization process of negative
log likelihood function and adjust the baseline rate function. See more in Section
details.

contrasts An optional list, whose entries are values (numeric matrices or character strings

naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.
See contrasts.arg of model.matrix.default for details.

Other arguments for future usage.

Details

Function Recur in the formula response by default first checks the dataset and will report an error
if the dataset does not fall into recurrent event data framework. Subject’s ID will be pinpointed if
its observation violates any checking rule. See Recur for all the checking rules.

Function rateReg first constructs the design matrix from the specified arguments: formula, data,
subset, na.action and constrasts before model fitting. The constructed design matrix will be
checked again to fit the recurrent event data framework if any observation with missing covariates
is removed.

The model fitting process involves minimization of negative log likelihood function, which calls
function constrOptim internally. help(constrOptim) for more details.

The argument start is an optional list that allows users to specify the initial guess for the param-
eter values for the minimization of negative log likelihood function. The available numeric vector
elements in the list include

* beta: Coefficient(s) of covariates, set to be all 0.1 by default.
* theta: Parameter in Gamma(theta, 1/ theta) for frailty random effect, set to be 0.5 by default.
* alpha: Coefficient(s) of baseline rate function, set to be all 0.05 by default.
The argument control is an optional list that allows users to control the process of minimization
of negative log likelihood function passed to constrOptim and specify the boundary knots of base-

line rate function. The available options additional to those that can be passed from control to
constrOptim include

24 rateReg

* Boundary.knots: A length-two numeric vector to specify the boundary knots for baseline
rate funtion. By default, the left boundary knot is the smallest origin time and the right one
takes the largest censoring time from data.

» verbose: A optional logical value with default TRUE. Set it to be FALSE to supress any possible
message from this function.

Value

A rateReg object, whose slots include

e call: Function call of rateReg.
» formula: Formula used in the model fitting.
¢ nObs: Number of observations.

e spline: A list contains

spline: The name of splines used.

knots: Internal knots specified for the baseline rate function.

Boundary.knots: Boundary knots specified for the baseline rate function.

degree: Degree of spline bases specified in baseline rate function.

— df: Degree of freedom of the model specified.

* estimates: Estimated coefficients of covariates and baseline rate function, and estimated rate
parameter of gamma frailty variable.

* control: The control list specified for model fitting.

* start: The initial guess specified for the parameters to be estimated.

* na.action: The procedure specified to deal with missing values in the covariate.
* xlevels: A list that records the levels in each factor variable.

* contrasts: Contrasts specified and used for each factor variable.

» convergCode: code returned by function optim, which is an integer indicating why the opti-
mization process terminated. help(optim) for details.

* logl: Log likelihood of the fitted model.

e fisher: Observed Fisher information matrix.

References

Fu, H., Luo, J., & Qu, Y. (2016). Hypoglycemic events analysis via recurrent time-to-event (HEART)
models. Journal Of Biopharmaceutical Statistics, 26(2), 280-298.

See Also

summary, rateReg-method for summary of fitted model; coef, rateReg-method for estimated co-
variate coefficients; confint,rateReg-method for confidence interval of covariate coefficients;
baseRate, rateReg-method for estimated coefficients of baseline rate function; mcf, rateReg-method
for estimated MCF from a fitted model; plot,mcf.rateReg-method for plotting estimated MCF.

rateReg

Examples

library(reda)

constant rate function
(constFit <- rateReg(Recur(time, ID, event) ~ group + x1, data = simuDat))

six pieces' piecewise constant rate function

(piecesFit <- rateReg(Recur(time, ID, event) ~ group + x1,
data = simuDat, subset = ID %in% 1:50,
knots = seq.int(28, 140, by = 28)))

fit rate function with cubic spline
(splineFit <- rateReg(Recur(time, ID, event) ~ group + x1, data = simuDat,
knots = c(56, 84, 112), degree = 3))

more specific summary
summary (constFit)
summary (piecesFit)
summary (splineFit)

model selection based on AIC or BIC
AIC(constFit, piecesFit, splineFit)
BIC(constFit, piecesFit, splineFit)

estimated covariate coefficients
coef (piecesFit)
coef(splineFit)

confidence intervals for covariate coefficients
confint(piecesFit)

confint(splineFit, "x1", 0.9)

confint(splineFit, 1, 0.975)

estimated baseline rate function
splinesBase <- baseRate(splineFit)
plot(splinesBase, conf.int = TRUE)

estimated baseline mean cumulative function (MCF) from a fitted model
piecesMcf <- mcf(piecesFit)
plot(piecesMcf, conf.int = TRUE, col = "blueviolet")

estimated MCF for given new data

newDat <- data.frame(x1 = rep(@, 2), group = c("Treat”, "Contr"))

splineMcf <- mcf(splineFit, newdata = newDat, groupName = "Group",
groupLevels = c("Treatment”, "Control”))

plot(splineMcf, conf.int = TRUE, 1ty = c(1, 5))

example of further customization by ggplot2
library(ggplot2)
plot(splineMcf) +
geom_ribbon(aes(x = time, ymin = lower,
ymax = upper, fill = Group),

25

26 rateReg-class

data = splineMcf@MCF, alpha = 0.2) +
xlab("Days")

rateReg-class An §4 Class Representing a Fitted Model

Description

The class rateReg is an S4 class that represents a fitted model. The function rateReg produces
objects of this class. See “Slots” for details.

Slots

call Function call.

formula Formula.

nObs A positive integer

spline A list.

estimates A list.

control A list.

start A list.

na.action A character vector (of length one).
xlevels A list.

contrasts A list.

convergCode A nonnegative integer.
loglL A numeric value.

fisher A numeric matrix.

See Also

rateReg

Recur

27

Recur

Formula Response for Recurrent Event Data

Description

Create an S4 class object that represents formula response for recurrent event data with optional
checking procedures embedded.

Usage
Recur(
time,
id,
event,
terminal,
origin,
check = c("hard”, "soft", "none"),
)
Arguments

time A numerical vector representing the time of reccurence event or censoring, or
a list with elements named "time1"” and "time2" for specifying the follow-up
of recurrent events. In the latter case, function %to% (or %2%) can be used for
ease of typing. In addition to numeric values, Date and difftime are allowed
and converted to numeric values. An error will be thrown if this argument is not
specified.

id Subject identificators. It can be numeric vector, character vector, or a factor
vector. If it is left unspecified, Recur will assume that each row represents a
subject.

event A numeric vector that may represent the status, costs, or types of the recurrent
events. Logical vector is allowed and converted to numeric vector. Non-positive
values are internally converted to zero indicating censoring status.

terminal A numeric vector that may represent the status, costs, or types of the terminal
events. Logival vector is allowed and converted to numeric vector. Non-positive
values are internally converted to zero indicating censoring status. If a scalar
value is specified, all subjects will have the same status of terminal events at
their last recurrent episodes. The length of the specified terminal should be
equal to the number of subjects, or number of data rows. In the latter case, each
subject may have at most one positive entry of terminal at the last recurrent
episode.

origin The time origin of each subject. If a scalar value is specified, all subjects will

have the same origin at the specified value. The length of the specified origin
should be equal to the number of subjects, or number of data rows. In the latter
case, different subjects may have different origins. However, one subject must

28 Recur-class

have the same origin. In addition to numeric values, Date and difftime are
also supported and converted to numeric values.

check A character value specifying how to perform the checks for recurrent event data.
Errors or warnings will be thrown, respectively, if the check is specified to be
"hard" (by default) or "soft". If check = "none" is specified, no data checking
procedure will be run.

Other arguments for future usage. A warning will be thrown if any invalid argu-
ment is specified.

Details

This is a successor function of the deprecated function Survr. See the vignette by ‘vignette('"reda-
Recur")* for details.

Value

An Recur object.

Examples

library(reda)

with(valveSeats, Recur(Days, ID))

with(valveSeats, Recur(Days, ID, No.))
with(valveSeats, Recur(Days, ID, No., terminal = 1))
with(valveSeats, Recur(Days, ID, No., origin = 10))

Recur-class An 84 Class Representing Formula Response for Recurrent Event Data

Description

The class Recur is an S4 that represents a formula response for recurrent event data model. The
function Recur produces objects of this class. See “Slots” for details.

Slots

.Data A numeric matrix that consists of the following columns:
e timel: the beginning of time segements;
e time2: the end of time segements;
¢ id: Identificators of subjects;
* event: Event indicators;
* : terminal: Indicators of terminal events.
call A function call producing the object.
ID A character vector for unique original identificators of subjects.

ord An integer vector for increasingly ordering data by id, time2, and -event. Sorting is often
done in the model-fitting steps, where the indices stored in this slot can be used directly.

Recur-to 29

rev_ord An integer vector for reverting the ordering of the sorted data (by ord) to its original
ordering. This slot is provided to easily revert the sorting.

first_idx An integer vector indicating the first record of each subject in the sorted matrix. It
helps in the data checking produce and may be helpful in model-fitting step, such as getting
the origin time.

last_idx An integer vector indicating the last record of each subject in the sorted data. Similar to
first_idx, it helps in the data checking produce and may be helpful in the model-fitting step,
such as locating the terminal events.

check A character string indicating how the data checking is performed. It just records the option
that users specified on data checking.

time_class A character vector preserving the class(es) of input times.

See Also

Recur

Recur-to Recurrent Episodes

Description

Specify time segements or recurrent episodes by endpoints.

Usage

timel %to% time2

timel %2% time2

Arguments
timel The left end-points of the recurrent episodes.
time2 The right end-points of the recurrent episodes.
Details

This function is intended to be used for specifying the argument time in function Recur.

Value

A list that consists of two elements named "time1"” and "time2".

30

show-method

show-method

Show an object.

Description

S4 class methods that display objects produced from this package (similar to S3 class print meth-

ods).

Usage

S4 method
show(object)

S4 method
show(object)

S4 method
show(object)

S4 method
show(object)

S4 method
show(object)

S4 method
show(object)

S4 method
show(object)

S4 method
show(object)

S4 method
show(object)

Arguments

object

for signature

for signature

for signature

for signature

for signature

for signature

for signature

for signature

for signature

An object used to dispatch a method.

'Recur’

'rateReg'

'summary.rateReg'

"summary.Recur'

"'mcf . formula

'mcf.rateReg

'simEvent'

'mcfDiff’

'mcfDiff. test'

simEvent

31

simEvent

Simulated Survival times or Recurrent Events

Description

The function simEvent generates simulated recurrent events or survival time (the first event time)
from one stochastic process. The function simEventData provides a simple wrapper that calls
simEvent internally and collects the generated survival data or recurrent events into a data frame.
More examples are available in one of the package vignettes in addition to the function documenta-

tion.
Usage
simEvent(
z =0,
zCoef = 1,
rho = 1,
rhoCoef =1,
origin = 0,
endTime = 3,
frailty = 1,
recurrent = TRUE,
interarrival = "rexp",
relativeRisk = c("exponential”, "linear"”, "excess"”, "none"),
method = c(”"thinning”, "inversion”),
arguments = list(),
)
simEventData(nProcess = 1, z = @, origin = @, endTime = 3, frailty =1, ...)
Arguments
z Time-invariant or time-varying covariates. The default value is @ for no covariate
effect. This argument should be a numeric vector for time-invariant covariates
or a function of times that returns a numeric matrix for time-varying covariates,
where each row represents the covariate vector at one perticular time point.
zCoef Time-invariant or time-varying coefficients of covariates. The default value is
1. Similar to the argument z, this argument should be a numeric vector for
time-invariant coefficients or a function of times that returns a numeric matrix
for time-varying coefficients, where each row represents the coefficient vector
at one perticular time point. The dimension of the z and zCoef (either specified
or generated) has to match with each other.
rho Baseline rate (or intensity) function for the Poisson process. The default is 1

for a homogenous process of unit intensity. This argument can be either a non-
negative numeric value for a homogenous process or a function of times for a

32

rhoCoef

origin

endTime

frailty

recurrent

interarrival

relativeRisk

simEvent

non-homogenous process. In the latter case, the function should be able to take
a vector of time points and return a numerical matrix (or vector) with each row
representing the baseline hazard rate vector (or scalar value) at each time point.

Coefficients of baseline rate function. The default value is 1. It can be useful
when rho is a function generating spline bases.

The time origin set to be @ by default. It should be either a numeric value less
than endTime or a function that returns such a numeric value.

The end of follow-up time set to be 3 by default. Similar to origin, endTime
should be either a numeric value greater than origin or a function that returns
such a numeric value.

A positive number or a function for frailty effect. The default value is 1 for no
frailty effect. Other positive value can be specified directly for a shared frailty ef-
fect within a cluster. Similar to z, zCoef, and rho, a function can be specified for
other distribution of the frailty effect. The specified function should randomly
return a positive numeric value. The functions that generate random numbers
following a certain distribution from stats package can be directly used. The
arguments of the function can be specified through a list named frailty in
arguments. For example, if we consider Gamma distribution with mean one
as the distribution of frailty effect, we may specify frailty = "rgamma”. The
shape and scale parameter needs to be specified through a list named frailty
in arguments, such as arguments = list(frailty = list(shape = 2,scale =
0.5)).

A logical value with default value TRUE indicating whether to generate recurrent
event data or survival data.

A function object for randomly generating (positive) interarrival time between
two successive arrivals/events. The default value is "rexp” (i.e., function stats:
for generating interarrival times following exponential distribution, which leads
to a Poisson process. If the assumption of exponential interarrival times cannot
be justified, we may consider a renewal process, (a generalization of Poisson
process), in which interarrival times between events independently follows an
identical distribution. A customized function can be specified in this case. It
must have at least one argument named rate for the expected number of ar-
rivals/events in unit time and returns one positive numerical value. If the func-
tion contains an argument named n, it is assumed that the function returns n
interarrival times in one function call to possibly speed up the random number
generation procedure. Other arguments can be specified through a named list
inside arguments.

Relateive risk function for incorporating the covariates and the covariate coeffi-
cients into the intensity function. The applicable choices include exponential
(the default) for the regular Cox model or Andersen-Gill model, 1inear for lin-
ear model (including an intercept term), excess for excess model, and none for
not incorporating the covariates through a relative risk function. A customized
function can be specified. The specified function must have at least one ar-
gument named z for the covariate vector and another argument named zCoef
for covariate coefficient vector. The function should return a numeric value for
given z vector and zCoef vector. Other arguments can be specified through a
named list inside arguments.

:rexp)

simEvent 33

method A character string specifying the method for generating simulated recurrent or
survival data. The default method is thinning method (Lewis and Shedler 1979).
Another available option is the inversion method (Cinlar 1975). When the rate
function may go to infinite, the inversion method is used and a warning will be
thrown out if the thinning method is initially specified.

arguments A list that consists of named lists for specifying other arguments in the corre-
sponding functions. For example, if a function of time named foo with two argu-
ments, x (for time) and y, is specified for the time-varying covariates, the value
of its second argument, y, can be specified by arguments = 1list(z = list(y =
1). A partial matching on names is not allowed to avoid possible misspecifica-
tion. The input arguments will be evaluated within function simEvent, which
can be useful for randomly setting function parameters for each process in func-
tion simEventData. See examples and vignettes for details.

Additional arguements passed from function simEventData to fucntion simEvent.
For function simEvent, ... is not used.

nProcess Number of stochastic processes. If missing, the value will be the number of row
of the specified matrix z. Otherwise, a positive number should be speicified.

Details

For each process, a time-invariant or time-varying baseline hazard rate (intensity) function of failure
can be specified. Covariates and their coefficients can be specified and incorporated by the specified
relative risk functions. The default is the exponential relative risk function, which corresponds to
the Cox proportional hazard model (Cox 1972) for survival data or Andersen-Gill model (Andersen
and Gill 1982) for recurrent events. Other relative risk function can be specified through the argu-
ment relativeRisk. In addition, a frailty effect can be considered. Conditional on predictors (or
covariates) and the unobserved frailty effect, the process is by default a Poisson process, where the
interarrival times between two successive arrivals/events follow exponential distribution. A general
renewal process can be specified through interarrival for other distributions of the interarrival
times in addition to the exponential distribution.

The thinning method (Lewis and Shedler 1979) is applied for bounded hazard rate function by
default. The inversion method (Cinlar 1975) is also available for possibly unbounded but integrable
rate function over the given time period. The inversion method will be used when the rate function
may go to infinite and a warning will be thrown out if the thinning method is specified originally.

For the covariates z, the covariate coefficients zCoef, and the baseline hazard rate function rho, a
function of time can be specified for time-varying effect. The first argument of the input function
has to be the time variable (not need to be named as "time" though). Other arguments of the function
can be specified through a named list in arguments, while the first argument should not be specified.

For the frailty effect frailty, the starting point origin, and the end point of the process endTime,
functions that generate random numbers can be specified. An argument n =1 will be implicitly
specified if the function has an argument named n, which is designed for those common functions
generating random numbers from stats package. Similar to z, zCoef, and rho, other arguments of
the function can be specified through a named list in arguments.

For time-varying covariates, the function simEventData assumes covariates can be observed only
at event times and censoring times. Thus, covariate values are returned only at these time points. If
we want other observed covariate values to be recorded, we may write a simple wrapper function
for simEvent similar to simEventData.

34 simEvent

Value

The function simEvent returns a simEvent S4 class object and the function simEventData returns
adata.frame.

References

Andersen, P. K., & Gill, R. D. (1982). Cox’s regression model for counting processes: A large
sample study. The annals of statistics, 10(4), 1100-1120.

Cinlar, Erhan (1975). Introduction to stochastic processes. Englewood Cliffs, NJ: Printice-Hall.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society.
Series B (Methodological), 34(2), 187-220.

Lewis, P. A., & G. S. Shedler. (1979). Simulation of Nonhomogeneous Poisson Processes by
Thinning. Naval Research Logistics Quarterly, 26(3), Wiley Online Library: 403—13.

Examples

library(reda)
set.seed(123)

time-invariant covariates and coefficients
one process

simEvent(z = c(0.5, 1), zCoef = c(1, 0))
simEvent(z = 1, zCoef = 0.5, recurrent = FALSE)

simulated data

simEventData(z = c(0.5, 1), zCoef = c(1, @), endTime = 2)
simEventData(z = cbind(rnorm(3), 1), zCoef = c(1, 0))
simEventData(z = matrix(rnorm(5)), zCoef = 0.5, recurrent = FALSE)

time-varying covariates and time-varying coefficients
zFun <- function(time, intercept) {

cbind(time / 10 + intercept, as.numeric(time > 1))
3
zCoefFun <- function(x, shift) {

cbind(sgrt(x + shift), 1)
3
simEvent(z = zFun, zCoef = zCoefFun,

arguments = list(z = list(intercept = 0.1),
zCoef = list(shift = 0.1)))

same function of time for all processes
simEventData(3, z = zFun, zCoef = zCoefFun,
arguments = list(z = list(intercept
zCoef = list(shift

0.1),
0.1)))

same function within one process but different between processes
use quote function in the arguments
simDat <- simEventData(3, z = zFun, zCoef = zCoefFun,

arguments = list(

simEvent 35

z = list(intercept = quote(rnorm(1) / 10)),
zCoef = list(shift = 0.1)
))
check the intercept randomly generated,
which should be the same within each ID but different between IDs.
unique(with(simDat, cbind(ID, intercept = round(X.1 - time / 10, 6))))

non-negative time-varying baseline hazard rate function
simEvent(rho = function(timeVec) { sin(timeVec) + 1 })
simEventData(3, origin = rnorm(3), endTime = rnorm(3, 5),
rho = function(timeVec) { sin(timeVec) + 1 })
specify other arguments
simEvent(z = c(rnorm(1), rbinom(1, 1, @.5)) / 10,
rho = function(a, b) { sin(a + b) + 1 3},
arguments = list(rho = list(b = 0.5)))
simEventData(z = cbind(rnorm(3), rbinom(3, 1, ©.5)) / 10,
rho = function(a, b) { sin(a + b) + 1 3},
arguments = list(rho = list(b = 0.5)))

quadratic B-splines with one internal knot at "time = 1"
(using function 'bSpline' from splines2 package)
simEvent(rho = splines2::bSpline, rhoCoef = c(0.8, 0.5, 1, 0.6),
arguments = list(rho = list(degree = 2, knots =1,
intercept = TRUE,
Boundary.knots = c(0, 3))))

frailty effect

Gamma distribution with mean one

simEvent(z = c(0.5, 1), zCoef = c(1, @), frailty = rgamma,
arguments = list(frailty = list(shape = 2, scale = 0.5)))

lognormal with mean zero (on the log scale)

set.seed(123)

simEvent(z = c(0.5, 1), zCoef = c(1, @), frailty = "rlnorm”,
arguments = list(frailty = list(sdlog = 1)))

or equivalently

set.seed(123)

logNorm <- function(a) exp(rnorm(n = 1, mean = @, sd = a))

simEvent(z = c(0.5, 1), zCoef = c(1, @), frailty = logNorm,
arguments = list(frailty = list(a = 1)))

renewal process
interarrival times following uniform distribution
rUnif <- function(n, rate, min) runif(n, min, max = 2 / rate)
simEvent(interarrival = rUnif,
arguments = list(interarrival = list(min = 0)))

interarrival times following Gamma distribution with scale one
set.seed(123)
simEvent(interarrival = function(n, rate) rgamma(n, shape = 1 / rate))

36 simEvent-class

or equivalently
set.seed(123)
simEvent(interarrival = function(rate) rgamma(n = 1, shape = 1 / rate))

relative risk functioin
set.seed(123)
simEvent(relativeRisk = "linear")
or equivalently
rriskFun <- function(z, zCoef, intercept) {

as.numeric(z %*% zCoef) + intercept
3
set.seed(123)
simEvent(relativeRisk = rriskFun,

arguments = list(relativeRisk = list(intercept = 1)))

simEvent-class An S§4 Class for Simulated Recurrent Event or Survival Times

Description

An S4 class that represents the simulated recurrent event or survival time from one stochastic pro-
cess. The function simEvent produces objects of this class.

Slots

.Data A numerical vector of possibly length zero.
call A function call.

z Alist.

zCoef A list.

rho A list.

rhoCoef A numerical vector.
frailty A list.

origin A list.

endTime A list.

censoring A list.
recurrent A logical vector.
interarrival A list.
relativeRisk A list.

method A character vector.

See Also

simEvent

simuDat 37

simuDat Simulated Sample Dataset for Demonstration

Description
A simulated data frame with covariates named ID, time, event, group, x1, and gender, where

* ID: Subjects identification;

* time: Event or censoring time;

e event: Event indicator, 1 = event, 0 = censored;
* group: Treatment group indicator;

* x1: Continuous variable.

* gender: Gender of subjects.

Format

A data frame with 500 rows and 6 variables.

Details

The sample dataset is originally simulated by the thinning method developed by Lewis and Shedler
(1979) and further processed for a better demonstration purpose. See Fu et al. (2016) for details
also.

References

Lewis, P. A., & Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by thin-
ning. Naval Research Logistics Quarterly, 26(3), 403-413.

Fu, H., Luo, J., & Qu, Y. (2016). Hypoglycemic events analysis via recurrent time-to-event (HEART)
models. Journal Of Biopharmaceutical Statistics, 26(2), 280-298.

summary, rateReg-method
Summarizing a Fitted Model

Description

Summary of estimated coefficients of covariates, rate function bases, and estimated rate parameter
of frailty random variable, etc.

Usage

S4 method for signature 'rateReg'
summary (object, showCall = TRUE, showKnots = TRUE, ...)

38 summary,Recur-method

Arguments
object A rateReg object.
showCall A logic value with dafault TRUE, indicating whether function show prints out
the original call information of rateReg. It may be helpful for a more concise
printout.
showKnots A logic value with default TRUE, indicating whether function show prints out the
internal and boundary knots. Similar to argument showCall, It may be helpful
for a more concise printout.
Other arguments for future usage.
Details

summary,rateReg-method returns a summary . rateReg object, whose slots include

* covarCoef: Estimated covariate coefficients.
* frailtyPar: Estimated rate parameter of gamma frailty.

¢ baseRateCoef: Estimated coeffcients of baseline rate function.

For the meaning of other slots, see rateReg.

Value

summary.rateReg object

See Also

rateReg for model fitting; coef,rateReg-method for point estimates of covariate coefficients;
confint,rateReg-method for confidence intervals of covariate coeffcients; baseRate, rateReg-method
for coefficients of baseline rate function.

Examples

See examples given in function rateReg.

summary,Recur-method Summarize an Recur object

Description

Summarize an Recur object

Usage

S4 method for signature 'Recur’
summary (object, ...)

summary.rateReg-class 39

Arguments
object An Recur object.
Other arguments not used.
Value

summary .Recur object.

summary.rateReg-class An S4 Class Representing Summary of a Fitted Model

Description

The class summary.rateReg is an S4 class with selective slots of rateReg object. See “Slots” for
details. The function summary, rateReg-method produces objects of this class.

Slots

call Function call.

spline A character.

knots A numeric vector.
Boundary.knots A numeric vector.
covarCoef A numeric matrix.
frailtyPar A numeric matrix.
degree A nonnegative integer.
baseRateCoef A numeric matrix.

loglL A numeric value.

See Also

summary, rateReg-method

40 Survr

summary .Recur-class An S84 Class for Summarized Recur Object

Description

An S4 Class for Summarized Recur Object

Slots

call A function call.

sampleSize An integer representing the sample size (number of subjects).

reSize An integer representing the number of recurrent events.

avgReSize A numeric value representing the average number of recurrent events per subject.
propTem A numeric value representing the proportion of subjects having terminal event.
medFU A numeric value for median follow-up time.

medTem A numeric value for median survival time of the terminal events.

Survr Formula Response for Recurrent Event Data

Description

Create an S4 class that represents formula response for recurrent event data modeled by methods
based on counts and rate function. Note that the function is deprecated since version 0.5.0 and will
be removed in future.

Usage
Survr(ID, time, event, origin = @, check = TRUE, ...)
Arguments
ID Subject identificators. It can be numeric vector, character vector, or a factor
vector.
time Time of reccurence event or censoring. In addition to numeric values, Date and
difftime are supported and converted to numeric values.
event A numeric vector indicating failure cost or event indicator taking positive values
as costs (1 as events), and non-positive values as censoring. Logical vector is
allowed and will be converted to numeric vector.
origin The time origin of each subject or process. In addition to numeric values, Date

and difftime are also supported and converted to numeric values. Different
subjects may have different origins. However, one subject must have the same
origin.

Survr-class 41

check A logical value suggesting whether to perform data checking procedure. The
default value is TRUE. FALSE should be set with caution and only for processed
data already in recerruent event data framework.

Other arguments for future usage.

Details

This is a similar function to Survr in package survrec but with a more considerate checking pro-
cedure embedded for recurrent event data modeled by methods based on counts and rate function.
The checking rules apply to each subject respectively and include that

* Subject identification, event times, censoring time, and event indicator cannot be missing or
contain missing values.
* There has to be only one censoring time not earlier than any event time.

* The time origin has to be the same and not later than any event time.

Survr-class An S84 Class Representing Formula Response

Description

The class Survr is an S4 that represents a formula response for recurrent event data model. The
function Survr produces objects of this class. See “Slots” for details.

Slots

.Data A numeric matrix object.
ID A charactrer vector for original subject identificator.
check A logical value indicating whether to performance data checking.

ord An integer vector for increasingly ordering data by ID, time, and 1 -event.

See Also

Survr

42 valveSeats

valveSeats Valve Seats Dataset

Description

Valve seats wear out in certain diesel engines, each with 16 valve seats. The dataset served as
an example of recurrence data in Nelson (1995), which consists of valve-seat replacements on 41
engines in a fleet. The covariates are named ID, Days, and No., where

* ID: The engine number;
* Days: Engine age in days;
* No.: Event indicator, 1’ for a valve-seat replacement and, 0’ for the censoring age of an

engine.

Format

A data frame with 89 rows and 3 variables.

References
Nelson, W. (1995), Confidence Limits for Recurrence Data-Applied to Cost or Number of Product
Repairs, Technometrics, 37, 147-157.

Index

-,mcf.formula,mcf.formula-method
(mcfDiff), 16

%2% (Recur-to), 29

%to% (Recur-to), 29

AIC,rateReg-method, 3
as.character,Recur-method, 4

baseRate, 5, 6
baseRate,rateReg-method (baseRate), 5
baseRate.rateReg-class, 6
BIC,rateReg-method, 6

check_Recur, 7
coef,rateReg-method, 8
confint,rateReg-method, 8
constrOptim, 23

is.Recur, 9

mcf, 10, 15, 16, 22

mcf, formula-method (mcf), 10
mcf, rateReg-method (mcf), 10
mcf.formula-class, 15
mcf.rateReg-class, 16
mcfDiff, 13, 16, 18
mcfDiff-class, 18

mcfDiff. test, 19
mcfDiff.test-class, 19

optim, 24

parametrize, 19

plot,baseRate.rateReg,missing-method
(plot-method), 20

plot,baseRate.rateReg-method
(plot-method), 20

plot,mcf.formula,missing-method
(plot-method), 20

plot,mcf.formula-method (plot-method),
20

43

plot,mcf.rateReg,missing-method
(plot-method), 20
plot,mcf.rateReg-method (plot-method),
20
plot,mcfDiff,missing-method
(plot-method), 20
plot,mcfDiff-method (plot-method), 20
plot-method, 20

rateReg, 4, 5, 7-9, 13, 22, 22, 26, 38
rateReg-class, 26

Recur, 9, 12,22, 23,27, 28, 29
Recur-class, 28

Recur-to, 29

reda-package, 3

show,mcf. formula-method (show-method),
30

show,mcf.rateReg-method (show-method),
30

show, mcfDiff-method (show-method), 30

show,mcfDiff.test-method (show-method),
30

show, rateReg-method (show-method), 30

show, Recur-method (show-method), 30

show, simEvent-method (show-method), 30

show, summary . rateReg-method
(show-method), 30

show, summary.Recur-method
(show-method), 30

show, summaryRateReg-method
(show-method), 30

show-method, 30

simEvent, 31, 36

simEvent-class, 36

simEventData (simEvent), 31

simuDat, 37

summary, rateReg-method, 37

summary,Recur-method, 38

summary.rateReg-class, 39

44 INDEX

summary .Recur-class, 40
Survr, 40, 41
Survr-class, 41

valveSeats, 42

	reda-package
	AIC,rateReg-method
	as.character,Recur-method
	baseRate
	baseRate.rateReg-class
	BIC,rateReg-method
	check_Recur
	coef,rateReg-method
	confint,rateReg-method
	is.Recur
	mcf
	mcf.formula-class
	mcf.rateReg-class
	mcfDiff
	mcfDiff-class
	mcfDiff.test-class
	parametrize
	plot-method
	rateReg
	rateReg-class
	Recur
	Recur-class
	Recur-to
	show-method
	simEvent
	simEvent-class
	simuDat
	summary,rateReg-method
	summary,Recur-method
	summary.rateReg-class
	summary.Recur-class
	Survr
	Survr-class
	valveSeats
	Index

