Package 'refund'

April 16, 2022
Type Package
Title Regression with Functional Data
Version 0.1-26
Date 2022-04-16
Depends R (>= 3.00.0)
Imports fda, Matrix, lattice, boot, mgcv (>= 1.8-23), MASS, magic, nlme, gamm4, lme4, RLRsim, splines, grpreg, ggplot2, stats, pbs, methods
Suggests RColorBrewer, reshape2, testthat
Description Methods for regression for functional data, including function-on-scalar, scalar-on-function, and function-on-function regression. Some of the functions are applicable to image data.
License GPL (>= 2)
LazyLoad yes
LazyData true
Repository CRAN
Collate 'Omegas.R' 'af.R' 'af_old.R' 'amc.R' 'ccb.fpc.R' 'create.prep.func.R' 'coefficients.pfr.R' 'dt_basis.R' 'irreg2mat.R' 'fbps.R' 'fgam.R' 'fosr.R' 'fosr.perm.R' 'fosr.perm.fit.R' 'fosr.perm.test.R' 'fosr.vs.R' 'fosr2s.R' 'fpc.R' 'fpca2s.R' 'fpca.sc.R' 'fpca.face.R' 'fpca.ssvd.R' 'fpcr.R' 'fpcr.setup.R' 'lf.R' 'lf_old.R' 'lf.vd.R' 'lofocv.R' 'lpeer.R' 'lpfr.R' 'quadWeights.R' 'lw.test.R' 'osplinepen2d.R' 'parse.predict.pfr.R' 'peer.R' 'peer_old.R' 'pffr-ff.R' 'pffr-ffpc.R' 'pffr-methods.R' 'pffr-pcre.R' 'pffr-robust.R' 'pffr-sff.R' 'pffr-utilities.R' 'pffr.R' 'pfr.R' 'pfr_old.R' 'pi_basis.R' 'plot.fosr.R' 'plot.fosr.perm.R' 'plot.fosr.vs.R' 'plot.fpcr.R' 'plot.lpeer.R' 'plot.peer.R' 'plot.pfr.R' 'poridge.R' 'postprocess.pfr.R' 'predict.fgam.R' 'predict.fosr.R' 'predict.pfr.R' 'predict.pfr_old.R' 'preprocess.pfr.R' 'pspline.setting.R' 'pwcv.R' 'summary.pfr.R'

```
're.R' 'rlrt.pfr.R' 'vis.fgam.R' 'predict.fosr.vs.R'
'CD4-data.R' 'DTI-data.R' 'DTI2-data.R' 'PEER.Sim-data.R'
'gasoline-data.R' 'vis.pfr.R' 'GLS_CS.R' 'Gibbs_CS_FPCA.R'
'Gibbs_CS_Wish.R' 'Gibbs_Mult_FPCA.R' 'Gibbs_Mult_Wish.R'
'OLS_CS.R' 'VB_CS_FPCA.R' 'VB_CS_Wish.R' 'VB_Mult_FPCA.R'
'VB_Mult_Wish.R' 'XtSiginvX.R' 'bayes_fosr.R' 'f_sum.R'
'f_sum2.R' 'f_sum4.R' 'f_trace.R' 'mfpca.sc.R' 'mfpca.face.R'
'face.Cov.mfpca.R' 'fpca.lfda.R' 'predict.fbps.R'
'select_knots.R'
```

RoxygenNote 7.1.2

Encoding UTF-8

NeedsCompilation no
Author Jeff Goldsmith [aut],
Fabian Scheipl [aut],
Lei Huang [aut],
Julia Wrobel [aut, cre],
Chongzhi Di [aut],
Jonathan Gellar [aut],
Jaroslaw Harezlak [aut],
Mathew W. McLean [aut],
Bruce Swihart [aut],
Luo Xiao [aut],
Ciprian Crainiceanu [aut],
Philip T. Reiss [aut],
Yakuan Chen [ctb],
Sonja Greven [ctb],
Lan Huo [ctb],
Madan Gopal Kundu [ctb],
So Young Park [ctb],
David L. Miller [ctb],
Ana-Maria Staicu [ctb],
Erjia Cui [ctb],
Ruonan Li [ctb]
Maintainer Julia Wrobel julia.wrobel@cuanschutz.edu
Date/Publication 2022-04-16 17:30:02 UTC

R topics documented:

refund-package 5
af 5
af_old 8
bayes_fosr 10
ccb.fpc 12
cd4 14
cmdscale_lanczos 15
coef.pffr 16
R topics documented: 3
coefboot.pffr 18
coefficients.pfr 19
create.prep.func 21
DTI 22
DTI2 23
expand.call 24
fbps 24
ff 27
ffpc 29
ffpcplot 31
fgam 32
fosr 34
fosr.perm 38
fosr.vs 41
forr2s 43
fpc 45
fpca.face 48
fpca.lfda 51
fpca.sc 57
fpca.ssvd 61
fpca2s 64
fpcr 66
f_sum 70
f_sum2 71
f_sum4 72
f_trace 72
gasoline 73
gibbs_cs_fpca 73
gibbs_cs_wish 75
gibbs_mult_fpca 76
gibbs_mult_wish 77
gls_cs 79
If 80
lf.vd 82
lf_old 85
lpeer 87
lpfr 91
mfpca.face 94
mfpca.sc 96
model.matrix.pffr 98
ols_cs 99
pco_predict_preprocess 100
pcre 101
peer 103
PEER.Sim 105
peer_old 106
pffr 109
pffr.check 113
pffrGLS 114
pffrSim 116
pfr 117
pfr_old 119
plot.fosr 125
plot.fosr.vs 126
plot.fper 127
plot.lpeer 128
plot.peer 129
plot.pffr 130
plot.pfr 131
predict.fbps 132
predict.fgam 134
predict.fosr 135
predict.fosr.vs 137
Predict.matrix.dt.smooth 138
Predict.matrix.fpc.smooth 139
Predict.matrix.pcre.random.effect 139
Predict.matrix.peer.smooth 140
Predict.matrix.pi.smooth 141
predict.pffr 141
predict.pfr 143
print.summary.pffr 144
pwev 145
qq.pffr 147
quadWeights 148
re 148
refund-internal 149
residuals.pffr 149
rllt.pfr 150
sff 153
smooth.construct.dt.smooth.spec 154
smooth.construct.fpc.smooth.spec 156
smooth.construct.pco.smooth.spec 158
smooth.construct.pcre.smooth.spec 160
smooth.construct.peer.smooth.spec 161
smooth.construct.pi.smooth.spec 162
smooth.construct.pss.smooth.spec 164
sofa 165
summary.pffr 166
summary.pfr 166
vb_cs_fpca 167
vb_cs_wish 168
vb_mult_fpca 169
vb_mult_wish 170
vis.fgam 172
vis.pfr 174
Xt_siginv_X 176

Index

```
refund-package Regression with Functional Data
```


Description

Methods for regression with functional data. Various approaches to regression with scalar responses and functional predictors are implemented by pfr, peer, lpeer and fpcr. For regression with functional responses, see pffr, fosr, and fosr2s.

Details

For a complete list of functions type library (help=refund).

Author(s)

Authors: Jeff Goldsmith jeff.goldsmith@columbia.edu, Fabian Scheipl <fabian. scheipl@stat.uni-muenchen.de>, Lei Huang huangracer@gmail.com, Julia Wrobel jw3134@cumc.columbia.edu, Jonathan Gellar <jgellar1@jhu. edu>, Jaroslaw Harezlak, Mathew W. McLean <mathew.w.mclean@gmail. com>, Bruce Swihart bswihart@jhsph.edu, Luo Xiao lxiao@jhsph.edu, Ciprian Crainiceanu ccrainic@jhsph.edu, Philip Reiss phil.reiss@nyumc.org.
Contributors: Yakuan Chen, Sonja Greven, Lan Huo, Madan Gopal Kundu, Ana-Maria Staicu, David L. Miller, So Young Park
Maintainer: Lei Huang huangracer@gmail.com
af Construct an FGAM regression term

Description

Defines a term $\int_{T} F\left(X_{i}(t), t\right) d t$ for inclusion in an mgcv: :gam-formula (or bam or gamm or gamm 4 : : : gamm) as constructed by pfr , where $F(x, t)$ is an unknown smooth bivariate function and $X_{i}(t)$ is a functional predictor on the closed interval T. See smooth. terms for a list of bivariate basis and penalty options; the default is a tensor product basis with marginal cubic regression splines for estimating $F(x, t)$.

Usage

af $($
X ,
argvals = NULL,
xind = NULL,
basistype = c("te", "t2", "s"),
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,

```
    presmooth = NULL,
    presmooth.opts = NULL,
    Xrange = range(X, na.rm = T),
    Qtransform = FALSE,
)
```


Arguments

$X \quad$ functional predictors, typically expressed as an N by J matrix, where N is the number of columns and J is the number of evaluation points. May include missing/sparse functions, which are indicated by NA values. Alternatively, can be an object of class "fd"; see fd.
argvals indices of evaluation of X, i.e. $\left(t_{i 1}, ., t_{i J}\right)$ for subject i. May be entered as either a length-J vector, or as an N by J matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject. If NULL, defaults to an equally-spaced grid between 0 or 1 (or within $X \$$ basis $\$$ rangeval if X is a fd object.)
xind same as argvals. It will not be supported in the next version of refund.
basistype defaults to "te", i.e. a tensor product spline to represent $F(x, t)$ Alternatively, use " s " for bivariate basis functions (see s) or " $t 2$ " for an alternative parameterization of tensor product splines (see t2)
integration method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann".
$\mathrm{L} \quad$ an optional N by ncol (argvals) matrix giving the weights for the numerical integration over t. If present, overrides integration.
presmooth string indicating the method to be used for preprocessing functional predictor prior to fitting. Options are fpca.sc, fpca.face, fpca.ssvd, fpca.bspline, and fpca. interpolate. Defaults to NULL indicateing no preprocessing. See create.prep. func.
presmooth.opts list including options passed to preprocessing method create.prep.func.
Xrange numeric; range to use when specifying the marginal basis for the x-axis. It may be desired to increase this slightly over the default of range (X) if concerned about predicting for future observed curves that take values outside of range (X)
Qtransform logical; should the functional be transformed using the empirical cdf and applying a quantile transformation on each column of X prior to fitting?
... optional arguments for basis and penalization to be passed to the function indicated by basistype. These could include, for example, "bs", "k", "m", etc. See te or s for details.

Value

A list with the following entries:
call
a "call" to te (or s, t2) using the appropriately constructed covariate and weight matrices.
argvals the argvals argument supplied to af
L the matrix of weights used for the integration
xindname the name used for the functional predictor variable in the formula used by mgcv
tindname the name used for argvals variable in the formula used by mgcv
Lname the name used for the L variable in the formula used by mgcv
presmooth the presmooth argument supplied to af
Xrange the Xrange argument supplied to af
prep.func a function that preprocesses data based on the preprocessing method specified in presmooth. See create. prep. func

Author(s)

Mathew W. McLean mathew.w.mclean@gmail.com, Fabian Scheipl, and Jonathan Gellar

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23 (1), pp. 249-269. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

See Also

pfr, lf, mgcv's linear.functional.terms, pfr for examples

Examples

```
## Not run:
data(DTI)
## only consider first visit and cases (no PASAT scores for controls)
DTI1 <- DTI[DTI$visit==1 & DTI$case==1,]
DTI2 <- DTI1[complete.cases(DTI1),]
## fit FGAM using FA measurements along corpus callosum
## as functional predictor with PASAT as response
## using 8 cubic B-splines for marginal bases with third
## order marginal difference penalties
## specifying gamma > 1 enforces more smoothing when using
## GCV to choose smoothing parameters
fit1 <- pfr(pasat ~ af(cca, k=c(8,8), m=list(c(2,3), c(2,3)),
                    presmooth="bspline", bs="ps"),
    method="GCV.Cp", gamma=1.2, data=DTI2)
plot(fit1, scheme=2)
vis.pfr(fit1)
## af term for the cca measurements plus an lf term for the rcst measurements
## leave out 10 samples for prediction
test <- sample(nrow(DTI2), 10)
fit2 <- pfr(pasat ~ af(cca, k=c(7,7), m=list(c(2,2), c(2,2)), bs="ps",
    presmooth="fpca.face") +
```

```
            lf(rcst, k=7, m=c(2,2), bs="ps"),
            method="GCV.Cp", gamma=1.2, data=DTI2[-test,])
par(mfrow=c(1,2))
plot(fit2, scheme=2, rug=FALSE)
vis.pfr(fit2, select=1, xval=.6)
pred <- predict(fit2, newdata = DTI2[test,], type='response', PredOutOfRange = TRUE)
sqrt(mean((DTI2$pasat[test] - pred)^2))
## Try to predict the binary response disease status (case or control)
## using the quantile transformed measurements from the rcst tract
## with a smooth component for a scalar covariate that is pure noise
DTI3 <- DTI[DTI$visit==1,]
DTI3 <- DTI3[complete.cases(DTI3$rcst),]
z1 <- rnorm(nrow(DTI3))
fit3 <- pfr(case ~ af(rcst, k=c(7,7), m = list(c(2, 1), c(2, 1)), bs="ps",
                    presmooth="fpca.face", Qtransform=TRUE) +
                            s(z1, k = 10), family="binomial", select=TRUE, data=DTI3)
par(mfrow=c(1,2))
plot(fit3, scheme=2, rug=FALSE)
abline(h=0, col="green")
# 4 versions: fit with/without Qtransform, plotted with/without Qtransform
fit4 <- pfr(case ~ af(rcst, k=c(7,7), m = list(c(2, 1), c(2, 1)), bs="ps",
            presmooth="fpca.face", Qtransform=FALSE) +
            s(z1, k = 10), family="binomial", select=TRUE, data=DTI3)
par(mfrow=c(2,2))
zlms <- c(-7.2,4.3)
plot(fit4, select=1, scheme=2, main="QT=FALSE", zlim=zlms, xlab="t", ylab="rcst")
plot(fit4, select=1, scheme=2, Qtransform=TRUE, main="QT=FALSE", rug=FALSE,
    zlim=zlms, xlab="t", ylab="p(rcst)")
plot(fit3, select=1, scheme=2, main="QT=TRUE", zlim=zlms, xlab="t", ylab="rcst")
plot(fit3, select=1, scheme=2, Qtransform=TRUE, main="QT=TRUE", rug=FALSE,
    zlim=zlms, xlab="t", ylab="p(rcst)")
vis.pfr(fit3, select=1, plot.type="contour")
## End(Not run)
```

af_old Construct an FGAM regression term

Description

Defines a term $\int_{T} F\left(X_{i}(t), t\right) d t$ for inclusion in an mgcv: : gam-formula (or bam or gamm or gamm4: : : gamm) as constructed by fgam, where $F(x, t) \$$ is an unknown smooth bivariate function and $X_{i}(t)$ is a functional predictor on the closed interval T. Defaults to a cubic tensor product B -spline with marginal second-order difference penalties for estimating $F(x, t)$. The functional predictor must be fully observed on a regular grid

Usage

```
af_old(
    X ,
    argvals \(=\operatorname{seq}(0,1,1=\operatorname{ncol}(X))\),
    xind \(=\) NULL,
    basistype = c("te", "t2", "s"),
    integration = c("simpson", "trapezoidal", "riemann"),
    \(\mathrm{L}=\mathrm{NULL}\),
    splinepars = list(bs = "ps", k = c(min(ceiling(nrow(X)/5), 20),
        \(\min (c e i l i n g(n c o l(X) / 5), 20)), m=\operatorname{list}(c(2,2), c(2,2)))\),
    presmooth = TRUE,
    Xrange = range (X) ,
    Qtransform = FALSE
)
```


Arguments

X
argvals matrix (or vector) of indices of evaluations of $X_{i}(t)$; i.e. a matrix with i th row $\left(t_{i 1}, ., t_{i J}\right)$
$\begin{array}{ll}\text { xind } & \text { Same as argvals. It will discard this argument in the next version of refund. } \\ \text { basistype } & \text { defaults to "te", i.e. a tensor product spline to represent } F(x, t) \text { Alternatively, }\end{array}$ use " s " for bivariate basis functions (see s) or "t2" for an alternative parameterization of tensor product splines (see t2)
integration method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann". "riemann" integration is always used if L is specified
$\mathrm{L} \quad$ optional weight matrix for the linear functional
splinepars optional arguments specifying options for representing and penalizing the function $F(x, t)$. Defaults to a cubic tensor product B -spline with marginal secondorder difference penalties, i.e. list(bs="ps", $m=\operatorname{list}(c(2,2), c(2,2))$, see te or s for details
presmooth logical; if true, the functional predictor is pre-smoothed prior to fitting; see smooth.basisPar
Xrange numeric; range to use when specifying the marginal basis for the x-axis. It may be desired to increase this slightly over the default of range (X) if concerned about predicting for future observed curves that take values outside of range (X)
Qtransform logical; should the functional be transformed using the empirical cdf and applying a quantile transformation on each column of X prior to fitting? This ensures Xrange $=c(0,1)$. If Qtransform=TRUE and presmooth=TRUE, presmoothing is done prior to transforming the functional predictor

Value

A list with the following entries:

1. call - a "call" to te (or s, t2) using the appropriately constructed covariate and weight matrices.
2. argvals - the argvals argument supplied to af
3. L the matrix of weights used for the integration xindname the name used for the functional predictor variable in the formula used by mgcv. tindname - the name used for argvals variable in the formula used by mgcv Lname - the name used for the L variable in the formula used by mgcv presmooth - the presmooth argument supplied to af Qtranform - the Qtransform argument supplied to af Xrange - the Xrange argument supplied to af ecdflist - a list containing one empirical cdf function from applying ecdf to each (possibly presmoothed) column of X. Only present if Qtransform=TRUE Xfd - an fd object from presmoothing the functional predictors using smooth. basisPar. Only present if presmooth=TRUE. See fd.

Author(s)

Mathew W. McLean mathew.w.mclean@gmail.com and Fabian Scheipl

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23 (1), pp. 249-269. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

See Also

fgam, lf, mgcv's linear.functional.terms, fgam for examples

$$
\text { bayes_fosr } \quad \text { Bayesian Function-on-scalar regression }
$$

Description

Wrapper function that implements several approaches to Bayesian function- on-scalar regression. Currently handles real-valued response curves; models can include subject-level random effects in a multilevel framework. The residual curve error structure can be estimated using Bayesian FPCA or a Wishart prior. Model parameters can be estimated using a Gibbs sampler or variational Bayes.

Usage

bayes_fosr(formula, data = NULL, est.method = "VB", cov.method = "FPCA", ...)

Arguments

formula a formula indicating the structure of the proposed model. Random intercepts are designated using re().
data an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.

est.method	method used to estimate model parameters. Options are "VB", "Gibbs", and
"GLS" with "VB" as default. Variational Bayes is a fast approximation to the	
full posterior and often provides good point estimates, but may be unreliable for	
inference. "GLS" doesn't do anything Bayesian - just fits an unpenalized GLS	
estimator for the specified model.	

Author(s)

Jeff Goldsmith ajg2202@cumc.columbia.edu

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.

Examples

```
## Not run:
library(reshape2)
library(dplyr)
library(ggplot2)
##### Cross-sectional real-data examples #####
## organize data
data(DTI)
DTI = subset(DTI, select = c(cca, case, pasat))
DTI = DTI[complete.cases(DTI),]
DTI$gender = factor(sample(c("male","female"), dim(DTI)[1], replace = TRUE))
DTI$status = factor(sample(c("RRMS", "SPMS", "PPMS"), dim(DTI)[1], replace = TRUE))
## fit models
default = bayes_fosr(cca ~ pasat, data = DTI)
VB = bayes_fosr(cca ~ pasat, data = DTI, Kp = 4, Kt = 10)
Gibbs = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "Gibbs", cov.method = "Wishart",
    N.iter = 500, N.burn = 200)
OLS = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "OLS")
GLS = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "GLS")
## plot results
models = c("default", "VB", "Gibbs", "OLS", "GLS")
intercepts = sapply(models, function(u) get(u)$beta.hat[1,])
slopes = sapply(models, function(u) get(u)$beta.hat[2,])
plot.dat = melt(intercepts); colnames(plot.dat) = c("grid", "method", "value")
```

```
ggplot(plot.dat, aes(x = grid, y = value, group = method, color = method)) +
    geom_path() + theme_bw()
plot.dat = melt(slopes); colnames(plot.dat) = c("grid", "method", "value")
ggplot(plot.dat, aes(x = grid, y = value, group = method, color = method)) +
    geom_path() + theme_bw()
## fit a model with an interaction
fosr.dti.interaction = bayes_fosr(cca ~ pasat*gender, data = DTI, Kp = 4, Kt = 10)
##### Longitudinal real-data examples #####
data(DTI2)
class(DTI2$cca) = class(DTI2$cca)[-1]
DTI2 = subset(DTI2, select = c(cca, id, pasat))
DTI2 = DTI2[complete.cases(DTI2),]
default = bayes_fosr(cca ~ pasat + re(id), data = DTI2)
VB = bayes_fosr(cca ~ pasat + re(id), data = DTI2, Kt = 10, cov.method = "Wishart")
## End(Not run)
```

```
ccb.fpc
```

Corrected confidence bands using functional principal components

Description

Uses iterated expectation and variances to obtain corrected estimates and inference for functional expansions.

Usage

```
    ccb.fpc(
        Y,
        argvals = NULL,
        nbasis = 10,
        pve = 0.99,
        n. boot = 100,
        simul = FALSE,
        sim.alpha \(=0.95\)
    )
```


Arguments

Y
matrix of observed functions for which estimates and covariance matrices are desired.
\(\left.\left.$$
\begin{array}{ll}\text { argvals } & \begin{array}{l}\text { numeric; function argument. } \\
\text { nbasis }\end{array} \\
\text { number of splines used in the estimation of the mean function and the bivariate } \\
\text { smoothing of the covariance matrix }\end{array}
$$\right] \begin{array}{l}proportion of variance explained used to choose the number of principal com-

ponents to be included in the expansion.

number of bootstrap iterations used to estimate the distribution of FPC decom-

n.boot

position objects.\end{array}\right]\)| TRUE or FALSE, indicating whether critical values for simultaneous confidence |
| :--- |
| intervals should be estimated |

Details

To obtain corrected curve estimates and variances, this function accounts for uncertainty in FPC decomposition objects. Observed curves are resampled, and a FPC decomposition for each sample is constructed. A mixed-model framework is used to estimate curves and variances conditional on each decomposition, and iterated expectation and variances combines both model-based and decomposition-based uncertainty.

Value

Yhat a matrix whose rows are the estimates of the curves in Y.
Yhat.boot a list containing the estimated curves within each bootstrap iteration.
diag.var diagonal elements of the covariance matrices for each estimated curve.
VarMats a list containing the estimated covariance matrices for each curve in Y .
crit.val estimated critical values for constructing simultaneous confidence intervals.

Author(s)

Jeff Goldsmith jeff.goldsmith@columbia.edu

References

Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for functional data using principal components. Biometrics, 69(1), 41-51.

Examples

```
## Not run:
data(cd4)
# obtain a subsample of the data with 25 subjects
set.seed(1236)
sample = sample(1:dim(cd4)[1], 25)
Y.sub = cd4[sample,]
# obtain a mixed-model based FPCA decomposition
```

```
Fit.MM = fpca.sc(Y.sub, var = TRUE, simul = TRUE)
# use iterated variance to obtain curve estimates and variances
Fit.IV = ccb.fpc(Y.sub, n.boot = 25, simul = TRUE)
# for one subject, examine curve estimates, pointwise and simultaneous itervals
EX = 2
EX.IV = cbind(Fit.IV$Yhat[EX,],
    Fit.IV$Yhat[EX,] + 1.96 * sqrt(Fit.IV$diag.var[EX,]),
    Fit.IV$Yhat[EX,] - 1.96 * sqrt(Fit.IV$diag.var[EX,]),
    Fit.IV$Yhat[EX,] + Fit.IV$crit.val[EX] * sqrt(Fit.IV$diag.var[EX,]),
    Fit.IV$Yhat[EX,] - Fit.IV$crit.val[EX] * sqrt(Fit.IV$diag.var[EX,]))
EX.MM = cbind(Fit.MM$Yhat[EX,],
    Fit.MM$Yhat[EX,] + 1.96 * sqrt(Fit.MM$diag.var[EX,]),
    Fit.MM$Yhat[EX,] - 1.96 * sqrt(Fit.MM$diag.var[EX,]),
    Fit.MM$Yhat[EX,] + Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]),
    Fit.MM$Yhat[EX,] - Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]))
# plot data for one subject, with curve and interval estimates
d = as.numeric(colnames(cd4))
plot(d[which(!is.na(Y.sub[EX,]))], Y.sub[EX,which(!is.na(Y.sub[EX,]))], type = 'o',
    pch = 19, cex=.75, ylim = range(0, 3400), xlim = range(d),
        xlab = "Months since seroconversion", lwd = 1.2, ylab = "Total CD4 Cell Count",
            main = "Est. & CI - Sampled Data")
matpoints(d, EX.IV, col = 2, type = 'l', lwd = c(2, 1, 1, 1, 1), lty = c(1,1,1,2,2))
matpoints(d, EX.MM, col = 4, type = 'l', lwd = c(2, 1, 1, 1, 1), lty = c(1,1,1,2,2))
legend("topright", c("IV Est", "IV PW Int", "IV Simul Int",
    expression(paste("MM - ", hat(theta), " Est", sep = "")),
    expression(paste("MM - ", hat(theta), " PW Int", sep = "")),
    expression(paste("MM - ", hat(theta), " Simul Int", sep = ""))),
    lty=c(1,1,2,1,1,2), lwd = c(2.5,.75,.75,2.5,.75,.75),
    col = c("red","red","red","blue","blue","blue"))
## End(Not run)
```

cd4 Observed CD4 cell counts

Description

CD4 cell counts for 366 subjects between months -18 and 42 since seroconversion. Each subject's observations are contained in a single row.

Format

A data frame made up of a 366×61 matrix of CD4 cell counts

References

Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for functional data using principal components. Biometrics, 69(1), 41-51.

```
cmdscale_lanczos Faster multi-dimensional scaling
```


Description

This is a modified version of cmdscale that uses the Lanczos procedure (slanczos) instead of eigen. Called by smooth. construct.pco.smooth.spec.

Usage

cmdscale_lanczos(d, $\mathrm{k}=2$, eig = FALSE, add $=$ FALSE, x.ret $=$ FALSE $)$

Arguments

d a distance structure as returned by dist, or a full symmetric matrix of distances or dissimilarities.
k the maximum dimension of the space which the data are to be represented in; must be in $\{1,2, \ldots, n-1\}$.
eig logical indicating whether eigenvalues should be returned.
add logical indicating if the additive constant of Cailliez (1983) should be computed, and added to the non-diagonal dissimilarities such that the modified dissimilarities are Euclidean.
x ret indicates whether the doubly centred symmetric distance matrix should be returned.

Value

as cmdscale

Author(s)

David L Miller, based on code by R Core.

References

Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika, 48, 343-349.

See Also

smooth.construct.pco.smooth.spec

Description

Returns estimated coefficient functions/surfaces $\beta(t), \beta(s, t)$ and estimated smooth effects $f(z), f(x, z)$ or $f(x, z, t)$ and their point-wise estimated standard errors. Not implemented for smooths in more than 3 dimensions.

Usage

\#\# S3 method for class 'pffr'
coef (
object,
raw = FALSE,
se = TRUE,
freq = FALSE,
sandwich = FALSE,
seWithMean = TRUE,
$\mathrm{n} 1=100$,
n2 $=40$,
n3 $=20$,
Ktt $=$ NULL,
)

Arguments

object
a fitted pffr-object
raw logical, defaults to FALSE. If TRUE, the function simply returns object\$coefficients
se
freq
sandwich
seWithMean
n1 see below
n2 see below
n3 n1, n2, n3 give the number of gridpoints for 1-/2-/3-dimensional smooth terms used in the marginal equidistant grids over the range of the covariates at which the estimated effects are evaluated.

Ktt (optional) an estimate of the covariance operator of the residual process $\epsilon_{i}(t) \sim$ $N\left(0, K\left(t, t^{\prime}\right)\right)$, evaluated on yind of object. If not supplied, this is estimated from the crossproduct matrices of the observed residual vectors. Only relevant for sandwich CIs.
... other arguments, not used.

Details

The seWithMean-option corresponds to the "iterms"-option in predict.gam. The sandwichoptions works as follows: Assuming that the residual vectors $\epsilon_{i}(t), i=1, \ldots, n$ are i.i.d. realizations of a mean zero Gaussian process with covariance $K\left(t, t^{\prime}\right)$, we can construct an estimator for $K\left(t, t^{\prime}\right)$ from the n replicates of the observed residual vectors. The covariance matrix of the stacked observations $\operatorname{vec}\left(Y_{i}(t)\right)$ is then given by a block-diagonal matrix with n copies of the estimated $K\left(t, t^{\prime}\right)$ on the diagonal. This block-diagonal matrix is used to construct the "meat" of a sandwich covariance estimator, similar to Chen et al. (2012), see reference below.

Value

If raw==FALSE, a list containing

- pterms a matrix containing the parametric / non-functional coefficients (and, optionally, their se's)
- smterms a named list with one entry for each smooth term in the model. Each entry contains
- coef a matrix giving the grid values over the covariates, the estimated effect (and, optionally, the se's). The first covariate varies the fastest.
$-x, y, z$ the unique gridpoints used to evaluate the smooth/coefficient function/coefficient surface
- xlim, ylim,zlim the extent of the $x / y / z-a x e s$
- xlab, ylab, zlab the names of the covariates for the $x / y / z$-axes
- dim the dimensionality of the effect
- main the label of the smooth term (a short label, same as the one used in summary.pffr)

Author(s)

Fabian Scheipl

References

Chen, H., Wang, Y., Paik, M.C., and Choi, A. (2013). A marginal approach to reduced-rank penalized spline smoothing with application to multilevel functional data. Journal of the American Statistical Association, 101, 1216-1229.

See Also

plot.gam, predict.gam which this routine is based on.

```
coefboot.pffr Simple bootstrap CIs for pffr
```


Description

This function resamples observations in the data set to obtain approximate CIs for different terms and coefficient functions that correct for the effects of dependency and heteroskedasticity of the residuals along the index of the functional response, i.e., it aims for correct inference if the residuals along the index of the functional response are not i.i.d.

Usage

coefboot.pffr (
object,
$\mathrm{n} 1=100$,
n2 $=40$,
n3 $=20$,
$B=100$,
ncpus = getOption("boot.ncpus", 1),
parallel = c("no", "multicore", "snow"),
cl = NULL,
conf $=c(0.9,0.95)$,
type = "percent",
method = c("resample", "residual", "residual.c"),
showProgress = TRUE,
)

Arguments

object
n1
n2 see coef.pffr
n3 see coef.pffr
B number of bootstrap replicates, defaults to (a measly) 100
ncpus see boot. Defaults to getOption("boot.ncpus",1L) (like boot).
parallel see boot
cl see boot
conf desired levels of bootstrap CIs, defaults to 0.90 and 0.95
type type of bootstrap interval, see boot.ci. Defaults to "percent" for percentilebased CIs.
method either "resample" (default) to resample response trajectories, or "residual" to resample responses as fitted values plus residual trajectories or "residual.c" to resample responses as fitted values plus residual trajectories that are centered at zero for each gridpoint.

showProgress TRUE/FALSE
 ... not used

Value

a list with similar structure as the return value of coef.pffr, containing the original point estimates of the various terms along with their bootstrap CIs.

Author(s)

Fabian Scheipl

Description

This function is used to extract a coefficient from a fitted 'pfr' model, in particular smooth functions resulting from including functional terms specified with lf, af, etc. It can also be used to extract smooths genereated using mgcv's s, te, or t2.

```
Usage
    ## S3 method for class 'pfr'
    coefficients(
    object,
    select = 1,
    coords = NULL,
    n = NULL,
    se = ifelse(length(object$smooth) & select, TRUE, FALSE),
    seWithMean = FALSE,
    useVc = TRUE,
    Qtransform = FALSE,
    )
    ## S3 method for class 'pfr'
    coef(
    object,
    select = 1,
    coords = NULL,
    n = NULL,
    se = ifelse(length(object$smooth) & select, TRUE, FALSE),
    seWithMean = FALSE,
    useVc = TRUE,
    Qtransform = FALSE,
    )
```


Arguments

$$
\begin{array}{ll}
\text { object } & \text { return object from pfr } \\
\text { select } & \begin{array}{l}
\text { integer indicating the index of the desired smooth term in object\$smooth. En- } \\
\text { ter 0 to request the raw coefficients (i.e., object\$coefficients) and standard } \\
\text { errors (if se==TRUE). }
\end{array} \\
\text { coords } & \begin{array}{l}
\text { named list indicating the desired coordinates where the coefficient function is to } \\
\text { be evaluated. Names must match the argument names in object\$smooth[[select]]\$term. } \\
\text { If NULL, uses n to generate equally-spaced coordinates. } \\
\text { integer vector indicating the number of equally spaced coordinates for each ar- } \\
\text { gument. If length 1, the same number is used for each argument. Otherwise, the } \\
\text { length must match object\$smooth[[select]]\$dim. } \\
\text { if TRUE, returns pointwise standard error estimates. Defaults to FALSE if raw } \\
\text { coefficients are being returned; otherwise TRUE. }
\end{array} \\
\text { se } & \begin{array}{l}
\text { if TRUE the standard errors include uncertainty about the overall mean; if FALSE, } \\
\text { they relate purely to the centered smooth itself. Marra and Wood (2012) suggests } \\
\text { that TRUE results in better coverage performance for GAMs. }
\end{array} \\
\text { useVc } & \begin{array}{l}
\text { if TRUE, standard errors are calculated using a covariance matrix that has been } \\
\text { corrected for smoothing parameter uncertainty. This matrix will only be avail- } \\
\text { able under ML or REML smoothing. }
\end{array} \\
\text { Qtransform } & \begin{array}{l}
\text { For additive functional terms, TRUE indicates the coefficient should be extracted } \\
\text { on the quantile-transformed scale, whereas FALSE indicates the scale of the orig- } \\
\text { inal data. Note this is different from the Qtransform arguemnt of af, which }
\end{array} \\
\text { specifies the scale on which the term is fit. }
\end{array}
$$

Value

a data frame containing the evaluation points, coefficient function values and optionally the SE's for the term indicated by select.

Author(s)

Jonathan Gellar and Fabian Scheipl

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Additive Model Components. Scandinavian Journal of Statistics.

Description

Prior to using functions X as predictors in a scalar-on-function regression, it is often necessary to presmooth curves to remove measurement error or interpolate to a common grid. This function creates a function to do this preprocessing depending on the method specified.

Usage

```
    create.prep.func(
        X,
        argvals = seq(0, 1, length = ncol(X)),
        method = c("fpca.sc", "fpca.face", "fpca.ssvd", "bspline", "interpolate"),
        options = NULL
    )
```


Arguments

X
an N by $\mathrm{J}=\mathrm{ncol}$ (argvals) matrix of function evaluations $X_{i}\left(t_{i 1}\right), ., X_{i}\left(t_{i J}\right) ; i=$ $1, ., N$. For FPCA-based processing methods, these functions are used to define the eigen decomposition used to preprocess current and future data (for example, in predict.pfr)
argvals matrix (or vector) of indices of evaluations of $X_{i}(t)$; i.e. a matrix with i th row $\left(t_{i 1}, ., t_{i J}\right)$
method character string indicating the preprocessing method. Options are "fpca.sc", "fpca.face", "fpca.ssvd", "bspline", and "interpolate". The first three use the corresponding existing function; "bspline" uses an (unpenalized) cubic bspline smoother with nbasis basis functions; "interpolate" uses linear interpolation.
options list of options passed to the preprocessing method; as an example, options for fpca.sc include pve, nbasis, and npc.

Value

a function that returns the preprocessed functional predictors, with arguments
newX The functional predictors to process
argvals. Indices of evaluation of newX
options. Any options needed to preprocess the predictor functions

Author(s)

Jeff Goldsmith ajg2202@cumc.columbia.edu

See Also

```
pfr,fpca.sc, fpca.face, fpca.ssvd
```

```
DTI
Diffusion Tensor Imaging: tract profiles and outcomes
```


Description

Fractional anisotropy (FA) tract profiles for the corpus callosum (cca) and the right corticospinal tract (rcst). Accompanying the tract profiles are the subject ID numbers, visit number, total number of scans, multiple sclerosis case status and Paced Auditory Serial Addition Test (pasat) score.

Format

A data frame made up of
cca A 382×93 matrix of fractional anisotropy tract profiles from the corpus callosum;
rest A 382×55 matrix of fractional anisotropy tract profiles from the right corticospinal tract;
ID Numeric vector of subject ID numbers;
visit Numeric vector of the subject-specific visit numbers;
visit.time Numeric vector of the subject-specific visit time, measured in days since first visit;
Nscans Numeric vector indicating the total number of visits for each subject;
case Numeric vector of multiple sclerosis case status: 0 - healthy control, 1 - MS case;
sex factor variable indicated subject's sex;
pasat Numeric vector containing the PASAT score at each visit.

Details

If you use this data as an example in written work, please include the following acknowledgment: "The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute"
DTI2 uses mean diffusivity of the the corpus callosum rather than FA, and parallel diffusivity of the rest rather than FA. Please see the documentation for DTI2.

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized Functional Regression. Journal of Computational and Graphical Statistics, 20, 830-851.
Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2010). Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements. Journal of the Royal Statistical Society: Series C, 61, 453-469. comes

Description

A diffusion tensor imaging dataset used in Swihart et al. (2012). Mean diffusivity profiles for the corpus callosum (cca) and parallel diffusivity for the right corticospinal tract (rcst). Accompanying the profiles are the subject ID numbers, visit number, and Paced Auditory Serial Addition Test (pasat) score. We thank Dr. Daniel Reich for making this dataset available.

Format

A data frame made up of
cca a 340×93 matrix of fractional anisotropy profiles from the corpus callosum;
rest a 340×55 matrix of fractional anisotropy profiles from the right corticospinal tract;
id numeric vector of subject ID numbers;
visit numeric vector of the subject-specific visit numbers;
pasat numeric vector containing the PASAT score at each visit.

Details

If you use this data as an example in written work, please include the following acknowledgment: "The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute"

Note: DTI2 uses mean diffusivity of the the corpus callosum rather than fractional anisotropy (FA), and parallel diffusivity of the rcst rather than FA. Please see the documentation for DTI for more about the DTI dataset.

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, 61(3), 453-469.

Swihart, B. J., Goldsmith, J., and Crainiceanu, C. M. (2014). Restricted Likelihood Ratio Tests for Functional Effects in the Functional Linear Model. Technometrics, 56, 483-493.

Description

Return a call in which all of the arguments which were supplied or have presets are specified by their full names and their supplied or default values.

Usage

expand.call(
definition = NULL,
call = sys.call(sys.parent(1)),
expand.dots = TRUE
)

Arguments

definition a function. See match.call.
call an unevaluated call to the function specified by definition. See match.call.
expand.dots logical. Should arguments matching ... in the call be included or left as a ... argument? See match.call.

Value

An object of mode "call".

Author(s)

Fabian Scheipl

See Also

match.call

Description

A fast bivariate P-spline method for smoothing matrix data.

```
Usage
    fbps(
    data,
    subj = NULL,
    covariates = NULL,
    knots = 35,
    knots.option = "equally-spaced",
    periodicity = c(FALSE, FALSE),
    p = 3,
    m = 2,
    lambda = NULL,
    selection = "GCV",
    search.grid = T,
    search.length = 100,
    method = "L-BFGS-B",
    lower = -20,
    upper = 20,
    control = NULL
    )
```


Arguments

data	n 1 by n2 data matrix without missing data
subj	vector of subject id (corresponding to the columns of data); defaults to NULL
covariates	list of two vectors of covariates of lengths n1 and n2; if NULL, then generates equidistant covariates
knots	list of two vectors of knots or number of equidistant knots for all dimensions; defaults to 35
knots.option	knot selection method; defaults to "equally-spaced"
periodicity	vector of two logical, indicating periodicity in the direction of row and column; defaults to c(FALSE, FALSE)
p	degrees of B-splines; defaults to 3
m	order of differencing penalty; defaults to 2
lambda	user-specified smoothing parameters; defaults to NULL
selection	selection of smoothing parameter; defaults to "GCV"
search.grid	logical; defaults to TRUE, if FALSE, uses optim
search.length	number of equidistant (log scale) smoothing parameter; defaults to 100
method	see optim; defaults to L-BFGS-B
lower, upper control	bounds for log smoothing parameter, passed to optim; defaults are -20 and 20. see optim

Details

The smoothing parameter can be user-specified; otherwise, the function uses grid searching method or optim for selecting the smoothing parameter.

Value

A list with components

lambda	vector of length 2 of selected smoothing parameters
Yhat	fitted data
trace	trace of the overall smoothing matrix
gcv	value of generalized cross validation
Theta	matrix of estimated coefficients

Author(s)

Luo Xiao lxiao@jhsph.edu

References

Xiao, L., Li, Y., and Ruppert, D. (2013). Fast bivariate P-splines: the sandwich smoother. Journal of the Royal Statistical Society: Series B, 75(3), 577-599.

Examples

```
##########################
#### True function #####
##########################
n1 <- 60
n2 <- 80
x <- (1:n1)/n1-1/2/n1
z <- (1:n2)/n2-1/2/n2
MY <- array(0,c(length(x),length(z)))
sigx <- . }
sigz <- . 4
for(i in 1:length(x))
for(j in 1:length(z))
{
#MY[i,j] <- .75/(pi*sigx*sigz) *exp(-(x[i]-.2)^2/sigx^2-(z[j]-.3)^2/sigz^2)
#MY[i,j] <- MY[i,j] + .45/(pi*sigx*sigz) *exp(-(x[i]-.7)^2/sigx^2-(z[j]-.8)^2/sigz^2)
MY[i,j] = sin(2*pi*(x[i]-.5)^3)*cos(4*pi*z[j])
}
##########################
#### Observed data #####
##########################
sigma <- 1
Y <- MY + sigma*rnorm(n1*n2,0,1)
##########################
#### Estimation #####
##########################
est <- fbps(Y,list(X=x,z=z))
mse <- mean((est$Yhat-MY)^2)
```

```
cat("mse of fbps is",mse,"\n")
cat("The smoothing parameters are:",est$lambda,"\n")
########################################################################
########## Compare the estimated surface with the true surface #########
#############################################################################
par(mfrow=c(1,2))
persp(x,z,MY,zlab="f(x,z)",zlim=c(-1,2.5), phi=30, theta=45,expand=0.8,r=4,
    col="blue",main="True surface")
persp(x,z,est$Yhat,zlab="f(x,z)",zlim=c(-1, 2.5),phi=30, theta=45,
        expand=0.8,r=4,col="red",main="Estimated surface")
```


Description

Defines a term $\int_{s_{l o, i}}^{s_{h i, i}} X_{i}(s) \beta(t, s) d s$ for inclusion in an mgcv: :gam-formula (or bam or gamm or gamm4:: :gamm4) as constructed by pffr.
Defaults to a cubic tensor product B-spline with marginal first order differences penalties for $\beta(t, s)$ and numerical integration over the entire range $\left[s_{l o, i}, s_{h i, i}\right]=\left[\min \left(s_{i}\right), \max \left(s_{i}\right)\right]$ by using Simpson weights. Can't deal with any missing $X(s)$, unequal lengths of $X_{i}(s)$ not (yet?) possible. Unequal integration ranges for different $X_{i}(s)$ should work. $X_{i}(s)$ is assumed to be numeric (duh...).

Usage

ff(
X,
yind $=$ NULL,
xind $=\operatorname{seq}(0,1,1=\operatorname{ncol}(X))$, basistype = c("te", "t2", "ti", "s", "tes"),
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
limits = NULL,
splinepars = if (basistype != "s") \{ list(bs = "ps", m=list(c(2, 1), c(2, 1)), $\mathrm{k}=\mathrm{c}(5,5))$ \} else \{ list(bs = "tp", m = NA) \}, check.ident = TRUE
)

Arguments

X
an n by ncol (xind) matrix of function evaluations $X_{i}\left(s_{i 1}\right), \ldots, X_{i}\left(s_{i S}\right) ; i=$ $1, \ldots, n$.
yind \quad DEPRECATED used to supply matrix (or vector) of indices of evaluations of $Y_{i}(t)$, no longer used.
xind \quad vector of indices of evaluations of $X_{i}(s)$, i.e, $\left(s_{1}, \ldots, s_{S}\right)$

basistype	defaults to "te", i.e. a tensor product spline to represent $\beta(t, s)$. Alternatively, use " s " for bivariate basis functions (see mgcv's s) or "t2" for an alternative parameterization of tensor product splines (see mgcv's t2).
integration	method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann". "riemann" integration is always used if limits is specified
L	optional: an n by $n c o l$ (xind) matrix giving the weights for the numerical integration over s.
limits	defaults to NULL for integration across the entire range of $X(s)$, otherwise specifies the integration limits $s_{h i}(t), s_{l o}(t)$: either one of " $s<t$ " or " $s<=t$ " for $\left(s_{h i}(t), s_{l o}(t)\right)=(t, 0]$ or $[t, 0]$, respectively, or a function that takes s as the first and t as the second argument and returns TRUE for combinations of values (s, t) if s falls into the integration range for the given t. This is an experimental feature and not well tested yet; use at your own risk.
splinepars	optional arguments supplied to the basistype-term. Defaults to a cubic tensor product B-spline with marginal first difference penalties, i.e. list(bs="ps", m=list(c(2,1),c(2,1))). See te or sin mgev for details
check.ident	check identifiability of the model spec. See Details and References. Defaults to TRUE.

Details

If check.ident==TRUE and basistype!="s" (the default), the routine checks conditions for nonidentifiability of the effect. This occurs if a) the marginal basis for the functional covariate is rank-deficient (typically because the functional covariate has lower rank than the spline basis along its index) and simultaneously b) the kernel of $\operatorname{Cov}(X(s))$ is not disjunct from the kernel of the marginal penalty over s. In practice, a) occurs quite frequently, and b) occurs usually because curve-wise mean centering has removed all constant components from the functional covariate.
If there is kernel overlap, $\beta(t, s)$ is constrained to be orthogonal to functions in that overlap space (e.g., if the overlap contains constant functions, constraints " $\int \beta(t, s) d s=0$ for all t " are enforced). See reference for details.
A warning is always given if the effective rank of $\operatorname{Cov}(X(s))$ (defined as the number of eigenvalues accounting for at least 0.995 of the total variance in $\left.X_{i}(s)\right)$ is lower than 4 . If $X_{i}(s)$ is of very low rank, ffpc-term may be preferable.

Value

A list containing
\(\left.\begin{array}{ll}call \& a "call" to te (or s or t 2) using the appropriately constructed covariate and

weight matrices\end{array}\right]\)| a list containing the necessary covariate and weight matrices |
| :--- |

Author(s)

Fabian Scheipl, Sonja Greven

References

For background on check.ident:
Scheipl, F., Greven, S. (2016). Identifiability in penalized function-on-function regression mod-
els. Electronic Journal of Statistics, 10(1), 495-526. https://projecteuclid.org/journals/
electronic-journal-of-statistics/volume-10/issue-1/Identifiability-in-penalized-function-on-functi
10.1214

See Also

mgcv's linear.functional.terms

ffpc Construct a PC-based function-on-function regression term

Description

Defines a term $\int X_{i}(s) \beta(t, s) d s$ for inclusion in an mgcv: : gam-formula (or bam or gamm or gamm4 : : : gamm4) as constructed by pffr.

Usage

ffpc (
X ,
yind $=$ NULL,
xind $=\operatorname{seq}(0,1$, length $=\operatorname{ncol}(X))$,
splinepars = list(bs = "ps", m = c(2, 1), k = 8), decomppars = list(pve = 0.99, useSymm = TRUE), npc. $\max =15$
)

Arguments

x
splinepars
decomppars
npc.max
yind DEPRECATED used to supply matrix (or vector) of indices of evaluations of $Y_{i}(t)$, no longer used.
xind matrix (or vector) of indices of evaluations of $X_{i}(t)$, defaults to seq(0,1 , length=ncol (X)). optional arguments supplied to the basistype-term. Defaults to a cubic Bspline with first difference penalties and 8 basis functions for each $\tilde{\beta}_{k}(t)$.
an n by ncol (xind) matrix of function evaluations $X_{i}\left(s_{i 1}\right), \ldots, X_{i}\left(s_{i S}\right) ; i=$ $1, \ldots, n$. parameters for the FPCA performed with fpca.sc. maximal number K of FPCs to use, regardless of decomppars; defaults to 15

Details

In contrast to ff , ffpc does an FPCA decomposition $X(s) \approx \sum_{k=1}^{K} \xi_{i k} \Phi_{k}(s)$ using fpca. sc and represents $\beta(t, s)$ in the function space spanned by these $\Phi_{k}(s)$. That is, since

$$
\int X_{i}(s) \beta(t, s) d s=\sum_{k=1}^{K} \xi_{i k} \int \Phi_{k}(s) \beta(s, t) d s=\sum_{k=1}^{K} \xi_{i k} \tilde{\beta}_{k}(t)
$$

the function-on-function term can be represented as a sum of K univariate functions $\tilde{\beta}_{k}(t)$ in t each multiplied by the FPC scores $\xi_{i k}$. The truncation parameter K is chosen as described in fpca.sc. Using this instead of ff() can be beneficial if the covariance operator of the $X_{i}(s)$ has low effective rank (i.e., if K is small). If the covariance operator of the $X_{i}(s)$ is of (very) high rank, i.e., if K is large, ffpc() will not be very efficient.
To reduce model complexity, the $\tilde{\beta}_{k}(t)$ all have a single joint smoothing parameter (in mgcv, they get the same id, see s).

Please see pffr for details on model specification and implementation.

Value

A list containing the necessary information to construct a term to be included in a mgcv: :gamformula.

Author(s)

Fabian Scheipl

Examples

```
## Not run:
set.seed(1122)
n <- 55
S <- 60
T <- 50
s <- seq(0,1, l=S)
t <- seq(0,1, l=T)
#generate X from a polynomial FPC-basis:
rankX <- 5
Phi <- cbind(1/sqrt(S), poly(s, degree=rankX-1))
lambda <- rankX:1
Xi <- sapply(lambda, function(l)
    scale(rnorm(n, sd=sqrt(l)), scale=FALSE))
X <- Xi %*% t(Phi)
beta.st <- outer(s, t, function(s, t) cos(2 * pi * s * t))
y<- (1/S*X) %*% beta.st + 0.1 * matrix(rnorm(n * T), nrow=n, ncol=T)
data <- list(y=y, X=X)
```

```
# set number of FPCs to true rank of process for this example:
m.pc <- pffr(y ~ c(1) + 0 + ffpc(X, yind=t, decomppars=list(npc=rankX)),
    data=data, yind=t)
summary (m.pc)
m.ff <- pffr(y ~ c(1) + 0 + ff(X, yind=t), data=data, yind=t)
summary(m.ff)
# fits are very similar:
all.equal(fitted(m.pc), fitted(m.ff))
# plot implied coefficient surfaces:
layout(t(1:3))
persp(t, s, t(beta.st), theta=50, phi=40, main="Truth",
    ticktype="detailed")
plot(m.ff, select=1, pers=TRUE, zlim=range(beta.st), theta=50, phi=40,
    ticktype="detailed")
title(main="ff()")
ffpcplot(m.pc, type="surf", auto.layout=FALSE, theta = 50, phi = 40)
title(main="ffpc()")
# show default ffpcplot:
ffpcplot(m.pc)
## End(Not run)
```


Description

Convenience function for graphical summaries of ffpc-terms from a pffr fit.

Usage

ffpcplot (
object,
type = c("fpc+surf", "surf", "fpc"),
pages = 1,
se.mult = 2,
ticktype = "detailed",
theta $=30$,
phi $=30$,
plot = TRUE,
auto. layout $=$ TRUE
)

Arguments

object a fitted pffr-model

type	one of "fpc+surf", "surf" or "fpc": "surf" shows a perspective plot of the coeffi- cient surface implied by the estimated effect functions of the FPC scores, "fpc" shows three plots: 1) a scree-type plot of the estimated eigenvalues of the func- tional covariate, 2) the estimated eigenfunctions, and 3) the estimated coefficient functions associated with the FPC scores. Defaults to showing both.
pages	the number of pages over which to spread the output. Defaults to 1. (Irrelevant if auto.layout=FALSE.) display estimated coefficient functions associated with the FPC scores with plus/minus this number time the estimated standard error. Defaults to 2.
se.mult	see persp.
thektype	see persp.
phi	see persp. plot
produce plots or only return plotting data? Defaults to TRUE.	

Value

primarily produces plots, invisibly returns a list containing the data used for the plots.

Author(s)

Fabian Scheipl

Examples

```
## Not run:
    #see ?ffpc
## End(Not run)
```

fgam
Functional Generalized Additive Models

Description

Implements functional generalized additive models for functional and scalar covariates and scalar responses. Additionally implements functional linear models. This function is a wrapper for mgcv's gam and its siblings to fit models of the general form

$$
g\left(E\left(Y_{i}\right)\right)=\beta_{0}+\int_{T_{1}} F\left(X_{i 1}, t\right) d t+\int_{T_{2}} \beta(t) X_{i 2} d t+f\left(z_{i 1}\right)+f\left(z_{i 2}, z_{i 3}\right)+\ldots
$$

with a scalar (but not necessarily continuous) response Y, and link function g

Usage

fgam(formula, fitter = NA, tensortype = c("te", "t2"), ...)

Arguments

formula	a formula with special terms as for gam, with additional special terms af ()$, \mathrm{lf}()$, re().
fitter	the name of the function used to estimate the model. Defaults to gam if the matrix of functional responses has less than 2 e 5 data points and to bam if not. "gamm" (see gamm) and "gamm4" (see gamm4) are valid options as well.
tensortype	defaults to te, other valid option is t2
\ldots	additional arguments that are valid for gam or bam; for example, specify a gamma >1 to increase amount of smoothing when using GCV to choose smoothing parameters or method="REML" to change to REML for estimation of smoothing parameters (default is GCV).

Value

a fitted fgam-object, which is a gam-object with some additional information in a fgam-entry. If fitter is "gamm" or "gamm4", only the $\$$ gam part of the returned list is modified in this way.

Warning

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

Author(s)

Mathew W. McLean mathew.w.mclean@gmail.com and Fabian Scheipl

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23 (1), pp. 249-269. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.

See Also

```
af,lf, predict.fgam, vis.fgam
```


Examples

```
data(DTI)
## only consider first visit and cases (no PASAT scores for controls)
y <- DTI$pasat[DTI$visit==1 & DTI$case==1]
X <- DTI$cca[DTI$visit==1 & DTI$case==1, ]
X_2 <- DTI$rcst[DTI$visit==1 & DTI$case==1, ]
## remove samples containing missing data
ind <- rowSums(is.na(X)) > 0
ind2 <- rowSums(is.na(X_2)) > 0
y <- y[!(ind | ind2)]
X <- X[!(ind | ind2), ]
```

```
X_2 <- X_2[!(ind | ind2), ]
N <- length(y)
## fit fgam using FA measurements along corpus callosum
## as functional predictor with PASAT as response
## using 8 cubic B-splines for marginal bases with third
## order marginal difference penalties
## specifying gamma > 1 enforces more smoothing when using
## GCV to choose smoothing parameters
#fit <- fgam(y ~ af(X, k = c(8, 8), m = list(c(2, 3), c(2, 3))), gamma = 1.2)
## fgam term for the cca measurements plus an flm term for the rcst measurements
## leave out 10 samples for prediction
test <- sample(N, 10)
#fit <- fgam(y ~ af(X, k = c(7, 7), m = list(c(2, 2), c(2, 2))) +
    # lf(X_2, k=7, m = c(2, 2)), subset=(1:N)[-test])
#plot(fit)
## predict the ten left outs samples
#pred <- predict(fit, newdata = list(X=X[test, ], X_2 = X_2[test, ]), type='response',
    # PredOutOfRange = TRUE)
#sqrt(mean((y[test] - pred)^2))
## Try to predict the binary response disease status (case or control)
## using the quantile transformed measurements from the rcst tract
## with a smooth component for a scalar covariate that is pure noise
y <- DTI$case[DTI$visit==1]
X <- DTI$cca[DTI$visit==1, ]
X_2 <- DTI$rcst[DTI$visit==1, ]
ind <- rowSums(is.na(X)) > 0
ind2 <- rowSums(is.na(X_2)) > 0
y <- y[!(ind | ind2)]
X <- X[!(ind | ind2), ]
X_2 <- X_2[!(ind | ind2), ]
z1 <- rnorm(length(y))
## select=TRUE allows terms to be zeroed out of model completely
#fit <- fgam(y ~ s(z1, k = 10) + af(X_2, k=c(7,7), m = list(c(2, 1), c(2, 1)),
    # Qtransform=TRUE), family=binomial(), select=TRUE)
#plot(fit)
```

fosr

Function-on-scalar regression

Description

Fit linear regression with functional responses and scalar predictors, with efficient selection of optimal smoothing parameters.

```
Usage
    fosr \((\)
    formula = NULL,
    Y = NULL,
    fdobj = NULL,
    data \(=\) NULL,
    x ,
    con = NULL,
    argvals \(=\) NULL,
    method = c("OLS", "GLS", "mix"),
    gam.method = c("REML", "ML", "GCV.Cp", "GACV.Cp", "P-REML", "P-ML"),
    cov.method = c("naive", "mod.chol"),
    lambda = NULL,
    nbasis = 15,
    norder \(=4\),
    pen.order = 2,
    multi.sp = ifelse(method == "OLS", FALSE, TRUE),
    pve = 0.99,
    max.iter = 1,
    maxlam = NULL,
    cv1 = FALSE,
    scale = FALSE
    )
```


Arguments

formula Formula for fitting fosr. If used, data argument must not be null.
Y , fdobj the functional responses, given as either an $n \times d$ matrix Y or a functional data object (class "fd") as in the fda package.
data data frame containing the predictors and responses.
$X \quad$ the model matrix, whose columns represent scalar predictors. Should ordinarily include a column of 1 s .
con a row vector or matrix of linear contrasts of the coefficient functions, to be constrained to equal zero.
argvals the d argument values at which the coefficient functions will be evaluated.
method estimation method: "OLS" for penalized ordinary least squares, "GLS" for penalized generalized least squares, "mix" for mixed effect models.
gam.method smoothing parameter selection method, to be passed to gam: "REML" for restricted maximum likelihood, "GCV. Cp" for generalized cross-validation.
cov.method covariance estimation method: the current options are naive or modified Cholesky. See Details.
lambda smoothing parameter value. If NULL, the smoothing parameter(s) will be estimated. See Details.
nbasis, norder number of basis functions, and order of splines (the default, 4, gives cubic splines), for the B-spline basis used to represent the coefficient functions. When
the functional responses are supplied using fdobj, these arguments are ignored in favor of the values pertaining to the supplied object.
pen.order order of derivative penalty.
multi.sp a logical value indicating whether separate smoothing parameters should be estimated for each coefficient function. Currently must be FALSE if method $=$ "OLS".
pve if method = 'mix', the percentage of variance explained by the principal components; defaults to 0.99 .
max.iter maximum number of iterations if method = "GLS".
maxlam
cv1 logical value indicating whether a cross-validation score should be computed even if a single fixed lambda is specified (when method = "OLS").
scale logical value or vector determining scaling of the matrix X (see scale, to which the value of this argument is passed).

Details

The GLS method requires estimating the residual covariance matrix, which has dimension $d \times d$ when the responses are given by Y , or nbasis \times nbasis when they are given by fdobj. When cov.method = "naive", the ordinary sample covariance is used. But this will be singular, or nonsingular but unstable, in high-dimensional settings, which are typical. cov.method = "mod.chol" implements the modified Cholesky method of Pourahmadi (1999) for estimation of covariance matrices whose inverse is banded. The number of bands is chosen to maximize the p -value for a sphericity test (Ledoit and Wolf, 2002) applied to the "prewhitened" residuals. Note, however, that the banded inverse covariance assumption is sometimes inappropriate, e.g., for periodic functional responses.
There are three types of values for argument lambda:

1. if NULL, the smoothing parameter is estimated by gam (package mgcv) if method = "GLS", or by optimize if method = "OLS";
2. if a scalar, this value is used as the smoothing parameter (but only for the initial model, if method $=$ "GLS");
3. if a vector, this is used as a grid of values for optimizing the cross-validation score (provided method = "OLS"; otherwise an error message is issued).

Please note that currently, if multi. sp = TRUE, then lambda must be NULL and method must be "GLS".

Value

An object of class fosr, which is a list with the following elements:

fd	object of class " $f d$ " representing the estimated coefficient functions. Its main components are a basis and a matrix of coefficients with respect to that basis.
pca.resid	if method $=$ "mix", an object representing a functional PCA of the residuals, performed by fpca.sc if the responses are in raw form or by pca.fd if in functional-data-object form.

U	if method = "mix", an $n \times m$ matrix of random effects, where m is the number of functional PC's needed to explain proportion pve of the residual variance. These random effects can be interpreted as shrunken FPC scores.
yhat, resid	objects of the same form as the functional responses (see arguments Y and fdobj), giving the fitted values and residuals. matrix of values of the coefficient function estimates at the points given by argvals. matrix of values of the standard error estimates for the coefficient functions, at the points given by argvals.
se.func	points at which the coefficient functions are evaluated. fit object outputted by amc.
fit	effective degrees of freedom of the fit.
edf	smoothing parameter, or vector of smoothing parameters.
lambda	cross-validated integrated squared error if method="OLS", otherwise NULL.
roughness	value of the roughness penalty.
resp.type	"raw" or "fd", indicating whether the responses were supplied in raw or functional-
data-object form.	

Author(s)

Philip Reiss <phil.reiss@nyumc. org>, Lan Huo, and Fabian Scheipl

References

Ledoit, O., and Wolf, M. (2002). Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Annals of Statistics, 30(4), 1081-1102.

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika, 86(3), 677-690.
Ramsay, J. O., and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed., Chapter 13. New York: Springer.

Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized basis expansions. International Journal of Biostatistics, 6(1), article 28. Available at https:// pubmed.ncbi.nlm.nih.gov/21969982/

See Also

plot.fosr

Examples

```
## Not run:
require(fda)
# The first two lines, adapted from help(fRegress) in package fda,
# set up a functional data object representing daily average
# temperatures at }35\mathrm{ sites in Canada
daybasis25 <- create.fourier.basis(rangeval=c(0, 365), nbasis=25,
```

```
            axes=list('axesIntervals'))
Temp.fd <- with(CanadianWeather, smooth.basisPar(day.5,
        dailyAv[,,'Temperature.C'], daybasis25)$fd)
modmat = cbind(1, model.matrix(~ factor(CanadianWeather$region) - 1))
constraints = matrix(c(0,1,1,1,1), 1)
# Penalized OLS with smoothing parameter chosen by grid search
olsmod = fosr(fdobj = Temp.fd, X = modmat, con = constraints, method="OLS", lambda=100*10:30)
plot(olsmod, 1)
# Test use formula to fit fosr
set.seed(2121)
data1 <- pffrSim(scenario="ff", n=40)
formod = fosr(Y~xlin+xsmoo, data=data1)
plot(formod, 1)
# Penalized GLS
glsmod = fosr(fdobj = Temp.fd, X = modmat, con = constraints, method="GLS")
plot(glsmod, 1)
## End(Not run)
```

fosr.perm Permutation testing for function-on-scalar regression

Description

fosr. perm() is a wrapper function calling fosr.perm.fit(), which fits models to permuted data, followed by fosr. perm. test(), which performs the actual simultaneous hypothesis test. Calling the latter two functions separately may be useful for performing tests at different significance levels. By default, fosr. perm() produces a plot using the plot function for class fosr. perm.

Usage

```
fosr.perm(
    Y = NULL,
    fdobj = NULL,
    X,
    con = NULL,
    X0 = NULL,
    con0 = NULL,
    argvals = NULL,
    lambda = NULL,
    lambda0 = NULL,
    multi.sp = FALSE,
    nperm,
    level = 0.05,
    plot = TRUE,
```

```
    xlabel = "",
    title = NULL,
    prelim = if (multi.sp) 0 else 15,
)
fosr.perm.fit(
    Y = NULL,
    fdobj = NULL,
    X,
    con = NULL,
    X0 = NULL,
    con0 = NULL,
    argvals = NULL,
    lambda = NULL,
    lambda0 = NULL,
    multi.sp = FALSE,
    nperm,
    prelim,
    ...
)
fosr.perm.test(x, level = 0.05)
## S3 method for class 'fosr.perm'
plot(x, level = 0.05, xlabel = "", title = NULL, ...)
```


Arguments

Y, fdobj	the functional responses, given as either an $n \times d$ matrix Y or a functional data object (class "fd") as in the fda package. the design matrix, whose columns represent scalar predictors. X con row vector or matrix of linear contrasts of the coefficient functions, to be re- stricted to equal zero.
$\mathrm{X0}$	design matrix for the null-hypothesis model. If NULL, the null hypothesis is the intercept-only model.
con0	linear constraints for the null-hypothesis model.
argvals	smoothing parameter value. If NULL, the smoothing parameter(s) will be esti- thambda mated. See fosr for details.
lambda0	smoothing parameter for null-hypothesis model.
multi.sp	a logical value indicating whether separate smoothing parameters should be estimated for each coefficient function. Currently must be FALSE if method = "OLS".
nperm	number of permutations.
level	significance level for the simultaneous test.

plot	logical value indicating whether to plot the real- and permuted-data pointwise F-type statistics.
xlabel	x-axis label for plots.
title	title for plot.

Value

fosr. perm or fosr. perm. test produces an object of class fosr. perm, which is a list with the elements below. fosr. perm.fit also outputs an object of this class, but without the last five elements.

F	pointwise F-type statistics at each of the points given by argvals.
F.perm	a matrix, each of whose rows gives the pointwise F-type statistics for a permuted data set.
argvals	points at which F-type statistics are computed.
lambda.real	smoothing parameter(s) for the real-data fit.
lambda.prelim	smoothing parameter(s) for preliminary permuted-data fits.
lambda. perm	smoothing parameter(s) for main permuted-data fits.
lambda0.real,	lambda0. prelim, lambda0.perm as above, but for null hypothesis models.
level	significance level of the test.
critval	critical value for the test.
signif	vector of logical values indicating whether significance is attained at each of the points argvals.
n 2 s	subset of $1, \ldots$, length(argvals) identifying the points at which the test statistic changes from non-significant to significant.
$s 2 n$	points at which the test statistic changes from significant to non-significant.

Author(s)

Philip Reiss phil.reiss@nyumc.org and Lan Huo

References

Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized basis expansions. International Journal of Biostatistics, 6(1), article 28. Available at https:// pubmed.ncbi.nlm.nih.gov/21969982/

See Also

fosr

Examples

```
## Not run:
# Test effect of region on mean temperature in the Canadian weather data
# The next two lines are taken from the fRegress.CV help file (package fda)
smallbasis <- create.fourier.basis(c(0, 365), 25)
tempfd <- smooth.basis(day.5,
            CanadianWeather$dailyAv[, ,"Temperature.C"], smallbasis)$fd
Xreg = cbind(1, model.matrix(~factor(CanadianWeather$region)-1))
conreg = matrix (c(0,1,1,1,1), 1) # constrain region effects to sum to 0
# This is for illustration only; for a real test, must increase nperm
# (and probably prelim as well)
regionperm = fosr.perm(fdobj=tempfd, X=Xreg, con=conreg, method="OLS", nperm=10, prelim=3)
# Redo the plot, using axisIntervals() from the fda package
plot(regionperm, axes=FALSE, xlab="")
box()
axis(2)
axisIntervals(1)
## End(Not run)
```

fosr.vs Function-on Scalar Regression with variable selection

Description

Implements an iterative algorithm for function-on-scalar regression with variable selection by alternatively updating the coefficients and covariance structure.

Usage

```
fosr.vs(
    formula,
    data,
    nbasis = 10,
    method = c("ls", "grLasso", "grMCP", "grSCAD"),
    epsilon = 1e-05,
    max.iter_num = 100
)
```


Arguments

formula	an object of class "formula": an expression of the model to be fitted.
data	a data frame that contains the variables in the model.
nbasis	number of B-spline basis functions used.
method	group variable selection method to be used ("grLasso", "grMCP", "grSCAD" refer to group Lasso, group MCP and group SCAD, respectively) or "ls" for least squares estimation.
epsilon	the convergence criterion.
max.iter_num	maximum number of iterations.

Value

A fitted fosr.vs-object, which is a list with the following elements:
formula an object of class "formula": an expression of the model to be fitted.
coefficients the estimated coefficient functions.
fitted.values the fitted curves.
residuals the residual curves.
vcov the estimated variance-covariance matrix when convergence is achieved.
method group variable selection method to be used or "ls" for least squares estimation.

Author(s)

Yakuan Chen yc2641@cumc.columbia.edu

References

Chen, Y., Goldsmith, J., and Ogden, T. (2016). Variable selection in function-on-scalar regression. Stat 5 88-101

See Also

grpreg

Examples

```
## Not run:
set.seed(100)
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)
beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
```

```
beta.true[3,] = 2
psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)
set.seed(100)
X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))
fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)
Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error
data = as.data.frame(X)
data$Y = Yi.obs
fit.fosr.vs = fosr.vs(Y~., data = data, method="grMCP")
plot(fit.fosr.vs)
## End(Not run)
```

fosr2s Two-step function-on-scalar regression

Description

This function performs linear regression with functional responses and scalar predictors by (1) fitting a separate linear model at each point along the function, and then (2) smoothing the resulting coefficients to obtain coefficient functions.

```
Usage
    fosr2s(
        Y,
    X,
    argvals = seq(0, 1, , ncol(Y)),
    nbasis = 15,
    norder = 4,
    pen.order = norder - 2,
    basistype = "bspline"
)
```


Arguments

$\mathrm{Y} \quad$ the functional responses, given as an $n \times d$ matrix.
$\mathrm{X} \quad n \times p$ model matrix, whose columns represent scalar predictors. Should ordinarily include a column of 1 s .
argvals the d argument values at which the functional responses are evaluated, and at which the coefficient functions will be evaluated.
nbasis number of basis functions used to represent the coefficient functions.
norder norder of the spline basis, when basistype="bspline" (the default, 4, gives cubic splines).
pen.order order of derivative penalty.
basistype type of basis used. The basis is created by an appropriate constructor function from the fda package; see basisfd. Only "bspline" and "fourier" are supported.

Details

Unlike fosr and pffr, which obtain smooth coefficient functions by minimizing a penalized criterion, this function introduces smoothing only as a second step. The idea was proposed by Fan and Zhang (2000), who employed local polynomials rather than roughness penalization for the smoothing step.

Value

An object of class fosr, which is a list with the following elements:
fd object of class "fd" representing the estimated coefficient functions. Its main components are a basis and a matrix of coefficients with respect to that basis.
raw.coef $\quad d \times p$ matrix of coefficient estimates from regressing on X separately at each point along the function.
raw.se $\quad d \times p$ matrix of standard errors of the raw coefficient estimates.
yhat $\quad n \times d$ matrix of fitted values.
est. func $\quad d \times p$ matrix of coefficient function estimates, obtained by smoothing the columns of raw.coef.
se.func $\quad d \times p$ matrix of coefficient function standard errors.
argvals points at which the coefficient functions are evaluated.
lambda smoothing parameters (chosen by REML) used to smooth the p coefficient functions with respect to the supplied basis.

Author(s)

Philip Reiss phil.reiss@nyumc.org and Lan Huo

References

Fan, J., and Zhang, J.-T. (2000). Two-step estimation of functional linear models with applications to longitudinal data. Journal of the Royal Statistical Society, Series B, 62(2), 303-322.

See Also

fosr, pffr

Examples

```
require(fda)
# Effect of latitude on daily mean temperatures
tempmat = t(CanadianWeather$dailyAv[,,1])
latmat = cbind(1, scale(CanadianWeather$coord[ , 1], TRUE, FALSE)) # centred!
fzmod <- fosr2s(tempmat, latmat, argvals=day.5, basistype="fourier", nbasis=25)
par(mfrow=1:2)
ylabs = c("Intercept", "Latitude effect")
for (k in 1:2) {
with(fzmod,matplot(day.5, cbind(raw.coef[,k],raw.coef[,k]-2*raw.se[,k],
    raw.coef[,k]+2*raw.se[,k],est.func[,k],est.func[,k]-2*se.func[,k],
    est.func[,k]+2*se.func[,k]), type=c("p","l","l","l","l","l"),pch=16,
    lty=c(1,2,2,1,2,2),col=c(1,1,1,2,2,2), cex=.5,axes=FALSE,xlab="",ylab=ylabs[k]))
    axesIntervals()
    box()
    if (k==1) legend("topleft", legend=c("Raw","Smoothed"), col=1:2, lty=2)
}
```

fpc Construct a FPC regression term

Description

Constructs a functional principal component regression (Reiss and Ogden, 2007, 2010) term for inclusion in an mgcv: : gam-formula (or bam or gamm or gamm 4 : : : gamm) as constructed by pfr. Currently only one-dimensional functions are allowed.

Usage

```
fpc(
    X,
    argvals = NULL,
    method = c("svd", "fpca.sc", "fpca.face", "fpca.ssvd"),
    ncomp = NULL,
    pve = 0.99,
    penalize = (method == "svd"),
    bs = "ps",
    k = 40,
)
```


Arguments

$X \quad$ functional predictors, typically expressed as an N by J matrix, where N is the number of columns and J is the number of evaluation points. May include missing/sparse functions, which are indicated by NA values. Alternatively, can be an object of class " $f d$ "; see fd.
argvals indices of evaluation of X , i.e. $\left(t_{i 1}, ., t_{i J}\right)$ for subject i. May be entered as either a length-J vector, or as an N by J matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject. If NULL, defaults to an equally-spaced grid between 0 or 1 (or within $X \$$ basis $\$$ rangeval if X is a fd object.)
method the method used for finding principal components. The default is an unconstrained SVD of the $X B$ matrix. Alternatives include constrained (functional) principal components approaches
ncomp number of principal components. if NULL, chosen by pve
pve proportion of variance explained; used to choose the number of principal components
penalize if TRUE, a roughness penalty is applied to the functional estimate. Defaults to TRUE if method=="svd" (corresponding to the FPCR_R method of Reiss and Ogden (2007)), and FALSE if method!="svd" (corresponding to FPCR_C).
bs two letter character string indicating the mgcv-style basis to use for pre-smoothing X
$k \quad$ the dimension of the pre-smoothing basis
additional options to be passed to lf. These include argvals, integration, and any additional options for the pre-smoothing basis (as constructed by mgcv: :s), such as m.

Details

$f p \mathrm{is}$ a wrapper for $l f$, which defines linear functional predictors for any type of basis for inclusion in a $p f r$ formula. $f p c$ simply calls $l f$ with the appropriate options for the $f p c$ basis and penalty construction.
This function implements both the FPCR-R and FPCR-C methods of Reiss and Ogden (2007). Both methods consist of the following steps:

1. project X onto a spline basis B
2. perform a principal components decomposition of $X B$
3. use those PC's as the basis in fitting a (generalized) functional linear model

This implementation provides options for each of these steps. The basis for in step 1 can be specified using the arguments bs and k, as well as other options via . . . ; see s for these options. The type of PC-decomposition is specified with method. And the FLM can be fit either penalized or unpenalized via penalize.
The default is FPCR-R, which uses a b-spline basis, an unconstrained principal components decomposition using svd, and the FLM fit with a second-order difference penalty. FPCR-C can be selected by using a different option for method, indicating a constrained ("functional") PC decomposition, and by default an unpenalized fit of the FLM.
FPCR-R is also implemented in fpcr; here we implement the method for inclusion in a pfr formula.

Value

The result of a call to lf.

NOTE

Unlike fpcr, fpc within a pfr formula does not automatically decorrelate the functional predictors from additional scalar covariates.

Author(s)

Jonathan Gellar JGellar@mathematica-mpr.com, Phil Reiss phil.reiss@nyumc.org, Lan Huo lan.huo@nyumc.org, and Lei Huang huangracer@gmail.com

References

Reiss, P. T. (2006). Regression with signals and images as predictors. Ph.D. dissertation, Department of Biostatistics, Columbia University. Available at http://works.bepress.com/phil_reiss/11/.

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association, 102, 984-996.

Reiss, P. T., and Ogden, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics, 66, 61-69.

See Also

lf, smooth. construct.fpc.smooth.spec

Examples

```
data(gasoline)
par(mfrow=c(3,1))
# Fit PFCR_R
gasmod1 <- pfr(octane ~ fpc(NIR, ncomp=30), data=gasoline)
plot(gasmod1, rug=FALSE)
est1 <- coef(gasmod1)
# Fit FPCR_C with fpca.sc
gasmod2 <- pfr(octane ~ fpc(NIR, method="fpca.sc", ncomp=6), data=gasoline)
plot(gasmod2, se=FALSE)
est2 <- coef(gasmod2)
# Fit penalized model with fpca.face
gasmod3 <- pfr(octane ~ fpc(NIR, method="fpca.face", penalize=TRUE), data=gasoline)
plot(gasmod3, rug=FALSE)
est3 <- coef(gasmod3)
par(mfrow=c(1,1))
ylm <- range(est1$value)*1.35
plot(value ~ X.argvals, type="l", data=est1, ylim=ylm)
lines(value ~ X.argvals, col=2, data=est2)
```

lines(value ~ X.argvals, col=3, data=est3)
fpca.face Functional principal component analysis with fast covariance estimation

Description

A fast implementation of the sandwich smoother (Xiao et al., 2013) for covariance matrix smoothing. Pooled generalized cross validation at the data level is used for selecting the smoothing parameter.

Usage

fpca.face($Y=N U L L$,
ydata $=$ NULL,
Y.pred = NULL,
argvals = NULL,
pve $=0.99$,
$n p c=$ NULL,
var $=$ FALSE,
simul = FALSE,
sim.alpha = 0.95,
center = TRUE,
knots = 35,
$p=3$,
$\mathrm{m}=2$,
lambda $=$ NULL,
alpha = 1,
search.grid = TRUE,
search.length $=100$,
method $=$ "L-BFGS-B",
lower $=-20$,
upper $=20$,
control = NULL
)

Arguments

Y, ydata the user must supply either Y, a matrix of functions observed on a regular grid, or a data frame ydata representing irregularly observed functions. See Details.
Y.pred if desired, a matrix of functions to be approximated using the FPC decomposition.
argvals numeric; function argument.

pve	proportion of variance explained: used to choose the number of principal components.
npc	how many smooth SVs to try to extract, if NA (the default) the hard thresholding rule of Gavish and Donoho (2014) is used (see Details, References).
var	logical; should an estimate of standard error be returned?
simul	logical; if TRUE curves will we simulated using Monte Carlo to obtain an estimate of the sim.alpha quantile at each argval; ignored if var == FALSE
sim.alpha	numeric; if simul==TRUE, quantile to estimate at each argval; ignored if var $==$ FALSE
center	logical; center Y so that its column-means are 0? Defaults to TRUE
knots	number of knots to use or the vectors of knots; defaults to 35
p	integer; the degree of B-splines functions to use
m	integer; the order of difference penalty to use
lambda	smoothing parameter; if not specified smoothing parameter is chosen using optim or a grid search
alpha	numeric; tuning parameter for GCV; see parameter gamma in gam
search.grid	logical; should a grid search be used to find lambda? Otherwise, optim is used
search.length	integer; length of grid to use for grid search for lambda; ignored if search.grid is FALSE
method	method to use; see optim
lower	see optim
upper	see optim
control	see optim

Value

A list with components

1. Yhat - If Y.pred is specified, the smooth version of Y.pred. Otherwise, if Y.pred=NULL, the smooth version of Y.
2. scores - matrix of scores
3. mu - mean function
4. npc - number of principal components
5. efunctions - matrix of eigenvectors
6. evalues - vector of eigenvalues
if var $==$ TRUE additional components are returned
7. sigma2 - estimate of the error variance
8. VarMats - list of covariance function estimate for each subject
9. diag.var - matrix containing the diagonals of each matrix in
10. crit.val - list of estimated quantiles; only returned if simul $==$ TRUE

Author(s)

Luo Xiao

References

Xiao, L., Li, Y., and Ruppert, D. (2013). Fast bivariate P-splines: the sandwich smoother, Journal of the Royal Statistical Society: Series B, 75(3), 577-599.

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for high-dimensional functional data. Statistics and Computing, 26, 409-421. DOI: 10.1007/s11222-014-9485-x.

See Also

fpca.sc for another covariance-estimate based smoothing of Y; fpca2s and fpca.ssvd for two SVD-based smoothings.

Examples

```
#### settings
I <- 50 # number of subjects
J <- 3000 # dimension of the data
t <- (1:J)/J # a regular grid on [0,1]
N <- 4 #number of eigenfunctions
sigma <- 2 ##standard deviation of random noises
lambdaTrue <- c(1,0.5,0.5^2,0.5^3) # True eigenvalues
case = 1
### True Eigenfunctions
if(case==1) phi <- sqrt(2)*cbind(sin(2*pi*t), cos(2*pi*t),
                    sin}(4*pi*t),\operatorname{cos}(4*pi*t)
if(case==2) phi <- cbind(rep(1,J),sqrt(3)*(2*t-1),
    sqrt(5)*(6*t^2-6*t+1),
    sqrt(7)*(20*t^3-30*t^2+12*t-1))
####################################################
######## Generate Data #############
####################################################
xi <- matrix(rnorm(I*N),I,N);
xi <- xi %*% diag(sqrt(lambdaTrue))
X <- xi %*% t(phi); # of size I by J
Y <- X + sigma*matrix(rnorm(I*J),I,J)
results <- fpca.face(Y,center = TRUE, argvals=t,knots=100,pve=0.99)
###################################################
#### FACE ########
####################################################
Phi <- results$efunctions
eigenvalues <- results$evalues
for(k in 1:N){
```

```
    if(Phi[,k] %*% phi[,k]< 0)
    Phi[,k] <- - Phi[,k]
}
### plot eigenfunctions
par(mfrow=c(N/2,2))
seq <- (1:(J/10))*10
for(k in 1:N){
    plot(t[seq],Phi[seq,k]*sqrt(J),type="l",lwd = 3,
        ylim = c(-2,2),col = "red",
        ylab = paste("Eigenfunction ",k,sep=""),
        xlab="t",main="FACE")
    lines(t[seq],phi[seq,k],lwd = 2, col = "black")
}
```

fpca.lfda Longitudinal Functional Data Analysis using FPCA

Description

Implements longitudinal functional data analysis (Park and Staicu, 2015). It decomposes longitudinallyobserved functional observations in two steps. It first applies FPCA on a properly defined marginal covariance function and obtain estimated scores (mFPCA step). Then it further models the underlying process dynamics by applying another FPCA on a covariance of the estimated scores obtained in the mFPCA step. The function also allows to use a random effects model to study the underlying process dynamics instead of a KL expansion model in the second step. Scores in mFPCA step are estimated using numerical integration. Scores in sFPCA step are estimated under a mixed model framework.

Usage

fpca.lfda(
Y,
subject.index,
visit.index,
obsT = NULL,
funcArg $=$ NULL,
numTEvalPoints $=41$,
newdata $=$ NULL,
fbps.knots $=c(5,10)$,
fbps.p = 3,
fbps.m = 2,
mFPCA.pve $=0.95$,
mFPCA. knots $=35$,
mFPCA. $\mathrm{p}=3$,
mFPCA. $m=2$,
mFPCA. $n p c=$ NULL ,

```
    LongiModel.method = c("fpca.sc", "lme"),
    sFPCA.pve = 0.95,
    sFPCA.nbasis = 10,
    sFPCA.npc = NULL,
    gam.method = "REML",
    gam.kT = 10
)
```


Arguments

\(\left.$$
\begin{array}{ll}\text { Y } & \begin{array}{l}\text { a matrix of which each row corresponds to one curve observed on a regular and } \\
\text { dense grid (dimension of } \mathrm{N} \text { by m; } \mathrm{N}=\text { total number of observed functions; } \mathrm{m}= \\
\text { number of grid points) }\end{array} \\
\text { subject.index } & \begin{array}{l}\text { subject id; vector of length } \mathrm{N} \text { with each element corresponding a row of Y }\end{array} \\
\text { visit.index } & \begin{array}{l}\text { index for visits (repeated measures); vector of length } \mathrm{N} \text { with each element cor- } \\
\text { responding a row of Y }\end{array} \\
\text { obsT } & \begin{array}{l}\text { actual time of visits at which a function is observed; vector of length N with } \\
\text { each element corresponding a row of Y }\end{array} \\
\text { funcArg } & \begin{array}{l}\text { numeric; function argument }\end{array}
$$

numTEvalPoints

newdata number of evaluation time points for visits; used for pre-binning in sFPCA

step; defaults to 41\end{array}\right\}\)| an optional data frame providing predictors (i for subject id / Ltime for visit |
| :--- |
| time) with which prediction is desired; defaults to NULL |

sFPCA.pve	proportion of variance explained for sFPCA step; used to choose the number of principal components; defaults to 0.95; see fpca.sc
sFPCA.nbasis	number of B-spline basis functions used in sFPCA step for estimation of the mean function and bivariate smoothing of the covariance surface; defaults to 10; see fpca.sc
sFPCA.npc	pre-specified value for the number of principal components; if given, it overrides pve; defaults to NULL; see fpca.sc
gam.method	smoothing parameter estimation method when gam is used for predicting score functions at unobserved visit time, T; defaults to REML; see gam
gam.KT	dimension of basis functions to use; see gam

Value

A list with components

obsData	observed data (input)
i	subject id
funcArg	function argument
visitTime	visit times
fitted.values	fitted values (in-sample); of the same dimension as Y
fitted.values.all	
	a list of which each component consists of a subject's fitted values at all pairs of evaluation points (s and T)
predicted.values	
	predicted values for variables provided in newdata
bivariateSmoothMeanFunc	
mFPCA.efunctions	
	estimated eigenfunction in a mFPCA step
mFPCA.evalues	estimated eigenvalues in a mFPCA step
mFPCA.npc	number of principal components selected with pre-specified pve in a mFPCA step
mFPCA.scree.eval	
	estimated eigenvalues obtained with pre-specified pve $=0.9999$; for scree plot
sFPCA.xiHat.bySubj	
	a list of which each component consists of a subject's predicted score functions evaluated at equidistanced grid in direction of visit time, T
sFPCA.npc	a vector of numbers of principal components selected in a sFPCA step with pre-specified pve; length of mFPCA.npc
mFPCA. covar	estimated marginal covariance
sFPCA.longDynCov.k	
	a list of estimated covariance of score function; length of mFPCA.npc

Details

A random effects model is recommended when a set of visit times for all subjects and visits is not dense in its range.

Author(s)

So Young Park <spark13@ncsu. edu>, Ana-Maria Staicu

References

Park, S.Y. and Staicu, A.M. (2015). Longitudinal functional data analysis. Stat 4 212-226.

Examples

```
## Not run:
#########################################
### Illustration with real data ###
###########################################
data(DTI)
MS <- subset(DTI, case ==1) # subset data with multiple sclerosis (MS) case
index.na <- which(is.na(MS$cca))
Y <- MS$cca; Y[index.na] <- fpca.sc(Y)$Yhat[index.na]; sum(is.na(Y))
id <- MS$ID
visit.index <- MS$visit
visit.time <- MS$visit.time/max(MS$visit.time)
lfpca.dti <- fpca.lfda(Y = Y, subject.index = id,
                        visit.index = visit.index, obsT = visit.time,
                        LongiModel.method = 'lme',
                                mFPCA.pve = 0.95)
TT <- seq(0,1,length.out=41); ss = seq(0,1,length.out=93)
# estimated mean function
persp(x = ss, y = TT, z = t(lfpca.dti$bivariateSmoothMeanFunc),
    xlab="s", ylab="visit times", zlab="estimated mean fn", col='light blue')
# first three estimated marginal eigenfunctions
matplot(ss, lfpca.dti$mFPCA.efunctions[,1:3], type='l', xlab='s', ylab='estimated eigen fn')
# predicted scores function corresponding to first two marginal PCs
matplot(TT, do.call(cbind, lapply(lfpca.dti$sFPCA.xiHat.bySubj, function(a) a[,1])),
    xlab="visit time (T)", ylab="xi_hat(T)", main = "k = 1", type='l')
matplot(TT, do.call(cbind, lapply(lfpca.dti$sFPCA.xiHat.bySubj, function(a) a[,2])),
        xlab="visit time (T)", ylab="xi_hat(T)", main = "k = 2", type='l')
# prediction of cca of first two subjects at T = 0, 0.5 and 1 (black, red, green)
matplot(ss, t(lfpca.dti$fitted.values.all[[1]][c(1,21,41),]),
        type='l', lty = 1, ylab="", xlab="s", main = "Subject = 1")
matplot(ss, t(lfpca.dti$fitted.values.all[[2]][c(1,21,41),]),
```

```
type='l', lty = 1, ylab="", xlab="s", main = "Subject = 2")
########################################
### Illustration with simulated data ###
########################################
###########################################################################################
# data generation
###########################################################################################
set. seed(1)
n <- 100 # number of subjects
ss <- seq(0,1,length.out=101)
TT <- seq(0, 1, length.out=41)
mi <- runif(n, min=6, max=15)
ij <- sapply(mi, function(a) sort(sample(1:41, size=a, replace=FALSE)))
# error variances
sigma <- 0.1
sigma_wn <- 0.2
lambdaTrue <- c(1,0.5) # True eigenvalues
eta1True <- c(0.5, 0.5^2, 0.5^3) # True eigenvalues
eta2True <- c(0.5^2, 0.5^3) # True eigenvalues
phi <- sqrt(2)*cbind(sin(2*pi*ss),cos(2*pi*ss))
psi1 <- cbind(rep(1,length(TT)), sqrt(3)*(2*TT-1), sqrt(5)*(6*TT^2-6*TT+1))
psi2 <- sqrt(2)*cbind(sin(2*pi*TT),cos(2*pi*TT))
zeta1 <- sapply(eta1True, function(a) rnorm(n = n, mean = 0, sd = a))
zeta2 <- sapply(eta2True, function(a) rnorm(n = n, mean = 0, sd = a))
xi1 <- unlist(lapply(1:n, function(a) (zeta1 %*% t(psi1))[a,ij[[a]]] ))
xi2 <- unlist(lapply(1:n, function(a) (zeta2 %*% t(psi2))[a,ij[[a]]] ))
xi <- cbind(xi1, xi2)
Tij <- unlist(lapply(1:n, function(i) TT[ij[[i]]] ))
i <- unlist(lapply(1:n, function(i) rep(i, length(ij[[i]]))))
j <- unlist(lapply(1:n, function(i) 1:length(ij[[i]])))
x <- xi %*% t(phi)
meanFn <- function(s,t){ 0.5*t + 1.5*s + 1.3*s*t}
mu <- matrix(meanFn(s = rep(ss, each=length(Tij)), t=rep(Tij, length(ss))), nrow=nrow(X))
Y <- mu + X +
    matrix(rnorm(nrow(X)*ncol(phi), 0, sigma), nrow=nrow(X)) %*% t(phi) + #correlated error
        matrix(rnorm(length(X), 0, sigma_wn), nrow=nrow(X)) # white noise
matplot(ss, t(Y[which(i==2),]), type='l', ylab="", xlab="functional argument",
                main="observations from subject i = 2")
# END: data generation
###########################################################################################
# Illustration I : when covariance of scores from a mFPCA step is estimated using fpca.sc
```

```
#############################################################################################
est <- fpca.lfda(Y = Y,
    subject.index = i, visit.index = j, obsT = Tij,
    funcArg = ss, numTEvalPoints = length(TT),
    newdata = data.frame(i = c(1:3), Ltime = c(Tij[1], 0.2, 0.5)),
    fbps.knots = 35, fbps.p = 3, fbps.m = 2,
    LongiModel.method='fpca.sc',
    mFPCA.pve = 0.95, mFPCA.knots = 35, mFPCA.p = 3, mFPCA.m = 2,
    sFPCA.pve = 0.95, sFPCA.nbasis = 10, sFPCA.npc = NULL,
    gam.method = 'REML', gam.kT = 10)
# mean function (true vs. estimated)
par(mfrow=c(1, 2))
persp(x=TT, y = ss, z= t(sapply(TT, function(a) meanFn(s=ss, t = a))),
    xlab="visit times", ylab="s", zlab="true mean fn")
persp(x = TT, y = ss, est$bivariateSmoothMeanFunc,
    xlab="visit times", ylab="s", zlab="estimated mean fn", col='light blue')
################ mFPCA step ################
par(mfrow=c(1, 2))
# marginal covariance fn (true vs. estimated)
image(phi%*%diag(lambdaTrue)%*%t(phi))
image(est$mFPCA.covar)
# eigenfunctions (true vs. estimated)
matplot(ss, phi, type='l')
matlines(ss, cbind(est$mFPCA.efunctions[,1], est$mFPCA.efunctions[,2]), type='l', lwd=2)
# scree plot
plot(cumsum(est$mFPCA.scree.eval)/sum(est$mFPCA.scree.eval), type='l',
    ylab = "Percentage of variance explained")
points(cumsum(est$mFPCA.scree.eval)/sum(est$mFPCA.scree.eval), pch=16)
################ sFPCA step ################
par(mfrow=c(1,2))
print(est$mFPCA.npc) # k = 2
# covariance of score functions for k = 1 (true vs. estimated)
image(psi1%*%diag(eta1True)%*%t(psi1), main='TRUE')
image(est$sFPCA.longDynCov.k[[1]], main='ESTIMATED')
# covariance of score functions for k = 2 (true vs. estimated)
image(psi2%*%diag(eta2True)%*%t(psi2))
image(est$sFPCA.longDynCov.k[[2]])
# estimated scores functions
matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,1])),
    xlab="visit time", main="k=1", type='l', ylab="", col=rainbow(100, alpha = 1),
    lwd=1, lty=1)
matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,2])),
        xlab="visit time", main="k=2",type='l', ylab="", col=rainbow(100, alpha = 1),
```

```
            lwd=1, lty=1)
    ################ In-sample and Out-of-sample Prediction ################
    par(mfrow=c(1,2))
    # fitted
    matplot(ss, t(Y[which(i==1),]), type='l', ylab="", xlab="functional argument")
    matlines(ss, t(est$fitted.values[which(i==1),]), type='l', lwd=2)
# sanity check : expect fitted and predicted (obtained using info from newdata)
# values to be the same
```

```
    plot(ss, est$fitted.values[1,], type='p', xlab="", ylab="", pch = 1, cex=1)
```

 plot(ss, est$fitted.values[1,], type='p', xlab="", ylab="", pch = 1, cex=1)
 lines(ss, est$predicted.values[1,], type='l', lwd=2, col='blue')
 lines(ss, est$predicted.values[1,], type='l', lwd=2, col='blue')
 all.equal(est$predicted.values[1,], est$fitted.values[1,])
 all.equal(est$predicted.values[1,], est$fitted.values[1,])
 \#
\# Illustration II : when covariance of scores from a mFPCA step is estimated using lmer
\#
est.lme <- fpca.lfda(Y = Y,
subject.index = i, visit.index = j, obsT = Tij,
funcArg = ss, numTEvalPoints = length(TT),
newdata = data.frame(i = c(1:3), Ltime = c(Tij[1], 0.2, 0.5)),
fbps.knots = 35, fbps.p = 3, fbps.m = 2,
LongiModel.method='lme',
mFPCA.pve = 0.95, mFPCA.knots = 35, mFPCA.p = 3, mFPCA.m = 2,
gam.method = 'REML', gam.kT = 10)
par(mfrow=c(2,2))
\# fpca.sc vs. lme (assumes linearity)
matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,1])),
 xlab="visit time", main="k=1", type='l', ylab="", col=rainbow(100, alpha = 1),
 lwd=1, lty=1)
 matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,2])),
xlab="visit time", main="k=2",type='l', ylab="", col=rainbow(100, alpha = 1),
lwd=1, lty=1)
matplot(TT, do.call(cbind,lapply(est.lme$sFPCA.xiHat.bySubj, function(a) a[,1])),
 xlab="visit time", main="k=1", type='l', ylab="", col=rainbow(100, alpha = 1),
 lwd=1, lty=1)
 matplot(TT, do.call(cbind,lapply(est.lme$sFPCA.xiHat.bySubj, function(a) a[,2])),
xlab="visit time", main="k=2", type='l', ylab="", col=rainbow(100, alpha = 1),
lwd=1, lty=1)

End(Not run)

```

\section*{Description}

Decomposes functional observations using functional principal components analysis. A mixed model framework is used to estimate scores and obtain variance estimates.
```

Usage
fpca.sc(
Y = NULL,
ydata = NULL,
Y.pred = NULL,
argvals = NULL,
random.int = FALSE,
nbasis = 10,
pve = 0.99,
npc = NULL,
var = FALSE,
simul = FALSE,
sim.alpha = 0.95,
useSymm = FALSE,
makePD = FALSE,
center = TRUE,
cov.est.method = 2,
integration = "trapezoidal"
)

```

Arguments
Y , ydata the user must supply either Y , a matrix of functions observed on a regular grid, or a data frame ydata representing irregularly observed functions. See Details.
Y.pred if desired, a matrix of functions to be approximated using the FPC decomposition.
argvals the argument values of the function evaluations in \(Y\), defaults to a equidistant grid from 0 to 1.
random.int If TRUE, the mean is estimated by gamm4 with random intercepts. If FALSE (the default), the mean is estimated by gam treating all the data as independent.
nbasis number of B-spline basis functions used for estimation of the mean function and bivariate smoothing of the covariance surface.
pve proportion of variance explained: used to choose the number of principal components.
npc prespecified value for the number of principal components (if given, this overrides pve).
var TRUE or FALSE indicating whether model-based estimates for the variance of FPCA expansions should be computed.
simul logical: should critical values be estimated for simultaneous confidence intervals?
sim.alpha \(\quad 1\)-coverage probability of the simultaneous intervals.
\begin{tabular}{ll} 
useSymm & \begin{tabular}{l} 
logical, indicating whether to smooth only the upper triangular part of the naive \\
covariance (when cov. est.method==2). This can save computation time for \\
large data sets, and allows for covariance surfaces that are very peaked on the \\
diagonal.
\end{tabular} \\
makePD & \begin{tabular}{l} 
logical: should positive definiteness be enforced for the covariance surface esti- \\
mate? \\
logical: should an estimated mean function be subtracted from Y? Set to FALSE if \\
you have already demeaned the data using your favorite mean function estimate.
\end{tabular} \\
center & \begin{tabular}{l} 
cov.est.method \\
covariance estimation method. If set to 1, a one-step method that applies a \\
bivariate smooth to the \(y\left(s_{1}\right) y\left(s_{2}\right)\) values. This can be very slow. If set to 2 \\
(the default), a two-step method that obtains a naive covariance estimate which
\end{tabular} \\
is then smoothed.
\end{tabular}

\section*{Details}

This function computes a FPC decomposition for a set of observed curves, which may be sparsely observed and/or measured with error. A mixed model framework is used to estimate curve-specific scores and variances.
FPCA via kernel smoothing of the covariance function, with the diagonal treated separately, was proposed in Staniswalis and Lee (1998) and much extended by Yao et al. (2005), who introduced the 'PACE' method. fpca.sc uses penalized splines to smooth the covariance function, as developed by Di et al. (2009) and Goldsmith et al. (2013).

The functional data must be supplied as either
- an \(n \times d\) matrix Y , each row of which is one functional observation, with missing values allowed; or
- a data frame ydata, with columns ' .id' (which curve the point belongs to, say \(i\) ), ' . index ' (function argument such as time point \(t\) ), and ' .value' (observed function value \(Y_{i}(t)\) ).

Value
An object of class fpca containing:
Yhat FPC approximation (projection onto leading components) of Y.pred if specified, or else of \(Y\).
\(Y\) the observed data
scores \(\quad n \times n p c\) matrix of estimated FPC scores.
mu
estimated mean function (or a vector of zeroes if center==FALSE).
efunctions \(\quad d \times n p c\) matrix of estimated eigenfunctions of the functional covariance, i.e., the FPC basis functions.
evalues estimated eigenvalues of the covariance operator, i.e., variances of FPC scores.
npc number of FPCs: either the supplied npc, or the minimum number of basis functions needed to explain proportion pve of the variance in the observed curves.
\begin{tabular}{ll} 
argvals & argument values of eigenfunction evaluations \\
sigma2 & estimated measurement error variance. \\
diag.var & diagonal elements of the covariance matrices for each estimated curve. \\
VarMats & a list containing the estimated covariance matrices for each curve in Y. \\
crit.val & estimated critical values for constructing simultaneous confidence intervals.
\end{tabular}

\section*{Author(s)}

Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Sonja Greven <sonja.greven@stat.uni-muenchen.de>, Lan Huo <Lan. Huo@nyumc. org>, Lei Huang <huangracer@gmail. com>, and Philip Reiss <phil. reiss@nyumc. org>

\section*{References}

Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2009). Multilevel functional principal component analysis. Annals of Applied Statistics, 3, 458-488.
Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for functional data using principal components. Biometrics, 69(1), 41-51.

Staniswalis, J. G., and Lee, J. J. (1998). Nonparametric regression analysis of longitudinal data. Journal of the American Statistical Association, 93, 1403-1418.
Yao, F., Mueller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577-590.

\section*{Examples}
```


Not run:

library(ggplot2)
library(reshape2)
data(cd4)
Fit.MM = fpca.sc(cd4, var = TRUE, simul = TRUE)
Fit.mu = data.frame(mu = Fit.MM$mu,
 d = as.numeric(colnames(cd4)))
Fit.basis = data.frame(phi = Fit.MM$efunctions,
d = as.numeric(colnames(cd4)))

for one subject, examine curve estimate, pointwise and simultaneous itervals

EX = 1
EX.MM = data.frame(fitted = Fit.MM$Yhat[EX,],
 ptwise.UB = Fit.MM$Yhat[EX,] + 1.96 * sqrt(Fit.MM$diag.var[EX,]),
 ptwise.LB = Fit.MM$Yhat[EX,] - 1.96 * sqrt(Fit.MM$diag.var[EX,]),
 simul.UB = Fit.MM$Yhat[EX,] + Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]),
simul.LB = Fit.MM$Yhat[EX,] - Fit.MM$crit.val[EX] * sqrt(Fit.MM\$diag.var[EX,]),
d = as.numeric(colnames(cd4)))

plot data for one subject, with curve and interval estimates

EX.MM.m = melt(EX.MM, id = 'd')
ggplot(EX.MM.m, aes(x = d, y = value, group = variable, color = variable, linetype = variable)) +
geom_path() +

```
```

 scale_linetype_manual(values = c(fitted = 1, ptwise.UB = 2,
 ptwise.LB = 2, simul.UB = 3, simul.LB = 3)) +
 scale_color_manual(values = c(fitted = 1, ptwise.UB = 2,
ptwise.LB = 2, simul.UB = 3, simul.LB = 3)) +
labs(x = 'Months since seroconversion', y = 'Total CD4 Cell Count')

plot estimated mean function

ggplot(Fit.mu, aes(x = d, y = mu)) + geom_path() +
labs(x = 'Months since seroconversion', y = 'Total CD4 Cell Count')

plot the first two estimated basis functions

Fit.basis.m = melt(Fit.basis, id = 'd')
ggplot(subset(Fit.basis.m, variable %in% c('phi.1', 'phi.2')), aes(x = d,
y = value, group = variable, color = variable)) + geom_path()

input a dataframe instead of a matrix

nid <- 20
nobs <- sample(10:20, nid, rep=TRUE)
ydata <- data.frame(
.id = rep(1:nid, nobs),
.index = round(runif(sum(nobs), 0, 1), 3))
ydata$.value <- unlist(tapply(ydata$.index,
ydata\$.id,
function(x)
runif(1, -.5, .5) +
dbeta(x, runif(1, 6, 8), runif(1, 3, 5))
)
)
Fit.MM = fpca.sc(ydata=ydata, var = TRUE, simul = FALSE)

End(Not run)

```

\section*{Description}

Implements the algorithm of Huang, Shen, Buja (2008) for finding smooth right singular vectors of a matrix \(X\) containing (contaminated) evaluations of functional random variables on a regular, equidistant grid. If the number of smooth SVs to extract is not specified, the function hazards a guess for the appropriate number based on the asymptotically optimal truncation threshold under the assumption of a low rank matrix contaminated with i.i.d. Gaussian noise with unknown variance derived in Donoho, Gavish (2013). Please note that Donoho, Gavish (2013) should be regarded as experimental for functional PCA, and will typically not work well if you have more observations than grid points.

\section*{Usage}
fpca.ssvd(
\(Y=N U L L\), ydata \(=\) NULL,
argvals = NULL,
\(n p c=N A\),
center = TRUE,
maxiter \(=15\),
tol \(=1 \mathrm{e}-04\),
diffpen \(=3\),
gridsearch = TRUE,
alphagrid \(=1.5^{\wedge}(-20: 40)\),
lower.alpha \(=1 \mathrm{e}-05\),
upper.alpha \(=1 \mathrm{e}+07\),
verbose = FALSE,
integration = "trapezoidal"
)

\section*{Arguments}

Y
ydata a data frame ydata representing irregularly observed functions. NOT IMPLEMENTED for this method.
argvals the argument values of the function evaluations in \(Y\), defaults to a equidistant grid from 0 to 1 . See Details.
npc how many smooth SVs to try to extract, if NA (the default) the hard thresholding rule of Donoho, Gavish (2013) is used (see Details, References).
center center \(Y\) so that its column-means are 0? Defaults to TRUE
maxiter how many iterations of the power algorithm to perform at most (defaults to 15)
tol convergence tolerance for power algorithm (defaults to 1e-4)
diffpen difference penalty order controlling the desired smoothness of the right singular vectors, defaults to 3 (i.e., deviations from local quadratic polynomials).
gridsearch use optimize or a grid search to find GCV-optimal smoothing parameters? defaults to TRUE.
alphagrid grid of smoothing parameter values for grid search
lower.alpha lower limit for for smoothing parameter if ! gridsearch
upper.alpha
verbose generate graphical summary of progress and diagnostic messages? defaults to FALSE
integration ignored, see Details.

\section*{Details}

Note that fpca.ssvd computes smoothed orthonormal eigenvectors of the supplied function evaluations (and associated scores), not (!) evaluations of the smoothed orthonormal eigenfunctions. The smoothed orthonormal eigenvectors are then rescaled by the length of the domain defined by argvals to have a quadratic integral approximately equal to one (instead of crossproduct equal to one), so they approximate the behavior of smooth eigenfunctions. If argvals is not equidistant, fpca. ssvd will simply return the smoothed eigenvectors without rescaling, with a warning.

\section*{Value}
an fpca object like that returned from fpca.sc, with entries Yhat, the smoothed trajectories, Y , the observed data, scores, the estimated FPC loadings, mu, the column means of \(Y\) (or a vector of zeroes if ! center), efunctions, the estimated smooth FPCs (note that these are orthonormal vectors, not evaluations of orthonormal functions if argvals is not equidistant), evalues, their associated eigenvalues, and npc , the number of smooth components that were extracted.

\section*{Author(s)}

Fabian Scheipl

\section*{References}

Huang, J. Z., Shen, H., and Buja, A. (2008). Functional principal components analysis via penalized rank one approximation. Electronic Journal of Statistics, 2, 678-695

Donoho, D.L., and Gavish, M. (2013). The Optimal Hard Threshold for Singular Values is 4/sqrt(3). eprint arXiv:1305.5870. Available from https://arxiv.org/abs/1305.5870.

\section*{See Also}
fpca.sc and fpca.face for FPCA based on smoothing a covariance estimate; fpca2s for a faster SVD-based approach.

\section*{Examples}
```


as in Sec. 6.2 of Huang, Shen, Buja (2008):

set.seed(2678695)
n <- 101
m <- 101
s1 <- 20
s2<-10
s <- 4
t <- seq(-1, 1, l=m)
v1<- t + sin(pi*t)
v2 <- cos(3*pi*t)
V <- cbind(v1/sqrt(sum(v1^2)), v2/sqrt(sum(v2^2)))
U <- matrix(rnorm(n*2), n, 2)
D <- diag(c(s1^2, s2^2))
eps <- matrix(rnorm(m*n, sd=s), n, m)
Y <- U%*%D%*%t(V) + eps

```
```

smoothSV <- fpca.ssvd(Y, verbose=TRUE)
layout(t(matrix(1:4, nr=2)))
clrs <- sapply(rainbow(n), function(c)
do.call(rgb, as.list(c(col2rgb(c)/255, .1))))
matplot(V, type="l", lty=1, col=1:2, xlab="",
main="FPCs: true", bty="n")
matplot(smoothSV$efunctions, type="l", lty=1, col=1:5, xlab="",
 main="FPCs: estimate", bty="n")
matplot(1:m, t(U%*%D%*%t(V)), type="l", lty=1, col=clrs, xlab="", ylab="",
 main="true smooth Y", bty="n")
matplot(1:m, t(smoothSV$Yhat), xlab="", ylab="",
type="l", lty=1,col=clrs, main="estimated smooth Y", bty="n")

```
fpca2s Functional principal component analysis by a two-stage method

\section*{Description}

This function performs functional PCA by performing an ordinary singular value decomposition on the functional data matrix, then smoothing the right singular vectors by smoothing splines.

\section*{Usage}
```

fpca2s(
Y = NULL,
ydata = NULL,
argvals = NULL,
npc = NA,
center = TRUE,
smooth = TRUE
)

```

\section*{Arguments}
\begin{tabular}{ll} 
Y & data matrix (rows: observations; columns: grid of eval. points) \\
ydata & \begin{tabular}{l} 
a data frame ydata representing irregularly observed functions. NOT IMPLE- \\
MENTED for this method.
\end{tabular} \\
argvals & \begin{tabular}{l} 
the argument values of the function evaluations in Y, defaults to a equidistant \\
grid from 0 to 1. See Details.
\end{tabular} \\
npc & \begin{tabular}{l} 
how many smooth SVs to try to extract, if NA (the default) the hard thresholding \\
rule of Donoho, Gavish (2013) is used (see Details, References).
\end{tabular} \\
center & \begin{tabular}{l} 
center Y so that its column-means are 0? Defaults to TRUE \\
smooth
\end{tabular} \\
\(l\)
\end{tabular}

\section*{Details}

Note that fpca2s computes smoothed orthonormal eigenvectors of the supplied function evaluations (and associated scores), not (!) evaluations of the smoothed orthonormal eigenfunctions. The smoothed orthonormal eigenvectors are then rescaled by the length of the domain defined by argvals to have a quadratic integral approximately equal to one (instead of crossproduct equal to one), so they approximate the behavior of smooth eigenfunctions. If argvals is not equidistant, fpca2s will simply return the smoothed eigenvectors without rescaling, with a warning.

\section*{Value}
an fpca object like that returned from fpca.sc, with entries Yhat, the smoothed trajectories, Y , the observed data, scores, the estimated FPC loadings, mu, the column means of \(Y\) (or a vector of zeroes if !center), efunctions, the estimated smooth FPCs (note that these are orthonormal vectors, not evaluations of orthonormal functions if argvals is not equidistant), evalues, their associated eigenvalues, and npc , the number of smooth components that were extracted.

\section*{Author(s)}

Luo Xiao <lxiao@jhsph.edu>, Fabian Scheipl

\section*{References}

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C., (2013), Fast covariance estimation for high-dimensional functional data. (submitted) https://arxiv.org/abs/1306.5718.

Gavish, M., and Donoho, D. L. (2014). The optimal hard threshold for singular values is 4/sqrt(3). IEEE Transactions on Information Theory, 60(8), 5040-5053.

\section*{See Also}
fpca.sc and fpca.face for FPCA based on smoothing a covariance estimate; fpca.ssvd for another SVD-based approach.

\section*{Examples}
```


settings

I <- 50 \# number of subjects
J <- 3000 \# dimension of the data
t <- (1:J)/J \# a regular grid on [0,1]
N <- 4 \#number of eigenfunctions
sigma <- 2 \#\#standard deviation of random noises
lambdaTrue <- c(1,0.5,0.5^2,0.5^3) \# True eigenvalues
case = 1

True Eigenfunctions

if(case==1) phi <- sqrt(2)*cbind(sin(2*pi*t), cos(2*pi*t),
sin(4*pi*t), cos(4*pi*t))
if(case==2) phi <- cbind(rep(1,J),sqrt(3)*(2*t-1),
sqrt(5)*(6*t^2-6*t+1),

```
```

sqrt(7)*(20*t^3-30*t^2+12*t-1))
\#
\#\#\#\#\#\#\#\# Generate Data \#\#\#\#\#\#\#\#\#\#\#\#\#
\#
xi <- matrix(rnorm(I*N),I,N);
xi <- xi%*%diag(sqrt(lambdaTrue))
X <- xi%*%t(phi); \# of size I by J
Y <- X + sigma*matrix(rnorm(I*J),I,J)
results <- fpca2s(Y,npc=4,argvals=t)
\#

SVDS

\#
Phi <- results$efunctions
eigenvalues <- results$evalues
for(k in 1:N){
if(Phi[,k]%*%phi[,k]< 0)
Phi[,k] <- - Phi[,k]
}

plot eigenfunctions

par(mfrow=c(N/2,2))
seq <- (1:(J/10))*10
for(k in 1:N){
plot(t[seq],Phi[seq,k]*sqrt(J),type='l',lwd = 3,
ylim = c(-2,2),col = 'red',
ylab = paste('Eigenfunction ',k,sep=''),
xlab='t',main='SVDS')
lines(t[seq],phi[seq,k],lwd = 2, col = 'black')
}

```
fpcr

Functional principal component regression

\section*{Description}

Implements functional principal component regression (Reiss and Ogden, 2007, 2010) for generalized linear models with scalar responses and functional predictors.

\section*{Usage}
fper (
\(y\),
xfuncs = NULL,
fdobj = NULL,
ncomp = NULL,
pve \(=0.99\),
```

 nbasis = NULL,
 basismat = NULL,
 penmat = NULL,
 argvals = NULL,
 covt = NULL,
 mean.signal.term = FALSE,
 spline.order = NULL,
 family = "gaussian",
 method = "REML",
 sp = NULL,
 pen.order = 2,
 cv1 = FALSE,
 nfold = 5,
 store.cv = FALSE,
 store.gam = TRUE,
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline y & scalar outcome vector. \\
\hline xfuncs & for 1D predictors, an \(n \times d\) matrix of signals/functional predictors, where \(n\) is the length of y and \(d\) is the number of sites at which each signal is defined. For 2D predictors, an \(n \times d 1 \times d 2\) array representing \(n\) images of dimension \(d 1 \times d 2\). \\
\hline fdobj & functional data object (class "fd") giving the functional predictors. Allowed only for 1D functional predictors. \\
\hline ncomp & number of principal components. If NULL, this is chosen by pve. \\
\hline pve & proportion of variance explained: used to choose the number of principal components. \\
\hline nbasis & number(s) of B-spline basis functions: either a scalar, or a vector of values to be compared. For 2D predictors, tensor product B-splines are used, with the given basis dimension(s) in each direction; alternatively, nbasis can be given in the form list ( \(\mathrm{v} 1, \mathrm{v} 2\) ), in which case cross-validation will be performed for each combination of the first-dimension basis sizes in \(v 1\) and the second-dimension basis sizes in v2. Ignored if fdobj is supplied. If fdobj is not supplied, this defaults to 40 (i.e., 40 B -spline basis functions) for 1 D predictors, and 15 (i.e., tensor product B-splines with 15 functions per dimension) for 2D predictors. \\
\hline basismat & a \(d \times K\) matrix of values of \(K\) basis functions at the \(d\) sites. \\
\hline penmat & a \(K \times K\) matrix defining a penalty on the basis coefficients. \\
\hline argvals & points at which the functional predictors and the coefficient function are evaluated. By default, if 1D functional predictors are given by the \(n \times d\) matrix xfuncs, argvals is set to \(d\) equally spaced points from 0 to 1 ; if they are given by fdobj, argvals is set to 401 equally spaced points spanning the domain of the given functions. For 2D (image) predictors supplied as an \(n \times d 1 \times d 2\) array, argvals defaults to a list of (1) \(d 1\) equally spaced points from 0 to 1 ; (2) \(d 2\) equally spaced points from 0 to 1 . \\
\hline
\end{tabular}
```

covt covariates: an n-row matrix, or a vector of length n.
mean.signal.term
logical: should the mean of each subject's signal be included as a covariate?
spline.order order of B-splines used, if fdobj is not supplied; defaults to 4, i.e., cubic B-
splines.
family generalized linear model family. Current version supports "gaussian" (the de-
fault) and "binomial".
method smoothing parameter selection method, passed to function gam; see the gam doc-
umentation for details.
sp a fixed smoothing parameter; if NULL, an optimal value is chosen (see method).
pen.order order of derivative penalty applied when estimating the coefficient function; de-
faults to 2.
cv1 logical: should cross-validation be performed to select the best model if only
one set of tuning parameters provided? By default, FALSE. Note that, if there are
multiple sets of tuning parameters provided, cv is always performed.
nfold the number of validation sets ("folds") into which the data are divided; by de-
fault, 5.
store.cv logical: should a CV result table be in the output? By default, FALSE.
store.gam logical: should the gam object be included in the output? Defaults to TRUE.
other arguments passed to function gam.

```

\section*{Details}

One-dimensional functional predictors can be given either in functional data object form, using argument fdobj (see the fda package of Ramsay, Hooker and Graves, 2009, and Method 1 in the example below), or explicitly, using xfuncs (see Method 2 in the example). In the latter case, arguments basismat and penmat can also be used to specify the basis and/or penalty matrices (see Method 3).

For two-dimensional predictors, functional data object form is not supported. Instead of radial Bsplines as in Reiss and Ogden (2010), this implementation employs tensor product cubic B-splines, sometimes known as bivariate O-splines (Ormerod, 2008).
For purposes of interpreting the fitted coefficients, please note that the functional predictors are decorrelated from the scalar predictors before fitting the model (when there are no scalar predictors other than the intercept, this just means the columns of the functional predictor matrix are demeaned); see section 3.2 of Reiss (2006) for details.

\section*{Value}

A list with components
\begin{tabular}{ll} 
gamObject & \begin{tabular}{l} 
if store.gam = TRUE, an object of class gam (see gamObject in the mgcv pack- \\
age documentation). \\
coefficient function estimate.
\end{tabular} \\
fhat & pointwise Bayesian standard error. \\
se & undecorrelated coefficient for covariates.
\end{tabular}
```

argvals the supplied value of argvals.
cv.table a table giving the CV criterion for each combination of nbasis and ncomp, if
store.cv = TRUE; otherwise, the CV criterion only for the optimized combina-
tion of these parameters. Set to NULL if CV is not performed.
nbasis, ncomp when CV is performed, the values of nbasis and comp that minimize the CV
criterion.

```

\section*{Author(s)}

Philip Reiss <phil.reiss@nyumc. org>, Lan Huo <lan. huo@nyumc. org>, and Lei Huang <huangracer@gmail .com>

\section*{References}

Ormerod, J. T. (2008). On semiparametric regression and data mining. Ph.D. dissertation, School of Mathematics and Statistics, University of New South Wales.

Ramsay, J. O., Hooker, G., and Graves, S. (2009). Functional Data Analysis with R and MATLAB. New York: Springer.
Reiss, P. T. (2006). Regression with signals and images as predictors. Ph.D. dissertation, Department of Biostatistics, Columbia University.
Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association, 102, 984-996.
Reiss, P. T., and Ogden, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics, 66, 61-69.
Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Boca Raton, FL: Chapman \& Hall.

\section*{Examples}
```

require(fda)

1D functional predictor example

\#\#\#\#\#\#\#\#\# Octane data example \#\#\#\#\#\#\#\#\#
data(gasoline)

Create the requisite functional data objects

bbasis = create.bspline.basis(c(900, 1700), 40)
wavelengths = 2*450:850
nir <- t(gasoline$NIR)
gas.fd = smooth.basisPar(wavelengths, nir, bbasis)$fd

Method 1: Call fpcr with fdobj argument

gasmod1 = fpcr(gasoline\$octane, fdobj = gas.fd, ncomp = 30)
plot(gasmod1, xlab="Wavelength")

Not run:

Method 2: Call fpcr with explicit signal matrix

gasmod2 = fpcr(gasoline$octane, xfuncs = gasoline$NIR, ncomp = 30)

Method 3: Call fpcr with explicit signal, basis, and penalty matrices

gasmod3 = fpcr(gasoline$octane, xfuncs = gasoline$NIR,

```
```

basismat = eval.basis(wavelengths, bbasis),
penmat = getbasispenalty(bbasis), ncomp = 30)

```
\# Check that all 3 calls yield essentially identical estimates
all.equal (gasmod1\$fhat, gasmod2\$fhat, gasmod \(3 \$\) fhat)
\# But note that, in general, you'd have to specify argvals in Method 1
\# to get the same coefficient function values as with Methods 2 \& 3 .
\#\# End(Not run)
\#\#\# 2D functional predictor example \#\#\#
\(\mathrm{n}=200 ; \mathrm{d}=70\)
\# Create true coefficient function
ftrue \(=\operatorname{matrix}(0, d, d)\)
ftrue[40:46,34:38] = 1
\# Generate random functional predictors, and scalar responses
ii \(=\operatorname{array}\left(\operatorname{rnorm}\left(n * d^{\wedge} 2\right), \operatorname{dim}=c(n, d, d)\right)\)
iimat \(=\) ii; dim(iimat) \(=c\left(n, d^{\wedge} 2\right)\)
yy = iimat \%*\% as.vector(ftrue) + rnorm(n, sd=.3)
\(m m=\) fpcr (yy, ii, ncomp=40)
image(ftrue)
contour (mm\$fhat, add=TRUE)
\#\# Not run:
\#\#\# Cross-validation \#\#\#
cv .gas \(=\mathrm{fpcr}\) (gasoline\$octane, xfuncs = gasoline\$NIR,
nbasis=seq \((20,40,5)\), ncomp \(=\operatorname{seq}(10,20,5)\), store.cv \(=\) TRUE \()\)
image (seq \((20,40,5)\), seq \((10,20,5)\), cv.gas \(\$ c v . t a b l e, ~ x l a b=" B a s i s ~ s i z e ", ~\) ylab="Number of PCs", xaxp=c \((20,40,4)\), yахр=c \((10,20,2))\)
\#\# End(Not run)
f_sum Sum computation 1

\section*{Description}

Internal function used compute a sum in FPCA-based covariance updates

\section*{Usage}
f_sum(mu.q.c, sig.q.c, theta, obspts.mat)

\section*{Arguments}
```

 mu.q.c current value of mu.q.c
 sig.q.c current value of sig.q.c
 theta spline basis
 obspts.mat matrix indicating the points on which data is observed
    ```

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

\section*{Description}

Internal function used compute a sum in FPCA-based covariance updates

\section*{Usage}
f_sum2(y, fixef, mu.q.c, kt, theta)

\section*{Arguments}
y outcome matrix
fixef current estimate of fixed effects
mu.q.c current value of mu.q.c
\(k t\) number of basis functions
theta spline basis

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>
```

f_sum4 Sum computation 2

```

\section*{Description}

Internal function used compute a sum in FPCA-based covariance updates

\section*{Usage}
f_sum4(mu.q.c, sig.q.c, mu.q.bpsi, sig.q.bpsi, theta, obspts.mat)

\section*{Arguments}
mu.q.c current value of mu.q.c
sig.q.c current value of sig.q.c
mu.q.bpsi current value of mu.q.bpsi
sig.q.bpsi current value of sig.q.bpsi
theta current value of theta
obspts.mat matrix indicating where curves are observed

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>
\[
\text { f_trace } \quad \text { Trace computation }
\]

\section*{Description}

Internal function used compute a trace in FPCA-based covariance updates

\section*{Usage}
f_trace(Theta_i, Sig_q_Bpsi, Kp, Kt)

\section*{Arguments}
\begin{tabular}{ll} 
Theta_i & basis functions on observed grid points \\
Sig_q_Bpsi & variance of FPC basis coefficients \\
Kp & number of FPCs \\
Kt & number of spline basis functions
\end{tabular}

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>
gasoline Octane numbers and NIR spectra of gasoline

\section*{Description}

Near-infrared reflectance spectra and octane numbers of 60 gasoline samples. Each NIR spectrum consists of \(\log\) (1/reflectance) measurements at 401 wavelengths, in 2-nm intervals from 900 nm to 1700 nm . We thank Prof. John Kalivas for making this data set available.

\section*{Format}

A data frame comprising
octane a numeric vector of octane numbers for the 60 samples.
NIR a \(60 \times 401\) matrix of NIR spectra.

\section*{Source}

Kalivas, John H. (1997). Two data sets of near infrared spectra. Chemometrics and Intelligent Laboratory Systems, 37, 255-259.

\section*{References}

For applications of functional principal component regression to this data set:
Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association, 102, 984-996.
Reiss, P. T., and Ogden, R. T. (2009). Smoothing parameter selection for a class of semiparametric linear models. Journal of the Royal Statistical Society, Series B, 71(2), 505-523.

gibbs_cs_fpca Cross-sectional FoSR using a Gibbs sampler and FPCA

\section*{Description}

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using FPCA.

\section*{Usage}
```

gibbs_cs_fpca(
formula,
Kt = 5,
Kp = 2,
data = NULL,
verbose = TRUE,
N.iter = 5000,
N.burn = 1000,
SEED = NULL,
sig2.me = 0.01,
alpha = 0.1,
Aw = NULL,
Bw = NULL,
Apsi = NULL,
Bpsi = NULL
)

```

Arguments
\begin{tabular}{|c|c|}
\hline formula & a formula indicating the structure of the proposed model. \\
\hline Kt & number of spline basis functions used to estimate coefficient functions \\
\hline Kp & number of FPCA basis functions to be estimated \\
\hline data & an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. \\
\hline verbose & logical defaulting to TRUE - should updates on progress be printed? \\
\hline N.iter & number of iterations used in the Gibbs sampler \\
\hline N. burn & number of iterations discarded as burn-in \\
\hline SEED & seed value to start the sampler; ensures reproducibility \\
\hline sig2.me & starting value for measurement error variance \\
\hline alpha & tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha \(=0\) is all second-derivative penalty) \\
\hline Aw & hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects \\
\hline Bw & hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects \\
\hline Apsi & hyperparameter for inverse gamma controlling variance of spline terms for FPC effects \\
\hline Bpsi & hyperparameter for inverse gamma controlling variance of spline terms for FPC effects \\
\hline
\end{tabular}

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

\section*{References}

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.
gibbs_cs_wish Cross-sectional FoSR using a Gibbs sampler and Wishart prior

\section*{Description}

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using a Wishart prior.

\section*{Usage}
gibbs_cs_wish(
        formula,
        \(K t=5\),
        data \(=\) NULL,
        verbose = TRUE,
        N.iter = 5000,
        N.burn = 1000,
        alpha \(=0.1\),
        min. iter \(=10\),
        max.iter \(=50\),
        Aw = NULL,
        Bw = NULL,
        \(v=\) NULL,
        SEED = NULL
    )

\section*{Arguments}
formula a formula indicating the structure of the proposed model.
Kt number of spline basis functions used to estimate coefficient functions
data an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
verbose logical defaulting to TRUE - should updates on progress be printed?
N.iter number of iterations used in the Gibbs sampler
N.burn number of iterations discarded as burn-in
alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha \(=0\) is all second-derivative penalty)
min.iter minimum number of iterations
max.iter maximum number of iterations
Aw hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects

Bw hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects
v hyperparameter for inverse Wishart prior on residual covariance
SEED seed value to start the sampler; ensures reproducibility

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

\section*{References}

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.
```

gibbs_mult_fpca Multilevel FoSR using a Gibbs sampler and FPCA

```

\section*{Description}

Fitting function for function-on-scalar regression for longitudinal data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using FPCA.
```

Usage
gibbs_mult_fpca(
formula,
Kt = 5,
Kp = 2,
data = NULL,
verbose = TRUE,
N.iter = 5000,
N.burn = 1000,
sig2.me = 0.01,
alpha = 0.1,
SEED = NULL
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline formula & a formula indicating the structure of the proposed model. \\
\hline Kt & number of spline basis functions used to estimate coefficient functions \\
\hline Kp & number of FPCA basis functions to be estimated \\
\hline data & an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called. \\
\hline verbose & logical defaulting to TRUE - should updates on progress be printed? \\
\hline N.iter & number of iterations used in the Gibbs sampler \\
\hline N. burn & number of iterations discarded as burn-in \\
\hline sig2.me & starting value for measurement error variance \\
\hline alpha & tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha \(=0\) is all second-derivative penalty) \\
\hline SEED & seed value to start the sampler; ensures reproducibility \\
\hline
\end{tabular}

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

\section*{References}

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.

\section*{Description}

Fitting function for function-on-scalar regression for multilevel data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using a Wishart prior.

\section*{Usage}
gibbs_mult_wish(
formula,
\[
K t=5
\]
\[
\text { data }=\text { NULL, }
\]
verbose = TRUE,
\[
\text { N.iter }=5000
\]
N.burn = 1000,
alpha = 0.1,
```

 Az = NULL,
 Bz = NULL,
 Aw = NULL,
 Bw = NULL,
 v = NULL,
 SEED = NULL
)

```

\section*{Arguments}

Az hyperparameter for inverse gamma controlling variance of spline terms for subject-
formula
Kt
data
verbose
N.iter
N.burn
alpha

Bz

Aw

Bw
v
SEED
a formula indicating the structure of the proposed model.
number of spline basis functions used to estimate coefficient functions
an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
logical defaulting to TRUE - should updates on progress be printed?
number of iterations used in the Gibbs sampler
number of iterations discarded as burn-in
tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha \(=0\) is all second-derivative penalty) level effects
hyperparameter for inverse gamma controlling variance of spline terms for subjectlevel effects
hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects
hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects
hyperparameter for inverse Wishart prior on residual covariance seed value to start the sampler; ensures reproducibility

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

\section*{References}

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.
```

gls_cs Cross-sectional FoSR using GLS

```

\section*{Description}

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using GLS: first, an OLS estimate of spline coefficients is estimated; second, the residual covariance is estimated using an FPC decomposition of the OLS residual curves; finally, a GLS estimate of spline coefficients is estimated. Although this is in the 'BayesFoSR' package, there is nothing Bayesian about this FoSR.
```

Usage
gls_cs(
formula,
data = NULL,
Kt = 5,
basis = "bs",
sigma = NULL,
verbose = TRUE,
CI.type = "pointwise"
)

```

\section*{Arguments}
\(\left.\begin{array}{ll}\text { formula } & \text { a formula indicating the structure of the proposed model. } \\
\text { an optional data frame, list or environment containing the variables in the model. } \\
\text { If not found in data, the variables are taken from environment(formula), typi- } \\
\text { cally the environment from which the function is called. }\end{array}\right]\)\begin{tabular}{l} 
number of spline basis functions used to estimate coefficient functions \\
Kt \\
basis type; options are "bs" for b-splines and "pbs" for periodic b-splines \\
basis \\
sigma \\
verbose \\
optional covariance matrix used in GLS; if NULL, OLS will be used to estimated \\
fixed effects, and the covariance matrix will be estimated from the residuals. \\
logical defaulting to TRUE - should updates on progress be printed?
\end{tabular}

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

\section*{References}

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.

\section*{Description}

Defines a term \(\int_{T} \beta(t) X_{i}(t) d t\) for inclusion in an mgcv: : gam-formula (or bam or gamm or gamm 4 : : : gamm) as constructed by pfr , where \(\beta(t)\) is an unknown coefficient function and \(X_{i}(t)\) is a functional predictor on the closed interval \(T\). See smooth. terms for a list of basis and penalty options; the default is thin-plate regression splines, as this is the default option for \(s\).

\section*{Usage}
lf(
X ,
argvals \(=\) NULL,
xind \(=\) NULL,
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
presmooth \(=\) NULL,
presmooth.opts \(=\) NULL,
)

\section*{Arguments}

X
functional predictors, typically expressed as an \(N\) by J matrix, where \(N\) is the number of columns and \(J\) is the number of evaluation points. May include missing/sparse functions, which are indicated by NA values. Alternatively, can be an object of class "fd"; see fd.
argvals indices of evaluation of X , i.e. \(\left(t_{i 1}, ., t_{i J}\right)\) for subject \(i\). May be entered as either a length- \(J\) vector, or as an \(N\) by \(J\) matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject. If NULL, defaults to an equally-spaced grid between 0 or 1 (or within \(X \$\) basis \(\$\) rangeval if \(X\) is a fd object.)
xind same as argvals. It will not be supported in the next version of refund.
integration method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann".
\(\mathrm{L} \quad\) an optional N by ncol (argvals) matrix giving the weights for the numerical integration over \(t\). If present, overrides integration.
presmooth string indicating the method to be used for preprocessing functional predictor prior to fitting. Options are fpca.sc, fpca.face, fpca.ssvd, fpca.bspline, and fpca.interpolate. Defaults to NULL indicating no preprocessing. See create. prep. func.
presmooth.opts list including options passed to preprocessing method create.prep.func.
... optional arguments for basis and penalization to be passed to mgcv: :s. These could include, for example, "bs", "k", "m", etc. See s for details.

\section*{Value}
a list with the following entries
call a call to te (or s, t2) using the appropriately constructed covariate and weight matrices
argvals the argvals argument supplied to lf
\(\mathrm{L} \quad\) the matrix of weights used for the integration
xindname the name used for the functional predictor variable in the formula used by mgcv
tindname the name used for argvals variable in the formula used by mgcv
LXname the name used for the \(L\) variable in the formula used by mgcv
presmooth the presmooth argument supplied to lf
prep.func a function that preprocesses data based on the preprocessing method specified in presmooth. See create.prep.func

\section*{Author(s)}

Mathew W. McLean <mathew.w.mclean@gmail.com>, Fabian Scheipl, and Jonathan Gellar

\section*{References}

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.
Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, 61(3), 453-469.

\section*{See Also}
pfr , af, mgcv's smooth. terms and linear.functional.terms; pfr for additional examples

\section*{Examples}
```

data(DTI)
DTI1 <- DTI[DTI\$visit==1 \& complete.cases(DTI),]

We can apply various preprocessing options to the DTI data

fit1 <- pfr(pasat ~ lf(cca, k=30), data=DTI1)
fit2 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.sc",
presmooth.opts=list(nbasis=8, pve=.975)), data=DTI1)
fit3 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.face",
presmooth.opts=list(m=3, npc=9)), data=DTI1)
fit4 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.ssvd"), data=DTI1)
fit5 <- pfr(pasat ~ lf(cca, k=30, presmooth="bspline",
presmooth.opts=list(nbasis=8)), data=DTI1)

```
```

fit6 <- pfr(pasat ~ lf(cca, k=30, presmooth="interpolate"), data=DTI1)

All models should result in similar fits

fits <- as.data.frame(lapply(1:6, function(i)
get(paste0("fit",i))\$fitted.values))
names(fits) <- c("none", "fpca.sc", "fpca.face", "fpca.ssvd", "bspline", "interpolate")
pairs(fits)

```

\section*{Description}

This function defines the a variable-domain functional regression term for inclusion in an gamformula (or bam or gamm or gamm4: :gamm as constructed by pfr. These are functional predictors for which each function is observed over a domain of different width. The default is the term \(1 / T_{i} \int_{0}^{T_{i}} X_{i}(t) \beta\left(t, T_{i}\right) d t\), where \(X_{i}(t)\) is a functional predictor of length \(T_{i}\) and \(\beta\left(t, T_{i}\right)\) is an unknown bivariate coefficient function. Various domain transformations are available, such as lagging or domain-standardizing the coordinates, or parameterizing the interactions; these often result in improved model fit. Basis choice is fully customizable using the options of \(s\) and te.

\section*{Usage}
```

lf.vd(
X,
argvals = seq(0, 1, l = ncol(X)),
vd = NULL,
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
basistype = c("s", "te", "t2"),
transform = NULL,
mp = TRUE,
)

```

\section*{Arguments}

X matrix containing variable-domain functions. Should be \(N x J\), where \(N\) is the number of subjects and \(J\) is the maximum number of time points per subject. Most rows will have NA values in the right-most columns, corresponding to unobserved time points.
argvals indices of evaluation of X, i.e. \(\left(t_{i 1}, ., t_{i J}\right)\) for subject \(i\). May be entered as either a length- \(J\) vector, or as an \(N\) by \(J\) matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject.
vd vector of values of containing the variable-domain width ( \(T_{i}\) above). Defaults to the argvals value corresponding to the last non-NA element of \(X_{i}(t)\).
integration method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann".
L
an optional N by ncol (argvals) matrix giving the weights for the numerical integration over \(t\). If present, overrides integration.
basistype character string indicating type of bivariate basis used. Options include "s" (the default), "te", and "t2", which correspond to mgcv::s, mgcv::te, and mgcv: : t2.
transform character string indicating an optional basis transformation; see Details for options.
mp for transform=="linear" or transform=="quadratic", TRUE to use multiple penalties for the smooth (one for each marginal basis). If FALSE, penalties are concatonated into a single block-diagonal penalty matrix (with one smoothing parameter).
optional arguments for basis and penalization to be passed to the function indicated by basistype. These could include, for example, "bs", "k", "m", etc. See te or \(s\) for details.

\section*{Details}

The variable-domain functional regression model uses the term \(\frac{1}{T_{i}} \int_{0}^{T_{i}} X_{i}(t) \beta\left(t, T_{i}\right) d t\) to incorporate a functional predictor with subject-specific domain width. This term imposes a smooth (nonparametric) interaction between \(t\) and \(T_{i}\). The domain of the coefficient function is the triangular (or trapezoidal) surface defined by \(t, T_{i}: 0 \leq t \leq T_{i}\). The default basis uses bivariate thin-plate regression splines.
Different basis transformations can result in different properties; see Gellar, et al. (2014) for a more complete description. We make five basis transformations easily accessible using the transform argument. This argument is a character string that can take one of the following values:
1. "lagged": transforms argvals to argvals -vd
2. "standardized": transforms argvals to argvals/vd, and then rescales vd linearly so it ranges from 0 to 1
3. "linear": first transforms the domain as in "standardized", then parameterizes the interaction with "vd" to be linear
4. "quadratic": first transforms the domain as in "standardized", then parameterizes the interaction with " vd " to be quadratic
5. "noInteraction": first transforms the domain as in "standardized", then reduces the bivariate basis to univariate with no effect of vd. This would be equivalent to using lf on the domain-standardized predictor functions.

The practical effect of using the "lagged" basis is to increase smoothness along the right (diagonal) edge of the resultant estimate. The practical effect of using a "standardized" basis is to allow for greater smoothness at high values of \(T_{i}\) compared to lower values.

These basis transformations rely on the basis constructors available in the mgcvTrans package. For more specific control over the transformations, you can use \(b s=" d t "\) and/or \(b s=" p i "\); see
smooth.construct.dt.smooth.spec or smooth. construct.pi.smooth.spec for an explanation of the options (entered through the \(x t\) argument of lf. \(\mathrm{vd} / \mathrm{s}\) ).
Note that tensor product bases are only recommended when a standardized transformation is used. Without this transformation, just under half of the "knots" used to define the basis will fall outside the range of the data and have no data available to estimate them. The penalty allows the corresponding coefficients to be estimated, but results may be unstable.

\section*{Value}
a list with the following entries
\begin{tabular}{ll} 
call & \begin{tabular}{l} 
a call to s or te, using the appropriately constructed weight matrices \\
data used by the call, which includes the matrices indicated by argname, Tindname, \\
and LXname
\end{tabular} \\
L & the matrix of weights used for the integration \\
argname & the name used for the argvals variable in the formula used by mgcv: : gam \\
Tindname & the name used for the Tind variable in the formula used by mgcv: :gam \\
LXname & the name of the by variable used by or te in the formula for mgcv: :gam
\end{tabular}

\section*{Author(s)}

Jonathan E. Gellar <JGellar@mathematica-mpr.com>

\section*{References}

Gellar, Jonathan E., Elizabeth Colantuoni, Dale M. Needham, and Ciprian M. Crainiceanu. VariableDomain Functional Regression for Modeling ICU Data. Journal of the American Statistical Association, 109(508):1425-1439, 2014.

\section*{See Also}
```

pfr, lf, mgcv's linear.functional.terms.

```

\section*{Examples}
```


Not run:

 data(sofa)
 fit.vd1 <- pfr(death ~ lf.vd(SOFA) + age + los,
 family="binomial", data=sofa)
 fit.vd2 <- pfr(death ~ lf.vd(SOFA, transform="lagged") + age + los,
 family="binomial", data=sofa)
 fit.vd3 <- pfr(death ~ lf.vd(SOFA, transform="standardized") + age + los,
 family="binomial", data=sofa)
 fit.vd4 <- pfr(death ~ lf.vd(SOFA, transform="standardized",
 basistype="te") + age + los,
 family="binomial", data=sofa)
 fit.vd5 <- pfr(death ~ lf.vd(SOFA, transform="linear", bs="ps") + age + los,
 family="binomial", data=sofa)
 fit.vd6 <- pfr(death ~ lf.vd(SOFA, transform="quadratic", bs="ps") + age + los,
    ```
```

 family="binomial", data=sofa)
 fit.vd7 <- pfr(death ~ lf.vd(SOFA, transform="noInteraction", bs="ps") + age + los,
 family="binomial", data=sofa)
 ests <- lapply(1:7, function(i) {
 c.i <- coef(get(paste0("fit.vd", i)), n=173, n2=173)
 c.i[(c.i$SOFA.arg <= c.i$SOFA.vd),]
 })
 # Try plotting for each i
 i <- 1
 lims <- c(-2,8)
 if (requireNamespace("ggplot2", quietly = TRUE) &
 requireNamespace("RColorBrewer", quietly = TRUE)) {
 est <- ests[[i]]
 est$value[est$value<lims[1]] <- lims[1]
 est$value[est$value>lims[2]] <- lims[2]
 ggplot2::ggplot(est, ggplot2::aes(SOFA.arg, SOFA.vd)) +
 ggplot2::geom_tile(ggplot2::aes(colour=value, fill=value)) +
 ggplot2::scale_fill_gradientn(name="", limits=lims,
 colours=rev(RColorBrewer::brewer.pal(11,"Spectral"))) +
 ggplot2::scale_colour_gradientn(name="", limits=lims,
 colours=rev(RColorBrewer::brewer.pal(11,"Spectral"))) +
 ggplot2::scale_y_continuous(expand = c(0,0)) +
 ggplot2::scale_x_continuous(expand = c(0,0)) +
 ggplot2::theme_bw()
 }

End(Not run)

```
lf_old Construct an FLM regression term

\section*{Description}

Defines a term \(\int_{T} \beta(t) X_{i}(t) d t\) for inclusion in an gam-formula (or bam or gamm or gamm4) as constructed by fgam, where \(\beta(t)\) is an unknown coefficient function and \(X_{i}(t)\) is a functional predictor on the closed interval \(T\). Defaults to a cubic B-spline with second-order difference penalties for estimating \(\beta(t)\). The functional predictor must be fully observed on a regular grid.

\section*{Usage}
lf_old(
X ,
argvals \(=\operatorname{seq}(0,1,1=\operatorname{ncol}(X))\),
xind \(=\) NULL,
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL,
```

 splinepars = list(bs = "ps", k = min(ceiling(n/4), 40), m = c(2, 2)),
 presmooth = TRUE
)

```

\section*{Arguments}

X
argvals matrix (or vector) of indices of evaluations of \(X_{i}(t)\); i.e. a matrix with \(i\) th row \(\left(t_{i 1}, ., t_{i J}\right)\)
xind same as argvals. It will not be supported in the next version of refund.
integration method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann". "riemann" integration is always used if \(L\) is specified
L an optional \(N\) by ncol(argvals) matrix giving the weights for the numerical integration over t
splinepars optional arguments specifying options for representing and penalizing the functional coefficient \(\beta(t)\). Defaults to a cubic B -spline with second-order difference penalties, i.e. list (bs="ps", m=c \((2,1)\) ) See te or \(s\) for details
presmooth logical; if true, the functional predictor is pre-smoothed prior to fitting. See smooth.basisPar

\section*{Value}
a list with the following entries
1. call-a call to te (or s, t2) using the appropriately constructed covariate and weight matrices
2. argvals - the argvals argument supplied to lf
3. L - the matrix of weights used for the integration
4. xindname - the name used for the functional predictor variable in the formula used by mgcv
5. tindname - the name used for argvals variable in the formula used by mgcv
6. LXname - the name used for the \(L\) variable in the formula used by mgcv
7. presmooth - the presmooth argument supplied to lf
8. Xfd-an fd object from presmoothing the functional predictors using smooth. basisPar. Only present if presmooth=TRUE. See fd

\section*{Author(s)}

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

\section*{See Also}
fgam, af, mgcv's linear. functional. terms, fgam for examples

\section*{Description}

Implements longitudinal functional model with structured penalties (Kundu et al., 2012) with scalar outcome, single functional predictor, one or more scalar covariates and subject-specific random intercepts through mixed model equivalence.
```

Usage
lpeer(
Y,
subj,
t,
funcs,
argvals = NULL,
covariates = NULL,
comm.pen = TRUE,
pentype = "Ridge",
L.user = NULL,
f_t = NULL,
Q = NULL,
phia $=10^{\wedge} 3$,
se = FALSE,
...
)

```

\section*{Arguments}

Y

\section*{subj}
t

> funcs
argvals matrix (or vector) of indices of evaluations of \(X_{i}(t)\); i.e. a matrix with \(i\) th row \(\left(t_{i 1}, ., t_{i J}\right)\)
covariates
comm. pen
pentype type of penalty: either decomposition based penalty ('DECOMP') or ridge ('RIDGE') or second-order difference penalty ('D2') or any user defined penalty ('USER'). For decomposition based penalty user need to specify Q matrix in Q argument (see details). For user defined penalty user need to specify \(L\) matrix in \(L\) argument (see details). For Ridge and second-order difference penalty, specification for arguments \(L\) and \(Q\) will be ignored. Default is 'RIDGE '.
\(\left.\begin{array}{ll}\text { L. user } & \begin{array}{l}\text { penalty matrix. Need to be specified with pentype= ' USER'. When comm. pen=TRUE, } \\
\text { Number of columns need to be equal with number of columns of matrix spec- } \\
\text { ified to funcs. When comm. pen=FALSE, Number of columns need to be equal } \\
\text { with the number of columns of matrix specified to funcs times the number of } \\
\text { components of regression function. Each row represents a constraint on func- } \\
\text { tional predictor. This argument will be ignored when value of pentype is other } \\
\text { than 'USER'. } \\
\text { vector or matrix with number of rows equal to number of total observations } \\
\text { and number of columns equal to d (see details). If matrix then each column } \\
\text { pertains to single function of time and the value in the column represents the } \\
\text { realization corresponding to time vector } t \text {. The column with intercept or multiple } \\
\text { of intercept will be dropped. A NULL value refers to time-invariant regression }\end{array} \\
\text { function. Default value is NULL. } \\
\text { Q matrix to derive decomposition based penalty. Need to be specified with }\end{array}\right\}\)\begin{tabular}{l} 
pentype= 'DECOMP'. When comm. pen=TRUE, number of columns must equal \\
number of columns of matrix specified to funcs. When comm. pen=FALSE, Num- \\
ber of columns need to be equal with the number of columns of matrix specified \\
to funcs times the number of components of regression function. Each row rep- \\
resents a basis function where functional predictor is expected lie according to \\
prior belief. This argument will be ignored when value of pentype is other than
\end{tabular}

\section*{Details}

If there are any missing or infinite values in \(Y\), subj, \(t\), covariates, funcs and \(f \_t\), the corresponding row (or observation) will be dropped, and infinite values are not allowed for these arguments. Neither Q nor L may contain missing or infinite values. lpeer() fits the following model:
\(y_{i(t)}=X_{i(t)}^{T} \beta+\int W_{i(t)}(s) \gamma(t, s) d s+Z_{i(t)} u_{i}+\epsilon_{i(t)}\)
where \(\epsilon_{i(t)} N\left(0, \sigma^{2}\right)\) and \(u_{i} N\left(0, \sigma_{u}^{2}\right)\). For all the observations, predictor function \(W_{i(t)}(s)\) is evaluated at K sampling points. Here, regression function \(\gamma(t, s)\) is represented in terms of \((\mathrm{d}+1)\) component functions \(\gamma_{0}(s), \ldots, \gamma_{d}(s)\) as follows
\(\gamma(t, s)=\gamma_{0}(s)+f_{1}(t) \gamma_{1}(s)+f_{d}(t) \gamma_{d}(s)\)
Values of \(y_{i(t)}, X_{i(t)}\) and \(W_{i(t)}(s)\) are passed through argument Y , covariates and funcs, respectively. Number of elements or rows in \(Y\), \(t\), subj, covariates (if not NULL) and funcs need to be equal.
Values of \(f_{1}(t), \ldots, f_{d}(t)\) are passed through \(\mathrm{f}_{-} \mathrm{t}\) argument. The matrix passed through \(\mathrm{f}_{-} \mathrm{t}\) argument should have d columns where each column represents one and only one of \(f_{1}(t), \ldots, f_{d}(t)\).
The estimate of \((\mathrm{d}+1)\) component functions \(\gamma_{0}(s), \ldots, \gamma_{d}(s)\) is obtained as penalized estimated. The following 3 types of penalties can be used for a component function:
i. Ridge: \(I_{K}\)
ii. Second-order difference: \(\left[d_{i, j}\right]\) with \(d_{i, i}=d_{i, i+2}=1, d_{i, i+1}=-2\), otherwise \(d_{i, j}=0\)
iii. Decomposition based penalty: \(b P_{Q}+a\left(I-P_{Q}\right)\) where \(P_{Q}=Q^{T}\left(Q Q^{T}\right)^{-1} Q\)

For Decomposition based penalty the user must specify pentype= 'DECOMP' and the associated Q matrix must be passed through the Q argument. Alternatively, one can directly specify the penalty matrix by setting pentype= 'USER' and using the \(L\) argument to supply the associated \(L\) matrix.

If Q ( or L ) matrix is similar for all the component functions then argument comm. pen should have value TRUE and in that case specified matrix to argument Q (or L ) should have K columns. When Q (or L) matrix is different for all the component functions then argument comm. pen should have value FALSE and in that case specified matrix to argument Q (or L ) should have \(\mathrm{K}(\mathrm{d}+1)\) columns. Here first K columns pertains to first component function, second K columns pertains to second component functions, and so on.
Default penalty is Ridge penalty for all the component functions and user needs to specify 'RIDGE '. For second-order difference penalty, user needs to specify 'D2'. When pentype is 'RIDGE' or 'D2' the value of comm. pen is always TRUE and comm. pen=FALSE will be ignored.

\section*{Value}

A list containing:
\begin{tabular}{ll} 
fit & result of the call to lme \\
fitted.vals & predicted outcomes \\
BetaHat & parameter estimates for scalar covariates including intercept \\
se.Beta & standard error of parameter estimates for scalar covariates including intercept \\
Beta & parameter estimates with standard error for scalar covariates including intercept \\
GammaHat & \begin{tabular}{l} 
estimates of components of regression functions. Each column represents one \\
component function.
\end{tabular} \\
Se.Gamma & standard error associated with GammaHat \\
AIC & \begin{tabular}{l} 
AIC value of fit (smaller is better) \\
BIC
\end{tabular} \\
(restricted) log-likelihood at convergence \\
lambda & list of estimated smoothing parameters associated with each component function \\
V & \begin{tabular}{l} 
conditional variance of Y treating only random intercept as random one.
\end{tabular} \\
V1 & unconditional variance of Y \\
N & number of subjects \\
K & number of Sampling points in functional predictor \\
TotalObs & total number of observations over all subjects \\
Sigma.u & estimated sd of random intercept. \\
sigma & estimated within-group error standard deviation.
\end{tabular}

\section*{Author(s)}

Madan Gopal Kundu <mgkundu@iupui. edu>

\section*{References}

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties (arXiv:1211.4763 [stat.AP]).
Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models - partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

\section*{See Also}
peer, plot.lpeer

\section*{Examples}
```


Not run:

\#---

Example 1: Estimation with Ridge penalty

\#---
\#\#Load Data
data(DTI)

Extract values for arguments for lpeer() from given data

cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI\$case == 1),]
\#\#1.1 Fit the model with single component function

gamma(t,s)=gamm0(s)

t<- DTI$visit
fit.cca.lpeer1 = lpeer(Y=DTI$pasat, t=t, subj=DTI\$ID, funcs = cca)
plot(fit.cca.lpeer1)
\#\#1.2 Fit the model with two component function

gamma(t,s)=gamm0(s) + t*gamma1(s)

fit.cca.lpeer2 = lpeer(Y=DTI$pasat, t=t, subj=DTI$ID, funcs = cca,
f_t=t, se=TRUE)
plot(fit.cca.lpeer2)
\#--

Example 2: Estimation with structured penalty (need structural

information about regression function or predictor function)

\#---
\#\#Load Data
data(PEER.Sim)

Extract values for arguments for lpeer() from given data

K<- 100
W<- PEER.Sim[,c(3:(K+2))]
Y<- PEER.Sim[,K+3]
t<- PEER.Sim[,2]
id<- PEER.Sim[,1]

```
```

\#\#Load Q matrix containing structural information
data(Q)
\#\#2.1 Fit the model with two component function

gamma(t,s)=gamm0(s) + t*gamma1(s)

Fit1<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,
pentype='DECOMP', f_t=cbind(1,t), Q=Q, se=TRUE)
Fit1\$Beta
plot(Fit1)
\#\#2.2 Fit the model with three component function

gamma(t,s)=gamm0(s) + t*gamma1(s) + t^2*gamma1(s)

Fit2<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,
pentype='DECOMP', f_t=cbind(1,t, t^2), Q=Q, se=TRUE)
Fit2\$Beta
plot(Fit2)
\#\#2.3 Fit the model with two component function with different penalties

gamma(t,s)=gamm0(s) + t*gamma1(s)

Q1<- cbind(Q, Q)
Fit3<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), comm.pen=FALSE, funcs=W,
pentype='DECOMP', f_t=cbind(1,t), Q=Q1, se=TRUE)
\#\#2.4 Fit the model with two component function with user defined penalties

gamma(t,s)=gamm0(s) + t*gamma1(s)

phia<- 10^3
P_Q <- t(Q)%*%solve(Q%*%t(Q))%*% Q
L<- phia*(diag(K)- P_Q) + 1*P_Q
Fit4<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W,
pentype='USER', f_t=cbind(1,t), L=L, se=TRUE)
L1<- adiag(L, L)
Fit5<- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), comm.pen=FALSE, funcs=W,
pentype='USER', f_t=cbind(1,t), L=L1, se=TRUE)

End(Not run)

```
lpfr
Longitudinal penalized functional regression

\section*{Description}

Implements longitudinal penalized functional regression (Goldsmith et al., 2012) for generalized linear functional models with scalar outcomes and subject-specific random intercepts.
```

Usage
lpfr(
Y,
subj,
covariates = NULL,
funcs,
kz = 30,
kb = 30,
smooth.cov = FALSE,
family = "gaussian",
method = "REML",
)

```

\section*{Arguments}

Y vector of all outcomes over all visits
subj vector containing the subject number for each observation
covariates matrix of scalar covariates
funcs matrix or list of matrices containing observed functional predictors as rows. NA values are allowed.
kz dimension of principal components basis for the observed functional predictors
\(\mathrm{kb} \quad\) dimension of the truncated power series spline basis for the coefficient function
smooth.cov logical; do you wish to smooth the covariance matrix of observed functions? Increases computation time, but results in smooth principal components
family generalized linear model family
method method for estimating the smoothing parameters; defaults to REML
... additional arguments passed to gam to fit the regression model.

\section*{Details}

Functional predictors are entered as a matrix or, in the case of multiple functional predictors, as a list of matrices using the funcs argument. Missing values are allowed in the functional predictors, but it is assumed that they are observed over the same grid. Functional coefficients and confidence bounds are returned as lists in the same order as provided in the funcs argument, as are principal component and spline bases.

\section*{Value}
\begin{tabular}{ll} 
fit & result of the call to gam \\
fitted.vals & predicted outcomes \\
betaHat & list of estimated coefficient functions \\
beta.covariates & parameter estimates for scalar covariates \\
ranef & vector of subject-specific random intercepts
\end{tabular}
\begin{tabular}{ll} 
X & design matrix used in the model fit \\
phi & list of truncated power series spline bases for the coefficient functions \\
psi & list of principal components basis for the functional predictors \\
varBetaHat & \begin{tabular}{l} 
list containing covariance matrices for the estimated coefficient functions \\
Bounds
\end{tabular} \\
\(l\) & \begin{tabular}{l} 
list of bounds of a \(95 \%\) confidence interval for the estimated coefficient func- \\
tions
\end{tabular}
\end{tabular}

\section*{Author(s)}

Jeff Goldsmith <jeff.goldsmith@columbia.edu>

\section*{References}

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, 61(3), 453-469.

\section*{Examples}
```


Not run:

\#

use longitudinal data to regress continuous outcomes on

functional predictors (continuous outcomes only recorded for

case == 1)

\#
data(DTI)

subset data as needed for this example

cca = DTI$cca[which(DTI$case == 1),]
rcst = DTI$rcst[which(DTI$case == 1),]
DTI = DTI[which(DTI\$case == 1),]

note there is missingness in the functional predictors

apply(is.na(cca), 2, mean)
apply(is.na(rcst), 2, mean)

fit two models with single functional predictors and plot the results

fit.cca = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = cca, smooth.cov=FALSE)
fit.rcst = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = rcst, smooth.cov=FALSE)
par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA")
matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST")

```
```

 # fit a model with two functional predictors and plot the results
 fit.cca.rcst = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = list(cca,rcst),
 smooth.cov=FALSE)
 par(mfrow = c(1,2))
 matplot(cbind(fit.cca.rcst$BetaHat[[1]], fit.cca.rcst$Bounds[[1]]),
 type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
 main = "CCA")
 matplot(cbind(fit.cca.rcst$BetaHat[[2]], fit.cca.rcst$Bounds[[2]]),
 type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
 main = "RCST")

End(Not run)

```
mfpca.face Multilevel functional principal components analysis with fast covari-
        ance estimation

\section*{Description}

Decompose dense or sparse multilevel functional observations using multilevel functional principal component analysis with the fast covariance estimation approach.

\section*{Usage}
```

mfpca.face(
Y,
id,
visit = NULL,
twoway = TRUE,
weight = "obs",
argvals = NULL,
pve = 0.99,
npc $=$ NULL,
$p=3$,
m = 2,
knots $=35$,
silent = TRUE
)

```

\section*{Arguments}

Y
id

A multilevel functional dataset on a regular grid stored in a matrix. Each row of the data is the functional observations at one visit for one subject. Missingness is allowed and need to be labeled as NA. The data must be specified.
A vector containing the id information to identify the subjects. The data must be specified.
\begin{tabular}{ll} 
visit & \begin{tabular}{l} 
A vector containing information used to identify the visits. If not provided, \\
assume the visit id are 1,2,... for each subject. \\
Logical, indicating whether to carry out twoway ANOVA and calculate visit- \\
specific means. Defaults to TRUE.
\end{tabular} \\
twoway & The way of calculating covariance. weight = "obs" indicates that the sample \\
covariance is weighted by observations. weight \(=\) "subj" indicates that the \\
sample covariance is weighted equally by subjects. Defaults to "obs".
\end{tabular}

\section*{Details}

The fast MFPCA approach (Cui et al., 2022+) uses FACE (Xiao et al., 2016) to estimate covariance functions and mixed model equations (MME) to predict scores for each level. As a result, it has lower computational complexity than MFPCA (Di et al., 2009) implemented in the mfpca.sc function, and can be applied to decompose data sets with over 10000 subjects and over 10000 dimensions.

\section*{Value}

A list containing:
\begin{tabular}{|c|c|}
\hline Xhat & FPC approximation (projection onto leading components) of Y , estimated curves for all subjects and visits \\
\hline Xhat.subject & Estimated subject specific curves for all subjects \\
\hline Y & The observed data \\
\hline mu & estimated mean function (or a vector of zeroes if center==FALSE). \\
\hline eta & The estimated visit specific shifts from overall mean. \\
\hline scores & A matrix of estimated FPC scores for level1 and level2. \\
\hline efunctions & A matrix of estimated eigenfunctions of the functional covariance, i.e., the FPC basis functions for levels 1 and 2. \\
\hline evalues & Estimated eigenvalues of the covariance operator, i.e., variances of FPC scores for levels 1 and 2. \\
\hline npc & Number of FPCs: either the supplied npc, or the minimum number of basis functions needed to explain proportion pve of the variance in the observed curves for levels 1 and 2. \\
\hline sigma2 & Estimated measurement error variance. \\
\hline
\end{tabular}

\section*{Author(s)}

Ruonan Li <rli20@ncsu.edu>, Erjia Cui <ecui1@jhmi.edu>

\section*{References}

Cui, E., Li, R., Crainiceanu, C., and Xiao, L. (2022+). Fast multilevel functional principal component analysis.
Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2009). Multilevel functional principal component analysis. Annals of Applied Statistics, 3, 458-488.

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for high-dimensional functional data. Statistics and Computing, 26, 409-421.

\section*{Examples}
```

data(DTI)
mfpca.DTI <- mfpca.face(Y = DTI$cca, id = DTI$ID, twoway = TRUE)

```
\begin{tabular}{ll} 
mfpca.sc & \begin{tabular}{l} 
Multilevel functional principal components analysis by smoothed co- \\
variance
\end{tabular}
\end{tabular}

\section*{Description}

Decomposes functional observations using functional principal components analysis. A mixed model framework is used to estimate scores and obtain variance estimates.

\section*{Usage}
```

mfpca.sc(
Y = NULL,
id = NULL,
visit = NULL,
twoway = FALSE,
argvals = NULL,
nbasis = 10,
pve = 0.99,
npc = NULL,
makePD = FALSE,
center = TRUE,
cov.est.method = 2,
integration = "trapezoidal"
)

```

\section*{Arguments}

Y,
id
visit

\section*{twoway}
argvals
nbasis number of B-spline basis functions used for estimation of the mean function and bivariate smoothing of the covariance surface.
pve proportion of variance explained: used to choose the number of principal components.
npc prespecified value for the number of principal components (if given, this overrides pve).
makePD logical: should positive definiteness be enforced for the covariance surface estimate? Defaults to FALSE Only FALSE is currently supported.
center logical: should an estimated mean function be subtracted from Y? Set to FALSE if you have already demeaned the data using your favorite mean function estimate.
cov.est.method covariance estimation method. If set to 1 , a one-step method that applies a bivariate smooth to the \(y\left(s_{1}\right) y\left(s_{2}\right)\) values. This can be very slow. If set to 2 (the default), a two-step method that obtains a naive covariance estimate which is then smoothed. 2 is currently supported.
integration quadrature method for numerical integration; only "trapezoidal" is currently supported.

\section*{Details}

This function computes a multilevel FPC decomposition for a set of observed curves, which may be sparsely observed and/or measured with error. A mixed model framework is used to estimate level 1 and level 2 scores.

MFPCA was proposed in Di et al. (2009), with variations for MFPCA with sparse data in Di et al. (2014). mfpca.sc uses penalized splines to smooth the covariance functions, as Described in Di et al. (2009) and Goldsmith et al. (2013).

\section*{Value}

An object of class mfpca containing:
\begin{tabular}{ll} 
Yhat & \begin{tabular}{l} 
FPC approximation (projection onto leading components) of Y, estimated curves \\
for all subjects and visits
\end{tabular} \\
Yhat. subject & estimated subject specific curves for all subjects \\
Y & the observed data \\
scores & \(n \times n p c\) matrix of estimated FPC scores for levell and level2. \\
mu & estimated mean function (or a vector of zeroes if center==FALSE).
\end{tabular}
\begin{tabular}{ll} 
efunctions & \(d \times n p c\) matrix of estimated eigenfunctions of the functional covariance, i.e., the \\
evalues & \begin{tabular}{l} 
FPC basis functions for levels 1 and 2. \\
estimated eigenvalues of the covariance operator, i.e., variances of FPC scores \\
for levels 1 and 2.
\end{tabular} \\
npc & \begin{tabular}{l} 
number of FPCs: either the supplied npc, or the minimum number of basis func- \\
tions needed to explain proportion pve of the variance in the observed curves for \\
levels 1 and 2.
\end{tabular} \\
sigma2 & \begin{tabular}{l} 
estimated measurement error variance.
\end{tabular} \\
eta & the estimated visit specific shifts from overall mean.
\end{tabular}

\section*{Author(s)}

Julia Wrobel <jw3134@cumc.columbia.edu>, Jeff Goldsmith < jeff.goldsmith@columbia.edu>, and Chongzhi Di

\section*{References}

Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2009). Multilevel functional principal component analysis. Annals of Applied Statistics, 3, 458-488.
Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2014). Multilevel sparse functional principal component analysis. Stat, 3, 126-143.
Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for functional data using principal components. Biometrics, 69(1), 41-51.

\section*{Examples}
```

 ## Not run:
 data(DTI)
 DTI = subset(DTI, Nscans < 6) ## example where all subjects have 6 or fewer visits
 id = DTI$ID
 Y = DTI$cca
 mfpca.DTI = mfpca.sc(Y=Y, id = id, twoway = TRUE)

End(Not run)

```
model.matrix.pffr Obtain model matrix for a pffr fit

\section*{Description}

Obtain model matrix for a pffr fit

\section*{Usage}
\#\# S3 method for class 'pffr'
model.matrix(object, ...)

\section*{Arguments}
object a fitted pffr-object
... other arguments, passed to predict.gam.

\section*{Value}

A model matrix

\section*{Author(s)}

Fabian Scheipl
ols_cs

\section*{Description}

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using GLS: first, an OLS estimate of spline coefficients is estimated; second, the residual covariance is estimated using an FPC decomposition of the OLS residual curves; finally, a GLS estimate of spline coefficients is estimated. Although this is in the 'BayesFoSR' package, there is nothing Bayesian about this FoSR.

\section*{Usage}
ols_cs(formula, data \(=\) NULL, \(\mathrm{Kt}=5\), basis = "bs", verbose \(=\) TRUE)

\section*{Arguments}
formula a formula indicating the structure of the proposed model.
data an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
Kt number of spline basis functions used to estimate coefficient functions
basis basis type; options are "bs" for b-splines and "pbs" for periodic b-splines
verbose logical defaulting to TRUE - should updates on progress be printed?

\section*{Author(s)}

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

\section*{References}

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.
```

pco_predict_preprocess

```

\section*{Make predictions using pco basis terms}

\section*{Description}

This function performs the necessary preprocessing for making predictions with gam models that include pco basis terms. The function pco_predict_preprocess builds a data.frame (or augments an existing one) to be used with the usual predict function.

\section*{Usage}
pco_predict_preprocess(model, newdata \(=\) NULL, dist_list)

\section*{Arguments}
model a fitted gam model with at least one term of class "pco. smooth".
newdata data frame including the new values for any non-pco terms in the original fit. If there were none, this can be left as NULL.
dist_list a list of \(n \times n *\) matrices, one per pco term in the model, giving the distances from the \(n *\) prediction points to the \(n\) design points (original observations). List entry names should correspond to the names of the terms in the model (e.g., if the model includes a \(s(x)\) term, dist_list must include an element named "x").

\section*{Details}

Models with pco basis terms are fitted by inputting distances among the observations and then regressing (with a ridge penalty) on leading principal coordinates arising from these distances. To perform prediction, we must input the distances from the new data points to the original points, and then "insert" the former into the principal coordinate space by the interpolation method of Gower (1968) (see also Miller, 2012).

An example of how to use this function in practice is shown in smooth. construct. pco. smooth. spec.

\section*{Value}
a data.frame with the coordinates for the new data inserted into principal coordinate space, in addition to the supplied newdata if this was non-NULL. This can be used as the newdata argument in a call to predict. gam.

\section*{Author(s)}

David L Miller

\section*{References}

Gower, J. C. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika, 55(3), 582-585.
Miller, D. L. (2012). On smooth models for complex domains and distances. PhD dissertation, Department of Mathematical Sciences, University of Bath.

\section*{See Also}
smooth.construct.pco.smooth.spec
```

pcre pffr-constructor for functional principal component-based functional random intercepts.

```

\section*{Description}
pffr-constructor for functional principal component-based functional random intercepts.

\section*{Usage}
pcre(id, efunctions, evalues, yind, ...)

\section*{Arguments}
\begin{tabular}{ll} 
id & grouping variable a factor \\
efunctions & \begin{tabular}{l} 
matrix of eigenfunction evaluations on gridpoints yind (<length of yind \(>x<n o\). \\
of used eigenfunctions \(>\) )
\end{tabular} \\
evalues & \begin{tabular}{l} 
eigenvalues associated with efunctions
\end{tabular} \\
yind & vector of gridpoints on which efunctions are evaluated. \\
\(\ldots\) & not used
\end{tabular}

\section*{Value}
a list used internally for constructing an appropriate call to mgcv : : gam

\section*{Details}

Fits functional random intercepts \(B_{i}(t)\) for a grouping variable id using as a basis the functions \(\phi_{m}(t)\) in efunctions with variances \(\lambda_{m}\) in evalues: \(B_{i}(t) \approx \sum_{m}^{M} \phi_{m}(t) \delta_{i m}\) with independent \(\delta_{i m} \sim N\left(0, \sigma^{2} \lambda_{m}\right)\), where \(\sigma^{2}\) is (usually) estimated and controls the overall contribution of the \(B_{i}(t)\) while the relative importance of the \(M\) basisfunctions is controlled by the supplied variances lambda_m. Can be used to model smooth residuals if id is simply an index of observations. Differing from scalar random effects in mgcv, these effects are estimated under a "sum-to-zero-for-each-t"-constraint - specifically \(\sum_{i} \hat{b}_{i}(t)=0\left(\right.\) not \(\left.\sum_{i} n_{i} \hat{b}_{i}(t)=0\right)\) where \(\$ n_{-} \mathrm{i} \$\) is the number of observed curves for subject \(i\), so the intercept curve for models with unbalanced group sizes no longer corresponds to the global mean function.
efunctions and evalues are typically eigenfunctions and eigenvalues of an estimated covariance operator for the functional process to be modeled, i.e., they are a functional principal components basis.

\section*{Author(s)}

Fabian Scheipl

\section*{Examples}
```


Not run:

residualfunction <- function(t){
\#generate quintic polynomial error functions
drop(poly(t, 5)%*%rnorm(5, sd=sqrt(2:6)))
}

generate data Y(t) = mu(t) + E(t) + white noise

set.seed(1122)
n <- 50
T <- 30
t <- seq(0,1, l=T)

E(t): smooth residual functions

E <- t(replicate(n, residualfunction(t)))
int <- matrix(scale(3*dnorm(t, m=.5, sd=.5) - dbeta(t, 5, 2)), byrow=T, n, T)
Y <- int + E + matrix(.2*rnorm(n*T), n, T)
data <- data.frame(Y=I(Y))

fit model under independence assumption:

summary(m0 <- pffr(Y ~ 1, yind=t, data=data))

get first 5 eigenfunctions of residual covariance

(i.e. first 5 functional PCs of empirical residual process)

Ehat <- resid(m0)
fpcE <- fpca.sc(Ehat, npc=5)
efunctions <- fpcE$efunctions
evalues <- fpcE$evalues
data\$id <- factor(1:nrow(data))

refit model with fpc-based residuals

m1 <- pffr(Y ~ 1 + pcre(id=id, efunctions=efunctions, evalues=evalues, yind=t), yind=t, data=data)
t1 <- predict(m1, type="terms")
summary(m1)
\#compare squared errors
mean((int-fitted(m0))^2)
mean((int-t1[[1]])^2)
mean((E-t1[[2]])^2)

compare fitted \& true smooth residuals and fitted intercept functions:

layout(t(matrix(1:4,2,2)))
matplot(t(E), lty=1, type="l", ylim=range(E, t1[[2]]))
matplot(t(t1[[2]]), lty=1, type="l", ylim=range(E, t1[[2]]))
plot(m1, select=1, main="m1", ylim=range(Y))
lines(t, int[1,], col=rgb(1,0,0,.5))
plot(m0, select=1, main="m0", ylim=range(Y))
lines(t, int[1,], col=rgb(1,0,0,.5))

End(Not run)

```
```

peer Construct a PEER regression term in a pfr formula

```

\section*{Description}

Defines a term \(\int_{T} \beta(t) X_{i}(t) d t\) for inclusion in a pfr formula, where \(\beta(t)\) is estimated with structured penalties (Randolph et al., 2012).
```

Usage
peer(
X,
argvals = NULL,
pentype = "RIDGE",
Q = NULL,
phia = 10^3,
L = NULL,
)

```

\section*{Arguments}

X
functional predictors, typically expressed as an \(N\) by J matrix, where \(N\) is the number of columns and \(J\) is the number of evaluation points. May include missing/sparse functions, which are indicated by NA values. Alternatively, can be an object of class "fd"; see fd.
argvals indices of evaluation of \(X\), i.e. \(\left(t_{i 1}, ., t_{i J}\right)\) for subject \(i\). May be entered as either a length-J vector, or as an \(N\) by J matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject. If NULL, defaults to an equally-spaced grid between 0 or 1 (or within \(X \$\) basis \(\$\) rangeval if \(X\) is a fd object.)
pentype the type of penalty to apply, one of "RIDGE", "D", "DECOMP", or "USER"; see Details.

Q matrix \(Q\) used for pentype="DECOMP"; see Details.
phia scalar \(a\) used for pentype="DECOMP"; see Details.
L user-supplied penalty matrix for pentype="USER"; see Details.
... additional arguments to be passed to lf (and then possibly s). Arguments processed by lf include, for example, integration for specifying the method of numerical integration. Arguments processed by s include information related to basis and penalization, such as \(m\) for specifying the order of the difference penalty; See Details. xt-argument is not allowed for peer-terms and will cause an error.

\section*{Details}
peer is a wrapper for lf, which defines linear functional predictors for any type of basis. It simply calls lf with the appropriate options for the peer basis and penalty construction. The type of penalty is determined by the pentype argument. There are four types of penalties available:
1. pentype=="RIDGE" for a ridge penalty, the default
2. pentype=="D" for a difference penalty. The order of the difference penalty may be specified by supplying an m argument (default is 2 ).
3. pentype=="DECOMP" for a decomposition-based penalty, \(b P_{Q}+a\left(I-P_{Q}\right)\), where \(P_{Q}=\) \(Q^{t}\left(Q Q^{t}\right)^{-1} Q\). The \(Q\) matrix must be specified by Q , and the scalar \(a\) by phia. The number of columns of \(Q\) must be equal to the length of the data. Each row represents a basis function where the functional predictor is expected to lie, according to prior belief.
4. pentype=="USER" for a user-specified penalty matrix, supplied by the \(L\) argument.

The original stand-alone implementation by Madan Gopal Kundu is available in peer_old.

\section*{Author(s)}

Jonathan Gellar <JGellar@mathematica-mpr.com> and Madan Gopal Kundu <mgkundu@iupui .edu>

\section*{References}

Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models - partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties (arXiv:1211.4763 [stat.AP]).

\section*{See Also}
pfr, smooth. construct. peer.smooth.spec

\section*{Examples}
```


Not run:

\#---

Example 1: Estimation with D2 penalty

\#---
data(DTI)
DTI = DTI[which(DTI\$case == 1),]
fit.D2 = pfr(pasat ~ peer(cca, pentype="D"), data=DTI)
plot(fit.D2)
\#--

Example 2: Estimation with structured penalty (need structural

information about regression function or predictor function)

\#---
data(PEER.Sim)

```
```

data(Q)
PEER.Sim1<- subset(PEER.Sim, t==0)

Setting k to max possible value

fit.decomp <- pfr(Y ~ peer(W, pentype="Decomp", Q=Q, k=99), data=PEER.Sim1)
plot(fit.decomp)

End(Not run)

```
PEER.Sim

\section*{Description}

PEER. Sim contains simulated observations from 100 subjects, each observed at 4 distinct timepoints. At each timepoint bumpy predictor profile is generated randomly and the scalar response variable is generated considering a time-varying regression function and subject intercept. Accompanying the functional predictor and scalar response are the subject ID numbers and time of measurements.

\section*{Format}

The data frame PEER. Sim is made up of subject ID number(id), subject-specific time of measurement ( t ), functional predictor profile (W. 1-W.100) and scalar response (Y)

\section*{Details}

Q represents the \(7 \times 100\) matrix where each row provides structural information about the functional predictor profile for data PEER. Sim. For specific details about the simulation and Q matrix, please refer to Kundu et. al. (2012).

\section*{References}

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties. (please contact J. Harezlak at <harezlak@iupui .edu>)

\section*{Description}

Implements functional model with structured penalties (Randolph et al., 2012) with scalar outcome and single functional predictor through mixed model equivalence.
```

Usage
peer_old(
Y,
funcs,
argvals = NULL,
pentype = "Ridge",
L.user = NULL,
Q = NULL,
phia = 10^3,
se = FALSE,
...
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Y & vector of all outcomes \\
\hline funcs & matrix containing observed functional predictors as rows. Rows with NA and Inf values will be deleted. \\
\hline argvals & matrix (or vector) of indices of evaluations of \(X_{i}(t)\); i.e. a matrix with ith row \(\left(t_{i 1}, ., t_{i J}\right)\) \\
\hline pentype & type of penalty. It can be either decomposition based penalty (DECOMP) or ridge (RIDGE) or second-order difference penalty (D2) or any user defined penalty (USER). For decomposition based penalty user need to specify Q matrix in Q argument (see details). For user defined penalty user need to specify L matrix in L argument (see details). For Ridge and second-order difference penalty, specification for arguments L and Q will be ignored. Default is RIDGE. \\
\hline L.user & penalty matrix. Need to be specified with pentype= 'USER'. Number of columns need to be equal with number of columns of matrix specified to funcs. Each row represents a constraint on functional predictor. This argument will be ignored when value of pentype is other than USER. \\
\hline Q & Q matrix to derive decomposition based penalty. Need to be specified with pentype= ' DECOMP'. Number of columns need to be equal with number of columns of matrix specified to funcs. Each row represents a basis function where functional predictor is expected lie according to prior belief. This argument will be ignored when value of pentype is other than DECOMP. \\
\hline phia & Scalar value of a in decomposition based penalty. Need to be specified with pentype='DECOMP'. \\
\hline
\end{tabular}
se logical; calculate standard error when TRUE.
... additional arguments passed to the lme function.

\section*{Details}

If there are any missing or infinite values in Y , and funcs, the corresponding row (or observation) will be dropped. Neither Q nor \(L\) may contain missing or infinite values.
peer_old() fits the following model:
\(y_{i}=\int W_{i}(s) \gamma(s) d s+\epsilon_{i}\)
where \(\epsilon_{i} N\left(0, \sigma^{2}\right)\). For all the observations, predictor function \(W_{i}(s)\) is evaluated at K sampling points. Here, \(\gamma(s)\) denotes the regression function.
Values of \(y_{i}\) and \(W_{i}(s)\) are passed through argument Y and funcs, respectively. Number of elements or rows in \(Y\) and funcs need to be equal.
The estimate of regression functions \(\gamma(s)\) is obtained as penalized estimated. Following 3 types of penalties can be used:
i. Ridge: \(I_{K}\)
ii. Second-order difference: \(\left[d_{i, j}\right]\) with \(d_{i, i}=d_{i, i+2}=1, d_{i, i+1}=-2\), otherwise \(d_{i, i}=0\)
iii. Decomposition based penalty: \(b P_{Q}+a\left(I-P_{Q}\right)\) where \(P_{Q}=Q^{T}\left(Q Q^{T}\right)^{-1} Q\)

For Decomposition based penalty user need to specify pentype= 'DECOMP ' and associated \(Q\) matrix need to be passed through \(Q\) argument.

Alternatively, user can pass directly penalty matrix through argument L. For this user need to specify pentype='USER' and associated \(L\) matrix need to be passed through \(L\) argument.
Default penalty is Ridge penalty and user needs to specify RIDGE. For second-order difference penalty, user needs to specify D2.

\section*{Value}
a list containing:
\begin{tabular}{ll} 
fit & result of the call to lme \\
fitted.vals & predicted outcomes \\
Gamma & estimates with standard error for regression function \\
GammaHat & estimates of regression function \\
se.Gamma & standard error associated with GammaHat \\
AIC & AIC value of fit (smaller is better) \\
BIC & BIC value of fit (smaller is better) \\
logLik & (restricted) log-likelihood at convergence \\
lambda & estimates of smoothing parameter \\
N & number of subjects \\
K & number of Sampling points in functional predictor \\
sigma & estimated within-group error standard deviation.
\end{tabular}

\section*{Author(s)}

Madan Gopal Kundu <mgkundu@iupui.edu>

\section*{References}

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties (arXiv:1211.4763 [stat.AP]).
Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models - partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

\section*{See Also}
lpeer, plot. peer

\section*{Examples}
```


Not run:

\#--

Example 1: Estimation with D2 penalty

\#--

Load Data

data(DTI)

Extract values for arguments for peer() from given data

cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]
##1.1 Fit the model
fit.cca.peer1 = peer(Y=DTI$pasat, funcs = cca, pentype='D2', se=TRUE)
plot(fit.cca.peer1)
\#--

Example 2: Estimation with structured penalty (need structural

information about regression function or predictor function)

\#---

Load Data

data(PEER.Sim)

Extract values for arguments for peer() from given data

PEER.Sim1<- subset(PEER.Sim, t==0)
W<- PEER.Sim1$W
Y<- PEER.Sim1$Y
\#\#Load Q matrix containing structural information
data(Q)
\#\#2.1 Fit the model
Fit1<- peer(Y=Y, funcs=W, pentype='Decomp', Q=Q, se=TRUE)

```
```

plot(Fit1)

```
\#\# End(Not run)
pffr

\section*{Description}

Implements additive regression for functional and scalar covariates and functional responses. This function is a wrapper for mgcv's gam and its siblings to fit models of the general form \(E\left(Y_{i}(t)\right)=g\left(\mu(t)+\int X_{i}(s) \beta(s, t) d s+f\left(z_{1 i}, t\right)+f\left(z_{2 i}\right)+z_{3 i} \beta_{3}(t)+\ldots\right)\)
with a functional (but not necessarily continuous) response \(Y(t)\), response function \(g\), (optional) smooth intercept \(\mu(t)\), (multiple) functional covariates \(X(t)\) and scalar covariates \(z_{1}, z_{2}\), etc.

\section*{Usage}
pffr
formula,
yind,
data = NULL,
ydata \(=\) NULL,
algorithm = NA,
method = "REML",
tensortype = c("ti", "t2"),
bs.yindex = list(bs = "ps", k = 5, m = c(2, 1)),
bs.int \(=\) list(bs \(=" p s ", k=20, m=c(2,1))\),
)

\section*{Arguments}
\(\begin{array}{ll}\text { formula } & \begin{array}{l}\text { a formula with special terms as for gam, with additional special terms } f f(), \mathrm{sff}(), \mathrm{ffpc}(), \mathrm{pcre}() \\ \text { and } \mathrm{c}() . \\ \text { a vector with length equal to the number of columns of the matrix of functional } \\ \text { responses giving the vector of evaluation points }\left(t_{1}, \ldots, t_{G}\right) \text {. If not supplied, } \\ \text { yind is set to } 1: \text { ncol (<response>). } \\ \text { an (optional) data.frame containing the data. Can also be a named list for } \\ \text { regular data. Functional covariates have to be supplied as <no. of observations> } \\ \text { by <no. of evaluations> matrices, i.e. each row is one functional observation. } \\ \text { data } \\ \text { an (optional) data.frame supplying functional responses that are not observed } \\ \text { on a regular grid. See Details. }\end{array} \\ \text { algorithm } & \begin{array}{l}\text { the name of the function used to estimate the model. Defaults to gam if the matrix } \\ \text { of functional responses has less than 2e5 data points and to bam if not. 'gamm ', }\end{array} \\ \text { 'gamm4' and 'jagam' are valid options as well. See Details for 'gamm4' and } \\ \text { 'jagam'. }\end{array}\)
\begin{tabular}{ll} 
method & \begin{tabular}{l} 
Defaults to "REML"-estimation, including of unknown scale. If algorithm="bam", \\
the default is switched to "fREML". See gam and bam for details.
\end{tabular} \\
tensortype & \begin{tabular}{l} 
which typ of tensor product splines to use. One of "ti" or "t2", defaults to ti. \\
t2-type terms do not enforce the more suitable special constraints for functional \\
regression, see Details.
\end{tabular} \\
bs.yindex & \begin{tabular}{l} 
a named (!) list giving the parameters for spline bases on the index of the func- \\
tional response. Defaults to list (bs="ps", \(k=5, m=c(2,1)\) ), i.e. 5 cubic B- \\
splines bases with first order difference penalty.
\end{tabular} \\
bs.int & \begin{tabular}{l} 
a named (!) list giving the parameters for the spline basis for the global func- \\
tional intercept. Defaults to list (bs="ps", \(k=20, m=c(2,1)), ~ i . e . ~\)
\end{tabular} 20 cubic \\
B-splines bases with first order difference penalty. \\
additional arguments that are valid for gam, bam, 'gamm4' or 'jagam'. subset \\
is not implemented.
\end{tabular}

\section*{Value}

A fitted pffr-object, which is a gam-object with some additional information in an pffr-entry. If algorithm is "gamm" or "gamm4", only the \$gam part of the returned list is modified in this way.
Available methods/functions to postprocess fitted models: summary.pffr, plot.pffr, coef.pffr, fitted.pffr, residuals.pffr, predict.pffr, model.matrix.pffr, qq.pffr, pffr.check.
If algorithm is "jagam", only the location of the model file and the usual jagam-object are returned, you have to run the sampler yourself.

\section*{Details}

The routine can estimate
1. linear functional effects of scalar (numeric or factor) covariates that vary smoothly over \(t\) (e.g. \(z_{1 i} \beta_{1}(t)\), specified as \(\sim z 1\) ),
2. nonlinear, and possibly multivariate functional effects of (one or multiple) scalar covariates \(z\) that vary smoothly over the index \(t\) of \(Y(t)\) (e.g. \(f\left(z_{2 i}, t\right)\), specified in the formula simply as ~s(z2))
3. (nonlinear) effects of scalar covariates that are constant over \(t\) (e.g. \(f\left(z_{3 i}\right)\), specified as \(\sim c(s(z 3))\), or \(\beta_{3} z_{3 i}\), specified as \(\left.\sim c(z 3)\right)\),
4. function-on-function regression terms (e.g. \(\int X_{i}(s) \beta(s, t) d s\), specified as \(\sim \mathbf{f f}(\mathbf{X}, \mathrm{y}\) index \(=\mathrm{t}, \mathrm{x}\) index \(=\mathbf{s}\) ), see ff ). Terms given by sff and ffpc provide nonlinear and FPC-based effects of functional covariates, respectively.
5. concurrent effects of functional covariates \(X\) measured on the same grid as the response are specified as follows: \(\sim s(x)\) for a smooth, index-varying effect \(f(X(t), t), \sim \mathrm{x}\) for a linear index-varying effect \(X(t) \beta(t), \sim c(s(x))\) for a constant nonlinear effect \(f(X(t)), \sim c(x)\) for a constant linear effect \(X(t) \beta\).
6. Smooth functional random intercepts \(b_{0 g(i)}(t)\) for a grouping variable g with levels \(g(i)\) can be specified via \(\sim \mathrm{s}(\mathrm{g}, \mathrm{bs}=" \mathrm{re} ")\) ), functional random slopes \(u_{i} b_{1 g(i)}(t)\) in a numeric variable u via \(\sim s(g, u, b s=" r e "))\). Scheipl, Staicu, Greven (2013) contains code examples for modeling correlated functional random intercepts using mrf-terms.

Use the c() -notation to denote model terms that are constant over the index of the functional response.

Internally, univariate smooth terms without a c()-wrapper are expanded into bivariate smooth terms in the original covariate and the index of the functional response. Bivariate smooth terms ( s()\(, \mathrm{te}()\) or t2()) without a c() -wrapper are expanded into trivariate smooth terms in the original covariates and the index of the functional response. Linear terms for scalar covariates or categorical covariates are expanded into varying coefficient terms, varying smoothly over the index of the functional response. For factor variables, a separate smooth function with its own smoothing parameter is estimated for each level of the factor.

The marginal spline basis used for the index of the the functional response is specified via the global argument bs.yindex. If necessary, this can be overriden for any specific term by supplying a bs.yindex-argument to that term in the formula, e.g. \(\sim s(x, b s . y i n d e x=l i s t(b s=" t p ", k=7)\) ) would yield a tensor product spline over \(x\) and the index of the response in which the marginal basis for the index of the response are 7 cubic thin-plate spline functions (overriding the global default for the basis and penalty on the index of the response given by the global bs. yindex-argument). Use \(\sim-1+c(1)+\ldots\) to specify a model with only a constant and no functional intercept.

The functional covariates have to be supplied as a \(n\) by <no. of evaluations> matrices, i.e. each row is one functional observation. For data on a regular grid, the functional response is supplied in the same format, i.e. as a matrix-valued entry in data, which can contain missing values.

If the functional responses are sparse or irregular (i.e., not evaluated on the same evaluation points across all observations), the ydata-argument can be used to specify the responses: ydata must be a data.frame with 3 columns called '. obs', '. index', '. value' which specify which curve the point belongs to ( \('\).obs ' \(=i\) ), at which \(t\) it was observed ( \('\). index ' \(=t\) ), and the observed value ('.value' \(=Y_{i}(t)\) ). Note that the vector of unique sorted entries in ydata\$. obs must be equal to rownames (data) to ensure the correct association of entries in ydata to the corresponding rows of data. For both regular and irregular functional responses, the model is then fitted with the data in long format, i.e., for data on a grid the rows of the matrix of the functional response evaluations \(Y_{i}(t)\) are stacked into one long vector and the covariates are expanded/repeated correspondingly. This means the models get quite big fairly fast, since the effective number of rows in the design matrix is number of observations times number of evaluations of \(Y(t)\) per observation.

Note that pffr does not use mgcv's default identifiability constraints (i.e., \(\sum_{i, t} \hat{f}\left(z_{i}, x_{i}, t\right)=0\) or \(\sum_{i, t} \hat{f}\left(x_{i}, t\right)=0\) ) for tensor product terms whose marginals include the index \(t\) of the functional response. Instead, \(\sum_{i} \hat{f}\left(z_{i}, x_{i}, t\right)=0\) for all \(t\) is enforced, so that effects varying over \(t\) can be interpreted as local deviations from the global functional intercept. This is achieved by using titerms with a suitably modified mc-argument. Note that this is not possible if algorithm='gamm4' since only t2-type terms can then be used and these modified constraints are not available for t 2 . We recommend using centered scalar covariates for terms like \(z \beta(t)(\sim z)\) and centered functional covariates with \(\sum_{i} X_{i}(t)=0\) for all \(t\) in ff-terms so that the global functional intercept can be interpreted as the global mean function.

The family-argument can be used to specify all of the response distributions and link functions described in family.mgcv. Note that family = "gaulss" is treated in a special way: Users can supply the formula for the variance by supplying a special argument varformula, but this is not
modified in the way that the formula-argument is but handed over to the fitter directly, so this is for expert use only. If varformula is not given, pffr will use the parameters from argument bs.int to define a spline basis along the index of the response, i.e., a smooth variance function over \(\$ \mathbf{t} \$\) for responses \(\$ \mathrm{Y}(\mathrm{t}) \$\).

\section*{Author(s)}

Fabian Scheipl, Sonja Greven

\section*{References}

Ivanescu, A., Staicu, A.-M., Scheipl, F. and Greven, S. (2015). Penalized function-on-function regression. Computational Statistics, 30(2):539-568. https://biostats.bepress.com/jhubiostat/ paper254/
Scheipl, F., Staicu, A.-M. and Greven, S. (2015). Functional Additive Mixed Models. Journal of Computational \& Graphical Statistics, 24(2): 477-501. https://arxiv.org/abs/1207.5947
F. Scheipl, J. Gertheiss, S. Greven (2016): Generalized Functional Additive Mixed Models, Electronic Journal of Statistics, 10(1), 1455-1492. https://projecteuclid.org/journals/electronic-journal-of-stati volume-10/issue-1/Generalized-functional-additive-mixed-models/10.1214

\section*{See Also}
smooth. terms for details of mgcv syntax and available spline bases and penalties.

\section*{Examples}
```

\#

univariate model:

Y(t) = f(t) + \int X1(s)\beta(s,t)ds + eps

set.seed(2121)
data1 <- pffrSim(scenario="ff", n=40)
t <- attr(data1, "yindex")
s <- attr(data1, "xindex")
m1 <- pffr(Y ~ ff(X1, xind=s), yind=t, data=data1)
summary(m1)
plot(m1, pers=TRUE, pages=1)

Not run:

\#

multivariate model:

E(Y(t)) = \beta_0(t) + \int X1(s)\beta_1(s,t)ds + xlin \beta_3(t) +

f_1(xte1, xte2) + f_2(xsmoo, t) + \beta_4 xconst

data2 <- pffrSim(scenario="all", n=200)
t <- attr(data2, "yindex")
s <- attr(data2, "xindex")
m2 <- pffr(Y ~ ff(X1, xind=s) + \#linear function-on-function
xlin + \#varying coefficient term
c(te(xte1, xte2)) + \#bivariate smooth term in xte1 \& xte2, const. over Y-index
s(xsmoo) + \#smooth effect of xsmoo varying over Y-index
c(xconst), \# linear effect of xconst constant over Y-index
yind=t,

```
```

 data=data2)
 summary(m2)
plot(m2, pers=TRUE)
str(coef(m2))

convenience functions:

preddata <- pffrSim(scenario="all", n=20)
str(predict(m2, newdata=preddata))
str(predict(m2, type="terms"))
cm2 <- coef(m2)
cm2$pterms
str(cm2$smterms, 2)
str(cm2$smterms[["s(xsmoo)"]]$coef)
\#

sparse data (80% missing on a regular grid):

set.seed(88182004)
data3 <- pffrSim(scenario=c("int", "smoo"), n=100, propmissing=0.8)
t <- attr(data3, "yindex")
m3.sparse <- pffr(Y ~ s(xsmoo), data=data3$data, ydata=data3$ydata, yind=t)
summary(m3.sparse)
plot(m3.sparse, pers=TRUE, pages=1)

End(Not run)

```

\section*{Description}

This is simply a wrapper for gam. check ().

\section*{Usage}
```

pffr.check(
b,
old.style = FALSE,
type = c("deviance", "pearson", "response"),
k.sample = 5000,
k.rep = 200,
rep = 0,
level = 0.9,
rl.col = 2,
rep.col = "gray80",
)

```

\section*{Arguments}
b a fitted pffr-object If you want old fashioned plots, exactly as in Wood, 2006, set to TRUE.
type type of residuals, see residuals.gam, used in all plots.
k. sample
k.rep
rep Above this k testing uses a random sub-sample of data.
level
rl.col
rep.col
...
how many re-shuffles to do to get p -value for k testing. passed to qq.gam when old. style is FALSE. extra graphics parameters to pass to plotting functions.

\section*{Description}

Implements additive regression for functional and scalar covariates and functional responses. This function is a wrapper for mgcv's gam and its siblings to fit models of the general form \(\left.Y_{i}(t)=\mu(t)+\int X_{i}(s) \beta(s, t) d s+f\left(z_{1 i}, t\right)+f\left(z_{2 i}\right)+z_{3 i} \beta_{3}(t)+\ldots+E_{i}(t)\right)\)
with a functional (but not necessarily continuous) response \(Y(t)\), (optional) smooth intercept \(\mu(t)\), (multiple) functional covariates \(X(t)\) and scalar covariates \(z_{1}, z_{2}\), etc. The residual functions \(E_{i}(t) \sim G P\left(0, K\left(t, t^{\prime}\right)\right)\) are assumed to be i.i.d. realizations of a Gaussian process. An estimate of the covariance operator \(K\left(t, t^{\prime}\right)\) evaluated on yind has to be supplied in the hatSigma-argument.
```

Usage
pffrGLS(
formula,
yind,
hatSigma,
algorithm = NA,
method = "REML",
tensortype = c("te", "t2"),
bs.yindex = list(bs = "ps", k = 5, m = c(2, 1)),
bs.int = list(bs = "ps", k = 20, m = c(2, 1)),
cond.cutoff = 500,
)

```

\section*{Arguments}
formula a formula with special terms as for gam, with additional special terms ff() and \(c()\). See pffr.
yind a vector with length equal to the number of columns of the matrix of functional responses giving the vector of evaluation points \(\left(t_{1}, \ldots, t_{G}\right)\). see pffr
hatSigma (an estimate of) the within-observation covariance (along the responses' index), evaluated at yind. See Details.
algorithm the name of the function used to estimate the model. Defaults to gam if the matrix of functional responses has less than \(2 e 5\) data points and to bam if not. "gamm" (see gamm) and "gamm4" (see gamm4) are valid options as well.
method See pffr
tensortype See pffr
bs.yindex See pffr
bs.int See pffr
cond.cutoff if the condition number of hatSigma is greater than this, hatSigma is made "more" positive-definite via nearPD to ensure a condition number equal to cond.cutoff. Defaults to 500.
... additional arguments that are valid for gam or bam. See pffr.

\section*{Value}
a fitted pffr-object, see pffr.

\section*{Details}

Note that hatSigma has to be positive definite. If hatSigma is close to positive semi-definite or badly conditioned, estimated standard errors become unstable (typically much too small). pffrGLS will try to diagnose this and issue a warning. The danger is especially big if the number of functional observations is smaller than the number of gridpoints (i.e, length(yind)), since the raw covariance estimate will not have full rank.
Please see pffr for details on model specification and implementation.

\section*{THIS IS AN EXPERIMENTAL VERSION AND NOT WELL TESTED YET - USE AT YOUR OWN RISK.}

\section*{Author(s)}

Fabian Scheipl

\section*{See Also}
pffr, fpca.sc
```

pffrSim Simulate example data for pffr

```

\section*{Description}

Simulates example data for pffr from a variety of terms. Scenario "all" generates data from a complex multivariate model
\[
Y_{i}(t)=\mu(t)+\int X_{1 i}(s) \beta_{1}(s, t) d s+x \operatorname{lin} \beta_{3}(t)+f(x t e 1, x t e 2)+f(x s m o o, t)+\beta_{4} x \text { const }+f(x f a c t o r, t)+\epsilon_{i}(t)
\]
. Scenarios "int", "ff", "lin", "te", "smoo", "const", "factor", generate data from simpler models containing only the respective term(s) in the model equation given above. Specifying a vectorvalued scenario will generate data from a combination of the respective terms. Sparse/irregular response trajectories can be generated by setting propmissing to something greater than 0 (and smaller than 1). The return object then also includes a ydata-item with the sparsified data.
```

Usage
pffrSim(
scenario = "all",
n = 100,
nxgrid = 40,
nygrid = 60,
SNR = 10,
propmissing = 0,
limits = NULL
)

```

\section*{Arguments}
\begin{tabular}{ll} 
scenario & see Description \\
n & number of observations \\
nxgrid & number of evaluation points of functional covariates \\
nygrid & \begin{tabular}{l} 
number of evaluation points of the functional response \\
the signal-to-noise ratio for the generated data: empirical variance of the additive \\
SNR
\end{tabular} \\
predictor divided by variance of the errors.
\end{tabular}

\section*{Details}

See source code for details.

\section*{Value}
a named list with the simulated data, and the true components of the predictor etc as attributes.

\section*{pfr Penalized Functional Regression}

\section*{Description}

Implements various approaches to penalized scalar-on-function regression. These techniques include Penalized Functional Regression (Goldsmith et al., 2011), Longitudinal Penalized Functional Regression (Goldsmith, et al., 2012), Functional Principal Component Regression (Reiss and Ogden, 2007), Partially Empirical Eigenvectors for Regression (Randolph et al., 2012), Functional Generalized Additive Models (McLean et al., 2013), and Variable-Domain Functional Regression (Gellar et al., 2014). This function is a wrapper for mgcv's gam and its siblings to fit models with a scalar (but not necessarily continuous) response.

\section*{Usage}
pfr(formula \(=\) NULL, fitter \(=\) NA, method \(=\) "REML", ...)

\section*{Arguments}
formula a formula that could contain any of the following special terms: \(\operatorname{lf}(), a f()\), lf. vd(), peer (), fpc (), or re(); also mgcv's s(), te(), or t2().
fitter the name of the function used to estimate the model. Defaults to gam if the matrix of functional responses has less than 2 e 5 data points and to bam if not. "gamm" (see gamm) and "gamm4" (see gamm4) are valid options as well.
method The smoothing parameter estimation method. Default is "REML". For options, see gam.
... additional arguments that are valid for gam or bam. These include data and family to specify the input data and outcome family, as well as many options to control the estimation.

\section*{Value}

A fitted pfr-object, which is a gam-object with some additional information in a \$pfr-element. If fitter is "gamm" or "gamm4", only the \$gam part of the returned list is modified in this way.

\section*{Warning}

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

\section*{Author(s)}

Jonathan Gellar <JGellar@mathematica-mpr.com>, Mathew W. McLean, Jeff Goldsmith, and Fabian Scheipl

\section*{References}

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.
Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, 61(3), 453-469.

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association, 102, 984-996.
Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models - partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23 (1), pp. 249-269. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.
Gellar, J. E., Colantuoni, E., Needham, D. M., and Crainiceanu, C. M. (2014). Variable-Domain Functional Regression for Modeling ICU Data. Journal of the American Statistical Association, 109(508): 1425-1439.

\section*{See Also}
\(a f, l f, l f . v d, f p c\), peer, re.

\section*{Examples}
\# See lf(), lf.vd(), af(), fpc(), and peer() for additional examples
```

data(DTI)
DTI1 <- DTI[DTI\$visit==1 \& complete.cases(DTI),]
par(mfrow=c(1,2))

Fit model with linear functional term for CCA

fit.lf <- pfr(pasat ~ lf(cca, k=30, bs="ps"), data=DTI1)
plot(fit.lf, ylab=expression(paste(beta(t))), xlab="t")

Not run:

Alternative way to plot

bhat.lf <- coef(fit.lf, n=101)
bhat.lf$upper <- bhat.lf$value + 1.96*bhat.lf$se
bhat.lf$lower <- bhat.lf$value - 1.96*bhat.lf$se
matplot(bhat.lf\$cca.argvals, bhat.lf[,c("value", "upper", "lower")],
type="l", lty=c(1,2,2), col=1,
ylab=expression(paste(beta(t))), xlab="t")

```
\# Fit model with additive functional term for CCA, using tensor product basis
fit.af <- pfr(pasat ~ af(cca, Qtransform=TRUE, k=c (7,7)), data=DTI1)
plot(fit.af, scheme=2, xlab="t", ylab="cca(t)", main="Tensor Product")
plot(fit.af, scheme=2, Qtransform=TRUE,
    xlab="t", ylab="cca(t)", main="Tensor Product")
\# Change basistype to thin-plate regression splines
fit.af.s <- pfr(pasat ~ af(cca, basistype="s", Qtransform=TRUE, k=50),
data=DTI1)
plot(fit.af.s, scheme=2, xlab="t", ylab="cca(t)", main="TPRS", rug=FALSE)
plot(fit.af.s, scheme=2, Qtransform=TRUE,
\(x l a b=" t ", y l a b=" c c a(t) ", ~ m a i n=" T P R S ", ~ r u g=F A L S E)\)
\# Visualize bivariate function at various values of \(x\)
par (mfrow=c (2,2))
vis.pfr(fit.af, xval=.2)
vis.pfr(fit.af, xval=.4)
vis.pfr(fit.af, xval=.6)
vis.pfr(fit.af, xval=.8)
\# Include random intercept for subject
DTI.re <- DTI[complete.cases(DTI\$cca),]
DTI.re\$ID <- factor(DTI.re\$ID)
fit.re <- pfr(pasat ~ lf(cca, k=30) + re(ID), data=DTI.re)
coef.re <- coef(fit.re)
\(\operatorname{par}(m f r o w=c(1,2))\)
plot(fit.re)
\# FPCR_R Model
fit.fpc <- pfr(pasat ~ fpc(cca), data=DTI.re)
plot(fit.fpc)
\# PEER Model with second order difference penalty
DTI.use <- DTI[DTI\$case==1,]
DTI.use <- DTI.use[complete.cases(DTI.use\$cca),]
fit. peer <- pfr(pasat \(\sim\) peer (cca, argvals=seq(0,1, length=93), integration="riemann", pentype="D"), data=DTI.use)
plot(fit. peer)
\#\# End(Not run)
pfr_old Penalized Functional Regression (old version)

\section*{Description}

This code implements the function \(\operatorname{pfr}()\) available in refund \(0.1-11\). It is included to maintain backwards compatibility.

Functional predictors are entered as a matrix or, in the case of multiple functional predictors, as a list of matrices using the funcs argument. Missing values are allowed in the functional predictors, but it is assumed that they are observed over the same grid. Functional coefficients and confidence bounds are returned as lists in the same order as provided in the funcs argument, as are principal component and spline bases. Increasing values of nbasis will increase computational time and the values of nbasis, kz , and kb in relation to each other may need to be adjusted in application-specific ways.

\section*{Usage}
```

pfr_old(
Y,
subj = NULL,
covariates = NULL,
funcs,
$k z=10$,
$\mathrm{kb}=30$,
nbasis $=10$,
family = "gaussian",
method = "REML",
smooth.option = "fpca.sc",
pve $=0.99$,
...
)

```

\section*{Arguments}
\begin{tabular}{ll} 
Y & vector of all outcomes over all visits \\
subj \\
covariates & \begin{tabular}{l} 
vector containing the subject number for each observation \\
matrix of scalar covariates
\end{tabular} \\
funcs & \begin{tabular}{l} 
matrix, or list of matrices, containing observed functional predictors as rows. \\
NA values are allowed. \\
can be NULL; can be a scalar, in which case this will be the dimension of prin- \\
cipal components basis for each and every observed functional predictors; can \\
be a vector of length equal to the number of functional predictors, in which case \\
each element will correspond to the dimension of principal components basis \\
for the corresponding observed functional predictors
\end{tabular} \\
kz & \begin{tabular}{l} 
dimension of the B-spline basis for the coefficient function (note: this is a \\
change from versions 0.1-7 and previous)
\end{tabular} \\
nbasis & \begin{tabular}{l} 
passed to refund::fpca.sc (note: using fpca.sc is a change from versions \(0.1-7\) \\
and previous) \\
generalized linear model family \\
method for estimating the smoothing parameters; defaults to REML
\end{tabular} \\
family & \begin{tabular}{l} 
method to do FPC decomposition on the predictors. Two options available -
\end{tabular} \\
method & \begin{tabular}{l} 
"fpca.sc" or "fpca.face". If using "fpca.sc", a number less than 35 for nbasis \\
should be used while if using "fpca.face",35 or more is recommended.
\end{tabular} \\
pmeoth.option & \begin{tabular}{l} 
proportion of variance explained used to choose the number of principal com- \\
ponents to be included in the expansion. \\
additional arguments passed to gam to fit the regression model.
\end{tabular}
\end{tabular}

Value
\begin{tabular}{ll} 
fit & result of the call to gam \\
fitted.vals & predicted outcomes
\end{tabular}
fitted.vals.level.0 predicted outcomes at population level
fitted.vals.level. 1 predicted outcomes at subject-specific level (if applicable)
betaHat list of estimated coefficient functions beta.covariates
parameter estimates for scalar covariates
varBetaHat list containing covariance matrices for the estimated coefficient functions
Bounds list of bounds of a pointwise \(95 \%\) confidence interval for the estimated coefficient functions
\(X \quad\) design matrix used in the model fit
D penalty matrix used in the model fit
phi list of B-spline bases for the coefficient functions
psi list of principal components basis for the functional predictors
C stacked row-specific principal component scores
J transpose of psi matrix multiplied by phi
CJ \(\quad\) C matrix multiplied \(J\)
Z1 design matrix of random intercepts
subj subject identifiers as specified by user
fixed.mat the fixed effects design matrix of the pfr as a mixed model
rand.mat the fixed effects design matrix of the pfr as a mixed model
N_subj the number of unique subjects, if subj is specified
\(p \quad\) number of scalar covariates
N.pred number of functional covariates
kz as specified
kz.adj For smooth.option="fpca.sc", will be same as kz (or a vector of repeated values of the specified scalar kz). For smooth.option="fpca.face", will be the corresponding number of principal components for each functional predictor as determined by fpca.face; will be less than or equal to kz on an elemental-wise level.
\begin{tabular}{ll} 
kb & as specified \\
nbasis & as specified \\
totD & number of penalty matrices created for mgcv::gam \\
funcs & as specified \\
covariates & as specified \\
smooth.option & as specified
\end{tabular}

\section*{Warning}

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

\section*{Author(s)}

Bruce Swihart <bruce. swihart@gmail.com> and Jeff Goldsmith <jeff.goldsmith@columbia. edu>

\section*{References}

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.
Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, 61(3), 453-469.

Swihart, Bruce J., Goldsmith, Jeff; and Crainiceanu, Ciprian M. (July 2012). Testing for functional effects. Johns Hopkins University Dept. of Biostatistics Working Paper 247, available at https: //biostats.bepress.com/jhubiostat/paper247/ American Statistical Association, 109(508): 1425-1439.

\section*{See Also}
```

rlrt.pfr, predict.pfr.

```

\section*{Examples}
```


Not run:

\#
\#\#\#\#\#\#\#\#\# DTI Data Example \#\#\#\#\#\#\#\#
\#
\#

For more about this example, see Swihart et al. 2013

\#

load and reassign the data;

data(DTI2)
Y <- DTI2$pasat ## PASAT outcome
id <- DTI2$id \#\# subject id
W1 <- DTI2$cca ## Corpus Callosum
W2 <- DTI2$rcst \#\# Right corticospinal
V <- DTI2\$visit \#\# visit

prep scalar covariate

visit.1.rest <- matrix(as.numeric(V > 1), ncol=1)
covar.in <- visit.1.rest

note there is missingness in the functional predictors

apply(is.na(W1), 2, mean)
apply(is.na(W2), 2, mean)

fit two univariate models

pfr.obj.t1 <- pfr(Y = Y, covariates=covar.in, funcs = list(W1), subj = id, kz = 10, kb = 50)
pfr.obj.t2 <- pfr(Y = Y, covariates=covar.in, funcs = list(W2), subj = id, kz = 10, kb = 50)

```
```


one model with two functional predictors using "smooth.face"

for smoothing predictors

pfr.obj.t3 <- pfr(Y = Y, covariates=covar.in, funcs = list(W1, W2),
subj = id, kz = 10, kb = 50, nbasis=35,smooth.option="fpca.face")

plot the coefficient function and bounds

dev.new()
par(mfrow=c(2,2))
ran <- c(-2,.5)
matplot(cbind(pfr.obj.t1$BetaHat[[1]], pfr.obj.t1$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t2$BetaHat[[1]], pfr.obj.t2$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[1]], pfr.obj.t3$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[2]], pfr.obj.t3$Bounds[[2]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "RCST - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")
\#

use baseline data to regress continuous outcomes on functional

predictors (continuous outcomes only recorded for case == 1)

\#
data(DTI)

subset data as needed for this example

cca = DTI$cca[which(DTI$visit ==1 \& DTI$case == 1),]
rcst = DTI$rcst[which(DTI$visit ==1 & DTI$case == 1),]
DTI = DTI[which(DTI$visit ==1 & DTI$case == 1),]

note there is missingness in the functional predictors

apply(is.na(cca), 2, mean)
apply(is.na(rcst), 2, mean)

fit two models with single functional predictors and plot the results

fit.cca = pfr(Y=DTI$pasat, funcs = cca, kz=10, kb=50, nbasis=20)
fit.rcst = pfr(Y=DTI$pasat, funcs = rcst, kz=10, kb=50, nbasis=20)
par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
main = "CCA")
matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",

```
main = "RCST")
\# fit a model with two functional predictors and plot the results
fit.cca.rcst \(=\operatorname{pfr}(\mathrm{Y}=\mathrm{DTI}\) \$pasat, funcs \(=\) list(cca, rcst\(), \mathrm{kz}=10\), \(\mathrm{kb}=30\), nbasis=20)
\(\operatorname{par}(\) mfrow \(=c(1,2))\)
matplot(cbind(fit.cca.rcst\$BetaHat[[1]], fit.cca.rcst\$Bounds[[1]]), type \(=\) 'l', lty \(=c(1,2,2), c o l=c(1,2,2), y l a b=" B e t a H a t "\), main = "CCA")
matplot(cbind(fit.cca.rcst\$BetaHat[[2]], fit.cca.rcst\$Bounds[[2]]), type \(=\) 'l', lty \(=c(1,2,2), ~ c o l=c(1,2,2), y l a b=" B e t a H a t "\), main = "RCST")

\section*{\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#}
\# use baseline data to regress binary case-status outcomes on
\# functional predictors
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
data(DTI)
\# subset data as needed for this example
cca = DTI\$cca[which(DTI\$visit == 1),]
rcst = DTI\$rcst[which(DTI\$visit == 1),]
DTI = DTI[which(DTI\$visit == 1),]
\# fit two models with single functional predictors and plot the results
fit.cca \(=\operatorname{pfr}(Y=D T I \$ c a s e, ~ f u n c s=c c a, ~ f a m i l y=~ " b i n o m i a l ") ~\)

\(\operatorname{par}(m f r o w=c(1,2))\)
matplot(cbind(fit.cca\$BetaHat[[1]], fit.cca\$Bounds[[1]]), type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", main = "CCA")
matplot(cbind(fit.rcst\$BetaHat[[1]], fit.rcst\$Bounds[[1]]), type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", main = "RCST")
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\# Octane Data Example \#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
data(gasoline)
Y = gasoline\$octane
funcs = gasoline\$NIR
wavelengths \(=\) as.matrix \((2 \star 450: 850)\)
\# fit the model using pfr and the smoothing option "fpca.face"
fit \(=\operatorname{pfr}(Y=Y\), funcs=funcs, \(k z=15, k b=50\), nbasis=35, smooth.option="fpca.face")
matplot(wavelengths, cbind(fit\$BetaHat[[1]], fit\$Bounds[[1]]), type='l', lwd=c (2,1,1), lty=c(1,2,2), xlab = "Wavelengths", ylab = "Coefficient Function", col=1)
```


End(Not run)

```
```

plot.fosr

Description

Plots the coefficient function estimates produced by fosr().

Usage

```
    ## S3 method for class 'fosr'
    plot(
        x,
        split = NULL,
        titles = NULL,
        xlabel = "",
        ylabel = "Coefficient function",
        set.mfrow = TRUE,
        ...
    )
```


Arguments

x
split value, or vector of values, at which to divide the set of coefficient functions into groups, each plotted on a different scale. E.g., if set to 1 , the first function is plotted on one scale, and all others on a different (common) scale. If NULL, all functions are plotted on the same scale.
titles character vector of titles for the plots produced, e.g., names of the corresponding scalar predictors.
x label label for the x -axes of the plots.
ylabel label for the y-axes of the plots.
set.mfrow logical value: if TRUE, the function will try to set an appropriate value of the mfrow parameter for the plots. Otherwise you may wish to set mfrow outside the function call.
... graphical parameters (see par) for the plot.

Author(s)

Philip Reiss phil.reiss@nyumc.org

See Also

fosr, which includes examples.
plot.fosr.vs Plot for Function-on Scalar Regression with variable selection

Description

Given a "fosr.vs" object, produces a figure of estimated coefficient functions.

Usage

```
## S3 method for class 'fosr.vs'
plot(x, ...)
```


Arguments

$\begin{array}{ll}x & \text { an object of class "fosr.vs". } \\ \ldots & \text { additional arguments. }\end{array}$

Value

a figure of estimated coefficient functions.

Author(s)

Yakuan Chen yc2641@cumc.columbia.edu

See Also

fosr.vs

Examples

```
## Not run:
    I = 100
    p = 20
    D = 50
    grid = seq(0, 1, length = D)
    beta.true = matrix(0, p, D)
    beta.true[1,] = sin(2*grid*pi)
    beta.true[2,] = cos(2*grid*pi)
    beta.true[3,] = 2
    psi.true = matrix(NA, 2, D)
    psi.true[1,] = sin(4*grid*pi)
    psi.true[2,] = cos(4*grid*pi)
    lambda = c(3,1)
    set.seed(100)
```

```
X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))
fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)
Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error
data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
plot(fit.mcp)
## End(Not run)
```

 plot.fpcr

Description

Inputs an object created by fpcr, and plots the estimated coefficient function.

Usage

```
    ## S3 method for class 'fpcr'
    plot(
        x,
        se = TRUE,
        col = 1,
        lty = c(1, 2, 2),
        xlab = "",
        ylab = "Coefficient function",
    )
```


Arguments

x
se
an object of class "fper".
if TRUE (the default), upper and lower lines are added at 2 standard errors (in the Bayesian sense; see Wood, 2006) above and below the coefficient function estimate. If a positive number is supplied, the standard error is instead multiplied by this number.

col	color for the line(s). This should be either a number, or a vector of length 3 for the coefficient function estimate, lower bound, and upper bound, respectively.
lty	line type(s) for the coefficient function estimate, lower bound, and upper bound.
xlab, ylab	$\mathrm{x}-$ and y -axis labels.
\ldots	other arguments passed to the underlying plotting function.

Value

None; only a plot is produced.

Author(s)

Philip Reiss phil.reiss@nyumc.org

References

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Boca Raton, FL: Chapman \& Hall.

See Also

fper, which includes an example.

Description

Plots the estimate of components of estimated regression function obtained from an lpeer object along with pointwise confidence bands.

Usage

\#\# S3 method for class 'lpeer'
plot $(x$, conf $=0.95, \ldots)$

Arguments

x
conf
...
object of class "lpeer".
pointwise confidence level.
additional arguments passed to plot.

Details

Pointwise confidence interval is displayed only if the user set se=T in the call to lpeer, and does not reflect any multiplicity correction.

Author(s)

Madan Gopal Kundu <mgkundu@iupui. edu>

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties. (Please contact J. Harezlak at <harezlak@iupui. edu>.)
Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models - partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

See Also
peer, lpeer, plot. peer

Examples

```
## Not run:
data(DTI)
cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]
fit.cca.lpeer1 = lpeer(Y=DTI$pasat, t=DTI$visit, subj=DTI$ID, funcs = cca)
plot(fit.cca.lpeer1)
## End(Not run)
```

plot. peer

Plotting of estimated regression functions obtained through peer()

Description

Plots the estimate of components of estimated regression function obtained from a peer object along with pointwise confidence bands.

Usage

```
## S3 method for class 'peer'
plot(
        x,
        conf = 0.95,
        ylab = "Estimated regression function",
        main = expression(gamma),
    )
```


Arguments

X
conf pointwise confidence level.
ylab $\quad y$-axis label.
main title for the plot.
...

Details

Pointwise confidence interval is displayed only if the user set se=T in the call to peer, and does not reflect any multiplicity correction.

Author(s)

Madan Gopal Kundu <mgkundu@iupui. edu>

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties. (Please contact J. Harezlak at <harezlak@iupui. edu>.)
Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models - partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

See Also
peer, lpeer, plot.lpeer

Examples

\# See example in peer()

$$
\text { plot.pffr } \quad \text { Plot a pffr fit }
$$

Description

Plot a fitted pffr-object. Simply dispatches to plot.gam.

Usage

\#\# S3 method for class 'pffr'
plot(x, ...)

Arguments

x
a fitted pffr-object
... arguments handed over to plot.gam

Value

This function only generates plots.

Author(s)

Fabian Scheipl
plot.pfr

Description

This function plots the smooth coefficients of a pfr object. These include functional coefficients as well as any smooths of scalar covariates. The function dispatches to pfr_plot.gam, which is our local copy of plot.gam with some minor changes.

Usage

```
## S3 method for class 'pfr'
plot(x, Qtransform = FALSE, ...)
```


Arguments

x
Qtransform
a fitted pfr-object
For additive functional terms, TRUE indicates the coefficient should be plotted on the quantile-transformed scale, whereas FALSE indicates the scale of the original data. Note this is different from the Qtransform arguemnt of af, which specifies the scale on which the term is fit.
... arguments handed over to plot.gam

Value

This function's main purpose is its side effect of generating plots. It also silently returns a list of the data used to produce the plots, which can be used to generate customized plots.

Author(s)

Jonathan Gellar

See Also

$$
a f, p f r
$$

```
predict.fbps Prediction for fast bivariate P-spline (fbps)
```


Description

Produces predictions given a fbps object and new data

Usage

\#\# S3 method for class 'fbps'
predict(object, newdata, ...)

Arguments

object an object returned by fbps
newdata a data frame or list consisting of x and z values for which predicted values are desired. vectors of x and z need to be of the same length.
.. additional arguments.

Value

A list with components
$x \quad a$ vector of x given in newdata
$z \quad a$ vector of z given in newdata
fitted.values a vector of fitted values corresponding to x and z given in newdata

Author(s)

Luo Xiao lxiao@jhsph.edu

References

Xiao, L., Li, Y., and Ruppert, D. (2013). Fast bivariate P-splines: the sandwich smoother. Journal of the Royal Statistical Society: Series B, 75(3), 577-599.

Examples

```
##########################
#### True function #####
############################
n1 <- 60
n2 <- 80
x <- (1: n1)/n1-1/2/n1
z <- (1: n2)/n2-1/2/n2
MY <- array(0,c(length(x),length(z)))
sigx <- . 3
sigz <- .4
```

```
for(i in 1: length(x))
    for(j in 1: length(z))
{
        #MY[i,j] <- .75/(pi*sigx*sigz) *exp(-(x[i]-.2)^2/sigx^2-(z[j]-.3)^2/sigz^2)
        #MY[i,j] <- MY[i,j] + .45/(pi*sigx*sigz) *exp(-(x[i]-.7)^2/sigx^2-(z[j]-.8)^2/sigz^2)
        MY[i,j] = sin(2*pi*(x[i]-.5)^3)*cos(4*pi*z[j])
    }
```

\#
\#\#\#\# Observed data \#\#\#\#\#
\#
sigma <- 1
Y <- MY + sigma*rnorm(n1*n2, 0,1)
\#
\#\#\#\# Estimation \#\#\#\#\#
\#
est <- fbps(Y,list($\mathrm{X}=\mathrm{x}, \mathrm{z}=\mathrm{z})$)
mse <- mean((est\$Yhat-MY)^2)
cat("mse of fbps is",mse,"\n")
cat("The smoothing parameters are:",est\$lambda,"\n")
\#
\#\#\#\#\#\#\#\#\#\# Compare the estimated surface with the true surface \#\#\#\#\#\#\#\#\#
\#
$\operatorname{par}(m f r o w=c(1,2))$
$\operatorname{persp}(x, z, M Y, z l a b=" f(x, z) ", z l i m=c(-1,2.5), \quad$ phi=30, theta=45, expand=0. $8, r=4$,
col="blue", main="True surface")
persp($x, z, e s t \$ Y h a t, z l a b=" f(x, z) ", z l i m=c(-1,2.5)$, phi=30, theta=45,
expand=0.8,r=4, col="red",main="Estimated surface")
\#
$\begin{aligned} & \text { \#\#\#\# prediction \#\#\#\#\# } \\ & \text { \# }\end{aligned}$
\# 1. make prediction with predict.fbps() for all pairs of x and z given in the original data
\# (it's expected to have same results as Yhat obtianed using fbps() above)
newdata <- list(x= rep(x, length(z)), z = rep(z, each=length(x)))
pred1 <- predict(est, newdata=newdata)\$fitted.values
pred1.mat <- matrix(pred1, nrow=length(x))
$\operatorname{par}(m f r o w=c(1,2))$
image(pred1.mat); image(est\$Yhat)
all.equal(as.numeric(pred1.mat), as.numeric(est\$Yhat))
\# 2. predict for pairs of first $10 x$ values and first 5 z values
newdata <- list(x= $\operatorname{rep}(x[1: 10], 5), z=\operatorname{rep}(z[1: 5]$, each=10))
pred2 <- predict(est, newdata=newdata)\$fitted.values
pred2.mat <- matrix (pred2, nrow=10)
$\operatorname{par}(m f r o w=c(1,2))$
image(pred2.mat); image(est\$Yhat[1:10,1:5])
all.equal(as.numeric(pred2.mat), as.numeric(est\$Yhat[1:10,1:5]))
\# 3. predict for one pair

```
newdata <- list(x=x[5], z=z[3])
pred3 <- predict(est, newdata=newdata)$fitted.values
all.equal(as.numeric(pred3), as.numeric(est$Yhat[5,3]))
```

predict.fgam Prediction from a fitted FGAM model

Description

Takes a fitted fgam-object produced by fgam and produces predictions given a new set of values for the model covariates or the original values used for the model fit. Predictions can be accompanied by standard errors, based on the posterior distribution of the model coefficients. This is a wrapper function for predict.gam()

Usage

```
## S3 method for class 'fgam'
predict(
    object,
    newdata,
    type = "response",
    se.fit = FALSE,
    terms = NULL,
    PredOutOfRange = FALSE,
    )
```


Arguments

object a fitted fgam object as produced by fgam
newdata a named list containing the values of the model covariates at which predictions are required. If this is not provided then predictions corresponding to the original data are returned. All variables provided to newdata should be in the format supplied to fgam, i.e., functional predictors must be supplied as matrices with each row corresponding to one observed function. Index variables for the functional covariates are reused from the fitted model object or alternatively can be supplied as attributes of the matrix of functional predictor values. Any variables in the model not specified in newdata are set to their average values from the data supplied during fitting the model
type character; see predict.gam for details
se.fit logical; see predict.gam for details
terms character see predict.gam for details
PredOutOfRange logical; if this argument is true then any functional predictor values in newdata corresponding to fgam terms that are greater[less] than the maximum[minimum] of the domain of the marginal basis for the rows of the tensor product smooth are set to the maximum[minimum] of the domain. If this argument is false,
attempting to predict a value of the functional predictor outside the range of this basis produces an error
... additional arguments passed on to predict.gam

Value

If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se $==$ TRUE, a list with entries fit and se.fit containing fits and standard errors, respectively. If type == "terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response for newdata containing the linear predictor and its se for each term

Author(s)

Mathew W. McLean mathew.w.mclean@gmail.com and Fabian Scheipl

See Also

fgam, predict.gam

Examples

```
######### Octane data example #########
data(gasoline)
N <- length(gasoline$octane)
wavelengths = 2*450:850
nir = matrix(NA, 60,401)
test <- sample(60,20)
for (i in 1:60) nir[i,] = gasoline$NIR[i, ] # changes class from AsIs to matrix
y <- gasoline$octane
#fit <- fgam(y~af(nir,xind=wavelengths,splinepars=list(k=c(6,6),m=list(c(2, 2),c(2, 2)))),
    # subset=(1:N)[-test])
#preds <- predict(fit,newdata=list(nir=nir[test,]),type='response')
#plot(preds,y[test])
#abline(a=0,b=1)
```

```
predict.fosr Prediction from a fitted bayes_fosr model
```


Description

Takes a fitted fosr-object produced by bayes_fosr and produces predictions given a new set of values for the model covariates or the original values used for the model fit.

Usage

```
## S3 method for class 'fosr'
```

predict(object, newdata, ...)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { a fitted fosr object as produced by bayes_fosr } \\
\text { newdata } & \begin{array}{l}
\text { a named list containing the values of the model covariates at which predictions } \\
\text { are required. If this is not provided then predictions corresponding to the original } \\
\text { data are returned. All variables provided to newdata should be in the format } \\
\text { supplied to the model fitting function. }
\end{array}
\end{array}
$$

 \(\ldots \quad\) additional (unused) arguments

Value

Author(s)

Jeff Goldsmith < jeff.goldsmith@columbia.edu>

See Also

bayes_fosr

Examples

```
## Not run:
library(reshape2)
library(dplyr)
library(ggplot2)
##### Cross-sectional real-data example #####
## organize data
data(DTI)
DTI = subset(DTI, select = c(cca, case, pasat))
DTI = DTI[complete.cases(DTI),]
DTI$gender = factor(sample(c("male","female"), dim(DTI)[1], replace = TRUE))
DTI$status = factor(sample(c("RRMS", "SPMS", "PPMS"), dim(DTI)[1], replace = TRUE))
## fit models
VB = bayes_fosr(cca ~ pasat, data = DTI, Kp = 4, Kt = 10)
## obtain predictions
pred = predict(VB, sample_n(DTI, 10))
## End(Not run)
```


Description

Given a "fosr.vs" object and new data, produces fitted values.

Usage

\#\# S3 method for class 'fosr.vs'
predict(object, newdata $=$ NULL, ...)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { an object of class "fosr.vs". } \\
\text { newdata } & \begin{array}{l}
\text { a data frame that contains the values of the model covariates at which predictors } \\
\text { are required. }
\end{array} \\
\ldots & \text { additional arguments. }
\end{array}
$$

Value

fitted values.

Author(s)

Yakuan Chen yc2641@cumc.columbia.edu

See Also

fosr.vs

Examples

```
## Not run:
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)
beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2
psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)
```

```
set.seed(100)
X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))
fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)
Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error
data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
predicted.value = predict(fit.mcp, data[81:100,])
## End(Not run)
```

 Predict.matrix.dt.smooth
 Predict.matrix method for dt basis

Description

Predict.matrix method for dt basis

Usage

\#\# S3 method for class 'dt.smooth'
Predict.matrix(object, data)

Arguments

object adt. smooth object created by smooth. construct.dt. smooth. spec, see smooth. construct data see smooth.construct

Value

design matrix for domain-transformed terms

Author(s)

Jonathan Gellar

Predict.matrix.fpc.smooth
mgcv-style constructor for prediction of FPC terms

Description

mgcv-style constructor for prediction of FPC terms

Usage

\#\# S3 method for class 'fpc.smooth'
Predict.matrix(object, data)

Arguments

object a fpc.smooth object created by smooth. construct.fpc.smooth.spec, see smooth. construct
data see smooth.construct

Value

design matrix for FPC terms

Author(s)

Jonathan Gellar

Predict.matrix.pcre.random.effect
mgcv-style constructor for prediction of PC-basis functional random effects

Description

mgcv -style constructor for prediction of PC-basis functional random effects

Usage

\#\# S3 method for class 'pcre.random.effect'
Predict.matrix(object, data)

Arguments

object a smooth specification object, see smooth. construct
data see smooth.construct

Value

design matrix for PC-based functional random effects

Author(s)

Fabian Scheipl; adapted from 'Predict.matrix.random.effect' by S.N. Wood.

Predict.matrix.peer.smooth
mgcv-style constructor for prediction of PEER terms

Description

mgcv -style constructor for prediction of PEER terms

Usage

\#\# S3 method for class 'peer.smooth'
Predict.matrix(object, data)

Arguments

\(\left.\begin{array}{ll}object \& a peer. smooth object created by smooth. construct. peer.smooth. spec, see

smooth. construct\end{array}\right]\)| see smooth. construct |
| :--- |

Value

design matrix for PEER terms

Author(s)

Jonathan Gellar

```
Predict.matrix.pi.smooth
```

 Predict.matrix method for pi basis

Description

Predict.matrix method for pi basis

Usage

\#\# S3 method for class 'pi.smooth'
Predict.matrix(object, data)

Arguments

$\begin{array}{ll}\text { object api.smooth object created by smooth. construct.pi.smooth.spec, see smooth. construct } \\ \text { data } & \text { see smooth. construct }\end{array}$

Value

design matrix for PEER terms

Author(s)

Jonathan Gellar

Description

Takes a fitted pffr-object produced by $\operatorname{pffr}()$ and produces predictions given a new set of values for the model covariates or the original values used for the model fit. Predictions can be accompanied by standard errors, based on the posterior distribution of the model coefficients. This is a wrapper function for predict.gam().

Usage

```
## S3 method for class 'pffr'
predict(object, newdata, reformat = TRUE, type = "link", se.fit = FALSE, ...)
```


Arguments

$$
\begin{array}{ll}
\text { object } & \text { a fitted pffr-object } \\
\text { newdata } & \begin{array}{l}
\text { A named list (or a data.frame) containing the values of the model covariates } \\
\text { at which predictions are required. If no newdata is provided then predictions } \\
\text { corresponding to the original data are returned. If newdata is provided then } \\
\text { it must contain all the variables needed for prediction, in the format supplied } \\
\text { to pffr, i.e., functional predictors must be supplied as matrices with each row } \\
\text { corresponding to one observed function. See Details for more on index variables } \\
\text { and prediction for models fit on irregular or sparse data. }
\end{array} \\
\text { reformat } & \begin{array}{l}
\text { logical, defaults to TRUE. Should predictions be returned in matrix form (de- } \\
\text { fault) or in the long vector shape returned by predict.gam()? }
\end{array} \\
\text { type } & \begin{array}{l}
\text { see predict.gam() for details. Note that type == "lpmatrix" will force reformat } \\
\text { to FALSE. }
\end{array} \\
\text { se.fit } & \begin{array}{l}
\text { see predict.gam() }
\end{array} \\
\text {.. } & \text { additional arguments passed on to predict.gam() }
\end{array}
$$

Details

Index variables (i.e., evaluation points) for the functional covariates are reused from the fitted model object and cannot be supplied with newdata. Prediction is always for the entire index range of the responses as defined in the original fit. If the original fit was performed on sparse or irregular, non-gridded response data supplied via pffr's ydata-argument and no newdata was supplied, this function will simply return fitted values for the original evaluation points of the response (in list form). If the original fit was performed on sparse or irregular data and newdata was supplied, the function will return predictions on the grid of evaluation points given in object\$pffr\$yind.

Value

If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se == TRUE, a list with entries fit and se. fit containing fits and standard errors, respectively. If type == "terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response for newdata containing the linear predictor and its se for each term.

Author(s)

Fabian Scheipl

See Also

predict.gam()

Description

Takes a fitted pfr-object produced by pfr and produces predictions given a new set of values for the model covariates or the original values used for the model fit. Predictions can be accompanied by standard errors, based on the posterior distribution of the model coefficients. This is a wrapper function for predict.gam()

Usage

```
## S3 method for class 'pfr'
predict(
    object,
    newdata,
    type = "response",
    se.fit = FALSE,
    terms = NULL,
    PredOutOfRange = FALSE,
    )
```


Arguments

object	a fitted pfr object as produced by pfr
newdata	a named list containing the values of the model covariates at which predictions are required. If this is not provided then predictions corresponding to the origi- nal data are returned. All variables provided to newdata should be in the format supplied to pfr, i.e., functional predictors must be supplied as matrices with each row corresponding to one observed function. Index variables for the func- tional covariates are reused from the fitted model object or alternatively can be supplied as attributes of the matrix of functional predictor values. Any variables in the model not specified in newdata are set to their average values from the data supplied during fitting the model
type	character; see predict.gam for details logical; see predict.gam for details
se.fit	character see predict.gam for details
terms	logical; if this argument is true then any functional predictor values in newdata corresponding to pfr terms that are greater[less] than the maximum[minimum] of the domain of the marginal basis for the rows of the tensor product smooth are set to the maximum[minimum] of the domain. If this argument is false, attempting to predict a value of the functional predictor outside the range of this
basis produces an error	

Value

If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se $==$ TRUE, a list with entries fit and se.fit containing fits and standard errors, respectively. If type == "terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response for newdata containing the linear predictor and its se for each term

Author(s)

Mathew W. McLean mathew.w.mclean@gmail.com and Fabian Scheipl

See Also

pfr, predict.gam

Examples

```
######### Octane data example #########
data(gasoline)
N <- length(gasoline$octane)
wavelengths = 2*450:850
nir = matrix(NA, 60,401)
test <- sample(60,20)
for (i in 1:60) nir[i,] = gasoline$NIR[i, ] # changes class from AsIs to matrix
y <- gasoline$octane
#fit <- pfr(y~af(nir,argvals=wavelengths,k=c(6,6), m=list(c(2,2),c(2,2))),
    # subset=(1:N)[-test])
#preds <- predict(fit,newdata=list(nir=nir[test,]),type='response')
#plot(preds,y[test])
#abline(a=0,b=1)
```

```
print.summary.pffr Print method for summary of a pffr fit
```


Description

Pretty printing for a summary.pffr-object. See print.summary.gam() for details.

Usage

```
## S3 method for class 'summary.pffr'
print(
    x,
    digits = max(3, getOption("digits") - 3),
    signif.stars = getOption("show.signif.stars"),
)
```


Arguments

x	a fitted pffr-object
digits	controls number of digits printed in output.
signif.stars	Should significance stars be printed alongside output?
\ldots	not used

Value

A summary.pffr object

Author(s)

Fabian Scheipl, adapted from print. summary.gam() by Simon Wood, Henric Nilsson
pwcv Pointwise cross-validation for function-on-scalar regression

Description

Estimates prediction error for a function-on-scalar regression model by leave-one-function-out crossvalidation (CV), at each of a specified set of points.

```
Usage
    pwcv(
        fdobj,
        Z,
        L = NULL,
        lambda,
        eval.pts = seq(min(fdobj$basis$range), max(fdobj$basis$range), length.out = 201),
        scale = FALSE
    )
```


Arguments

fdobj
Z

L
lambda
eval.pts
scale logical value or vector determining scaling of the matrix Z (see scale, to which the value of this argument is passed).

Details

Integrating the pointwise CV estimate over the function domain yields the cross-validated integrated squared error, the standard overall model fit score returned by lofocv.
It may be desirable to derive the value of lambda from an appropriate call to fosr, as in the example below.

Value

A vector of the same length as eval. pts giving the CV scores.

Author(s)

Philip Reiss phil.reiss@nyumc.org

References

Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized basis expansions. International Journal of Biostatistics, 6(1), article 28. Available at https:// pubmed.ncbi.nlm.nih.gov/21969982/

See Also

```
fosr, lofocv
```


Examples

```
require(fda)
# Canadian weather example from Reiss et al. (2010).
# The first two lines are taken from the fRegress.CV help file (package fda)
smallbasis <- create.fourier.basis(c(0, 365), 25)
tempfd <- smooth.basis(day.5,
            CanadianWeather$dailyAv[,,"Temperature.C"], smallbasis)$fd
# Model matrices for "latitude" and "region" models
Xreg = cbind(1, model.matrix(~factor(CanadianWeather$region)-1))
Xlat = model.matrix(~CanadianWeather$coord[,1])
# Fit each model using fosr() to obtain lambda values for pwcv()
Lreg = matrix(c(0,1,1,1,1), 1) # constraint for region model
regionmod = fosr(fdobj=tempfd, X=Xreg, con=Lreg, method="OLS")
cv.region = pwcv(tempfd, Xreg, Lreg, regionmod$lambda)
latmod = fosr(fdobj=tempfd, X=Xlat, method="OLS")
cv.lat = pwcv(tempfd, Xlat, lambda=latmod$lambda)
# The following plots may require a wide graphics window to show up correctly
par(mfrow=1:2)
# Plot the functional data
plot(tempfd, col=1, lty=1, axes=list("axesIntervals"), xlab="", ylab="Mean temperature",
    main="Temperatures at 35 stations")
```

box()
\# Plot the two models' pointwise CV
matplot(regionmod\$argvals, cbind(cv.region, cv.lat), type='l', col=1, axes=FALSE,
xlab="", ylab="MSE.CV", main="Pointwise CV for two models")
legend(250, 40, c('Region', 'Latitude'), lty=1:2)
box()
axis(2)
axisIntervals(1)
qq.pffr QQ plots for pffr model residuals

Description

This is simply a wrapper for codeqq.gam().

Usage

```
## S3 method for class 'pffr'
qq(
    object,
    rep = 0,
    level = 0.9,
    s.rep = 10,
    type = c("deviance", "pearson", "response"),
    pch = ".",
    rl.col = 2,
    rep.col = "gray80",
)
```


Arguments

object	a fitted pffr-object
rep	How many replicate datasets to generate to simulate quantiles of the residual dis- tribution. 0 results in an efficient simulation free method for direct calculation, if this is possible for the object family.
level	If simulation is used for the quantiles, then reference intervals can be provided for the QQ-plot, this specifies the level. 0 or less for no intervals, 1 or more to simply plot the QQ plot for each replicate generated.
s. rep	how many times to randomize uniform quantiles to data under direct computa- tion.
type	what sort of residuals should be plotted? See residuals.gam.
pch	plot character to use. 19 is good. cl.col

$$
\begin{array}{ll}
\text { rep.col color for reference bands or replicate reference plots. } \\
\ldots & \text { extra graphics parameters to pass to plotting functions. }
\end{array}
$$

```
quadWeights Compute quadrature weights
```


Description

Utility function for numerical integration.

Usage

quadWeights(argvals, method = "trapezoidal")

Arguments

argvals function arguments.
method quadrature method. Can be either trapedoidal or midpoint.

Value

a vector of quadrature weights for the points supplied in argvals.

Author(s)

Clara Happ, with modifications by Philip Reiss
re
Random effects constructor for fgam

Description

Sets up a random effect for the levels of x. Use the by-argument to request random slopes.

Usage

$r e(x, \ldots)$

Arguments

X
a grouping variable: must be a factor
... further arguments handed over to s, see random.effects

Details

See random. effects in mgcv.

See Also

random.effects
refund-internal Internal functions for the refund package

Description

These functions are ordinarily not to be called by the user, but if you contact the package authors with any questions about them, we'll do our best to clarify matters.

```
residuals.pffr Obtain residuals and fitted values for a pffr models
```


Description

See predict. pffr for alternative options to extract estimated values from a pffr object. "Fitted values" here refers to the estimated additive predictor values, these will not be on the scale of the response for models with link functions.

Usage

```
    ## S3 method for class 'pffr'
```

 residuals(object, reformat \(=\) TRUE, ...)
 \#\# S3 method for class 'pffr'
 fitted(object, reformat \(=\) TRUE, ...)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { a fitted pffr-object } \\
\text { reformat } & \begin{array}{l}
\text { logical, defaults to TRUE. Should residuals be returned in } \mathrm{n} \times \text { yindex matrix } \\
\text { form (regular grid data) or, respectively, in the shape of the originally supplied } \\
\text { ydata argument (sparse/irregular data), or, if FALSE, simply as a long vector as } \\
\text { returned by resid.gam()? }
\end{array} \\
\ldots & \text { other arguments, passed to residuals.gam. }
\end{array}
$$

Value

A matrix or ydata-like data.frame or a vector of residuals / fitted values (see reformat-argument)

Author(s)

Fabian Scheipl

rlrt.pfr	Likelihood Ratio Test and Restricted Likelihood Ratio Test for infer- ence of functional predictors

Description

NOTE: this function is designed to work with pfr_old() rather than pfr(). Given a pfr object of family="gaussian", tests whether the function is identically equal to its mean (constancy), or whether the functional predictor significantly improves the model (inclusion). Based on zero-variancecomponent work of Crainiceanu et al. (2004), Scheipl et al. (2008), and Swihart et al. (2012).

Usage

rlrt.pfr(pfr.obj = pfr.obj, test = NULL, ...)

Arguments

pfr.obj an object returned by pfr_old()
test "constancy" will test functional form of the coefficient function of the last function listed in funcs in pfr.obj against the null of a constant line: the average of the functional predictor. "inclusion" will test functional form of the coefficient function of the last function listed in funcs in pfr.obj against the null of 0 : that is, whether the functional predictor should be included in the model.
\ldots additional arguments

Details

A Penalized Functional Regression of family="gaussian" can be represented as a linear mixed model dependent on variance components. Testing whether certain variance components and (potentially) fixed effect coefficients are 0 correspond to tests of constancy and inclusion of functional predictors.
For rlrt.pfr, Restricted Likelihood Ratio Test is preferred for the constancy test as under the special B-splines implementation of pfr for the coefficient function basis the test involves only the variance component. Therefore, the constancy test is best for pfr objects with method="REML"; if the method was something else, a warning is printed and the model refit with "REML" and a test is then conducted.

For rlrt.pfr, the Likelihood Ratio Test is preferred for the inclusion test as under the special Bsplines implementation of pfr for the coefficient function basis the test involves both the variance component and a fixed effect coefficient in the linear mixed model representation. Therefore, the inclusion test is best for pfr objects with method="ML"; if the method was something else, a warning is printed and the model refit with "ML" and a test is then conducted.

Value

p.val the p-value for the full model (alternative) against the null specified by the test
test.stat the test statistic, see Scheipl et al. 2008 and Swihart et al 2012
ma
the alternative model as fit with mgcv::gam
rlrt.pfr
the null model as fit with mgcv::gam
m

Author(s)

Jeff Goldsmith jeff.goldsmith@columbia.edu and Bruce Swihart bswihart@jhsph.edu

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.
Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, 61(3), 453-469.

Crainiceanu, C. and Ruppert, D. (2004) Likelihood ratio tests in linear mixed models with one variance component. Journal of the Royal Statistical Society: Series B, 66, 165-185.
Scheipl, F. (2007) Testing for nonparametric terms and random effects in structured additive regression. Diploma thesis.\https://www.statistik.lmu.de/~scheipl/downloads/DIPLOM.zip.
Scheipl, F., Greven, S. and Kuechenhoff, H (2008) Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Computational Statistics \& Data Analysis, 52(7), 3283-3299.
Swihart, Bruce J., Goldsmith, Jeff; and Crainiceanu, Ciprian M. (2012). Testing for functional effects. Johns Hopkins University Dept. of Biostatistics Working Paper 247. Available at https: //biostats.bepress.com/jhubiostat/paper247/

See Also

```
pfr, predict.pfr, package RLRsim
```


Examples

```
## Not run:
###################################################################
######### DTI Data Example #########
####################################################################
####################################################################
# For more about this example, see Swihart et al. 2012
# Testing for Functional Effects
###################################################################
## load and reassign the data;
data(DTI2)
0 <- DTI2$pasat ## PASAT outcome
id <- DTI2$id ## subject id
W1 <- DTI2$cca ## Corpus Callosum
W2 <- DTI2$rcst ## Right corticospinal
V <- DTI2$visit ## visit
```

```
## prep scalar covariate
visit.1.rest <- matrix(as.numeric(V > 1), ncol=1)
covar.in <- visit.1.rest
## note there is missingness in the functional predictors
apply(is.na(W1), 2, mean)
apply(is.na(W2), 2, mean)
## fit two univariate models, then one model with both functional predictors
pfr.obj.t1 <- pfr_old(Y = 0, covariates=covar.in, funcs = list(W1), subj = id, kz = 10, kb = 50)
pfr.obj.t2 <- pfr_old(Y = 0, covariates=covar.in, funcs = list(W2), subj = id, kz = 10, kb = 50)
pfr.obj.t3 <- pfr_old(Y = 0, covariates=covar.in, funcs = list(W1, W2), subj = id, kz = 10, kb = 50)
## plot the coefficient function and bounds
dev.new()
par(mfrow=c(2,2))
ran <- c(-2,.5)
matplot(cbind(pfr.obj.t1$BetaHat[[1]], pfr.obj.t1$Bounds[[1]]),
    type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
    main = "CCA", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t2$BetaHat[[1]], pfr.obj.t2$Bounds[[1]]),
    type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
    main = "RCST", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[1]], pfr.obj.t3$Bounds[[1]]),
    type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
    main = "CCA - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[2]], pfr.obj.t3$Bounds[[2]]),
    type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
    main = "RCST - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")
## do some testing
t1 <- rlrt.pfr(pfr.obj.t1, "constancy")
t2 <- rlrt.pfr(pfr.obj.t2, "constancy")
t3 <- rlrt.pfr(pfr.obj.t3, "inclusion")
t1$test.stat
t1$p.val
t2$test.stat
t2$p.val
t3$test.stat
t3$p.val
## do some testing with rlrt.pfr(); same as above but subj = NULL
pfr.obj.t1 <- pfr(Y = 0, covariates=covar.in, funcs = list(W1), subj = NULL, kz = 10, kb = 50)
```

```
pfr.obj.t2 <- pfr(Y = 0, covariates=covar.in, funcs = list(W2), subj = NULL, kz = 10, kb = 50)
pfr.obj.t3 <- pfr(Y = 0, covariates=covar.in, funcs = list(W1, W2), subj = NULL, kz = 10, kb = 50)
t1 <- rlrt.pfr(pfr.obj.t1, "constancy")
t2 <- rlrt.pfr(pfr.obj.t2, "constancy")
t3 <- rlrt.pfr(pfr.obj.t3, "inclusion")
t1$test.stat
t1$p.val
t2$test.stat
t2$p.val
t3$test.stat
t3$p.val
## End(Not run)
```


Description

Defines a term $\int_{s_{l o, i}}^{s_{h i, i}} f\left(X_{i}(s), s, t\right) d s$ for inclusion in an mgcv: :gam-formula (or bam or gamm or gamm 4 : : :gamm) as constructed by pffr. Defaults to a cubic tensor product B-spline with marginal second differences penalties for $f\left(X_{i}(s), s, t\right)$ and integration over the entire range $\left[s_{l o, i}, s_{h i, i}\right]=$ $\left[\min \left(s_{i}\right), \max \left(s_{i}\right)\right]$. Can't deal with any missing $X(s)$, unequal lengths of $X_{i}(s)$ not (yet?) possible. Unequal ranges for different $X_{i}(s)$ should work. $X_{i}(s)$ is assumed to be numeric.
sff() IS AN EXPERIMENTAL FEATURE AND NOT WELL TESTED YET - USE AT YOUR OWN RISK.

Usage

sff(
X,
yind,
xind $=\operatorname{seq}(0,1,1=n c o l(X))$,
basistype = c("te", "t2", "s"),
integration = c("simpson", "trapezoidal"),
L = NULL,
limits = NULL,
splinepars = list(bs = "ps", m = c(2, 2, 2))
)

Arguments

X an n by ncol (xind) matrix of function evaluations $X_{i}\left(s_{i 1}\right), \ldots, X_{i}\left(s_{i S}\right) ; i=$ $1, \ldots, n$.

yind	DEPRECATED matrix (or vector) of indices of evaluations of $Y_{i}(t)$; i.e. matrix with rows $\left(t_{i 1}, \ldots, t_{i T}\right)$; no longer used.
xind	vector of indices of evaluations of $X_{i}(s)$, i.e, $\left(s_{1}, \ldots, s_{S}\right)$
basistype	defaults to "te", i.e. a tensor product spline to represent $f\left(X_{i}(s), t\right)$. Alternatively, use " s " for bivariate basis functions (see s) or "t2" for an alternative parameterization of tensor product splines (see t2).
integration	method used for numerical integration. Defaults to "simpson"'s rule. Alternatively and for non-equidistant grids, "trapezoidal".
L	optional: an n by ncol (xind) giving the weights for the numerical integration over s.
limits	defaults to NULL for integration across the entire range of $X(s)$, otherwise specifies the integration limits $s_{h i, i}, s_{l o, i}$: either one of " $s<t$ " or " $s<=t$ " for $\left(s_{h i, i}, s_{l o, i}\right)=(0, t)$ or a function that takes s as the first and t as the second argument and returns TRUE for combinations of values (s, t) if s falls into the integration range for the given t. This is an experimental feature and not well tested yet; use at your own risk.
splinepars	optional arguments supplied to the basistype-term. Defaults to a cubic tensor product B-spline with marginal second differences, i.e. list(bs="ps", m=c (2, 2, 2)) See te or s for details

Value

a list containing

- call a "call" to te (or s, t2) using the appropriately constructed covariate and weight matrices (see linear.functional.terms)
- data a list containing the necessary covariate and weight matrices

Author(s)

Fabian Scheipl, based on Sonja Greven's trick for fitting functional responses.
smooth. construct.dt.smooth.spec
Domain Transformation basis constructor

Description

The dt basis allows for any of the standard mgcv (or user-defined) bases to be aplied to a transformed version of the original terms. Smooths may be of any number of terms. Transformations are specified by supplying a function of any or all of the original terms. "by" variables are not transformed.

```
Usage
    ## S3 method for class 'dt.smooth.spec'
    smooth.construct(object, data, knots)
```


Arguments

object a smooth specification object, generated by $s()$, te(), ti(), or t2(), with bs="dt"
data a list containing just the data (including any by variable) required by this term, with names corresponding to object\$term (and object\$by). The by variable is the last element.
knots a list containing any knots supplied for basis setup - in same order and with same names as data. Can be NULL.

Details

object should be creaated with an $x t$ argument. For non-tensor-product smooths, this will be a list with the following elements:

1. tf (required): a function or character string (or list of functions and/or character strings) defining the coordinate transformations; see further details below.
2. bs (optional): character string indicating the bs for the basis applied to the transformed coordinates; if empty, the appropriate defaults are used.
3. basistype (optional): character string indicating type of bivariate basis used. Options include "s" (the default), "te", "ti", and "t2", which correspond to s, te, ti, and t2.
4. ... (optional): for tensor product smooths, additional arguments to the function specified by basistype that are not available in $s()$ can be included here, e.g. d, np, etc.

For tensor product smooths, we recommend using s() to set up the basis, and specifying the tensor product using $x t \$$ basistype as described above. If the basis is set up using te(), then the variables in object\$term will be split up, meaning all transformation functions would have to be univariate.

Value

An object of class "dt.smooth". This will contain all the elements associated with the smooth. construct object from the inner smooth (defined by $x t \$ b s$), in addition to an $x t$ element used by the Predict. matrix method.

Transformation Functions

Let nterms = length(object\$term). The tf element can take one of the following forms:

1. a function of nargs arguments, where nargs <= nterms. If nterms >1, it is assumed that this function will be applied to the first term of object\$term. If all argument names of the function are term names, then those arguments will correspond to those terms; otherwise, they will correspond to the first nargs terms in object\$term.
2. a character string corresponding to one of the built-in transformations (listed below).
3. A list of length ntfuncs, where ntfuncs<=nterms, containing either the functions or character strings described above. If this list is named with term names, then the transformation functions will be applied to those terms; otherwise, they will be applied to the first ntfuncs terms in object\$term.

The following character strings are recognized as built-in transformations:

- "log": log transformation (univariate)
- "ecdf": empirical cumulative distribution function (univariate)
- "linear01": linearly rescale from 0 to 1 (univariate)
- "s-t": first term ("s") minus the second term ("t") (bivariate)
- "s/t": first term ("s") divided by the second term ("t") (bivariate)
- "QTransform": performs a time-specific ecdf transformation for a bivariate smooth, where time is indicated by the first term, and x by the second term. Primarily for use with refund: :af.

Some transformations rely on a fixed "pivot point" based on the data used to fit the model, e.g. quantiles (such as the min or max) of this data. When making predictions based on these transformations, the transformation function will need to know what the pivot points are, based on the original (not prediction) data. In order to accomplish this, we allow the user to specify that they want their transformation function to refer to the original data (as opposed to whatever the "current" data is). This is done by appending a zero ("0") to the argument name.
For example, suppose you want to scale the term linearly so that the data used to define the basis ranges from 0 to 1 . The wrong way to define this transformation function: function $(x)\{(x$ $-\min (x)) /(\max (x)-\min (x))\}$. This function will result in incorrect predictions if the range of data for which preditions are being made is not the same as the range of data that was used to define the basis. The proper way to define this function: function $(x)\{(x-\min (x 0)) /(\max (x 0)$ $-\min (x 0))\}$. By refering to $x 0$ instead of x, you are indicating that you want to use the original data instead of the current data. This may seem strange to refer to a variable that is not one of the arguments, but the "dt" constructor explicitly places these variables in the environment of the transformation function to make them available.

Author(s)

Jonathan Gellar

See Also

smooth.construct
smooth.construct.fpc.smooth.spec
Basis constructor for FPC terms

Description

Basis constructor for FPC terms

Usage

\#\# S3 method for class 'fpc.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a fpc.smooth.spec object, usually generated by a term $s(x, b s=" f p c ")$; see Details.
data a list containing the data (including any by variable) required by this term, with names corresponding to object\$term (and object\$by). Only the first element of this list is used.
knots not used, but required by the generic smooth. construct.

Details

object must contain an $x t$ element. This is a list that can contain the following elements:
\mathbf{X} (required) matrix of functional predictors
method (required) the method of finding principal components; options include "svd" (unconstrained), "fpca.sc", "fpca.face", or "fpca.ssvd"
npc (optional) the number of PC's to retain
pve (only needed if npc not supplied) the percent variance explained used to determine npc
penalize (required) if FALSE, the smoothing parameter is set to 0
bs the basis class used to pre-smooth X ; default is "ps"
Any additional options for the pre-smoothing basis (e.g. k, m, etc.) can be supplied in the corresponding elements of object. See s for a full list of options.

Value

An object of class "fpc.smooth". In addtional to the elements listed in smooth. construct, the object will contain
sm the smooth that is fit in order to generate the basis matrix over object\$term
V.A the matrix of principal components

Author(s)

Jonathan Gellar JGellar@mathematica-mpr.com

References

Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association, 102, 984-996.

See Also

fper

Description

Smooth constructor function for principal coordinate ridge regression fitted by gam. When the principal coordinates are defined by a relevant distance among functional predictors, this is a form of nonparametric scalar-on-function regression. Reiss et al. (2016) describe the approach and apply it to dynamic time warping distances among functional predictors.

Usage

```
    ## S3 method for class 'pco.smooth.spec'
```

 smooth. construct (object, data, knots)

Arguments

object a smooth specification object, usually generated by a term of the form s (dummy , bs="pco", k, xt); see Details.
data a list containing just the data.
knots IGNORED!

Value

An object of class pco. smooth. The resulting object has an xt element which contains details of the multidimensional scaling, which may be interesting.

Details

The constructor is not normally called directly, but is rather used internally by gam.
In a gam term of the above form s (dummy , bs="pco", $k, x t$),

- dummy is an arbitrary vector (or name of a column in data) whose length is the number of observations. This is not actually used, but is required as part of the input to s . Note that if multiple pco terms are used in the model, there must be multiple unique term names (e.g., "dummy1", "dummy2", etc).
- k is the number of principal coordinates (e.g., $k=9$ will give a 9-dimensional projection of the data).
- xt is a list supplying the distance information, in one of two ways. (i) A matrix Dmat of distances can be supplied directly via $x t=l$ ist ($D=D m a t, \ldots$). (ii) Alternatively, one can use $x t=l i s t(r e a l d a t a=\ldots$, dist_fn=..., ...) to specify a data matrix realdata and distance function dist_fn, whereupon a distance matrix dist_fn(realdata) is created.

The list $x t$ also has the following optional elements:

- add: Passed to cmdscale when performing multidimensional scaling; for details, see the help for that function. (Default FALSE.)
- fastcmd: if TRUE, multidimensional scaling is performed by cmdscale_lanczos, which uses Lanczos iteration to eigendecompose the distance matrix; if FALSE, MDS is carried out by cmdscale. Default is FALSE, to use cmdscale.

Author(s)

David L Miller, based on code from Lan Huo and Phil Reiss

References

Reiss, P. T., Miller, D. L., Wu, P.-S., and Wen-Yu Hua, W.-Y. Penalized nonparametric scalar-onfunction regression via principal coordinates. Under revision. Available at https://www.ncbi. nlm.nih.gov/pmc/articles/PMC5714326/.

Examples

```
## Not run:
# a simulated example
library(refund)
library(mgcv)
require(dtw)
## First generate the data
Xnl <- matrix(0, 30, 101)
set.seed(813)
tt <- sort(sample(1:90, 30))
for(i in 1:30){
    Xnl[i, tt[i]:(tt[i]+4)] <- -1
    Xnl[i, (tt[i]+5):(tt[i]+9)]<- 1
}
X.toy <- Xnl + matrix(rnorm(30*101, ,0.05), 30)
y.toy <- tt + rnorm(30, 0.05)
y.rainbow <- rainbow(30, end=0.9)[(y.toy-min(y.toy))/
                                    diff(range(y.toy))*29+1]
## Display the toy data
par(mfrow=c(2, 2))
matplot((0:100)/100, t(Xnl[c(4, 25), ]), type="l", xlab="t", ylab="",
            ylim=range(X.toy), main="Noiseless functions")
matplot((0:100)/100, t(X.toy[c(4, 25), ]), type="l", xlab="t", ylab="",
            ylim=range(X.toy), main="Observed functions")
matplot((0:100)/100, t(X.toy), type="l", lty=1, col=y.rainbow, xlab="t",
            ylab="", main="Rainbow plot")
## Obtain DTW distances
D.dtw <- dist(X.toy, method="dtw", window.type="sakoechiba", window.size=5)
## Compare PC vs. PCo ridge regression
```

```
# matrix to store results
GCVmat <- matrix(NA, 15, 2)
# dummy response variable
dummy <- rep (1,30)
# loop over possible projection dimensions
for (k. in 1:15){
    # fit PC (m1) and PCo (m2) ridge regression
    m1 <- gam(y.toy ~ s(dummy, bs="pco", k=k.,
                xt=list(realdata=X.toy, dist_fn=dist)), method="REML")
    m2 <- gam(y.toy ~ s(dummy, bs="pco", k=k., xt=list(D=D.dtw)), method="REML")
    # calculate and store GCV scores
    GCVmat[k., ] <- length(y.toy) * c(sum(m1$residuals^2)/m1$df.residual^2,
                                    sum(m2$residuals^2)/m2$df.residual^2)
}
## plot the GCV scores per dimension for each model
matplot(GCVmat, lty=1:2, col=1, pch=16:17, type="o", ylab="GCV",
        xlab="Number of principal components / coordinates",
        main="GCV score")
legend("right", c("PC ridge regression", "DTW-based PCoRR"), lty=1:2, pch=16:17)
## example of making a prediction
# fit a model to the toy data
m <- gam(y.toy ~ s(dummy, bs="pco", k=2, xt=list(D=D.dtw)), method="REML")
# first build the distance matrix
# in this case we just subsample the original matrix
# see ?pco_predict_preprocess for more information on formatting this data
dist_list <- list(dummy = as.matrix(D.dtw)[, c(1:5,10:15)])
# preprocess the prediction data
pred_data <- pco_predict_preprocess(m, newdata=NULL, dist_list)
# make the prediction
p <- predict(m, pred_data)
# check that these are the same as the corresponding fitted values
print(cbind(fitted(m)[ c(1:5,10:15)],p))
## End(Not run)
```

smooth.construct.pcre.smooth.spec
mgcv-style constructor for PC-basis functional random effects

Description

Sets up design matrix for functional random effects based on the PC scores of the covariance operator of the random effect process. See smooth. construct.re.smooth.spec for more details on mgcv -style smoother specification and pcre for the corresponding pffr()-formula wrapper.

Usage

\#\# S3 method for class 'pcre.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object	a smooth specification object, see smooth. construct
data	see smooth. construct
knots	see smooth.construct

Value

An object of class "random. effect". See smooth. construct for the elements that this object will contain.

Author(s)

Fabian Scheipl; adapted from 're' constructor by S.N. Wood.
smooth. construct. peer. smooth. spec
Basis constructor for PEER terms

Description

Smooth basis constructor to define structured penalties (Randolph et al., 2012) for smooth terms.

Usage

\#\# S3 method for class 'peer.smooth.spec'
smooth. construct(object, data, knots)

Arguments

object a peer. smooth. spec object, usually generated by a term $s(x, b s=$ "peer" $)$; see Details.
data a list containing the data (including any by variable) required by this term, with names corresponding to object\$term (and object\$by). Only the first element of this list is used.
knots not used, but required by the generic smooth. construct.

Details

The smooth specification object, defined using $s()$, should contain an $x t$ element. $x t$ will be a list that contains additional information needed to specify the penalty. The type of penalty is indicated by $x t \$ p e n t y p e$. There are four types of penalties available:

1. xt\$pentype=="RIDGE" for a ridge penalty, the default
2. $x t \$$ pentype==" $D "$ for a difference penalty. The order of the difference penalty is specified by the m argument of $s()$.
3. xt\$pentype=="DECOMP" for a decomposition-based penalty, $b P_{Q}+a\left(I-P_{Q}\right)$, where $P_{Q}=$ $Q^{t}\left(Q Q^{t}\right)^{-1} Q$. The Q matrix must be specified by $\mathrm{xt} \$ \mathrm{Q}$, and the scalar a by $\mathrm{xt} \$ \mathrm{phia}$. The number of columns of Q must be equal to the length of the data. Each row represents a basis function where the functional predictor is expected to lie, according to prior belief.
4. xt\$pentype=="USER" for a user-specified penalty matrix L, supplied by $x t \$ L$.

Value

An object of class "peer.smooth". See smooth. construct for the elements that this object will contain.

Author(s)

Madan Gopal Kundu <mgkundu@iupui. edu> and Jonathan Gellar

References

Randolph, T. W., Harezlak, J, and Feng, Z. (2012). Structured penalties for functional linear models - partially empirical eigenvectors for regression. Electronic Journal of Statistics, 6, 323-353.

See Also

peer

```
smooth.construct.pi.smooth.spec
```

Parametric Interaction basis constructor

Description

The pi basis is appropriate for smooths of multiple variables. Its purpose is to parameterize the way in which the basis changes with one of those variables. For example, suppose the smooth is over three variables, x, y, and t, and we want to parameterize the effect of t. Then the pi basis will assume $f(x, y, t)=\sum_{k} g_{k}(t) * f_{k}(x, y)$, where the $g_{k}(t)$ functions are pre-specified and the $f_{k}(x, y)$ functions are estimated using a bivariate basis. An example of a parametric interaction is a linear interaction, which would take the form $f(x, y, t)=f_{1}(x, y)+t * f_{2}(x, y)$.

Usage

\#\# S3 method for class 'pi.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a smooth specification object, generated by, e.g., $s(x, y, t, b s=" p i ", x t=l i s t(g=l i s t(g 1, g 2, g 3)))$. For transformation functions g1, g2, and g3, see Details below.
data a list containing the variables of the smooth $(x, y$, and t above $)$, as well as any by variable.
knots a list containing any knots supplied for basis setup - in same order and with same names as data. Can be NULL.

Details

All functions $f_{k}()$ are defined using the same basis set. Accordingly, they are penalized using a single block-diagonal penalty matrix and one smoothing parameter. Future versions of this function may be able to relax this assumption.
object should be defined (using $s()$) with an $x t$ argument. This argument is a list that could contain any of the following elements:

1. g: the functions $g_{k}(t)$, specified as described below.
2. bs: the basis code used for the functions $f_{k}()$; defaults to thin-plate regression splines, which is mgcv's default. The same basis will be used for all k.
3. idx: an integer index indicating which variable from object\$term is to be parameterized, i.e., the t variable; defaults to length(object\$term)
4. mp: flag to indicate whether multiple penalties should be estimated, one for each $f_{k}()$. Defaults to TRUE. If FALSE, the penalties for each k are combined into a single block-diagonal penalty matrix (with one smoothing parameter).
5. ...: further $x t$ options to be passed onto the basis for $f_{k}()$.
$x t \$ \mathrm{~g}$ can be entered in one of the following forms:
6. a list of functions of length k, where each function is of one argument (assumed to be t)
7. one of the following recognized character strings: code"linear", indicating a linear interaction, i.e. $f(x, t)=f_{1}(x)+t * f_{2}(x)$; "quadratic", indicating a quadratic interaction, i.e. $f(x, t)=$ $f_{1}(x)+t * f_{2}(x)+t^{2} * f_{3}(x)$; or "none", indicating no interaction with t, i.e. $f(x, t)=f_{1}(x)$.

The only one of the above elements that is required is $x t$. If default values for $b s, i d x$, and mp are desired, $x t$ may also be entered as the g element itself; i.e. $x t=g$, where g is either the list of functions or an acceptable character string.
Additional arguments for the lower-dimensional basis over f_k may be entered using the corresponding arguments of $s()$, e.g. $k, m, s p$, etc. For example, $s(x, t, b s=" p i ", k=15, x t=l i s t(g=" l i n e a r ", b s=" p s "))$ will define a linear interaction with t of a univariate p-spline basis of dimension 15 over x.

Value

An object of class "pi.smooth". See smooth. construct for the elements it will contain.

Author(s)

Fabian Scheipl and Jonathan Gellar
smooth. construct.pss.smooth.spec
P-spline constructor with modified 'shrinkage' penalty

Description

Construct a B-spline basis with a modified difference penalty of full rank (i.e., that also penalizes low-order polynomials).

Usage

\#\# S3 method for class 'pss.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object see smooth. construct. The shrinkage factor can be specified via object\$xt\$shrink
data see smooth. construct.
knots see smooth.construct.

Details

This penalty-basis combination is useful to avoid non-identifiability issues for ff terms. See 'ts' or 'cs' in smooth. terms for similar "shrinkage penalties" for thin plate and cubic regression splines. The basic idea is to replace the k-th zero eigenvalue of the original penalty by $s^{k} \nu_{m}$, where s is the shrinkage factor (defaults to 0.1) and ν_{m} is the smallest non-zero eigenvalue. See reference for the original idea, implementation follows that in the 'ts' and 'cs' constructors (see smooth. terms).

Author(s)

Fabian Scheipl; adapted from 'ts' and 'cs' constructors by S.N. Wood.

References

Marra, G., \& Wood, S. N. (2011). Practical variable selection for generalized additive models. Computational Statistics \& Data Analysis, 55(7), 2372-2387.
sofa SOFA (Sequential Organ Failure Assessment) Data

Description

A dataset containing the SOFA scores (Vincent et al, 1996). for 520 patients, hospitalized in the intensive care unit (ICU) with Acute Lung Injury. Daily measurements are available for as long as each one remains in the ICU. This is an example of variable-domain functional data, as described by Gellar et al. (2014).

Usage

sofa

Format

A data frame with 520 rows (subjects) and 7 variables:
death binary indicator that the subject died in the ICU
SOFA 520×173 matrix in variable-domain format (a ragged array). Each column represents an ICU day. Each row contains the SOFA scores for a subject, one per day, for as long as the subject remained in the ICU. The remaining cells of each row are padded with NAs. SOFA scores range from 0 to 24 , increasing with severity of organ failure. Missing values during one's ICU stay have been imputed using LOCF.
SOFA_raw Identical to the SOFA element, except that it contains some missing values during one's hospitalization. These missing values arise when a subject leaves the ICU temporarily, only to be re-admitted. SOFA scores are not monitored outside the ICU.
los ICU length of stay, i.e., the number of days the patient remained in the ICU prior to death or final discharge.
age Patient age
male Binary indicator for male gender
Charlson Charlson co-morbidity index, a measure of baseline health status (before hospitalization and ALI).

Details

The data was collected as part of the Improving Care of ALI Patients (ICAP) study (Needham et al., 2006). If you use this dataset as an example in written work, please cite the study protocol.

References

Vincent, JL, Moreno, R, Takala, J, Willatts, S, De Mendonca, A, Bruining, H, Reinhart, CK, Suter, PM, Thijs, LG (1996). The SOFA (Sepsis related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medicine, 22(7): 707-710.
Needham, D. M., Dennison, C. R., Dowdy, D. W., Mendez-Tellez, P. A., Ciesla, N., Desai, S. V., Sevransky, J., Shanholtz, C., Scharfstein, D., Herridge, M. S., and Pronovost, P. J. (2006). Study
protocol: The Improving Care of Acute Lung Injury Patients (ICAP) study. Critical Care (London, England), 10(1), R9
Gellar, Jonathan E., Elizabeth Colantuoni, Dale M. Needham, and Ciprian M. Crainiceanu. VariableDomain Functional Regression for Modeling ICU Data. Journal of the American Statistical Association, 109(508):1425-1439, 2014.

```
summary.pffr Summary for a pffr fit
```


Description

Take a fitted pffr-object and produce summaries from it. See summary.gam() for details.

Usage

\#\# S3 method for class 'pffr'
summary (object, ...)

Arguments

object
a fitted pffr-object
... see summary.gam() for options.

Value

A list with summary information, see summary.gam()

Author(s)

Fabian Scheipl, adapted from summary.gam() by Simon Wood, Henric Nilsson

```
summary.pfr Summary for a pfr fit
```


Description

Take a fitted pfr-object and produce summaries from it. See summary.gam() for details.

Usage

\#\# S3 method for class 'pfr'
summary (object, ...)

Arguments

object
a fitted pfr-object
... see summary.gam() for options.

Details

This function currently simply strips the "pfr" class label and calls summary. gam.

Value

A list with summary information, see summary.gam()

Author(s)

Jonathan Gellar JGellar@mathematica-mpr.com, Fabian Scheipl

```
vb_cs_fpca Cross-sectional FoSR using Variational Bayes and FPCA
```


Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using a VB and estimates the residual covariance surface using FPCA.

Usage

```
vb_cs_fpca(
    formula,
    data \(=\) NULL,
    verbose = TRUE,
    \(K t=5\),
    \(K p=2\),
    alpha = 0.1,
    Aw = NULL,
    Bw = NULL,
    Apsi = NULL,
    Bpsi = NULL,
    argvals = NULL
)
```


Arguments

formula a formula indicating the structure of the proposed model.
data an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
\(\left.\left.$$
\begin{array}{ll}\text { verbose } & \begin{array}{l}\text { logical defaulting to TRUE - should updates on progress be printed? } \\
\text { Kt } \\
\text { Kp }\end{array} \\
\text { number of spline basis functions used to estimate coefficient functions }\end{array}
$$\right\} \begin{array}{l}number of FPCA basis functions to be estimated

tuning parameter balancing second-derivative penalty and zeroth-derivative penalty

(alpha = 0 is all second-derivative penalty)\end{array}\right]\)| hyperparameter for inverse gamma controlling variance of spline terms for population- |
| :--- |
| level effects |
| hyperparameter for inverse gamma controlling variance of spline terms for population- |
| Bw |
| level effects |
| hyperparameter for inverse gamma controlling variance of spline terms for FPC |
| effects |\quad| hyperparameter for inverse gamma controlling variance of spline terms for FPC |
| :--- |
| effects |

Author(s)

Jeff Goldsmith ajg2202@cumc.columbia.edu

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.

```
vb_cs_wish Cross-sectional FoSR using Variational Bayes and Wishart prior
```


Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using VB and estimates the residual covariance surface using a Wishart prior.

Usage

```
vb_cs_wish(
    formula,
    data = NULL,
    verbose = TRUE,
    Kt = 5,
    alpha = 0.1,
    min.iter = 10,
    max.iter = 50,
    Aw = NULL,
    Bw = NULL,
    v = NULL
)
```


Arguments

formula	a formula indicating the structure of the proposed model.
data	an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
verbose	logical defaulting to TRUE - should updates on progress be printed?
Kt	number of spline basis functions used to estimate coefficient functions
alpha	tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha $=0$ is all second-derivative penalty)
min.iter	minimum number of iterations of VB algorithm
max.iter	maximum number of iterations of VB algorithm
Aw	hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects; if NULL, defaults to Kt/2.
Bw	hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects; if NULL, defaults to $1 / 2 \operatorname{tr}$ (mu.q.beta of the model
v	hyperparameter for inverse Wishart prior on residual covariance; if NULL, Psi defaults to an FPCA decomposition of the residual covariance in which residuals are estimated based on an OLS fit of the model (note the "nugget effect" on this covariance is assumed to be constant over the time domain).

Author(s)

Jeff Goldsmith ajg2202@cumc.columbia.edu

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.

```
vb_mult_fpca
Multilevel FoSR using Variational Bayes and FPCA
```


Description

Fitting function for function-on-scalar regression for multilevel data. This function estimates model parameters using a VB and estimates the residual covariance surface using FPCA.

Usage

```
vb_mult_fpca(
    formula,
    data = NULL,
    verbose = TRUE,
    Kt = 5,
    Kp = 2,
    alpha = 0.1,
    argvals = NULL
)
```


Arguments

formula	a formula indicating the structure of the proposed model.
data	an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typi- cally the environment from which the function is called.
verbose	logical defaulting to TRUE - should updates on progress be printed?
Kt	number of spline basis functions used to estimate coefficient functions
Kp	number of FPCA basis functions to be estimated
alpha	tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = is all second-derivative penalty)
argvals	not currently implemented

Author(s)

Jeff Goldsmith ajg2202@cumc.columbia.edu

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.

```
vb_mult_wish Multilevel FoSR using Variational Bayes and Wishart prior
```


Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using VB and estimates the residual covariance surface using a Wishart prior. If prior hyperparameters are NULL they are estimated using the data.

Usage

```
vb_mult_wish(
    formula,
    data = NULL,
    verbose = TRUE,
    Kt = 5,
    alpha = 0.1,
    min.iter = 10,
    max.iter = 50,
    Az = NULL,
    Bz = NULL,
    Aw = NULL,
    Bw = NULL,
    v = NULL
)
```


Arguments

formula	a formula indicating the structure of the proposed model.
data	an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
verbose	logical defaulting to TRUE - should updates on progress be printed?
Kt	number of spline basis functions used to estimate coefficient functions
alpha	tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha $=0$ is all second-derivative penalty)
min.iter	minimum number of iterations of VB algorithm
max.iter	maximum number of iterations of VB algorithm
Az	hyperparameter for inverse gamma controlling variance of spline terms for subjectlevel effects
Bz	hyperparameter for inverse gamma controlling variance of spline terms for subjectlevel effects
Aw	hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects
Bw	hyperparameter for inverse gamma controlling variance of spline terms for populationlevel effects
v	hyperparameter for inverse Wishart prior on residual covariance

Author(s)

Jeff Goldsmith ajg2202@cumc.columbia.edu

References

Goldsmith, J., Kitago, T. (2016). Assessing Systematic Effects of Stroke on Motor Control using Hierarchical Function-on-Scalar Regression. Journal of the Royal Statistical Society: Series C, 65 215-236.
vis.fgam Visualization of FGAM objects

Description

Produces perspective or contour plot views of an estimated surface corresponding to af terms fit using fgam or plots "slices" of the estimated surface or estimated second derivative surface with one of its arguments fixed and corresponding twice-standard error "Bayesian" confidence bands constructed using the method in Marra and Wood (2012). See the details.

Usage

```
vis.fgam(
    object,
    af.term,
    xval = NULL,
    tval = NULL,
    deriv2 = FALSE,
    theta = 50,
    plot.type = "persp",
    ticktype = "detailed",
    )
```


Arguments

\(\left.\left.$$
\begin{array}{ll}\text { object } \\
\text { af.term } & \begin{array}{l}\text { an fgam object, produced by fgam } \\
\text { character; the name of the functional predictor to be plotted. Only important if } \\
\text { multiple af terms are fit. Defaults to the first af term in object\$call } \\
\text { a number in the range of functional predictor to be plotted. The surface will be } \\
\text { plotted with the first argument of the estimated surface fixed at this value }\end{array} \\
\text { a number in the domain of the functional predictor to be plotted. The surface } \\
\text { will be plotted with the second argument of the estimated surface fixed at this } \\
\text { value. Ignored if xval is specified }\end{array}
$$\right] \begin{array}{l}logical; if TRUE, plot the estimated second derivative surface along with Bayesian

confidence bands. Only implemented for the "slices" plot from either xval or

tval being specified\end{array}\right]\)| numeric; viewing angle; see persp |
| :--- |
| theta |
| plot.type | | one of "contour" (to use levelplot) or "persp" (to use persp). Ignored if |
| :--- |
| either xval or tval is specified |

Details

The confidence bands used when plotting slices of the estimated surface or second derivative surface are the ones proposed in Marra and Wood (2012). These are a generalization of the "Bayesian" intervals of Wahba (1983) with an adjustment for the uncertainty about the model intercept. The estimated covariance matrix of the model parameters is obtained from assuming a particular Bayesian model on the parameters.

Value

Simply produces a plot

Author(s)

Mathew W. McLean mathew.w.mclean@gmail.com

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23(1), pp. 249-269. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.
Marra, G., and Wood, S. N. (2012) Coverage properties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics, 39(1), pp. 53-74.
Wabha, G. (1983) "Confidence intervals" for the cross-validated smoothing spline. Journal of the Royal Statistical Society, Series B, 45(1), pp. 133-150.

See Also

```
vis.gam, plot.gam, fgam, persp, levelplot
```


Examples

```
################## DTI Example #####################
data(DTI)
## only consider first visit and cases (since no PASAT scores for controls)
y <- DTI$pasat[DTI$visit==1 & DTI$case==1]
X <- DTI$cca[DTI$visit==1 & DTI$case==1,]
## remove samples containing missing data
ind <- rowSums(is.na(X))>0
y <- y[!ind]
X <- X[!ind,]
## fit the fgam using FA measurements along corpus
## callosum as functional predictor with PASAT as response
## using 8 cubic B-splines for each marginal bases with
## third order marginal difference penalties
## specifying gamma>1 enforces more smoothing when using GCV
## to choose smoothing parameters
```

```
#fit <- fgam(y~af(X,splinepars=list(k=c(8,8),m=list(c(2, 3),c(2,3)))),gamma=1.2)
## contour plot of the fitted surface
#vis.fgam(fit,plot.type='contour')
## similar to Figure 5 from McLean et al.
## Bands seem too conservative in some cases
#xval <- runif(1, min(fit$fgam$ft[[1]]$Xrange), max(fit$fgam$ft[[1]]$Xrange))
#tval <- runif(1, min(fit$fgam$ft[[1]]$xind), max(fit$fgam$ft[[1]]$xind))
#par(mfrow=c(4, 1))
#vis.fgam(fit, af.term='X', deriv2=FALSE, xval=xval)
#vis.fgam(fit, af.term='X', deriv2=FALSE, tval=tval)
#vis.fgam(fit, af.term='X', deriv2=TRUE, xval=xval)
#vis.fgam(fit, af.term='X', deriv2=TRUE, tval=tval)
```

vis.pfr Visualization of PFR objects

Description

Produces perspective or contour plot views of an estimated surface corresponding smooths over two or more dimensions. Alternatively plots "slices" of the estimated surface or estimated second derivative surface with one of its arguments fixed. Corresponding twice-standard error "Bayesian" confidence bands are constructed using the method in Marra and Wood (2012). See the details.

Usage

```
vis.pfr(
    object,
    select = 1,
    xval = NULL,
    tval = NULL,
    deriv2 = FALSE,
    theta \(=50\),
    plot.type = "persp",
    ticktype = "detailed",
    )
```


Arguments

object an pfr object, produced by pfr
select index for the smooth term to be plotted, according to its position in the model formula (and in object\$smooth). Not needed if only one multivariate term is present.
x val a number in the range of functional predictor to be plotted. The surface will be plotted with the first argument of the estimated surface fixed at this value

tval	a number in the domain of the functional predictor to be plotted. The surface will be plotted with the second argument of the estimated surface fixed at this value. Ignored if xval is specified.
deriv2	logical; if TRUE, plot the estimated second derivative surface along with Bayesian confidence bands. Only implemented for the "slices" plot from either xval or tval being specified
theta	numeric; viewing angle; see persp
plot.type	one of "contour" (to use levelplot) or "persp" (to use persp). Ignored if either xval or tval is specified
ticktype	how to draw the tick marks if plot.type="persp". Defaults to "detailed" \ldots

Details

The confidence bands used when plotting slices of the estimated surface or second derivative surface are the ones proposed in Marra and Wood (2012). These are a generalization of the "Bayesian" intervals of Wahba (1983) with an adjustment for the uncertainty about the model intercept. The estimated covariance matrix of the model parameters is obtained from assuming a particular Bayesian model on the parameters.

Value

Simply produces a plot

Author(s)

Mathew W. McLean mathew.w.mclean@gmail.com

References

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23(1), pp. 249-269. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982924/.
Marra, G., and Wood, S. N. (2012) Coverage properties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics, 39(1), pp. 53-74.

Wabha, G. (1983) "Confidence intervals" for the cross-validated smoothing spline. Journal of the Royal Statistical Society, Series B, 45(1), pp. 133-150.

See Also

```
vis.gam, plot.gam, pfr, persp, levelplot
```


Examples

```
################# DTI Example #####################
data(DTI)
## only consider first visit and cases (since no PASAT scores for controls),
```

```
## and remove missing data
DTI <- DTI[DTI$visit==1 & DTI$case==1 & complete.cases(DTI$cca),]
## Fit the PFR using FA measurements along corpus
## callosum as functional predictor with PASAT as response
## using 8 cubic B-splines for each marginal bases with
## third order marginal difference penalties.
## Specifying gamma>1 enforces more smoothing when using GCV
## to choose smoothing parameters
fit <- pfr(pasat ~ af(cca, basistype="te", k=c(8,8), m=list(c(2,3),c(2,3)), bs="ps"),
    method="GCV.Cp", gamma=1.2, data=DTI)
## contour plot of the fitted surface
vis.pfr(fit, plot.type='contour')
## similar to Figure 5 from McLean et al.
## Bands seem too conservative in some cases
xval <- runif(1, min(fit$pfr$ft[[1]]$Xrange), max(fit$pfr$ft[[1]]$Xrange))
tval <- runif(1, min(fit$pfr$ft[[1]]$xind), max(fit$pfr$ft[[1]]$xind))
par(mfrow=c(2, 2))
vis.pfr(fit, deriv2=FALSE, xval=xval)
vis.pfr(fit, deriv2=FALSE, tval=tval)
vis.pfr(fit, deriv2=TRUE, xval=xval)
vis.pfr(fit, deriv2=TRUE, tval=tval)
```

Xt_siginv_X Internal computation function

Description

Internal function used compute the products '(X otimes Theta)^t (I otimes Sigma^-1) (X otimes Theta)' and ‘(X otimes Theta) ${ }^{\wedge}$ t (I otimes Sigma ${ }^{\wedge}-1$) (y) ${ }^{\text {‘ in cross-sectional VB algorithm and Gibbs }}$ sampler

Usage

Xt_siginv_X(tx, siginv, y = NULL)

Arguments

tx
siginv inverse variance matrix
y outcome matrix. if NULL, function computes first product; if not, function computes second product.

Author(s)

Jeff Goldsmith ajg2202@cumc.columbia.edu

Index

```
* datasets
    cd4, 14
    DTI2,23
    gasoline,73
    sofa, }16
* package
    refund-package, 5
af, 5, 33, 81, 86, 117, 118, 131, 172
af_old, 8
amc, }3
bam, 5, 8, 33,45,80, 82, 85, 109,110,115,117
basisfd,44
bayes_fosr, 10, 135, 136
boot, 18
boot.ci,18
call, 24
ccb.fpc, }1
cd4,14
checkError (refund-internal), 149
cmdscale, 15, 159
cmdscale_lanczos, 15, 159
coef.pffr, 16, 18, 19, 110
coef.pfr(coefficients.pfr),19
coefboot.pffr, 18
coefficients.pfr, 19
create.prep.func, 6, 7, 21, 80, 81
data.frame, 100
decorrelate (refund-internal), 149
dist, 15
DTI, 22
DTI2,23
ecdf,10
expand.call, 24
f_sum, 70
f_sum2,71
```

f_sum4, 72
f_trace, 72
family.mgcv, 111
fbps, 24, 132
fd, 6, 10, 35, 36, 39, 44, 46, 67, 80, 86, 103
ff, 27, 30, 109, 110, 115, 116, 164
ffpc, 28, 29, 109, 110
ffpcplot, 31
fgam, $8,10,32,85,86,134,135,172,173$
first.last_test (refund-internal), 149
fitted.pffr, 110
fitted.pffr (residuals.pffr), 149
formula, 42
fosr, 5, 34, 39-41, 44, 45, 125, 146
fosr.perm, 38
fosr.vs, 41, 126, 137
fosr2s, 5, 43
fpc, 45, 117, 118
fpca.face, 22, 48, 63, 65
fpca. lfda, 51
fрса.sc, 22, 29, 30, 36, 50, 57, 63, 65, 115
fpca.ssvd, 22, 50, 61, 65
fpca2s, 50, 63, 64
fper, 5, 46, 47, 66, 73, 127, 128, 157
fpcr.setup (refund-internal), 149
gam, 32, 33, 35, 36, 49, 58, 68, 82, 85, 92, 100, $109,110,114,115,117,120,158$
gam. check, 113
gamm, 5, 8, 33, 45, 80, 82, 85, 109, 115, 117
gamm4, 33, 58, 85, 109, 110, 115, 117
gamObject, 16, 68
gasoline, 73
getNPC. DonohoGavish (refund-internal), 149
getRsq (refund-internal), 149
getShrtlbls (refund-internal), 149
getSpandDist (refund-internal), 149
gibbs_cs_fpca, 73
gibbs_cs_wish, 75
gibbs_mult_fpca, 76
gibbs_mult_wish, 77
gls_cs, 79
grpreg, 42
imwd_test (refund-internal), 149
irreg2mat (refund-internal), 149
jagam, 109, 110
levelplot, 172, 173, 175
lf, 7, 10, 33, 46, 47, 80, 83, 84, 104, 117, 118
lf.vd, 82, 117, 118
lf_old, 85
linear.functional.terms, $7,10,29,81,84$, 86, 154
list2df (refund-internal), 149
lme, 88, 107
lofocv, 36, 146
lpeer, 5, 87, 128
lpfr, 91
lw.test (refund-internal), 149
match.call, 24
mfpca.face, 94
mfpca.sc, 96
model.matrix.pffr, 98, 110
mrf, 110
nearPD, 115
ols_cs, 99
Omegas (refund-internal), 149
optim, 49
optimize, 62
osplinepen2d (refund-internal), 149
par, 40, 125
parse.predict.pfr (refund-internal), 149
pca.fd, 36
pco, 100
pco (smooth.construct.pco.smooth.spec), 158
pco_predict_preprocess, 100
pcre, 101, 109, 161
peer, 5, 103, 117, 118, 129, 130, 162
PEER.Sim, 105
peer_old, 104, 106
persp, 32, 172, 173, 175
pffr, 5, 18, 27, 29, 30, 44, 45, 109, 114-116, $141,147,153$
pffr.check, 110, 113
pffrgls, 114
pffrsim, 116
pfr, 5, 7, 20, 22, 45, 80-82, 84, 103, 104, 117, $131,143,144,151,174,175$
pfr_old, 119
plot, 128, 130, 172, 175
plot.fosr, 37, 125
plot.fosr.perm (fosr. perm), 38
plot.fosr.vs, 126
plot.fper, 127
plot.gam, 17, 130, 131, 173, 175
plot.lpeer, 128
plot. peer, 129
plot.pffr, 110, 130
plot.pfr, 131
poridge
(smooth.construct.pco.smooth.spec), 158
postprocess.pfr (refund-internal), 149
predict.fbps, 132
predict.fgam, 33, 134
predict.fosr, 135
predict.fosr.vs, 137
predict.gam, 17, 99, 100, 134, 135, 141-144
Predict.matrix.dt.smooth, 138
Predict.matrix.fpc.smooth, 139
Predict.matrix.pco.smooth
(smooth.construct.pco.smooth.spec),
158
Predict.matrix.pcre.random.effect, 139
Predict.matrix.peer.smooth, 140
Predict.matrix.pi.smooth, 141
Predict.matrix.pss.smooth
(refund-internal), 149
predict.pffr, 110, 141, 149
predict.pfr, 21, 122, 143, 151
preprocess.pfr (refund-internal), 149
print. summary.gam, 144, 145
print.summary.pffr, 144
pspline.setting (refund-internal), 149
pwcv, 145
Q (PEER.Sim), 105
qq.gam, 114, 147
qq.pffr, 110, 147
quadWeights, 148

```
random.effects, 148, 149
Xt_siginv_X,176
re, 10, 33,117, 118, 148
refund (refund-package), 5
refund-internal,149
refund-package,5
residuals.gam, 114, 147,149
residuals.pffr,110,149
rlrt.pfr, 122, 150
s, 6, 9, 28, 30, 46, 80-83, 86, 117, 148, 154,
    155,157, 158
safeDeparse (refund-internal), 149
scale, 36, 145
sff, 109, 110, 153
slanczos,15
smooth.basisPar, 9, 10, 86
smooth.construct, 138-141, 155-157,
    161-164
smooth.construct.dt.smooth.spec, 84,
    138,154
smooth.construct.fpc.smooth.spec, 47,
    139, 156
smooth.construct.pco.smooth.spec, 15,
    100, 101, 158
smooth.construct.pcre.smooth.spec, 160
smooth.construct.peer.smooth.spec, 104,
    140,161
smooth.construct.pi.smooth.spec, 84,
    141,162
smooth.construct.pss.smooth.spec, 164
smooth.construct.re.smooth.spec, 161
smooth.terms, 5, 80, 81,112,164
sofa, }16
summary.gam, 166,167
summary.pffr, 110, 145, 166
summary.pfr, 166
svd,46
t2, 6, 9, 28, 33,110,117,154, 155
te, 6,9,28,33,82, 83, 86, 117, 154, 155
ti,110,111,155
vb_cs_fpca,167
vb_cs_wish, 168
vb_mult_fpca, 169
vb_mult_wish, 170
vis.fgam, 33, 172
vis.gam, 173,175
vis.pfr,174
```

