
Package ‘reqres’
October 2, 2019

Type Package

Title Powerful Classes for HTTP Requests and Responses

Version 0.2.3

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description In order to facilitate parsing of http requests and creating
appropriate responses this package provides two classes to handle a lot of
the housekeeping involved in working with http exchanges. The infrastructure
builds upon the 'rook' specification and is thus well suited to be combined
with 'httpuv' based web servers.

License MIT + file LICENSE

Encoding UTF-8

LazyData TRUE

Depends R (>= 2.10)

Imports R6, assertthat, stringi, urltools, tools, brotli, jsonlite,
xml2, webutils, utils

RoxygenNote 6.1.1

Suggests fiery, testthat, covr

URL https://reqres.data-imaginist.com,

https://github.com/thomasp85/reqres#reqres

BugReports https://github.com/thomasp85/reqres/issues

NeedsCompilation no

Author Thomas Lin Pedersen [cre, aut]
(<https://orcid.org/0000-0002-5147-4711>)

Repository CRAN

Date/Publication 2019-10-02 20:00:03 UTC

1

https://reqres.data-imaginist.com
https://github.com/thomasp85/reqres#reqres
https://github.com/thomasp85/reqres/issues

2 default_formatters

R topics documented:

default_formatters . 2
default_parsers . 3
formatters . 3
parsers . 5
Request . 7
Response . 11
to_http_date . 14

Index 16

default_formatters A list of default formatter mappings

Description

This list matches the most normal mime types with their respective formatters using default argu-
ments. For a no-frills request parsing this can be supplied directly to Response$format(). To add
or modify to this list simply supply the additional parsers as second, third, etc, argument and they
will overwrite or add depending on whether it specifies a mime type already present.

Usage

default_formatters

See Also

formatters for an overview of the build in formatters in reqres

Examples

Not run:
res$format(default_formatters, 'text/plain' = format_plain(sep = ' '))

End(Not run)

default_parsers 3

default_parsers A list of default parser mappings

Description

This list matches the most normal mime types with their respective parsers using default arguments.
For a no-frills request parsing this can be supplied directly to Request$parse(). To add or mod-
ify to this list simply supply the additional parsers as second, third, etc, argument and they will
overwrite or add depending on whether it specifies a mime type already present.

Usage

default_parsers

See Also

parsers for an overview of the build in parsers in reqres

Examples

Not run:
req$parse(default_parsers, 'application/json' = parse_json(flatten = TRUE))

End(Not run)

formatters Pre-supplied formatting generators

Description

This set of functions can be used to construct formatting functions adhering to the Response$format()
requirements.

Usage

format_json(dataframe = "rows", matrix = "rowmajor",
Date = "ISO8601", POSIXt = "string", factor = "string",
complex = "string", raw = "base64", null = "list", na = "null",
auto_unbox = FALSE, digits = 4, pretty = FALSE, force = FALSE)

format_plain(sep = "\n")

format_xml(encoding = "UTF-8", options = "as_xml")

format_html(encoding = "UTF-8", options = "as_html")

format_table(...)

4 formatters

Arguments

dataframe how to encode data.frame objects: must be one of ’rows’, ’columns’ or ’values’

matrix how to encode matrices and higher dimensional arrays: must be one of ’rowma-
jor’ or ’columnmajor’.

Date how to encode Date objects: must be one of ’ISO8601’ or ’epoch’

POSIXt how to encode POSIXt (datetime) objects: must be one of ’string’, ’ISO8601’,
’epoch’ or ’mongo’

factor how to encode factor objects: must be one of ’string’ or ’integer’

complex how to encode complex numbers: must be one of ’string’ or ’list’

raw how to encode raw objects: must be one of ’base64’, ’hex’ or ’mongo’

null how to encode NULL values within a list: must be one of ’null’ or ’list’

na how to print NA values: must be one of ’null’ or ’string’. Defaults are class
specific

auto_unbox automatically unbox all atomic vectors of length 1. It is usually safer to avoid
this and instead use the unbox function to unbox individual elements. An ex-
ception is that objects of class AsIs (i.e. wrapped in I()) are not automatically
unboxed. This is a way to mark single values as length-1 arrays.

digits max number of decimal digits to print for numeric values. Use I() to specify
significant digits. Use NA for max precision.

pretty adds indentation whitespace to JSON output. Can be TRUE/FALSE or a number
specifying the number of spaces to indent. See prettify

force unclass/skip objects of classes with no defined JSON mapping

sep The line separator. Plain text will be split into multiple strings based on this.

encoding The character encoding to use in the document. The default encoding is ‘UTF-
8’. Available encodings are specified at http://xmlsoft.org/html/libxml-encoding.
html#xmlCharEncoding.

options default: ‘format’. Zero or more of

format Format output
no_declaration Drop the XML declaration
no_empty_tags Remove empty tags
no_xhtml Disable XHTML1 rules
require_xhtml Force XHTML1 rules
as_xml Force XML output
as_html Force HTML output
format_whitespace Format with non-significant whitespace

... parameters passed on to write.table()

Value

A function accepting an R object

http://xmlsoft.org/html/libxml-encoding.html#xmlCharEncoding
http://xmlsoft.org/html/libxml-encoding.html#xmlCharEncoding

parsers 5

See Also

parsers for converting Request bodies into R objects

default_formatters for a list that maps the most common mime types to their respective formatters

Examples

fake_rook <- fiery::fake_request(
'http://example.com/test',
content = '',
headers = list(

Content_Type = 'text/plain',
Accept = 'application/json, text/csv'

)
)

req <- Request$new(fake_rook)
res <- req$respond()
res$body <- mtcars
res$format(json = format_json(), csv = format_table(sep=','))
res$body

Cleaning up connections
rm(fake_rook, req, res)
gc()

parsers Pre-supplied parsing generators

Description

This set of functions can be used to construct parsing functions adhering to the Request$parse()
requirements.

Usage

parse_json(simplifyVector = TRUE, simplifyDataFrame = simplifyVector,
simplifyMatrix = simplifyVector, flatten = FALSE)

parse_plain(sep = "\n")

parse_xml(encoding = "", options = "NOBLANKS", base_url = "")

parse_html(encoding = "", options = c("RECOVER", "NOERROR",
"NOBLANKS"), base_url = "")

parse_multiform()

6 parsers

parse_queryform()

parse_table(...)

Arguments

simplifyVector coerce JSON arrays containing only primitives into an atomic vector
simplifyDataFrame

coerce JSON arrays containing only records (JSON objects) into a data frame

simplifyMatrix coerce JSON arrays containing vectors of equal mode and dimension into matrix
or array

flatten automatically flatten nested data frames into a single non-nested data frame

sep The line separator. Plain text will be split into multiple strings based on this.

encoding Specify a default encoding for the document. Unless otherwise specified XML
documents are assumed to be in UTF-8 or UTF-16. If the document is not
UTF-8/16, and lacks an explicit encoding directive, this allows you to supply a
default.

options Set parsing options for the libxml2 parser. Zero or more of

RECOVER recover on errors
NOENT substitute entities
DTDLOAD load the external subset
DTDATTR default DTD attributes
DTDVALID validate with the DTD
NOERROR suppress error reports
NOWARNING suppress warning reports
PEDANTIC pedantic error reporting
NOBLANKS remove blank nodes
SAX1 use the SAX1 interface internally
XINCLUDE Implement XInclude substitition
NONET Forbid network access
NODICT Do not reuse the context dictionary
NSCLEAN remove redundant namespaces declarations
NOCDATA merge CDATA as text nodes
NOXINCNODE do not generate XINCLUDE START/END nodes
COMPACT compact small text nodes; no modification of the tree allowed af-

terwards (will possibly crash if you try to modify the tree)
OLD10 parse using XML-1.0 before update 5
NOBASEFIX do not fixup XINCLUDE xml:base uris
HUGE relax any hardcoded limit from the parser
OLDSAX parse using SAX2 interface before 2.7.0
IGNORE_ENC ignore internal document encoding hint
BIG_LINES Store big lines numbers in text PSVI field

Request 7

base_url When loading from a connection, raw vector or literal html/xml, this allows you
to specify a base url for the document. Base urls are used to turn relative urls
into absolute urls.

... parameters passed on to read.table()

Value

A function accepting a raw vector and a named list of directives

See Also

formatters for converting Response bodies into compatible types

default_parsers for a list that maps the most common mime types to their respective parsers

Examples

fake_rook <- fiery::fake_request(
'http://example.com/test',
content = '[1, 2, 3, 4]',
headers = list(
Content_Type = 'application/json'

)
)

req <- Request$new(fake_rook)
req$parse(json = parse_json())
req$body

Cleaning up connections
rm(fake_rook, req)
gc()

Request HTTP Request Handling

Description

This class wraps all functionality related to extracting information from a http request. Much of
the functionality is inspired by the Request class in Express.js, so the documentation for this will
complement this document. As reqres is build on top of the Rook specifications the Request
object is initialized from a Rook-compliant object. This will often be the request object provided by
the httpuv framework. While it shouldn’t be needed, the original Rook object is always accessible
and can be modified, though any modifications will not propagate to derived values in the Request
object (e.g. changing the HTTP_HOST element of the Rook object will not change the host field of the
Request object). Because of this, direct manipulation of the Rook object is generally discouraged.

https://expressjs.com/en/4x/api.html#req
https://github.com/jeffreyhorner/Rook/blob/a5e45f751/README.md

8 Request

Usage

as.Request(x, ...)

is.Request(x)

Arguments

x An object coercible to a Request.

... Parameters passed on to Request$new()

Value

A Request object (for as.Request()) or a logical indicating whether the object is a Request (for
is.Request())

Initialization

A new ’Request’-object is initialized using the new() method on the generator:

Usage

req <- Request$new(rook, trust = FALSE)

Arguments

rook The rook request that the new object should wrap
trust Is this request trusted blindly. If TRUE X-Forwarded-* headers will be returned when querying host, ip, and protocol

Fields

The following fields are accessible in a Request object:

trust A logical indicating whether the request is trusted. Mutable

method A string indicating the request method (in lower case, e.g. ’get’, ’put’, etc.). Immutable

body An object holding the body of the request. This is an empty string by default and needs to be
populated using the set_body() method (this is often done using a body parser that accesses
the Rook$input stream). Immutable

cookies Access a named list of all cookies in the request. These have been URI decoded. Im-
mutable

headers Access a named list of all headers in the request. In order to follow R variable naming
standards - have been substituted with _. Use the get_header() method to lookup based on
the correct header name. Immutable

host Return the domain of the server given by the "Host" header if trust == FALSE. If trust ==
true returns the X-Forwarded-Host instead.

ip Returns the remote address of the request if trust == FALSE. if trust == TRUE it will instead
return the first value of the X-Forwarded-For header. Immutable

Request 9

ips If trust == TRUE it will return the full list of ips in the X-Forwarded-For header. If trust ==
FALSE it will return an empty vector. Immutable

protocol Returns the protocol (e.g. ’http’) used for the request. If trust == TRUE it will use the
value of the X-Forwarded-Proto header. Immutable

root The mount point of the application receiving this request. Can be empty if the application is
mounted on the server root. Immutable

path The part of the url following the root. Defines the local target of the request (independent of
where it is mounted). Immutable

url The full URL of the request. Immutable

query The query string of the request (anything following "?" in the URL) parsed into a named list.
The query has been url decoded and "+" has been substituted with space. Multiple queries are
expected to be separated by either "&" or "|". Immutable

querystring The unparsed query string of the request, including "?". If no query string exists it
will be "" rather than "?"

xhr A logical indicating whether the X-Requested-With header equals XMLHttpRequest thus in-
dicating that the request was performed using a JavaScript library such as jQuery. Immutable

secure A logical indicating whether the request was performed using a secure connection, i.e.
protocol == 'https'. Immutable

origin The original object used to create the Request object. As reqres currently only works
with rook this will always return the original rook object. Immutable, though the content of
the rook object itself might be manipulated as it is an environment.

response If a Response object has been created for this request it is accessible through this field.
Immutable

Methods

The following methods are available in a Request object:

set_body(content) Sets the content of the request body. This method should mainly be used in
concert with a body parser that reads the rook$input stream

set_cookies(cookies) Sets the cookies of the request. The cookies are automatically parsed and
populated, so this method is mainly available to facilitate cookie signing and encryption

get_header(name) Get the header of the specified name.

accepts(types) Given a vector of response content types it returns the preferred one based on the
Accept header.

accepts_charsets(charsets) Given a vector of possible character encodings it returns the pre-
ferred one based on the Accept-Charset header.

accepts_encoding(encoding) Given a vector of possible content encodings (usually compres-
sion algorithms) it selects the preferred one based on the Accept-Encoding header. If there
is no match it will return "identity" signaling no compression.

accepts_language(language) Given a vector of possible content languages it selects the best
one based on the Accept-Language header.

is(type) Queries whether the body of the request is in a given format by looking at the Content-Type
header. Used for selecting the best parsing method.

10 Request

respond() Creates a new Response object from the request

parse(..., autofail = TRUE) Based on provided parsers it selects the appropriate one by looking
at the Content-Type header and assigns the result to the request body. A parser is a function
accepting a raw vector, and a named list of additional directives, and returns an R object of
any kind (if the parser knows the input to be plain text, simply wrap it in rawToChar()).
If the body is compressed, it will be decompressed based on the Content-Encoding header
prior to passing it on to the parser. See parsers for a list of pre-supplied parsers. Parsers are
either supplied in a named list or as named arguments to the parse method. The names should
correspond to mime types or known file extensions. If autofail = TRUE the response will be
set with the correct error code if parsing fails. parse() returns TRUE if parsing was successful
and FALSE if not

parse_raw(autofail = TRUE) This is a simpler version of the parse() method. It will attempt
to decompress the body and set the body field to the resulting raw vector. It is then up to the
server to decide how to handle the payload. It returns TRUE if successful and FALSE otherwise.

as_message() Prints a HTTP representation of the request to the output stream.

See Also

Response for handling http responses

Examples

fake_rook <- fiery::fake_request(
'http://example.com/test?id=34632&question=who+is+hadley',
content = 'This is an elaborate ruse',
headers = list(

Accept = 'application/json; text/*',
Content_Type = 'text/plain'

)
)

req <- Request$new(fake_rook)

Get full URL
req$url

Get list of query parameters
req$query

Test if content is text
req$is('txt')

Perform content negotiation for the response
req$accepts(c('html', 'json', 'txt'))

Cleaning up connections
rm(fake_rook, req)
gc()

Response 11

Response HTTP Response handling

Description

This class handles all functionality involved in crafting a http response. Much of the functionality is
inspired by the Request class in Express.js, so the documentation for this will complement this doc-
ument. As reqres is build on top of the Rook specifications the Response object can be converted
to a compliant list object to be passed on to e.g. the httpuv handler.

Usage

S3 method for class 'Response'
as.list(x, ...)

is.Response(x)

Arguments

x A Response object
... Ignored

Details

A Response object is always created as a response to a Request object and contains a reference
to the originating Request object. A Response is always initialized with a 404 Not Found code,
an empty string as body and the Content-Type header set to text/plain. As the Content-Type
header is required for httpuv to function, it will be inferred if missing when converting to a list.
If the body is a raw vector it will be set to application/octet-stream and otherwise it will be
set to text/plain. It is always advised to consciously set the Content-Type header though. The
only exception is when attaching a standard file where the type is inferred from the file extension
automatically. Unless the body is a raw vector it will automatically be converted to a character
vector and collapsed to a single string with "\n" separating the individual elements before the
Response object is converted to a list (that is, the body can exist as any type of object up until the
moment where the Response object is converted to a list). To facilitate communication between
different middleware the Response object contains a data store where information can be stored
during the lifetime of the response.

Value

A rook-compliant list-response (in case of as.list()) or a logical indicating whether the object is
a Response (in case of is.Response())

Initialization

A new ’Response’-object is initialized using the new() method on the generator:

Usage

https://expressjs.com/en/4x/api.html#res
https://github.com/jeffreyhorner/Rook/blob/a5e45f751/README.md

12 Response

res <- Response$new(request)

But often it will be provided by the request using the respond() method, which will provide the
response, creating one if it doesn’t exist

Usage

res <- request$respond()

Arguments

request The Request object that the Response is responding to

Fields

The following fields are accessible in a Response object:

status Gets or sets the status code of the response. Is initialised with 404L

body Set or get he body of the response. If it is a character vector with a single element named
'file' it will be interpreted as the location of a file. It is better to use the file field for
creating a response referencing a file as it will automatically set the correct headers.

file Set or get the location of a file that should be used as the body of the response. If the body
is not referencing a file (but contains something else) it will return NULL. The Content-Type
header will automatically be inferred from the file extension, if known. If unknown it will
defaults to application/octet-stream. If the file has no extension it will be text/plain.
Existence of the file will be checked.

type Get or sets the Content-Type header of the response based on a file extension or mime-type.

request Get the original Request object that the object is responding to.

Methods

The following methods are available in a Response object:

set_header(name, value) Sets the header given by name. value will be converted to character.
A header will be added for each element in value. Use append_header() for setting headers
without overwriting existing ones.

get_header(name) Returns the header(s) given by name

remove_header(name) Removes all headers given by name

has_header(name) Test for the existence of any header given by name

append_header(name, value) Adds an additional header given by name with the value given by
value. If the header does not exist yet it will be created.

set_data(key, value) Adds value to the internal data store and stores it with key

get_data(key) Retrieves the data stored under key in the internal data store.

remove_data(key) Removes the data stored under key in the internal data store.

has_data(key) Queries whether the data store has an entry given by key

Response 13

attach(file, filename=basename(file), type=NULL) Sets the body to the file given by file
and marks the response as a download by setting the Content-Disposition to attachment;
filename=<filename>. Use the type argument to overwrite the automatic type inference
from the file extension.

status_with_text(code) Sets the status to code and sets the body to the associated status code
description (e.g. Bad Gateway for 502L)

set_cookie(name, value, encode = TRUE, expires = NULL, http_only = NULL, max_age = NULL, path = NULL, secure = NULL, same_site = NULL)
Adds the cookie given by name to the given value, optionally url encoding it, along with
any additional directives. See https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Set-Cookie for a description of the different directives. If the cookie already exists
it will be overwritten. The validity of the directives will automatically be checked. expires
expects a POSIXct object, http_only and secure expect a logical, max_age expects an inte-
ger, path a string, and same_site either "Lax" or "Strict"

remove_cookie(name) Removes the cookie named name from the response.

has_cookie(name) Queries whether the response contains a cookie named name

set_links(...) Sets the Link header based on the named arguments passed to The names
will be used for the rel directive.

format(..., autofail = TRUE, compress = TRUE) Based on the formatters passed in through ...
content negotiation is performed with request and the preferred formatter is chosen. The
Content-Type header is set automatically. If compress = TRUE the compress() method will
be called after formatting. If an error is encountered and autofail = TRUE the response will
be set to 500. If a formatter is not found and autofail = TRUE the response will be set to 406.
If formatting is successful it will return TRUE, if not it will return FALSE

compress(priority = c(’gzip’, ’deflate’, ’br’, ’identity’)) Based on the provided pri-
ority, an encoding is negotiated with the request and applied. The Content-Encoding header
is set to the chosen compression algorithm.

content_length() Calculates the length (in bytes) of the body. This is the number that goes into
the Content-Length header. Note that the Content-Length header is set automatically by
httpuv so this method should only be called if the response size is needed for other reasons.

as_list() Converts the object to a list for further processing by a Rook compliant server such
as httpuv. Will set Content-Type header if missing and convert a non-raw body to a single
character string.

See Also

Request for handling http requests

Examples

fake_rook <- fiery::fake_request(
'http://example.com/test?id=34632&question=who+is+hadley',
content = 'This is elaborate ruse',
headers = list(

Accept = 'application/json; text/*',
Content_Type = 'text/plain'

)
)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

14 to_http_date

req <- Request$new(fake_rook)
res <- Response$new(req)
res

Set the body to the associated status text
res$status_with_text(200L)
res$body

Infer Content-Type from file extension
res$type <- 'json'
res$type

Prepare a file for download
res$attach(system.file('DESCRIPTION', package = 'reqres'))
res$type
res$body
res$get_header('Content-Disposition')

Cleaning up connections
rm(fake_rook, req, res)
gc()

to_http_date Format timestamps to match the HTTP specs

Description

Dates/times in HTTP headers needs a specific format to be valid, and is furthermore always given
in GMT time. These two functions aids in converting back and forth between the required format.

Usage

to_http_date(time, format = NULL)

from_http_date(time)

Arguments

time A string or an object coercible to POSIXct

format In case time is not a POSIXct object a specification how the string should be
interpreted.

Value

to_http_date() returns a properly formatted string, while from_http_date() returns a POSIXct
object

to_http_date 15

Examples

time <- to_http_date(Sys.time())
time
from_http_date(time)

Index

∗Topic datasets
default_formatters, 2
default_parsers, 3
Request, 7
Response, 11

as.list.Response (Response), 11
as.Request (Request), 7

default_formatters, 2, 5
default_parsers, 3, 7

flatten, 6
format_html (formatters), 3
format_json (formatters), 3
format_plain (formatters), 3
format_table (formatters), 3
format_xml (formatters), 3
formatters, 2, 3, 7
from_http_date (to_http_date), 14

is.Request (Request), 7
is.Response (Response), 11

parse_html (parsers), 5
parse_json (parsers), 5
parse_multiform (parsers), 5
parse_plain (parsers), 5
parse_queryform (parsers), 5
parse_table (parsers), 5
parse_xml (parsers), 5
parsers, 3, 5, 5, 10
prettify, 4

rawToChar(), 10
read.table(), 7
Request, 7, 13
Response, 10, 11

to_http_date, 14

unbox, 4

write.table(), 4

16

	default_formatters
	default_parsers
	formatters
	parsers
	Request
	Response
	to_http_date
	Index

