
Package ‘rgdal’
April 18, 2022

Title Bindings for the 'Geospatial' Data Abstraction Library

Version 1.5-31

Date 2022-04-18

Depends R (>= 3.5.0), methods, sp (>= 1.1-0)

Imports grDevices, graphics, stats, utils

LinkingTo sp

Suggests knitr, DBI, RSQLite, maptools, mapview, rmarkdown, curl,
rgeos

NeedsCompilation yes

Description Provides bindings to the 'Geospatial' Data Abstraction Li-
brary ('GDAL') (>= 1.11.4) and access to projection/transformation opera-
tions from the 'PROJ' library. Please note that 'rgdal' will be retired by the end of 2023, plan tran-
sition to sf/stars/'terra' functions using 'GDAL' and 'PROJ' at your earliest conve-
nience. Use is made of classes defined in the 'sp' package. Raster and vector map data can be im-
ported into R, and raster and vector 'sp' objects exported. The 'GDAL' and 'PROJ' libraries are ex-
ternal to the package, and, when installing the package from source, must be correctly in-
stalled first; it is important that 'GDAL' < 3 be matched with 'PROJ' < 6. From 'rgdal' 1.5-8, in-
stalled with to 'GDAL' >=3, 'PROJ' >=6 and 'sp' >= 1.4, coordinate reference sys-
tems use 'WKT2_2019' strings, not 'PROJ' strings. 'Windows' and 'macOS' binaries (includ-
ing 'GDAL', 'PROJ' and their dependencies) are provided on 'CRAN'.

License GPL (>= 2)

URL http://rgdal.r-forge.r-project.org, https://gdal.org,

https://proj.org, https://r-forge.r-project.org/projects/rgdal/

SystemRequirements PROJ (>= 4.8.0, https://proj.org/download.html) and
GDAL (>= 1.11.4, https://gdal.org/download.html), with versions
either (A) PROJ < 6 and GDAL < 3 or (B) PROJ >= 6 and GDAL >=
3. For degraded PROJ 6 or 7 and GDAL < 3, use the configure
argument '--with-proj_api=``proj_api.h'''.

VignetteBuilder knitr

Author Roger Bivand [cre, aut] (<https://orcid.org/0000-0003-2392-6140>),
Tim Keitt [aut],

1

http://rgdal.r-forge.r-project.org
https://gdal.org
https://proj.org
https://r-forge.r-project.org/projects/rgdal/
https://orcid.org/0000-0003-2392-6140

2 R topics documented:

Barry Rowlingson [aut, ctb],
Edzer Pebesma [ctb],
Michael Sumner [ctb],
Robert Hijmans [ctb],
Daniel Baston [ctb],
Even Rouault [cph, ctb],
Frank Warmerdam [cph, ctb],
Jeroen Ooms [ctb],
Colin Rundel [ctb]

Maintainer Roger Bivand <Roger.Bivand@nhh.no>

Repository CRAN

Date/Publication 2022-04-18 00:30:03 UTC

R topics documented:

closeDataset-methods . 3
CRS-class . 3
displayDataset . 5
GDALcall . 7
GDALDataset-class . 8
GDALDriver-class . 9
GDALMajorObject-class . 11
GDALRasterBand-class . 12
GDALReadOnlyDataset-class . 15
GDALReadOnlyDataset-methods . 17
GDALTransientDataset-class . 18
GridsDatums . 20
is_proj_CDN_enabled . 21
list_coordOps . 22
llgridlines . 24
make_EPSG . 25
nor2k . 26
project . 27
projInfo . 30
readGDAL . 32
readOGR . 38
RGB2PCT . 44
SGDF2PCT . 45
showWKT . 47
SpatialGDAL-class . 49
spTransform-methods . 51
writeOGR . 57

Index 62

closeDataset-methods 3

closeDataset-methods closeDataset methods

Description

Methods for closing GDAL datasets, used internally

Usage

closeDataset(dataset)
closeDataset.default(dataset)

Arguments

dataset GDAL dataset

Methods

dataset = "ANY" default method, returns error

dataset = "GDALReadOnlyDataset" closes the "GDALReadOnlyDataset"

dataset = "GDALTransientDataset" closes the "GDALTransientDataset"

CRS-class Class "CRS" of coordinate reference system arguments

Description

Interface class to the PROJ.4 projection system. The class is defined as an empty stub accepting
value NA in the sp package. If the rgdal package is available, then the class will permit spatial data
to be associated with coordinate reference systems

Usage

checkCRSArgs(uprojargs)
checkCRSArgs_ng(uprojargs=NA_character_, SRS_string=NULL,

get_source_if_boundcrs=TRUE)
compare_CRS(CRS1, CRS2)

4 CRS-class

Arguments

uprojargs character string PROJ.4 projection arguments

SRS_string default NULL, experimental in connection with adaptation to GDAL>=3/PROJ>=6;
a valid WKT string or SRS definition such as "OGC:CRS84"

get_source_if_boundcrs

The presence of the +towgs84= key in a Proj4 string projargs= argument value
may promote the output WKT2 CRS to BOUNDCRS for PROJ >= 6 and GDAL
>= 3, which is a coordinate operation from the input datum to WGS84. This is
often unfortunate, so a PROJ function is called through rgdal to retrieve the
underlying source definition.

CRS1, CRS2 objects of class "CRS"

Objects from the Class

Objects can be created by calls of the form CRS("projargs"), where "projargs" is a valid string of
PROJ.4 arguments; the arguments must be entered exactly as in the PROJ.4 documentation, in par-
ticular there cannot be any white space in +<arg>=<value> strings, and successive such strings can
only be separated by blanks. The initiation function calls the PROJ.4 library to verify the argument
set against those known in the library, returning error messages where necessary. The complete ar-
gument set may be retrieved by examining the second list element returned by validObject("CRS
object") to see which additional arguments the library will use (which assumptions it is making
over and above submitted arguments). The function CRSargs() can be used to show the expanded
argument list used by the PROJ.4 library.

Slots

projargs: Object of class "character": projection arguments; the arguments must be entered
exactly as in the PROJ.4 documentation, in particular there cannot be any white space in
+<arg>=<value> strings, and successive such strings can only be separated by blanks.

Methods

show signature(object = "CRS"): print projection arguments in object

Note

Lists of projections may be seen by using the programs installed with the PROJ.4 library, in par-
ticular proj and cs2cs; with the latter, -lp lists projections, -le ellipsoids, -lu units, and -ld datum(s)
known to the installed software (available in rgdal using projInfo). These are added to in suc-
cessive releases, so tracking the website or compiling and installing the most recent revisions will
give the greatest choice. Finding the very important datum transformation parameters to be given
with the +towgs84 tag is a further challenge, and is essential when the datums used in data to be
used together differ. Tracing projection arguments is easier now than before the mass ownership of
GPS receivers raised the issue of matching coordinates from different argument sets (GPS output
and paper map, for example). See GridsDatums and showEPSG for help in finding CRS definitions.

The 4.9.1 release of PROJ.4 omitted a small file of defaults, leading to reports of “major axis or
radius = 0 or not given” errors. From 0.9-3, rgdal checks for the presence of this file (proj_def.dat),
and if not found, and under similar conditions to those used by PROJ.4, adds “+ellps=WGS84” to

displayDataset 5

the input string being checked by checkCRSArgs The “+no_defs” tag ignores the file of defaults,
and the default work-around implemented to get around this problem; strings including “init” and
“datum” tags also trigger the avoidance of the work-around. Now messages are issued when a
candidate CRS is checked; they may be suppressed using suppressMessages.

Author(s)

Roger Bivand <Roger.Bivand@nhh.no>

References

https://proj.org/

Examples

set_thin_PROJ6_warnings(TRUE)
CRSargs(CRS("+proj=longlat"))
try(CRS("+proj=longlat"))
CRSargs(CRS("+proj=longlat +datum=NAD27"))
CRSargs(CRS("+init=epsg:4267"))
CRSargs(CRS("+init=epsg:26978"))
CRSargs(CRS(paste("+proj=stere +lat_0=52.15616055555555",
"+lon_0=5.38763888888889 +k=0.999908 +x_0=155000 +y_0=463000 +ellps=bessel",
"+towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812",
"+units=m")))
see http://trac.osgeo.org/gdal/ticket/1987
CRSargs(CRS("+init=epsg:28992"))
crs <- CRS("+init=epsg:28992")
CRSargs(CRS(CRSargs(crs)))
library(sp)
data(meuse)
coordinates(meuse) <- c("x", "y")
proj4string(meuse) <- CRS("+init=epsg:28992")
CRSargs(CRS(proj4string(meuse)))
run <- new_proj_and_gdal()
if (run) {
c1 <- CRS(SRS_string="OGC:CRS84")
c2 <- CRS("+proj=longlat")
compare_CRS(c1, c2)
}
if (run) {
comment(c2) <- NULL
compare_CRS(c1, c2)
}

displayDataset Display a GDAL dataset

https://proj.org/

6 displayDataset

Description

Display a GDAL dataset allowing for subscenes and decimation, allowing very large images to be
browsed

Usage

displayDataset(x, offset=c(0, 0), region.dim=dim(x), reduction = 1,
band = 1, col = NULL, reset.par = TRUE, max.dim = 500, ...)

Arguments

x a three-band GDALReadOnlyDataset object

offset Number of rows and columns from the origin (usually the upper left corner) to
begin reading from; presently ordered (y,x) - this may change

region.dim The number of rows and columns to read from the dataset; presently ordered
(y,x) - this may change

reduction a vector of length 1 or 2 recycled to 2 for decimating the input data, 1 retains
full resultion, higher values decimate

band The band number (1-based) to read from

col default NULL, attempt to use band colour table and default to grey scale if not
available

reset.par default TRUE - reset par() settings on completion

max.dim default 500, forcing the image to a maximum dimension of the value

... arguments passed to image.default()

Value

a list of the image data, the colour table, and the par() values on entry.

Author(s)

Tim Keitt

References

https://gdal.org/

Examples

Not run:
logo <- system.file("pictures/Rlogo.jpg", package="rgdal")[1]
x <- GDAL.open(logo)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
displayDataset(x, band=1, reset.par=FALSE)
displayDataset(x, band=2, reset.par=FALSE)
#displayDataset(x, band=3, reset.par=TRUE)

https://gdal.org/

GDALcall 7

par(opar)
dx <- RGB2PCT(x, band=1:3)
displayDataset(dx, reset.par=FALSE)
GDAL.close(x)
GDAL.close(dx)

End(Not run)

GDALcall Wrapper functions to allow more direct calling of rgdal C code

Description

These functions allow more direct access to some of the rgdal C API. These are advanced methods
intended for package developers only.

Usage

GDALcall(object, option, ...)
rawTransform(projfrom, projto, n, x, y, z=NULL, wkt=FALSE)

Arguments

object GDALTransientDataset (option = ’SetGeoTransform’, ’SetProject’) or GDAL-
RasterBand (the other options)

option character. One of ’SetGeoTransform’, ’SetProject’, ’SetNoDataValue’, ’Set-
Statistics’, ’SetRasterColorTable’ or ’SetCategoryNames’)

... additional arguments. The values to be set

projfrom character. PROJ.4 coordinate reference system (CRS) description

projto character. PROJ.4 CRS description

n number of coordinates

x x coordinates

y y coordinates

z z coordinates

wkt default FALSE, if TRUE, the caller determines that projfrom and projto are wkt
and that new_proj_and_gdal() returns TRUE to avoid multiple warnings when
the function is called repetitively

Value

GDALcall does not return anything. rawTransform returns a matrix of transformed coordinates.

Author(s)

Robert Hijmans

8 GDALDataset-class

GDALDataset-class Class "GDALDataset"

Description

GDALDataset extends GDALReadOnlyDataset-class with data update commands.

Usage

putRasterData(dataset, rasterData, band = 1, offset = c(0, 0))
saveDataset(dataset, filename, options=NULL, returnNewObj=FALSE)
copyDataset(dataset, driver, strict = FALSE, options = NULL, fname=NULL)
deleteDataset(dataset)
saveDatasetAs(dataset, filename, driver = NULL, options=NULL)

Arguments

dataset An object inheriting from class ’GDALDataset’

rasterData A data array with length(dim(rasterData)) = 2

band The band number (1-based) to read from

offset Number of rows and columns from the origin (usually the upper left corner) to
begin reading from

filename name of file to contain raster data object; will be normalized with normalizePath

returnNewObj until and including 0.5-27, saveDataset returned an invisible copy of the new
file handle, which was then only finalized when the garbage collector ran. The
old behaviour can be retained by setting to FALSE, the default behaviour is to
close the hande and not return it.

driver GDAL driver name to use for saving raster data object

strict TRUE if the copy must be strictly equivalent, or more normally FALSE indicat-
ing that the copy may adapt as needed for the output format

options Driver specific options (currently passed to GDAL)

fname default NULL, used internally to pass through a file name with a required exten-
sion (RST driver has this problem)

Details

putRasterData: writes data contained in rasterData to the dataset, begining at offset rows and
columns from the origin (usually the upper left corner). Data type conversion is automatic.

saveDataset: saves a raster data object in a file using the driver of the object

saveDatasetAs: saves a raster data object in a file using the specified driver

copyDataset: make a copy of raster data object in a file using the specified driver

deleteDataset: delete the file from which the raster data object was read (should only delete files
opened as GDALDataset objects

GDALDriver-class 9

Objects from the Class

Objects can be created by calls of the form new("GDALDataset",filename,handle), where name:
a string giving the name of a GDAL driver, handle: used internally; not for public consumption
(default = NULL).

Slots

handle: Object of class "externalptr",from class "GDALReadOnlyDataset", used internally;
not for public consumption

Extends

Class "GDALReadOnlyDataset", directly. Class "GDALMajorObject", by class "GDALReadOnly-
Dataset".

Methods

initialize signature(.Object = "GDALDataset"): ...

Author(s)

Timothy H. Keitt, modified by Roger Bivand

See Also

GDALDriver-class, GDALReadOnlyDataset-class, GDALTransientDataset-class

GDALDriver-class Class "GDALDriver": GDAL Driver Object

Description

GDALDriver objects encapsulate GDAL file format drivers. GDALDriver inherits from GDALMajorObject-class.

Usage

getGDALDriverNames()
gdalDrivers()
getDriverName(driver)
getDriverLongName(driver)
getGDALVersionInfo(str = "--version")
getGDALCheckVersion()
getGDALwithGEOS()
rgdal_extSoftVersion()
getCPLConfigOption(ConfigOption)
setCPLConfigOption(ConfigOption, value)
get_cached_orig_PROJ_LIB()

10 GDALDriver-class

get_cached_orig_GDAL_DATA()
get_cached_set_PROJ_LIB()
get_cached_set_GDAL_DATA()

Arguments

driver An object inheriting from class ’GDALDriver’

str A string, may be one of "--version", "VERSION_NUM", "RELEASE_DATE", "RELEASE_NAME"

ConfigOption CPL configure option documented in https://trac.osgeo.org/gdal/wiki/
ConfigOptions and elsewhere in GDAL source code

value a string value to set a CPL option; NULL is used to unset the CPL option

Details

getGDALDriverNames, gdalDrivers: returns all driver names currently installed in GDAL, with
their declared create and copy status (some drivers can create datasets, others can only copy
from a prototype with a different driver.

getDriverName: returns the GDAL driver name associated with the driver object.

getDriverLongName: returns a longer driver name.

getGDALVersionInfo: returns the version of the GDAL runtime shared object.

getGDALCheckVersion: checks the version of the GDAL headers used when building the pack-
age (GDAL_VERSION_MAJOR, GDAL_VERSION_MINOR) - if the two versions differ,
problems may arise (the C++ API/ABI may have changed), and rgdal should be re-installed

getGDALwithGEOS: because drivers may behave differently if GDAL itself was built with GEOS
support, the function uses a heuristic to check whether GDAL has access to the GEOS Union
function or not

get_cached_orig_PROJ_LIB, get_cached_orig_GDAL_DATA The values of environment variables
PROJ_LIB and GDAL_DATA as read when this package was loaded

get_cached_set_PROJ_LIB, get_cached_set_GDAL_DATA If not "", the values set when loading
this package to point to metadata files included in CRAN binary packages

Objects from the Class

Objects can be created by calls of the form new("GDALDriver",name,handle), where name: a
string giving the name of a GDAL driver, handle: used internally; not for public consumption
(default = NULL).

Slots

handle: Object of class "externalptr",from class "GDALMajorObject", used internally; not
for public consumption

Extends

Class "GDALMajorObject", directly.

https://trac.osgeo.org/gdal/wiki/ConfigOptions
https://trac.osgeo.org/gdal/wiki/ConfigOptions

GDALMajorObject-class 11

Methods

initialize signature(.Object = "GDALDriver"): drivername: a string giving the name of a GDAL
driver, handle: used internally; not for public consumption (default = NULL)

Note

Loading the rgdal package changes the GDAL_DATA environmental variable to the GDAL support
files bundled with the package.

Author(s)

Timothy H. Keitt, modified by Roger Bivand

See Also

GDALMajorObject-class

Examples

gdalDrivers()
logo <- system.file("pictures/logo.jpg", package="rgdal")[1]
x <- new("GDALReadOnlyDataset", logo)
getDriver(x)
getDriverLongName(getDriver(x))
GDAL.close(x)

GDALMajorObject-class Class "GDALMajorObject"

Description

"GDALMajorObject" is a virtual base class for all GDAL objects.

Usage

getDescription(object)

Arguments

object an object inheriting from "GDALMajorObject"

Details

getDescription: returns a descrption string associated with the object. No setter method is de-
fined because GDAL dataset objects use the description to hold the filename attached to the
dataset. It would not be good to change that mid-stream.

12 GDALRasterBand-class

Objects from the Class

Objects can be created by calls of the form new("GDALMajorObject",...), but are only created
for classes that extend this class.

Slots

handle: Object of class "externalptr", used internally; not for public consumption

Methods

No methods defined with class "GDALMajorObject" in the signature.

Author(s)

Timothy H. Keitt, modified by Roger Bivand

References

https://gdal.org/

See Also

GDALDriver-class, GDALReadOnlyDataset-class, GDALDataset-class and GDALTransientDataset-class

Examples

driver <- new('GDALDriver', as.character(getGDALDriverNames()[1,1]))
driver
rm(driver)
logo <- system.file("pictures/logo.jpg", package="rgdal")[1]
x <- new("GDALReadOnlyDataset", logo)
x
getDescription(x)
dim(x)
GDAL.close(x)

GDALRasterBand-class Class "GDALRasterBand"

Description

Returns a two-dimensional array with data from a raster band, used internally within functions

https://gdal.org/

GDALRasterBand-class 13

Usage

getRasterData(dataset, band = NULL, offset = c(0, 0),
region.dim = dim(dataset), output.dim = region.dim,
interleave = c(0, 0), as.is = FALSE, list_out=FALSE)

getRasterTable(dataset, band = NULL, offset = c(0, 0),
region.dim = dim(dataset))

getProjectionRef(dataset, OVERRIDE_PROJ_DATUM_WITH_TOWGS84 = NULL,
enforce_xy = NULL, get_source_if_boundcrs=TRUE)

getRasterBand(dataset, band = 1)

getRasterBlockSize(raster)

toSigned(x, base)

toUnSigned(x, base)

get_OVERRIDE_PROJ_DATUM_WITH_TOWGS84()
set_OVERRIDE_PROJ_DATUM_WITH_TOWGS84(value)

Arguments

dataset An object inheriting from class ’GDALReadOnlyDataset’

band The band number (1-based) to read from

offset Number of rows and columns from the origin (usually the upper left corner) to
begin reading from; presently ordered (y,x) - this may change

region.dim The number of rows and columns to read from the dataset; presently ordered
(y,x) - this may change

output.dim Number of rows and columns in the output data; if smaller than region.dim the
data will be subsampled

interleave Element and row stride while reading data; rarely needed

as.is If false, scale the data to its natural units; if the case of thematic data, return the
data as factors

list_out default FALSE, return array, if TRUE, return a list of vector bands

raster An object of class GDALRasterBand

x integer variable for conversion

base If Byte input, 8, if Int16 or UInt16, 16
OVERRIDE_PROJ_DATUM_WITH_TOWGS84

logical value, default NULL, which case the cached option set by set_OVERRIDE_PROJ_DATUM_WITH_TOWGS84
is used. Ignored if the GDAL version is less than “1.8.0” or if the CPLConfigOp-
tion variable is already set

14 GDALRasterBand-class

enforce_xy (PROJ6+/GDAL3+) either use global setting (default NULL) or override policy
for coordinate ordering easting/x as first axis, northing/y as second axis.

get_source_if_boundcrs

The presence of the +towgs84= key in a Proj4 string projargs= argument value
may promote the output WKT2 CRS to BOUNDCRS for PROJ >= 6 and GDAL
>= 3, which is a coordinate operation from the input datum to WGS84. This is
often unfortunate, so a PROJ function is called through rgdal to retrieve the
underlying source definition.

value logical value to set OVERRIDE_PROJ_DATUM_WITH_TOWGS84

Details

getRasterData: retrieves data from the dataset as an array or list of bands; will try to convert
relevant bands to factor if category names are available in the GDAL driver when returning a
list.

getRasterTable: retrieves data from the dataset as data frame.
getProjectionRef: returns the geodetic projection in Well Known Text format.
getRasterBand: returns a raster band
getRasterBlockSize: returns the natural block size of the raster band. Use this for efficient tiled

IO.
toSigned: used to convert a band read as unsigned integer to signed integer
toUnSigned: used to convert a band read as signed integer to unsigned integer

Objects from the Class

Objects can be created by calls of the form new("GDALRasterBand",dataset,band).

Slots

handle: Object of class "externalptr",from class "GDALMajorObject", used internally; not
for public consumption

Extends

Class "GDALMajorObject", directly.

Methods

dim signature(x = "GDALRasterBand"): ...
initialize signature(.Object = "GDALRasterBand"): ...

Note

The OVERRIDE_PROJ_DATUM_WITH_TOWGS84 argument is used to revert GDAL behaviour
to pre-1.8.0 status; from 1.8.0, any input datum may be discarded if the input also includes a
towgs84 tag in conversion to the PROJ.4 representation, see https://trac.osgeo.org/gdal/
ticket/4880 and https://lists.osgeo.org/pipermail/gdal-dev/2012-November/034550.
html. The cached value of OVERRIDE_PROJ_DATUM_WITH_TOWGS84 will also be used in
open.SpatialGDAL, sub.GDROD, and asGDALROD_SGDF, which do not have a suitable argument

https://trac.osgeo.org/gdal/ticket/4880
https://trac.osgeo.org/gdal/ticket/4880
https://lists.osgeo.org/pipermail/gdal-dev/2012-November/034550.html
https://lists.osgeo.org/pipermail/gdal-dev/2012-November/034550.html

GDALReadOnlyDataset-class 15

Author(s)

Timothy H. Keitt, modified by Roger Bivand

See Also

See also GDALDriver-class, GDALDataset-class, GDALTransientDataset-class

Examples

logo <- system.file("pictures/logo.jpg", package="rgdal")[1]
x <- new("GDALReadOnlyDataset", logo)
plot(density(getRasterTable(x)$band1))
GDAL.close(x)

GDALReadOnlyDataset-class

Class "GDALReadOnlyDataset"

Description

GDALReadOnlyDataset is the base class for a GDAL Dataset classes. Only read operations are
supported. Both GDALDataset and GDALTransientDataset inherit these read operations while
providing additional write operations (see GDALDataset-class). GDALReadOnlyDataset-class
inherits from GDALMajorObject-class.

Usage

GDAL.close(dataset)
GDAL.open(filename, read.only = TRUE, silent=FALSE,

allowedDrivers = NULL, options=NULL)
getDriver(dataset)

getColorTable(dataset, band = 1)
getGeoTransFunc(dataset)

Arguments

dataset An object inheriting from class ’GDALReadOnlyDataset’

filename name of file to contain raster data object; will be normalized with normalizePath
if it is a file

band The band number (1-based) to read from

read.only A logical flag indicating whether to open the file as a GDALReadOnlyDataset or
as a writable GDALDataset

silent logical; if TRUE, comment and non-fatal CPL driver errors suppressed

16 GDALReadOnlyDataset-class

allowedDrivers a character vector of suggested driver short names may be provided starting from
GDAL 2.0

options open options may be passed to raster drivers starting from GDAL 2.0; very few
drivers support these options

Details

GDAL.open and GDAL.close are shorter versions of new("GDALReadOnlyDataset",...) and closeDataset().
Because GDAL.close through closeDataset() uses the finalization mechanism to destroy the han-
dles to the dataset and its driver, messages such as:

"Closing GDAL dataset handle 0x8ff7900... destroyed ... done."

may appear when GDAL.close is run, or at some later stage. getDriver returns an object inheriting
from class ’GDALDriver’.

getColorTable returns the dataset colour table (currently does not support RGB imaging). getGeoTransFunc
returns a warping function.

Objects from the Class

Objects can be created by calls of the form new("GDALReadOnlyDataset",filename,handle).
~~ describe objects here ~~

Slots

handle: Object of class "externalptr",from class "GDALMajorObject" ~~

Extends

Class "GDALMajorObject", directly.

Methods

closeDataset signature(dataset = "GDALReadOnlyDataset"): ...

dim signature(x = "GDALReadOnlyDataset"): ...

initialize signature(.Object = "GDALReadOnlyDataset"): ...

Author(s)

Timothy H. Keitt, modified by Roger Bivand

References

https://gdal.org/

See Also

See also GDALDriver-class, GDALDataset-class, GDALTransientDataset-class.

https://gdal.org/

GDALReadOnlyDataset-methods 17

Examples

logo <- system.file("pictures/logo.jpg", package="rgdal")[1]
x <- new("GDALReadOnlyDataset", logo)
dim(x)
plot(density(getRasterTable(x)$band1))
#displayDataset(x)
#displayDataset(x, col=function(x){rev(cm.colors(x))})
#im <- displayDataset(x, col=function(x){rev(cm.colors(x))}, reset.par=FALSE)
#contour(1:attr(im, "size")[2], 1:attr(im, "size")[1],
t(attr(im, "index"))[,attr(im, "size")[1]:1], nlevels = 1,
levels = 100, col = 'black', add = TRUE)
GDAL.close(x)
logo <- system.file("pictures/Rlogo.jpg", package="rgdal")[1]
x <- new("GDALReadOnlyDataset", logo)
dim(x)
#displayDataset(x)
GDAL.close(x)

GDALReadOnlyDataset-methods

subset methods for "GDALReadOnlyDataset"

Description

subsets GDAL objects, returning a SpatialGridDataFrame object

Details

The [method subsets a GDAL data set, returning a SpatialGridDataFrame object. Reading is done
on the GDAL side, and only the subset requested is ever read into memory.

Further named arguments to [are to either getRasterTable or getRasterData:

as.is see getRasterData

interleave see getRasterData

output.dim see getRasterData

the other arguments, offset and region.dim are derived from row/column selection values.

An GDALReadOnlyDataset object can be coerced directly to a SpatialGridDataFrame

Methods

"[" signature(.Object = "GDALReadOnlyDataset"): requires package sp; selects rows and columns,
and returns an object of class SpatialGridDataFrame if the grid is not rotated, or else of
class SpatialPointsDataFrame. Any arguments passed to getRasterData (or in case of rota-
tion getRasterTable) may be passed as named arguments; the first three unnamed arguments
are row,col,band

18 GDALTransientDataset-class

Author(s)

Edzer Pebesma

See Also

See also readGDAL GDALDriver-class, GDALDataset-class, GDALTransientDataset-class,
SpatialGridDataFrame-class .

Examples

library(grid)
logo <- system.file("pictures/logo.jpg", package="rgdal")[1]
x <- new("GDALReadOnlyDataset", logo)
dim(x)
x.sp = x[20:50, 20:50]
class(x.sp)
summary(x.sp)
spplot(x.sp)
GDAL.close(x)

logo <- system.file("pictures/Rlogo.jpg", package="rgdal")[1]
x.gdal <- new("GDALReadOnlyDataset", logo)
x = x.gdal[,,3]
dim(x)
summary(x)
spplot(x)
spplot(x.gdal[])
GDAL.close(x.gdal)

logo <- system.file("pictures/Rlogo.jpg", package="rgdal")[1]
x.gdal <- new("GDALReadOnlyDataset", logo)
x.as <- as(x.gdal, "SpatialGridDataFrame")
GDAL.close(x.gdal)
summary(x.as)

GDALTransientDataset-class

Class "GDALTransientDataset"

Description

GDALTransientDataset is identical to GDALDataset-class except that transient datasets are not
associated with any user-visible file. Transient datasets delete their associated file data when closed.
See saveDataset and saveDatasetAs.

GDALTransientDataset-class 19

Objects from the Class

Objects can be created by calls of the form new("GDALTransientDataset",driver,rows,cols,bands,type,options,fname,handle).

driver A "GDALDriver" object that determines the storage format

rows Number of rows in the newly created dataset

cols Number of columns in the newly created dataset

bands Number of bands to create

type A GDAL type name as listed in .GDALDataTypes

options Driver specific options

fname default NULL, used internally to pass through a file name with a required extension (RST
driver has this problem)

handle Used internally; not for public consumption

Slots

handle: Object of class "externalptr",from class "GDALDataset", used internally; not for
public consumption

Extends

Class "GDALDataset", directly. Class "GDALReadOnlyDataset", by class "GDALDataset". Class
"GDALMajorObject", by class "GDALDataset".

Methods

closeDataset signature(dataset = "GDALTransientDataset"): ...

initialize signature(.Object = "GDALTransientDataset"): ...

Author(s)

Timothy H. Keitt, modified by Roger Bivand

See Also

See also GDALDriver-class, GDALReadOnlyDataset-class

Examples

list.files(tempdir())
x <- new('GDALTransientDataset', driver=new('GDALDriver', "GTiff"), rows=100,
cols=100, bands=3, type='Byte')
dim(x)
list.files(tempdir())
GDAL.close(x)
list.files(tempdir())

20 GridsDatums

GridsDatums Grids and Datums PE&RS listing

Description

A data.frame of years and months of Grids & Datums column publications by country and country
code.

Usage

data("GridsDatums")

Format

A data frame with 241 observations on the following 4 variables.

country name of PE&RS column

month issue month

year publication year

ISO ISO code for country

Details

The journal Photogrammetric Engineering & Remote Sensing, run by the American Society for
Photogrammetry and Remote Sensing (ASPRS), began publishing a more-or-less monthly column
on the spatial reference systems used in different countries, including their datums. The column
first appeared in September 1997, and continued until March 2016; subsequent columns are up-
dated reprints of previous ones. Some also cover other topics, such as world and Martian spatial
reference systems. They are written by Clifford J. Mugnier, Louisiana State University, Fellow
Emeritus ASPRS. To access the columns, visit https://www.asprs.org/asprs-publications/
grids-and-datums.

Source

https://www.asprs.org/asprs-publications/grids-and-datums

Examples

data(GridsDatums)
GridsDatums[grep("Norway", GridsDatums$country),]
GridsDatums[grep("Google", GridsDatums$country),]
GridsDatums[grep("^Mars$", GridsDatums$country),]

https://www.asprs.org/asprs-publications/grids-and-datums
https://www.asprs.org/asprs-publications/grids-and-datums
https://www.asprs.org/asprs-publications/grids-and-datums

is_proj_CDN_enabled 21

is_proj_CDN_enabled PROJ search paths and content download network handling

Description

From PROJ 7 (and partly 7.1), it is becoming possible to use transformation grids downloaded on
demand to improve coordinate operation accuracy from a content download network (CDN). These
functions report on and control the use of the CDN.

Usage

is_proj_CDN_enabled()
enable_proj_CDN()
disable_proj_CDN()
proj_CDN_user_writable_dir()
get_proj_search_paths()
set_proj_search_paths(paths)

Arguments

paths a character vector of existing directories

Details

The PROJ user-writable CDN directory is set as soon as the internal search path is queried, and
for most uses, the default value will allow all programs using PROJ such as R packages, QGIS,
GRASS, etc., to access any downloaded grids. Grids are checked for staleness at regular intervals.
This directory may be set to a non-default value with the PROJ_USER_WRITABLE_DIRECTORY
environment variable before rgdal (and any other package using PROJ) is loaded and attached, from
PROJ >= 7.1.0.

Value

Logical values and/or character vector search paths, often NULL for earlier versions of PROJ.

Author(s)

Roger Bivand

References

https://cdn.proj.org/.

Examples

is_proj_CDN_enabled()
proj_CDN_user_writable_dir()
get_proj_search_paths()

https://cdn.proj.org/

22 list_coordOps

list_coordOps List PROJ 6 coordinate operations

Description

List PROJ 6 coordinate operations for a pair of source/target coordinate reference systems

Usage

list_coordOps(src_crs, tgt_crs, area_of_interest = as.numeric(NA),
strict_containment = FALSE, visualization_order = NULL)

best_instantiable_coordOp(x)
S3 method for class 'coordOps'
print(x, ...)

Arguments

src_crs Source coordinate reference system string

tgt_crs Target coordinate reference system string
area_of_interest

Numeric vector; either NA, or the xmin, ymin, xmax, ymax of the bounding box
of the area of interest. This may be used to restrict the search for coordinate
operations

strict_containment

default FALSE, permit partial matching of the area of interest; if TRUE strictly
contain the area of interest. The area of interest is either as given, or as implied
by the source/target coordinate reference systems (FIXME)

visualization_order

default NULL, taking the value of get_enforce_xy(); if TRUE always choose
x or longitude for the first axis; if FALSE, follow the axis orders given by the
coordinate reference systems when constructing the coordinate operation

x an object of class "coordOps"

... arguments possibly passed through, unused

Details

(FIXME)

Value

A data frame with rows showing the coordinate operations found, and columns:

description String describing the operation

definition PROJ pipeline for executing the operation

accuracy Accuracy in meters, if negative, unknown

list_coordOps 23

instantiable Can this operation be carried out with available resources

ballpark Does this operation only have ballpark accuracy

number_grids The number of grids required for the operation

The object has a "grids" attribute containing a nested list of grids for each coordinate operations
found; if number_grids == 0, NULL, otherwise a list of grids. For each grid required, the short and
long names of the grid are given, the package name if available in a PROJ grid package, and the
download URL for that package. Three logical variables report whether the grid may be downloaded
directly, whether it has an open license, and whether it is available.

Note

Fragile: work in progress

Author(s)

Roger Bivand <Roger.Bivand@nhh.no>

References

https://proj.org/

Examples

run <- new_proj_and_gdal()
if (run) {

discarded_datum <- showSRID("EPSG:27700", "PROJ")
(x <- list_coordOps(paste0(discarded_datum, " +type=crs"), "OGC:CRS84"))

}
if (run) {

best_instantiable_coordOp(x)
}
if (run) {

restored_datum <- showSRID("EPSG:27700", "PROJ")
list_coordOps(paste0(restored_datum, " +datum=OSGB36 +type=crs"), "OGC:CRS84")

}
if (run) {

wkt_datum <- showSRID("EPSG:27700", "WKT2")
(x <- list_coordOps(wkt_datum, "OGC:CRS84"))

}
if (run) {

best_instantiable_coordOp(x)
}
if (run) {

list_coordOps("EPSG:27700", "OGC:CRS84")
}
if (run) {
}
if (run) {

discarded_datum <- showSRID("EPSG:22525", "PROJ")
list_coordOps(paste0(discarded_datum, " +type=crs"), "EPSG:31985")

https://proj.org/

24 llgridlines

}
if (run) {
}
if (run) {

wkt_datum <- showSRID("EPSG:22525", "WKT2")
list_coordOps(wkt_datum, "EPSG:31985")

}
if (run) {

(x <- list_coordOps("EPSG:22525", "EPSG:31985"))
}
if (run) {

best_instantiable_coordOp(x)
}

llgridlines Plot long-lat grid over projected data

Description

Plot long-lat grid over projected data

Usage

llgridlines(obj, easts, norths, ndiscr = 20, lty = 2, offset=0.5, side="WS",
llcrs = "+proj=longlat +datum=WGS84", plotLines = TRUE, plotLabels =
TRUE, ...)

Arguments

obj object, deriving from Spatial-class having projection specified

easts numeric; see gridlines

norths numeric; see gridlines

ndiscr numeric; see gridlines

offset numeric; see gridlines

side character, default “WS”; see gridlines; available from sp 0.9-84

lty line type to be used for grid lines

llcrs proj4string of longitude - latitude

plotLines logical; plot lines?

plotLabels logical; plot labels?

... graphics arguments passed to plot function for lines and text function for labels

Value

none; side effect is that grid lines and lables are plotted

make_EPSG 25

See Also

is.projected, CRS-class

Examples

set_thin_PROJ6_warnings(TRUE)
data(meuse)
coordinates(meuse) = ~x+y
proj4string(meuse) <- CRS("+init=epsg:28992")
plot(meuse)
llgridlines(meuse, lty=3)
plot(meuse)
llgridlines(meuse, lty=3, side = "EN", offset = 0.2)

make_EPSG Make a data frame of EPSG projection codes

Description

Make a data frame of the European Petroleum Survey Group (EPSG) geodetic parameter dataset
as distributed with PROJ.4 software (prior to PROJ 6.0.0, March 2019, only the CSV file, from
March 2019 with PROJ >= 6 from the SQLite database). Because finding the correct projection
specification is not easy, lists still known as EPSG lists are maintained, and more generally retrieved
from databases. The data collated here are as distributed with PROJ.4.

Usage

make_EPSG(file)
EPSG_version()

Arguments

file file name of the file matching EPSG codes and PROJ.4 arguments, should usu-
ally be autodetected; not used for PROJ >= 6

Value

returns a data frame with columns:

code integer column of EPSG code numbers

note character column of notes as included in the file

prj4 character column of PROJ.4 arguments for the equivalent projection definitions

prj_method extra character column from PROJ 6 showing the projection method

...

26 nor2k

Note

See also Clifford J. Mugnier’s Grids & Datums columns in Photogrammetric Engineering & Remote
Sensing, https://www.asprs.org/a/resources/grids/, see also GridsDatums.

Author(s)

Roger Bivand

References

(unlinked because of certificate issues: https://epsg.org/home.html.

Examples

EPSG <- try(make_EPSG())
from PROJ 6.0.0, EPSG data is no longer stored in a flat file
if (!inherits(EPSG, "try-error")) attr(EPSG, "metadata")
PROJ.4 version 5 and later include the EPSG version as an attribute
if (!inherits(EPSG, "try-error")) EPSG[grep("Oslo", EPSG$note), 1:2]
if (!inherits(EPSG, "try-error")) EPSG[1925:1927, 3]
if (!inherits(EPSG, "try-error")) EPSG[grep("Poland", EPSG$note), 1:2]
if (!inherits(EPSG, "try-error")) EPSG[grep("Amersfoort", EPSG$note), 1:2]
if (!inherits(EPSG, "try-error")) EPSG[grep("North Carolina", EPSG$note), 1:2]
if (!inherits(EPSG, "try-error")) EPSG[2202, 3]

nor2k Norwegian peaks over 2000m

Description

Norwegian peaks over 2000m, 3D SpatialPoints data.

Usage

data(nor2k)

Format

The format is: Formal class ’SpatialPointsDataFrame’ [package "sp"] with 5 slots ..@ data :’data.frame’:
300 obs. of 3 variables:$ Nr. : int [1:300] 1 2 3 4 5 6 7 8 9 10$ Navn : chr [1:300]
"Galdh?piggen" "Glittertinden" "Skagast?lstinden, Store (Storen)" "Styggedalstinden, Store, ?st-
toppen"$ Kommune: chr [1:300] "Lom" "Lom" "Luster / Ardal" "Luster"@ coords.nrs
: num(0) ..@ coords : num [1:300, 1:3] 463550 476550 439850 441450 441100- attr(*,
"dimnames")=List of 2$: NULL$: chr [1:3] "East" "North" "Height" ..@ bbox : num
[1:3, 1:2] 404700 6804200 2001 547250 6910050- attr(*, "dimnames")=List of 2$
: chr [1:3] "East" "North" "Height"$: chr [1:2] "min" "max" ..@ proj4string:Formal class
’CRS’ [package "sp"] with 1 slots@ projargs: chr "+proj=utm +zone=32 +datum=WGS84
+ellps=WGS84 +towgs84=0,0,0"

https://www.asprs.org/a/resources/grids/

project 27

Details

Norwegian peaks over 2000m, coordinates in EUREF89/WGS84 UTM32N, names not fully up-
dated, here converted to ASCII.

Source

http://www.nfo2000m.no/; http://www.nfo2000m.no/Excel/2000m_data.xls

Examples

data(nor2k)
summary(nor2k)
maybe str(nor2k) ; plot(nor2k) ...

project Projection of coordinate matrices

Description

Interface to the PROJ.4 library of projection functions for geographical position data, no datum
transformation possible. Use spTransform() for extended support.

Usage

project(xy, proj, inv = FALSE, use_ob_tran=FALSE, legacy=TRUE,
allowNAs_if_not_legacy=FALSE, coordOp = NULL, verbose = FALSE,
use_aoi=TRUE)

Arguments

xy 2-column matrix of coordinates

proj character string of projection arguments; the arguments must be entered exactly
as in the PROJ.4 documentation, in particular there cannot be any white space in
+<arg>=<value> strings, and successive such strings can only be separated by
blanks.

inv default FALSE, if TRUE inverse projection to geographical coordinates

use_ob_tran default FALSE, if TRUE and “+proj=ob_tran”, use General Oblique Transfor-
mation with internalised from/to projection reversal; the user oblique transforms
forward rather than inverse.

legacy default TRUE, if FALSE, use transform C functions (enforced internally for
Windows 32-bit platforms)

allowNAs_if_not_legacy

used if legacy is FALSE, default FALSE; introduced to handle use of NAs as
object separators in oce

coordOp default NULL, for PROJ >= 6 used to pass through a pre-defined coordinate
operation

http://www.nfo2000m.no/
http://www.nfo2000m.no/Excel/2000m_data.xls

28 project

verbose default FALSE, for PROJ >=6 used to show the coordinate operation used

use_aoi With PROJ >= 6, use the area of interest defined as the range of xy in limiting
the search for candidate coordinate operations; set FALSE if use_ob_tran is
TRUE

Details

Full details of projection arguments available from website below, and examples in file "epsg" in
the data directory installed with PROJ.4.

Note that from PROJ.4 4.9.3, the definition of UTM is changed from TMERC to ETMERC; see
example.

Value

A two column matrix with projected coordinates.

Note

The locations of Hawaii and Alaska in the data source are (putting it mildly) arbitrary, please avoid
airlines using these positions.

Author(s)

Barry Rowlingson, Roger Bivand <Roger.Bivand@nhh.no>

References

https://proj.org/

See Also

CRS-class, spTransform-methods

Examples

data(state)
res <- project(cbind(state.center$x, state.center$y),
"+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84")
res1 <- project(res, "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84",
inv=TRUE)
summary(res1 - cbind(state.center$x, state.center$y))
plot(cbind(state.center$x, state.center$y), asp=1, type="n")
text(cbind(state.center$x, state.center$y), state.abb)
plot(res, asp=1, type="n")
text(res, state.abb)
broke_proj <- FALSE
pv <- .Call("PROJ4VersionInfo", PACKAGE="rgdal")[[2]]
https://github.com/OSGeo/PROJ/issues/1525
if (pv >= 600 && pv < 620) broke_proj <- TRUE
if (!broke_proj) {
crds <- matrix(data=c(9.05, 48.52), ncol=2)

https://proj.org/

project 29

a <- project(crds, paste("+proj=ob_tran +o_proj=longlat",
"+o_lon_p=-162 +o_lat_p=39.25 +lon_0=180 +ellps=sphere +no_defs"),
use_ob_tran=TRUE)

a
#should be (-5.917698, -1.87195)
project(a, paste("+proj=ob_tran +o_proj=longlat",
"+o_lon_p=-162 +o_lat_p=39.25 +lon_0=180 +ellps=sphere +no_defs"),
inv=TRUE, use_ob_tran=TRUE)

#added after posting by Martin Ivanov
}
#
getPROJ4VersionInfo()
Test for UTM == TMERC (<= 4.9.2) or UTM == ETMERC (> 4.9.2)
nhh <- matrix(c(5.304234, 60.422311), ncol=2)
nhh_utm_32N_P4 <- project(nhh, "+init=epsg:3044")
nhh_tmerc_P4 <- project(nhh, paste("+proj=tmerc +k=0.9996 +lon_0=9",
"+x_0=500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"))

nhh_etmerc_P4 <- project(nhh, paste("+proj=etmerc +k=0.9996 +lon_0=9",
"+x_0=500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"))

all.equal(nhh_utm_32N_P4, nhh_tmerc_P4, tolerance=1e-9, scale=1)
UTM == TMERC: PROJ4 <=4.9.2
all.equal(nhh_utm_32N_P4, nhh_etmerc_P4, tolerance=1e-9, scale=1)
UTM == ETMERC: PROJ4 > 4.9.2
unis <- matrix(c(15.653453, 78.222504), ncol=2)
unis_utm_33N_P4 <- project(unis, "+init=epsg:3045")
unis_tmerc_P4 <- project(unis, paste("+proj=tmerc +k=0.9996 +lon_0=15",
"+x_0=500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"))

unis_etmerc_P4 <- project(unis, paste("+proj=etmerc +k=0.9996 +lon_0=15",
"+x_0=500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"))

all.equal(unis_utm_33N_P4, unis_tmerc_P4, tolerance=1e-9, scale=1)
UTM == TMERC: PROJ4 <=4.9.2
all.equal(unis_utm_33N_P4, unis_etmerc_P4, tolerance=1e-9, scale=1)
UTM == ETMERC: PROJ4 > 4.9.2
#pv <- attr(getPROJ4VersionInfo(), "short")
#if (pv < 500) {
valgrind leakages in some cases for PROJ >= 5; many non-projection proj values added
available projections and their inverses if provided
For >=4.9.3 returns non-finite points rather than needing crash protection
projs <- as.character(projInfo()$name)
res <- logical(length(projs))
names(res) <- projs
msgs <- character(length(projs))
names(msgs) <- projs
owarn <- options("warn")$warn
options(warn=2L)
for (i in seq(along=res)) {

iprs <- paste("+proj=", projs[i], sep="")
xy <- try(project(cbind(0, 0), iprs, legacy=TRUE, use_aoi=FALSE), silent=TRUE)
if (inherits(xy, "try-error")) {
res[i] <- NA
msgs[i] <- paste("fwd:", strsplit(xy, "\n")[[1]][2])

} else if(any(abs(xy) > 1e+08)) {
res[i] <- NA

30 projInfo

msgs[i] <- paste("fwd: huge value")
} else {

out <- try(project(xy, iprs, inv=TRUE, legacy=TRUE, use_aoi=FALSE), silent=TRUE)
if (inherits(out, "try-error")) {

res[i] <- NA
msgs[i] <- paste("inv:", strsplit(out, "\n")[[1]][2])

} else {
res[i] <- isTRUE(all.equal(cbind(0,0), out))

}
}

}
options(warn=owarn)
df <- data.frame(res=unname(res), msgs=unname(msgs), row.names=names(res))
projection and inverse projection failures
fwd: missing parameters
inv: mostly inverse not defined
df[is.na(df$res),]
inverse not equal to input
(see http://lists.maptools.org/pipermail/proj/2011-November/006015.html)
df[!is.na(df$res) & !df$res,]
inverse equal to input
row.names(df[!is.na(df$res) & df$res,])
#}
oce data representation with NAs
ll <- structure(c(12.1823368669203, 11.9149630062421, 12.3186076188739,
12.6207597184845, 12.9955172054652, 12.6316117692658, 12.4680041846297,
12.4366882666609, NA, NA, -5.78993051516384, -5.03798674888479,
-4.60623015708619, -4.43802336997614, -4.78110320396188, -4.99127125409291,
-5.24836150474498, -5.68430388755925, NA, NA), .Dim = c(10L,
2L), .Dimnames = list(NULL, c("longitude", "latitude")))
try(xy0 <- project(ll, "+proj=moll", legacy=TRUE))
if (!PROJis6ormore()) { # legacy=TRUE PROJ >= 6
try(xy1 <- project(ll, "+proj=moll", legacy=FALSE, allowNAs_if_not_legacy=FALSE))
try(xy2 <- project(ll, "+proj=moll", legacy=FALSE, allowNAs_if_not_legacy=TRUE))
if (exists("xy0")) all.equal(xy0, xy2)
}
if (!exists("xy0")) xy0 <- structure(c(1217100.8468177, 1191302.229156,
1232143.28841193, 1262546.27733232, 1299648.82357849, 1263011.18154638,
1246343.17808186, 1242654.33986052, NA, NA, -715428.207551599,
-622613.577983058, -569301.605757784, -548528.530156422, -590895.949857199,
-616845.926397351, -648585.161643274, -702393.1160979, NA, NA),
.Dim = c(10L, 2L), .Dimnames = list(NULL, c("longitude", "latitude")))
try(ll0 <- project(xy0, "+proj=moll", inv=TRUE, legacy=TRUE))
if (!PROJis6ormore()) { # legacy=TRUE PROJ >= 6
try(ll1 <- project(xy0, "+proj=moll", inv=TRUE, legacy=FALSE, allowNAs_if_not_legacy=FALSE))
try(ll2 <- project(xy0, "+proj=moll", inv=TRUE, legacy=FALSE, allowNAs_if_not_legacy=TRUE))
if (exists("ll0")) all.equal(ll0, ll2)
}
if (exists("ll0")) all.equal(ll0, ll)

projInfo 31

projInfo List PROJ.4 tag information

Description

The projInfo function lists known values and descriptions for PROJ.4 tags for tag in c("proj","ellps","datum","units");
getPROJ4VersionInfo returns the version of the underlying PROJ.4 release, getPROJ4libPath re-
turns the value of the PROJ_LIB environment variable, projNAD detects the presence of NAD datum
conversion tables (looking for conus).

Usage

projInfo(type = "proj")
getPROJ4VersionInfo()
getPROJ4libPath()
projNAD()
GDAL_OSR_PROJ()
GDALis3ormore()
PROJis6ormore()
new_proj_and_gdal()

Arguments

type One of these tags: c("proj","ellps","datum","units")

Details

The output data frame lists the information given by the proj application with flags -lp, -le, -ld or
-lu. From PROJ 6, "datum" is not available. From PROJ 7.1.0, "units" returns the conversion
factor as numeric, not character.

Value

A data frame with a name and description column, and two extra columns for the "ellps" and
"datum" tags.

Note

Loading the rgdal package may change the PROJ_LIB environmental variable to the PROJ.4 support
files if bundled with binary packages.

Author(s)

Roger Bivand <Roger.Bivand@nhh.no>

References

https://proj.org/

https://proj.org/

32 readGDAL

Examples

getPROJ4VersionInfo()
projInfo()
projInfo("ellps")
projInfo("units")

readGDAL Read/write between GDAL grid maps and Spatial objects

Description

The functions read or write GDAL grid maps. They will set the spatial reference system if available.
GDALinfo reports the size and other parameters of the dataset. create2GDAL creates a GDAL data
set from a SpatialGridDataFrame object, in particular to be able to save to GDAL driver formats
that only permit copying rather than creation.

Usage

readGDAL(fname, offset, region.dim, output.dim, band, p4s=NULL, ...,
half.cell=c(0.5, 0.5), silent = FALSE, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL,
allowedDrivers = NULL, enforce_xy = NULL, options=NULL)

asSGDF_GROD(x, offset, region.dim, output.dim, p4s=NULL, ...,
half.cell=c(0.5,0.5), OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL, enforce_xy = NULL)
writeGDAL(dataset, fname, drivername = "GTiff", type = "Float32",
mvFlag = NA, options=NULL, copy_drivername = "GTiff", setStatistics=FALSE,
colorTables = NULL, catNames=NULL, enforce_xy = NULL)

create2GDAL(dataset, drivername = "GTiff", type = "Float32", mvFlag = NA,
options=NULL, fname = NULL, setStatistics=FALSE, colorTables = NULL,
catNames=NULL, enforce_xy = NULL)

GDALinfo(fname, silent=FALSE, returnRAT=FALSE, returnCategoryNames=FALSE,
returnStats=TRUE, returnColorTable=FALSE,
OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL, returnScaleOffset=TRUE,
allowedDrivers = NULL, enforce_xy = NULL, options=NULL)

GDALSpatialRef(fname, silent=FALSE, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL,
allowedDrivers = NULL, enforce_xy = NULL, get_source_if_boundcrs=TRUE, options=NULL)

Arguments

fname file name of grid map; in create2GDAL provides a way to pass through a file
name with driver-required extension for sensitive drivers

x A GDALReadOnlyDataset object

offset Number of rows and columns from the origin (usually the upper left corner) to
begin reading from; presently ordered (y,x) - this may change

region.dim The number of rows and columns to read from the dataset; presently ordered
(y,x) - this may change

readGDAL 33

output.dim The number of rows and columns to return in the created object using GDAL’s
method to take care of image decimation / replication; presently ordered (y,x) -
this may change

band if missing, all bands are read

p4s PROJ4 string defining CRS, if default (NULL), the value is read from the GDAL
data set

half.cell Used to adjust the intra-cell offset from corner to centre, usually as default, but
may be set to c=(0,0) if needed; presently ordered (y,x) - this may change

silent logical; if TRUE, comment and non-fatal CPL driver errors suppressed
OVERRIDE_PROJ_DATUM_WITH_TOWGS84

logical value, default NULL, which case the cached option set by set_OVERRIDE_PROJ_DATUM_WITH_TOWGS84
is used. Ignored if the GDAL version is less than “1.8.0” or if the CPLConfigOp-
tion variable is already set; see getProjectionRef for further details

allowedDrivers a character vector of suggested driver short names may be provided starting from
GDAL 2.0

... arguments passed to either getRasterData, or getRasterTable, depending on
rotation angles (see below); see the rgdal documentation for the available options
(subsetting etc.)

dataset object of class SpatialGridDataFrame-class or SpatialPixelsDataFrame-class
drivername, copy_drivername

GDAL driver name; if the chosen driver does not support dataset creation, an
attempt is made to use the copy_drivername driver to create a dataset, and
copyDatset to copy to the target driver

type GDAL write data type, one of: ‘Byte’, ‘Int16’, ‘Int32’, ‘Float32’, ‘Float64’;
‘UInt16’, ‘UInt32’ are available but have not been tests

mvFlag default NA, missing value flag for output file; the default value works for ‘Int32’,
‘Float32’, ‘Float64’, but suitable in-range value that fits the data type should be
used for other data types, for example 255 for ‘Byte’, -32768 for ‘Int16’, and so
on; see Details below.

enforce_xy (PROJ6+/GDAL3+) either use global setting (default NULL) or override policy
for coordinate ordering easting/x as first axis, northing/y as second axis.

get_source_if_boundcrs

The presence of the +towgs84= key in a Proj4 string projargs= argument value
may promote the output WKT2 CRS to BOUNDCRS for PROJ >= 6 and GDAL
>= 3, which is a coordinate operation from the input datum to WGS84. This is
often unfortunate, so a PROJ function is called through rgdal to retrieve the
underlying source definition.

options driver-specific options to be passed to the GDAL driver; only available for open-
ing datasets from GDAL 2.0; see copying and creation details below

setStatistics default FALSE, if TRUE, attempt to set per-band statistics in the output file
(driver-dependent)

colorTables default NULL, if not NULL, a list of length equal to the number of bands, with
NULL components for bands with no color table, or either an integer matrix of
red, green, blue and alpha values (0-255), or a character vector of colours. The
number of colours permitted may vary with driver.

34 readGDAL

catNames default NULL, if not NULL, a list of length equal to the number of bands, with
NULL components for bands with no category names, or a string vector of cat-
egory names

returnRAT default FALSE, if TRUE, return a list with a Raster Attribute Table or NULL for
each band

returnCategoryNames

default FALSE, if TRUE, return a list with a character vector of CategoryNames
or NULL for each band

returnStats default TRUE, return band-wise statistics if avaliable (from 0.7-20 set to NA if
not available)

returnColorTable

default FALSE; if TRUE return band-wise colour tables in a list attribute “Col-
orTables”

returnScaleOffset

default TRUE, return a matrix of bandwise scales and offsets

Details

In writeGDAL, if types other than ‘Int32’, ‘Float32’, ‘Float64’ are used, the “mvFlag” argument
should be used to set a no data value other than the default NA. Note that the flag only replaces
NA values in the data being exported with the value of the argument - it does not mark data values
equal to “mvFlag” as missing. The value is stored in the file being written in driver-specific ways,
and may be used when the file is read. When the default “mvFlag=NA” is used, no NoDataValue is
written to the file, and the input data is written as is.

Also in writeGDAL, the “options” argument may be used to pass a character vector of one or more
options to the driver, for example ‘options=“INTERLEAVE=PIXEL”’, or ‘options=c(“INTERLEAVE=PIXEL”,
“COMPRESS=DEFLATE”)’. Typical cases are given in the examples below; it may also be neces-
sary in some cases to escape quotation markes if included in the string passed to the driver.

Value

read.GDAL returns the data in the file as a Spatial object.

Usually, GDAL maps will be north-south oriented, in which case the rgdal function getRasterData
is used to read the data, and an object of class SpatialGridDataFrame-class is returned.

Some map formats supported by GDAL are not north-south oriented grids. If this is the case,
readGDAL returns the data as a set of point data, being of class SpatialPointsDataFrame-class. If the
points are on a 45 or 90 degree rotated grid, you can try to enforce gridding later on by e.g. using
gridded-methods(x)=TRUE.

Warning

Some raster files may have an erroneous positive y-axis resolution step, leading to the data being
flipped on the y-axis. readGDAL will issue a warning: Y axis resolution positive, examine data for
flipping, when the step is positive, but this need not mean that the data are flipped. Examine a
display of the data compared with your knowledge of the file to determine whether this is the case
(one known case is interpolation files created under Qgis up to February 2010 at least). To retreive
the correct orientation, use flip.

readGDAL 35

Note

Non-fatal CPL errors may be displayed for some drivers, currently for the AIG ArcInfo 9.3 binary
raster driver using GDAL >= 1.6.2; the data has been read correctly, but the contents of the info
directory did not meet the specifications used to reverse engineer the driver used in GDAL (see
https://trac.osgeo.org/gdal/ticket/3031)

Author(s)

Edzer Pebesma, Roger Bivand

See Also

image, asciigrid

Examples

set_thin_PROJ6_warnings(TRUE)
library(grid)
GDALinfo(system.file("external/test.ag", package="sp")[1])
x <- readGDAL(system.file("external/test.ag", package="sp")[1])
class(x)
image(x)
summary(x)
x@data[[1]][x@data[[1]] > 10000] <- NA
summary(x)
image(x)

x <- readGDAL(system.file("external/simple.ag", package="sp")[1])
class(x)
image(x)
summary(x)
x <- readGDAL(system.file("pictures/big_int_arc_file.asc", package="rgdal")[1])
summary(x)
cat("if the range is not 10000, 77590, your GDAL does not detect big\n")
cat("integers for this driver\n")
y = readGDAL(system.file("pictures/Rlogo.jpg", package = "rgdal")[1], band=1)
summary(y)
y = readGDAL(system.file("pictures/Rlogo.jpg", package = "rgdal")[1])
summary(y)
spplot(y, names.attr=c("red","green","blue"),
col.regions=grey(0:100/100),
main="example of three-layer (RGB) raster image", as.table=TRUE)
data(meuse.grid)
gridded(meuse.grid) = ~x+y
proj4string(meuse.grid) = CRS("+init=epsg:28992")
fn <- tempfile()
writeGDAL(meuse.grid["dist"], fn)
GDALinfo(fn)
writeGDAL(meuse.grid["dist"], fn, setStatistics=TRUE)
GDALinfo(fn)
mg2 <- readGDAL(fn)
proj4string(mg2)

https://trac.osgeo.org/gdal/ticket/3031

36 readGDAL

SP27GTIF <- readGDAL(system.file("pictures/SP27GTIF.TIF",
package = "rgdal")[1], output.dim=c(100,100))
summary(SP27GTIF)
slot(SP27GTIF, "proj4string")
if (new_proj_and_gdal()) comment(slot(SP27GTIF, "proj4string"))
image(SP27GTIF, col=grey(1:99/100))
GDALinfo(system.file("pictures/cea.tif", package = "rgdal")[1])
(o <- GDALSpatialRef(system.file("pictures/cea.tif", package = "rgdal")[1]))
if (new_proj_and_gdal()) comment(o)
cea <- readGDAL(system.file("pictures/cea.tif", package = "rgdal")[1],
output.dim=c(100,100))
summary(cea)
image(cea, col=grey(1:99/100))
slot(cea, "proj4string")
if (new_proj_and_gdal()) comment(slot(cea, "proj4string"))
fn <- system.file("pictures/erdas_spnad83.tif", package = "rgdal")[1]
erdas_spnad83 <- readGDAL(fn, offset=c(50, 100), region.dim=c(400, 400),
output.dim=c(100,100))
summary(erdas_spnad83)
slot(erdas_spnad83, "proj4string")
if (new_proj_and_gdal()) comment(slot(erdas_spnad83, "proj4string"))
image(erdas_spnad83, col=grey(1:99/100))
erdas_spnad83a <- readGDAL(fn, offset=c(50, 100), region.dim=c(400, 400))
bbox(erdas_spnad83)
bbox(erdas_spnad83a)
gridparameters(erdas_spnad83)
gridparameters(erdas_spnad83a)
tf <- tempfile()
writeGDAL(erdas_spnad83, tf, drivername="GTiff", type="Byte", options=NULL)
erdas_spnad83_0 <- readGDAL(tf)
slot(erdas_spnad83_0, "proj4string")
if (new_proj_and_gdal()) comment(slot(erdas_spnad83_0, "proj4string"))
all.equal(erdas_spnad83, erdas_spnad83_0)
writeGDAL(erdas_spnad83, tf, drivername="GTiff", type="Byte",
options="INTERLEAVE=PIXEL")
erdas_spnad83_1 <- readGDAL(tf)
slot(erdas_spnad83_1, "proj4string")
if (new_proj_and_gdal()) comment(slot(erdas_spnad83_1, "proj4string"))
all.equal(erdas_spnad83, erdas_spnad83_1)
writeGDAL(erdas_spnad83, tf, drivername="GTiff", type="Byte",
options=c("INTERLEAVE=PIXEL", "COMPRESS=DEFLATE"))
erdas_spnad83_2 <- readGDAL(tf)
slot(erdas_spnad83_2, "proj4string")
if (new_proj_and_gdal()) comment(slot(erdas_spnad83_2, "proj4string"))
all.equal(erdas_spnad83, erdas_spnad83_2)

x <- GDAL.open(system.file("pictures/erdas_spnad83.tif", package = "rgdal")[1])
erdas_spnad83 <- asSGDF_GROD(x, output.dim=c(100,100))
GDAL.close(x)
summary(erdas_spnad83)
image(erdas_spnad83, col=grey(1:99/100))

tf <- tempfile()

readGDAL 37

xx <- create2GDAL(erdas_spnad83, type="Byte")
xxx <- copyDataset(xx, driver="PNG")
saveDataset(xxx, tf)
GDAL.close(xx)
GDAL.close(xxx)
GDALinfo(tf)

tf2 <- tempfile()
writeGDAL(erdas_spnad83, tf2, drivername="PNG", type="Byte")
GDALinfo(tf2)

GT <- GridTopology(c(0.5, 0.5), c(1, 1), c(10, 10))
set.seed(1)
SGDF <- SpatialGridDataFrame(GT, data=data.frame(z=runif(100)))
opar <- par(mfrow=c(2,2), mar=c(1,1,4,1))
image(SGDF, "z", col=colorRampPalette(c("blue", "yellow"))(20))
title(main="input values")
pfunc <- colorRamp(c("blue","yellow"))
RGB <- pfunc(SGDF$z)
SGDF$red <- RGB[,1]
SGDF$green <- RGB[,2]
SGDF$blue <- RGB[,3]
image(SGDF, red="red", green="green", blue="blue")
title(main="input RGB")
tf <- tempfile()
writeGDAL(SGDF[c("red", "green", "blue")], tf, type="Byte", drivername="PNG")
t1 <- readGDAL(tf)
image(t1, red=1, green=2, blue=3)
title(main="output PNG RGB")
par(opar)

t0 <- meuse.grid["ffreq"]
fullgrid(t0) <- TRUE
t0$ffreq <- as.integer(t0$ffreq)-1
convert factor to zero-base integer
CT <- c("red", "orange", "green", "transparent")
CT
cN <- c("annual", "2-5 years", "infrequent")
tf <- tempfile()
writeGDAL(t0, tf, type="Byte", colorTable=list(CT), catNames=list(cN),
mvFlag=3L)

attr(GDALinfo(tf, returnStats=FALSE, returnCategoryNames=TRUE),
"CATlist")[[1]]

Not run:
ds <- GDAL.open(tf)
displayDataset(ds, reset.par=FALSE)
t(col2rgb(getColorTable(ds)[1:4]))
GDAL.close(ds)

End(Not run)
fn <- system.file("pictures/test_envi_class.envi", package = "rgdal")[1]
Gi <- GDALinfo(fn, returnColorTable=TRUE, returnCategoryNames=TRUE)
CT <- attr(Gi, "ColorTable")[[1]]

38 readOGR

CT
attr(Gi, "CATlist")[[1]]
with <- readGDAL(fn)
with <- readGDAL(fn, silent=TRUE)
table(with$band1)
table(as.numeric(with$band1))
with1 <- readGDAL(fn, as.is=TRUE)
table(with1$band1)
spplot(with, col.regions=CT)
tf <- tempfile()
cN <- levels(with$band1)
with$band1 <- as.integer(with$band1)-1
writeGDAL(with, tf, drivername="ENVI", type="Int16", colorTable=list(CT),
catNames=list(cN), mvFlag=11L)

cat(paste(readLines(paste(tf, "hdr", sep=".")), "\n", sep=""), "\n")
wGi <- GDALinfo(tf, returnColorTable=TRUE, returnCategoryNames=TRUE)
CTN <- attr(wGi, "ColorTable")[[1]]
CTN
attr(wGi, "CATlist")[[1]]
withN <- readGDAL(tf)
table(withN$band1)
withN1 <- readGDAL(tf, as.is=TRUE)
table(withN1$band1)
spplot(withN, col.regions=CTN)

a file with scale and offset
fn <- system.file("pictures/scaleoffset.vrt", package = "rgdal")[1]
g <- GDALinfo(fn)
attr(g, 'ScaleOffset')
g

fl <- system.file("pictures/MR5905167_372.nc", package="rgdal")[1]
if (file.exists(fl)) {

flstr <- paste0("NETCDF:\"", fl, "\":TEMP")
if ("netCDF" %in% gdalDrivers()$name) GDALinfo(flstr)

}

readOGR Read OGR vector maps into Spatial objects

Description

The function reads an OGR data source and layer into a suitable Spatial vector object. It can only
handle layers with conformable geometry features (not mixtures of points, lines, or polygons in a
single layer). It will set the spatial reference system if the layer has such metadata.

If reading a shapefile, the data source name (dsn= argument) is the folder (directory) where the
shapefile is, and the layer is the name of the shapefile (without the .shp extension). For example
to read bounds.shp from C:/Maps, do map <-readOGR(dsn="C:/Maps",layer="bounds"). The
logic behind this is that typically one keeps all the shapefiles for a project in one folder (directory).

readOGR 39

As noted below, for other file type drivers, the dsn= argument is interpreted differently, and may be
the file name itself, as for example with the GPX driver for reading GPS data as layer="tracks"
lines or layer="track_points" points.

Usage

readOGR(dsn, layer, verbose = TRUE, p4s=NULL,
stringsAsFactors=as.logical(NA),
drop_unsupported_fields=FALSE,
pointDropZ=FALSE, dropNULLGeometries=TRUE,
useC=TRUE, disambiguateFIDs=FALSE, addCommentsToPolygons=TRUE,
encoding=NULL, use_iconv=FALSE, swapAxisOrder=FALSE, require_geomType = NULL,
integer64="no.loss", GDAL1_integer64_policy=FALSE, morphFromESRI = NULL,
dumpSRS = FALSE, enforce_xy = NULL, D3_if_2D3D_points=FALSE, missing_3D=0)

ogrInfo(dsn, layer, encoding=NULL,
use_iconv=FALSE, swapAxisOrder=FALSE, require_geomType = NULL,
morphFromESRI = NULL, dumpSRS = FALSE, enforce_xy = NULL,
D3_if_2D3D_points=FALSE)

ogrFIDs(dsn, layer)
ogrDrivers()
OGRSpatialRef(dsn, layer, morphFromESRI=NULL, dumpSRS = FALSE, driver = NULL,
enforce_xy = NULL, get_source_if_boundcrs=TRUE)

ogrListLayers(dsn)
S3 method for class 'ogrinfo'
print(x, ...)

Arguments

dsn data source name (interpretation varies by driver — for some drivers, dsn is a
file name, but may also be a folder)

layer layer name (varies by driver, may be a file name without extension). From rgdal
1.2.*, layer may be missing, in which case ogrListLayers examines the dsn,
and fails if there are no layers, silently reads the only layer if only one layer is
found, and reads the first layer if multiple layers are present, issuing a warning
that layer should be given explicitly.

verbose report progress

p4s PROJ4 string defining CRS, if default NULL, the value is read from the OGR
data set

stringsAsFactors

logical: should character vectors be converted to factors? Default NA, which
uses the deprecated default.stringsAsFactors() in R < 4.1.0 (see link[base]{data.frame}).
Before R 4, strings were converted to factors by default, as argument value
TRUE. See https://developer.r-project.org/Blog/public/2020/02/16/
stringsasfactors/index.html for details of changes.

drop_unsupported_fields

default FALSE, if TRUE skip fields other than String, Integer, and Real; Date,
Time and DateTime are converted to String

https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/index.html
https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/index.html

40 readOGR

pointDropZ default FALSE, if TRUE, discard third coordinates for point geometries; third
coordinates are alway discarded for line and polygon geometries

dropNULLGeometries

default TRUE, drop both declared NULL geometries, and empty geometries
with no coordinates; if FALSE, return a data frame with the attribute values of
the NULL and empty geometries. From 1.3-6, setting FALSE also works when
there are no geometries at all, returning a data.frame including all FIDs

useC default TRUE, if FALSE use original interpreted code in a loop
disambiguateFIDs

default FALSE, if TRUE, and FID values are not unique, they will be set to
unique values 1:N for N features; problem observed in GML files

addCommentsToPolygons

default TRUE, may be set FALSE for legacy behaviour; used to indicate which
interior rings are holes in which exterior rings in conformance with OGC SFS
specifications

encoding default NULL, if set to a character string, and the driver is “ESRI Shapefile”, and
use_iconv is FALSE, it is passed to the CPL Option “SHAPE_ENCODING”
immediately before reading the DBF of a shapefile. If use_iconv is TRUE, and
encoding is not NULL, it will be used to convert input strings from the given
value to the native encoding for the system/platform.

use_iconv default FALSE; if TRUE and encoding is not NULL, it will be used to convert
input strings from the given value to the native encoding for the system/platform.

swapAxisOrder default FALSE, if TRUE, treat y coordinate as Easting, x as Northing, that is the
opposite to the assumed order; this may be needed if some OGR read drivers do
not behave as expected

require_geomType

, default NULL, if one of: c("wkbPoint","wkbLineString","wkbPolygon"),
then in input with multiple geometry types, the chosen type will be read

integer64 default “no.loss” (from rgdal 1.2.*). From GDAL 2, fields to be read may
also take Integer64 values. As R has no such storage mode, three options are
offered, analogous with type.convert for numeric conversion: “allow.loss”
which clamps to 32-bit signed integer (default < rgdal 1.2), “warn.loss” - as
“allow.loss” but warns when clamping occurs, and “no.loss”, which reads as a
character string using the formatting applied by default by GDAL (default >=
rgdal 1.2). The use of 64-bit integers is usually a misunderstanding, as such data
is almost always a long key ID.

GDAL1_integer64_policy

default FALSE, if TRUE, Integer64 fields are read as doubles
morphFromESRI default NULL, morph from ESRI WKT1 dialect
dumpSRS dump SRS to stdout from inside GDAL to debug conversion - developer use

only
enforce_xy (PROJ6+/GDAL3+) either use global setting (default NULL) or override policy

for coordinate ordering easting/x as first axis, northing/y as second axis.
get_source_if_boundcrs

The presence of the +towgs84= key in a Proj4 string projargs= argument value
may promote the output WKT2 CRS to BOUNDCRS for PROJ >= 6 and GDAL

readOGR 41

>= 3, which is a coordinate operation from the input datum to WGS84. This is
often unfortunate, so a PROJ function is called through rgdal to retrieve the
underlying source definition.

D3_if_2D3D_points

https://github.com/r-spatial/sf/issues/1683 case of mixed 2D/3D track points -
set TRUE to 3D to pass

missing_3D default 0, may be finite real numbers; https://github.com/r-spatial/sf/issues/1683

driver default NULL, driver found using ogrListLayers from the data source; other-
wise already known and passed through from a calling function

x ogrinfo object

... other arguments to print method

Details

The drivers available will depend on the installation of GDAL/OGR, and can vary; the ogrDrivers()
function shows which are available, and which may be written (but all are assumed to be readable).
Note that stray files in data source directories (such as *.dbf) may lead to suprious errors that ac-
companying *.shp are missing.

Value

A Spatial object is returned suiting the vector data source, either a SpatialPointsDataFrame (using an
AttributeList for its data slot directly), a SpatialLinesDataFrame, or a SpatialPolygonsDataFrame.

Note

The bases for this implementation are taken from functions in Barry Rowlingson’s draft Rmap
package, and from Radim Blazek’s v.in.ogr program in GRASS.

Please note that the OGR drivers used may not handle missing data gracefully, and be prepared to
have to correct for this manually. From rgdal 0.5-27, missing value handling has been improved,
and OGR unset field values are set to NA in R, but drivers and external files may vary in their
representations of missing values.

In addition, from 0.6-9 date and time fields are read as strings rather than being treated as un-
supported; NULL geometries are identified and dropped. There are differences in the reporting
of NULL geometries between ogrInfo and readOGR - in ogrInfo, only declared NULL geome-
tries are reported, but in readOGR, any line or polygon geometries with no coordinates are assigned
NULL geometry status as well. An attempt is made to close unclosed rings in polygon geometries.

For reading GPX files, refer to the OGR GPX format documentation for the use of layer tags:
“waypoints”, “tracks”, “routes”, “track_points” and “route_points” - reading GPX files requires a
build of GDAL/OGR with the expat XML library.

From 0.6-10, attempts are made to detect deleted features still present in the layer, but not read.
Apparently features deleted in Qgis are only marked as deleted, but are still in the layer. These are
not NULL geometries, but still need to be handled. An attempt is made to check the FID values, and
ogrFIDs now returns attributes permitting this oddity to be detected. Such deleted features were
seen as NULL in 0.6-9, but are not such.

42 readOGR

From 0.7-24, if the layer has no fields, a single field containing the FID values is placed in the data
slot of the returned object.

From 0.7-24, attempts are begun to provide users with arguments to control reading from OGR/shapefile
driver when the encoding is inappropriate (especially the setting of LDID in shapefile DBFs, and
the SHAPE_ENCODING environment variable).

While there is no certainty, newer drivers such as KML, GML, SQLite and Geopackage (GPKG)
may encode string fields as UTF-8. Users are advised to explore this on a case to case basis using
Encoding on string fields of input objects.

Because of the representation of DateTime data in OGR, decimal seconds in input data are rounded
to integer seconds, see: https://trac.osgeo.org/gdal/ticket/2680.

Because some drivers support reading string, integer and real list fields, support has been introduced
into ogrInfo from version 0.9-1 to report their presence and the maximum counts of list items.
This may lead to the introduction of the -splitlistfields facility from the command line utility
ogrinfo. In addition, ogrInfo reports that there are no features when counting FIDs in a while
loop over features in ogrFIDs never enters the loop, despite the layer feature count reporting at
least one feature.

Author(s)

Roger Bivand

References

https://gdal.org/drivers/vector/index.html, https://resources.oreilly.com/examples/
9780596008659

See Also

SpatialPointsDataFrame-class, SpatialLinesDataFrame-class, SpatialPolygonsDataFrame-class,
readShapePoly, iconv

Examples

set_thin_PROJ6_warnings(TRUE)
ogrDrivers()
dsn <- system.file("vectors", package = "rgdal")[1]
ogrListLayers(dsn)
ogrInfo(dsn)
ogrInfo(dsn=dsn, layer="cities")
owd <- getwd()
setwd(dsn)
ogrInfo(dsn="cities.shp")
ogrInfo(dsn="cities.shp", layer="cities")
setwd(owd)
ow <- options("warn")$warn
options("warn"=1)
cities <- readOGR(dsn=dsn, layer="cities")
str(slot(cities, "data"))
if (new_proj_and_gdal()) comment(slot(cities, "proj4string"))

https://trac.osgeo.org/gdal/ticket/2680
https://gdal.org/drivers/vector/index.html
https://resources.oreilly.com/examples/9780596008659
https://resources.oreilly.com/examples/9780596008659

readOGR 43

cities$POPULATION <- type.convert(as.character(cities$POPULATION),
na.strings="-99", numerals="no.loss")

str(slot(cities, "data"))
cities <- readOGR(dsn=dsn, layer="cities", GDAL1_integer64_policy=TRUE)
str(slot(cities, "data"))
options("warn"=ow)
summary(cities)
table(Encoding(as.character(cities$NAME)))
ogrInfo(dsn=dsn, layer="kiritimati_primary_roads")
OGRSpatialRef(dsn=dsn, layer="kiritimati_primary_roads")
kiritimati_primary_roads <- readOGR(dsn=dsn, layer="kiritimati_primary_roads")
summary(kiritimati_primary_roads)
if (new_proj_and_gdal()) comment(slot(kiritimati_primary_roads, "proj4string"))
ogrInfo(dsn=dsn, layer="scot_BNG")
OGRSpatialRef(dsn=dsn, layer="scot_BNG")
scot_BNG <- readOGR(dsn=dsn, layer="scot_BNG")
summary(scot_BNG)
if (new_proj_and_gdal()) comment(slot(scot_BNG, "proj4string"))
if ("GML" %in% ogrDrivers()$name) {

dsn <- system.file("vectors/airports.gml", package = "rgdal")[1]
airports <- try(readOGR(dsn=dsn, layer="airports"))
if (!inherits(airports, "try-error")) {
summary(airports)
if (new_proj_and_gdal()) comment(slot(airports, "proj4string"))

}
}
dsn <- system.file("vectors/ps_cant_31.MIF", package = "rgdal")[1]
ogrInfo(dsn=dsn, layer="ps_cant_31")
ps_cant_31 <- readOGR(dsn=dsn, layer="ps_cant_31")
summary(ps_cant_31)
sapply(as(ps_cant_31, "data.frame"), class)
if (new_proj_and_gdal()) comment(slot(ps_cant_31, "proj4string"))
ps_cant_31 <- readOGR(dsn=dsn, layer="ps_cant_31", stringsAsFactors=FALSE)
summary(ps_cant_31)
sapply(as(ps_cant_31, "data.frame"), class)
dsn <- system.file("vectors/Up.tab", package = "rgdal")[1]
ogrInfo(dsn=dsn, layer="Up")
Up <- readOGR(dsn=dsn, layer="Up")
summary(Up)
if (new_proj_and_gdal()) comment(slot(Up, "proj4string"))
dsn <- system.file("vectors/test_trk2.gpx", package = "rgdal")[1]
test_trk2 <- try(readOGR(dsn=dsn, layer="tracks"))
if (!inherits(test_trk2, "try-error")) {

summary(test_trk2)
if (new_proj_and_gdal()) comment(slot(test_trk2, "proj4string"))

}
test_trk2pts <- try(readOGR(dsn=dsn, layer="track_points"))
if (!inherits(test_trk2pts, "try-error")) {

summary(test_trk2pts)
if (new_proj_and_gdal()) comment(slot(test_trk2pts, "proj4string"))

}
dsn <- system.file("vectors", package = "rgdal")[1]
ogrInfo(dsn=dsn, layer="trin_inca_pl03")

44 RGB2PCT

birds <- readOGR(dsn=dsn, layer="trin_inca_pl03")
summary(birds)
if (new_proj_and_gdal()) comment(slot(birds, "proj4string"))
dsn <- system.file("vectors/PacoursIKA2.TAB", package = "rgdal")[1]
try(ogrInfo(dsn, "PacoursIKA2"))
ogrInfo(dsn, "PacoursIKA2", require_geomType="wkbPoint")
plot(readOGR(dsn, "PacoursIKA2", require_geomType="wkbLineString"), col="red")
plot(readOGR(dsn, "PacoursIKA2", require_geomType="wkbPoint"), add=TRUE)
odir <- getwd()
setwd(system.file("vectors", package = "rgdal")[1])
ow <- options("warn")$warn
options("warn"=1)
ogrInfo("test64.vrt", "test64")
str(readOGR("test64.vrt", "test64", verbose=FALSE, integer64="allow.loss")$val)
str(readOGR("test64.vrt", "test64", verbose=FALSE, integer64="warn.loss")$val)
str(readOGR("test64.vrt", "test64", verbose=FALSE, integer64="no.loss")$val)
str(readOGR("test64.vrt", "test64", verbose=FALSE, stringsAsFactors=FALSE,
integer64="no.loss")$val)

setwd(odir)
options("warn"=ow)

RGB2PCT Convert RGB three band to single band colour table

Description

This function converts a three-band GDALReadOnlyDataset into a single band of colour indices as
a GDALTransientDataset.

Usage

RGB2PCT(x, band, driver.name = 'MEM', ncolors = 256, set.ctab = TRUE)

Arguments

x a three-band GDALReadOnlyDataset object

band a vector of numbers, recycled up to 3 in length

driver.name default MEM

ncolors a number of colours between 2 and 256

set.ctab default TRUE, when the dithered dataset handle is returned, otherwise a list of
the dataset and the PCT colour table

Value

The value returned is a either GDALTransientDataset or a list of a GDALTransientDataset and a
colour table.

SGDF2PCT 45

Author(s)

Tim Keitt

References

https://gdal.org/

Examples

Not run:
logo <- system.file("pictures/Rlogo.jpg", package="rgdal")[1]
x <- GDAL.open(logo)
dim(x)
dx <- RGB2PCT(x, band=1:3)
displayDataset(dx, reset.par=FALSE)
dim(dx)
GDAL.close(x)
GDAL.close(dx)

End(Not run)

SGDF2PCT Convert RGB three band to single band colour table

Description

This function converts a three-band SpatialGridDataFrame into a single band of colour indices and
a colour look-up table using RGB2PCT. vec2RGB uses given breaks and colours (like image) to make
a three column matrix of red, green, and blue values for a numeric vector.

Usage

SGDF2PCT(x, ncolors = 256, adjust.bands=TRUE)
vec2RGB(vec, breaks, col)

Arguments

x a three-band SpatialGridDataFrame object

ncolors a number of colours between 2 and 256

adjust.bands default TRUE; if FALSE the three bands must lie each between 0 and 255, but
will not be streched within those bounds

vec a numeric vector

breaks a set of breakpoints for the colours: must give one more breakpoint than colour

col a list of colors

https://gdal.org/

46 SGDF2PCT

Value

The value returned is a list:

idx a vector of colour indices in the same spatial order as the input object

ct a vector of RGB colours

Author(s)

Roger Bivand

References

https://gdal.org/

Examples

logo <- system.file("pictures/Rlogo.jpg", package="rgdal")[1]
SGlogo <- readGDAL(logo)
cols <- SGDF2PCT(SGlogo)
SGlogo$idx <- cols$idx
image(SGlogo, "idx", col=cols$ct)
SGlogo <- readGDAL(logo)
cols <- SGDF2PCT(SGlogo, ncolors=64)
SGlogo$idx <- cols$idx
image(SGlogo, "idx", col=cols$ct)
SGlogo <- readGDAL(logo)
cols <- SGDF2PCT(SGlogo, ncolors=8)
SGlogo$idx <- cols$idx
image(SGlogo, "idx", col=cols$ct)
data(meuse.grid)
coordinates(meuse.grid) <- c("x", "y")
gridded(meuse.grid) <- TRUE
fullgrid(meuse.grid) <- TRUE
summary(meuse.grid$dist)
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), mar=c(1,1,1,1)+0.1)
image(meuse.grid, "dist", breaks=seq(0,1,1/10), col=bpy.colors(10))
RGB <- vec2RGB(meuse.grid$dist, breaks=seq(0,1,1/10), col=bpy.colors(10))
summary(RGB)
meuse.grid$red <- RGB[,1]
meuse.grid$green <- RGB[,2]
meuse.grid$blue <- RGB[,3]
cols <- SGDF2PCT(meuse.grid[c("red", "green", "blue")], ncolors=10,
adjust.bands=FALSE)

is.na(cols$idx) <- is.na(meuse.grid$dist)
meuse.grid$idx <- cols$idx
image(meuse.grid, "idx", col=cols$ct)
par(opar)
Note: only one wrongly classified pixel after NA handling/dropping
The functions are not written to be reversible
sort(table(findInterval(meuse.grid$dist, seq(0,1,1/10), all.inside=TRUE)))
sort(table(cols$idx))

https://gdal.org/

showWKT 47

showWKT Show Well-Known Text spatial reference system metadata

Description

In modern workflows with PROJ >= 6 and GDAL >= 3, use only showSRID() DEPRECATED: Use
GDAL/OGR spatial reference objects to convert a PROJ.4 representation to a Well-Known Text
representation, and report an EPSG code if it can be determined by OGR SRS services.

Usage

showWKT(p4s, file = NULL, morphToESRI = FALSE, enforce_xy = NULL)
showP4(wkt, morphFromESRI=FALSE, enforce_xy = NULL)
showEPSG(p4s, enforce_xy = NULL)
showSRID(inSRID, format="WKT2", multiline="NO", enforce_xy = NULL, EPSG_to_init=TRUE,
prefer_proj=NULL)

get_P6_datum_hard_fail()
set_P6_datum_hard_fail(value)
get_thin_PROJ6_warnings()
set_thin_PROJ6_warnings(value)
get_prefer_proj()
set_prefer_proj(value)
get_rgdal_show_exportToProj4_warnings()
set_rgdal_show_exportToProj4_warnings(value)
get_PROJ6_warnings_count()
OSRIsProjected(obj)

Arguments

p4s A valid PROJ.4 string representing a spatial reference system

file if not NULL, a file name to which the output Well-Known Text representation
should be written

morphToESRI default FALSE, morph the WKT string to the representation used by ESRI;
set FALSE by default 2020-03-04 to avoid occasional Windows crashes seen
when passing a very modern WKT string to an old version of PROJ: https:
//github.com/edzer/sp/issues/75

enforce_xy (PROJ6+/GDAL3+) either use global setting (default NULL) or override policy
for coordinate ordering easting/x as first axis, northing/y as second axis.

wkt A valid WKT character string representing a spatial reference system

morphFromESRI default TRUE, morph the WKT string from the representation used by ESRI

inSRID Input coordinate reference string

obj valid CRS object

format Output format, default WKT2

multiline Multiline output, either "NO" or "YES"

https://github.com/edzer/sp/issues/75
https://github.com/edzer/sp/issues/75

48 showWKT

EPSG_to_init default TRUE, workaround for PROJ 6.3.0 frailty leading to the dropping of
+ellps= and +units=; DATUM seems to disappear in the internal definition

prefer_proj default NULL, if TRUE, use PROJ compiled code directly, rather than FALSE
using PROJ via GDAL SRS; if NULL, uses value shown by get_prefer_proj()
set on startup to TRUE.

value a logical value. For set_P6_datum_hard_fail(): by default, a deprecated/ignored
input DATUM key/value pair on reading a file with PROJ6 will give a warning
(default FALSE); if TRUE, an error is triggered, which may be trapped using
try. For set_thin_PROJ6_warnings() default FALSE, can be set to TRUE
to report only once and count the number of non-issues warnings, retrieved by
get_PROJ6_warnings_count(). For set_rgdal_show_exportToProj4_warnings(),
default in rgdal version 1.5.* TRUE, from 1.6 FALSE. The options("rgdal_show_exportToProj4_warnings"="x")
may be used before loading rgdal to set the internal logical variables; if the op-
tion is set to "all", all warnings reporting CRS degradation stemming from
the GDAL OSR function exportToProj4() even if trivial are reported; if set
to "thin", all warnings are detected but thinned so that one report is given per
function call; if set to "none", the degradations are detected but not reported.

Value

For showWKT, a character string containing the WKT representation of the PROJ.4 string.

Note

The options("rgdal_show_exportToProj4_warnings"="x") may be used before loading rgdal
to set the internal logical variables; if the option is set to "all", all warnings reporting CRS degra-
dation stemming from the GDAL OSR function exportToProj4() even if trivial are reported; if
set to "thin", all warnings are detected but thinned so that one report is given per function call; if
set to "none", the degradations are detected but not reported.

Author(s)

Roger Bivand

References

https://gdal.org/tutorials/osr_api_tut.html

See Also

is.projected, CRS-class

Examples

set_thin_PROJ6_warnings(TRUE)
cities <- readOGR(system.file("vectors", package = "rgdal")[1], "cities")
readLines(system.file("vectors/cities.prj", package = "rgdal")[1])
showWKT(proj4string(cities))
showWKT("+init=epsg:28992")
showP4(showWKT("+init=epsg:28992"))

https://gdal.org/tutorials/osr_api_tut.html

SpatialGDAL-class 49

showEPSG("+proj=utm +zone=30")
showEPSG("+proj=longlat +ellps=WGS84")
exts <- rgdal_extSoftVersion()
run <- new_proj_and_gdal()
if (run) {

cat(showSRID("EPSG:27700", multiline="YES"), "\n")
}
if (run) {
(prj <- showSRID("EPSG:27700", "PROJ"))
}
if (run) {
showSRID(paste0(prj, " +datum=OSGB36"), "WKT1")
}
if (run) {
showSRID(paste0(prj, " +towgs84=370.936,-108.938,435.682"), "WKT1")
}
if (run) {
showSRID(paste0(prj, " +nadgrids=OSTN15_NTv2_OSGBtoETRS.gsb"), "WKT1")
}
if (run) {
showSRID(paste0(prj, " +datum=OSGB36"), "WKT2")
}
if (run) {
showSRID(paste0(prj, " +towgs84=370.936,-108.938,435.682"), "WKT2")
}
if (run) {
showSRID(paste0(prj, " +nadgrids=OSTN15_NTv2_OSGBtoETRS.gsb"), "WKT2")
}
if (run) {
showSRID("ESRI:102761", "WKT2")
}
if (run) {
showSRID("OGC:CRS84", "WKT2")
}
if (run) {
showSRID("urn:ogc:def:crs:OGC:1.3:CRS84", "WKT2")
}
if (run) {
try(showSRID("", "WKT2"))
}

OSRIsProjected(CRS("+proj=longlat"))
OSRIsProjected(CRS("+proj=geocent"))
OSRIsProjected(CRS("+proj=geocent +units=km"))

SpatialGDAL-class Class "SpatialGDAL"

50 SpatialGDAL-class

Description

Class for spatial attributes that have spatial locations on a (full) regular grid on file, not (yet) actually
read.

Usage

S3 method for class 'SpatialGDAL'
open(con, ..., silent = FALSE, allowedDrivers = NULL, options=NULL)
S3 method for class 'SpatialGDAL'
close(con, ...)
copy.SpatialGDAL(dataset, fname, driver = getDriver(dataset@grod),
strict = FALSE, options = NULL, silent = FALSE)

Arguments

con file name of grid map for opening, SpatialGDAL object for closing

... other arguments (currently ignored)

silent logical; if TRUE, comment and non-fatal CPL driver errors suppressed

dataset object of class SpatialGDAL

fname file name of grid map

driver GDAL driver name

strict TRUE if the copy must be strictly equivalent, or more normally FALSE indicat-
ing that the copy may adapt as needed for the output format

allowedDrivers a character vector of suggested driver short names may be provided starting from
GDAL 2.0

options driver-specific options to be passed to the GDAL driver; only available for open-
ing datasets from GDAL 2.0

Objects from the Class

Objects can be created by calls of the form open. SpatialGDAL(name),, where name is the name
of the GDAL file.

Slots

points: see SpatialPoints; points slot which is not actually filled with all coordinates (only with
min/max)

grid: see GridTopology-class; grid parameters

grid.index: see SpatialPixels-class; this slot is of zero length for this class, as the grid is full

bbox: Object of class "matrix"; bounding box

proj4string: Object of class "CRS"; projection

data: Object of class data.frame, containing attribute data

Extends

Class Spatial-class, directly.

spTransform-methods 51

Methods

[signature(x = "SpatialGDAL",i,j,...): selects rows (i), columns (j), and bands (third argu-
ment); returns an object of class SpatialGridDataFrame-class. Only the selection is actually
read.

[[signature(i): reads band i and returns the values as a numeric vector

Note

Non-fatal CPL errors may be displayed for some drivers, currently for the AIG ArcInfo 9.3 binary
raster driver using GDAL >= 1.6.2; the data has been read correctly, but the contents of the info
directory did not meet the specifications used to reverse engineer the driver used in GDAL (see
https://trac.osgeo.org/gdal/ticket/3031)

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also

SpatialGridDataFrame-class, which is actually sub-classed.

Examples

x <- open.SpatialGDAL(system.file("external/test.ag", package="sp")[1])
image(x[])
image(as(x, "SpatialGridDataFrame"))
summary(as(x, "SpatialGridDataFrame"))
spplot(as(x, "SpatialGridDataFrame"))
select first 50 rows:
summary(x[1:50])
select first 50 columns:
summary(x[,1:50])
select band 1:
summary(x[,,1])
select first 50 rows, first 50 columns, band 1:
summary(x[1:50,1:50,1])
get values of first band:
summary(x[[1]])
close(x)

spTransform-methods Methods for Function spTransform for map projection and datum
transformation in package "rgdal"

https://trac.osgeo.org/gdal/ticket/3031

52 spTransform-methods

Description

The spTransform methods provide transformation between datum(s) and conversion between pro-
jections (also known as projection and/or re-projection), from one unambiguously specified coor-
dinate reference system (CRS) to another, prior to version 1.5 using Proj4 projection arguments.
From version 1.5, Well-Known Text 2 (WKT2 2019) strings are used. For simple projection, when
no Proj4 +datum tags are used, datum projection does not occur. When datum transformation is
required, the datum should be defined with a valid value both in the CRS of the object to be trans-
formed, and in the target CRS. In general datum is to be prefered to ellipsoid, because the datum
always fixes the ellipsoid, but the ellipsoid never fixes the datum.

In addition, before version 1.5 the +towgs84 tag should have been used where needed to make sure
that datum transformation would take place. Parameters for +towgs84 were taken from the legacy
bundled EPSG file if they are known unequivocally, but could be entered manually from known
authorities. Not providing the appropriate +datum and +towgs84 tags led to coordinates being out
by hundreds of metres. Unfortunately, there is no easy way to provide this information: the user
has to know the correct metadata for the data being used, even if this can be hard to discover.

From version 1.5, spTransform uses the modern PROJ coordinate operation framework for trans-
formations. This avoids pivoting through WGS84 if possible, and uses WKT2 (2019) strings for
source and target CRS often constructed from the bundled EPSG SQLite database. The database
is searched for feasible candidate coordinate operations, and the most accurate available is chosen.
More details are available in a vignette: vignette("CRS_projections_transformations").

Usage

get_transform_wkt_comment()
set_transform_wkt_comment(value)
get_enforce_xy()
set_enforce_xy(value)
get_last_coordOp()

Arguments

value A non-NA logical value

Methods

"ANY" default void method

"SpatialPoints", CRSobj = CRS returns transformed coordinates of an "SpatialPoints" object us-
ing the projection arguments in "CRSobj", of class CRS

"SpatialPointsDataFrame", CRSobj = CRS returns transformed coordinates of an "SpatialPoints-
DataFrame" object using the projection arguments in "CRSobj", of class CRS

"SpatialLines", CRSobj = CRS returns transformed coordinates of an "SpatialLines" object us-
ing the projection arguments in "CRSobj", of class CRS

"SpatialLinesDataFrame", CRSobj = CRS returns transformed coordinates of an "SpatialLines-
DataFrame" object using the projection arguments in "CRSobj", of class CRS

"SpatialPolygons", CRSobj = CRS returns transformed coordinates of an "SpatialPolygons" ob-
ject using the projection arguments in "CRSobj", of class CRS

spTransform-methods 53

"SpatialPolygonsDataFrame", CRSobj = CRS returns transformed coordinates of an "SpatialPoly-
gonsDataFrame" object using the projection arguments in "CRSobj", of class CRS

"SpatialPixelsDataFrame", CRSobj = CRS Because regular grids will usually not be regular af-
ter projection/datum transformation, the input object is coerced to a SpatialPointsDataFrame,
and the transformation carried out on that object. A warning: “Grid warping not available,
coercing to points” is given.

"SpatialGridDataFrame", CRSobj = CRS Because regular grids will usually not be regular af-
ter projection/datum transformation, the input object is coerced to a SpatialPointsDataFrame,
and the transformation carried out on that object. A warning: “Grid warping not available,
coercing to points” is given.

Note

The projection arguments had to be entered exactly as in the PROJ.4 documentation, in particular
there cannot be any white space in +<arg>=<value> strings, and successive such strings can only be
separated by blanks. Note that warnings about different projections may be issued when the PROJ.4
library extends projection arguments; examine the warning to see if the differences are real.

Also note that re-projection and/or datum transformation will usually not work for regular grids.
The term used for similar operations for regular grids is warping, which involved resampling to a
regular grid in the target coordinate reference system.

The methods may take an optional argument “use_ob_tran”, default FALSE, if TRUE and “+proj=ob_tran”,
use General Oblique Transformation with internalised from/to projection reversal (the user oblique
transforms from longlat to oblique forward rather than inverse as suggested in PROJ.4 mailing list
postings); these changes are intended to meet a need pointed out by Martin Ivanov (2012-08-15).
A subsequent point raised by Martin Ivanov (2017-04-28) was that use of a projected CRS with
“+proj=ob_tran” led to errors, so mixing projected CRS and “+proj=ob_tran” is blocked. Trans-
form first “+proj=ob_tran” to or from “+proj=longlat”, and then on from geographical coordinates
to those desired or the reverse - see example.

If a SpatialPoints object has three dimensions, the third will also be transformed, with the metric of
the third dimension assumed to be meters if the vertical units metric is not given in the projection
description with +vunits= or +vto_meter= (which is 1.0 by default) https://proj.org/faq.html.

Note that WGS84 is both an ellipse and a datum, and that since 1984 there have been changes
in the relative positions of continents, leading to a number of modifications. This is discussed
for example in https://www.uvm.edu/giv/resources/WGS84_NAD83.pdf; there are then multi-
ple transformations between NAD83 and WGS84 depending on the WGS84 definition used. One
would expect that “+towgs84=” is a no-op for WGS84, but this only applies sometimes, and as
there are now at least 30 years between now and 1984, things have shifted. It may be useful to
note that “+nadgrids=@null” can help, see these threads: https://stat.ethz.ch/pipermail/
r-sig-geo/2014-August/021611.html, http://lists.maptools.org/pipermail/proj/2014-August/
006894.html, with thanks to Hermann Peifer for assistance.

Note that from PROJ.4 4.9.3, the definition of UTM is changed from TMERC to ETMERC; see
example.

Author(s)

Roger Bivand <Roger.Bivand@nhh.no>

https://proj.org/faq.html
https://www.uvm.edu/giv/resources/WGS84_NAD83.pdf
https://stat.ethz.ch/pipermail/r-sig-geo/2014-August/021611.html
https://stat.ethz.ch/pipermail/r-sig-geo/2014-August/021611.html
http://lists.maptools.org/pipermail/proj/2014-August/006894.html
http://lists.maptools.org/pipermail/proj/2014-August/006894.html

54 spTransform-methods

Examples

set_thin_PROJ6_warnings(TRUE)
state
data(state)
states <- data.frame(state.x77, state.center)
states <- states[states$x > -121,]
coordinates(states) <- c("x", "y")
proj4string(states) <- CRS("+proj=longlat +ellps=clrk66")
summary(states)
state.ll83 <- spTransform(states, CRS("+proj=longlat +ellps=GRS80"))
summary(state.ll83)
state.merc <- spTransform(states, CRS=CRS("+proj=merc +ellps=GRS80"))
summary(state.merc)
state.merc <- spTransform(states,
CRS=CRS("+proj=merc +ellps=GRS80 +units=us-mi"))

summary(state.merc)
NAD
Not run:
if (PROJis6ormore() || (!PROJis6ormore() && projNAD())) {
states <- data.frame(state.x77, state.center)
states <- states[states$x > -121,]
coordinates(states) <- c("x", "y")
proj4string(states) <- CRS("+init=epsg:4267")
print(summary(states))
state.ll83 <- spTransform(states, CRS("+init=epsg:4269"))
print(summary(state.ll83))
state.kansasSlcc <- spTransform(states, CRS=CRS("+init=epsg:26978"))
print(summary(state.kansasSlcc))
SFpoint_NAD83 <- SpatialPoints(matrix(c(-103.869667, 44.461676), nrow=1),
proj4string=CRS("+init=epsg:4269"))

SFpoint_NAD27 <- spTransform(SFpoint_NAD83, CRS("+init=epsg:4267"))
print(all.equal(coordinates(SFpoint_NAD83), coordinates(SFpoint_NAD27)))
print(coordinates(SFpoint_NAD27), digits=12)
print(coordinates(SFpoint_NAD83), digits=12)
}

End(Not run)
data(meuse)
coordinates(meuse) <- c("x", "y")
proj4string(meuse) <- CRS("+init=epsg:28992")
see http://trac.osgeo.org/gdal/ticket/1987
summary(meuse)
meuse.utm <- spTransform(meuse, CRS("+proj=utm +zone=32 +datum=WGS84"))
summary(meuse.utm)
cbind(coordinates(meuse), coordinates(meuse.utm))
Not run:
Kiritimati
kiritimati_primary_roads <- readOGR(system.file("vectors",
package = "rgdal")[1], "kiritimati_primary_roads")

kiritimati_primary_roads_ll <- spTransform(kiritimati_primary_roads,
CRS("+proj=longlat +datum=WGS84"))

opar <- par(mfrow=c(1,2))

spTransform-methods 55

plot(kiritimati_primary_roads, axes=TRUE)
plot(kiritimati_primary_roads_ll, axes=TRUE, las=1)
par(opar)
scot_BNG
scot_BNG <- readOGR(system.file("vectors", package = "rgdal")[1],

"scot_BNG")
scot_LL <- spTransform(scot_BNG, CRS("+proj=longlat +datum=WGS84"))
plot(scot_LL, axes=TRUE)
grdtxt_LL <- gridat(scot_LL)
grd_LL <- gridlines(scot_LL, ndiscr=100)
summary(grd_LL)
target <- CRS(proj4string(scot_BNG))
grd_BNG <- spTransform(grd_LL, target)
grdtxt_BNG <- spTransform(grdtxt_LL, target)
opar <- par(mfrow=c(1,2))
plot(scot_BNG, axes=TRUE, las=1)
plot(grd_BNG, add=TRUE, lty=2)
text(coordinates(grdtxt_BNG),

labels=parse(text=as.character(grdtxt_BNG$labels)))
par(opar)

End(Not run)
broke_proj
broke_proj <- FALSE
https://github.com/OSGeo/PROJ/issues/1525
pv <- .Call("PROJ4VersionInfo", PACKAGE="rgdal")[[2]]
if (pv >= 600 && pv < 620) broke_proj <- TRUE
if (!broke_proj) {
crds <- matrix(data=c(9.05, 48.52), ncol=2)
spPoint <- SpatialPoints(coords=crds,
proj4string=CRS("+proj=longlat +ellps=sphere +no_defs"))

ob_tran_def <- paste("+proj=ob_tran +o_proj=longlat",
"+o_lon_p=-162 +o_lat_p=39.25 +lon_0=180 +ellps=sphere +no_defs")

tg <- CRS(ob_tran_def)
proj4string not propagated in GDAL 3.0.0
a <- spTransform(spPoint, tg, use_ob_tran=TRUE)
a
}
#should be (-5.917698, -1.87195)
if (!broke_proj) {
spTransform(a, CRS("+proj=longlat +ellps=sphere +no_defs"),
use_ob_tran=TRUE)

}
if (!broke_proj) {
try(spTransform(a, CRS(paste("+proj=tmerc +lat_0=0 +lon_0=9 +k=1",
"+x_0=3500000 +y_0=0 +ellps=bessel +units=m +no_defs")),
use_ob_tran=TRUE))

}
if (!broke_proj) {
spTransform(spPoint, CRS(paste("+proj=tmerc +lat_0=0 +lon_0=9 +k=1",
"+x_0=3500000 +y_0=0 +ellps=bessel +units=m +no_defs")))
}
if (!broke_proj) {

56 spTransform-methods

spTransform(spTransform(a, CRS("+proj=longlat +ellps=sphere +no_defs"),
use_ob_tran=TRUE), CRS(paste("+proj=tmerc +lat_0=0 +lon_0=9 +k=1",

"+x_0=3500000 +y_0=0 +ellps=bessel +units=m +no_defs")))
}
crds1 <- matrix(data=c(7, 51, 8, 52, 9, 52, 10, 51, 7, 51), ncol=2,
byrow=TRUE, dimnames=list(NULL, c("lon", "lat")));
crds2 <- matrix(data=c(8, 48, 9, 49, 11, 49, 9, 48, 8, 48), ncol=2,
byrow=TRUE, dimnames=list(NULL, c("lon", "lat")));
crds3 <- matrix(data=c(6, 47, 6, 55, 15, 55, 15, 47, 6, 47), ncol=2,
byrow=TRUE, dimnames=list(NULL, c("lon", "lat")));
spLines <- SpatialLines(list(Lines(list(Line(crds1), Line(crds2),
Line(crds3)), ID="a")));
slot(spLines, "proj4string") <- CRS("+proj=longlat +ellps=sphere +no_defs");
bbox(spLines);
if (!broke_proj) {
spLines_tr <- spTransform(spLines, tg, use_ob_tran=TRUE);
bbox(spLines_tr)
}
if (!broke_proj) {
bbox(spTransform(spLines_tr, CRS("+proj=longlat +ellps=sphere"),
use_ob_tran=TRUE))

}
if (!broke_proj) {
spPolygons <- SpatialPolygons(list(Polygons(list(Polygon(crds1),
Polygon(crds2), Polygon(crds3)), ID="a")));
slot(spPolygons, "proj4string") <- CRS("+proj=longlat +ellps=sphere +no_defs");
bbox(spPolygons);
}
if (!broke_proj) {
spPolygons_tr <- spTransform(spPolygons, tg, use_ob_tran=TRUE);
bbox(spPolygons_tr)
}
if (!broke_proj) {
bbox(spTransform(spPolygons_tr, CRS("+proj=longlat +ellps=sphere"),
use_ob_tran=TRUE))

}
added after posting by Martin Ivanov
Not run:
data(nor2k)
summary(nor2k)
nor2kNGO <- spTransform(nor2k, CRS("+init=epsg:4273"))
summary(nor2kNGO)
all.equal(coordinates(nor2k)[,3], coordinates(nor2kNGO)[,3])
added after posting by Don MacQueen
crds <- cbind(c(-121.524764291826, -121.523480804667), c(37.6600366036405, 37.6543604613483))
ref <- cbind(c(1703671.30566227, 1704020.20113366), c(424014.398045834, 421943.708664294))
crs.step1.cf <- CRS(paste("+proj=lcc +lat_1=38.43333333333333",
"+lat_2=37.06666666666667 +lat_0=36.5 +lon_0=-120.5",
"+x_0=2000000.0 +y_0=500000.0 +ellps=GRS80 +units=us-ft +no_defs",
"+towgs84=-0.991,1.9072,0.5129,0.025789908,0.0096501,0.0116599,0.0"))

locs.step1.cf <- spTransform(SpatialPoints(crds,
proj4string=CRS("+proj=longlat +datum=WGS84")), crs.step1.cf)

suppressWarnings(proj4string(locs.step1.cf) <- CRS(paste("+proj=lcc",

writeOGR 57

"+lat_1=38.43333333333333 +lat_2=37.06666666666667 +lat_0=36.5",
"+lon_0=-120.5 +x_0=2000000.0 +y_0=500000.0 +ellps=GRS80 +units=us-ft",
"+no_defs +nadgrids=@null")))
locs.step2.cfb <- spTransform(locs.step1.cf, CRS("+init=epsg:26743"))
coordinates(locs.step2.cfb) - ref
all.equal(unname(coordinates(locs.step2.cfb)), ref)

End(Not run)
Not run:
new_proj_and_gdal()
run <- new_proj_and_gdal()
if (run) {
Test for UTM == TMERC (<= 4.9.2) or UTM == ETMERC (> 4.9.2)
nhh <- SpatialPointsDataFrame(matrix(c(5.304234, 60.422311), ncol=2),
proj4string=CRS(SRS_string="OGC:CRS84"), data=data.frame(office="RSB"))

nhh_utm_32N_P4 <- spTransform(nhh, CRS("+init=epsg:3044"))
nhh_tmerc_P4 <- spTransform(nhh, CRS(paste("+proj=tmerc +k=0.9996",
"+lon_0=9 +x_0=500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")))

nhh_etmerc_P4 <- spTransform(nhh, CRS(paste("+proj=etmerc +k=0.9996",
"+lon_0=9 +x_0=500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")))

all.equal(coordinates(nhh_utm_32N_P4), coordinates(nhh_tmerc_P4),
tolerance=1e-9, scale=1)

UTM == TMERC: PROJ4 <=4.9.2
all.equal(coordinates(nhh_utm_32N_P4), coordinates(nhh_etmerc_P4),
tolerance=1e-9, scale=1)

UTM == ETMERC: PROJ4 > 4.9.2
unis <- SpatialPointsDataFrame(matrix(c(15.653453, 78.222504), ncol=2),
proj4string=CRS(SRS_string="OGC:CRS84"), data=data.frame(office="UNIS"))

unis_utm_33N_P4 <- spTransform(unis, CRS("+init=epsg:3045"))
unis_tmerc_P4 <- spTransform(unis, CRS(paste("+proj=tmerc +k=0.9996 +lon_0=15",
"+x_0=500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")))

unis_etmerc_P4 <- spTransform(unis, CRS(paste("+proj=etmerc +k=0.9996",
"+lon_0=15 +x_0=500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")))

all.equal(coordinates(unis_utm_33N_P4), coordinates(unis_tmerc_P4),
tolerance=1e-9, scale=1)

UTM == TMERC: PROJ4 <=4.9.2
all.equal(coordinates(unis_utm_33N_P4), coordinates(unis_etmerc_P4),
tolerance=1e-9, scale=1)

UTM == ETMERC: PROJ4 > 4.9.2
}

End(Not run)

writeOGR Write spatial vector data using OGR

Description

The function is an interface with the OGR abstraction library for spatial vector data, allowing data
to be written out using supported drivers. The drivers supported will depend on the local installa-

58 writeOGR

tion, and the capabilities of those drivers (many are read-only). The objects exported are Spatial-
PointsDataFrame, SpatialLinesDataFrame, or SpatialPolygonsDataFrame objects as defined in the
sp package.

Usage

writeOGR(obj, dsn, layer, driver, dataset_options = NULL,
layer_options=NULL, verbose = FALSE, check_exists=NULL,
overwrite_layer=FALSE, delete_dsn=FALSE, morphToESRI=NULL,
encoding=NULL, shp_edge_case_fix=FALSE, dumpSRS = FALSE)

Arguments

obj a SpatialPointsDataFrame, SpatialLinesDataFrame, or a SpatialPolygonsDataFrame
object.

dsn data source name (interpretation varies by driver — for some drivers, dsn is a
file name, but may also be a folder)

layer layer name (varies by driver, may be a file name without extension)

driver a character string equal to one of the driver names returned by ogrDrivers

dataset_options

a character vector of options, which vary by driver, and should be treated as
experimental

layer_options a character vector of options, which vary by driver, and should be treated as
experimental

verbose if TRUE, returns a list of information about the attempted write operation

check_exists default NULL, which tests for the GDAL version, and sets FALSE if < 1.8.0, or
TRUE for >= 1.8.0

overwrite_layer

default FALSE, if TRUE and check_exists=TRUE, delete the existing layer of
the same name from the data source before writing the new layer; this will
delete data and must be used with extreme caution, its behaviour varies between
drivers, and accommodates changes that may appear in GDAL 1.8

delete_dsn default FALSE, may be set to TRUE if overwrite_layer reports that the data
source cannot be updated; this will delete data and must be used with extreme
caution, its behaviour varies between drivers, and accommodates changes that
may appear in GDAL 1.8

morphToESRI default NULL, in which case set TRUE if driver is “ESRI Shapefile” or FALSE
otherwise; may be used to override this default

encoding default NULL, if set to a character string, it will be used to convert output strings
from the given value to UTF-8 encoding.

shp_edge_case_fix

default FALSE, if TRUE, attempt to work around MULTIPOLYGON to POLY-
GON degradation in ESRI Shapefile output with two touching exterior rings in
a single feature (not yet implemented).

dumpSRS dump SRS to stdout from inside GDAL to debug conversion - developer use
only

writeOGR 59

Details

Working out which combination of dsn, layer, and driver (and option) values give the desired
output takes time and care, and is constrained by the ability of drivers to write output; many
are read-only. Use of the references given is highly advisable, with searches in the archives of
other software using GDAL/OGR. Note that for the “ESRI Shapefile” driver and GDAL >= 1.9,
the layer_options value of ‘ENCODING=“LDID/CP1252”’ or other values found on http:
//www.autopark.ru/ASBProgrammerGuide/dbfstruc.htm to set the encoding byte of the out-
put DBF file (link refered to in ogr/ogrsf_frmts/shape/ogrshapelayer.cpp. The effect of setting the
LDID may vary depending on whether GDAL is built with iconv or not, and on the setting of the
CPL Option “SHAPE_ENCODING”.

While there is no certainty, newer drivers such as KML, GML, SQLite and Geopackage (GPKG)
may encode string fields as UTF-8. Users are advised to explore this on a case to case basis us-
ing Encoding on string fields of objects to be output, converting where necessary with iconv or
assigning the appropriate value with Encoding.

Value

if verbose=TRUE, a list of information about the attempted write operation

Warning

The overwrite_layer and delete_dsn arguments are provided only for experienced script writers
who need to be able to destroy data, for example during repetetive simulation runs. They should
never be used by anyone who is not confident about deleting files.

writeOGR Polygon bug in 1.1-1

In fixing a bug in the correct handling of SFS polygon geometries in version 1.1-1, a further bug was
introduced affecting cases of wkbPolygon (not wkbMultiPolygon) output where SFS hole status
in the output object was (correctly) defined in the comment to Polygons objects. The error only
occurred when all the Polygons objects had one exterior ring, and zero or more interior rings. The
error led to the coordinates of the rings cumulating, because the rings were not emptied before
assigning the next ring. Version 1.1-2 corrects the error; thanks to JamesWorrall for a complete bug
report https://stat.ethz.ch/pipermail/r-sig-geo/2015-December/023796.html.

Note

Only a subset of possible data slot column classes may be written out; if the function returns an
error that the data type of stated columns is unknown, examine the classes and check that they
are one of c("numeric","character","factor","POSIXt","integer","logical"), and if not
convert to such classes. Classes c("factor","POSIXt") are converted to character strings, and
c("logical") to integer internally.

For writing with the KML and GPX drivers, note that the geometries should be in geographical
coordinates with datum WGS84.

Author(s)

Roger Bivand

http://www.autopark.ru/ASBProgrammerGuide/dbfstruc.htm
http://www.autopark.ru/ASBProgrammerGuide/dbfstruc.htm
https://stat.ethz.ch/pipermail/r-sig-geo/2015-December/023796.html

60 writeOGR

References

https://gdal.org/drivers/vector/index.html, https://resources.oreilly.com/examples/
9780596008659

See Also

readOGR

Examples

set_thin_PROJ6_warnings(TRUE)
cities <- readOGR(system.file("vectors", package = "rgdal")[1], "cities")
is.na(cities$POPULATION) <- cities$POPULATION == -99
summary(cities$POPULATION)
td <- file.path(tempdir(), "rgdal_examples"); dir.create(td)
BDR 2016-12-15 (MapInfo driver fails writing to directory with ".")
if(nchar(Sys.getenv("OSGEO4W_ROOT")) > 0) {

OLDPWD <- getwd()
setwd(td)
td <- "."

}
writeOGR(cities, td, "cities", driver="ESRI Shapefile")
try(writeOGR(cities, td, "cities", driver="ESRI Shapefile"))
writeOGR(cities, td, "cities", driver="ESRI Shapefile", overwrite_layer=TRUE)
cities2 <- readOGR(td, "cities")
summary(cities2$POPULATION)
if ("SQLite" %in% ogrDrivers()$name) {

tf <- tempfile()
try(writeOGR(cities, tf, "cities", driver="SQLite", layer_options="LAUNDER=NO"))

}
if ("GeoJSON" %in% ogrDrivers()$name) {

js <- '{
"type": "MultiPolygon",
"coordinates": [[[[102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0],
[102.0, 2.0]]], [[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0],
[100.0, 0.0]]]]

}'
spdf <- readOGR(js, layer='OGRGeoJSON')
in1_comms <- sapply(slot(spdf, "polygons"), comment)
print(in1_comms)
tf <- tempfile()
writeOGR(spdf, tf, "GeoJSON", driver="GeoJSON")
#spdf1 <- readOGR(tf, "GeoJSON")
spdf1 <- readOGR(tf)
in2_comms <- sapply(slot(spdf1, "polygons"), comment)
print(in2_comms)
print(isTRUE(all.equal(in1_comms, in2_comms)))

}
Not run: if ("GML" %in% ogrDrivers()$name) {

airports <- try(readOGR(system.file("vectors/airports.gml",
package = "rgdal")[1], "airports"))

if (class(airports) != "try-error") {

https://gdal.org/drivers/vector/index.html
https://resources.oreilly.com/examples/9780596008659
https://resources.oreilly.com/examples/9780596008659

writeOGR 61

writeOGR(cities, paste(td, "cities.gml", sep="/"), "cities", driver="GML")
cities3 <- readOGR(paste(td, "cities.gml", sep="/"), "cities")

}
}
End(Not run)
The GML driver does not support coordinate reference systems
if ("KML" %in% ogrDrivers()$name) {

data(meuse)
coordinates(meuse) <- c("x", "y")
proj4string(meuse) <- CRS("+init=epsg:28992")
meuse_ll <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))
writeOGR(meuse_ll["zinc"], paste(td, "meuse.kml", sep="/"), "zinc", "KML")

}
list.files(td)
roads <- readOGR(system.file("vectors", package = "rgdal")[1],
"kiritimati_primary_roads")

summary(roads)
if (strsplit(getGDALVersionInfo(), " ")[[1]][2] < "2") {
For GDAL >= 2, the TAB driver may need a BOUNDS layer option

writeOGR(roads, td, "roads", driver="MapInfo File")
roads2 <- readOGR(paste(td, "roads.tab", sep="/"), "roads")
summary(roads2)

}
scot_BNG <- readOGR(system.file("vectors", package = "rgdal")[1], "scot_BNG")
summary(scot_BNG)
if (strsplit(getGDALVersionInfo(), " ")[[1]][2] < "2") {
For GDAL >= 2, the TAB driver may need a BOUNDS layer option

writeOGR(scot_BNG, td, "scot_BNG", driver="MapInfo File")
list.files(td)
scot_BNG2 <- readOGR(paste(td, "scot_BNG.tab", sep="/"), "scot_BNG",

addCommentsToPolygons=FALSE)
summary(scot_BNG2)

}
writeOGR(scot_BNG, td, "scot_BNG", driver="MapInfo File",
dataset_options="FORMAT=MIF")

list.files(td)
scot_BNG3 <- readOGR(paste(td, "scot_BNG.mif", sep="/"), "scot_BNG")
summary(scot_BNG3)
if(nchar(Sys.getenv("OSGEO4W_ROOT")) > 0) {

setwd(OLDPWD)
}

Index

∗ classes
CRS-class, 3
GDALDataset-class, 8
GDALDriver-class, 9
GDALMajorObject-class, 11
GDALRasterBand-class, 12
GDALReadOnlyDataset-class, 15
GDALReadOnlyDataset-methods, 17
GDALTransientDataset-class, 18
SpatialGDAL-class, 49

∗ datasets
GridsDatums, 20
nor2k, 26

∗ methods
closeDataset-methods, 3
spTransform-methods, 51

∗ spatial
CRS-class, 3
displayDataset, 5
GDALcall, 7
is_proj_CDN_enabled, 21
list_coordOps, 22
llgridlines, 24
make_EPSG, 25
project, 27
projInfo, 31
readGDAL, 32
readOGR, 38
RGB2PCT, 44
SGDF2PCT, 45
showWKT, 47
spTransform-methods, 51
writeOGR, 57

,GDALReadOnlyDataset-method
(GDALReadOnlyDataset-methods),
17

[,GDALReadOnlyDataset-method
(GDALReadOnlyDataset-methods),
17

[,SpatialGDAL-method
(SpatialGDAL-class), 49

[<-,SpatialGDALWrite-method
(SpatialGDAL-class), 49

[[,SpatialGDAL,ANY,missing-method
(SpatialGDAL-class), 49

[[<-,SpatialGDAL,ANY,missing-method
(SpatialGDAL-class), 49

$,SpatialGDAL-method
(SpatialGDAL-class), 49

$<-,SpatialGDAL-method
(SpatialGDAL-class), 49

asciigrid, 35
asSGDF_GROD (readGDAL), 32

best_instantiable_coordOp
(list_coordOps), 22

checkCRSArgs (CRS-class), 3
checkCRSArgs_ng (CRS-class), 3
close.SpatialGDAL (SpatialGDAL-class),

49
closeDataset (closeDataset-methods), 3
closeDataset,ANY-method

(closeDataset-methods), 3
closeDataset,GDALReadOnlyDataset-method

(closeDataset-methods), 3
closeDataset,GDALTransientDataset-method

(closeDataset-methods), 3
closeDataset-methods, 3
closeDataset.default

(closeDataset-methods), 3
coerce,GDALReadOnlyDataset,SpatialGridDataFrame-method

(GDALReadOnlyDataset-methods),
17

coerce,SpatialGDAL,SpatialGridDataFrame-method
(SpatialGDAL-class), 49

coerce,SpatialGDAL,SpatialPixelsDataFrame-method
(SpatialGDAL-class), 49

62

INDEX 63

compare_CRS (CRS-class), 3
copy.SpatialGDAL (SpatialGDAL-class), 49
copyDataset (GDALDataset-class), 8
create2GDAL (readGDAL), 32
CRS (CRS-class), 3
CRS-class, 3
CRSargs (CRS-class), 3

deleteDataset (GDALDataset-class), 8
dim,GDALRasterBand-method

(GDALRasterBand-class), 12
dim,GDALReadOnlyDataset-method

(GDALReadOnlyDataset-class), 15
disable_proj_CDN (is_proj_CDN_enabled),

21
displayDataset, 5

enable_proj_CDN (is_proj_CDN_enabled),
21

Encoding, 42, 59
EPSG_version (make_EPSG), 25

flip, 34

GDAL.close (GDALReadOnlyDataset-class),
15

GDAL.open (GDALReadOnlyDataset-class),
15

GDAL_OSR_PROJ (projInfo), 31
GDALcall, 7
GDALDataset-class, 8
GDALDriver-class, 9
gdalDrivers (GDALDriver-class), 9
GDALinfo (readGDAL), 32
GDALis3ormore (projInfo), 31
GDALMajorObject-class, 11
GDALRasterBand-class, 12
GDALReadOnlyDataset-class, 15
GDALReadOnlyDataset-methods, 17
GDALSpatialRef (readGDAL), 32
GDALTransientDataset-class, 18
get_cached_orig_GDAL_DATA

(GDALDriver-class), 9
get_cached_orig_PROJ_LIB

(GDALDriver-class), 9
get_cached_set_GDAL_DATA

(GDALDriver-class), 9
get_cached_set_PROJ_LIB

(GDALDriver-class), 9

get_enforce_xy (spTransform-methods), 51
get_last_coordOp (spTransform-methods),

51
get_OVERRIDE_PROJ_DATUM_WITH_TOWGS84

(GDALRasterBand-class), 12
get_P6_datum_hard_fail (showWKT), 47
get_prefer_proj (showWKT), 47
get_PROJ6_warnings_count (showWKT), 47
get_proj_search_paths

(is_proj_CDN_enabled), 21
get_rgdal_show_exportToProj4_warnings

(showWKT), 47
get_thin_PROJ6_warnings (showWKT), 47
get_transform_wkt_comment

(spTransform-methods), 51
getColorTable

(GDALReadOnlyDataset-class), 15
getCPLConfigOption (GDALDriver-class), 9
getDescription (GDALMajorObject-class),

11
getDriver (GDALReadOnlyDataset-class),

15
getDriverLongName (GDALDriver-class), 9
getDriverName (GDALDriver-class), 9
getGDAL_DATA_Path (GDALDriver-class), 9
getGDALCheckVersion (GDALDriver-class),

9
getGDALDriverNames (GDALDriver-class), 9
getGDALVersionInfo (GDALDriver-class), 9
getGDALwithGEOS (GDALDriver-class), 9
getGeoTransFunc

(GDALReadOnlyDataset-class), 15
getPROJ4libPath (projInfo), 31
getPROJ4VersionInfo (projInfo), 31
getProjectionRef, 33
getProjectionRef

(GDALRasterBand-class), 12
getRasterBand (GDALRasterBand-class), 12
getRasterBlockSize

(GDALRasterBand-class), 12
getRasterData, 17
getRasterData (GDALRasterBand-class), 12
getRasterTable (GDALRasterBand-class),

12
gridlines, 24
GridsDatums, 4, 20, 26
GridTopology-class, 50

iconv, 42, 59

64 INDEX

image, 35
initialize,GDALDataset-method

(GDALDataset-class), 8
initialize,GDALDriver-method

(GDALDriver-class), 9
initialize,GDALRasterBand-method

(GDALRasterBand-class), 12
initialize,GDALReadOnlyDataset-method

(GDALReadOnlyDataset-class), 15
initialize,GDALTransientDataset-method

(GDALTransientDataset-class),
18

is.projected, 25, 48
is_proj_CDN_enabled, 21

list_coordOps, 22
llgridlines, 24

make_EPSG, 25

new_proj_and_gdal (projInfo), 31
nor2k, 26
normalizePath, 8, 15

ogrDrivers, 58
ogrDrivers (readOGR), 38
ogrFIDs (readOGR), 38
ogrInfo (readOGR), 38
ogrListLayers (readOGR), 38
OGRSpatialRef (readOGR), 38
open.SpatialGDAL (SpatialGDAL-class), 49
OSRIsProjected (showWKT), 47

print.coordOps (list_coordOps), 22
print.CRS (CRS-class), 3
print.GDALobj (readGDAL), 32
print.ogrinfo (readOGR), 38
print.summary.SpatialGDAL

(SpatialGDAL-class), 49
proj_CDN_user_writable_dir

(is_proj_CDN_enabled), 21
project, 27
projInfo, 30
PROJis6ormore (projInfo), 31
projNAD (projInfo), 31
putRasterData (GDALDataset-class), 8

rawTransform (GDALcall), 7
readGDAL, 18, 32
readOGR, 38, 60

readShapePoly, 42
RGB2PCT, 44
RGDAL_checkCRSArgs (CRS-class), 3
rgdal_extSoftVersion

(GDALDriver-class), 9

saveDataset, 18
saveDataset (GDALDataset-class), 8
saveDatasetAs, 18
saveDatasetAs (GDALDataset-class), 8
set_enforce_xy (spTransform-methods), 51
set_OVERRIDE_PROJ_DATUM_WITH_TOWGS84

(GDALRasterBand-class), 12
set_P6_datum_hard_fail (showWKT), 47
set_prefer_proj (showWKT), 47
set_proj_search_paths

(is_proj_CDN_enabled), 21
set_rgdal_show_exportToProj4_warnings

(showWKT), 47
set_thin_PROJ6_warnings (showWKT), 47
set_transform_wkt_comment

(spTransform-methods), 51
setCPLConfigOption (GDALDriver-class), 9
SGDF2PCT, 45
show,CRS-method (CRS-class), 3
showEPSG, 4
showEPSG (showWKT), 47
showP4 (showWKT), 47
showSRID (showWKT), 47
showWKT, 47
Spatial-class, 24, 50
SpatialGDAL-class, 49
SpatialGDALWrite-class

(SpatialGDAL-class), 49
SpatialGridDataFrame-class, 33, 34, 51
SpatialPixels-class, 50
SpatialPixelsDataFrame-class, 33
SpatialPoints, 50
SpatialPointsDataFrame-class, 34
spTransform (spTransform-methods), 51
spTransform,SpatialGridDataFrame,CRS-method

(spTransform-methods), 51
spTransform,SpatialLines,CRS-method

(spTransform-methods), 51
spTransform,SpatialLinesDataFrame,CRS-method

(spTransform-methods), 51
spTransform,SpatialPixelsDataFrame,CRS-method

(spTransform-methods), 51

INDEX 65

spTransform,SpatialPoints,CRS-method
(spTransform-methods), 51

spTransform,SpatialPointsDataFrame,CRS-method
(spTransform-methods), 51

spTransform,SpatialPolygons,CRS-method
(spTransform-methods), 51

spTransform,SpatialPolygonsDataFrame,CRS-method
(spTransform-methods), 51

spTransform-methods, 51
spTransform.SpatialLines

(spTransform-methods), 51
spTransform.SpatialLinesDataFrame

(spTransform-methods), 51
spTransform.SpatialPoints

(spTransform-methods), 51
spTransform.SpatialPointsDataFrame

(spTransform-methods), 51
spTransform.SpatialPolygons

(spTransform-methods), 51
spTransform.SpatialPolygonsDataFrame

(spTransform-methods), 51
sub.GDROD

(GDALReadOnlyDataset-methods),
17

summary,SpatialGDAL-method
(SpatialGDAL-class), 49

toSigned (GDALRasterBand-class), 12
toUnSigned (GDALRasterBand-class), 12
type.convert, 40

vec2RGB (SGDF2PCT), 45

writeGDAL (readGDAL), 32
writeOGR, 57

	closeDataset-methods
	CRS-class
	displayDataset
	GDALcall
	GDALDataset-class
	GDALDriver-class
	GDALMajorObject-class
	GDALRasterBand-class
	GDALReadOnlyDataset-class
	GDALReadOnlyDataset-methods
	GDALTransientDataset-class
	GridsDatums
	is_proj_CDN_enabled
	list_coordOps
	llgridlines
	make_EPSG
	nor2k
	project
	projInfo
	readGDAL
	readOGR
	RGB2PCT
	SGDF2PCT
	showWKT
	SpatialGDAL-class
	spTransform-methods
	writeOGR
	Index

