
Package ‘rgl’
November 21, 2021

Version 0.108.3

Title 3D Visualization Using OpenGL

Depends R (>= 3.3.0)

Suggests MASS, rmarkdown, deldir (>= 1.0-4), orientlib, lattice,
misc3d, magick, plotrix (>= 3.7-3), tripack, interp,
alphashape3d, tcltk, js (>= 1.2), akima, webshot2, downlit (>=
0.4.0), pkgdown, extrafont, shiny, manipulateWidget (>= 0.9.0),
testthat, markdown, crosstalk

Imports graphics, grDevices, stats, utils, htmlwidgets, htmltools,
knitr (>= 1.33), jsonlite (>= 0.9.20), magrittr, R6

Enhances waldo

Description Provides medium to high level functions for 3D interactive graphics, including
functions modelled on base graphics (plot3d(), etc.) as well as functions for
constructing representations of geometric objects (cube3d(), etc.). Output
may be on screen using OpenGL, or to various standard 3D file formats including
WebGL, PLY, OBJ, STL as well as 2D image formats, including PNG, Postscript, SVG, PGF.

License GPL

URL https://github.com/dmurdoch/rgl, https://dmurdoch.github.io/rgl/

SystemRequirements OpenGL, GLU Library, XQuartz (on OSX), zlib
(optional), libpng (>=1.2.9, optional), FreeType (optional),
pandoc (>=1.14, needed for vignettes; if not present, markdown
package will be used)

BugReports https://github.com/dmurdoch/rgl/issues

VignetteBuilder knitr

Biarch true

Additional_repositories https://dmurdoch.github.io/drat

RoxygenNote 7.1.2

NeedsCompilation yes

1

https://github.com/dmurdoch/rgl
https://dmurdoch.github.io/rgl/
https://github.com/dmurdoch/rgl/issues
https://dmurdoch.github.io/drat

2 R topics documented:

Author Duncan Murdoch [aut, cre],
Daniel Adler [aut],
Oleg Nenadic [ctb],
Simon Urbanek [ctb],
Ming Chen [ctb],
Albrecht Gebhardt [ctb],
Ben Bolker [ctb],
Gabor Csardi [ctb],
Adam Strzelecki [ctb],
Alexander Senger [ctb],
The R Core Team [ctb, cph],
Dirk Eddelbuettel [ctb],
The authors of Shiny [cph],
The authors of knitr [cph],
Jeroen Ooms [ctb],
Yohann Demont [ctb],
Joshua Ulrich [ctb],
Xavier Fernandez i Marin [ctb],
George Helffrich [ctb],
Ivan Krylov [ctb],
Michael Sumner [ctb]

Maintainer Duncan Murdoch <murdoch.duncan@gmail.com>

Repository CRAN

Date/Publication 2021-11-21 17:40:02 UTC

R topics documented:
rgl-package . 5
.check3d . 6
abclines3d . 7
addNormals . 8
ageControl . 9
ageSetter . 10
all.equal.mesh3d . 12
arc3d . 13
arrow3d . 14
as.mesh3d . 16
as.mesh3d.ashape3d . 18
as.mesh3d.rglId . 20
as.rglscene . 21
as.tmesh3d . 22
as.triangles3d . 23
aspect3d . 24
asRow . 25
axes3d . 26
bg3d . 29
bgplot3d . 31

R topics documented: 3

Buffer . 32
checkDeldir . 37
clipMesh3d . 37
clipplaneControl . 40
contourLines3d . 41
cube3d . 43
cylinder3d . 44
decorate3d . 46
drape3d . 47
elementId2Prefix . 49
ellipse3d . 50
expect_known_scene . 51
extrude3d . 52
facing3d . 53
figWidth . 55
getBoundary3d . 55
GramSchmidt . 56
grid3d . 57
identify3d . 58
import . 59
in_pkgdown_example . 60
light . 60
makeDependency . 62
matrices . 63
merge.mesh3d . 65
mergeVertices . 66
mesh3d . 67
mfrow3d . 69
observer3d . 71
open3d . 72
par3d . 74
par3dinterp . 78
par3dinterpControl . 80
pch3d . 81
persp3d . 82
persp3d.deldir . 85
persp3d.function . 86
persp3d.triSht . 89
planes3d . 91
play3d . 92
playwidget . 95
plot3d . 97
plot3d.formula . 99
plot3d.lm . 101
plotmath3d . 103
points3d . 104
polygon3d . 106
propertyControl . 107

4 R topics documented:

propertySetter . 109
r3d . 110
readSTL . 112
rgl.attrib . 114
rgl.attrib.info . 115
rgl.bbox . 116
rgl.bringtotop . 118
rgl.init . 119
rgl.material . 120
rgl.open . 124
rgl.pixels . 125
rgl.postscript . 126
rgl.select . 128
rgl.setAxisCallback . 129
rgl.setMouseCallbacks . 130
rgl.surface . 132
rgl.Sweave . 134
rgl.texts . 136
rgl.useNULL . 138
rgl.user2window . 139
rglExtrafonts . 140
rglIds . 141
rglMouse . 143
rglShared . 144
rglToLattice . 146
rglwidget . 147
scene . 150
scene3d . 151
sceneChange . 154
select3d . 155
selectpoints3d . 157
setAxisCallbacks . 158
setGraphicsDelay . 160
setupKnitr . 161
setUserCallbacks . 163
setUserShaders . 166
shade3d . 169
shadow3d . 171
shapelist3d . 172
shiny . 174
shinyGetPar3d . 175
show2d . 177
snapshot3d . 179
spheres3d . 181
spin3d . 182
sprites . 183
subdivision3d . 185
subscene3d . 186

rgl-package 5

subsceneInfo . 189
surface3d . 190
tagged3d . 191
text3d . 193
thigmophobe3d . 194
tkpar3dsave . 196
tkrgl . 197
tkspin3d . 197
tkspinControl . 198
toggleWidget . 200
triangulate . 201
turn3d . 202
vertexControl . 203
viewpoint . 205
webGLcontrols . 206
writeASY . 207
writeOBJ . 209
writePLY . 212
writeWebGL . 213

Index 215

rgl-package 3D visualization device system

Description

3D real-time rendering system.

Details

RGL is a 3D real-time rendering system for R. Multiple windows are managed at a time. Windows
may be divided into “subscenes”, where one has the current focus that receives instructions from the
R command-line. The device design is oriented towards the R device metaphor. If you send scene
management instructions, and there’s no device open, it will be opened automatically. Opened
devices automatically get the current device focus. The focus may be changed by using set3d() or
useSubscene3d().

RGL provides medium to high level functions for 3D interactive graphics, including functions mod-
elled on base graphics (plot3d(), etc.) as well as functions for constructing geometric objects
(cube3d(), etc.). Output may be on screen using OpenGL, or to various standard 3D file formats
including WebGL, PLY, OBJ, STL as well as 2D image formats, including PNG, Postscript, SVG,
PGF.

The open3d() function attempts to open a new RGL window, using default settings specified by
the user.

RGL also includes a lower level interface which is described in the rgl.open help topic. We recom-
mend that you avoid mixing rgl.* and *3d calls.

See the first example below to display the ChangeLog.

6 .check3d

See Also

r3d for a description of the *3d interface; par3d for a description of scene properties and the ren-
dering pipeline; rgl.useNULL for a description of how to use RGL on a system with no graphics
support.

Examples

if (!in_pkgdown_example())
file.show(system.file("NEWS", package = "rgl"))

example(surface3d)
example(plot3d)

.check3d Check for an open RGL window.

Description

Mostly for internal use, this function returns the current device number if one exists, or opens a new
device and returns that.

Usage

.check3d()

Value

The device number of an RGL device.

Author(s)

Duncan Murdoch

See Also

open3d

Examples

rgl.dev.list()
.check3d()
rgl.dev.list()
.check3d()
rgl.dev.list()
rgl.close()

abclines3d 7

abclines3d Lines intersecting the bounding box

Description

This adds mathematical lines to a scene. Their intersection with the current bounding box will be
drawn.

Usage

abclines3d(x, y = NULL, z = NULL, a, b = NULL, c = NULL, ...)

Arguments

x, y, z Coordinates of points through which each line passes.

a, b, c Coordinates of the direction vectors for the lines.

... Material properties.

Details

Draws the segment of a line that intersects the current bounding box of the scene using the parametriza-
tion (x, y, z) + (a, b, c) ∗ s where s is a real number.

Any reasonable way of defining the coordinates x,y,z and a,b,c is acceptable. See the function
xyz.coords for details.

Value

A shape ID of the object is returned invisibly.

See Also

planes3d, rgl.planes for mathematical planes.

segments3d draws sections of lines that do not adapt to the bounding box.

Examples

plot3d(rnorm(100), rnorm(100), rnorm(100))
abclines3d(0, 0, 0, a = diag(3), col = "gray")

8 addNormals

addNormals Add normal vectors to objects so they render more smoothly

Description

This generic function adds normals at each of the vertices of a polyhedron by averaging the normals
of each incident face. This has the effect of making the surface of the object appear smooth rather
than faceted when rendered.

Usage

addNormals(x, ...)
S3 method for class 'mesh3d'
addNormals(x, angleWeighted = TRUE, ...)

Arguments

x An object to which to add normals.

... Additional parameters which will be passed to the methods.

angleWeighted See Details below.

Details

Currently methods are supplied for "mesh3d" and "shapelist3d" classes.

These methods work by averaging the normals on the faces incident at each vertex. By default
these are weighted according to the angle in the polygon at that vertex. If angleWeighted = FALSE,
a slightly faster but less accurate weighting by the triangle area is used.

Prior to rgl version 0.104.12 an incorrect weighting was used; it can be partially reproduced by
using angleWeighted = NA, but not all the bugs in that scheme will be kept.

Value

A new object of the same class as x, with normals added.

Author(s)

Duncan Murdoch

Examples

open3d()
y <- subdivision3d(tetrahedron3d(col = "red"), depth = 3)
shade3d(y) # No normals
y <- addNormals(y)
shade3d(translate3d(y, x = 1, y = 0, z = 0)) # With normals

ageControl 9

ageControl Set attributes of vertices based on their age

Description

This is a function to produce actions in response to a playwidget or Shiny input control. The
mental model is that each of the vertices of some object has a certain birth time; a control sets the
current time, so that vertices have ages depending on the control setting. Attributes of those vertices
can then be changed.

Usage

ageControl(births, ages, objids = tagged3d(tags), tags, value = 0,
colors = NULL, alpha = NULL, radii = NULL, vertices = NULL,
normals = NULL, origins = NULL, texcoords = NULL,
x = NULL, y = NULL, z = NULL,
red = NULL, green = NULL, blue = NULL)

Arguments

births Numeric birth times of vertices.

ages Chosen ages at which the following attributes will apply.

objids Object ids to which the changes apply.

tags Alternate way to specify objids. Ignored if objids is given.

value Initial value; typically overridden by input.
colors, alpha, radii, vertices, normals, origins, texcoords

Attributes of the vertices that can be changed. There should be one entry or row
for each entry in ages.

x, y, z, red, green, blue

These one-dimensional components of vertices and colors are provided for con-
venience.

Details

All attributes must have the same number of entries (rows for the matrices) as the ages vector. The
births vector must have the same number of entries as the number of vertices in the object.

Not all objects contain all attributes; if one is chosen that is not a property of the corresponding
object, a Javascript alert() will be generated. (This restriction may be removed in the future by
attempting to add the attribute when it makes sense.)

If a births entry is NA, no change will be made to that vertex.

Value

A list of class "rglControl" of cleaned up parameter values, to be used in an RGL widget.

10 ageSetter

Author(s)

Duncan Murdoch

Examples

saveopts <- options(rgl.useNULL = TRUE)

theta <- seq(0, 4*pi, len=100)
xyz <- cbind(sin(theta), cos(theta), sin(theta/2))
lineid <- plot3d(xyz, type="l", alpha = 0, lwd = 5, col = "blue")["data"]

widget <- rglwidget() %>%
playwidget(ageControl(births = theta,

ages = c(-4*pi, -4*pi, 1-4*pi, 0, 0, 1),
objids = lineid,
alpha = c(0, 1, 0, 0, 1, 0)),

start = 0, stop = 4*pi,
step = 0.1, rate = 4)

if (interactive() || in_pkgdown_example())
widget

options(saveopts)

ageSetter Obsolete function to set WebGL scene properties based on the age of
components of objects

Description

Many RGL shapes contain lists of vertices with various attributes (available via rgl.attrib). This
function modifies the data for those attributes in a WebGL scene.

Usage

ageSetter(births, ages,
colors = NULL, alpha = NULL, radii = NULL,
vertices = NULL, normals = NULL, origins = NULL,
texcoords = NULL,
objids, prefixes = "", digits = 7,
param = seq(floor(min(births)), ceiling(max(births))))

Arguments

births Numeric vector with one value per vertex, used to determine the “age” of the
vertex when displaying it.

ages A non-decreasing sequence of “ages”.
colors, alpha, radii, vertices, normals, origins, texcoords

Attributes of the vertices. Non-NULL attributes will be interpolated from these
values. See the Details section below.

ageSetter 11

objids, prefixes

The object ids and scene prefixes to modify. These are recycled to the same
length.

digits How many digits to output in the generated Javascript code.

param Default values to be used by a slider control calling the generated function.

Details

The vertex attributes are specified as follows:

colors A vector of colors in a format suitable for input to col2rgb

alpha A numeric vector of alpha values between 0 and 1.

radii A numeric vector of sphere radii.

vertices A 3-column matrix of vertex coordinates.

normals A 3-column matrix of vertex normals.

origins A 2-column matrix of origins for text or sprites.

texcoords A 2-column matrix of texture coordinates.

All attributes must have the same number of entries (rows for the matrices) as the ages vector. The
births vector must have the same number of entries as the number of vertices in the object.

Not all objects contain all attributes listed here; if one is chosen that is not a property of the corre-
sponding object, a Javascript alert() will be generated.

Value

A character vector of class c("ageSetter","propertySetter") containing Javascript code defin-
ing a function suitable for use in a propertySlider.

The function takes a single argument, time, and uses it to compute the “age” of vertex i as time
-births[i]. Those are then used with the ages argument to linearly interpolate settings of the
specified attributes. Extrapolation is constant. Repeated values in ages can be used to obtain
discontinuities in the settings.

Author(s)

Duncan Murdoch

See Also

propertySlider; more detailed control is available in vertexSetter.

12 all.equal.mesh3d

all.equal.mesh3d Compare mesh3d objects in a meaningful way.

Description

These functions allow comparison of mesh3d objects, ignoring irrelevant differences.

compare_proxy.mesh3d can function as a compare_proxy method for the waldo package, by strip-
ping out NULL components and ordering other components alphabetically by name.

all.equal.mesh3d compares mesh3d objects by using compare_proxy.mesh3d to standardize
them, then using the regular all.equal function to compare them.

Usage

S3 method for class 'mesh3d'
all.equal(target, current, ...)
compare_proxy.mesh3d(x, path = "x")

Arguments

target, current

Two mesh3d objects to compare.

x A single mesh3d object to standardize.

path The string to use in a waldo display of this object.

... Additional parameters to pass to all.equal.

Value

all.equal.mesh3d returns TRUE, or a character vector describing (some of) the differences.

compare_proxy.mesh3d returns a list containing two components:

object a copy of x with relevant components in alphabetical order.

path a modification of the path label for x

Note

waldo is not an installation requirement for rgl and rgl will never cause it to be loaded. The
compare_proxy.mesh3d function will only be registered as a method for waldo::compare_proxy
if you load waldo before rgl, as would normally happen during testing using testthat, or if you load
it before calling mesh3d, as might happen if you are doing manual tests.

arc3d 13

arc3d Draw arcs

Description

Given starting and ending points on a sphere and the center of the sphere, draw the great circle
arc between the starting and ending points. If the starting and ending points have different radii, a
segment of a logarithmic spiral will join them.

Usage

arc3d(from, to, center, radius, n, circle = 50, base = 0,
plot = TRUE, ...)

Arguments

from One or more points from which to start arcs.

to One or more destination points.

center One or more center points.

radius If not missing, a vector of length n giving the radii at each point between from
and to. If missing, the starting and ending points will be joined by a logarithmic
spiral.

n If not missing, how many segments to use between the first and last point. If
missing, a value will be calculated based on the angle between starting and end-
ing points as seen from the center.

circle How many segments would be used if the arc went completely around a circle.

base See Details below.

plot Should the arcs be plotted, or returned as a matrix?

... Additional parameters to pass to points3d.

Details

If any of from, to or center is an n by 3 matrix with n > 1, multiple arcs will be drawn by recycling
each of these parameters to the number of rows of the longest one.

If the vector lengths of from -center and to -center differ, then instead of a spherical arc, the
function will draw a segment of a logarithmic spiral joining the two points.

By default, the arc is drawn along the shortest great circle path from from to to, but the base
parameter can be used to modify this. If base = 1 is used, the longer arc will be followed. Larger
positive integer values will result in base -1 loops in that direction completely around the sphere.
Negative values will draw the curve in the same direction as the shortest arc, but with abs(base)
full loops. It doesn’t make much sense to ask for such loops unless the radii of from and to differ,
because spherical arcs would overlap. Normally the base parameter is left at its default value of 0.

When base is non-zero, the curve will be constructed in multiple pieces, between from, to, -from
and -to, for as many steps as necessary. If n is specified, it will apply to each of these pieces.

14 arrow3d

Value

If plot = TRUE, called mainly for the side effect of drawing arcs. Invisibly returns the object ID of
the collection of arcs.

If plot = FALSE, returns a 3 column matrix containing the points that would be drawn as the arcs.

Author(s)

Duncan Murdoch

Examples

normalize <- function(v) v/sqrt(sum(v^2))

These vectors all have the same length

from <- t(apply(matrix(rnorm(9), ncol = 3), 1, normalize))
to <- normalize(rnorm(3))
center <- c(0, 0, 0)

open3d()
spheres3d(center, radius = 1, col = "white", alpha = 0.2)

arc3d(from, to, center, col = "red")
arc3d(from, 2*to, center, col = "blue")

text3d(rbind(from, to, center, 2*to),
text = c(paste0("from", 1:3), "to", "center", "2*to"),
depth_mask = FALSE, depth_test = "always")

arrow3d Draw an arrow

Description

Draws various types of arrows in a scene.

Usage

arrow3d(p0 = c(1, 1, 1), p1 = c(0, 0, 0),
barblen, s = 1/3, theta = pi/12,
type = c("extrusion", "lines", "flat", "rotation"),
n = 3, width = 1/3, thickness = 0.618 * width,
spriteOrigin = NULL,
plot = TRUE, ...)

arrow3d 15

Arguments

p0 The base of the arrow.
p1 The head of the arrow.

barblen The length of the barbs (in display coordinates). Default given by s.
s The length of the barbs as a fraction of line length. Ignored if barblen is present.
theta Opening angle of barbs

type Type of arrow to draw. Choose one from the list of defaults. Can be abbreviated.
See below.

n Number of barbs.

width Width of shaft as fraction of barb width.
thickness Thickness of shaft as fraction of barb width.
spriteOrigin If arrow is to be replicated as sprites, the origins relative to which the sprites are

drawn.

plot If TRUE (the default), plot the object; otherwise return the computed data that
would be used to plot it.

... Material properties passed to polygon3d, shade3d or segments3d.

Details

Four types of arrows can be drawn. The shapes of all of them are affected by p0, p1, barblen, s,
theta, material properties in ..., and spriteOrigin. Other parameters only affect some of the
types, as shown.

"extrusion" (default) A 3-dimensional flat arrow, drawn with shade3d. Affected by width,
thickness and smooth.

"lines" Drawn with lines, similar to arrows, drawn with segments3d. Affected by n.

"flat" A flat arrow, drawn with polygon3d. Affected by width and smooth.

"rotation" A solid of rotation, drawn with shade3d. Affected by n and width.

Normally this function draws just one arrow from p0 to p1, but if spriteOrigin is given (in any
form that xyz.coords(spriteOrigin) can handle), arrows will be drawn for each point specified,
with p0 and p1 interpreted relative to those origins. The arrows will be drawn as 3D sprites which
will maintain their orientation as the scene is rotated, so this is a good way to indicate particular
locations of interest in the scene.

Value

If plot = TRUE (the default), this is called mainly for the side effect of drawing the arrow; invisibly
returns the id(s) of the objects drawn.

If plot = FALSE, the data that would be used in the plot (not including material properties) is re-
turned.

Author(s)

Design based on heplots::arrow3d, which contains modifications by Michael Friendly to a func-
tion posted by Barry Rowlingson to R-help on 1/10/2010. Additions by Duncan Murdoch.

16 as.mesh3d

Examples

xyz <- matrix(rnorm(300), ncol = 3)
plot3d(xyz)
arrow3d(xyz[1,], xyz[2,], type = "extrusion", col = "red")
arrow3d(xyz[3,], xyz[4,], type = "flat", col = "blue")
arrow3d(xyz[5,], xyz[6,], type = "rotation", col = "green")
arrow3d(xyz[7,], xyz[8,], type = "lines", col = "black")
arrow3d(spriteOrigin = xyz[9:12,], col = "purple")

as.mesh3d Convert object to mesh object

Description

The as.mesh3d generic function converts various objects to mesh3d objects.

The default method takes takes a matrix of vertices as input and (optionally) merges repeated ver-
tices, producing a mesh3d object as output. It will contain either triangles or quads or segments or
points according to the type argument.

If the generic is called without any argument, it will pass all RGL ids from the current scene to the
as.mesh3d.rglId method.

Usage

as.mesh3d(x, ...)
Default S3 method:
as.mesh3d(x, y = NULL, z = NULL,

type = c("triangles", "quads", "segments", "points"),
smooth = FALSE,
tolerance = sqrt(.Machine$double.eps),
notEqual = NULL,
merge = TRUE,
...,
triangles)

Arguments

x, y, z For the generic, x is the object to convert. For the default method, x, y and z are
coordinates. Any reasonable way of defining the coordinates is acceptable. See
the function xyz.coords for details.

type What type of things should be in the mesh? Tries this list in order until it finds
one that works.

smooth If TRUE, addNormals will be called on the mesh object to make it render smoothly.

tolerance The numerical tolerance to be used in all.equal to determine whether two
vertices should be merged.

as.mesh3d 17

notEqual If not NULL, an n by n matrix of logical values, where n is the number of vertices
as input. TRUE entries indicate that the corresponding pair of vertices should not
be merged even if they appear equal.

merge Should apparently equal vertices be merged?

... Material properties to pass to tmesh3d or qmesh3d.

triangles Deprecated. If present, TRUE indicates type = "triangles" and FALSE indicates
type = "quads".

Details

The motivation for this function is the following problem: I was asked whether RGL could render
a surface made up of triangles or quadrilaterals to look smooth. It can do that, but needs normals at
each vertex; they should be the average of the normals for each polygon sharing that vertex. Then
OpenGL will interpolate the normals across the polygons and give the illusion of smoothness.

To do this, it needs to know which polygons share each vertex. If the surface is described as a
list of triangles or quadrilaterals, that means identifying vertices that are in multiple polygons, and
converting the representation to a "mesh3d" object (which is a matrix of vertices and a matrix of
vertex numbers making up triangles or quads). Then the addNormals function will add the normals.

Sometimes two polygons will share vertices (within numerical tolerance) without the user wanting
them to be considered internal to the surface, or might want one sharp edge in an otherwise smooth
surface. This means I needed a way to declare that two vertices from the original list of vertices
in the triangles or quads are "not equal", even when they test numerically equal. That’s what the
notEqual matrix specifies.

Value

A "mesh3d" object with the same faces as in the input, but (if merge=TRUE) with vertices that test
equal to within tolerance merged.

Author(s)

Duncan Murdoch

Examples

xyz <- matrix(c(-1, -1, -1,
-1, 1, -1,
1, 1, -1,
1, -1, -1,

-1, 1, -1,
-1, 1, 1,
1, 1, 1,
1, 1, -1,
1, -1, -1,
1, 1, -1,
1, 1, 1,
1, -1, 1), byrow = TRUE, ncol = 3)

mesh <- as.mesh3d(xyz, type = "quads", col = "red")
mesh$vb

18 as.mesh3d.ashape3d

mesh$ib
open3d()
shade3d(mesh)

Stop vertices 2 and 5 from being merged
notEQ <- matrix(FALSE, 12, 12)
notEQ[2, 5] <- TRUE
mesh <- as.mesh3d(xyz, type = "quads", notEqual = notEQ)
mesh$vb
mesh$ib

as.mesh3d.ashape3d Convert alpha-shape surface of a cloud of points to RGL mesh object

Description

The alphashape3d::ashape3d function computes the 3D α-shape of a cloud of points. This is an
approximation to the visual outline of the cloud. It may include isolated points, line segments, and
triangular faces: this function converts the triangular faces to an RGL tmesh3d object.

Usage

S3 method for class 'ashape3d'
as.mesh3d(x,

alpha = x$alpha[1],
tri_to_keep = 2L,
col = "gray",
smooth = FALSE, normals = NULL,
texcoords = NULL, ...)

Arguments

x An object of class "ashape3d".

alpha Which alpha value stored in x should be converted?

tri_to_keep Which triangles to keep. Expert use only: see triang entry in Value section of
ashape3d for details.

col The surface colour.

smooth Whether to attempt to add normals to make the surface look smooth. See the
Details below.

normals, texcoords

Normals and texture coordinates at each vertex can be specified.

... Additional arguments to pass to use as material3d properties on the resulting
mesh.

as.mesh3d.ashape3d 19

Details

Edelsbrunner and Mucke’s (1994) α-shape algorithm is intended to compute a surface of a gen-
eral cloud of points. Unlike the convex hull, the cloud may have voids, isolated points, and other
oddities. This function is designed to work in the case where the surface is made up of simple
polygons.

If smooth = TRUE, this method attempts to orient all of the triangles in the surface consistently and
add normals at each vertex by averaging the triangle normals. However, for some point clouds, the
α-shape will contain sheets of polygons with a few solid polyhedra embedded. This does not allow a
consistent definition of "inside" and outside. If this is detected, a warning is issued and the resulting
mesh will likely contain boundaries where the assumed orientation of triangles changes, resulting in
ugly dark lines through the shape. Larger values of alpha in the call to alphashape3d::ashape3d
may help.

Methods for plot3d and persp3d are also defined: they call the as.mesh3d method and then plot
the result.

Value

A "mesh3d" object, suitable for plotting.

Author(s)

Duncan Murdoch

References

Edelsbrunner, H., Mucke, E. P. (1994). Three-Dimensional Alpha Shapes. ACM Transactions on
Graphics, 13(1), pp.43-72.

Lafarge, T. and Pateiro-Lopez, B. (2017). alphashape3d: Implementation of the 3D Alpha-Shape
for the Reconstruction of 3D Sets from a Point Cloud. R package version 1.3.

Examples

if (requireNamespace("alphashape3d", quietly = TRUE)) {
set.seed(123)
n <- 400 # 1000 gives a nicer result, but takes longer
xyz <- rbind(cbind(runif(n), runif(n), runif(n)),

cbind(runif(n/8, 1, 1.5),
runif(n/8, 0.25, 0.75),
runif(n/8, 0.25, 0.75)))

ash <- suppressMessages(alphashape3d::ashape3d(xyz, alpha = 0.2))
m <- as.mesh3d(ash, smooth = TRUE)
open3d()
mfrow3d(1, 2, sharedMouse = TRUE)
plot3d(xyz, size = 1)
plot3d(m, col = "red", alpha = 0.5)
points3d(xyz, size = 1)

}

20 as.mesh3d.rglId

as.mesh3d.rglId Convert object in plot to RGL mesh object

Description

This method attempts to read the attributes of objects in the rgl display and construct a mesh3d
object to approximate them.

Usage

S3 method for class 'rglId'
as.mesh3d(x, type = NA, subscene = NA, ...)

Arguments

x A vector of RGL identifiers of objects in the specified subscene.

type A vector of names of types of shapes to convert. Other shapes will be ignored.

subscene Which subscene to look in; the default NA specifies the current subscene.

... Ignored.

Details

This function attempts to construct a triangle mesh to approximate one or more objects from the cur-
rent display. It can handle objects of types from c("points","lines","linestrip","triangles","quads","planes","surface").

Since this method only produces meshes containing points, segments and triangles, they won’t
necessarily be an exact match to the original object.

If the generic as.mesh3d is called with no x argument, this method will be called with x set to the
ids in the current scene.

Value

A mesh object.

Author(s)

Duncan Murdoch

See Also

as.triangles3d.rglId for extracting the triangles, clipMesh3d to apply complex clipping to a
mesh object.

as.rglscene 21

Examples

volcano example taken from "persp"
#
data(volcano)

z <- 2 * volcano # Exaggerate the relief

x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

zlim <- range(y)
zlen <- zlim[2] - zlim[1] + 1

colorlut <- terrain.colors(zlen) # height color lookup table

col <- colorlut[z - zlim[1] + 1] # assign colors to heights for each point

open3d(useNULL = TRUE)
surface3d(x, y, z, color = col)
m <- as.mesh3d()
close3d()

open3d()
shade3d(m)

as.rglscene Convert an object to an rglscene object.

Description

This is a placeholder generic function, to allow other packages to create "rglscene" objects com-
patible with the objects produced by scene3d.

No methods are currently defined in rgl.

Usage

as.rglscene(x, ...)

Arguments

x Object to convert.

... Other parameters to pass to methods.

22 as.tmesh3d

as.tmesh3d Convert object to a triangular mesh

Description

Converts the quads in a mesh version of an object to triangles by splitting them up. Optionally drops
any point or segment components.

Usage

as.tmesh3d(x, ...)
Default S3 method:
as.tmesh3d(x, drop = FALSE, ...)
S3 method for class 'mesh3d'
as.tmesh3d(x, drop = FALSE, ...)

Arguments

x An object from which to create a triangular mesh object.

drop If TRUE, drop any point or segment components.

... Ignored in the mesh3d method, passed to as.mesh3d in the default method.

Details

The default method simply calls as.mesh3d(x,...) and passes the result to the "mesh3d" method.

Value

A "mesh3d" object containing no quads. If drop = TRUE, it will only contain triangles.

Note

Older versions of rgl had a "tmesh3d" class for meshes of triangles. That class is no longer used:
as.tmesh3d and tmesh3d both produce "mesh3d" objects.

Author(s)

Duncan Murdoch

See Also

as.triangles3d to get just the coordinates.

Examples

x <- cuboctahedron3d()
x # has quads and triangles
as.tmesh3d(x) # has only triangles

as.triangles3d 23

as.triangles3d Convert an object to triangles

Description

This generic and its methods extract or creates a matrix of coordinates of triangles from an object,
suitable for passing to triangles3d.

Usage

as.triangles3d(obj, ...)
S3 method for class 'rglId'
as.triangles3d(obj,

attribute = c("vertices", "normals", "texcoords", "colors"),
subscene = NA,
...)

Arguments

obj The object to convert.

attribute Which attribute of an RGL object to extract?

subscene Which subscene is this object in?

... Additional arguments used by the methods.

Details

The method for "rglId" objects can extract several different attributes, organizing them as it would
organize the vertices for the triangles.

Value

An n x 3 matrix containing the vertices of triangles making up the object. Each successive 3 rows
of the matrix corresponds to a triangle.

If the attribute doesn’t exist, NULL will be returned.

Author(s)

Duncan Murdoch

See Also

as.mesh3d to also capture material properties.

24 aspect3d

Examples

open3d()
x <- surface3d(x = 1:10, y = 1:10, z = rnorm(100), col = "red")
tri <- as.triangles3d(x)
open3d()
triangles3d(tri, col = "blue")

aspect3d Set the aspect ratios of the current plot

Description

This function sets the apparent ratios of the x, y, and z axes of the current bounding box.

Usage

aspect3d(x, y = NULL, z = NULL)

Arguments

x The ratio for the x axis, or all three ratios, or "iso"

y The ratio for the y axis

z The ratio for the z axis

Details

If the ratios are all 1, the bounding box will be displayed as a cube approximately filling the display.
Values may be set larger or smaller as desired. Aspect "iso" signifies that the coordinates should
all be displayed at the same scale, i.e. the bounding box should not be rescaled. (This corresponds
to the default display before aspect3d has been called.) Partial matches to "iso" are allowed.

aspect3d works by modifying par3d("scale").

Value

The previous value of the scale is returned invisibly.

Author(s)

Duncan Murdoch

See Also

plot3d, par3d

asRow 25

Examples

x <- rnorm(100)
y <- rnorm(100)*2
z <- rnorm(100)*3

open3d()
plot3d(x, y, z)
aspect3d(1, 1, 0.5)
highlevel() # To trigger display
open3d()
plot3d(x, y, z)
aspect3d("iso")
highlevel()

asRow Convenience functions for RGL HTML layouts

Description

The asRow function arranges objects in a row in the display; the getWidgetId function extracts the
HTML element ID from an HTML widget.

Usage

asRow(..., last = NA, height = NULL, colsize = 1)
getWidgetId(widget)

Arguments

... Either a single "combineWidgets" object produced by asRow or a %>% pipe of
RGL objects, or several objects intended for rearrangement.

last If not NA, the number of objects from ... that are to be arranged in a row. Earlier
ones will remain in a column.

height An optional height for the resulting row. This is normally specified in pixels, but
will be rescaled as necessary to fit the display.

colsize A vector of relative widths for the columns in the row.

widget A single HTML widget from which to extract the HTML element ID.

Details

Using asRow requires that the manipulateWidget package is installed.

asRow produces a "combineWidgets" object which is a single column whose last element is another
"combineWidgets" object which is a single row.

If n objects are given as input and last is given a value less than n, the first n -last objects will be
displayed in a column above the row containing the last objects.

26 axes3d

Value

asRow returns a single "combineWidgets" object suitable for display or nesting within a more
complicated display.

getWidgetId returns a character string containing the HTML element ID of the widget.

Author(s)

Duncan Murdoch

See Also

pipe for the %>% operator.

Examples

if (requireNamespace("manipulateWidget", quietly = TRUE) &&
require("crosstalk", quietly = TRUE)) {

sd <- SharedData$new(mtcars)
ids <- plot3d(sd$origData(), col = mtcars$cyl, type = "s")
Copy the key and group from existing shared data
rglsd <- rglShared(ids["data"], key = sd$key(), group = sd$groupName())
w <- rglwidget(shared = rglsd) %>%

asRow("Mouse mode: ", rglMouse(getWidgetId(.)),
"Subset: ", filter_checkbox("cylinderselector",

"Cylinders", sd, ~ cyl, inline = TRUE),
last = 4, colsize = c(1,2,1,2), height = 60)

if (interactive() || in_pkgdown_example())
w

}

axes3d Draw boxes, axes and other text outside the data

Description

These functions draw axes, boxes and text outside the range of the data. axes3d, box3d and title3d
are the higher level functions; normally the others need not be called directly by users.

Usage

axes3d(edges = "bbox", labels = TRUE, tick = TRUE, nticks = 5,
box = FALSE, expand = 1.03, ...)
box3d(...)
title3d(main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
zlab = NULL, line = NA, level = NA, floating = NULL, ...)
axis3d(edge, at = NULL, labels = TRUE, tick = TRUE, line = 0,
pos = NULL, nticks = 5, ...)
mtext3d(text, edge, at = NULL, line = 0, level = 0,

floating = FALSE, pos = NA, ...)

axes3d 27

Arguments

edges a code to describe which edge(s) of the box to use; see Details below

labels whether to label the axes, or (for axis3d) the labels to use

tick whether to use tick marks

nticks suggested number of ticks

box draw the full box if "bbox" axes are used

expand how much to expand the box around the data

main the main title for the plot

sub the subtitle for the plot
xlab, ylab, zlab

the axis labels for the plot

line, level the "line" of the plot margin to draw the label on, and "level" above or below it

floating which mode of axis labels? One of TRUE, FALSE or NA. (NULL may also be used
in title3d calls). See Details for how these are handled.

edge, pos the position at which to draw the axis or text

text the text to draw

at the value of a coordinate at which to draw the axis or labels.

... additional parameters which are passed to bbox3d or material3d

Details

The rectangular prism holding the 3D plot has 12 edges. They are identified using 3 character
strings. The first character (‘x’, ‘y’, or ‘z’) selects the direction of the axis. The next two char-
acters are each ‘-’ or ‘+’, selecting the lower or upper end of one of the other coordinates. If
only one or two characters are given, the remaining characters normally default to ‘-’ (but with
mtext3d(...,floating = TRUE) the default is ‘+’; see below). For example edge = 'x+' draws
an x-axis at the high level of y and the low level of z.

By default, axes3d uses the bbox3d function to draw the axes. The labels will move so that they
do not obscure the data. Alternatively, a vector of arguments as described above may be used, in
which case fixed axes are drawn using axis3d.

As of rgl version 0.106.21, axis drawing has changed significantly. Text drawn in the margins will
adapt to the margins (see bbox3d). The edge and floating parameters will be recorded in the
margin and floating material properties for the object.

If floating = FALSE, they will be drawn on the specified edge.

If floating = TRUE, they will move as the axis labels move when the scene is rotated. The signs
on the edge specification are interpreted as agreeing with the axis ticks ‘+’ or disagreeing ‘-’. For
example, "x++" will draw text on the x axis in the same edge as the ticks, while "x--" will draw on
the opposite edge.

The final possible value for floating in mtext3d is NA, which reproduces legacy rgl behaviour. In
this case the labels are not tied to the bounding box, so they should be drawn last, or they could
appear inside the box, overlapping the data.

28 axes3d

In title3d floating = NULL (the default) indicates the main title and subtitle will be fixed while
the axis labels will be floating. The default locations for title and subtitle are line = 2 and level
= 2 on edges "x++" and "x--" respectively. The axis labels float at line = 4 and level = 1 on the
same edge as the ticks.

The at parameter in axis3d is the location of the ticks, defaulting to pretty locations. In mtext3d
the at parameter is the location on the specified axis at which to draw the text, defaulting to the
middle of the bounding box.

The line parameter is the line counting out from the box in the same direction as the axis ticks, and
level is the line out in the orthogonal direction. The ticks run from line = 0 to line = 1, and the
tick labels are drawn at line = 2. Both are drawn at level 0.

The pos parameter is only supported in legacy mode. If it is a numeric vector of length 3, edge
determines the direction of the axis and the tick marks, and the values of the other two coordinates
in pos determine the position. The level parameter is ignored in legacy mode.

For mtext3d in floating = TRUE or floating = FALSE mode, there are 3 special values for the at
parameter: it may be -Inf, NA or +Inf, referring to the bottom, middle or top of the given axis
respectively.

Value

These functions are called for their side effects. They return the object IDs of objects added to the
scene.

Note

mtext3d is a wrapper for text3d that sets the margin and floating material properties. In fact,
these properties can be set for many kinds of objects (most kinds where it would make sense), with
the effect that the object will be drawn in the margin, with x coordinate corresponding to at, y
corresponding to line, and z corresponding to level.

Author(s)

Duncan Murdoch

See Also

Classic graphics functions axis, box, title, mtext, and RGL function bbox3d.

Examples

open3d()
points3d(rnorm(10), rnorm(10), rnorm(10))

First add standard axes
axes3d()

and one in the middle (the NA will be ignored, a number would
do as well)
axis3d('x', pos = c(NA, 0, 0))

bg3d 29

add titles
title3d('main', 'sub', 'xlab', 'ylab', 'zlab')

rgl.bringtotop()

open3d()
points3d(rnorm(10), rnorm(10), rnorm(10))

Use fixed axes

axes3d(c('x', 'y', 'z'))

Put 4 x-axes on the plot
axes3d(c('x--', 'x-+', 'x+-', 'x++'))

axis3d('x', pos = c(NA, 0, 0))
title3d('main', 'sub', 'xlab', 'ylab', 'zlab')

bg3d Set up background

Description

Set up the background of the scene.

Usage

bg3d(...)
rgl.bg(sphere = FALSE, fogtype = "none", color = c("black", "white"),
back = "lines", fogScale = 1, ...)

Arguments

fogtype fog type:

"none" no fog
"linear" linear fog function
"exp" exponential fog function
"exp2" squared exponential fog function

Fog only applies to objects with material3d property fog set to TRUE.

sphere logical, if true, an environmental sphere geometry is used for the background
decoration.

color Primary color is used for background clearing and as fog color. Secondary color
is used for background sphere geometry. See material3d for details.

back Specifies the fill style of the sphere geometry. See material3d for details.

fogScale Scaling for fog. See Details.

... Material properties. See material3d for details.

30 bg3d

Details

If sphere is set to TRUE, an environmental sphere enclosing the whole scene is drawn.

If not, but the material properties include a bitmap as a texture, the bitmap is drawn in the back-
ground of the scene. (The bitmap colors modify the general color setting.)

If neither a sphere nor a bitmap background is drawn, the background is filled with a solid color.

The fogScale parameter should be a positive value to change the density of the fog in the plot. For
fogtype = "linear" it multiplies the density of the fog; for the exponential fog types it multiplies
the density parameter used in the display.

See the OpenGL 2.1 reference for the formulas used in the fog calculations within R (though the
"exp2" formula appears to be wrong, at least on my system). In WebGL displays, the following
rules are used. They appear to match the rules used in R on my system.

• For "linear" fog, the near clipping plane is taken as c = 0, and the far clipping plane is taken
as c = 1. The amount of fog is s ∗ c clamped to a 0 to 1 range, where s = fogScale.

• For "exp" and "exp2" fog, the observer location is negative at a distance depending on the
field of view. The formula for the distance is

c = [1− sin(theta)]/[1 + sin(theta)]

where theta = FOV/2. We calculate

c′ = d(1− c) + c

so c′ runs from 0 at the observer to 1 at the far clipping plane.

• For "exp" fog, the amount of fog is 1− exp(−s ∗ c′).
• For "exp2" fog, the amount of fog is 1− exp[−(s ∗ c′)2].

See Also

material3d, bgplot3d to add a 2D plot as background.

Examples

open3d()

a simple white background

bg3d("white")

the holo-globe (inspired by star trek):

bg3d(sphere = TRUE, color = c("black", "green"), lit = FALSE, back = "lines")

an environmental sphere with a nice texture.

bg3d(sphere = TRUE, texture = system.file("textures/sunsleep.png", package = "rgl"),
back = "filled")

The same texture as a fixed background

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glFog.xml

bgplot3d 31

open3d()
bg3d(texture = system.file("textures/sunsleep.png", package = "rgl"), col = "white")

bgplot3d Use base graphics for RGL background

Description

Add a 2D plot or a legend in the background of an RGL window.

Usage

bgplot3d(expression, bg.color = getr3dDefaults("bg", "color"),
magnify = 1, ...)

legend3d(...)

Arguments

expression Any plotting commands to produce a plot.

bg.color The color to use for the background.

magnify Multiplicative factor to apply to size of window when producing background
plot.

... For legend3d, arguments to pass to bgplot3d or legend; for bgplot3d, argu-
ments to pass to bg3d.

Details

The bgplot3d function opens a png device and executes expression, producing a plot there. This
plot is then used as a bitmap background for the current RGL subscene.

The legend3d function draws a standard 2D legend to the background of the current subscene by
calling bgplot3d to open a device, and setting up a plot region there to fill the whole display.

Value

The bgplot3d function invisibly returns the ID of the background object that was created, with
attribute "value" holding the value returned when the expression was evaluated.

The legend3d function does similarly. The "value" attribute is the result of the call to legend.
The scaling of the coordinates runs from 0 to 1 in X and Y.

Note

Because the background plots are drawn as bitmaps, they do not resize very gracefully. It’s best to
size your window first, then draw the background at that size.

32 Buffer

Author(s)

Duncan Murdoch

See Also

bg3d for other background options.

Examples

x <- rnorm(100)
y <- rnorm(100)
z <- rnorm(100)
open3d()
Needs to be a bigger window than the default
par3d(windowRect = c(100, 100, 612, 612))
parent <- currentSubscene3d()
mfrow3d(2, 2)
plot3d(x, y, z)
next3d(reuse = FALSE)
bgplot3d(plot(y, z))
next3d(reuse = FALSE)
bgplot3d(plot(x, z))
next3d(reuse = FALSE)
legend3d("center", c("2D Points", "3D Points"), pch = c(1, 16))
useSubscene3d(parent)

Buffer R6 Class for binary buffers in glTF files.

Description

These files typically have one buffer holding all the binary data for a scene.

Methods

Public methods:
• Buffer$new()

• Buffer$load()

• Buffer$saveOpenBuffer()

• Buffer$getBuffer()

• Buffer$setBuffer()

• Buffer$openBuffer()

• Buffer$writeBuffer()

• Buffer$closeBuffer()

• Buffer$closeBuffers()

• Buffer$getBufferview()

Buffer 33

• Buffer$addBufferView()

• Buffer$openBufferview()

• Buffer$setBufferview()

• Buffer$getAccessor()

• Buffer$setAccessor()

• Buffer$readAccessor()

• Buffer$addAccessor()

• Buffer$dataURI()

• Buffer$as.list()

• Buffer$clone()

Method new():
Usage:
Buffer$new(json = NULL, binfile = NULL)

Arguments:
json list read from glTF file.
binfile optional External binary filename, or raw vector

Method load(): Load from file.

Usage:
Buffer$load(uri, buf = 0)

Arguments:
uri Which file to load.
buf Which buffer number to load.

Method saveOpenBuffer(): Write open buffer to connection.

Usage:
Buffer$saveOpenBuffer(con, buf = 0)

Arguments:
con Output connection.
buf Buffer number.

Method getBuffer(): Get buffer object.

Usage:
Buffer$getBuffer(buf, default = list(byteLength = 0))

Arguments:
buf Buffer number.
default Default buffer object if ‘buf‘ not found.

Returns: A list containing components described here: https://www.khronos.org/registry/
glTF/specs/2.0/glTF-2.0.html#reference-buffer.

Method setBuffer(): Set buffer object.

Usage:

https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#reference-buffer
https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#reference-buffer

34 Buffer

Buffer$setBuffer(buf, buffer)

Arguments:
buf Buffer number.
buffer New value to insert.

Method openBuffer(): Open a connection for the data in a buffer.

Usage:
Buffer$openBuffer(buf)

Arguments:
buf Buffer number.

Returns: An open binary connection.

Method writeBuffer(): Write data to buffer.

Usage:
Buffer$writeBuffer(values, type, size, buf = 0)

Arguments:
values Values to write.
type Type to write.
size Byte size of each value.
buf Which buffer to write to.

Returns: Byte offset of start of bytes written.

Method closeBuffer(): Close the connection in a buffer.
If there was a connection open, this will save the contents in the raw vector ‘bytes‘ within the
buffer object.

Usage:
Buffer$closeBuffer(buf)

Arguments:
buf The buffer number.

Method closeBuffers(): Close any open buffers.
Call this after working with a GLTF file to avoid warnings from R about closing unused connec-
tions.

Usage:
Buffer$closeBuffers()

Method getBufferview(): Get bufferView object.

Usage:
Buffer$getBufferview(bufv)

Arguments:
bufv bufferView number.

Returns: A list containing components described here: https://www.khronos.org/registry/
glTF/specs/2.0/glTF-2.0.html#reference-bufferview.

https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#reference-bufferview
https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#reference-bufferview

Buffer 35

Method addBufferView(): Add a new buffer view.

Usage:
Buffer$addBufferView(values, type, size, target = NULL, buf = 0)

Arguments:
values Values to put in the view.
type Type of values.
size Size of values in bytes.
target Optional target use for values.
buf Which buffer to write to.

Returns: New bufferView number.

Method openBufferview(): Open a connecton to a buffer view.

Usage:
Buffer$openBufferview(bufv)

Arguments:
bufv Which bufferView.

Returns: A connection.

Method setBufferview(): Set bufferView object.

Usage:
Buffer$setBufferview(bufv, bufferView)

Arguments:
bufv bufferView number.
bufferView New value to insert.

Method getAccessor(): Get accessor object

Usage:
Buffer$getAccessor(acc)

Arguments:
acc Accessor number

Returns: A list containing components described here: https://www.khronos.org/registry/
glTF/specs/2.0/glTF-2.0.html#reference-accessor

Method setAccessor(): Set accessor object.

Usage:
Buffer$setAccessor(acc, accessor)

Arguments:
acc Accessor number.
accessor New value to insert.

Method readAccessor(): Read data given by accessor object.

Usage:

https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#reference-accessor
https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#reference-accessor

36 Buffer

Buffer$readAccessor(acc)

Arguments:

acc Accessor number.

Returns: A vector or array as specified in the accessor.

Method addAccessor(): Write values to accessor, not including ‘min‘ and ‘max‘.

Usage:

Buffer$addAccessor(values, target = NULL, useDouble = FALSE)

Arguments:

values Values to write.

target Optional target use for values.

useDouble Whether to write doubles or singles.

glTF Whether this is for glTF use.

Returns: New accessor number

Method dataURI(): Convert buffer to data URI.

Usage:

Buffer$dataURI(buf = 0)

Arguments:

buf Buffer to convert.

Returns: String containing data URI.

Method as.list(): Convert to list.

Usage:

Buffer$as.list()

Returns: List suitable for writing using JSON.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Buffer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

checkDeldir 37

checkDeldir Check for a compatible version of deldir

Description

Version 1.0-2 of deldir is not compatible with rgl. This allows code to avoid trying to call it.

Usage

checkDeldir(error = FALSE)

Arguments

error If TRUE, stop with an error.

Value

Returns TRUE if deldir is available in a compatible version.

Examples

checkDeldir()

clipMesh3d Clip mesh or RGL object to general region

Description

Modifies a mesh3d object so that values of a function are bounded.

Usage

clipMesh3d(mesh, fn, bound = 0, greater = TRUE,
minVertices = 0, plot = FALSE, keepValues = FALSE)

clipObj3d(ids = tagged3d(tags), fn, bound = 0, greater = TRUE,
minVertices = 0,
replace = TRUE, tags)

Arguments

mesh A mesh3d object.

fn A function used to determine clipping, or a vector of values from such a function,
with one value per vertex.

bound The value(s) of fn on the clipping boundary.

greater Logical; whether to keep fn >= bound or not.

38 clipMesh3d

minVertices See Details below.

plot Logical; whether or not to plot the mesh.

keepValues Logical; whether to save the function values at each vertex when plot = FALSE.

ids The RGL id value(s) of objects to clip.

tags Alternate way to specify ids. Ignored if ids is given.

replace Should the ids objects be deleted after the clipped ones are drawn?

Details

These functions transform a mesh3d object or other RGL objects by removing parts where fn
violates the bound.

For clipMesh3d the fn argument can be any of the following:

• a character vector naming a function (with special names "x", "y", and "z" corresponding to
functions returning those coordinates)

• a function

• a numeric vector with one value per vertex

• NULL, indicating that the numeric values are saved in mesh$values

For clipObj3d any of the above except NULL may be used.

If fn is a numeric vector, with one value per vertex, those values will be used in the test. If it is
a function with formal arguments x, y and z, it will receive the coordinates of vertices in those
arguments, otherwise it will receive the coordinates in a single n x 3 matrix. The function should
be vectorized and return one value per vertex, to check against the bound.

These operations are performed on the mesh:

First, all quads are converted to triangles.

Next, each vertex is checked against the condition.

Modifications to triangles depend on how many of the vertices satisfy the condition (fn >= bound
or fn <= bound, depending on greater) for inclusion.

• If no vertices in a triangle satisfy the condition, the triangle is omitted.

• If one vertex satisfies the condition, the other two vertices in that triangle are shrunk towards
it by assuming fn is locally linear.

• If two vertices satisfy the condition, the third vertex is shrunk along each edge towards each
other vertex, forming a quadrilateral made of two new triangles.

• If all vertices satisfy the condition, they are included with no modifications.

Modifications to line segments are similar: the segment will be shortened if it crosses the boundary,
or omitted if it is entirely out of bounds. Points, spheres, text and sprites will just be kept or rejected.

The minVertices argument is used to improve the approximation to the boundary when fn is a non-
linear function. In that case, the interpolation described above can be inaccurate. If minVertices
is set to a positive number (e.g. 10000), then each object is modified by subdivision to have at least
that number of vertices, so that pieces are smaller and the linear interpolation is more accurate. In
the clipObj3d function, minVertices can be a vector, with entries corresponding to each of the
entries in ids.

clipMesh3d 39

Value

If plot = FALSE, clipMesh3d returns new mesh3d object in which all vertices (approximately) sat-
isfy the clipping condition. Note that the order of vertices will likely differ from the original order,
and new vertices will be added near the boundary (and if minVertices > 0, in the interior). If in
addition keepValues = TRUE, a component named "values" will be added to the mesh containing
the values for each vertex.

If plot = TRUE, the result will be plotted with shade3d and its result returned.

clipObj3d is called for the side effect of modifying the scene. It returns a list of new RGL id values
corresponding to the ids passed as arguments.

Author(s)

Duncan Murdoch

References

See https://stackoverflow.com/q/56242470/2554330 for a motivating example.

See Also

See contourLines3d and filledContour3d for ways to display function values without clipping.

Examples

Show the problem that minVertices solves:

cube <- cube3d(col = "red")

This function only has one argument, so it will
be passed x, y and z in columns of a matrix
vecnorm <- function(vals) apply(vals, 1, function(row) sqrt(sum(row^2)))

open3d()
mfrow3d(2, 2, sharedMouse = TRUE)
id1 <- shade3d(cube)
All vertices have norm sqrt(3), so this clips nothing:
clipObj3d(id1, fn = vecnorm, bound = sqrt(2))
next3d()
id2 <- wire3d(cube, lit = FALSE)
clipObj3d(id2, fn = vecnorm, bound = sqrt(2))

This subdivides the cube, and does proper clipping:
next3d()
id3 <- shade3d(cube)
clipObj3d(id3, fn = vecnorm, bound = sqrt(2), minVertices = 200)
next3d()
id4 <- wire3d(cube, lit = FALSE)
clipObj3d(id4, fn = vecnorm, bound = sqrt(2), minVertices = 200)

https://stackoverflow.com/q/56242470/2554330

40 clipplaneControl

clipplaneControl Sets attributes of a clipping plane

Description

This is a function to produce actions in a web display. A playwidget or Shiny input control (e.g. a
sliderInput control) sets a value which controls attributes of one or more clipping planes.

Usage

clipplaneControl(a = NULL, b = NULL, c = NULL, d = NULL,
plane = 1, clipplaneids = tagged3d(tag), tag, ...)

Arguments

a, b, c, d Parameter values for the clipping planes.

plane Which plane in the clipplane object?

clipplaneids The id of the clipplane object.

tag Select clipplane with matching tag. Ignored if clipplaneid is specified.

... Other parameters passed to propertyControl.

Value

A list of class "rglControl" of cleaned up parameter values, to be used in an RGL widget.

Author(s)

Duncan Murdoch

Examples

open3d()
saveopts <- options(rgl.useNULL = TRUE)
xyz <- matrix(rnorm(300), ncol = 3)
id <- plot3d(xyz, type="s", col = "blue", zlim = c(-3,3))["clipplanes"]
dvals <- c(3, -3)
widget <- rglwidget() %>%

playwidget(clipplaneControl(d = dvals, clipplaneids = id),
start = 0, stop = 1, step = 0.01,
rate = 0.5)

if (interactive() || in_pkgdown_example())
widget

options(saveopts)

contourLines3d 41

contourLines3d Draw contours on a surface

Description

contourLines3d draws contour lines on a surface; filledContour3d draws filled contours on it.

Usage

contourLines3d(obj, ...)
S3 method for class 'rglId'
contourLines3d(obj, ...)
S3 method for class 'mesh3d'
contourLines3d(obj, fn = "z",

nlevels = 10,
levels = NULL,
minVertices = 0,
plot = TRUE, ...)

filledContour3d(obj, ...)
S3 method for class 'rglId'
filledContour3d(obj, plot = TRUE, replace = plot, ...)
S3 method for class 'mesh3d'
filledContour3d(obj, fn = "z",

nlevels = 20,
levels = pretty(range(values), nlevels),
color.palette = function(n) hcl.colors(n, "YlOrRd", rev = TRUE),
col = color.palette(length(levels) - 1),
minVertices = 0,
plot = TRUE,
keepValues = FALSE, ...)

Arguments

obj The object(s) on which to draw contour lines.
fn The function(s) to be contoured. See Details.
nlevels Suggested number of contour levels if levels is not given.
levels Specified contour values.
minVertices See Details below.
plot Whether to draw the lines or return them in a dataframe.
... For the "mesh3d" methods, additional parameters to pass to segments3d when

drawing the contour lines or to shade3d when drawing the filled contours. For
the "rglId" methods, additional parameters to pass to the "mesh3d" methods.

replace Whether to delete the objects that are being contoured.
color.palette a color palette function to assign colors in the plot
col the actual colors to use in the plot.
keepValues whether to save the function values at each vertex when plot = FALSE

42 contourLines3d

Details

For contourLines3d, the fn argument can be any of the following:

• a character vector naming one or more functions

• a function

• a numeric vector with one value per vertex

• NULL, indicating that the numeric values are saved in obj$values

• a list containing any of the above.

For filledContour3d, only one function can be specified.

The special names "x","y","z" may be used in fn to specify functions returning one of those
coordinates. (If you have existing functions x(), y() or z() they will be masked by this choice;
specify such functions by value rather than name, e.g. fn = x instead of fn = "x".)

Functions in fn with formal arguments x, y and z will receive the coordinates of vertices in those
arguments, otherwise they will receive the coordinates in a single n x 3 matrix. They should be
vectorized and return one value per vertex.

Each of the functions will be evaluated at each vertex of the surface specified by obj, and contours
will be drawn assuming the function is linear between vertices. If contours of a nonlinear function
are needed, you may want to increase minVertices as described below.

If levels is not specified, values will be set separately for each entry in fn, using pretty(range(values,na.rm
= TRUE),nlevels) where values are the values on the vertices.

The minVertices argument is used to improve the approximation to the contour when the function
is non-linear. In that case, the interpolation between vertices can be inaccurate. If minVertices is
set to a positive number (e.g. 10000), then the mesh is modified by subdivision to have at least that
number of vertices, so that pieces are smaller and the linear interpolation is more accurate.

Value

For both contourLines3d and filledContour3d the "rglId" method converts the given id values
to a mesh, and calls the "mesh3d" method.

The "mesh3d" method returns an object of class "rglId" corresponding to what was drawn if plot
is TRUE,

If plot is FALSE, contourLines3d returns a dataframe containing columns c("x","y","z","fn","level")
giving the coordinates of the endpoints of each line segment, the name (or index) of the function for
this contour, and the level of the contour.

If plot is FALSE, filledContour3d returns a "mesh3d" object holding the result. If keepValues
is TRUE, the mesh will contain the values corresponding to each vertex (with linear approximations
at the boundaries).

Note

To draw contours on a surface, the surface should be drawn with material property polygon_offset
= 1 (or perhaps some larger positive value) so that the lines of the contour are not obscured by the
surface.

In R versions prior to 3.6.0, the default color.palette is grDevices::cm.colors.

cube3d 43

Author(s)

Duncan Murdoch

See Also

The misc3d package contains the function contour3d to draw contour surfaces in space instead of
contour lines on surfaces.

Examples

Add contourlines in "z" to a persp plot

z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

open3d()
id <- persp3d(x, y, z, aspect = "iso",

axes = FALSE, box = FALSE, polygon_offset = 1)
contourLines3d(id) # "z" is the default function
filledContour3d(id, polygon_offset = 1, nlevels = 10, replace = TRUE)

Draw longitude and latitude lines on a globe

lat <- matrix(seq(90, -90, len = 50)*pi/180, 50, 50, byrow = TRUE)
long <- matrix(seq(-180, 180, len = 50)*pi/180, 50, 50)

r <- 6378.1 # radius of Earth in km
x <- r*cos(lat)*cos(long)
y <- r*cos(lat)*sin(long)
z <- r*sin(lat)

open3d()
ids <- persp3d(x, y, z, col = "white",

texture = system.file("textures/worldsmall.png", package = "rgl"),
specular = "black", axes = FALSE, box = FALSE, xlab = "", ylab = "", zlab = "",
normal_x = x, normal_y = y, normal_z = z, polygon_offset = 1)

contourLines3d(ids, list(latitude = function(x, y, z) asin(z/sqrt(x^2+y^2+z^2))*180/pi,
longitude = function(x, y, z) atan2(y, x)*180/pi))

cube3d Sample 3D mesh objects

Description

A collection of sample mesh objects.

44 cylinder3d

Usage

cube3d(trans = identityMatrix(), ...)
tetrahedron3d(trans = identityMatrix(), ...)
octahedron3d(trans = identityMatrix(), ...)
icosahedron3d(trans = identityMatrix(), ...)
dodecahedron3d(trans = identityMatrix(), ...)
cuboctahedron3d(trans = identityMatrix(), ...)

oh3d(trans = identityMatrix(), ...) # an 'o' object

Arguments

trans transformation to apply to objects

... additional parameters to pass to mesh3d

Details

These sample objects optionally take a 4x4 matrix transformation trans as an argument. This trans-
formation is applied to all vertices of the default shape. The default is an identity transformation.

Value

Objects of class c("mesh3d","shape3d").

See Also

mesh3d

Examples

render all of the Platonic solids
open3d()
shade3d(translate3d(tetrahedron3d(col = "red"), 0, 0, 0))
shade3d(translate3d(cube3d(col = "green"), 3, 0, 0))
shade3d(translate3d(octahedron3d(col = "blue"), 6, 0, 0))
shade3d(translate3d(dodecahedron3d(col = "cyan"), 9, 0, 0))
shade3d(translate3d(icosahedron3d(col = "magenta"), 12, 0, 0))

cylinder3d Create cylindrical or "tube" plots

Description

This function converts a description of a space curve into a "mesh3d" object forming a cylindrical
tube around the curve.

cylinder3d 45

Usage

cylinder3d(center, radius = 1, twist = 0, e1 = NULL, e2 = NULL, e3 = NULL,
sides = 8, section = NULL, closed = 0,
rotationMinimizing = is.null(e2) && is.null(e3),
debug = FALSE, keepVars = FALSE)

Arguments

center An n by 3 matrix whose columns are the x, y and z coordinates of the space
curve.

radius The radius of the cross-section of the tube at each point in the center.

twist The amount by which the polygon forming the tube is twisted at each point.

e1, e2, e3 The local coordinates to use at each point on the space curve. These default to a
rotation minimizing frame or Frenet coordinates.

sides The number of sides in the polygon cross section.

section The polygon cross section as a two-column matrix, or NULL.

closed Whether to treat the first and last points of the space curve as identical, and close
the curve, or put caps on the ends. See the Details.

rotationMinimizing

Use a rotation minimizing local frame if TRUE, or a Frenet or user-specified
frame if FALSE.

debug If TRUE, plot the local Frenet coordinates at each point.

keepVars If TRUE, return the local variables in attribute "vars".

Details

The number of points in the space curve is determined by the vector lengths in center, after using
xyz.coords to convert it to a list. The other arguments radius, twist, e1, e2, and e3 are extended
to the same length.

The closed argument controls how the ends of the cylinder are handled. If closed > 0, it represents
the number of points of overlap in the coordinates. closed == TRUE is the same as closed = 1. If
closed > 0 but the ends don’t actually match, a warning will be given and results will be somewhat
unpredictable.

Negative values of closed indicate that caps should be put on the ends of the cylinder. If closed
== -1, a cap will be put on the end corresponding to center[1,]. If closed == -2, caps will be put
on both ends.

If section is NULL (the default), a regular sides-sided polygon is used, and radius measures the
distance from the center of the cylinder to each vertex. If not NULL, sides is ignored (and set
internally to nrow(section)), and radius is used as a multiplier to the vertex coordinates. twist
specifies the rotation of the polygon. Both radius and twist may be vectors, with values recycled
to the number of rows in center, while sides and section are the same at every point along the
curve.

The three optional arguments e1, e2, and e3 determine the local coordinate system used to create
the vertices at each point in center. If missing, they are computed by simple numerical approx-
imations. e1 should be the tangent coordinate, giving the direction of the curve at the point. The

46 decorate3d

cross-section of the polygon will be orthogonal to e1. When rotationMinimizing is TRUE, e2 and
e3 are chosen to give a rotation minimizing frame (see Wang et al., 2008). When it is FALSE, e2
defaults to an approximation to the normal or curvature vector; it is used as the image of the y axis
of the polygon cross-section. e3 defaults to an approximation to the binormal vector, to which the
x axis of the polygon maps. The vectors are orthogonalized and normalized at each point.

Value

A "mesh3d" object holding the cylinder, possibly with attribute "vars" containing the local envi-
ronment of the function.

Author(s)

Duncan Murdoch

References

Wang, W., Jüttler, B., Zheng, D. and Liu, Y. (2008). Computation of rotation minimizing frames.
ACM Transactions on Graphics, Vol. 27, No. 1, Article 2.

Examples

A trefoil knot
open3d()
theta <- seq(0, 2*pi, len = 25)
knot <- cylinder3d(

center = cbind(
sin(theta) + 2*sin(2*theta),
2*sin(3*theta),
cos(theta) - 2*cos(2*theta)),

e1 = cbind(
cos(theta) + 4*cos(2*theta),
6*cos(3*theta),
sin(theta) + 4*sin(2*theta)),

radius = 0.8,
closed = TRUE)

shade3d(addNormals(subdivision3d(knot, depth = 2)), col = "green")

decorate3d Add decorations to a 3D plot

Description

decorate3d adds the usual decorations to a plot: labels, axes, etc.

drape3d 47

Usage

decorate3d(xlim = NULL, ylim = NULL, zlim = NULL,
xlab = "x", ylab = "y", zlab = "z",
box = TRUE, axes = TRUE,
main = NULL, sub = NULL,
top = TRUE, aspect = FALSE, expand = 1.03,
tag = material3d("tag"), ...)

Arguments

xlim, ylim, zlim

These are used for the labels.
xlab, ylab, zlab

labels for the coordinates.
box, axes whether to draw a box and axes.
main, sub main title and subtitle.
top whether to bring the window to the top when done.
aspect either a logical indicating whether to adjust the aspect ratio, or a new ratio.
expand how much to expand the box around the data, if it is drawn.
tag optional label for objects being produced.
... ignored.

Value

The RGL id values for those items.

Examples

open3d()
shade3d(tetrahedron3d(), col = "red")
decorate3d(main = "A Tetrahedron")

drape3d Drape lines over a scene.

Description

Project a line onto the surface in a scene so that it appears to drape itself onto the surface.

Usage

drape3d(obj, ...)
S3 method for class 'mesh3d'
drape3d(obj, x, y = NULL, z = NULL, plot = TRUE,

up = c(0, 0, 1),
P = projectDown(up), ...)

Default S3 method:
drape3d(obj, ...)

48 drape3d

Arguments

obj The object(s) upon which to drape lines.

x,y,z Coordinates of the line segments to be draped. Any reasonable way of defining
the coordinates is acceptable. See the function xyz.coords for details.

plot Should the result be plotted, or returned as a data frame?

up The direction to consider as “up”.

P The projection to use for draping, a 4x4 matrix.

... For the "mesh3d" method, additional parameters to pass to segments3d when
drawing the draped lines. For the "default" method, additional parameters to
pass to the "mesh3d" method.

Details

The default method converts obj to a mesh using as.mesh3d, then uses the "mesh3d" method.

The current implementation constructs the segments to drape across the surface using the same
method as lines3d uses: each successive point is joined to the previous one. Use NA coordinates to
indicate breaks in the line.

The P matrix is used to project points to a plane as follows: They are transformed by P in homoge-
neous coordinates, then only first two (Euclidean) coordinates are kept.

Value

If plot = TRUE, plots the result and invisibly returns the object ID of the collection of segments.

If plot = FALSE, returns a matrix containing "x", "y" and "z" values for the line(s) (for use with
segments3d),

Author(s)

George Helffrich and Duncan Murdoch

See Also

shadow3d, facing3d

Examples

#
volcano example taken from "persp"
#

z <- 2 * volcano # Exaggerate the relief

x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

zlim <- range(z)
zlen <- zlim[2] - zlim[1] + 1

elementId2Prefix 49

colorlut <- terrain.colors(zlen) # height color lookup table

col <- colorlut[z - zlim[1] + 1] # assign colors to heights for each point

open3d()
id <- surface3d(x, y, z, color = col, polygon_offset = 1)

segs <- data.frame(x = range(x) + c(100, -100),
y = range(y) + c(150, -100), z = 325)

drape3d(id, segs, col = 'yellow', lwd = 3)
lines3d(segs, col='red', lwd=3)

p <- c(350, 205) # (x,y) of strike & dip reading
off <- 20*c(-1, +1) # X-marks-the-spot offset
segs <- data.frame(

x = c(p[1] + off, NA, p[1] + off),
y = c(p[2] + off, NA, p[2] - off),
z = rep(350, 5)
)

drape3d(id, segs, col = "yellow", lwd = 3)

elementId2Prefix Use widget with old-style controls

Description

The rglwidget control is designed to work in the htmlwidgets framework. Older RGL web pages
that used writeWebGL or knitr used a different method of linking the controls to the scene. This is
a partial bridge between the two systems. You should adopt the new system, not use this function.

Usage

elementId2Prefix(elementId, prefix = elementId)

Arguments

elementId An element identifier from a rglwidget call.

prefix The prefix to use in the old-style control.

Value

This function generates Javascript code, so it should be used in an results = "asis" block in a
knitr document.

Author(s)

Duncan Murdoch

50 ellipse3d

ellipse3d Make an ellipsoid

Description

A generic function and several methods returning an ellipsoid or other outline of a confidence region
for three parameters.

Usage

ellipse3d(x, ...)
Default S3 method:
ellipse3d(x, scale = c(1, 1, 1), centre = c(0, 0, 0), level = 0.95,
t = sqrt(qchisq(level, 3)), which = 1:3, subdivide = 3, smooth = TRUE, ...)
S3 method for class 'lm'
ellipse3d(x, which = 1:3, level = 0.95, t = sqrt(3 * qf(level,

3, x$df.residual)), ...)
S3 method for class 'glm'
ellipse3d(x, which = 1:3, level = 0.95, t, dispersion, ...)
S3 method for class 'nls'
ellipse3d(x, which = 1:3, level = 0.95, t = sqrt(3 * qf(level,

3, s$df[2])), ...)

Arguments

x An object. In the default method the parameter x should be a square positive def-
inite matrix at least 3x3 in size. It will be treated as the correlation or covariance
of a multivariate normal distribution.

... Additional parameters to pass to the default method or to qmesh3d.
scale If x is a correlation matrix, then the standard deviations of each parameter can

be given in the scale parameter. This defaults to c(1,1,1), so no rescaling will
be done.

centre The centre of the ellipse will be at this position.
level The confidence level of a simultaneous confidence region. The default is 0.95,

for a 95% region. This is used to control the size of the ellipsoid.
t The size of the ellipse may also be controlled by specifying the value of a t-

statistic on its boundary. This defaults to the appropriate value for the confidence
region.

which This parameter selects which variables from the object will be plotted. The
default is the first 3.

subdivide This controls the number of subdivisions (see subdivision3d) used in con-
structing the ellipsoid. Higher numbers give a smoother shape.

smooth If TRUE, smooth interpolation of normals is used; if FALSE, a faceted ellipsoid
will be displayed.

dispersion The value of dispersion to use. If specified, it is treated as fixed, and chi-square
limits for t are used. If missing, it is taken from summary(x).

expect_known_scene 51

Value

A mesh3d object representing the ellipsoid.

Examples

Plot a random sample and an ellipsoid of concentration corresponding to a 95%
probability region for a
trivariate normal distribution with mean 0, unit variances and
correlation 0.8.
if (requireNamespace("MASS", quietly = TRUE)) {

Sigma <- matrix(c(10, 3, 0, 3, 2, 0, 0, 0, 1), 3, 3)
Mean <- 1:3
x <- MASS::mvrnorm(1000, Mean, Sigma)

open3d()

plot3d(x, box = FALSE)

plot3d(ellipse3d(Sigma, centre = Mean), col = "green", alpha = 0.5, add = TRUE)
}

Plot the estimate and joint 90% confidence region for the displacement and cylinder
count linear coefficients in the mtcars dataset

data(mtcars)
fit <- lm(mpg ~ disp + cyl , mtcars)

open3d()
plot3d(ellipse3d(fit, level = 0.90), col = "blue", alpha = 0.5, aspect = TRUE)

expect_known_scene Helper for testthat testing.

Description

Gets the current scene using scene3d, and compares the result to a saved value, optionally closing
the window afterwards.

Usage

expect_known_scene(name,
close = TRUE,
file = paste0("testdata/", name, ".rds"),
...)

52 extrude3d

Arguments

name By default, the base name of the file to save results in. Not used if file is
specified.

close Whether to close the rgl window after the comparison.

file The file in which to save the result.

... Other arguments which will be passed to expect_known_value.

Details

This function uses expect_known_value to save a representation of the scene. During the compar-
ison, the scene is modified so that non-reproducible aspects are standardized or omitted:

• object ids are changed to start at 1.

• system-specific font names and texture names are deleted.

• the window is shifted to the top left of the screen.

Calls to expect_known_scene() enable testthat::local_edition(2) for the duration of the
call, so it will work in testthat “3rd edition”.

Value

A value describing the changes to the saved object, suitable for use in test_that().

Examples

Not run:
These lines can be included in testthat::test_that() code.
plot3d(1:10, 1:10, 1:10)
expect_known_scene("plot")

End(Not run)

extrude3d Generate extrusion mesh

Description

Given a two-dimensional polygon, this generates a three-dimensional extrusion of the shape by
triangulating the polygon and creating a cylinder with that shape as the end faces.

Usage

extrude3d(x, y = NULL, thickness = 1, smooth = FALSE, ...)

facing3d 53

Arguments

x, y A polygon description in one of the forms supported by triangulate.

thickness The extrusion will have this thickness.

smooth logical; should normals be added so that the edges of the extrusion appear
smooth?

... Other parameters to pass to tmesh3d when constructing the mesh.

Details

The extrusion is always constructed with the polygon in the xy plane at z = 0 and another copy at
z = thickness. Use the transformation functions (e.g. rotate3d) to obtain other orientations and
placements.

Value

A mesh object containing a triangulation of the polygon for each face, and quadrilaterals for the
sides.

Author(s)

Duncan Murdoch

See Also

polygon3d for a simple polygon, triangulate for the triangulation, turn3d for a solid of rotation.

Examples

x <- c(1:10, 10:1)
y <- rev(c(rep(c(0, 2), 5), rep(c(1.5, -0.5), 5)))
plot(x, y, type = "n")
polygon(x, y)
open3d()
shade3d(extrude3d(x, y), col = "red")

facing3d Subset an object to parts facing in a particular direction

Description

facing3d subsets an object by converting it to a triangle mesh, then subsetting to those triangles
that are counterclockwise (for front = TRUE) when projected into a plane.

projectDown computes a projection that “looks down” the specified direction.

54 facing3d

Usage

facing3d(obj, up = c(0, 0, 1),
P = projectDown(up),
front = TRUE, strict = TRUE)

projectDown(up)

Arguments

obj An object that can be converted to a triangular mesh object.

up The direction that is to be considered “up”. It may be either a 3 vector in Eu-
clidean coordinates or a 4 vector in homogeneous coordinates.

P The projection to use for draping, a 4x4 matrix. See drape3d for details on how
P is used.

front If front = TRUE, retains triangles that are counterclockwise after projection by
P, otherwise retains those that are clockwise.

strict If TRUE, drops indeterminate triangles (those that are annihilated by P).

Details

By default the returned subset will be those triangles whose upper side matches front. Change up
or use an arbitrary projection for different subsets.

drape3d and shadow3d project objects onto meshes; these functions can be used to project only
onto the top or front.

Value

facing3d returns a mesh object made of those triangles which face in the desired direction.

projectDown computes a 4x4 matrix. The first two coordinates of asEuclidean(x %*% projectDown(up))
give a projection of x from above into a plane, where up determines which direction is taken to be
“up”.

See Also

drape3d, shadow3d

Examples

open3d()
d <- rnorm(3)
d <- d/sqrt(sum(d^2))
shade3d(facing3d(icosahedron3d(), up = d, strict = FALSE),

col = "yellow")
wire3d(facing3d(icosahedron3d(), up = d, front = FALSE),

col = "black")
Show the direction:
arrow3d(-2*d , -d)

figWidth 55

figWidth Get R Markdown figure dimensions in pixels

Description

In an R Markdown document, figure dimensions are normally specified in inches; these are trans-
lated into pixel dimensions when HTML output is requested and rglwidget is used. These func-
tions reproduce that translation.

Usage

figWidth()
figHeight()

Value

When used in an R Markdown document, these functions return the requested current dimensions
of figures in pixels. Outside such a document, NULL is returned.

Author(s)

Duncan Murdoch

Examples

No useful return value outside of R Markdown:
figWidth()
figHeight()

getBoundary3d Extract the boundary of a mesh

Description

Constructs a mesh of line segments corresponding to non-shared (i.e. boundary) edges of triangles
or quads in the original mesh.

Usage

getBoundary3d(mesh, sorted = FALSE, simplify = TRUE)

Arguments

mesh A mesh object.
sorted Whether the result should have the segments sorted in sequential order.
simplify Whether to simplify the resulting mesh, dropping all unused vertices. If FALSE,

the vertices of the result will be identical to the vertices of mesh; if TRUE, they
will likely be different, even if no vertices were dropped.

56 GramSchmidt

Value

A "mesh3d" object containing 0 or more segments.

Author(s)

Duncan Murdoch

See Also

mesh3d

Examples

x <- cube3d()
x$ib <- x$ib[,-(1:2)]
b <- getBoundary3d(x, sorted = TRUE)

open3d()
shade3d(x, alpha=0.2, col = "blue")

shade3d(b)

Show edge vertices in sequence:
text3d(t(b$vb), text = 1:ncol(b$vb), adj = 0)
c(b$is[1,1], b$is[2,])

GramSchmidt The Gram-Schmidt algorithm

Description

Generate a 3x3 orthogonal matrix using the Gram-Schmidt algorithm.

Usage

GramSchmidt(v1, v2, v3, order = 1:3)

Arguments

v1, v2, v3 Three length 3 vectors (taken as row vectors).
order The precedence order for the vectors; see Details.

Details

This function orthogonalizes the matrix rbind(v1,v2,v3) using the Gram-Schmidt algorithm. It
can handle rank 2 matrices (returning a rank 3 matrix). If the original is rank 1, it is likely to fail.

The order vector determines the precedence of the original vectors. For example, if it is c(i,j,k),
then row i will be unchanged (other than normalization); row j will normally be transformed within
the span of rows i and j. Row k will be transformed orthogonally to the span of the others.

grid3d 57

Value

A 3x3 matrix whose rows are the orthogonalization of the original row vectors.

Author(s)

Duncan Murdoch

Examples

Proceed through the rows in order
print(A <- matrix(rnorm(9), 3, 3))
GramSchmidt(A[1,], A[2,], A[3,])

Keep the middle row unchanged
print(A <- matrix(c(rnorm(2), 0, 1, 0, 0, rnorm(3)), 3, 3, byrow = TRUE))
GramSchmidt(A[1,], A[2,], A[3,], order = c(2, 1, 3))

grid3d Add a grid to a 3D plot

Description

This function adds a reference grid to an RGL plot.

Usage

grid3d(side, at = NULL, col = "gray", lwd = 1, lty = 1, n = 5)

Arguments

side Where to put the grid; see the Details section.

at How to draw the grid; see the Details section.

col The color of the grid lines.

lwd The line width of the grid lines. (Currently only lty = 1 is supported.)

lty The line type of the grid lines.

n Suggested number of grid lines; see the Details section.

Details

This function is similar to grid in classic graphics, except that it draws a 3D grid in the plot.

The grid is drawn in a plane perpendicular to the coordinate axes. The first letter of the side
argument specifies the direction of the plane: "x", "y" or "z" (or uppercase versions) to specify the
coordinate which is constant on the plane.

If at = NULL (the default), the grid is drawn at the limit of the box around the data. If the second
letter of the side argument is "-" or is not present, it is the lower limit; if "+" then at the upper

58 identify3d

limit. The grid lines are drawn at values chosen by pretty with n suggested locations. The default
locations should match those chosen by axis3d with nticks = n.

If at is a numeric vector, the grid lines are drawn at those values.

If at is a list, then the "x" component is used to specify the x location, the "y" component specifies
the y location, and the "z" component specifies the z location. Missing components are handled
using the default as for at = NULL.

Multiple grids may be drawn by specifying multiple values for side or for the component of at that
specifies the grid location.

Value

A vector or matrix of object ids is returned invisibly.

Note

If the scene is resized, the grid will not be resized; use abclines3d to draw grid lines that will
automatically resize.

Author(s)

Ben Bolker and Duncan Murdoch

See Also

axis3d

Examples

x <- 1:10
y <- 1:10
z <- matrix(outer(x - 5, y - 5) + rnorm(100), 10, 10)
open3d()
persp3d(x, y, z, col = "red", alpha = 0.7, aspect = c(1, 1, 0.5))
grid3d(c("x", "y+", "z"))

identify3d Identify points in plot

Description

Identify points in a plot, similarly to the identify function in base graphics.

Usage

identify3d(x, y = NULL, z = NULL, labels = seq_along(x), n = length(x),
plot = TRUE, adj = c(-0.1, 0.5), tolerance = 20,
buttons = c("right", "middle"))

import 59

Arguments

x, y, z coordinates of points in a scatter plot. Alternatively, any object which defines
coordinates (see xyz.coords) can be given as x, and y and z left missing.

labels an optional character vector giving labels for the points. Will be coerced using
as.character, and recycled if necessary to the length of x.

n the maximum number of points to be identified.

plot logical: if plot is TRUE, the labels are printed near the points and if FALSE they
are omitted.

adj numeric vector to use as adj parameter to text3d when plotting the labels.

tolerance the maximal distance (in pixels) for the pointer to be ‘close enough’ to a point.

buttons a length 1 or 2 character vector giving the buttons to use for selection and quit-
ting.

Details

If buttons is length 1, the user can quit by reaching n selections, or by hitting the escape key, but
the result will be lost if escape is used.

Value

A vector of selected indices.

Author(s)

Duncan Murdoch

See Also

identify for base graphics, select3d for selecting regions.

import Imported from magrittr

Description

This object is imported from magrittr. Follow the link to its documentation.

magrittr %>%

Pipes can be used to string together rglwidget calls and playwidget calls. See ageControl for
an example.

60 light

in_pkgdown_example Are we running in a pkgdown example?

Description

This is mainly for internal use to decide whether results should be automatically included in a
pkgdown web page.

Usage

in_pkgdown_example()

Value

TRUE or FALSE

Examples

in_pkgdown_example()

light Add light source

Description

add a light source to the scene.

Usage

light3d(theta = 0, phi = 15, x = NULL, ...)
rgl.light(theta = 0, phi = 0, viewpoint.rel = TRUE, ambient = "#FFFFFF",

diffuse = "#FFFFFF", specular = "#FFFFFF", x = NULL, y = NULL, z = NULL)

Arguments

theta, phi polar coordinates, used by default

viewpoint.rel logical, if TRUE light is a viewpoint light that is positioned relative to the current
viewpoint

ambient, diffuse, specular

light color values used for lighting calculation

x, y, z cartesian coordinates, optional

... generic arguments passed through to RGL-specific (or other) functions

light 61

Details

Up to 8 light sources are supported. They are positioned either in world space or relative to the
camera. By providing polar coordinates to theta and phi a directional light source is used. If
numerical values are given to x, y and z, a point-like light source with finite distance to the objects
in the scene is set up.

If x is non-null, xyz.coords will be used to form the location values, so all three coordinates can
be specified in x.

See material3d for a discussion of how the components of the light affect the display of objects.

Value

This function is called for the side effect of adding a light. A light ID is returned to allow pop3d to
remove it.

See Also

rgl.clear pop3d

Examples

#
a lightsource moving through the scene
#
data(volcano)
z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
zlim <- range(z)
zlen <- zlim[2] - zlim[1] + 1
colorlut <- terrain.colors(zlen) # height color lookup table
col <- colorlut[z - zlim[1] + 1] # assign colors to heights for each point

open3d()
bg3d("gray50")
surface3d(x, y, z, color = col, back = "lines")
r <- max(y) - mean(y)
lightid <- spheres3d(1, 1, 1, alpha = 0)
frame <- function(time) {

a <- pi*(time - 1)
save <- par3d(skipRedraw = TRUE)
clear3d(type = "lights")
pop3d(id = lightid)
xyz <- matrix(c(r*sin(a) + mean(x), r*cos(a) + mean(y), max(z)), ncol = 3)
light3d(x = xyz, diffuse = "gray75",

specular = "gray75", viewpoint.rel = FALSE)
light3d(diffuse = "gray10", specular = "gray25")
lightid <<- spheres3d(xyz, emission = "white", radius = 4)
par3d(save)
Sys.sleep(0.02)

62 makeDependency

NULL
}
play3d(frame, duration = 2)

makeDependency Process Javascript for HTML dependency

Description

A utility function to help in development of internal Javascript code, this function processes the
Javascript to minify it and report on errors and bad style.

Usage

makeDependency(name, src, script = NULL, package,
version = packageVersion(package),
minifile = paste0(basename(src), ".min.js"),
debugging = FALSE, ...)

Arguments

name, src, script, package, version, ...

Arguments to pass to htmltools::htmlDependency.

minifile Basename of minified file.

debugging See details below.

Details

This is a utility function used by RGL to process its Javascript code used when displaying rglwidget
values. It may be helpful in other packages to use in their own installation.

If the js package version 1.2 or greater is installed, the Javascript code will be minified and stored
in the file named by minifile in the src directory. Syntax errors in the code will stop the process;
unused variables will be reported.

If debugging is TRUE, the locations of Javascript syntax errors will be reported, along with hints
about improvements, and the original files will be used in the dependency object that is created.

If debugging is FALSE (the default), the minified file will be used in the dependency object, hints
won’t be given, and syntax errors will lead to an uninformative failure to minify.

Value

An object that can be included in a list of dependencies passed to htmltools::attachDependencies.

Author(s)

Duncan Murdoch

matrices 63

Examples

Not run:
This is the code used to produce one of the dependencies
for rglwidget().
It writes to the system library copy of rgl so
has been marked not to run in the example code.

makeDependency("rglwidgetClass",
src = "htmlwidgets/lib/rglClass",
script = c("rglClass.src.js",

"utils.src.js",
"buffer.src.js",
"subscenes.src.js",
"shaders.src.js",
"textures.src.js",
"projection.src.js",
"mouse.src.js",
"init.src.js",
"pieces.src.js",
"draw.src.js",
"controls.src.js",
"selection.src.js",
"rglTimer.src.js",
"pretty.src.js",
"axes.src.js"),

stylesheet = "rgl.css",
package = "rgl",
debugging = isTRUE(as.logical(Sys.getenv("RGL_DEBUGGING", "FALSE"))))

End(Not run)

matrices Work with homogeneous coordinates

Description

These functions construct 4x4 matrices for transformations in the homogeneous coordinate system
used by OpenGL, and translate vectors between homogeneous and Euclidean coordinates.

Usage

identityMatrix()
scaleMatrix(x, y, z)
translationMatrix(x, y, z)
rotationMatrix(angle, x, y, z, matrix)
asHomogeneous(x)
asEuclidean(x)
asHomogeneous2(x)
asEuclidean2(x)

64 matrices

scale3d(obj, x, y, z, ...)
translate3d(obj, x, y, z, ...)
rotate3d(obj, angle, x, y, z, matrix, ...)

transform3d(obj, matrix, ...)

Arguments

x, y, z, angle, matrix

See details

obj An object to be transformed

... Additional parameters to be passed to methods

Details

OpenGL uses homogeneous coordinates to handle perspective and affine transformations. The ho-
mogeneous point (x,y,z,w) corresponds to the Euclidean point (x/w,y/w,z/w). The matrices
produced by the functions scaleMatrix, translationMatrix, and rotationMatrix are to be
left-multiplied by a row vector of homogeneous coordinates; alternatively, the transpose of the re-
sult can be right-multiplied by a column vector. The generic functions scale3d, translate3d
and rotate3d apply these transformations to the obj argument. The transform3d function is a
synonym for rotate3d(obj,matrix = matrix).

By default, it is assumed that obj is a row vector (or a matrix of row vectors) which will be mul-
tiplied on the right by the corresponding matrix, but users may write methods for these generics
which operate differently. Methods are supplied for mesh3d objects.

To compose transformations, use matrix multiplication. The effect is to apply the matrix on the left
first, followed by the one on the right.

identityMatrix returns an identity matrix.

scaleMatrix scales each coordinate by the given factor. In Euclidean coordinates, (u,v,w) is
transformed to (x*u,y*v,z*w).

translationMatrix translates each coordinate by the given translation, i.e. (u,v,w) is trans-
formed to (u + x,v + y,w + z).

rotationMatrix can be called in three ways. With arguments angle,x,y,z it represents a rotation
of angle radians about the axis x,y,z. If matrix is a 3x3 rotation matrix, it will be converted into
the corresponding matrix in 4x4 homogeneous coordinates. Finally, if a 4x4 matrix is given, it will
be returned unchanged. (The latter behaviour is used to allow transform3d to act like a generic
function, even though it is not.)

Use asHomogeneous(x) to convert the Euclidean vector x to homogeneous coordinates, and asEuclidean(x)
for the reverse transformation. These functions accept the following inputs:

• n x 3 matrices: rows are assumed to be Euclidean

• n x 4 matrices: rows are assumed to be homogeneous

merge.mesh3d 65

• vectors of length 3n or 4n: assumed to be vectors concatenated. For the ambiguous case of
vectors that are length 12n (so both 3n and 4n are possible), the assumption is that the conver-
sion is necessary: asEuclidean assumes the vectors are homogeneous, and asHomogeneous
assumes the vectors are Euclidean.

Outputs are n x 4 or n x 3 matrices for asHomogeneous and asEuclidean respectively.

The functions asHomogeneous2 and asEuclidean2 act similarly, but they assume inputs are 3 x n
or 4 x n and outputs are in similar shapes.

Value

identityMatrix, scaleMatrix, translationMatrix, and rotationMatrix produce a 4x4 ma-
trix representing the requested transformation in homogeneous coordinates.

scale3d, translate3d and rotate3d transform the object and produce a new object of the same
class.

Author(s)

Duncan Murdoch

See Also

par3d for a description of how RGL uses matrices in rendering.

Examples

A 90 degree rotation about the x axis:

rotationMatrix(pi/2, 1, 0, 0)

Find what happens when you rotate (2, 0, 0) by 45 degrees about the y axis:

x <- asHomogeneous(c(2, 0, 0))
y <- x %*% rotationMatrix(pi/4, 0, 1, 0)
asEuclidean(y)

or more simply...

rotate3d(c(2, 0, 0), pi/4, 0, 1, 0)

merge.mesh3d Merge RGL mesh objects

Description

Attempts to merge "mesh3d" objects. Objects need to be similar enough; see Details.

66 mergeVertices

Usage

S3 method for class 'mesh3d'
merge(x, y, ..., attributesMustMatch = FALSE)

Arguments

x, y "mesh3d" objects to merge.

... Optional additional objects.
attributesMustMatch

See Details.

Details

To allow objects to be merged, they need to be similar enough in terms of having the same list of
material properties, normals, texture coordinates, etc.

If attributesMustMatch is TRUE, it is an error to have attributes in one mesh but not in another,
and those attributes that only specify a single value must have equal values in all meshes.

If attributesMustMatch is FALSE, any non-matching attributes will be dropped from the final
result.

Value

A single "mesh3d" object merging the contents of the arguments.

Author(s)

Duncan Murdoch

Examples

open3d()
Notice that the alpha setting for the cube is dropped, because
the other shapes don't specify alpha.
shade3d(merge(cube3d(col="red", alpha = 0.5),

translate3d(tetrahedron3d(col="green"), 2, 0, 0),
translate3d(octahedron3d(col="blue"), 4, 0, 0)))

mergeVertices Merge duplicate vertices in mesh object

Description

A mesh object can have the same vertex listed twice. Each copy is allowed to have separate normals,
texture coordinates, and color. However, it is more efficient to have just a single copy if those
differences aren’t needed. For automatic smoothing using addNormals, triangles and quads need to
share vertices. This function merges identical (or similar) vertices to achieve this.

mesh3d 67

Usage

mergeVertices(mesh,
notEqual = NULL,
attribute = "vertices",
tolerance = sqrt(.Machine$double.eps))

Arguments

mesh A mesh3d object.

notEqual A logical matrix indicating that certain pairs should not be merged even if they
appear identical.

attribute Which attribute(s) should be considered in comparing vertices? A vector chosen
from c("vertices","colors","normals","texcoords"))

tolerance When comparing vertices using all.equal, this tolerance will be used to ignore
rounding error.

Value

A new mesh object.

Author(s)

Duncan Murdoch

See Also

as.mesh3d.rglId, which often constructs mesh objects containing a lot of duplication.

Examples

open3d()
(mesh1 <- cuboctahedron3d(col = rainbow(14), meshColor = "face"))
id <- shade3d(mesh1)
(mesh2 <- as.mesh3d(id))
shade3d(translate3d(mesh2, 3, 0, 0))
(mesh3 <- mergeVertices(mesh2))
shade3d(translate3d(mesh3, 6, 0, 0))

mesh3d Construct 3D mesh objects

Description

Creates meshes containing points, segments, triangles and quads.

68 mesh3d

Usage

mesh3d(x, y = NULL, z = NULL, vertices,
material = NULL,
normals = NULL, texcoords = NULL,
points = NULL, segments = NULL,
triangles = NULL, quads = NULL,
meshColor = c("vertices", "edges", "faces", "legacy"))

qmesh3d(vertices, indices, homogeneous = TRUE, material = NULL,
normals = NULL, texcoords = NULL,
meshColor = c("vertices", "edges", "faces", "legacy"))

tmesh3d(vertices, indices, homogeneous = TRUE, material = NULL,
normals = NULL, texcoords = NULL,
meshColor = c("vertices", "edges", "faces", "legacy"))

Arguments

x, y, z coordinates. Any reasonable way of defining the coordinates is acceptable. See
the function xyz.coords for details.

vertices A 4 row matrix of homogeneous coordinates; takes precedence over x,y,z.

material material properties for later rendering

normals normals at each vertex

texcoords texture coordinates at each vertex

points vector of indices of vertices to draw as points

segments 2 x n matrix of indices of vertices to draw as segments

triangles 3 x n matrix of indices of vertices to draw as triangles

quads 4 x n matrix of indices of vertices to draw as quads

indices (obsolete) 3 or 4 x n matrix of vertex indices

homogeneous (obsolete) should tmesh3d and qmesh3d vertices be assumed to be homoge-
neous?

meshColor how should colours be interpreted? See details in shade3d.

Details

These functions create mesh3d objects, which consist of a matrix of vertex coordinates together
with a matrices of indices indicating how the vertices should be displayed, and material properties.

The "shape3d" class is a general class for shapes that can be plotted by dot3d, wire3d or shade3d.

The "mesh3d" class is a class of objects that form meshes: the vertices are in member vb, as a 4
by n matrix using homogeneous coordinates. Indices of these vertices are contained in optional
components ip for points, is for line segments, it for triangles, and ib for quads. Individual
meshes may have any combination of these.

The functions tmesh3d and qmesh3d are included for back-compatibility; they produce meshes of
triangles and quads respectively.

mfrow3d 69

Value

Objects of class c("mesh3d","shape3d").

See rgl.primitive for a discussion of texture coordinates.

See Also

shade3d, shapelist3d for multiple shapes

Examples

generate a quad mesh object

vertices <- c(
-1.0, -1.0, 0,
1.0, -1.0, 0,
1.0, 1.0, 0,

-1.0, 1.0, 0
)
indices <- c(1, 2, 3, 4)

open3d()
wire3d(mesh3d(vertices = vertices, quads = indices))

mfrow3d Set up multiple figure layouts

Description

The mfrow3d and layout3d functions provide functionality in RGL similar to par("mfrow") and
layout in classic R graphics.

Usage

subsceneList(value, window = cur3d())

mfrow3d(nr, nc, byrow = TRUE, parent = NA, sharedMouse = FALSE, ...)
layout3d(mat, widths = rep.int(1, ncol(mat)),

heights = rep.int(1, nrow(mat)),
parent = NA, sharedMouse = FALSE,
...)

next3d(current = NA, clear = TRUE, reuse = TRUE)
clearSubsceneList(delete = currentSubscene3d() %in% subsceneList(),

window = cur3d())

70 mfrow3d

Arguments

value A new subscene list to set. If missing, return the current one (or NULL).

window Which window to operate on.

nr, nc Number of rows and columns of figures.

byrow Whether figures progress by row (as with par("mfrow")) or by column (as with
par("mfcol")).

mat, widths, heights

Layout parameters; see layout for their interpretation.

parent The parent subscene. NA indicates the current subscene. See Details below.

sharedMouse Whether to make all subscenes par3d("listeners") to each other.

... Additional parameters to pass to newSubscene3d as each subscene is created.

current The subscene to move away from. NA indicates the current subscene.

clear Whether the newly entered subscene should be cleared upon entry.

reuse Whether to skip advancing if the current subscene has no objects in it.

delete If TRUE, delete the subscenes in the current window.

Details

rgl can maintain a list of subscenes; the mfrow3d and layout3d functions create that list. When the
list is in place, next3d causes RGL to move to the next scene in the list, or cycle back to the first
one.

Unlike the classic R graphics versions of these functions, these functions are completely compatible
with each other. You can mix them within a single RGL window.

In the default case where parent is missing, mfrow3d and layout3d will call clearSubsceneList()
at the start.

By default clearSubsceneList() checks whether the current subscene is in the current subscene
list; if so, it will delete all subscenes in the list, and call gc3d to delete any objects that are no longer
shown. The subscene list will be set to a previous value if one was recorded, or NULL if not.

If parent is specified in mfrow3d or layout3d (even as NA), the new subscenes will be created
within the parent.

The next3d() function first finds out if the current subscene is in the current list. If not, it moves
to the previous list, and looks there. Once it finds a list containing the current subscene, it moves to
the next entry in that list. If it can’t find one, it creates a length one list containing just the current
subscene.

Value

mfrow3d and layout3d return a vector of subscene id values that have just been created. If a
previous subscene list was in effect and was not automatically cleared, it is attached as an attribute
"prev".

Author(s)

Duncan Murdoch

observer3d 71

See Also

newSubscene3d, par, layout.

Examples

shapes <- list(Tetrahedron = tetrahedron3d(), Cube = cube3d(), Octahedron = octahedron3d(),
Icosahedron = icosahedron3d(), Dodecahedron = dodecahedron3d(),
Cuboctahedron = cuboctahedron3d())

col <- rainbow(6)
open3d()
mfrow3d(3, 2)
for (i in 1:6) {

next3d() # won't advance the first time, since it is empty
shade3d(shapes[[i]], col = col[i])

}
highlevel(integer()) # To trigger display as rglwidget

open3d()
mat <- matrix(1:4, 2, 2)
mat <- rbind(mat, mat + 4, mat + 8)
layout3d(mat, height = rep(c(3, 1), 3), sharedMouse = TRUE)
for (i in 1:6) {

next3d()
shade3d(shapes[[i]], col = col[i])
next3d()
text3d(0, 0, 0, names(shapes)[i])

}
highlevel(integer())

observer3d Set the observer location

Description

This function sets the location of the viewer.

Usage

observer3d(x, y = NULL, z = NULL, auto = FALSE)

Arguments

x, y, z The location as a 3 vector, using the usual xyz.coords conventions for speci-
fication. If x is missing or any coordinate is NA, no change will be made to the
location.

auto If TRUE, the location will be set automatically by RGL to make the whole bound-
ing box visible.

72 open3d

Details

This function sets the location of the viewer relative to the scene, after the model transformations
(scaling, rotation) have been done, but before lighting or projection have been applied. (See par3d
for details on the rendering pipeline.)

The coordinate system is a slightly strange one: the X coordinate moves the observer location from
left to right, and the Y coordinate moves up and down. The Z coordinate changes the depth from the
viewer. All are measured relative to the center of the bounding box (par("bbox")) of the subscene.
The observer always looks in the positive Z direction after the model rotation have been done. The
coordinates are in post-scaling units.

Value

Invisibly returns the previous value.

Note

This function is likely to change in future versions of RGL, to allow more flexibility in the specifi-
cation of the observer’s location and orientation.

Author(s)

Duncan Murdoch

Examples

example(surface3d) # The volcano data
observer3d(0, 0, 440) # Viewed from very close up

open3d Work with RGL windows

Description

open3d opens a new RGL window; cur3d returns the device number of the current window;
close3d closes one or more windows.

Usage

open3d(..., params = getr3dDefaults(),
useNULL = rgl.useNULL(), silent = FALSE)

close3d(dev = cur3d(), silent = TRUE)

cur3d()

set3d(dev, silent = FALSE)

open3d 73

getr3dDefaults(class = NULL, value = NULL)

r3dDefaults

Arguments

... arguments in name = value form, or a list of named values. The names must
come from the graphical parameters described in par3d.

params a list of graphical parameters

useNULL whether to use the null graphics device

dev which device to close or use

silent whether report on what was done

class, value names of components to retrieve

Details

open3d opens a new RGL device, and sets the parameters as requested. The r3dDefaults list
returned by the getr3dDefaults function will be used as default values for parameters. As installed
this sets the point of view to ’world coordinates’ (i.e. x running from left to right, y from front to
back, z from bottom to top), the mouseMode to (zAxis,zoom,fov), and the field of view to 30
degrees. useFreeType defaults to FALSE on Windows; on other systems it indicates the availability
of FreeType. Users may create their own variable named r3dDefaults in the global environment
and it will override the installed one. If there is a bg element in the list or the arguments, it should
be a list of arguments to pass to the bg3d function to set the background.

The arguments to open3d may include material, a list of material properties as in r3dDefaults,
but note that high level functions such as plot3d normally use the r3dDefaults values in prefer-
ence to this setting.

If useNULL is TRUE, RGL will use a “null” device. This device records objects as they are plotted,
but displays nothing. It is intended for use with rglwidget.

Value

The open3d function returns the device that was opened. If silent = TRUE, it is returned invisibly.

The cur3d function returns the current device, or the value 0 if there isn’t one.

set3d returns the device number of the previously active device.

The close3d function returns the new current device, invisibly.

The r3dDefaults variable is a list containing default settings. The getr3dDefaults function
searches the user’s global environment for r3dDefaults and returns the one in the RGL namespace
if it was not found there. The components of the list may include any settable par3d parameter, or
"material", which should include a list of default material3d properties, or "bg", which is a list
of defaults to pass to the bg3d function.

See Also

rgl.useNULL for default usage of null device.

74 par3d

Examples

r3dDefaults
open3d()
shade3d(cube3d(color = rainbow(6), meshColor = "faces"))
cur3d()

par3d Set or query RGL parameters

Description

par3d can be used to set or query graphical parameters in RGL. Parameters can be set by specifying
them as arguments to par3d in name = value form, or by passing them as a list of named values.

Usage

par3d(..., no.readonly = FALSE, dev = cur3d(),
subscene = currentSubscene3d(dev))

Arguments

... arguments in name = value form, or a list of tagged values. The names must
come from the graphical parameters described below.

no.readonly logical; if TRUE and there are no other arguments, only those parameters which
can be set by a subsequent par3d() call are returned.

dev integer; the RGL device.

subscene integer; the subscene.

Details

Parameters are queried by giving one or more character vectors to par3d.

par3d() (no arguments) or par3d(no.readonly = TRUE) is used to get all the graphical parameters
(as a named list).

By default, queries and modifications apply to the current subscene on the current device; specify
dev and/or subscene to change this. Some parameters apply to the device as a whole; these are
marked in the list below.

Value

When parameters are set, their former values are returned in an invisible named list. Such a list
can be passed as an argument to par3d to restore the parameter values. Use par3d(no.readonly =
TRUE) for the full list of parameters that can be restored.

When just one parameter is queried, its value is returned directly. When two or more parameters
are queried, the result is a list of values, with the list names giving the parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter returns an
object.

par3d 75

Parameters

R.O. indicates read-only arguments: These may only be used in queries, i.e., they do not set any-
thing.

activeSubscene R.O. integer. Used with rgl.setMouseCallbacks: during a callback, indicates
the id of the subscene that was clicked.

antialias R.O. in par3d, may be set in open3d. The (requested) number of hardware antialias-
ing planes to use (with multisample antialiasing). The OpenGL driver may not support the
requested number, in which case par3d("antialias") will report what was actually set. Ap-
plies to the whole device.

cex real. The default size for text.

family character. The default device independent family name; see rgl.texts. Applies to the
whole device.

font integer. The default font number (from 1 to 4; see rgl.texts). Applies to the whole device.

useFreeType logical. Should FreeType fonts be used? Applies to the whole device.

fontname R.O.; the system-dependent name of the current font. Applies to the whole device.

FOV real. The field of view, from 0 to 179 degrees. This controls the degree of parallax in the
perspective view. Isometric perspective corresponds to FOV = 0.

ignoreExtent logical. Set to TRUE so that subsequently plotted objects will be ignored in calcu-
lating the bounding box of the scene. Applies to the whole device.

maxClipPlanes R.O.; an integer giving the maximum number of clip planes that can be defined in
the current system. Applies to the whole device.

modelMatrix R.O.; a 4 by 4 matrix describing the position of the user data. See the Note below.

listeners integer. A vector of subscene id values. If a subscene receives a mouse event (see
mouseMode just below), the same action will be carried out on all subscenes in this list. (The
subscene itself is normally listed as a listener. If it is not listed, it will not respond to its own
mouse events.)

mouseMode character. A vector of 5 strings describing mouse actions. The 5 entries are named
c("none","left","right","middle","wheel"), corresponding to actions for no button,
the left, right or middle button, and the mouse wheel. Partial matching to action names is
used. Possible values for the actions are:

"none" No action for this button.
"trackball" Mouse acts as a virtual trackball, rotating the scene.
"xAxis" Similar to "trackball", but restricted to X axis rotation.
"yAxis" Y axis rotation.
"zAxis" Z axis rotation.
"polar" Mouse rotates the scene by moving in polar coordinates.
"selecting" Mouse is used for selection. This is not normally set by the user, but is used

internally by the select3d function.
"zoom" Mouse is used to zoom the display.
"fov" Mouse changes the field of view of the display.
"user" Used when a user handler is set by rgl.setMouseCallbacks.

Possible values for the last entry corresponding to the mouse wheel also include

76 par3d

"pull" Pulling on the mouse wheel increases magnification, i.e. “pulls the scene closer”.
"push" Pulling on the mouse wheel decreases magnification, i.e. “pushes the scene away”.
"user2" Used when a user handler is set by rgl.setWheelCallback.

A common default on Mac OSX is to convert a two finger drag on a trackpad to a mouse wheel
rotation.
The first entry is for actions to take when no mouse button is pressed. Legal values are the
same as for the mouse buttons.
The first entry was added after rgl version 0.106.8. For back compatibility, if the vector of
actions is less than 5 entries, "none" will be added at the start of it.

observer R.O.; the position of the observer relative to the model. Set by observer3d. See the
Note below.

projMatrix R.O.; a 4 by 4 matrix describing the current projection of the scene.

scale real. A vector of 3 values indicating the amount by which to rescale each axis before display.
Set by aspect3d.

skipRedraw whether to update the display. Set to TRUE to suspend updating while making multiple
changes to the scene. See demo(hist3d) for an example. Applies to the whole device.

userMatrix a 4 by 4 matrix describing user actions to display the scene.

userProjection a 4 by 4 matrix describing changes to the projection.

viewport real. A vector giving the dimensions of the window in pixels. The entries are taken to
be c(x,y,width,height) where c(x,y) are the coordinates in pixels of the lower left corner
within the window.

zoom real. A positive value indicating the current magnification of the scene.

bbox R.O.; real. A vector of six values indicating the current values of the bounding box of the
scene (xmin, xmax, ymin, ymax, zmin, zmax)

windowRect integer. A vector of four values indicating the left, top, right and bottom of the dis-
played window (in pixels). Applies to the whole device.

Rendering

The parameters returned by par3d are sufficient to determine where RGL would render a point
on the screen. Given a column vector (x,y,z) in a subscene s, it performs the equivalent of the
following operations:

1. It converts the point to homogeneous coordinates by appending w = 1, giving the vector v =
(x,y,z,1).

2. It calculates the M = par3d("modelMatrix") as a product from right to left of the following
matrices:

• A matrix to translate the centre of the bounding box to the origin.
• A matrix to rescale according to par3d("scale").
• The par3d("userMatrix") as set by the user.
• A matrix which may be set by mouse movements.
• If s has the "model" set to "modify", a similar collection of matrices using parameters

from the parent subscene.

3. It multiplies the point by M giving u = M %*% v.

par3d 77

4. It multiplies that point by a matrix based on the observer position to translate the origin to the
centre of the viewing region.

5. Using this location and information on the normals (which have been similarly transformed),
it performs lighting calculations.

6. It obtains the projection matrix P = par3d("projMatrix") based on the bounding box and
field of view or observer location, multiplies that by the userProjection matrix to give P. It
multiplies the point by it giving P %*% u = (x2,y2,z2,w2).

7. It converts back to Euclidean coordinates by dividing the first 3 coordinates by w2.

8. The new value z2/w2 represents the depth into the scene of the point. Depending on what has
already been plotted, this depth might be obscured, in which case nothing more is plotted.

9. If the point is not culled due to depth, the x2 and y2 values are used to determine the point
in the image. The par3d("viewport") values are used to translate from the range (-1,1) to
pixel locations, and the point is plotted.

10. If hardware antialiasing is enabled, then the whole process is repeated multiple times (at least
conceptually) with different locations in each pixel sampled to determine what is plotted there,
and then the images are combined into what is displayed.

See ?matrices for more information on homogeneous and Euclidean coordinates.

Note that many of these calculations are done on the graphics card using single precision; you
will likely see signs of rounding error if your scene requires more than 4 or 5 digit precision to
distinguish values in any coordinate.

Note

The "xAxis", "yAxis" and "zAxis" mouse modes rotate relative to the coordinate system of the
data, regardless of the current orientation of the scene.

When multiple parameters are set, they are set in the order given. In some cases this may lead to
warnings and ignored values; for example, some font families only support cex = 1, so changing
both cex and family needs to be done in the right order. For example, when using the "bitmap"
family on Windows, par3d(family = "sans",cex = 2) will work, but par3d(cex = 2,family =
"sans") will leave cex at 1 (with a warning that the "bitmap" family only supports that size).

Although par3d("viewport") names the entries of the reported vector, names are ignored when
setting the viewport and entries must be specified in the standard order.

In rgl versions 0.94.x the modelMatrix entry had a changed meaning; before and after that it
contains a copy of the OpenGL MODELVIEW matrix.

As of version 0.100.32, when changing the "windowRect" parameter, the "viewport" for the root
(or specified) subscene is changed immediately. This fixes a bug where in earlier versions it would
only be changed when the window was redrawn, potentially after another command making use of
the value.

Default values are not described here, as several of them are changed by the r3dDefaults variable
when the window is opened by open3d.

References

OpenGL Architecture Review Board (1997). OpenGL Programming Guide. Addison-Wesley.

78 par3dinterp

See Also

rgl.viewpoint to set FOV and zoom.

open3d for how to open a new window with default settings for these parameters.

Examples

open3d()
shade3d(cube3d(color = rainbow(6), meshColor = "faces"))
save <- par3d(userMatrix = rotationMatrix(90*pi/180, 1, 0, 0))
highlevel() # To trigger display
save
par3d("userMatrix")
par3d(save)
highlevel()
par3d("userMatrix")

par3dinterp Interpolator for par3d parameters

Description

Returns a function which interpolates par3d parameter values, suitable for use in animations.

Usage

par3dinterp(times = NULL, userMatrix, scale, zoom, FOV,
method = c("spline", "linear"),
extrapolate = c("oscillate", "cycle", "constant", "natural"),
dev = cur3d(), subscene = par3d("listeners", dev = dev))

Arguments

times Times at which values are recorded or a list; see below

userMatrix Values of par3d("userMatrix")

scale Values of par3d("scale")

zoom Values of par3d("zoom")

FOV Values of par3d("FOV")

method Method of interpolation

extrapolate How to extrapolate outside the time range

dev Which RGL device to use

subscene Which subscene to use

par3dinterp 79

Details

This function is intended to be used in constructing animations. It produces a function that returns
a list suitable to pass to par3d, to set the viewpoint at a given point in time.

All of the parameters are optional. Only those par3d parameters that are specified will be returned.

The input values other than times may each be specified as lists, giving the parameter value set-
tings at a fixed time, or as matrices or arrays. If not lists, the following formats should be used:
userMatrix can be a 4 x 4 x n array, or a 4 x 4n matrix; scale should be an n x 3 matrix; zoom and
FOV should be length n vectors.

An alternative form of input is to put all of the above arguments into a list (i.e. a list of lists, or a
list of arrays/matrices/vectors), and pass it as the first argument. This is the most convenient way to
use this function with the function tkpar3dsave.

Interpolation is by cubic spline or linear interpolation in an appropriate coordinate-wise fashion.
Extrapolation may oscillate (repeat the sequence forward, backward, forward, etc.), cycle (repeat
it forward), be constant (no repetition outside the specified time range), or be natural (linear on an
appropriate scale). In the case of cycling, the first and last specified values should be equal, or the
last one will be dropped. Natural extrapolation is only supported with spline interpolation.

Value

A function is returned. The function takes one argument, and returns a list of par3d settings inter-
polated to that time.

Note

Prior to rgl version 0.95.1476, the subscene argument defaulted to the current subscene, and any
additional entries would be ignored by play3d. The current default value of par3d("listeners",dev
= dev) means that all subscenes that share mouse responses will also share modifications by this
function.

Author(s)

Duncan Murdoch

See Also

play3d to play the animation.

Examples

f <- par3dinterp(zoom = c(1, 2, 3, 1))
f(0)
f(1)
f(0.5)
Not run:
play3d(f)

End(Not run)

80 par3dinterpControl

par3dinterpControl Control RGL widget like par3dinterp()

Description

This control works with playwidget to change settings in a WebGL display in the same way as
par3dinterp does within R.

Usage

par3dinterpControl(fn, from, to, steps, subscene = NULL, omitConstant = TRUE, ...)

Arguments

fn A function returned from par3dinterp.

from, to, steps Values where fn should be evaluated.

subscene Which subscene’s properties should be modified?

omitConstant If TRUE, do not set values that are constant across the range.

... Additional parameters which will be passed to propertyControl.

Details

par3dinterpSetter sets parameters corresponding to values produced by the result of par3dinterp.

Value

Returns controller data in a list of class "rglControl".

Author(s)

Duncan Murdoch

Examples

example(plot3d)
M <- r3dDefaults$userMatrix
fn <- par3dinterp(times = (0:2)*0.75, userMatrix = list(M,

rotate3d(M, pi/2, 1, 0, 0),
rotate3d(M, pi/2, 0, 1, 0)),
scale = c(0.5, 1, 2))

control <- par3dinterpControl(fn, 0, 3, steps = 15)
control
if (interactive() || in_pkgdown_example())

rglwidget(width = 500, height = 250) %>%
playwidget(control,

step = 0.01, loop = TRUE, rate = 0.5)

pch3d 81

pch3d Plot symbols similar to base graphics

Description

This function plots symbols similarly to what the base graphics function points does when pch is
specified.

Usage

pch3d(x, y = NULL, z = NULL, pch = 1,
bg = material3d("color")[1], cex = 1, radius,
color = "black", lit = FALSE, ...)

Arguments

x, y, z The locations at which to plot in a form suitable for use in xyz.coords.

pch A vector of integers or single characters describing the symbols to plot.

bg The fill color(s) to use for pch from 21 to 25.

cex A relative size of the symbol to plot.

radius An absolute size of the symbol to plot in user coordinates.

color The color(s) to use for symbols.

lit Whether the object responds to lighting or just shows the displayed color di-
rectly.

... Other material properties.

Details

The list of symbols encoded by numerical pch values is given in the points help page.

Value

A vector of object id values is returned invisibly. Separate objects will be drawn for each different
combination of pch value from 0 to 25, color and bg, and another holding all the character symbols.

Note

This function is not a perfect match to how the points function works due to limitations in RGL
and OpenGL. In particular:

Symbols with numbers from 1 to 25 are drawn as 3D sprites (see sprites3d), so they will resize
as the window is zoomed. Letters and numbers from 32 to 255 (which are mapped to letters) are
drawn using text3d, so they maintain a fixed size.

A calculation somewhat like the one in plot3d that sets the size of spheres is used to choose the
size of sprites based on cex and the current scaling. This will likely need manual tweaking. Use the
radius argument for a fixed size.

82 persp3d

No special handling is done for the case of pch = ".". Use points3d for small dots.

As of rgl version 0.100.10, background and foreground colors can vary from symbol to symbol.

Author(s)

Duncan Murdoch

See Also

points3d, text3d, plot3d, points.

Examples

open3d()
i <- 0:25; x <- i %% 5; y <- rep(0, 26); z <- i %/% 5
pch3d(x, y, z, pch = i, bg = "gray", color = rainbow(26))
text3d(x, y, z + 0.3, i)
pch3d(x + 5, y, z, pch = i+65)
text3d(x + 5, y, z + 0.3, i+65)

persp3d Surface plots

Description

This function draws plots of surfaces in 3-space. persp3d is a generic function.

Usage

persp3d(x, ...)

Default S3 method:
persp3d(x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)), z,

xlim = NULL, ylim = NULL, zlim = NULL,
xlab = NULL, ylab = NULL, zlab = NULL, add = FALSE, aspect = !add,
forceClipregion = FALSE, ...)

Arguments

x, y, z points to plot on surface. See Details below.
xlim, ylim, zlim

x-, y- and z-limits. If present, the plot is clipped to this region.
xlab, ylab, zlab

titles for the axes. N.B. These must be character strings; expressions are not
accepted. Numbers will be coerced to character strings.

add whether to add the points to an existing plot.

aspect either a logical indicating whether to adjust the aspect ratio, or a new ratio.

persp3d 83

forceClipregion

force a clipping region to be used, whether or not limits are given.

... additional material parameters to be passed to surface3d and decorate3d.

Details

The default method plots a surface defined as a grid of (x,y,z) locations in space. The grid may
be specified in several ways:

• As with persp, x and y may be given as vectors in ascending order, with z given as a matrix.
There should be one x value for each row of z and one y value for each column. The surface
drawn will have x constant across rows and y constant across columns. This is the most
convenient format when z is a function of x and y which are measured on a regular grid.

• x and y may also be given as matrices, in which case they should have the same dimensions as
z. The surface will combine corresponding points in each matrix into locations (x,y,z) and
draw the surface through those. This allows general surfaces to be drawn, as in the example
of a spherical Earth shown below.

• If x is a list, its components xx, xy and x$z are used for x, y and z respectively, though an
explicitly specified z value will have priority.

One difference from persp is that colors are specified on each vertex, rather than on each facet
of the surface. To emulate the persp color handling, you need to do the following. First, convert
the color vector to an (nx -1) by (ny -1) matrix; then add an extra row before row 1, and an
extra column after the last column, to convert it to nx by ny. (These extra colors will not be used).
For example, col <-rbind(1,cbind(matrix(col,nx -1,ny -1),1)). Finally, call persp3d with
material property smooth = FALSE.

See the “Clipping” section in plot3d for more details on xlim,ylim,zlim and forceClipregion.

Value

This function is called for the side effect of drawing the plot. A vector of shape IDs is returned
invisibly.

Author(s)

Duncan Murdoch

See Also

plot3d, persp. There is a persp3d.function method for drawing functions, and persp3d.deldir
can be used to draw surfaces defined by an irregular collection of points. A formula method
persp3d.formula draws surfaces using this method.

The surface3d function is used to draw the surface without the axes etc.

Examples

(1) The Obligatory Mathematical surface.
Rotated sinc function.

84 persp3d

x <- seq(-10, 10, length = 20)
y <- x
f <- function(x, y) { r <- sqrt(x^2 + y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
open3d()

Draw the surface twice: the first draws the solid part,
the second draws the grid. Offset the first so it doesn't
obscure the lines.

persp3d(x, y, z, aspect = c(1, 1, 0.5), col = "lightblue",
xlab = "X", ylab = "Y", zlab = "Sinc(r)",
polygon_offset = 1)

persp3d(x, y, z, front = "lines", back = "lines",
lit = FALSE, add = TRUE)

highlevel() # trigger the plot

(2) Add to existing persp plot:

xE <- c(-10, 10); xy <- expand.grid(xE, xE)
points3d(xy[, 1], xy[, 2], 6, col = "red")
lines3d(x, y = 10, z = 6 + sin(x), col = "green")

phi <- seq(0, 2*pi, len = 201)
r1 <- 7.725 # radius of 2nd maximum
xr <- r1 * cos(phi)
yr <- r1 * sin(phi)
lines3d(xr, yr, f(xr, yr), col = "pink", lwd = 2)

(3) Visualizing a simple DEM model

z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

open3d()
invisible(bg3d("slategray")) # suppress display
material3d(col = "black")
persp3d(x, y, z, col = "green3", aspect = "iso",

axes = FALSE, box = FALSE)

(4) A globe

lat <- matrix(seq(90, -90, len = 50)*pi/180, 50, 50, byrow = TRUE)
long <- matrix(seq(-180, 180, len = 50)*pi/180, 50, 50)

r <- 6378.1 # radius of Earth in km
x <- r*cos(lat)*cos(long)
y <- r*cos(lat)*sin(long)
z <- r*sin(lat)

persp3d.deldir 85

open3d()
persp3d(x, y, z, col = "white",

texture = system.file("textures/worldsmall.png", package = "rgl"),
specular = "black", axes = FALSE, box = FALSE, xlab = "", ylab = "", zlab = "",
normal_x = x, normal_y = y, normal_z = z)

Not run:
This looks much better, but is slow because the texture is very big
persp3d(x, y, z, col = "white",

texture = system.file("textures/world.png", package = "rgl"),
specular = "black", axes = FALSE, box = FALSE, xlab = "", ylab = "", zlab = "",
normal_x = x, normal_y = y, normal_z = z)

End(Not run)

persp3d.deldir Plot a Delaunay triangulation

Description

The deldir() function in the deldir package computes a Delaunay triangulation of a set of points.
These functions display it as a surface.

Usage

S3 method for class 'deldir'
plot3d(x, ...)
S3 method for class 'deldir'
persp3d(x, ..., add = FALSE)
S3 method for class 'deldir'
as.mesh3d(x, col = "gray", coords = c("x", "y", "z"),

smooth = TRUE, normals = NULL, texcoords = NULL, ...)

Arguments

x A "deldir" object, produced by the deldir() function. It must contain z val-
ues.

add Whether to add surface to existing plot (add = TRUE) or create a new plot (add =
FALSE, the default).

col Colors to apply to each vertex in the triangulation. Will be recycled as needed.

coords See Details below.

smooth Whether to average normals at vertices for a smooth appearance.

normals User-specified normals at each vertex. Requires smooth = FALSE.

texcoords Texture coordinates at each vertex.

... See Details below.

86 persp3d.function

Details

These functions construct a mesh3d object corresponding to the triangulation in x. The plot3d and
persp3d methods plot it.

The coords parameter allows surfaces to be plotted over any coordinate plane. It should be a
permutation of the column names c("x","y","z") from the "deldir" object. The first will be
used as the x coordinate, the second as the y coordinate, and the third as the z coordinate.

The ... parameters in plot3d.deldir are passed to persp3d.deldir; in persp3d.deldir they
are passed to both as.mesh3d.deldir and persp3d.mesh3d; in as.mesh3d.deldir they are used
as material parameters in a tmesh3d call.

Examples

x <- rnorm(200, sd = 5)
y <- rnorm(200, sd = 5)
r <- sqrt(x^2 + y^2)
z <- 10 * sin(r)/r
col <- cm.colors(20)[1 + round(19*(z - min(z))/diff(range(z)))]

save <- options(rgl.meshColorWarning = FALSE)

This code is awkward: to work with demo(rglExamples),
we need auto-printing of the plots. This means we
have to repeat the test for deldir.

haveDeldir <- checkDeldir()

if (haveDeldir) {
dxyz <- deldir::deldir(x, y, z = z, suppressMsge = TRUE)
persp3d(dxyz, col = col)

}

if (haveDeldir) {
open3d()
Do it without smoothing and with a different orientation.
persp3d(dxyz, col = col, coords = c("z", "x", "y"), smooth = FALSE)

}

options(save)

persp3d.function Plot a function of two variables

Description

Plot a function z(x,y) or a parametric function (x(s,t),y(s,t),z(s,t)).

persp3d.function 87

Usage

S3 method for class 'function'
persp3d(x,
xlim = c(0, 1), ylim = c(0, 1),
slim = NULL, tlim = NULL,
n = 101,
xvals = seq.int(min(xlim), max(xlim), length.out = n[1]),
yvals = seq.int(min(ylim), max(ylim), length.out = n[2]),
svals = seq.int(min(slim), max(slim), length.out = n[1]),
tvals = seq.int(min(tlim), max(tlim), length.out = n[2]),
xlab, ylab, zlab,
col = "gray", otherargs = list(),
normal = NULL, texcoords = NULL, ...)

S3 method for class 'function'
plot3d(x, ...)

Arguments

x A function of two arguments. See the details below.

xlim, ylim By default, the range of x and y values. For a parametric surface, if these are not
missing, they are used as limits on the displayed x and y values.

slim, tlim If not NULL, these give the range of s and t in the parametric specification of the
surface. If only one is given, the other defaults to c(0,1).

n A one or two element vector giving the number of steps in the x and y (or s and
t) grid.

xvals, yvals The values at which to evaluate x and y. Ignored for a parametric surface. If
used, xlim and/or ylim are ignored.

svals, tvals The values at which to evaluate s and t for a parametric surface. Only used if
slim or tlim is not NULL. As with xvals and yvals, these override the corre-
sponding slim or tlim specification.

xlab, ylab, zlab

The axis labels. See the details below for the defaults.

col The color to use for the plot. See the details below.

otherargs Additional arguments to pass to the function.
normal, texcoords

Functions to set surface normals or texture coordinates. See the details below.

... Additional arguments to pass to persp3d.

Details

The "function" method for plot3d simply passes all arguments to persp3d. Thus this description
applies to both.

The first argument x is required to be a function. It is named x only because of the requirements
of the S3 system; in the remainder of this help page, we will assume that the assignment f <-x has
been made, and will refer to the function f().

88 persp3d.function

persp3d.function evaluates f() on a two-dimensional grid of values, and displays the resulting
surface. The values on the grid will be passed in as vectors in the first two arguments to the function,
so f() needs to be vectorized. Other optional arguments to f() can be specified in the otherargs
list.

In the default form where slim and tlim are both NULL, it is assumed that f(x,y) returns heights,
which will be plotted in the z coordinate. The default axis labels will be taken from the argument
names to f() and the expression passed as argument x to this function.

If slim or tlim is specified, a parametric surface is plotted. The function f(s,t) must return a
3-column matrix, giving x, y and z coordinates of points on the surface. The default axis labels will
be the column names if those are present. In this case xlim, ylim and zlim are used to define a
clipping region only if specified; the defaults are ignored.

The color of the surface may be specified as the name of a color, or a vector or matrix of color
names. In this case the colors will be recycled across the points on the grid of values.

Alternatively, a function may be given: it should be a function like rainbow that takes an integer
argument and returns a vector of colors. In this case the colors are mapped to z values.

The normal argument allows specification of a function to compute normal vectors to the surface.
This function is passed the same arguments as f() (including otherargs if present), and should
produce a 3-column matrix containing the x, y and z coordinates of the normals.

The texcoords argument is a function similar to normal, but it produces a 2-column matrix con-
taining texture coordinates.

Both normal and texcoords may also contain matrices, with 3 and 2 columns respectively, and
rows corresponding to the points that were passed to f().

Value

This function constructs a call to persp3d and returns the value from that function.

Author(s)

Duncan Murdoch

See Also

The curve function in base graphics does something similar for functions of one variable. See the
example below for space curves.

Examples

(1) The Obligatory Mathematical surface.
Rotated sinc function, with colors

f <- function(x, y) {
r <- sqrt(x^2 + y^2)
ifelse(r == 0, 10, 10 * sin(r)/r)

}
open3d()
plot3d(f, col = colorRampPalette(c("blue", "white", "red")),

xlab = "X", ylab = "Y", zlab = "Sinc(r)",

persp3d.triSht 89

xlim = c(-10, 10), ylim = c(-10, 10),
aspect = c(1, 1, 0.5))

(2) A cylindrical plot

f <- function(s, t) {
r <- 1 + exp(-pmin((s - t)^2,

(s - t - 1)^2,
(s - t + 1)^2)/0.01)

cbind(r*cos(t*2*pi), r*sin(t*2*pi), s)
}

open3d()
plot3d(f, slim = c(0, 1), tlim = c(0, 1), col = "red", alpha = 0.8)

Add a curve to the plot, fixing s at 0.5.

plot3d(f(0.5, seq.int(0, 1, length.out = 100)), type = "l", add = TRUE,
lwd = 3, depth_test = "lequal")

persp3d.triSht Plot an interp or tripack Delaunay triangulation

Description

The tri.mesh() functions in the interp and tripack packages compute a Delaunay triangulation
of a set of points. These functions display it as a surface.

Usage

S3 method for class 'triSht'
plot3d(x, z, ...)
S3 method for class 'triSht'
persp3d(x, z, ..., add = FALSE)
S3 method for class 'triSht'
as.mesh3d(x, z, col = "gray", coords = c("x", "y", "z"),

smooth = TRUE, normals = NULL, texcoords = NULL, ...)
S3 method for class 'tri'
plot3d(x, z, ...)
S3 method for class 'tri'
persp3d(x, z, ..., add = FALSE)
S3 method for class 'tri'
as.mesh3d(x, z, col = "gray", coords = c("x", "y", "z"),

smooth = TRUE, normals = NULL, texcoords = NULL, ...)

Arguments

x A "triSht" or "tri" object, produced by the tri.mesh() function in the in-
terp or tripack packages respectively.

90 persp3d.triSht

z z coordinate values corresponding to each of the nodes in x.

add Whether to add surface to existing plot (add = TRUE) or create a new plot (add =
FALSE, the default).

col Colors to apply to each vertex in the triangulation. Will be recycled as needed.

coords See Details below.

smooth Whether to average normals at vertices for a smooth appearance.

normals User-specified normals at each vertex. Requires smooth = FALSE.

texcoords Texture coordinates at each vertex.

... See Details below.

Details

These functions construct a mesh3d object corresponding to the triangulation in x. The plot3d and
persp3d methods plot it.

The coords parameter allows surfaces to be plotted over any coordinate plane. It should be a
permutation of the column names c("x","y","z"). The first will be used as the x coordinate, the
second as the y coordinate, and the third as the z coordinate.

The ... parameters in plot3d.triSht and plot3d.tri are passed to persp3d; in persp3d.triSht
and persp3d.tri they are passed to both as.mesh3d and persp3d.mesh3d; in as.mesh3d.triSht
and as.mesh3d.tri they are used as material parameters in a tmesh3d call.

"tri" objects may contain constraints. These appear internally as extra nodes, representing either
the inside or outside of boundaries on the region being triangulated. Each of these nodes should
also have a z value, but triangles corresponding entirely to constraint nodes will not be drawn. In
this way complex, non-convex regions can be triangulated. See the second example below.

Note

If there are duplicate points, the tri.mesh() functions will optionally delete some of them. If you
choose this option, the z values must correspond to the nodes after deletion, not before.

Examples

x <- rnorm(200, sd = 5)
y <- rnorm(200, sd = 5)
r <- sqrt(x^2 + y^2)
z <- 10 * sin(r)/r
col <- cm.colors(20)[1 + round(19*(z - min(z))/diff(range(z)))]
save <- NULL
if ((haveinterp <- requireNamespace("interp", quietly = TRUE))) {

save <- options(rgl.meshColorWarning = FALSE)
dxy <- interp::tri.mesh(x, y)
open3d()
persp3d(dxy, z, col = col, meshColor = "vertices")

}
if (haveinterp) {

open3d()
Do it without smoothing and with a different orientation.

planes3d 91

persp3d(dxy, z, col = col, coords = c("z", "x", "y"), smooth = FALSE)
}
if (requireNamespace("tripack", quietly = TRUE)) {

if (is.null(save))
save <- options(rgl.meshColorWarning = FALSE)

Leave a circular hole around (3, 0)
theta <- seq(0, 2*pi, len = 30)[-1]
cx <- 2*cos(theta) + 3
cy <- 2*sin(theta)
keep <- (x - 3)^2 + y^2 > 4
dxy2 <- tripack::tri.mesh(x[keep], y[keep])
dxy2 <- tripack::add.constraint(dxy2, cx, cy)
z <- dxy2$x^2 - dxy2$y^2
col <- terrain.colors(20)[1 + round(19*(z - min(z))/diff(range(z)))]
open3d()
persp3d(dxy2, z, col = col)

}
options(save)

planes3d Add planes

Description

planes3d adds mathematical planes to a scene. Their intersection with the current bounding box
will be drawn. clipplanes3d adds clipping planes to a scene.

Usage

planes3d(a, b = NULL, c = NULL, d = 0, ...)
clipplanes3d(a, b = NULL, c = NULL, d = 0)

Arguments

a, b, c Coordinates of the normal to the plane. Any reasonable way of defining the
coordinates is acceptable. See the function xyz.coords for details.

d Coordinates of the "offset". See the details.

... Material properties. See rgl.material for details.

Details

planes3d draws planes using the parametrization ax + by + cz + d = 0. Multiple planes may
be specified by giving multiple values for any of a,b,c,d; the other values will be recycled as
necessary.

clipplanes3d defines clipping planes using the same equations. Clipping planes suppress the
display of other objects (or parts of them) in the subscene, based on their coordinates. Points (or

92 play3d

parts of lines or surfaces) where the coordinates x,y,z satisfy ax + by + cz + d < 0 will be
suppressed.

The number of clipping planes supported by the OpenGL driver is implementation dependent; use
par3d("maxClipPlanes") to find the limit.

Value

A shape ID of the planes or clipplanes object is returned invisibly.

See Also

abclines3d for mathematical lines.

triangles3d or the corresponding functions for quadrilaterals may be used to draw sections of
planes that do not adapt to the bounding box.

The example in subscene3d shows how to combine clipping planes to suppress complex shapes.

Examples

Show regression plane with z as dependent variable

open3d()
x <- rnorm(100)
y <- rnorm(100)
z <- 0.2*x - 0.3*y + rnorm(100, sd = 0.3)
fit <- lm(z ~ x + y)
plot3d(x, y, z, type = "s", col = "red", size = 1)

coefs <- coef(fit)
a <- coefs["x"]
b <- coefs["y"]
c <- -1
d <- coefs["(Intercept)"]
planes3d(a, b, c, d, alpha = 0.5)

open3d()
ids <- plot3d(x, y, z, type = "s", col = "red", size = 1, forceClipregion = TRUE)
oldid <- useSubscene3d(ids["clipregion"])
clipplanes3d(a, b, c, d)
useSubscene3d(oldid)

play3d Play animation of RGL scene

Description

play3d calls a function repeatedly, passing it the elapsed time in seconds, and using the result of
the function to reset the viewpoint. movie3d does the same, but records each frame to a file to make
a movie.

play3d 93

Usage

play3d(f, duration = Inf, dev = cur3d(), ..., startTime = 0)
movie3d(f, duration, dev = cur3d(), ..., fps = 10,

movie = "movie", frames = movie, dir = tempdir(),
convert = NULL, clean = TRUE, verbose = TRUE,
top = !rgl.useNULL(), type = "gif", startTime = 0,
webshot = TRUE)

Arguments

f A function returning a list that may be passed to par3d

duration The duration of the animation

dev Which RGL device to select

... Additional parameters to pass to f.

startTime Initial time at which to start the animation

fps Number of frames per second

movie The base of the output filename, not including .gif

frames The base of the name for each frame

dir A directory in which to create temporary files for each frame of the movie

convert How to convert to a GIF movie; see Details

clean If convert is NULL or TRUE, whether to delete the individual frames

verbose Whether to report the convert command and the output filename

top Whether to call rgl.bringtotop before each frame

type What type of movie to create. See Details.

webshot Whether to use the webshot2 package for snapshots of frames. See snapshot3d.

Details

The function f will be called in a loop with the first argument being the startTime plus the time in
seconds since the start (where the start is measured after all arguments have been evaluated).

play3d is likely to place a high load on the CPU; if this is a problem, calls to Sys.sleep should be
made within the function to release time to other processes.

play3d will run for the specified duration (in seconds), but can be interrupted by pressing ESC
while the RGL window has the focus.

movie3d saves each frame to disk in a filename of the form ‘framesXXX.png’, where XXX is the
frame number, starting from 0. If convert is NULL (the default) and the magick package is installed,
it will be used to convert the frames to a GIF movie (or other format if supported). If magick is
not installed or convert is TRUE, movie3d will attempt to use the external ImageMagick program
to convert the frames to a movie. The newer magick executable is tried first, then convert if that
fails. The type argument will be passed to ImageMagick to use as a file extension to choose the file
type.

94 play3d

Finally, convert can be a template for a command to execute in the standard shell (wildcards are
allowed). The template is converted to a command using
sprintf(convert,fps,frames,movie,type,duration,dir)
For example, convert = TRUE uses the template "magick -delay 1x%d %s*.png %s.%s". All work
is done in the directory dir, so paths should not be needed in the command. (Note that sprintf
does not require all arguments to be used, and supports formats that use them in an arbitrary order.)

The top = TRUE default is designed to work around an OpenGL limitation: in some implementa-
tions, rgl.snapshot will fail if the window is not topmost.

As of rgl version 0.94, the dev argument is not needed: the function f can specify its device, as
spin3d does, for example. However, if dev is specified, it will be selected as the current device as
each update is played.

As of rgl version 0.95.1476, f can include multiple values in a "subscene" component, and
par3d() will be called for each of them.

Value

play3d is called for the side effect of its repeated calls to f. It returns NULL invisibly.

movie3d is also normally called for the side effect of producing the output movie. It invisibly
returns

Author(s)

Duncan Murdoch, based on code by Michael Friendly

See Also

spin3d and par3dinterp return functions suitable to use as f. See demo(flag) for an example
that modifies the scene in f.

Examples

open3d()
plot3d(cube3d(col = "green"))
M <- par3d("userMatrix")
if (!rgl.useNULL())

play3d(par3dinterp(time = (0:2)*0.5, userMatrix = list(M,
rotate3d(M, pi/2, 1, 0, 0),
rotate3d(M, pi/2, 0, 1, 0))),

duration = 2)
Not run:
movie3d(spin3d(), duration = 5)

End(Not run)

playwidget 95

playwidget Add a widget to play animations

Description

This is a widget that can be put in a web page to allow animations with or without Shiny.

Usage

playwidget(sceneId, controls,
start = 0, stop = Inf, interval = 0.05, rate = 1,
components = c("Reverse", "Play", "Slower", "Faster",

"Reset", "Slider", "Label"),
loop = TRUE,
step = 1, labels = NULL,
precision = 3,
elementId = NULL, respondTo = NULL,
reinit = NULL,
buttonLabels = components, pause = "Pause",
height = 40,
...)

Arguments

sceneId The HTML id of the RGL scene being controlled, or an object. See the Details
below.

controls A single "rglControl" object, e.g. propertyControl, or a list of several.

start, stop The starting and stopping values of the animation. If labels is supplied stop
will default to step through the labels.

interval The requested interval (in seconds) between updates. Updates may occur at
longer intervals.

rate The number of units of “nominal” time per real world second.

components Which components should be displayed? See Details below.

loop When the player reaches the end of the interval, should it loop back to the be-
ginning?

step Step size in the slider.

labels Optional labels to use, corresponding to slider steps. Set to NULL for auto-
generated labels.

precision If labels=NULL, the precision to use when displaying timer values.

elementId The HTML id of the generated widget, containing buttons, slider, etc.

respondTo The HTML ID of a Shiny input control (e.g. a sliderInput control) to respond
to.

96 playwidget

reinit A vector of ids that will need re-initialization before being drawn again.
buttonLabels, pause

These are the labels that will be shown on the buttons if they are displayed.
pause will be shown on the "Play" button while playing.

height The height of the widget in pixels. In a pipe, this is a relative height.

... Additional arguments to pass to to htmlwidgets::createWidget.

Details

The components are buttons to control the animation, a slider for manual control, and a label to
show the current value. They will be displayed in the order given in components. Not all need be
included.

The buttons have the following behaviour:

Reverse Reverse the direction.

Play Play the animation.

Slower Decrease the playing speed.

Faster Increase the playing speed.

Reset Stop the animation and reset to the start value.

If respondTo is used, no components are shown, as it is assumed Shiny (or whatever control is
being referenced) will provide the UI components.

The sceneId component can be another playwidget, a rglwidget result, or a result of htmltools::tags
or htmltools::tagList. This allows you to use a magrittr-style “pipe” command to join an
rglwidget with one or more playwidgets. If a playwidget comes first, sceneId should be set
to NA. If the rglwidget does not come first, previous values should be piped into its controllers
argument. Other HTML code (including other widgets) can be used in the chain if wrapped in
htmltools::tagList.

Value

A widget suitable for use in an Rmarkdown-generated web page, or elsewhere.

Appearance

The appearance of the controls is set by the stylesheet in system.file("htmlwidgets/lib/rglClass/rgl.css").

The overall widget is of class rglPlayer, with id set according to elementId.

The buttons are of HTML class rgl-button, the slider is of class rgl-slider, and the label is of
class rgl-label. Each element has an id prefixed by the widget id, e.g. elementId-button-Reverse,
elementId-slider, etc. (where elementId should be replaced by the actual id).

The reinit parameter handles the case where an object needs re-initialization after each change.
For example, plane objects may need this if their intersection with the bounding box changes shape.
Note that re-initialization is generally incompatible with the vertexControl as it modifies values
which are set during initialization.

plot3d 97

Author(s)

Duncan Murdoch

See Also

subsetControl, propertyControl, ageControl and vertexControl are possible controls to use.

toggleWidget is a wrapper for playwidget and subsetControl to insert a single button to toggle
some elements in a display.

Examples

saveopts <- options(rgl.useNULL = TRUE)

objid <- plot3d(1:10, 1:10, rnorm(10), col=c("red", "red"), type = "s")["data"]

control <- ageControl(value=0,
births=1:10,
ages = c(-5,0,5),
colors = c("green", "yellow", "red"),
objids = objid)

This example uses explicit names
rglwidget(elementId = "theplot", controllers = "theplayer",

height = 300, width = 300)
playwidget("theplot", control, start = -5, stop = 5,

rate = 3, elementId = "theplayer",
components = c("Play", "Slider"))

This example uses pipes, and can skip the names

widget <- rglwidget(height = 300, width = 300) %>%
playwidget(control, start = -5, stop = 5,

rate = 3, components = c("Play", "Slider"))
if (interactive() || in_pkgdown_example())

widget

options(saveopts)

plot3d 3D scatterplot

Description

Draws a 3D scatterplot.

98 plot3d

Usage

plot3d(x, ...)
Default S3 method:
plot3d(x, y, z,
xlab, ylab, zlab, type = "p",
col, size, lwd, radius,
add = FALSE, aspect = !add,
xlim = NULL, ylim = NULL, zlim = NULL,
forceClipregion = FALSE,
decorate = !add, ...)
S3 method for class 'mesh3d'
plot3d(x, xlab = "x", ylab = "y", zlab = "z", type = c("shade", "wire", "dots"),
add = FALSE, aspect = !add, ...)

Arguments

x, y, z vectors of points to be plotted. Any reasonable way of defining the coordinates
is acceptable. See the function xyz.coords for details.

xlab, ylab, zlab

labels for the coordinates.

type For the default method, a single character indicating the type of item to plot.
Supported types are: ’p’ for points, ’s’ for spheres, ’l’ for lines, ’h’ for line seg-
ments from z = 0, and ’n’ for nothing. For the mesh3d method, one of ’shade’,
’wire’, or ’dots’. Partial matching is used.

col the color to be used for plotted items.

size the size for plotted points.

lwd the line width for plotted items.

radius the radius of spheres: see Details below.

add whether to add the points to an existing plot.

aspect either a logical indicating whether to adjust the aspect ratio, or a new ratio.
xlim, ylim, zlim

If not NULL, set clipping limits for the plot.
forceClipregion

Force a clipping region to be used, whether or not limits are given.

decorate Whether to add bounding axes and other decorations.

... additional parameters which will be passed to par3d, material3d or decorate3d.

Details

plot3d is a partial 3D analogue of plot.default.

Missing values in the data are skipped, as in standard graphics.

If aspect is TRUE, aspect ratios of c(1,1,1) are passed to aspect3d. If FALSE, no aspect adjustment
is done. In other cases, the value is passed to aspect3d.

plot3d.formula 99

With type = "s", spheres are drawn centered at the specified locations. The radius may be con-
trolled by size (specifying the size relative to the plot display, with the default size = 3 giving a
radius about 1/20 of the plot region) or radius (specifying it on the data scale if an isometric aspect
ratio is chosen, or on an average scale if not).

Value

plot3d is called for the side effect of drawing the plot; a vector of object IDs is returned.

Clipping

If any of xlim, ylim or zlim are specified, they should be length two vectors giving lower and upper
clipping limits for the corresponding coordinate. NA limits will be ignored.

If any clipping limits are given, then the data will be plotted in a newly created subscene within
the current one; otherwise plotting will take place directly in the current subscene. This subscene
is named "clipregion" in the results. This may affect the appearance of transparent objects if
some are drawn in the plot3d call and others after, as RGL will not attempt to depth-sort objects
if they are in different subscenes. It is best to draw all overlapping transparent objects in the same
subscene. See the example in planes3d. It will also affect the use of clipplanes3d; clipping
planes need to be in the same subscene as the objects being clipped.

Use forceClipregion = TRUE to force creation of this subscene even without specifying limits.

Author(s)

Duncan Murdoch

See Also

plot.default, open3d, par3d. There are plot3d.function and plot3d.deldir methods for
plotting surfaces.

Examples

open3d()
x <- sort(rnorm(1000))
y <- rnorm(1000)
z <- rnorm(1000) + atan2(x, y)
plot3d(x, y, z, col = rainbow(1000))

plot3d.formula Methods for formulas

Description

These functions provide a simple formula-based interface to plot3d and persp3d.

100 plot3d.formula

Usage

S3 method for class 'formula'
plot3d(x, data = NULL, xlab, ylab, zlab, ...)
S3 method for class 'formula'
persp3d(x, data = NULL, xlab, ylab, zlab, ...)

Arguments

x A formula like z ~ x + y.

data An optional dataframe or list in which to find the components of the formula.

xlab, ylab, zlab

Optional axis labels to override the ones automatically obtained from the for-
mula.

... Additional arguments to pass to the default plot3d method, or the persp3d
method for "deldir" objects.

Details

Only simple formulas (the ones handled by the xyz.coords function) are supported: a single vari-
able on the left hand side (which will be plotted on the Z axis), and a sum of two variables on the
right hand side (which will be the X and Y axis variables in the plot.)

Value

These functions are called for the side effect of drawing the plots. The plot3d method draws a
scatterplot. The persp3d method draws a surface plot.

Return values are as given by the plot3d.default method or the persp3d.deldir methods.

Note

The persp3d method requires that the suggested package deldir is installed.

Author(s)

Duncan Murdoch

Examples

open3d()
mfrow3d(1, 2, sharedMouse = TRUE)
plot3d(mpg ~ wt + qsec, data = mtcars)
if (checkDeldir())

persp3d(mpg ~ wt + qsec, data = mtcars)

plot3d.lm 101

plot3d.lm Method for plotting simple linear fit

Description

This function provides several plots of the result of fitting a two-predictor model.

Usage

S3 method for class 'lm'
plot3d(x,

which = 1,
plane.col = "gray", plane.alpha = 0.5,
sharedMouse = TRUE,
use_surface3d,
do_grid = TRUE,
grid.col = "black",
grid.alpha = 1,
grid.steps = 5,
sub.steps = 4,
vars = get_all_vars(terms(x), x$model),
clip_to_density = 0,
...)

Arguments

x An object inheriting from class "lm" obtained by fitting a two-predictor model.

which Which plot to show? See Details below.
plane.col, plane.alpha

These parameters control the colour and transparency of a plane or surface.

sharedMouse If multiple plots are requested, should they share mouse controls, so that they
move in sync?

use_surface3d Use the surface3d function to plot the surface rather than planes3d. This
allows curved surfaces to be shown. The default is FALSE if the model looks like
a simple 2 parameter linear fit, otherwise TRUE.

do_grid Plot a grid.
grid.col, grid.alpha, grid.steps

Characteristics of the grid.

sub.steps If use_surface3d is TRUE, use an internal grid of grid.steps*sub.steps to
draw the surface. sub.steps > 1 allows curvature within facets. Similarly, if
do_grid is TRUE, it allows curvature within grid lines.

vars A dataframe containing the variables to plot in the first three columns, with the
response assumed to be in column 1. See the Note below.

102 plot3d.lm

clip_to_density

If positive, the surface, plane or grid will be clipped to a region with sufficient
data.

... Other parameters to pass to the default plot3d method, to control the appear-
ance of aspects of the plot other than the plane.

Details

Three plots are possible, depending on the value(s) in which:

1. (default) Show the points and the fitted plane or surface.

2. Show the residuals and the plane at z = 0.

3. Show the predicted values on the fitted plane or surface.

If clip_to_density is positive, then the surface, plane or grid will be clipped to the region where
a non-parametric density estimate (using MASS::kde2d), normalized to have a maximum value of
1, is greater than the given value. This will suppress parts of the plot that aren’t supported by the
observed data.

Value

Called for the side effect of drawing one or more plots.

Invisibly returns a high-level vector of object ids. Names of object ids have the plot number (in
drawing order) appended.

Note

The default value for the vars argument will handle simple linear models with a response and
two predictors, and some models with functions of those two predictors. For models that fail (e.g.
models using poly), you can include the observed values as in the third example below.

If clip_to_density > 0,

1. The clipping is approximate, so it may not agree perfectly between surfaces, planes and grids.

2. This option requires the suggested packages MASS and akima, and will be ignored with a
warning if either is not installed.

Author(s)

Duncan Murdoch

Examples

open3d()
ids <- plot3d(lm(mpg ~ wt + qsec, data = mtcars), which = 1:3)
names(ids)

open3d()
plot3d(lm(mpg ~ wt + I(wt^2) + qsec, data = mtcars))

open3d()

plotmath3d 103

Specify vars in the order: response, pred1, pred2.
plot3d(lm(mpg ~ poly(wt, 3) + qsec, data = mtcars),

vars = mtcars[,c("mpg", "wt", "qsec")])

open3d()
Clip parts of the plot with few (wt, qsec) points
plot3d(lm(mpg ~ poly(wt, 3) + qsec, data = mtcars),

vars = mtcars[,c("mpg", "wt", "qsec")],
clip_to_density = 0.1)

plotmath3d Draw text using base graphics math plotting

Description

To plot mathematical text, this function uses base graphics functions to plot it to a ‘.png’ file, then
uses that file as a texture in a sprite.

Usage

plotmath3d(x, y = NULL, z = NULL, text, cex = par("cex"),
adj = 0.5, pos = NULL, offset = 0.5,
fixedSize = TRUE, startsize = 480, initCex = 5, ...)

Arguments

x, y, z coordinates. Any reasonable way of defining the coordinates is acceptable. See
the function xyz.coords for details.

text A character vector or expression. See plotmath for how expressions are inter-
preted.

cex Character size expansion.

adj one value specifying the horizontal adjustment, or two, specifying horizontal
and vertical adjustment respectively, or three, for depth as well.

pos, offset alternate way to specify adj; see text3d

fixedSize Should the resulting sprite behave like the default ones, and resize with the
scene, or like text, and stay at a fixed size?

startsize, initCex

These parameters are unlikely to be needed by users. startsize is an over-
estimate of the size (in pixels) of the largest expression. Increase this if large
expressions are cut off. initCex is the size of text used to form the bitmap.
Increase this if letters look too blurry at the desired size.

... Additional arguments to pass to text when drawing the text.

Value

Called for the side effect of displaying the sprites. The shape ID of the displayed object is returned.

104 points3d

Note

The text3d function passes calls to this function if its usePlotmath argument is TRUE. The default
value is determined by examining its texts argument; if it looks like an expression, plotmath3d is
used.

Author(s)

Duncan Murdoch

See Also

text3d

Examples

open3d()
plotmath3d(1:3, 1:3, 1:3, expression(x[1] == 1, x[2] == 2, x[3] == 3))
This lets the text resize with the plot
text3d(4, 4, 4, "resizeable text", usePlotmath = TRUE, fixedSize = FALSE)

points3d Add primitive shape

Description

Adds a shape node to the current scene.

Usage

points3d(x, y = NULL, z = NULL, ...)
lines3d(x, y = NULL, z = NULL, ...)
segments3d(x, y = NULL, z = NULL, ...)
triangles3d(x, y = NULL, z = NULL, ...)
quads3d(x, y = NULL, z = NULL, ...)

Arguments

x, y, z coordinates. Any reasonable way of defining the coordinates is acceptable. See
the function xyz.coords for details.

... Material properties (see material3d). For normals use normals and for texture
coordinates use texcoords; see rgl.primitive for details.

points3d 105

Details

The functions points3d, lines3d, segments3d, triangles3d and quads3d add points, joined
lines, line segments, filled triangles or quadrilaterals to the plots. They correspond to the OpenGL
types GL_POINTS,GL_LINE_STRIP,GL_LINES,GL_TRIANGLES and GL_QUADS respectively.

Points are taken in pairs by segments3d, triplets as the vertices of the triangles, and quadruplets for
the quadrilaterals. Colors are applied vertex by vertex; if different at each end of a line segment,
or each vertex of a polygon, the colors are blended over the extent of the object. Polygons must
be non-degenerate and quadrilaterals must be entirely in one plane and convex, or the results are
undefined.

These functions call the lower level functions rgl.points, rgl.linestrips.

The appearance of the new objects are defined by the material properties. See rgl.material for
details.

The two principal differences between the rgl.* functions and the *3d functions are that the former
set all unspecified material properties to defaults, whereas the latter use current values as defaults;
the former make persistent changes to material properties with each call, whereas the latter make
temporary changes only for the duration of the call.

Value

Each function returns the integer object ID of the shape that was added to the scene. These can be
passed to pop3d to remove the object from the scene.

Author(s)

Ming Chen and Duncan Murdoch

Examples

Show 12 random vertices in various ways.

M <- matrix(rnorm(36), 3, 12, dimnames = list(c('x', 'y', 'z'),
rep(LETTERS[1:4], 3)))

Force 4-tuples to be convex in planes so that quads3d works.

for (i in c(1, 5, 9)) {
quad <- as.data.frame(M[, i + 0:3])
coeffs <- runif(2, 0, 3)
if (mean(coeffs) < 1) coeffs <- coeffs + 1 - mean(coeffs)
quad$C <- with(quad, coeffs[1]*(B - A) + coeffs[2]*(D - A) + A)
M[, i + 0:3] <- as.matrix(quad)

}

open3d()

Rows of M are x, y, z coords; transpose to plot

M <- t(M)
shift <- matrix(c(-3, 3, 0), 12, 3, byrow = TRUE)

106 polygon3d

points3d(M)
lines3d(M + shift)
segments3d(M + 2*shift)
triangles3d(M + 3*shift, col = 'red')
quads3d(M + 4*shift, col = 'green')
text3d(M + 5*shift, texts = 1:12)

Add labels

shift <- outer(0:5, shift[1,])
shift[, 1] <- shift[, 1] + 3
text3d(shift,

texts = c('points3d', 'lines3d', 'segments3d',
'triangles3d', 'quads3d', 'text3d'),

adj = 0)
rgl.bringtotop()

polygon3d Draw a polygon in three dimensions

Description

This function takes a description of a flat polygon in x, y and z coordinates, and draws it in three
dimensions.

Usage

polygon3d(x, y = NULL, z = NULL, fill = TRUE, plot = TRUE,
coords = 1:2, random = TRUE, ...)

Arguments

x, y, z Vertices of the polygon in a form accepted by xyz.coords.

fill logical; should the polygon be filled?

plot logical; should the polygon be displayed?

coords Which two coordinates (x = 1, y = 2, z = 3) describe the polygon.

random Should a random triangulation be used?

... Other parameters to pass to lines3d or shade3d if plot = TRUE.

Details

The function triangulates the two dimensional polygon described by coords, then applies the trian-
gulation to all three coordinates. No check is made that the polygon is actually all in one plane, but
the results may be somewhat unpredictable (especially if random = TRUE) if it is not.

Polygons need not be simple; use NA to indicate separate closed pieces. For fill = FALSE there
are no other restrictions on the pieces, but for fill = TRUE the resulting two-dimensional polygon
needs to be one that triangulate can handle.

propertyControl 107

Value

If plot = TRUE, the id number of the lines (for fill = FALSE) or triangles (for fill = TRUE) that
have been plotted.

If plot = FALSE, then for fill = FALSE, a vector of indices into the XYZ matrix that could be used
to draw the polygon. For fill = TRUE, a triangular mesh object representing the triangulation.

Author(s)

Duncan Murdoch

See Also

extrude3d for a solid extrusion of a polygon, triangulate for the triangulation.

Examples

theta <- seq(0, 4*pi, len = 50)
r <- theta + 1
r <- c(r[-50], rev(theta*0.8) + 1)
theta <- c(theta[-50], rev(theta))
x <- r*cos(theta)
y <- r*sin(theta)
open3d()
plot(x, y, type = "n")
polygon(x, y)
polygon3d(x, y, x + y, col = "blue")

propertyControl Controls to use with playwidget()

Description

These are setter functions to produce actions in a Shiny app, or in an animation.

Usage

subsetControl(value = 1, subsets, subscenes = NULL,
fullset = Reduce(union, subsets),
accumulate = FALSE)

propertyControl(value = 0, entries, properties,
objids = tagged3d(tags), tags, values = NULL,
param = seq_len(NROW(values)) - 1, interp = TRUE)

108 propertyControl

Arguments

value The value to use for input (typically input$value in a Shiny app.)

subsets A list of vectors of object identifiers; the value will choose among them.

fullset Objects in the subscene which are not in fullset will not be touched.

subscenes The subscenes to be controlled. If NULL, the root subscene.

accumulate If TRUE, the subsets will accumulate (by union) as the value increases.

entries, properties, objids

Which properties to set.

tags Select objects with matching tags. Ignored if objids is specified.

values Values to set.

param Parameter values corresponding to the rows of value

interp Whether to use linear interpolation between param values

Details

subsetControl produces data for playwidget to display subsets of the object in one or more sub-
scenes. This code will not touch objects in the subscenes if they are not in fullset. fullset
defaults to the union of all the object ids mentioned in subsets, so by default if an id is not men-
tioned in one of the subsets, it will not be controlled by the slider. If value is specified in R code,
it will be a 1-based index into the subsets list; when specified internally in Javascript, 0-based
indexing into the corresponding array will be used.

propertyControl sets individual properties. Here the row of values is determined by the position
of value in param.

Value

These functions return controller data in a list of class "rglControl".

Author(s)

Duncan Murdoch

See Also

subsetSetter for a way to embed a pure Javascript control, and playwidget for a way to use these
in animations (including Shiny), rglShared for linking using the crosstalk package.

propertySetter 109

propertySetter Obsolete functions to write HTML/Javascript code to control a WebGL
display

Description

These functions write out HTML code to control WebGL displays based using the obsolete writeWebGL.
Use playwidget and related functions instead.

Usage

propertySlider(setter = propertySetter,
minS = NULL, maxS = NULL, step = 1, init = NULL,

labels,
id = basename(tempfile("input")), name = id,
outputid = paste0(id, "text"),
index = NULL,
...)

propertySetter(values = NULL, entries, properties, objids, prefixes = "",
param = seq_len(NROW(values)), interp = TRUE, digits = 7)

par3dinterpSetter(fn, from, to, steps, subscene, omitConstant = TRUE,
rename = character(), ...)

matrixSetter(fns, from, to, steps, subscene = currentSubscene3d(),
matrix = "userMatrix", omitConstant = TRUE, prefix = "", ...)

vertexSetter(values, vertices = 1, attributes, objid, prefix = "",
param = seq_len(NROW(values)), interp = TRUE,
digits = 7)

Arguments

setter A function to write Javascript code, or its output, or a list containing several of
these.

minS, maxS, step, init

Slider values to be displayed. Reasonable defaults are used if missing.

labels Labels to display for each slider value. The defaults are calculated using internal
variables. If NULL, no labels will be shown.

id The id of the input control that will be generated.

name The name of the input control that will be generated.

outputid The id of the output control that will display the slider value, or NULL for none.

index The 1-based index of this slider: it controls the corresponding entry in an in-
dexed setter such as matrixSetter.

110 r3d

... Other parameters.

values An array of values; rows correspond to slider positions. Alternatively, NULL;
the generated function takes a single value or array of values and applies them
directly.

entries, properties, objids, prefixes

Vectors describing the columns of values.

param Parameter values corresponding to each row of values.

interp Whether to interpolate values. If FALSE, the Javascript function will expect non-
negative integer values. Ignored if values is NULL.

digits How many significant digits to emit in the Javascript code.

fn A function returned from par3dinterp.

from, to, steps Values where fn should be evaluated.

subscene Which subscene’s properties should be modified?

omitConstant If TRUE, do not set values that are constant across the range.

rename A named character vector of names of Javascript properties to modify.

fns A list containing functions returned from par3dinterp.

matrix A character string giving the Javascript property name of the matrix to modify.

prefix The prefix of the scene containing matrix.

vertices A vector of vertex numbers (1-based) within an object.

attributes A vector of attributes of a vertex, from c("x","y","z","r","g","b","a","nx","ny","nz","radius","ox","oy","oz","ts","tt").

objid The object containing the vertices to be modified.

Author(s)

Duncan Murdoch

See Also

rglwidget, playwidget

r3d Generic 3D interface

Description

Generic 3D interface for 3D rendering and computational geometry.

r3d 111

Details

R3d is a design for an interface for 3d rendering and computation without dependency on a specific
rendering implementation. R3d includes a collection of 3D objects and geometry algorithms. All
r3d interface functions are named *3d. They represent generic functions that delegate to implemen-
tation functions.

The interface can be grouped into 8 categories: Scene Management, Primitive Shapes, High-level
Shapes, Geometry Objects, Visualization, Interaction, Transformation, Subdivision.

The rendering interface gives an abstraction to the underlying rendering model. It can be grouped
into four categories:

Scene Management: A 3D scene consists of shapes, lights and background environment.

Primitive Shapes: Generic primitive 3D graphics shapes such as points, lines, triangles, quadran-
gles and texts.

High-level Shapes: Generic high-level 3D graphics shapes such as spheres, sprites and terrain.

Interaction: Generic interface to select points in 3D space using the pointer device.

In this package we include an implementation of r3d using the underlying rgl.* functions.

3D computation is supported through the use of object structures that live entirely in R.

Geometry Objects: Geometry and mesh objects allow to define high-level geometry for computa-
tional purpose such as triangle or quadrangle meshes (see mesh3d).

Transformation: Generic interface to transform 3d objects.

Visualization: Generic rendering of 3d objects such as dotted, wired or shaded.

Computation: Generic subdivision of 3d objects.

At present, the main practical differences between the r3d functions and the rgl.* functions are as
follows.

The r3d functions call open3d if there is no device open, and the rgl.* functions call rgl.open.
By default open3d sets the initial orientation of the coordinate system in ’world coordinates’, i.e. a
right-handed coordinate system in which the x-axis increases from left to right, the y-axis increases
with depth into the scene, and the z-axis increases from bottom to top of the screen. rgl.* functions,
on the other hand, use a right-handed coordinate system similar to that used in OpenGL. The x-axis
matches that of r3d, but the y-axis increases from bottom to top, and the z-axis decreases with depth
into the scene. Since the user can manipulate the scene, either system can be rotated into the other
one.

The r3d functions also preserve the rgl.material setting across calls (except for texture elements,
in the current implementation), whereas the rgl.* functions leave it as set by the last call.

The example code below illustrates the two coordinate systems.

See Also

points3d, lines3d, segments3d, triangles3d, quads3d, text3d, spheres3d, sprites3d, terrain3d,
select3d, dot3d, wire3d, shade3d, transform3d, rotate3d, subdivision3d, mesh3d, cube3d,
rgl

112 readSTL

Examples

x <- c(0, 1, 0, 0)
y <- c(0, 0, 1, 0)
z <- c(0, 0, 0, 1)
labels <- c("Origin", "X", "Y", "Z")
i <- c(1, 2, 1, 3, 1, 4)

rgl.* interface

rgl.open()
rgl.texts(x, y, z, labels)
rgl.texts(1, 1, 1, "rgl.* coordinates")
rgl.lines(x[i], y[i], z[i])

*3d interface

open3d()
text3d(x, y, z, labels)
text3d(1, 1, 1, "*3d coordinates")
segments3d(x[i], y[i], z[i])

readSTL Read and write STL (stereolithography) format files

Description

These functions read and write STL files. This is a simple file format that is commonly used in
3D printing. It does not represent text, only triangles. The writeSTL function converts some RGL
object types to triangles.

Usage

readSTL(con, ascii = FALSE, plot = TRUE, ...)
writeSTL(con, ascii = FALSE,

pointRadius = 0.005,
pointShape = icosahedron3d(),
lineRadius = pointRadius,
lineSides = 20,
ids = tagged3d(tags),
tags = NULL)

Arguments

con A connection or filename.

ascii Whether to use the ASCII format or the binary format.

plot On reading, should the object be plotted?

readSTL 113

... If plotting, other parameters to pass to triangles3d

pointRadius, lineRadius

The radius of points and lines relative to the overall scale of the figure.

pointShape A mesh shape to use for points. It is scaled by the pointRadius.

lineSides Lines are rendered as cylinders with this many sides.

ids The identifiers (from ids3d) of the objects to write. If NULL, try to write every-
thing.

tags Alternate way to specify ids. Ignored if ids is given.

Details

The current implementation is limited. For reading, it ignores normals and color information. For
writing, it only outputs triangles, quads, planes, spheres, points, line segments, line strips and sur-
faces, and does not write color information. Lines and points are rendered in an isometric scale: if
your data scales vary, they will look strange.

Since the STL format only allows one object per file, all RGL objects are combined into a single
object when output.

The output file is readable by Blender and Meshlab; the latter can write in a number of other formats,
including U3D, suitable for import into a PDF document.

Value

readSTL invisibly returns the object id if plot = TRUE, or (visibly) a matrix of vertices of the trian-
gles if not.

writeSTL invisibly returns the name of the connection to which the data was written.

Author(s)

Duncan Murdoch

References

The file format was found on Wikipedia on October 25, 2012. I learned about the STL file format
from David Smith’s blog reporting on Ian Walker’s r2stl function.

See Also

scene3d saves a copy of a scene to an R variable; rglwidget, writeASY, writePLY, writeOBJ and
writeSTL write the scene to a file in various other formats.

Examples

filename <- tempfile(fileext = ".stl")
open3d()
shade3d(icosahedron3d(col = "magenta"))
writeSTL(filename)
open3d()
readSTL(filename, col = "red")

114 rgl.attrib

rgl.attrib Get information about shapes

Description

Retrieves information about the shapes in a scene.

Usage

rgl.attrib(id, attrib, first = 1,
last = rgl.attrib.count(id, attrib))

Arguments

id A shape identifier, as returned by ids3d.

attrib An attribute of a shape. Currently supported: one of
"vertices", "normals", "colors", "texcoords", "dim", "texts", "cex",
"adj", "radii", "centers", "ids", "usermatrix", "types", "flags", "offsets",
"family", "font", "pos"
or unique prefixes to one of those.

first, last Specify these to retrieve only those rows of the result.

Details

If the identifier is not found or is not a shape that has the given attribute, zero will be returned by
rgl.attrib.count, and an empty matrix will be returned by rgl.attrib.

The first four attrib names correspond to the usual OpenGL properties; "dim" is used just for
surfaces, defining the rows and columns in the rectangular grid; "cex", "adj", "family", "font"
and "pos" apply only to text objects.

Value

rgl.attrib returns the values of the attribute. Attributes are mostly real-valued, with the following
sizes:

"vertices" 3 values x, y, z
"normals" 3 values x, y, z
"centers" 3 values x, y, z
"colors" 4 values r, g, b, a
"texcoords" 2 values s, t
"dim" 2 values r, c
"cex" 1 value cex
"adj" 2 values x, y
"radii" 1 value r
"ids" 1 value id
"usermatrix" 4 values x, y, z, w
"texts" 1 value text

rgl.attrib.info 115

"types" 1 value type
"flags" 1 value flag
"family" 1 value family
"font" 1 value font
"pos" 1 value pos

The "texts", "types" and "family" attributes are character-valued; the "flags" attribute is log-
ical valued, with named rows.

These are returned as matrices with the row count equal to the count for the attribute, and the
columns as listed above.

Author(s)

Duncan Murdoch

See Also

ids3d, rgl.attrib.info

Examples

p <- plot3d(rnorm(100), rnorm(100), rnorm(100), type = "s", col = "red")
rgl.attrib(p["data"], "vertices", last = 10)

rgl.attrib.info Get information about attributes of objects

Description

These functions give information about the attributes of RGL objects. rgl.attrib.info is the
more “user-friendly” function; rgl.attrib.count is a lower-level function more likely to be used
in programming.

Usage

rgl.attrib.info(id = ids3d("all", 0)$id, attribs = NULL, showAll = FALSE)
rgl.attrib.count(id, attrib)

Arguments

id One or more RGL object ids.

attribs A character vector of one or more attribute names.

showAll Should attributes with zero entries be shown?

attrib A single attribute name.

116 rgl.bbox

Details

See the first example below to get the full list of attribute names.

Value

A dataframe containing the following columns:

id The id of the object.

attrib The full name of the attribute.

nrow, ncol The size of matrix that would be returned by rgl.attrib for this attribute.

Author(s)

Duncan Murdoch

See Also

rgl.attrib to obtain the attribute values.

Examples

open3d()
id <- points3d(rnorm(100), rnorm(100), rnorm(100), col = "green")
rgl.attrib.info(id, showAll = TRUE)
rgl.attrib.count(id, "vertices")

merge(rgl.attrib.info(), ids3d("all"))

rgl.bbox Set up bounding box decoration

Description

Set up the bounding box decoration.

Usage

rgl.bbox(
xat = NULL, xlab = NULL, xunit = 0, xlen = 5,
yat = NULL, ylab = NULL, yunit = 0, ylen = 5,
zat = NULL, zlab = NULL, zunit = 0, zlen = 5,
marklen = 15.0, marklen.rel = TRUE, expand = 1,
draw_front = FALSE, ...)
bbox3d(xat = NULL, yat = NULL, zat = NULL,
xunit = "pretty", yunit = "pretty", zunit = "pretty",
expand = 1.03,
draw_front = FALSE, ...)

rgl.bbox 117

Arguments

xat, yat, zat vector specifying the tickmark positions
xlab, ylab, zlab

character vector specifying the tickmark labeling
xunit, yunit, zunit

value specifying the tick mark base for uniform tick mark layout
xlen, ylen, zlen

value specifying the number of tickmarks

marklen value specifying the length of the tickmarks

marklen.rel logical, if TRUE tick mark length is calculated using 1/marklen * axis length,
otherwise tick mark length is marklen in coordinate space

expand value specifying how much to expand the bounding box around the data

draw_front draw the front faces of the bounding box

... Material properties (or other rgl.bbox parameters in the case of bbox3d). See
rgl.material for details.

Details

Four different types of tick mark layouts are possible. This description applies to the X axis; other
axes are similar: If xat is not NULL, the ticks are set up at custom positions. If xunit is numeric
but not zero, it defines the tick mark base. If it is "pretty" (the default in bbox3d), ticks are set
at pretty locations. If xlen is not zero, it specifies the number of ticks (a suggestion if xunit is
"pretty").

The first color specifies the bounding box, while the second one specifies the tick mark and font
color.

bbox3d defaults to pretty locations for the axis labels and a slightly larger box, whereas rgl.bbox
covers the exact range.

axes3d offers more flexibility in the specification of the axes, but they are static, unlike those drawn
by rgl.bbox and bbox3d.

Value

This function is called for the side effect of setting the bounding box decoration. A shape ID is
returned to allow pop3d to delete it.

See Also

rgl.material, axes3d

Examples

rgl.open()
rgl.points(rnorm(100), rnorm(100), rnorm(100))
rgl.bbox(color = c("#333377", "white"), emission = "#333377",

specular = "#3333FF", shininess = 5, alpha = 0.8)

118 rgl.bringtotop

open3d()
points3d(rnorm(100), rnorm(100), rnorm(100))
bbox3d(color = c("#333377", "black"), emission = "#333377",

specular = "#3333FF", shininess = 5, alpha = 0.8)

rgl.bringtotop Assign focus to an RGL window

Description

’rgl.bringtotop’ brings the current RGL window to the front of the window stack (and gives it focus).

Usage

rgl.bringtotop(stay = FALSE)

Arguments

stay whether to make the window stay on top.

Details

If stay is TRUE, then the window will stay on top of normal windows.

Note

not completely implemented for X11 graphics (stay not implemented; window managers such
as KDE may block this action (set "Focus stealing prevention level" to None in Control Cen-
ter/Window Behavior/Advanced)). Not currently implemented under OS/X.

Author(s)

Ming Chen/Duncan Murdoch

Examples

rgl.open()
rgl.points(rnorm(1000), rnorm(1000), rnorm(1000), color = heat.colors(1000))
rgl.bringtotop(stay = TRUE)

rgl.init 119

rgl.init Initializing RGL

Description

Initializing the RGL system.

Usage

rgl.init(initValue = 0, onlyNULL = FALSE,
debug = getOption("rgl.debug", FALSE))

Arguments

initValue value for internal use only

onlyNULL only initialize the null (no display) device

debug enable some debugging messages

Details

If useNULL is TRUE, RGL will use a “null” device. This device records objects as they are plotted,
but displays nothing. It is intended for use with rglwidget and similar functions.

Currently debug only controls messages printed by the OpenGL library during initialization. In
future debug = TRUE may become more verbose.

For display within an OpenGL window in R, RGL requires the OpenGL system to be installed
and available. If there is a problem initializing it, you may see the message 'rgl.init' failed, run-
ning with 'rgl.useNULL = TRUE'. There are several causes and remedies:

• On any system, the OpenGL libraries need to be present for RGL to be able to start an OpenGL
device.

– On macOS, you need to install XQuartz. It is available from https://www.xquartz.org.
– On Linux, you need to install Mesa 3D. One of these commands may work, depending

on your system:
zypper source-install --build-deps-only Mesa # openSUSE/SLED/SLES
yum-builddep mesa # yum Fedora, OpenSuse(?)
dnf builddep mesa # dnf Fedora
apt-get build-dep mesa # Debian, Ubuntu and related

– Windows should have OpenGL installed by default.

• On Unix-alike systems (macOS and Linux, for example), RGL normally uses the GLX sys-
tem for creating displays. If the graphic is created on a remote machine, it may need to
use “Indirect GLX” (IGLX). Due to security concerns, this is often disabled by default. See
https://www.x.org/wiki/Development/Security/Advisory-2014-12-09/ for a discus-
sion of the security issues, and https://unix.stackexchange.com/q/317954 for ways to
re-enable IGLX.

https://www.xquartz.org
https://www.x.org/wiki/Development/Security/Advisory-2014-12-09/
https://unix.stackexchange.com/q/317954

120 rgl.material

• The https://www.virtualgl.org project is intended to be a way to avoid IGLX, by render-
ing remotely and sending bitmaps to the local machine. It’s not a simple install...

• If you don’t need to see RGL displays on screen, you can use the “NULL device”. See
rgl.useNULL.

• If you can’t build the rgl package with OpenGL support, you can disable it and use the NULL
device. (This may happen automatically during configuration, but you’ll get a tested result if
you specify it explicitly.) See the instructions in the ‘README’ file in the source tarball.

Value

Normally the user doesn’t call rgl.init at all: it is called when the package is loaded. It returns
no useful value.

rgl.material Set material properties

Description

Set material properties for geometry appearance.

Usage

rgl.material(
color = "white",
alpha = 1.0,
lit = TRUE,
ambient = "black",
specular = "white",
emission = "black",
shininess = 50.0,
smooth = TRUE,
texture = NULL,
textype = "rgb",
texmipmap = FALSE,
texminfilter = "linear",
texmagfilter = "linear",
texenvmap = FALSE,
front = "fill",
back = "fill",
size = 3.0,
lwd = 1.0,
fog = TRUE,
point_antialias = FALSE,
line_antialias = FALSE,
depth_mask = TRUE,
depth_test = "less",

https://www.virtualgl.org

rgl.material 121

polygon_offset = c(0.0, 0.0),
margin = "",
floating = FALSE,
tag = "",
...

)
material3d(...)

Arguments

color vector of R color characters. Represents the diffuse component in case of light-
ing calculation (lit = TRUE), otherwise it describes the solid color characteris-
tics.

lit logical, specifying if lighting calculation should take place on geometry
ambient, specular, emission, shininess

properties for lighting calculation. ambient, specular, emission are R color char-
acter string values; shininess represents a numerical.

alpha vector of alpha values between 0.0 (fully transparent) .. 1.0 (opaque).

smooth logical, specifying whether Gouraud shading (smooth) or flat shading should be
used.

texture path to a texture image file. Supported formats: png.

textype specifies what is defined with the pixmap

"alpha" alpha values
"luminance" luminance
"luminance.alpha" luminance and alpha
"rgb" color
"rgba" color and alpha texture

texmipmap Logical, specifies if the texture should be mipmapped.

texmagfilter specifies the magnification filtering type (sorted by ascending quality):

"nearest" texel nearest to the center of the pixel
"linear" weighted linear average of a 2x2 array of texels

texminfilter specifies the minification filtering type (sorted by ascending quality):

"nearest" texel nearest to the center of the pixel
"linear" weighted linear average of a 2x2 array of texels
"nearest.mipmap.nearest" low quality mipmapping
"nearest.mipmap.linear" medium quality mipmapping
"linear.mipmap.nearest" medium quality mipmapping
"linear.mipmap.linear" high quality mipmapping

texenvmap logical, specifies if auto-generated texture coordinates for environment-mapping
should be performed on geometry.

front, back Determines the polygon mode for the specified side:

"filled" filled polygon

122 rgl.material

"lines" wireframed polygon
"points" point polygon
"culled" culled (hidden) polygon

size numeric, specifying the size of points in pixels

lwd numeric, specifying the line width in pixels

fog logical, specifying if fog effect should be applied on the corresponding shape.
Fog type is set in bg3d.

point_antialias, line_antialias

logical, specifying if points should be round and lines should be antialiased, but
see Note below.

depth_mask logical, specifying whether the object’s depth should be stored.

depth_test Determines which depth test is used to see if this object is visible, depending
on its apparent depth in the scene compared to the stored depth. Possible values
are "never", "less" (the default), "equal", "lequal" (less than or equal),
"greater", "notequal", "gequal" (greater than or equal), "always".

polygon_offset If non-zero, offsets are added to the recorded depth of filled polygons. See
Details below.

margin, floating

Used mainly for text to draw annotations in the margins, but supported by most
kinds of objects: see mtext3d.

tag A length 1 string value. These may be used to identify objects, or encode other
meta data about the object.

... Any of the arguments above can be passed to material3d; see Details below.
rgl.material will ignore others.

Details

Values can be queried by specifying their names in a character vector, e.g. material3d("color").
There is one read-only property that can be queried but not set:

isTransparent Is the current color transparent?

Only one side at a time can be culled.

Object display colors are determined as follows:

• If lit = FALSE, an element of the color vector property is displayed without modification.
See documentation for individual objects for information on which element is chosen.

• If lit = TRUE, the color is determined as follows.

1. The color is set to the emission property of the object.
2. For each defined light, the following are added:

– the product of the ambient color of the light and the ambient color of the object is
added.

– the color of the object is multiplied by the diffuse color of the light and by a
constant depending on the angle between the surface and the direction to the light,
and added.

rgl.material 123

– the specular color of the object is multiplied by the specular color of the light
and a constant depending on the shininess of the object and the direction to the
light, and added. The shininess property mainly determines the size of the shiny
highlight; adjust one or both of the specular colors to change its brightness.

The polygon_offset property is a two element vector giving the ‘factor’ and ‘units’ values
to use in a glPolygonOffset() call in OpenGL. If only one value is given, it is used for both
elements. The ‘units’ value is added to the depth of all pixels in a filled polygon, and the ‘factor’
value is multiplied by an estimate of the slope of the polygon and then added to the depth. Positive
values “push” polygons back slightly for the purpose of depth testing, to allow points, lines or other
polygons to be drawn on the surface without being obscured due to rounding error. Negative values
pull the object forward. A typical value to use is 1 (which is automatically expanded to c(1,1)). If
values are too large, objects which should be behind the polygon will show through, and if values
are too small, the objects on the surface will be partially obscured. Experimentation may be needed
to get it right. The first example in ?persp3d uses this property to add grid lines to a surface.

material3d is an alternate interface to the material properties, modelled after par3d: rather than
setting defaults for parameters that are not specified, they will be left unchanged. material3d may
also be used to query the material properties; see the examples below.

The current implementation does not return parameters for textures.

The material member of the r3dDefaults list may be used to set default values for material
properties.

The ... parameter to rgl.material is ignored.

Value

rgl.material() is called for the side effect of setting the material properties. It returns a value
invisibly which is not intended for use by the user.

Users should use material3d() to query material properties. It returns values similarly to par3d
as follows: When setting properties, it returns the previous values in a named list. A named list is
also returned when more than one value is queried. When a single value is queried it is returned
directly.

Note

If point_antialias is TRUE, points will be drawn as circles in WebGL; otherwise, they will be
drawn as squares. Within R, the behaviour depends on your graphics hardware: for example, I see
circles for both settings on my laptop.

Within R, lines tend to appear heavier with line_antialias == TRUE. There’s no difference at all
in WebGL.

See Also

rgl.primitive, rgl.bbox, rgl.bg, rgl.light

Examples

save <- material3d("color")
material3d(color = "red")

124 rgl.open

material3d("color")
material3d(color = save)

this illustrates the effect of depth_test
x <- c(1:3); xmid <- mean(x)
y <- c(2, 1, 3); ymid <- mean(y)
z <- 1
open3d()
tests <- c("never", "less", "equal", "lequal", "greater",

"notequal", "gequal", "always")
for (i in 1:8) {

triangles3d(x, y, z + i, col = heat.colors(8)[i])
texts3d(xmid, ymid, z + i, paste(i, tests[i], sep = ". "), depth_test = tests[i])

}
highlevel() # To trigger display

rgl.open Low level window interface

Description

3D real-time rendering system.

Usage

rgl.open(useNULL = rgl.useNULL()) # open new device
rgl.close() # close current device
rgl.cur() # returns active device ID
rgl.dev.list() # returns all device IDs
rgl.set(which, silent = FALSE) # set device as active
rgl.quit() # shutdown RGL device system

Arguments

useNULL whether to open the “null” device

which device ID

silent whether to suppress update of window titles

Details

The RGL device design is oriented towards the R device metaphor. If you send scene management
instructions, and there’s no device open, it will be opened automatically. Opened devices automat-
ically get the current device focus. The focus may be changed by using rgl.set(). rgl.quit()
shuts down the RGL subsystem and all open devices, detaches the package including the shared
library and additional system libraries.

The rgl.open() function attempts to open a new RGL window. If the "rgl.antialias" option
is set, it will be used to select the requested antialiasing. (See open3d for more description of
antialiasing and an alternative way to set the value.)

rgl.pixels 125

If useNULL is TRUE, RGL will use a “null” device. This device records objects as they are plotted,
but displays nothing. It is intended for use with rglwidget and similar functions.

If rgl.open() fails (e.g. because X windows is not running, or its DISPLAY variable is not set
properly), then you can retry the initialization by calling rgl.init(). Do not do this when windows
have already been successfully opened: they will be orphaned, with no way to remove them other
than closing R. In fact, it’s probably a good idea not to do this at all: quitting R and restarting it is a
better solution.

This package also includes a higher level interface which is described in the r3d help topic. That
interface is designed to act more like classic 2D R graphics. We recommend that you avoid mixing
rgl.* and *3d calls.

Value

rgl.open, rgl.close and rgl.set are called for their side effects and return no useful value.
Similarly rgl.quit is not designed to return useful values; in fact, users shouldn’t call it at all!

rgl.cur returns the currently active devices, or 0 if none is active; rgl.dev.list returns a vector
of all open devices. Both functions name the items according to the type of device: null for a
hidden null device, wgl for a Windows device, and glX for an X windows device.

See Also

r3d, rgl.init, rgl.clear, rgl.pop, rgl.viewpoint, rgl.light, rgl.bg, rgl.bbox, rgl.points,
rgl.lines, rgl.triangles, rgl.quads, rgl.texts, rgl.surface, rgl.spheres, rgl.sprites,
rgl.snapshot, rgl.useNULL

rgl.pixels Extract pixel information from window

Description

This function extracts single components of the pixel information from the topmost window.

Usage

rgl.pixels(component = c("red", "green", "blue"),
viewport = par3d("viewport"), top = TRUE)

Arguments

component Which component(s)?

viewport Lower left corner and size of desired region.

top Whether to bring window to top before reading.

126 rgl.postscript

Details

The possible components are "red", "green", "blue", "alpha", "depth", and "luminance" (the
sum of the three colors). All are scaled from 0 to 1.

Note that the luminance is kept below 1 by truncating the sum; this is the definition used for the
GL_LUMINANCE component in OpenGL.

Value

A vector, matrix or array containing the desired components. If one component is requested, a
vector or matrix will be returned depending on the size of block requested (length 1 dimensions are
dropped); if more, an array, whose last dimension is the list of components.

Author(s)

Duncan Murdoch

See Also

rgl.snapshot to write a copy to a file, demo("stereo") for functions that make use of this to draw
a random dot stereogram and an anaglyph.

Examples

example(surface3d)
depth <- rgl.pixels(component = "depth")
if (length(depth) && is.matrix(depth)) # Protect against empty or single pixel windows

contour(depth)

rgl.postscript Export vector graphics

Description

Saves the screenshot to a file in PostScript or other vector graphics format.

Usage

rgl.postscript(filename, fmt = "eps", drawText = TRUE)

Arguments

filename full path to filename.

fmt export format, currently supported: ps, eps, tex, pdf, svg, pgf

drawText logical, whether to draw text

rgl.postscript 127

Details

Animations can be created in a loop modifying the scene and saving a screenshot to a file. (See
example below)

This function is a wrapper for the GL2PS library by Christophe Geuzaine, and has the same limita-
tions as that library: not all OpenGL features are supported, and some are only supported in some
formats. See the reference for full details.

Author(s)

Christophe Geuzaine / Albrecht Gebhardt

References

GL2PS: an OpenGL to PostScript printing library by Christophe Geuzaine, http://www.geuz.
org/gl2ps/, version 1.4.0.

See Also

view3d, snapshot3d

Examples

Create new files in tempdir
savedir <- setwd(tempdir())

x <- y <- seq(-10, 10, length = 20)
z <- outer(x, y, function(x, y) x^2 + y^2)
persp3d(x, y, z, col = 'lightblue')

title3d("Using LaTeX text", col = 'red', line = 3)
rgl.postscript("persp3da.ps", "ps", drawText = FALSE)
rgl.postscript("persp3da.pdf", "pdf", drawText = FALSE)
rgl.postscript("persp3da.tex", "tex")
pop3d()
title3d("Using ps/pdf text", col = 'red', line = 3)
rgl.postscript("persp3db.ps", "ps")
rgl.postscript("persp3db.pdf", "pdf")
rgl.postscript("persp3db.tex", "tex", drawText = FALSE)

setwd(savedir)

Not run:

#
create a series of frames for an animation
#

rgl.open()
shade3d(oh3d(), color = "red")
rgl.viewpoint(0, 20)

http://www.geuz.org/gl2ps/
http://www.geuz.org/gl2ps/

128 rgl.select

for (i in 1:45) {
rgl.viewpoint(i, 20)
filename <- paste("pic", formatC(i, digits = 1, flag = "0"), ".eps", sep = "")
rgl.postscript(filename, fmt = "eps")

}

End(Not run)

rgl.select Switch to select mode, and return the mouse position selected

Description

Mostly for internal use, this function temporarily installs a handler on a button of the mouse that
will return the mouse coordinates of one click and drag rectangle.

Usage

rgl.select(button = c("left", "middle", "right"),
dev = cur3d(), subscene = currentSubscene3d(dev))

Arguments

button Which button to use?

dev, subscene The RGL device and subscene to work with

Value

A vector of four coordinates: the X and Y coordinates of the start and end of the dragged rectangle.

Author(s)

Duncan Murdoch

See Also

rgl.select3d, a version that allows the selection region to be used to select points in the scene.

rgl.setAxisCallback 129

rgl.setAxisCallback User-defined axis labelling callbacks.

Description

These are low level functions to set or get user-defined axis labelling callbacks in R.

Usage

rgl.setAxisCallback(axis, draw = NULL,
dev = cur3d(), subscene = currentSubscene3d(dev))

rgl.getAxisCallback(axis, dev = cur3d(), subscene = currentSubscene3d(dev))

Arguments

axis Which axis? Can be value from 1:3.

draw The function to draw the axis. See Details below.

dev, subscene The RGL device and subscene to work with.

Details

This function only works if a bounding box decoration (set by bbox3d, for example) exists. When
it tries to label the axis specified in rgl.setAxisCallback, it will call draw, which is assumed to
be a function with header function(margin).

The margin argument will be a single string like "x++", indicating that RGL is drawing the x
axis, and suggests putting it on the edge represented by the high values of the other two axes. The
function may use par3d("bbox") to determine the current size of the bounding box and should
draw an appropriate axis. See mtext3d for a discussion of drawing in the margins.

The box outlining the plot region will always be drawn, but can be made invisible by setting front
= "cull",back = "cull" in the call to bbox3d.

Value

Called for the side effect of setting the callback. The set function returns NULL invisibly.

Author(s)

Duncan Murdoch

See Also

setAxisCallbacks to work with rglwidget.

130 rgl.setMouseCallbacks

Examples

datelabels <- local({

id <- 0
bbox <- NULL

function(margin) {
Only need to redraw when the bbox changes
if (!identical(bbox, par3d("bbox"))) {
if (id > 0)

pop3d(id = id)
axis <- match(substr(margin, 1, 1), c("x", "y", "z"))
range <- as.Date(par3d("bbox")[2*axis + (-1):0],

origin = "1970-01-01")
where <- pretty(range)
where <- where[range[1] <= where & where <= range[2]]
id <<- mtext3d(format(where, format="%b %d"), margin, at = where, line = 1)
bbox <<- par3d("bbox")

}
}
})

This doesn't work in WebGL displays

if (!in_pkgdown_example()) {
xyz <- cbind(Sys.Date() + rnorm(10, mean = 10),

rnorm(10), rnorm(10))
open3d()
The default plots dates numerically:
plot3d(xyz, xlab = "Date", ylab = "y", zlab = "z")

rgl.setAxisCallback(1, datelabels)
Repeat the data 5 days later
points3d(xyz + rep(c(5, 0, 0), each = 10))
Make the plot square again
aspect3d(1,1,1)

}

rgl.setMouseCallbacks User callbacks on mouse events

Description

Set and get user callbacks on mouse events.

Usage

rgl.setMouseCallbacks(button, begin = NULL, update = NULL, end = NULL,
dev = cur3d(), subscene = currentSubscene3d(dev))

rgl.setMouseCallbacks 131

rgl.getMouseCallbacks(button,
dev = cur3d(), subscene = currentSubscene3d(dev))

rgl.setWheelCallback(rotate,
dev = cur3d(), subscene = currentSubscene3d(dev))

rgl.getWheelCallback(dev = cur3d(), subscene = currentSubscene3d(dev))

Arguments

button Which button? Use 1 for left, 2 for right, 3 for middle, 4 for wheel. Use 0 to set
an action when no button is pressed.

begin Called when mouse down event occurs

update Called when mouse moves

end Called when mouse is released

rotate Called when mouse wheel is rotated

dev, subscene The RGL device and subscene to work with

Details

The set functions set event handlers on mouse events that occur within the current RGL window.
The begin and update events should be functions taking two arguments; these will be the mouse
coordinates when the event occurs. The end event handler takes no arguments. The rotate event
takes a single argument, which will be equal to 1 if the user pushes the wheel away by one click,
and 2 if the user pulls the wheel by one click.

Alternatively, the handlers may be set to NULL, the default value, in which case no action will occur.

If a subscene has multiple listeners, the user action will still only be called for the subscene that
received the mouse event. It should consult par3d("listeners") if it makes sense to take action
on the whole group of subscenes.

The get function retrieves the callbacks that are currently set.

The “no button” mouse handler may be set by specifying button = 0. The begin function will be
called the first time the mouse moves within the subscene, and the update function will be called
repeatedly as it moves. The end function will never be called.

Value

The set functions are called for the side effect of setting the mouse event handlers.

The rgl.getMouseCallbacks function returns a list containing the callback functions or NULL if
no user callback is set. The rgl.getWheelCallback returns the callback function or NULL.

Author(s)

Duncan Murdoch

132 rgl.surface

See Also

par3d to set built-in handlers, setUserCallbacks to work with rglwidget.

Examples

pan3d <- function(button, dev = cur3d(), subscene = currentSubscene3d(dev)) {
start <- list()

begin <- function(x, y) {
activeSubscene <- par3d("activeSubscene", dev = dev)
start$listeners <<- par3d("listeners", dev = dev, subscene = activeSubscene)
for (sub in start$listeners) {

init <- par3d(c("userProjection","viewport"), dev = dev, subscene = sub)
init$pos <- c(x/init$viewport[3], 1 - y/init$viewport[4], 0.5)
start[[as.character(sub)]] <<- init

}
}

update <- function(x, y) {
for (sub in start$listeners) {

init <- start[[as.character(sub)]]
xlat <- 2*(c(x/init$viewport[3], 1 - y/init$viewport[4], 0.5) - init$pos)
mouseMatrix <- translationMatrix(xlat[1], xlat[2], xlat[3])

par3d(userProjection = mouseMatrix %*% init$userProjection, dev = dev, subscene = sub)
}

}
rgl.setMouseCallbacks(button, begin, update, dev = dev, subscene = subscene)

cat("Callbacks set on button", button, "of RGL device", dev, "in subscene", subscene, "\n")
}
open3d()
shade3d(icosahedron3d(), col = "yellow")
This only works in the internal display...
pan3d(1)

rgl.surface Add surface (obsolete)

Description

Adds a surface to the current scene. The surface is defined by a matrix defining the height of each
grid point and two vectors defining the grid.

Usage

rgl.surface(x, z, y, coords = 1:3, ...,
normal_x = NULL, normal_y = NULL, normal_z = NULL,
texture_s = NULL, texture_t = NULL)

rgl.surface 133

Arguments

x values corresponding to rows of y, or matrix of x coordinates

y matrix of height values

z values corresponding to columns of y, or matrix of z coordinates

coords See details

... Material and texture properties. See rgl.material for details.
normal_x, normal_y, normal_z

matrices of the same dimension as y giving the coordinates of normals at each
grid point

texture_s, texture_t

matrices of the same dimension as z giving the coordinates within the current
texture of each grid point

Details

Adds a surface mesh to the current scene. The surface is defined by the matrix of height values in
y, with rows corresponding to the values in x and columns corresponding to the values in z.

The coords parameter can be used to change the geometric interpretation of x, y, and z. The first
entry of coords indicates which coordinate (1 = X, 2 = Y, 3 = Z) corresponds to the x parameter.
Similarly the second entry corresponds to the y parameter, and the third entry to the z parameter. In
this way surfaces may be defined over any coordinate plane.

If the normals are not supplied, they will be calculated automatically based on neighbouring points.

Texture coordinates run from 0 to 1 over each dimension of the texture bitmap. If texture coordinates
are not supplied, they will be calculated to render the texture exactly once over the grid. Values
greater than 1 can be used to repeat the texture over the surface.

rgl.surface always draws the surface with the ‘front’ upwards (i.e. towards higher y values). This
can be used to render the top and bottom differently; see rgl.material and the example below.

If the x or z argument is a matrix, then it must be of the same dimension as y, and the values in the
matrix will be used for the corresponding coordinates. This is used to plot shapes such as cylinders
where y is not a function of x and z.

NA values in the height matrix are not drawn.

Value

The object ID of the displayed surface is returned invisibly.

Note

It is recommended to use surface3d instead of rgl.surface; use of the rgl.* functions is dis-
couraged due to their side effects.

See Also

rgl.material, surface3d, terrain3d. See persp3d for a higher level interface.

134 rgl.Sweave

Examples

#
volcano example taken from "persp"
#

data(volcano)

y <- 2 * volcano # Exaggerate the relief

x <- 10 * (1:nrow(y)) # 10 meter spacing (S to N)
z <- 10 * (1:ncol(y)) # 10 meter spacing (E to W)

ylim <- range(y)
ylen <- ylim[2] - ylim[1] + 1

colorlut <- terrain.colors(ylen) # height color lookup table

col <- colorlut[y - ylim[1] + 1] # assign colors to heights for each point

rgl.open()
rgl.surface(x, z, y, color = col, back = "lines")

rgl.Sweave Integrating RGL with Sweave

Description

As of R 2.13.0, it is possible to include RGL graphics into a Sweave document. These functions
support that integration.

Usage

Sweave.snapshot()
rgl.Sweave(name, width, height, options, ...)
rgl.Sweave.off()

Arguments

name, width, height, options, ...

These arguments are passed by Sweave to rgl.Sweave when it opens the device.

Details

The rgl.Sweave function is not normally called by the user. The user specifies it as the graphics
driver when opening the code chunk, e.g. by using

<<fig = TRUE, pdf = FALSE, grdevice = rgl.Sweave, resolution = 100>>=

rgl.Sweave 135

When the RGL device is closed at the end of the code chunk, rgl.Sweave.off() will be called
automatically. It will save a snapshot of the last image (by default in ‘.png’ format) for inclusion
in the Sweave document and (by default) close the device. Alternatively, the Sweave.snapshot()
function can be called to save the image before the end of the chunk. Only one snapshot will be
taken per chunk.

Several chunk options are used by the rgl.Sweave device:

stayopen (default FALSE). If TRUE then the RGL device will not be closed at the end of the chunk,
instead a call to Sweave.snapshot() will be used if it has not been called explicitly. Subse-
quent chunks can add to the scene.

outputtype (default png). The output may be specified as outputtype = pdf or outputtype = eps
instead, in which case the rgl.postscript function will be used to write output in the spec-
ified format. Note that rgl.postscript has limitations and does not always render scenes
correctly.

delay (default 0.1). After creating the display window, Sys.sleep will be called to delay this many
seconds, to allow the display system to initialize. This is needed in X11 systems which open
the display asynchronously. If the default time is too short, rgl.Sweave may falsely report
that the window is too large to open.

Value

These functions are called for their side effects.

Note

We recommend turning off all other graphics drivers in a chunk that uses grdevice = rgl.Sweave.
The RGL functions do not write to a standard graphics device.

Note

The rgl package relies on your graphics hardware to render OpenGL scenes, and the default ‘.png’
output copies a bitmap from the hardware device. All such devices have limitations on the size of
the bitmap, but they do not always signal these limitations in a way that RGL will detect. If you find
that images are not being produced properly, try reducing the size using the resolution, width or
height chunk options.

Author(s)

Duncan Murdoch

See Also

RweaveLatex for a description of alternate graphics drivers in Sweave, and standard options that
can be used in code chunks.

hook_rgl and hook_webgl allow fixed or interactive RGL scenes to be embedded in knitr docu-
ments.

136 rgl.texts

rgl.texts Low-level functions for plotting text

Description

This is a low-level function for plotting text. Users should normally use the high-level function
text3d instead.

Usage

rgl.texts(x, y = NULL, z = NULL, text,
adj = 0.5, pos = NULL, offset = 0.5,
family = par3d("family"), font = par3d("font"),
cex = par3d("cex"), useFreeType = par3d("useFreeType"), ...)

rglFonts(...)

Arguments

x, y, z point coordinates. Any reasonable way of defining the coordinates is acceptable.
See the function xyz.coords for details.

text text character vector to draw

adj one value specifying the horizontal adjustment, or two, specifying horizontal
and vertical adjustment respectively, or three, specifying adjustment in all three
directions.

pos a position specifier for the text. If specified, this overrides any adj value given.
Values of 0, 1, 2, 3, 4, 5 and 6 respectively indicate positions on, below, to the
left of, above, to the right of, in front of and behind the specified coordinates.

offset when pos is specified, this value gives the offset of the label from the specified
coordinate in fractions of a character width.

family A device-independent font family name, or ""

font A numeric font number from 1 to 4

cex A numeric character expansion value

useFreeType logical. Should FreeType be used to draw text? (See details below.)

... In rgl.texts, material properties; see rgl.material for details. In rglFonts,
device dependent font definitions for use with FreeType.

Details

The adj parameter determines the position of the text relative to the specified coordinate. Use adj
= c(0,0) to place the left bottom corner at (x,y,z), adj = c(0.5,0.5) to center the text there, and
adj = c(1,1) to put the right top corner there. All coordinates default to 0.5. Placement is done
using the "advance" of the string and the "ascent" of the font relative to the baseline, when these
metrics are known.

rgl.texts 137

Value

rgl.texts returns the object ID of the text object (or sprites, in case of usePlotmath = TRUE)
invisibly.

rglFonts returns the current set of font definitions.

Fonts

Fonts are specified using the family, font, cex, and useFreeType arguments. Defaults for the
currently active device may be set using par3d, or for future devices using r3dDefaults.

The family specification is the same as for standard graphics, i.e. families
c("serif","sans","mono","symbol")
are normally available, but users may add additional families. font numbers are restricted to the
range 1 to 4 for standard, bold, italic and bold italic respectively. Font 5 is recoded as family
"symbol" font 1, but that is not supported unless specifically installed, so should be avoided.

Using an unrecognized value for "family" will result in the system standard font as used in RGL
up to version 0.76. That font is not resizable and font values are ignored.

If useFreeType is TRUE, then RGL will use the FreeType anti-aliased fonts for drawing. This is
generally desirable, and it is the default on non-Windows systems if RGL was built to support
FreeType.

FreeType fonts are specified using the rglFonts function. This function takes a vector of four
filenames of TrueType font files which will be used for the four styles regular, bold, italic and bold
italic. The vector is passed with a name to be used as the family name, e.g. rglFonts(sans =
c("/path/to/FreeSans.ttf",...)). In order to limit the file size, the rgl package ships with
just 3 font files, for regular versions of the serif, sans and mono families. Additional free font files
were available in the past from the Amaya project, though currently the rglExtrafonts function
provides an easier way to register new fonts.

On Windows the system fonts are acceptable and are used when useFreeType = FALSE (the current
default in r3dDefaults). Mappings to family names are controlled by the grDevices::windowsFonts()
function.

Full pathnames should normally be used to specify font files. If relative paths are used, they are
interpreted differently by platform. Currently Windows fonts are looked for in the Windows fonts
folder, while other platforms use the current working directory.

If FreeType fonts are not used, then bitmapped fonts will be used instead. On Windows these will be
based on the fonts specified using the windowsFonts function, and are resizable. Other platforms
will use the default bitmapped font which is not resizable.

Bitmapped fonts have a limited number of characters supported; if any unsupported characters are
used, an error will be thrown.

Examples

Not run:
These FreeType fonts are available from the Amaya project, and are not shipped
with rgl. You would normally install them to the rgl/fonts directory
and use fully qualified pathnames, e.g.
system.file("fonts/FreeSerif.ttf", package = "rgl")

138 rgl.useNULL

rglFonts(serif = c("FreeSerif.ttf", "FreeSerifBold.ttf", "FreeSerifItalic.ttf",
"FreeSerifBoldItalic.ttf"),

sans = c("FreeSans.ttf", "FreeSansBold.ttf", "FreeSansOblique.ttf",
"FreeSansBoldOblique.ttf"),

mono = c("FreeMono.ttf", "FreeMonoBold.ttf", "FreeMonoOblique.ttf",
"FreeMonoBoldOblique.ttf"),

symbol= c("ESSTIX10.TTF", "ESSTIX12.TTF", "ESSTIX9_.TTF",
"ESSTIX11.TTF"))

End(Not run)

rgl.useNULL Report default use of null device

Description

This function checks the "rgl.useNULL" option if present, or the RGL_USE_NULL environment vari-
able if it is not. If the value is TRUE or a string which matches “yes” or “true” in a case-insensitive
test, TRUE is returned.

Usage

rgl.useNULL()

Value

A logical value indicating the current default for use of the null device.

Note

This function is checked by the initialization code when the rgl package is loaded. Thus if you want
to run RGL on a system where there is no graphics support, you should run options(rgl.useNULL
= TRUE) or set the environment variable RGL_USE_NULL=TRUE *before* calling library(rgl) (or
other code that loads rgl), and it will not fail in its attempt at initialization.

Author(s)

Duncan Murdoch

See Also

open3d and rgl.open.

Examples

rgl.useNULL()

rgl.user2window 139

rgl.user2window Convert between RGL user and window coordinates

Description

This function converts from 3-dimensional user coordinates to 3-dimensional window coordinates.

Usage

rgl.user2window(x, y = NULL, z = NULL, projection = rgl.projection())
rgl.window2user(x, y = NULL, z = 0, projection = rgl.projection())
rgl.projection(dev = cur3d(), subscene = currentSubscene3d(dev))

Arguments

x, y, z Input coordinates. Any reasonable way of defining the coordinates is acceptable.
See the function xyz.coords for details.

projection The RGL projection to use

dev, subscene The RGL device and subscene to work with

Details

These functions convert between user coordinates and window coordinates.

Window coordinates run from 0 to 1 in X, Y, and Z. X runs from 0 on the left to 1 on the right;
Y runs from 0 at the bottom to 1 at the top; Z runs from 0 foremost to 1 in the background. RGL
does not currently display vertices plotted outside of this range, but in normal circumstances will
automatically resize the display to show them. In the example below this has been suppressed.

Value

The coordinate conversion functions produce a matrix with columns corresponding to the X, Y, and
Z coordinates.

rgl.projection() returns a list containing the following components:

model the modelview matrix

projection the projection matrix

viewport the viewport vector

See par3d for more details.

Author(s)

Ming Chen / Duncan Murdoch

See Also

select3d

140 rglExtrafonts

Examples

open3d()
points3d(rnorm(100), rnorm(100), rnorm(100))
if (interactive() || !.Platform$OS == "unix") {
Calculate a square in the middle of the display and plot it
square <- rgl.window2user(c(0.25, 0.25, 0.75, 0.75, 0.25),

c(0.25, 0.75, 0.75, 0.25, 0.25), 0.5)
par3d(ignoreExtent = TRUE)
lines3d(square)
par3d(ignoreExtent = FALSE)
}

rglExtrafonts Register extra fonts

Description

This function uses the extrafont package to help register system fonts for use with FreeType in rgl.

Usage

rglExtrafonts(..., quiet = TRUE)

Arguments

... Vectors of fonts to try. See the Details.

quiet Whether to print information on progress.

Details

The extrafont package collects information on installed fonts from the system. When you first in-
stall extrafont, or after new fonts have been installed on your system, run extrafont::font_import()
to build its database of system fonts.

Fonts can be installed in rgl using rglExtrafonts(rglname = familyname) or rglExtrafonts(familyname).
In this call familyname is a vector of family names to look for in the extrafont database using
extrafont::choose_font(familyname); the first one found will be registered with rgl. The op-
tional name rglname will also be usable to refer to the font family.

If none of the given family names is found, no change will be made to the registered fonts in rgl.

During startup, rgl detects whether extrafont is installed, and if so runs
rglExtrafonts(sans = c("Helvetica", "Arial"),

serif = c("Times", "Times New Roman"),
mono = c("Courier", "Courier New"))

to attempt to set up the default fonts.

Fonts found by extrafont can also be used in some other graphics devices besides rgl; see the
extrafont documentation for details.

https://github.com/wch/extrafont
https://github.com/wch/extrafont
https://github.com/wch/extrafont

rglIds 141

Value

Invisibly returns a vector giving the rgl name and the family name for the newly installed font.

Note

Each font in a display needs a unique rgl name; if the associated font for a given name is changed,
all previously plotted text will also change.

Currently rglwidget displays will not respect the new definitions.

Author(s)

Duncan Murdoch

See Also

text3d, rglFonts

Examples

if (requireNamespace("extrafont") && !in_pkgdown_example()) {

open3d()
text3d(1,1,1, "Default", family = "sans", cex = 2)

Attempt to register new sans-serif font:
newfamily <- rglExtrafonts(newsans = c("Comic Sans MS", "Impact",

"Verdana", "Tahoma"))

text3d(2,2,2, newfamily, family = "newsans", cex = 2)

}

rglIds RGL id values

Description

All objects in an RGL scene have a numerical id. These ids are normally stored in vectors of
class c("rglIds","numeric"), which will also have class "rglHighlevel" or "rglLowlevel"
depending on whether a high level function like plot3d or persp3d, or a low level function created
the objects.

142 rglIds

Usage

rglId(ids = integer())
lowlevel(ids = integer())
highlevel(ids = integer())
S3 method for class 'rglId'
print(x,

rglwidget = getOption("rgl.printRglwidget", FALSE),
...)

Arguments

ids A vector of object ids.

x An "rglId" object to print.

rglwidget Whether to create and print an RGL widget. If false, nothing is printed.

... Other arguments which will be passed to rglwidget if it is used.

Details

These functions and classes are intended to allow RGL scenes to be automatically displayed in R
Markdown documents. See setupKnitr for details on enabling auto-printing.

Note that all objects in the current scene will be printed by default, not just the ids in x. (One reason
for this is that lights are also objects; printing objects without lights would rarely make sense.)

Value

Objects of class "rglId", c("rglHighlevel","rglId","numeric") or c("rglLowlevel","rglId","numeric")
for rglId, lowlevel or highlevel respectively.

Author(s)

Duncan Murdoch

Examples

x <- matrix(rnorm(30), ncol = 3, dimnames = list(NULL, c("x", "y", "z")))
p <- plot3d(x, type = "s")
str(p)
if (interactive() || in_pkgdown_example())

print(p, rglwidget = TRUE)

rglMouse 143

rglMouse Generate HTML code to select mouse mode

Description

This generates an HTML select element to choose among the mouse modes supported by rglwidget.

Usage

rglMouse(sceneId,
choices = c("trackball", "selecting",

"xAxis", "yAxis", "zAxis",
"polar", "zoom", "fov",
"none"),

labels = choices,
button = 1,
dev = cur3d(),
subscene = currentSubscene3d(dev),
default = par3d("mouseMode", dev = dev, subscene = subscene)[button],
stayActive = FALSE,
height = 40,
...)

Arguments

sceneId Either an rglwidget or the elementId from one of them.

choices Which mouse modes to support?

labels How to label each mouse mode.

button Which mouse button is being controlled.

dev The RGL device used for defaults.

subscene Which subscene is being modified.

default What is the default entry to show in the control.

stayActive Whether a selection brush should stay active if the mouse mode is changed.

height The (relative) height of the item in the output display.

... Additional arguments to pass to htmltools::tags$select(), e.g. id or class.

Details

A result of an rglwidget call can be passed as the sceneId argument. This allows the widget to be
“piped” into the rglMouse call. The widget will appear first, the selector next in a tagList.

If the sceneId is a character string, it should be the elementId of a separately constructed rglwidget
result.

144 rglShared

Finally, the sceneId can be omitted. In this case the rglMouse result needs to be passed into an
rglwidget call as part of the controllers argument. This will place the selector before the widget
on the resulting display.

If the mouse mode is changed while brushing the scene, by default the brush will be removed (and
so the selection will be cleared too). If this is not desired, set stayActive = TRUE.

Value

A browsable value to put in a web page.

Author(s)

Duncan Murdoch

Examples

if (interactive() || in_pkgdown_example()) {
open3d()
xyz <- matrix(rnorm(300), ncol = 3)
id <- plot3d(xyz, col = "red", type = "s")["data"]
par3d(mouseMode = "selecting")
share <- rglShared(id)

This puts the selector below the widget.
rglwidget(shared = share, width = 300, height = 300) %>% rglMouse()

This puts the selector above the widget.
rglMouse() %>% rglwidget(shared = share, width = 300, height = 300, controllers = .)

}

rglShared Create shared data from an RGL object

Description

The crosstalk package provides a way for different parts of an interactive display to communicate
about datasets, using “shared data” objects. When selection or filtering is performed in one view,
the result is mirrored in all other views.

This function allows vertices of RGL objects to be treated as shared data.

Usage

rglShared(id, key = NULL, group = NULL,
deselectedFade = 0.1,
deselectedColor = NULL,

selectedColor = NULL,
selectedIgnoreNone = TRUE,

filteredFade = 0,
filteredColor = NULL)

rglShared 145

Arguments

id An existing RGL id.

key Optional unique labels to apply to each vertex. If missing, numerical keys will
be used.

group Optional name of the shared group to which this data belongs. If missing, a
random name will be generated.

deselectedFade, deselectedColor

Appearance of points that are not selected. See Details.

selectedColor Appearance of points that are selected.
selectedIgnoreNone

If no points are selected, should the points be shown in their original colors
(TRUE), or in the deselected colors (FALSE)?

filteredFade, filteredColor

Appearance of points that have been filtered out.

Details

Some functions which normally work on dataframe-like datasets will accept shared data objects in
their place.

If a selection is in progress, the alpha value for unselected points is multiplied by deselectedFade.
If deselectedColor is NULL, the color is left as originally specified; if not, the point is changed to
the color given by deselectedColor.

If no points have been selected, then by default points are shown in their original colors. However,
if selectedIgnoreNone = FALSE, all points are displayed as if unselected.

The selectedColor argument is similarly used to change the color (or not) of selected points, and
filteredFade and filteredColor are used for points that have been filtered out of the display.

Value

An object of class "SharedData" (from the optional crosstalk package) which contains the x, y
and z coordinates of the RGL object with the given id.

Author(s)

Duncan Murdoch

References

https://rstudio.github.io/crosstalk/index.html

Examples

save <- options(rgl.useNULL = TRUE)
open3d()
x <- sort(rnorm(100))
y <- rnorm(100)
z <- rnorm(100) + atan2(x, y)

https://rstudio.github.io/crosstalk/index.html

146 rglToLattice

ids <- plot3d(x, y, z, col = rainbow(100))
The data will be selected and filtered, not the axes.
sharedData <- rglShared(ids["data"])

Also add some labels that are only displayed
when points are selected

sharedLabel <- rglShared(text3d(x, y, z, text = 1:100,
adj = -0.5),

group = sharedData$groupName(),
deselectedFade = 0,
selectedIgnoreNone = FALSE)

if (interactive() || in_pkgdown_example())
crosstalk::filter_slider("x", "x", sharedData, ~x) %>%
rglwidget(shared = list(sharedData, sharedLabel), controller = .) %>%
rglMouse()

options(save)

rglToLattice Convert RGL userMatrix to lattice or base angles

Description

These functions take a user orientation matrix from an RGL scene and approximate the parameters
to either lattice or base graphics functions.

Usage

rglToLattice(rotm = par3d("userMatrix"))
rglToBase(rotm = par3d("userMatrix"))

Arguments

rotm A matrix in homogeneous coordinates to convert.

Details

The lattice package can use Euler angles in the ZYX scheme to describe the rotation of a scene in
its wireframe or cloud functions. The rglToLattice function computes these angles based on
rotm, which defaults to the current user matrix. This allows RGL to be used to interactively find a
decent viewpoint and then reproduce it in lattice.

The base graphics persp function does not use full Euler angles; it uses a viewpoint angle, and as-
sume the z axis remains vertical. The rglToBase function computes the viewpoint angle accurately
if the RGL scene is displayed with a vertical z axis, and does an approximation otherwise.

rglwidget 147

Value

rglToLattice returns a list suitable to be used as the screen argument to wireframe.

rglToBase returns a list containing theta and phi components which can be used as corresponding
arguments in persp.

Author(s)

Duncan Murdoch

Examples

persp3d(volcano, col = "green")
if ((hasorientlib <- requireNamespace("orientlib", quietly = TRUE)) &&

requireNamespace("lattice", quietly = TRUE))
lattice::wireframe(volcano, screen = rglToLattice())

if (hasorientlib) {
angles <- rglToBase()
persp(volcano, col = "green", border = NA, shade = 0.5,

theta = angles$theta, phi = angles$phi)
}

rglwidget An htmlwidget to hold an RGL scene

Description

The htmlwidgets package provides a framework for embedding graphical displays in HTML doc-
uments of various types. This function provides the necessities to embed an RGL scene in one.

Usage

rglwidget(x = scene3d(minimal), width = figWidth(), height = figHeight(),
controllers = NULL,
elementId = NULL,
reuse = FALSE,
webGLoptions = list(preserveDrawingBuffer = TRUE),
shared = NULL, minimal = TRUE,
webgl, snapshot,
shinyBrush = NULL,
...,
oldConvertBBox = FALSE)

Arguments

x An RGL scene produced by the scene3d function.

width, height The width and height of the display in pixels.

148 rglwidget

controllers Names of playwidget objects associated with this scene, or objects (typically
piped in). See Details below.

snapshot,webgl Control of mode of display of scene. See Details below.

elementId The id to use on the HTML div component that will hold the scene.

reuse Ignored. See Details below.

webGLoptions A list of options to pass to WebGL when the drawing context is created. See the
Details below.

shared An object produced by rglShared, or a list of such objects.

minimal Should attributes be skipped if they currently have no effect? See scene3d.

shinyBrush The name of a Shiny input element to receive information about mouse selec-
tions.

oldConvertBBox See Details below.

... Additional arguments to pass to htmlwidgets::createWidget.

Details

This produces a WebGL version of an RGL scene using the htmlwidgets framework. This allows
display of the scene in the RStudio IDE, a browser, an rmarkdown document or in a shiny app.

options(rgl.printRglwidget = TRUE) will cause rglwidget() to be called and displayed when
the result of an RGL call that changes the scene is printed.

In RMarkdown or in standalone code, you can use a magrittr-style “pipe” command to join an
rglwidget with a playwidget or toggleWidget. If the control widget comes first, it should be
piped into the controllers argument. If the rglwidget comes first, it can be piped into the first
argument of playwidget or toggleWidget.

In earlier versions, the reuse argument let one output scene share data from earlier ones. This is no
longer supported.

If elementId is NULL and we are not in a Shiny app, elementId is set to a random value to facilitate
re-use of information.

To save the display to a file, use htmlwidgets::saveWidget. This requires pandoc to be installed.
For a snapshot, you can use htmltools::save_html(img(src=rglwidget(snapshot=TRUE)),file
= ...).

The webGLoptions argument is a list which will be passed when the WebGL context is created. See
the WebGL 1.0 specification on https://www.khronos.org/registry/webgl/specs/ for possi-
ble settings. The default in rglwidget differs from the WebGL default by setting preserveDrawingBuffer
= TRUE in order to allow other tools to read the image, but please note that some implementations
of WebGL contain bugs with this setting. We have attempted to work around them, but may change
our default in the future if this proves unsatisfactory.

The webgl argument controls whether a dynamic plot is displayed in HTML. In LaTeX and some
other formats dynamic plots can’t be displayed, so if the snapshot argument is TRUE, webgl must
be FALSE. (In previous versions of the rgl package, both webgl and snapshot could be TRUE; that
hasn’t worked for a while and is no longer allowed as of version 0.105.6.)

The snapshot argument controls whether a snapshot is displayed: it must be !webgl if both are
specified.

https://www.khronos.org/registry/webgl/specs/

rglwidget 149

Prior to rgl 0.106.21, rglwidget converted bounding box decorations into separate objects: a box,
text for the labels, segments for the ticks. By default it now generates these in Javascript, al-
lowing axis labels to move as they do in the display in R. If you prefer the old conversion, set
oldConvertBBox = TRUE.

Value

An object of class "htmlwidget" (or "shiny.tag.list" if pipes are used) that will intelligently
print itself into HTML in a variety of contexts including the R console, within R Markdown docu-
ments, and within Shiny output bindings.

If objects are passed in the shared argument, then the widget will respond to selection and filtering
applied to those as shared datasets. See rglShared for more details and an example.

Shiny specifics

This widget is designed to work with Shiny for interactive displays linked to a server running R.

In a Shiny app, there will often be one or more playwidget objects in the app, taking input
from the user. In order to be sure that the initial value of the user control is reflected in the
scene, you should list all players in the controllers argument. See the sample application in
system.file("shinyDemo",package = "rglwidget") for an example.

In Shiny, it is possible to find out information about mouse selections by specifying the name of
an input item in the shinyBrush argument. For example, with shinyBrush = "brush3d", each
change to the mouse selection will send data to input$brush3d in an object of class "rglMouseSelection"
with the following components:

subscene The ID of the subscene where the mouse is selecting.

state Either "changing" or "inactive".

region The coordinates of the corners of the selected region in the window, in order c(x1,y1,x2,y2).

model, proj, view The model matrix, projection matrix and viewport in effect at that location.

This object can be used as the first argument to selectionFunction3d to produce a test function
for whether a particular location is in the selected region. If the brush becomes inactive, an object
containing only the state field will be sent, with value "inactive".

Appearance

The appearance of the display is set by the stylesheet in system.file("htmlwidgets/lib/rglClass/rgl.css").

The widget is of class rglWebGL, with id set according to elementId. (As of this writing, no special
settings are given for class rglWebGL, but you can add your own.)

Author(s)

Duncan Murdoch

See Also

hook_webgl for an earlier approach to this problem. rglwidgetOutput for Shiny details.

150 scene

Examples

save <- getOption("rgl.useNULL")
options(rgl.useNULL=TRUE)
example("plot3d", "rgl")
widget <- rglwidget()
if (interactive() || in_pkgdown_example())

widget

if (interactive() && !in_pkgdown_example()) {
Save it to a file. This requires pandoc
filename <- tempfile(fileext = ".html")
htmlwidgets::saveWidget(rglwidget(), filename)
browseURL(filename)

}

scene Scene management

Description

Clear shapes, lights, bbox

Usage

clear3d(type = c("shapes", "bboxdeco", "material"), defaults, subscene = 0)
pop3d(type = "shapes", id = 0, tag = NULL)
ids3d(type = "shapes", subscene = NA, tags = FALSE)

Arguments

type Select subtype(s):

"shapes" shape stack
"lights" light stack
"bboxdeco" bounding box
"userviewpoint" user viewpoint
"modelviewpoint" model viewpoint
"material" material properties
"background" scene background
"subscene" subscene list
"all" all of the above

defaults default values to use after clearing

subscene which subscene to work with. NA means the current one, 0 means the whole
scene

scene3d 151

id vector of ID numbers of items to remove

tag override id with objects matching these tag material properties

tags logical; whether to return tag column.

Details

RGL holds several lists of objects in each scene. There are lists for shapes, lights, bounding box
decorations, subscenes, etc. clear3d clears the specified stack, or restores the defaults for the
bounding box (not visible) or viewpoint. With id = 0 pop3d removes the last added node on the
list (except for subscenes: there it removes the active subscene). The id argument may be used to
specify arbitrary item(s) to remove; if id != 0, the type argument is ignored.

clear3d may also be used to clear material properties back to their defaults.

clear3d has an optional defaults argument, which defaults to r3dDefaults. Only the materials
component of this argument is currently used by clear3d.

ids3d returns a dataframe containing the IDs in the currently active subscene by default, or a speci-
fied subscene, or if subscene = 0, in the whole rgl window along with an indicator of their type and
if tags = TRUE, the tag value for each.

Note that clearing the light stack leaves the scene in darkness; it should normally be followed by a
call to light3d or light3d.

See Also

rgl, bbox3d, light3d, open3d to open a new window.

Examples

x <- rnorm(100)
y <- rnorm(100)
z <- rnorm(100)
p <- plot3d(x, y, z, type = 's', tag = "plot")
ids3d()
lines3d(x, y, z)
ids3d(tags = TRUE)
if (interactive() && !rgl.useNULL()) {

readline("Hit enter to change spheres")
pop3d(id = p["data"])
spheres3d(x, y, z, col = "red", radius = 1/5)
box3d()

}

scene3d Saves the current scene to a variable, and displays such variables

Description

This function saves a large part of the RGL state associated with the current window to a variable.

152 scene3d

Usage

scene3d(minimal = TRUE)
S3 method for class 'rglscene'
plot3d(x, add = FALSE, ...)
S3 method for class 'rglobject'
plot3d(x, ...)
S3 method for class 'rglscene'
print(x, ...)
S3 method for class 'rglobject'
print(x, ...)

Arguments

minimal Should attributes be skipped if they currently have no effect? See Details.

x An object of class "rglscene"

add Whether to open a new window, or add to the existing one.

... Additional parameters, currently ignored.

Details

The components saved are: the par3d settings, the material3d settings, the bg3d settings, the
lights and the objects in the scene.

In most cases, calling plot3d on that variable will duplicate the scene. (There are likely to be small
differences, mostly internal, but some aspects of the scene are not currently available.) If textures
are used, the name of the texture will be saved, rather than the contents of the texture file.

Other than saving the code to recreate a scene, saving the result of scene3d to a file will allow it
to be reproduced later most accurately. In roughly decreasing order of fidelity, writeWebGL (now
obsolete), writePLY, writeOBJ and writeSTL write the scene to a file in formats readable by other
software.

If minimal = TRUE (the default), then attributes of objects will not be saved if they currently have
no effect on the display, thereby reducing the file size. Set minimal = FALSE if the scene is intended
to be used in a context where the appearance could be changed. Currently this only affects the
inclusion of normals; with minimal = TRUE they are omitted for objects when the material is not lit.

Value

The scene3d function returns an object of class "rglscene". This is a list with some or all of the
components:

material The results returned from a material3d call.

rootSubscene A list containing information about the main ("root") subscene. This may in-
clude:

id The scene id.
type "subscene"
par3d The par3d settings for the subscene.
embeddings The subsceneInfo()$embeddings for the main subscene.

scene3d 153

objects The ids for objects in the subscene.

subscenes A recursive list of child subscenes.

objects A list containing the RGL lights, background and objects in the scene.

The objects in the objects component are of class "rglobject". They are lists containing some
or all of the components

id The RGL identifier of the object in the original scene.

type A character variable identifying the type of object.

material Components of the material that differ from the scene material.

vertices, normals, etc.

Any of the attributes of the object retrievable by rgl.attrib.

ignoreExtent A logical value indicating whether this object contributes to the bounding box.
Currently this may differ from the object in the original scene.

objects Sprites may contain other objects; they will be stored here as a list of "rglobject"s.

Lights in the scene are stored similarly, mixed into the objects list.

The plot3d methods invisibly return a vector of RGL object ids that were plotted. The print
methods invisibly return the object that was printed.

Author(s)

Duncan Murdoch

See Also

rglwidget, writePLY, writeOBJ and writeSTL write the scene to a file in various formats.

Examples

open3d()
z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
persp3d(x, y, z, col = "green3", aspect = "iso")

s <- scene3d()
Make it bigger
s$par3d$windowRect <- 1.5*s$par3d$windowRect
and draw it again
plot3d(s)

154 sceneChange

sceneChange Make large change to a scene from Shiny

Description

These functions allow Shiny apps to make relatively large changes to a scene, adding and removing
objects from it.

Usage

sceneChange(elementId, x = scene3d(minimal),
delete = NULL, add = NULL, replace = NULL,
material = FALSE, rootSubscene = FALSE,
delfromSubscenes = NULL, skipRedraw = FALSE,
minimal = TRUE)

registerSceneChange()

Arguments

elementId The id of the element holding the rglClass instance.

x The new scene to use as a source for objects to add.
delete, add, replace

Object ids to modify in the scene. The delete and replace ids must be present
in the old scene in the browser; the add and replace ids must be present in x.

material Logical to indicate whether default material should be updated.

rootSubscene Logical to indicate whether root subscene should be updated.
delfromSubscenes

A vector of subscene ids that may have been changed by deletions. By default,
all subscenes in x are used, but the objects may be included in subscenes in the
browser that are different.

skipRedraw If TRUE, stop the scene from redrawing until skipRedraw=FALSE is sent. If NA,
don’t redraw this time, but don’t change the state of the skipRedraw flag.

minimal See scene3d.

Details

registerSceneChange must be called in the UI component of a Shiny app to register the "sceneChange"
custom message.

Value

registerSceneChange returns the HTML code to register the message.

sceneChange returns a list to be used as the "sceneChange" message to change the scene. Use
shiny::session$sendCustomMessage to send it.

select3d 155

Author(s)

Duncan Murdoch

See Also

playwidget for a different approach to modifying scenes that can be much faster, but may be less
flexible. The Shiny demo in this package makes use of all of these approaches.

Examples

Not run:
shinyUI(fluidPage(

registerSceneChange(),
actionButton("thebutton", "Change")

))

shinyServer(function(input, output, session) {
observeEvent(input$thebutton, {
session$sendCustomMessage("sceneChange",

sceneChange("thewidget", delete = deletes, add = adds))
})

})

End(Not run)

select3d Select a rectangle in an RGL scene

Description

This function allows the user to use the mouse to select a region in an RGL scene.

Usage

rgl.select3d(button = c("left", "middle", "right"),
dev = cur3d(), subscene = currentSubscene3d(dev))

select3d(...)
selectionFunction3d(proj, region = proj$region)

Arguments

button Which button to use for selection.

dev, subscene The RGL device and subscene to work with

... Button argument to pass to rgl.select3d

proj An object returned from rgl.projection containing details of the current pro-
jection.

region Corners of a rectangular region in the display.

156 select3d

Details

select3d and rgl.select3d select 3-dimensional regions by allowing the user to use a mouse to
draw a rectangle showing the projection of the region onto the screen. They return a function which
tests points for inclusion in the selected region.

selectionFunction3d constructs such a test function given coordinates and current transformation
matrices.

If the scene is later moved or rotated, the selected region will remain the same, though no longer
corresponding to a rectangle on the screen.

Value

All of these return a function f(x,y,z) which tests whether each of the points (x,y,z) is in the
selected region, returning a logical vector. This function accepts input in a wide variety of formats
as it uses xyz.coords to interpret its parameters.

Author(s)

Ming Chen / Duncan Murdoch

See Also

selectpoints3d, locator

Examples

Allow the user to select some points, and then redraw them
in a different color

if (interactive()) {
x <- rnorm(1000)
y <- rnorm(1000)
z <- rnorm(1000)
open3d()
points3d(x, y, z)
f <- select3d()
if (!is.null(f)) {
keep <- f(x, y, z)
pop3d()
points3d(x[keep], y[keep], z[keep], color = 'red')
points3d(x[!keep], y[!keep], z[!keep])

}
}

selectpoints3d 157

selectpoints3d Select points from a scene

Description

This function uses the select3d function to allow the user to choose a point or region in the scene,
then reports on all the vertices in or near that selection.

Usage

selectpoints3d(objects = ids3d()$id, value = TRUE, closest = TRUE,
multiple = FALSE, ...)

Arguments

objects A vector of object id values to use for the search.

value If TRUE, return the coordinates of the points; otherwise, return their indices.

closest If TRUE, return the points closest to the selection of no points are exactly within
it.

multiple If TRUE or a function, do multiple selections. See the Details below.

... Other parameters to pass to select3d.

Details

The multiple argument may be a logical value or a function. If logical, it controls whether multiple
selections will be performed. If multiple is FALSE, a single selection will be performed; it might
contain multiple points. If TRUE, multiple selections will occur and the results will be combined
into a single matrix.

If multiple is a function, it should take a single argument. This function will be called with the
argument set to a matrix containing newly added rows to the value, i.e. it will contain coordinates
of the newly selected points (if value = TRUE), or the indices of the points (if value = FALSE). It
should return a logical value, TRUE to indicate that selection should continue, FALSE to indicate that
it should stop.

In either case, if multiple selections are being performed, the ESC key will stop the process.

Value

If value is TRUE, a 3-column matrix giving the coordinates of the selected points. All rows in the
matrix will be unique even if multiple vertices have the same coordinates.

If value is FALSE, a 2-column matrix containing columns:

id The object id containing the point.

index The index of the point within rgl.attrib(id,"vertices"). If multiple points
have the same coordinates, all indices will be returned.

158 setAxisCallbacks

Author(s)

Duncan Murdoch

See Also

select3d to return a selection function.

Examples

xyz <- cbind(rnorm(20), rnorm(20), rnorm(20))
ids <- plot3d(xyz)

if (interactive()) {
Click near a point to select it and put a sphere there.
Press ESC to quit...

This version returns coordinates
selectpoints3d(ids["data"],

multiple = function(x) {
spheres3d(x, color = "red", alpha = 0.3, radius = 0.2)
TRUE

})

This one returns indices
selectpoints3d(ids["data"], value = FALSE,

multiple = function(ids) {
spheres3d(xyz[ids[, "index"], , drop = FALSE], color = "blue",

alpha = 0.3, radius = 0.2)
TRUE

})
}

setAxisCallbacks User-defined axis labelling callbacks.

Description

This function sets user callbacks to construct axes in R or rglwidget displays.

Usage

setAxisCallbacks(axes, fns,
javascript = NULL,
subscene = scene$rootSubscene$id,
scene = scene3d(minimal = FALSE),
applyToScene = TRUE,
applyToDev = missing(scene))

setAxisCallbacks 159

Arguments

axes Which axes? Specify as number in 1:3 or letter in c("x","y","z").

fns Function or list of functions or character vector giving names of functions.

javascript Optional block of Javascript code to be included (at the global level).

subscene Which subscene do these callbacks apply to?

scene Which scene?

applyToScene Should these changes apply to the scene object?

applyToDev Should these changes apply to the current device?

Details

If applyToScene is TRUE, this function adds Javascript callbacks to the scene object. If applyToDev
is TRUE, it adds R callbacks to the current RGL device.

For Javascript, the callbacks are specified as strings; these will be evaluated within the browser in
the global context to define the functions, which will then be called with the Javascript this object
set to the current rglwidgetClass object.

For R, they may be strings or R functions.

Both options may be TRUE, in which case the callbacks must be specified as strings which are both
valid Javascript and valid R. The usual way to do this is to give just a function name, with the
function defined elsewhere, as in the Example below.

The functions should have a header of the form function(margin). The margin argument will be
a string like "x++" indicating which margin would be chosen by R. If RGL would not choose to
draw any axis annotations (which happens with rglwidget, though not currently in R itself), only
the letter will be passed, e.g. "x".

Value

Invisibly returns an rglScene object. This object will record the changes if applyToScene is TRUE.

If applyToDev is TRUE, it will also have the side effect of attempting to install the callbacks using
rgl.setAxisCallback.

Author(s)

Duncan Murdoch

See Also

setUserCallbacks for mouse callbacks.

Examples

Draw arrows instead of tick marks on axes

arrowAxis <- local({
ids <- c(NA, NA, NA)
bbox <- c(NA, NA, NA, NA, NA, NA)

160 setGraphicsDelay

function(margin) {
dim <- if (grepl("x", margin)) 1 else

if (grepl("y", margin)) 2 else
3

inds <- 2*dim + (-1):0
range <- par3d("bbox")[inds]
if (!identical(bbox[inds], range)) {

if (!is.na(ids[dim]))
pop3d(id = ids[dim])

bbox[inds] <<- range
center <- mean(range)
from <- mean(c(range[1], center))
to <- mean(c(center, range[2]))
margin should agree with suggestion, so use "x++" etc.
margin <- gsub("-", "+", margin)
ids[dim] <- arrow3d(p0 = c(from, 1, 1),

p1 = c(to, 1, 1),
n = 4,
type = "lines",
margin = margin,
floating = TRUE)

}
}

})

Define the Javascript function with the same name to use in WebGL
Since Javascript won't change the bounding box, this function
doesn't need to do anything.

js <- "
window.arrowAxis = function(margin) {} ;
"

xyz <- matrix(rnorm(60), ncol = 3)
plot3d(xyz, xlab = "x", ylab = "y", zlab = "z")
setAxisCallbacks(1:3, "arrowAxis", javascript = js)
rglwidget()

setGraphicsDelay Set a one-time slowdown on opening standard graphics

Description

This function is mainly for internal use, to work around a bug in macOS Catalina: if base plotting
happens too quickly after opening RGL and the first call to quartz, R crashes.

This inserts a delay after the first call to open the graphics device. The default is no delay, unless
on Catalina with no graphics device currently open but the quartz device set as the default, when
a 1 second delay will be added. Use environment variable "RGL_SLOW_DEV = value" to set a
different default delay.

setupKnitr 161

It works by changing the value of options("device"), so explicit calls to the device will not be
affected.

It is called automatically when the rgl package is loaded.

Usage

setGraphicsDelay(delay = Sys.getenv("RGL_SLOW_DEV", 0),
unixos = "none")

Arguments

delay Number of seconds for the delay.

unixos The name of the Unix OS. If set to "Darwin", and the version is 19.0.0 or greater,
the default delay is changed to 1 second.

Value

Called for the side effect of adding the delay to the first opening of the graphics device.

setupKnitr Displaying RGL scenes in knitr documents

Description

These functions allow RGL graphics to be embedded in knitr documents.

The simplest method is to run setupKnitr(autoprint = TRUE) early in the document. That way
RGL commands act a lot like base graphics commands: plots will be automatically inserted where
appropriate, according to the fig.keep chunk option. By default (fig.keep = "high"), only high-
level plots are kept, after low-level changes have been merged into them. See the knitr documen-
tation https://yihui.org/knitr/options/#plots for more details. To suppress auto-printing,
the RGL calls can be wrapped in invisible(). Similarly to grid graphics (used by lattice and
ggplot2), automatic inclusion requires the object to be printed: only the last statement in a code
block in braces is automatically printed. Unlike those packages, auto-printing is the only way to get
this to work: calling print explicitly doesn’t work.

Other functions allow embedding either as bitmaps (hook_rgl with format "png"), fixed vector
graphics (hook_rgl with format "eps", "pdf" or "postscript"), or interactive WebGL graphics
(hook_webgl). hook_rglchunk is not normally invoked by the user; it is the hook that supports
automatic creation and deletion of RGL scenes.

Usage

setupKnitr(autoprint = FALSE,
rgl.newwindow = autoprint,
rgl.closewindows = autoprint)

hook_rgl(before, options, envir)
hook_webgl(before, options, envir)
hook_rglchunk(before, options, envir)

https://yihui.org/knitr/options/#plots

162 setupKnitr

Arguments

autoprint If true, RGL commands automatically plot (with low level plots suppressed by
the default value of the fig.keep chunk option.)

rgl.newwindow, rgl.closewindows

Default values for the knitr chunk options.
before, options, envir

Standard knitr hook function arguments.

Details

The setupKnitr() function needs to be called once at the start of the document to install the knitr
hooks. If it is called twice in the same session the second call will override the first.

The following chunk options are supported:

• rgl.newwindow: Whether to open a new window for the chunk. Default is set by setupKnitr
argument.

• rgl.closewindows: Whether to close windows at the end of the chunk. Default is set by
setupKnitr argument.

• rgl.margin (default 100): number of pixels by which to indent the WebGL window.
• snapshot: Logical value: when autoprinting in HTML, should a snapshot be used instead of

the dynamic WebGL display? Corresponds to rglwidget(snapshot = TRUE,webgl = FALSE).
Ignored in LaTeX, where a snapshot will always be produced (unless fig.keep specifies no
figure at all).

• dpi, fig.retina, fig.width, fig.height: standard knitr chunk options used to set the size
of the output.

• fig.keep, fig.hold, fig.beforecode: standard knitr chunk options used to control the
display of plots.

• dev: used by hook_rgl to set the output format. May be "eps", "postscript", "pdf" or
"png" (default: "png").

• rgl.keepopen: no longer used. Ignored with a warning.

Value

A string to be embedded into the output, or NULL if called when no output is available.

Note

The setupKnitr(autoprint = TRUE) method assumes all printing of RGL objects happens through
auto-printing of objects produced by the lowlevel or highlevel functions. All RGL functions that
produce graphics do this, but functions in other packages that call them may not return values ap-
propriately.

If you have multiple calls to setupKnitr(), all should have the same arguments. If any differ, a
warning will be issued, and the first set of arguments will be used.

Mixing explicit calls to rglwidget with auto-printing is likely to lead to failure of some scenes
to display. To avoid this, set options(rgl.printRglwidget = FALSE) before using such explicit
calls. Similarly, use that option before calling the example function in a code chunk if the example
prints RGL objects.

setUserCallbacks 163

Author(s)

The hook* functions are originally by Yihui Xie in the knitr package; and have been modified by
Duncan Murdoch. Some parts of the setupKnitr function duplicate source code from knitr.

setUserCallbacks Set mouse callbacks in R or Javascript code

Description

This function sets user mouse callbacks in R or rglwidget displays.

Usage

setUserCallbacks(button,
begin = NULL,
update = NULL,
end = NULL,
rotate = NULL,
javascript = NULL,
subscene = scene$rootSubscene$id,
scene = scene3d(minimal = FALSE),
applyToScene = TRUE,

applyToDev = missing(scene))

Arguments

button Which button should this callback apply to? Can be numeric from 0:4, or char-
acter from "none","left","right","center","wheel".

begin, update, end, rotate

Functions to call when events occur. See Details.

javascript Optional block of Javascript code to be included (at the global level).

subscene Which subscene do these callbacks apply to?

scene Which scene?

applyToScene Should these changes apply to the scene object?

applyToDev Should these changes apply to the current device?

Details

If applyToScene is TRUE, this function adds Javascript callbacks to the scene object. If applyToDev
is TRUE, it adds R callbacks to the current RGL device.

For Javascript, the callbacks are specified as strings; these will be evaluated within the browser in
the global context to define the functions, which will then be called with the Javascript this object
set to the current rglwidgetClass object.

For R, they may be strings or R functions.

164 setUserCallbacks

Both options may be TRUE, in which case the callbacks must be specified as strings which are both
valid Javascript and valid R. The usual way to do this is to give just a function name, with the
function defined elsewhere, as in the Example below.

The begin and update functions should be of the form function(x,y) { ... }. The end function
will be called with no arguments.

The rotate callback can only be set on the mouse wheel. It is called when the mouse wheel is
rotated. It should be of the form function(away), where away will be 1 while rotating the wheel
“away” from you, and 2 while rotating it towards you. If rotate is not set but other callbacks are
set on the wheel “button”, then each click of the mouse wheel will trigger all start, update, then
end calls in sequence.

The javascript argument is an optional block of code which will be evaluated once during the
initialization of the widget. It can define functions and assign them as members of the window
object, and then the names of those functions can be given in the callback arguments; this allows
the callbacks to share information.

Value

Invisibly returns an rglScene object. This object will record the changes if applyToScene is TRUE.

If applyToDev is TRUE, it will also have the side effect of attempting to install the callbacks using
rgl.setMouseCallbacks and rgl.setWheelCallback.

Author(s)

Duncan Murdoch

See Also

setAxisCallbacks for user defined axes.

Examples

verts <- cbind(rnorm(11), rnorm(11), rnorm(11))
idverts <- plot3d(verts, type = "s", col = "blue")["data"]

Plot some invisible text; the Javascript will move it
idtext <- text3d(verts[1,,drop = FALSE], texts = 1, adj = c(0.5, -1.5), alpha = 0)

Define the R functions to use within R
fns <- local({

idverts <- idverts
idtext <- idtext
closest <- -1
update <- function(x, y) {

save <- par3d(skipRedraw = TRUE)
on.exit(par3d(save))
rect <- par3d("windowRect")
size <- rect[3:4] - rect[1:2]
x <- x / size[1];
y <- 1 - y / size[2];
verts <- rgl.attrib(idverts, "vertices")

setUserCallbacks 165

Put in window coordinates
vw <- rgl.user2window(verts)
dists <- sqrt((x - vw[,1])^2 + (y - vw[,2])^2)
newclosest <- which.min(dists)
if (newclosest != closest) {

if (idtext > 0)
pop3d(id = idtext)

closest <<- newclosest
idtext <<- text3d(verts[closest,,drop = FALSE], texts = closest, adj = c(0.5, -1.5))
}

}
end <- function() {

if (idtext > 0)
pop3d(id = idtext)

closest <<- -1
idtext <<- -1

}
list(rglupdate = update, rglend = end)

})
rglupdate <- fns$rglupdate
rglend <- fns$rglend

Define the Javascript functions with the same names to use in WebGL
js <-
' var idverts = %id%, idtext = %idtext%, closest = -1,

subid = %subid%;

window.rglupdate = function(x, y) {
var obj = this.getObj(idverts), i, newdist, dist = Infinity, pt, newclosest;
x = x/this.canvas.width;
y = y/this.canvas.height;

for (i = 0; i < obj.vertices.length; i++) {
pt = obj.vertices[i].concat(1);
pt = this.user2window(pt, subid);
pt[0] = x - pt[0];
pt[1] = y - pt[1];
pt[2] = 0;
newdist = this.vlen(pt);
if (newdist < dist) {

dist = newdist;
newclosest = i;

}
}

if (newclosest !== closest) {
closest = newclosest
var text = this.getObj(idtext);
text.vertices[0] = obj.vertices[closest];
text.colors[0][3] = 1; // alpha is here!
text.texts[0] = (closest + 1).toString();
text.initialized = false;
this.drawScene();

166 setUserShaders

}
};
window.rglend = function() {

var text = this.getObj(idtext);
text.colors[0][3] = 0;
text.initialized = false;
this.drawScene();

}'
js <- sub("%id%", idverts, js)
js <- sub("%subid%", subsceneInfo()$id, js)
js <- sub("%idtext%", idtext, js)

Install both
setUserCallbacks("left",

begin = "rglupdate",
update = "rglupdate",
end = "rglend",
javascript = js)

rglwidget()

setUserShaders Set user-defined shaders for RGL objects.

Description

Sets user-defined shaders (programs written in GLSL) for customized display of RGL objects. Cur-
rently only supported in WebGL displays, as the regular displays do not support GLSL.

Usage

setUserShaders(ids, vertexShader = NULL, fragmentShader = NULL,
attributes = NULL, uniforms = NULL,
scene = scene3d(minimal), minimal = TRUE)

Arguments

ids Which objects should receive the shaders.

vertexShader, fragmentShader

The vertex and fragment shader source code. If NULL, the automatically gener-
ated shader will be used instead.

attributes A named list of “attributes” to attach to each vertex.

uniforms A named list of “uniforms”.

scene A scene3d object to modify.

minimal See scene3d.

setUserShaders 167

Details

Modern versions of OpenGL work with “shaders”, programs written to run on the graphics proces-
sor. The vertex shader does the calculations to move vertices and set their intrinsic colours. The
fragment shader computes how each pixel in the display will be shown, taking into account lighting,
material properties, etc. (More precisely, it does the computation for each “fragment”; a fragment
is a pixel within an object to display. There may be many objects at a particular location, and each
will result in a fragment calculation unless culled by z-buffering or being discarded in some other
way.)

Normally the WebGL code automatically generates shaders for each object. This function allows
them to be written by hand, for testing new features, hand optimization, etc. Currently it is not
easy to get copies of the default shaders; they need to be obtained from a Javascript debugger while
displaying the scene.

Value

A modified version of the scene.

Author(s)

Duncan Murdoch

See Also

rglwidget for display of the scene in WebGL.

Examples

open3d()
id <- shade3d(octahedron3d(), col = "red")

For each triangle, set weights on the 3 vertices.
This will be replicated to the appropriate size in Javascript.
wts <- diag(3)

This leaves out the centres of each face
vs <- "

attribute vec3 aPos;
attribute vec4 aCol;
uniform mat4 mvMatrix;
uniform mat4 prMatrix;
varying vec4 vCol;
varying vec4 vPosition;
attribute vec3 aNorm;
uniform mat4 normMatrix;
varying vec3 vNormal;
attribute vec3 wts;
varying vec3 vwts;
void main(void) {
vPosition = mvMatrix * vec4(aPos, 1.);
gl_Position = prMatrix * vPosition;

168 setUserShaders

vCol = aCol;
vNormal = normalize((normMatrix * vec4(aNorm, 1.)).xyz);
vwts = wts;

}
"
fs <- "

#ifdef GL_ES
precision highp float;
#endif
varying vec4 vCol; // carries alpha
varying vec4 vPosition;
varying vec3 vNormal;
uniform mat4 mvMatrix;
uniform vec3 emission;
uniform float shininess;
uniform vec3 ambient0;
uniform vec3 specular0; // light*material
uniform vec3 diffuse0;
uniform vec3 lightDir0;
uniform bool viewpoint0;
uniform bool finite0;
varying vec3 vwts;
uniform vec2 wtrange;
void main(void) {

float minwt = min(vwts.x, min(vwts.y, vwts.z));
if (minwt < wtrange.x || minwt > wtrange.y) discard;
vec3 eye = normalize(-vPosition.xyz);
vec3 lightdir;
vec4 colDiff;
vec3 halfVec;
vec4 lighteffect = vec4(emission, 0.);
vec3 col;
float nDotL;
vec3 n = normalize(vNormal);
n = -faceforward(n, n, eye);
colDiff = vec4(vCol.rgb * diffuse0, vCol.a);
lightdir = lightDir0;
if (!viewpoint0)

lightdir = (mvMatrix * vec4(lightdir, 1.)).xyz;
if (!finite0) {

halfVec = normalize(lightdir + eye);
} else {

lightdir = normalize(lightdir - vPosition.xyz);
halfVec = normalize(lightdir + eye);

}
col = ambient0;
nDotL = dot(n, lightdir);
col = col + max(nDotL, 0.) * colDiff.rgb;
col = col + pow(max(dot(halfVec, n), 0.), shininess) * specular0;
lighteffect = lighteffect + vec4(col, colDiff.a);
gl_FragColor = lighteffect;

}
"

shade3d 169

x <- setUserShaders(id, vs, fs, attributes = list(wts=wts),
uniforms = list(wtrange = c(-0.01, 0.15)))

if (interactive() || in_pkgdown_example())
rglwidget(x)

shade3d Draw 3D mesh objects

Description

Draws 3D mesh objects in full, or just the edges, or just the vertices.

Usage

dot3d(x, ...) # draw dots at the vertices of an object
S3 method for class 'mesh3d'

dot3d(x, ...,
front = "points", back = "points")

wire3d(x, ...) # draw a wireframe object
S3 method for class 'mesh3d'

wire3d(x, ...,
front = "lines", back = "lines")

shade3d(x, ...) # draw a shaded object
S3 method for class 'mesh3d'

shade3d(x, override = TRUE,
meshColor = c("vertices", "edges", "faces", "legacy"),
texcoords = NULL, ...,
front = "filled", back = "filled")

Arguments

x a mesh3d object.

... additional rendering parameters, or for dots3d and wire3d, parameters to pass
to shade3d

override should the parameters specified here override those stored in the object?

meshColor how should colours be interpreted? See details below

texcoords texture coordinates at each vertex.

front, back Material properties for rendering.

Details

The meshColor argument controls how material colours and textures are interpreted. This parameter
was added in rgl version 0.100.1 (0.100.27 for dot3d). Possible values are:

"vertices" Colours and texture coordinates are applied by vertex, in the order they appear in the
x$vb matrix.

170 shade3d

"edges" Colours are applied to each edge: first to the segments in the x$is matrix, then the 3 edges
of each triangle in the x$it matrix, then the 4 edges of each quad in the x$ib matrix. This
mode is only supported if both front and back materials are "lines", and the mesh contains
no points.

"faces" Colours are applied to each face: first to the triangles in the it matrix, then to the quads
in the ib matrix. Not compatible with meshes containing points or segments.

"legacy" Colours and textures are applied in the same way as in rgl versions earlier than 0.100.1.

Unique partial matches of these values will be recognized.

If colours are specified but meshColor is not and options(rgl.meshColorWarning = TRUE), a
warning will be given that their interpretation may have changed. In versions 0.100.1 to 0.100.26
of rgl, the default was to give the warning; now the default is for no warning.

Note that since version 0.102.10, meshColor = "edges" is only allowed when drawing lines (the
wire3d default), and it may draw edges more than once. In general, if any rendering draws twice at
the same location, which copy is visible depends on the order of drawing and the material3d("depth_test")
setting.

Whether points, lines or solid faces are drawn is determined in 3 steps:

1. If arguments "front" or "back" are specified in the call, those are used.

2. If one or both of those arguments are not specified, but the material properties are present in
the object, those are used.

3. If values are not specified in either of those places, shade3d draws filled surfaces, wire3d
draws lines, and dot3d draws points.

Note: For some versions of rgl up to version 0.107.15, rule 2 above was not respected.

Value

dot3d, wire3d, and shade3d are called for their side effect of drawing an object into the scene;
they return an object ID (or vector of IDs) invisibly.

See rgl.primitive for a discussion of texture coordinates.

See Also

mesh3d, par3d, shapelist3d for multiple shapes

Examples

generate a quad mesh object

vertices <- c(
-1.0, -1.0, 0,
1.0, -1.0, 0,
1.0, 1.0, 0,
-1.0, 1.0, 0

)
indices <- c(1, 2, 3, 4)

shadow3d 171

open3d()
wire3d(mesh3d(vertices = vertices, quads = indices))

render 4 meshes vertically in the current view

open3d()
bg3d("gray")
l0 <- oh3d(tran = par3d("userMatrix"), color = "green")
shade3d(translate3d(l0, -6, 0, 0))
l1 <- subdivision3d(l0)
shade3d(translate3d(l1 , -2, 0, 0), color = "red", override = FALSE)
l2 <- subdivision3d(l1)
shade3d(translate3d(l2 , 2, 0, 0), color = "red", override = TRUE)
l3 <- subdivision3d(l2)
shade3d(translate3d(l3 , 6, 0, 0), color = "red")

render all of the Platonic solids
open3d()
shade3d(translate3d(tetrahedron3d(col = "red"), 0, 0, 0))
shade3d(translate3d(cube3d(col = "green"), 3, 0, 0))
shade3d(translate3d(octahedron3d(col = "blue"), 6, 0, 0))
shade3d(translate3d(dodecahedron3d(col = "cyan"), 9, 0, 0))
shade3d(translate3d(icosahedron3d(col = "magenta"), 12, 0, 0))

shadow3d Project shadows of mesh onto object.

Description

Project a mesh onto a surface in a scene so that it appears to cast a shadow onto the surface.

Usage

shadow3d(obj, mesh, plot = TRUE, up = c(0, 0, 1),
P = projectDown(up), outside = FALSE,
...)

Arguments

obj The target object which will show the shadow.

mesh The mesh which will cast the shadow.

plot Whether to plot the result.

up Which direction is “up”?

P The projection to use for draping, a 4x4 matrix. See drape3d for details on how
P is used.

outside Should the function compute and (possibly) plot the region outside of the shadow?

... Other arguments to pass to filledContour3d, which will do the boundary cal-
culations and plotting.

172 shapelist3d

Details

shadow3d internally constructs a function that is zero on the boundary of the shadow and positive
inside, then draws filled contours of that function. Because the function is nonlinear, the boundaries
will be approximate, with the best approximation resulting from a large value of filledContour3d
parameter minVertices.

If outside = TRUE, the first color used by filledContour3d will indicate the inside of the shadow,
and the second color will indicate the exterior.

Value

The returned value from filledContour3d.

Author(s)

Duncan Murdoch

See Also

drape3d, facing3d

Examples

open3d()
obj <- translate3d(scale3d(oh3d(), 0.3, 0.3, 0.3), 0,0,2)
shade3d(obj, col = "red")
target <- icosahedron3d()

We offset the target using polygon_offset = 1 so that the
shadow on its surface will appear clearly.

shade3d(target, col = "white", polygon_offset = 1)

minVertices = 1000 leaves noticeable artifacts on the edges
of the shadow. A larger value gives a better result, but is
slower.

We use facing3d(target) so the shadow and outside part only
appear on the upper side of the target

shadow3d(facing3d(target), obj, minVertices = 1000, plot=TRUE,
col = c("yellow", "blue"), outside = TRUE)

shapelist3d Create and plot a list of shapes

Description

These functions create and plot a list of shapes.

shapelist3d 173

Usage

shapelist3d(shapes, x = 0, y = NULL, z = NULL, size = 1, matrix = NULL, override = TRUE,
..., plot = TRUE)

Arguments

shapes A single shape3d object, or a list of them.

x, y, z Translation(s) to apply

size Scaling(s) to apply

matrix A single matrix transformation, or a list of them.

override Whether the material properties should override the ones in the shapes.

... Material properties to apply.

plot Whether to plot the result.

Details

shapelist3d is a quick way to create a complex object made up of simpler ones. Each of the
arguments shapes through override may be a vector of values (a list in the case of shapes or
matrix). All values will be recycled to produce a list of shapes as long as the longest of them.

The xyz.coords function will be used to process the x, y and z arguments, so a matrix may be used
as x to specify all three. If a vector is used for x but y or z is missing, default values of 0 will be
used.

The "shapelist3d" class is simply a list of "shape3d" objects.

Methods for dot3d, wire3d, shade3d, translate3d, scale3d, and rotate3d are defined for these
objects.

Value

An object of class c("shapelist3d","shape3d").

Author(s)

Duncan Murdoch

See Also

mesh3d

Examples

shapelist3d(icosahedron3d(), x = rnorm(10), y = rnorm(10), z = rnorm(10), col = 1:5, size = 0.3)

174 shiny

shiny Functions for integration of RGL widgets into Shiny app

Description

These functions allow an RGL scene to be embedded in a Shiny app.

Usage

rglwidgetOutput(outputId, width = "512px", height = "512px")
renderRglwidget(expr, env = parent.frame(), quoted = FALSE, outputArgs = list())

playwidgetOutput(outputId, width = "0px", height = "0px")
renderPlaywidget(expr, env = parent.frame(), quoted = FALSE, outputArgs = list())

Arguments

outputId The name for the control.

width, height Width and height to display the control.

expr An R expression returning a rglwidget (for renderRglwidget) or a playwidget
(for renderPlaywidget) as output.

env The environment in which to evaluate expr.

quoted Is the expression already quoted?

outputArgs A list containing arguments; see details below.

Details

Use rglwidgetOutput or playwidgetOutput as an output object in a Shiny user interface section;
use renderRglwidget or renderPlaywidget as the render function in the server section.

In a dynamic R Markdown document with runtime: shiny, you only call the render function,
and may optionally pass width and height to the output function by putting them in a list in
outputArgs. See the example below.

Value

Used internally by Shiny.

Author(s)

Duncan Murdoch

shinyGetPar3d 175

Examples

Not run:
This could be used in a dynamic R Markdown document. See
demo("shinyDemo") and demo("simpleShinyRgl") for Shiny apps.

inputPanel(
sliderInput("n", label = "n", min = 10, max = 100, value = 10, step = 10)

)

renderRglwidget({
n <- input$n
try(close3d())
plot3d(rnorm(n), rnorm(n), rnorm(n))
rglwidget()

}, outputArgs = list(width = "auto", height = "300px"))

End(Not run)

shinyGetPar3d Communicate RGL parameters between R and Javascript in Shiny

Description

These functions allow Shiny apps to read and write the par3d settings that may have been modified
by user interaction in the browser.

Usage

shinyGetPar3d(parameters, session, subscene = currentSubscene3d(cur3d()), tag = "")
shinySetPar3d(..., session, subscene = currentSubscene3d(cur3d()))
shinyResetBrush(session, brush)

Arguments

parameters A character vector naming the parameters to get.

session The Shiny session object.

subscene The subscene to which the parameters apply. Defaults to the currently active
subscene in the R session.

tag An arbitrary string or value which will be sent as part of the response.

... A number of name = value pairs to be modified, or a single named list of pa-
rameters. Entries named tag or subscene will be ignored.

brush The name of a Shiny input element corresponding to the shinyBrush argument
to rglwidget.

176 shinyGetPar3d

Details

Requesting information from the browser is a complicated process. The shinyGetPar3d function
doesn’t return the requested value, it just submits a request for the value to be returned later in
input$par3d, a reactive input. No action will result except when a reactive observer depends on
input$par3d. See the example code below.

The shinySetPar3d function sends a message to the browser asking it to change a particular pa-
rameter. The change will be made immediately, without sending the full scene to the browser, so
should be reasonably fast.

Value

These functions are called for their side effects, and don’t return useful values.

The side effect of shinyGetPar3d is to cause input$par3d to be updated sometime later. Be-
sides the requested parameter values, input$par3d will contain a copy of the subscene and tag
arguments.

The side effect of shinySetPar3d is to send a message to the browser to update its copy of the
par3d parameters immediately.

Note

R and the browser don’t maintain a perfect match between the way parameters are stored internally.
The browser version of parameters will be returned by shinyGetPar3d and should be supplied to
shinySetPar3d.

Author(s)

Duncan Murdoch

References

https://shiny.rstudio.com/articles/communicating-with-js.html describes the underly-
ing mechanisms used by these two functions.

See Also

The rglwidget argument shinySelectionInput allows information about mouse selections to be
returned to R.

Examples

if (interactive() && !in_pkgdown_example() && requireNamespace("shiny")) {
save <- options(rgl.useNULL = TRUE)

xyz <- matrix(rnorm(300), ncol = 3)

app = shiny::shinyApp(
ui = shiny::bootstrapPage(

shiny::actionButton("redraw", "Redraw"),
rglwidgetOutput("rglPlot")

https://shiny.rstudio.com/articles/communicating-with-js.html

show2d 177

),
server = function(input, output, session) {

This waits until the user to click on the "redraw"
button, then sends a request for the current userMatrix
shiny::observeEvent(input$redraw, {

shinyGetPar3d("userMatrix", session)
})

This draws the plot whenever input$par3d changes,
i.e. whenever a response to the request above is
received.
output$rglPlot <- renderRglwidget({

if (length(rgl.dev.list())) close3d()
col <- sample(colors(), 1)
plot3d(xyz, col = col, type = "s", main = col)
par3d(userMatrix = input$par3d$userMatrix)
rglwidget()

})
})

shiny::runApp(app)
options(save)

}

show2d Draw a 2D plot on a rectangle in a 3D scene

Description

This function uses a bitmap of a standard 2D graphics plot as a texture on a quadrilateral. Default
arguments are set up so that it will appear on the face of the bounding box of the current 3D plot,
but optional arguments allow it to be placed anywhere in the scene.

Usage

show2d(expression,
face = "z-", line = 0,
reverse = FALSE, rotate = 0,
x = NULL, y = NULL, z = NULL,
width = 480, height = 480,
filename = NULL,
ignoreExtent = TRUE,
color = "white", specular = "black", lit = FALSE,
texmipmap = TRUE, texminfilter = "linear.mipmap.linear",
expand = 1.03,
texcoords = matrix(c(0, 1, 1, 0, 0, 0, 1, 1), ncol = 2), ...)

178 show2d

Arguments

expression Any plotting commands to produce a plot in standard graphics. Ignored if
filename is not NULL.

face A character string defining which face of the bounding box to use. See Details
below.

line How far out from the bounding box should the quadrilateral be placed? Uses
same convention as mtext3d: not lines of text, but fraction of the bounding box
size.

reverse, rotate

Should the image be reversed or rotated? See Details below.

x, y, z Specific values to use to override face.

width,height Parameters to pass to png when creating the bitmap. See Details below.

filename A ‘.png’ file image to use as the texture.

ignoreExtent Whether the quadrilateral should be ignored when computing the bounding box
of the scene.

color, specular, lit, texmipmap, texminfilter, ...

Material properties to use for the quadrilateral.

expand Amount by which the quadrilateral is expanded outside the bounding box of the
data.

texcoords Coordinates on the image. Lower left of the bitmap is c(0,0), upper right is
c(1,1).

Details

The default arguments are chosen to make it easy to place a 2D image on the face of the bounding
box. If x, y and z are NULL (the defaults), face will be used as a code for one of the six faces of the
bounding box. The first letter should be "x", "y" or "z"; this defines the axis perpendicular to the
desired face. If the second letter is "-" or is missing, the face will be chosen to be the face with the
lower value on that axis. Any other letter will use the opposite face.

If any of x, y or z is given, the specified value will be used to replace the value calculated above.
Usually four values should be given, corresponding to the coordinates of the lower left, lower right,
upper right and upper left of the destination for the image before reverse and rotate are used.
Fewer values can be used for one or two coordinates; cbind will be used to put together all 3
coordinates into a 4 by 3 matrix (which will be returned as an attribute of the result).

The bitmap plot will by default be oriented so that it is properly oriented when viewed from the
direction of the higher values of the perpendicular coordinate, and its lower left corner is at the
lower value of the two remaining coordinates. The argument reverse causes the orientation to
be mirrored, and rotate causes it to be rotated by multiples of 90 degrees. rotate should be an
integer, with 0 for no rotation, 1 for a 90 degree counter-clockwise rotation, etc.

The width and height arguments control the shape and resolution of the bitmap. The defaults
give a square bitmap, which is appropriate with the usual c(1,1,1) aspect ratios (see aspect3d).
Some tuning may be needed to choose the resolution. The plot will look best when displayed at its
original size; shrinking it smaller tends to make it look faded, while expanding it bigger will make
it look blurry. If filename is given, the width and height will be taken from the file, and width and
height arguments will be ignored.

snapshot3d 179

Value

Invisibly returns the id value of the quadrilateral, with the following attributes:

value The value returned by expression.
xyz A 4 by 3 matrix giving the coordinates of the corners as used in plotting.
texcoords A 4 by 2 matrix giving the texture coordinates of the image.
filename The filename for the temporary file holding the bitmap image.

Author(s)

Duncan Murdoch

See Also

bgplot3d uses a plot as the background for the window.

Examples

example(plot3d, ask = FALSE)
show2d({

par(mar=c(0,0,0,0))
plot(x, y, col = rainbow(1000), axes=FALSE)
})

snapshot3d Export screenshot

Description

Saves the screenshot to a file.

Usage

rgl.snapshot(filename, fmt = "png", top = TRUE)
snapshot3d(filename = tempfile(fileext = ".png"),

fmt = "png", top = TRUE,
..., scene, width = NULL, height = NULL,
webshot = TRUE)

Arguments

filename path to file to save.
fmt image export format, currently supported: png. Ignored if webshot = TRUE.
top whether to call rgl.bringtotop. Ignored if webshot = TRUE.
... arguments to pass to webshot2::webshot

scene an optional result of scene3d or rglwidget to plot
width, height optional specifications of output size in pixels
webshot Use the webshot2 package to take the snapshot

180 snapshot3d

Details

rgl.snapshot() is a low-level function that copies the current RGL window from the screen.
Users should use snapshot3d() instead; it is more flexible, and (if webshot2 is installed) can take
images even if no window is showing, and they can be larger than the physical screen.

Animations can be created in a loop modifying the scene and saving each screenshot to a file.
Various graphics programs (e.g. ImageMagick) can put these together into a single animation. (See
movie3d or the example below.)

Value

These functions are mainly called for the side effects. The filename of the saved file is returned
invisibly.

Note

When rgl.useNULL() is TRUE, only webshot = TRUE will produce a snapshot. It requires the web-
shot2 package, which as of this writing is not available on CRAN; to install it, use remotes::install_github("rstudio/webshot2")

rgl.snapshot works by taking an image from the displayed window on-screen. On some systems,
the snapshot will include content from other windows if they cover the active RGL window. Setting
top = TRUE (the default) will use rgl.bringtotop before the snapshot to avoid this.

There are likely limits to how large width and height can be set based on the display hardware; if
these are exceeded the results are undefined. A typical result is that the snapshot will still be made
but at a smaller size.

There are slight differences between the displays with webshot = TRUE and webshot = FALSE, as the
former are rendered using WebGL while the latter are rendered using OpenGL. Often the webshot
= TRUE displays have better quality.

See Also

movie3d, rgl.viewpoint

Examples

if (interactive() && !in_pkgdown_example()) {
saveopts <- options(rgl.useNULL = TRUE)
plot3d(matrix(rnorm(300), ncol = 3, dimnames = list(NULL, c("x", "y", "z"))),

col = "red")
options(saveopts)
browseURL(snapshot3d())

}

Not run:

#
create animation
#

shade3d(oh3d(), color = "red")
rgl.bringtotop()

spheres3d 181

view3d(0, 20)

olddir <- setwd(tempdir())
for (i in 1:45) {

view3d(i, 20)
filename <- paste("pic", formatC(i, digits = 1, flag = "0"), ".png", sep = "")
snapshot3d(filename)

}
Now run ImageMagick in tempdir(). Use 'convert' instead of 'magick'
if you have an older version of ImageMagick:
magick -delay 10 *.png -loop 0 pic.gif
setwd(olddir)

End(Not run)

spheres3d Add spheres

Description

Adds a sphere set shape node to the scene

Usage

spheres3d(x, y = NULL, z = NULL, radius = 1, fastTransparency = TRUE, ...)

Arguments

x, y, z Numeric vector of point coordinates corresponding to the center of each sphere.
Any reasonable way of defining the coordinates is acceptable. See the function
xyz.coords for details.

radius Vector or single value defining the sphere radius/radii
fastTransparency

logical value indicating whether fast sorting should be used for transparency.
See the Details.

... Material properties. See material3d for details.

Details

If a non-isometric aspect ratio is chosen, these functions will still draw objects that appear to the
viewer to be spheres. Use ellipse3d to draw shapes that are spherical in the data scale.

When the scale is not isometric, the radius is measured in an average scale. In this case the bound-
ing box calculation is iterative, since rescaling the plot changes the shape of the spheres in user-
coordinates, which changes the bounding box. Versions of rgl prior to 0.92.802 did not do this
iterative adjustment.

If any coordinate or radius is NA, the sphere is not plotted.

182 spin3d

If a texture is used, its bitmap is wrapped around the sphere, with the top edge at the maximum y
coordinate, and the left-right edges joined at the maximum in the z coordinate, centred in x.

If the alpha material value of the spheres is less than the default 1, they need to be drawn in order
from back to front. When fastTransparency is TRUE, this is approximated by sorting the centers
and drawing complete spheres in that order. This produces acceptable results in most cases, but
artifacts may be visible, especially if the radius values vary, or they intersect other transparent
objects. Setting fastTransparency = FALSE will cause the sorting to apply to each of the 480
facets of individual spheres. This is much slower, but may produce better output.

Value

A shape ID of the spheres object is returned.

See Also

material3d, aspect3d for setting non-isometric scales

Examples

open3d()
spheres3d(rnorm(10), rnorm(10), rnorm(10),

radius = runif(10), color = rainbow(10))

spin3d Create a function to spin a scene at a fixed rate

Description

This creates a function to use with play3d to spin an RGL scene at a fixed rate.

Usage

spin3d(axis = c(0, 0, 1), rpm = 5,
dev = cur3d(), subscene = par3d("listeners", dev = dev))

Arguments

axis The desired axis of rotation

rpm The rotation speed in rotations per minute

dev Which RGL device to use

subscene Which subscene to use

Value

A function with header function(time,base = M), where M is the result of par3d("userMatrix")
at the time the function is created. This function calculates and returns a list containing userMatrix
updated by spinning the base matrix for time seconds at rpm revolutions per minute about the
specified axis.

sprites 183

Note

Prior to rgl version 0.95.1476, the subscene argument defaulted to the current subscene, and any
additional entries would be ignored by play3d. The current default value of par3d("listeners",dev
= dev) means that all subscenes that share mouse responses will also share modifications by this
function.

Author(s)

Duncan Murdoch

See Also

play3d to play the animation

Examples

Spin one object
open3d()
plot3d(oh3d(col = "lightblue", alpha = 0.5))
if (!rgl.useNULL())

play3d(spin3d(axis = c(1, 0, 0), rpm = 30), duration = 2)

Show spinning sprites, and rotate the whole view
open3d()
spriteid <- NULL

spin1 <- spin3d(rpm = 4.5) # the scene spinner
spin2 <- spin3d(rpm = 9) # the sprite spinner

f <- function(time) {
par3d(skipRedraw = TRUE) # stops intermediate redraws
on.exit(par3d(skipRedraw = FALSE)) # redraw at the end

pop3d(id = spriteid) # delete the old sprite
cubeid <- shade3d(cube3d(), col = "red")
spriteid <<- sprites3d(0:1, 0:1, 0:1, shape = cubeid,

userMatrix = spin2(time,
base = spin1(time)$userMatrix)$userMatrix)

spin1(time)
}
if (!rgl.useNULL())

play3d(f, duration = 2)

sprites Add sprites

Description

Adds a sprite set shape node to the scene.

184 sprites

Usage

sprites3d(x, y = NULL, z = NULL, radius = 1,
shapes = NULL, userMatrix,
fixedSize = FALSE,
adj = 0.5, pos = NULL, offset = 0.25, ...)

particles3d(x, y = NULL, z = NULL, radius = 1, ...)

Arguments

x, y, z point coordinates. Any reasonable way of defining the coordinates is acceptable.
See the function xyz.coords for details.

radius vector or single value defining the sprite radius

shapes NULL for a simple square, or a vector of identifiers of shapes in the scene

userMatrix if shape is not NULL, the transformation matrix for the shapes

fixedSize should sprites remain at a fixed size, or resize with the scene?
adj, pos, offset

positioning arguments; see Details

... material properties when shapes = NULL, texture mapping is supported

Details

Simple sprites (used when shapes is NULL) are 1 by 1 squares that are directed towards the view-
point. Their primary use is for fast (and faked) atmospherical effects, e.g. particles and clouds
using alpha blended textures. Particles are sprites using an alpha-blended particle texture giving the
illusion of clouds and gases. The centre of each square will by default be at the coordinates given
by x,y,z. This may be adjusted using the adj or pos parameters.

adj and pos are treated similarly to the same parameters for text3d. adj has 3 entries, for adjust-
ment to the x, y and z coordinates respectively. For x, a value of 0 puts the sprite to the right of the
specified point, 0.5 centers it there, and 1 puts it to the left. The other coordinates are similar. By
default, each value is 0.5 and the sprites are centered at the points given by (x,y,z).

The pos parameter overrides adj. It should be an integer or vector of integers (one per point),
interpreted as in text3d to position the sprite relative to the (x,y,z) point: 0 is centered on it, 1
is below, 2 is to the left, 3 is above, 4 is to the right, 5 is in front, and 6 is behind. offset is the
fraction of the sprite size to separate it from the point.

When shapes is not NULL, it should be a vector of identifiers of objects to plot in the scene (e.g.
as returned by plotting functions or by ids3d). These objects will be removed from the scene and
duplicated as a sprite image in a constant orientation, as specified by userMatrix. By default the
origin (0,0,0) will be plotted at the coordinates given by (x,y,z), perhaps modified by adj or
pos.

The userMatrix argument is ignored for shapes = NULL. For shapes, sprites3d defaults the ma-
trix to r3dDefaults$userMatrix.

If any coordinate is NA, the sprite is not plotted.

The id values of the shapes may be retrieved after plotting using rgl.attrib(id,"ids"); the user
matrix is retrieved using rgl.attrib(id,"usermatrix").

subdivision3d 185

Value

These functions are called for the side effect of displaying the sprites. The shape ID of the displayed
object is returned.

See Also

material3d, text3d

Examples

open3d()
particles3d(rnorm(100), rnorm(100), rnorm(100), color = rainbow(100))
is the same as
sprites3d(rnorm(100), rnorm(100), rnorm(100), color = rainbow(100),

lit = FALSE, alpha = .2,
textype = "alpha", texture = system.file("textures/particle.png", package = "rgl"))

sprites3d(rnorm(10) + 6, rnorm(10), rnorm(10), shape = shade3d(tetrahedron3d(), col = "red"))

subdivision3d Subdivide a mesh

Description

The subdivision surface algorithm divides and refines (deforms) a given mesh recursively to certain
degree (depth). The mesh3d algorithm consists of two stages: divide and deform. The divide step
generates for each triangle or quad four new triangles or quads, the deform step drags the points
(refinement step).

Usage

subdivision3d(x, ...)
S3 method for class 'mesh3d'

subdivision3d(x, depth = 1, normalize = FALSE, deform = TRUE, ...)
divide.mesh3d(mesh, vb = mesh$vb, ib = mesh$ib, it = mesh$it)
normalize.mesh3d(mesh)
deform.mesh3d(mesh, vb = mesh$vb, ib = mesh$ib, it = mesh$it)

Arguments

x 3d geometry mesh

mesh 3d geometry mesh

depth recursion depth

normalize normalize mesh3d coordinates after division if deform is TRUE

deform deform mesh

it indices for triangular faces

ib indices for quad faces

186 subscene3d

vb matrix of vertices: 4 x n matrix (rows x, y, z, h) or equivalent vector, where h
indicates scaling of each plotted quad

... other arguments (unused)

Details

subdivision3d takes a mesh object and replaces each triangle or quad with 4 new ones by adding
vertices half-way along the edges (and one in the centre of a quad). The positions of the vertices are
deformed so that the resulting surface is smoother than the original. These operations are repeated
depth times.

The other functions do the individual steps of the subdivision. divide.mesh3d adds the extra
vertices. deform.mesh3d does the smoothing by replacing each vertex with the average of each
of its neighbours. normalize.mesh3d normalizes the homogeneous coordinates, by setting the 4th
coordinate to 1. (The 4th coordinate is used as a weight in the deform step.)

See Also

r3d mesh3d

Examples

open3d()
shade3d(subdivision3d(cube3d(), depth = 3), color = "red", alpha = 0.5)

subscene3d Create, select or modify a subscene

Description

This creates a new subscene, or selects one by id value, or adds objects to one.

Usage

newSubscene3d(viewport = "replace",
projection = "replace",
model = "replace",
mouseMode = "inherit",
parent = currentSubscene3d(),
copyLights = TRUE,
copyShapes = FALSE,
copyBBoxDeco = copyShapes,
copyBackground = FALSE, newviewport,
ignoreExtent)

currentSubscene3d(dev = cur3d())
useSubscene3d(subscene)
addToSubscene3d(ids = tagged3d(tags), tags, subscene = currentSubscene3d())
delFromSubscene3d(ids = tagged3d(tags), tags, subscene = currentSubscene3d())
gc3d(protect = NULL)

subscene3d 187

Arguments

viewport, projection, model, mouseMode

How should the new subscene be embedded? Possible values are c("inherit","modify","replace").
See Details below.

parent The parent subscene (defaults to the current subscene).
copyLights, copyShapes, copyBBoxDeco, copyBackground

Whether lights, shapes, bounding box decorations and background should be
copied to the new subscene.

newviewport Optionally specify the new subscene’s viewport (in pixels).

ignoreExtent Whether to ignore the subscene’s bounding box when calculating the parent
bounding box. Defaults to TRUE if model is not "inherit".

dev Which RGL device to query for the current subscene.

subscene Which subscene to use or modify.

ids A vector of integer object ids to add to the subscene.

tags Alternate way to specify ids. Ignored if ids is given.

protect Object ids to protect from this garbage collection.

Details

The rgl package allows multiple windows to be open; each one corresponds to a “scene”. Within
each scene there are one or more “subscenes”. Each subscene corresponds to a rectangular region
in the window, and may have its own projection, transformation and behaviour in response to the
mouse.

There is always a current subscene: most graphic operations make changes there, e.g. by adding an
object to it.

The scene “owns” objects; addToSubscene3d and delFromSubscene3d put their ids into or remove
them from the list being displayed within a particular subscene. The gc3d function deletes objects
from the scene if they are not visible in any subscene, unless they are protected by having their id
included in protect.

The viewport, projection and model parameters each have three possible settings: c("inherit","modify","replace").
"inherit" means that the corresponding value from the parent subscene will be used. "replace"
means that the new subscene will have its own value of the value, independent of its parent.
"modify" means that the child value will be applied first, and then the parent value will be ap-
plied. For viewport, this means that if the parent viewport is changed, the child will maintain its
relative position. For the two matrices, "modify" is unlikely to give satisfactory results, but it is
available for possible use.

The mouseMode parameter can only be one of c("inherit","replace"). If it is "inherit", the
subscene will use the mouse controls of the parent, and any change to them will affect the par-
ent and all children that inherit from it. This is the behaviour that was present before rgl version
0.100.13. If it is "replace", then it will receive a copy of the parent mouse controls, but modi-
fications to them will affect only this subscene, not the parent. Note that this is orthogonal to the
par3d("listeners") setting: if another subscene is listed as a listener, it will respond to mouse
actions using the same mode as the one receiving them.

188 subscene3d

The viewport parameter controls the rectangular region in which the subscene is displayed. It is
specified using newviewport (in pixels relative to the whole window), or set to match the parent
viewport.

The projection parameter controls settings corresponding to the observer. These include the field
of view and the zoom; they also include the position of the observer relative to the model. The
par3d("projMatrix") matrix is determined by the projection.

The model parameter controls settings corresponding to the model. Mouse rotations affect the
model, as does scaling. The par3d("modelMatrix") matrix is determined by these as well as
by the position of the observer (since OpenGL assumes that the observer is at (0, 0, 0) after the
MODELVIEW transformation). Only those parts concerning the model are inherited when model
specifies inheritance, the observer setting is controlled by projection.

If copyBackground is TRUE, the background of the newly created child will overwrite anything
displayed in the parent subscene, regardless of depth.

Value

If successful, each function returns the object id of the subscene, with the exception of gc3d, which
returns the count of objects which have been deleted, and useSubscene3d, which returns the previ-
ously active subscene id.

Author(s)

Duncan Murdoch and Fang He.

See Also

subsceneInfo for information about a subscene, mfrow3d and layout3d to set up multiple panes
of subscenes.

Examples

Show the Earth with a cutout by using clipplanes in subscenes

lat <- matrix(seq(90, -90, len = 50)*pi/180, 50, 50, byrow = TRUE)
long <- matrix(seq(-180, 180, len = 50)*pi/180, 50, 50)

r <- 6378.1 # radius of Earth in km
x <- r*cos(lat)*cos(long)
y <- r*cos(lat)*sin(long)
z <- r*sin(lat)

open3d()
obj <- surface3d(x, y, z, col = "white",

texture = system.file("textures/worldsmall.png", package = "rgl"),
specular = "black", axes = FALSE, box = FALSE, xlab = "", ylab = "", zlab = "",
normal_x = x, normal_y = y, normal_z = z)

cols <- c(rep("chocolate4", 4), rep("burlywood1", 4), "darkgoldenrod1")
rs <- c(6350, 5639, 4928.5, 4207, 3486,

subsceneInfo 189

(3486 + 2351)/2, 2351, (2351 + 1216)/2, 1216)
for (i in seq_along(rs))

obj <- c(obj, spheres3d(0, 0, col = cols[i], radius = rs[i]))

root <- currentSubscene3d()

newSubscene3d("inherit", "inherit", "inherit", copyShapes = TRUE, parent = root)
clipplanes3d(1, 0, 0, 0)

newSubscene3d("inherit", "inherit", "inherit", copyShapes = TRUE, parent = root)
clipplanes3d(0, 1, 0, 0)

newSubscene3d("inherit", "inherit", "inherit", copyShapes = TRUE, parent = root)
clipplanes3d(0, 0, 1, 0)

Now delete the objects from the root subscene, to reveal the clipping planes
useSubscene3d(root)
delFromSubscene3d(obj)

subsceneInfo Get information on subscenes

Description

This function retrieves information about the tree of subscenes shown in the active window.

Usage

subsceneInfo(id = NA, embeddings, recursive = FALSE)

Arguments

id Which subscene to report on; NA is the current subscene. Set to "root" for the
root.

embeddings Optional new setting for the embeddings for this subscene.

recursive Whether to report on children recursively.

Details

In RGL, each window contains a tree of “subscenes”, each containing views of a subset of the
objects defined in the window.

Rendering in each subscene depends on the viewport, the projection, and the model transforma-
tion. Each of these characteristics may be inherited from the parent (embedding[i] = "inherit"),
may modify the parent (embedding[i] = "modify"), or may replace the parent (embedding[i] ==
"replace"). All three must be specified if embeddings is used.

190 surface3d

Value

id The object id of the subscene

parent The object id of the parent subscene, if any

children If recursive, a list of the information for the children, otherwise just their
object ids.

embedding A vector of 3 components describing how this subscene is embedded in its par-
ent.

Author(s)

Duncan Murdoch

See Also

newSubscene3d

Examples

example(plot3d)
subsceneInfo()

surface3d Add surface

Description

Adds a surface to the current scene. The surface is defined by a matrix defining the height of each
grid point and two vectors defining the grid.

Usage

surface3d(x, y, z, ..., normal_x = NULL, normal_y = NULL, normal_z = NULL)
terrain3d(x, y, z, ..., normal_x = NULL, normal_y = NULL, normal_z = NULL)

Arguments

x values corresponding to rows of z, or matrix of x coordinates

y values corresponding to the columns of z, or matrix of y coordinates

z matrix of heights

... Material and texture properties. See rgl.material for details.
normal_x, normal_y, normal_z

matrices of the same dimension as z giving the coordinates of normals at each
grid point

tagged3d 191

Details

Adds a surface mesh to the current scene. The surface is defined by the matrix of height values in
z, with rows corresponding to the values in x and columns corresponding to the values in y. This is
the same parametrization as used in persp.

If the x or y argument is a matrix, then it must be of the same dimension as z, and the values in the
matrix will be used for the corresponding coordinates. This is used to plot shapes such as cylinders
where z is not a function of x and y.

If the normals are not supplied, they will be calculated automatically based on neighbouring points.

surface3d always draws the surface with the ‘front’ upwards (i.e. towards higher z values). This
can be used to render the top and bottom differently; see rgl.material and the example below.

For more flexibility in defining the surface, use rgl.surface.

surface3d and terrain3d are synonyms.

See Also

rgl.material, rgl.surface. See persp3d for a higher level interface.

Examples

#
volcano example taken from "persp"
#

z <- 2 * volcano # Exaggerate the relief

x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

zlim <- range(z)
zlen <- zlim[2] - zlim[1] + 1

colorlut <- terrain.colors(zlen) # height color lookup table

col <- colorlut[z - zlim[1] + 1] # assign colors to heights for each point

open3d()
surface3d(x, y, z, color = col, back = "lines")

tagged3d Find tags on rgl objects.

Description

Objects with material properties may have an arbitrary string set as a tag. This function retrieves
the id values associated with a given tag, or the tags set on given ids.

192 tagged3d

Usage

tagged3d(tags = NULL, ids = NULL, full = FALSE, subscene = 0)

Arguments

tags A vector of tags to use for selection.

ids A vector of ids to report the tags on.

full logical; whether to return a dataframe containing id, type, tag, or a vector of
ids or tags.

subscene Where to look: by default, the whole scene is searched. NA restricts the search
to the current subscene, or a subscene id can be given.

Details

Exactly one of tags and ids must be specified.

Value

A dataframe is constructed with columns

id item id

type item type

tag item tag

matching the specified tags or ids value. If full = TRUE, the full dataframe is returned, otherwise
just the requested ids or tags.

If ids is specified, the return value will be in the same order as ids).

Author(s)

Duncan Murdoch

Examples

open3d()
ids <- plot3d(rnorm(10), rnorm(10), rnorm(10), tag = "plot")
unclass(ids)
tagged3d("plot")
tagged3d(ids = ids, full = TRUE)

text3d 193

text3d Add text to plot

Description

Adds text to the scene. The text is positioned in 3D space. Text is always oriented towards the
camera.

Usage

text3d(x, y = NULL, z = NULL, texts, adj = 0.5, pos = NULL, offset = 0.5,
usePlotmath = is.language(texts), ...)

texts3d(x, y = NULL, z = NULL, texts, adj = 0.5, pos = NULL, offset = 0.5,
usePlotmath = is.language(texts), ...)

Arguments

x, y, z point coordinates. Any reasonable way of defining the coordinates is acceptable.
See the function xyz.coords for details.

texts text character vector to draw

adj one value specifying the horizontal adjustment, or two, specifying horizontal
and vertical adjustment respectively, or three, specifying adjustment in all three
directions.

pos a position specifier for the text. If specified, this overrides any adj value given.
Values of 0, 1, 2, 3, 4, 5, 6 respectively indicate positions at, below, to the left
of, above, to the right of, in front of, and behind the specified coordinates.

offset when pos is specified, this value gives the offset of the label from the specified
coordinate in fractions of a character width.

usePlotmath logical. Should plotmath3d be used for the text?

... In the other functions, additional parameters to pass to rgl.texts.

Details

The adj parameter determines the position of the text relative to the specified coordinate. Use adj
= c(0,0) to place the left bottom corner at (x,y,z), adj = c(0.5,0.5) to center the text there,
and adj = c(1,1) to put the right top corner there. The optional second coordinate for vertical
adjustment defaults to 0.5. Placement is done using the "advance" of the string and the "ascent" of
the font relative to the baseline, when these metrics are known.

text3d and texts3d draw text using the r3d conventions. These are synonyms; the former is sin-
gular to be consistent with the classic 2-D graphics functions, and the latter is plural to be consistent
with all the other graphics primitives. Take your choice!

If any coordinate or text is NA, that text is not plotted.

If usePlotmath is TRUE, the work will be done by the plotmath3d function instead of rgl.texts.
This is the default if the texts parameter is “language”, e.g. the result of a call to expression or
quote.

194 thigmophobe3d

Value

The text drawing functions return the object ID of the text object (or sprites, in case of usePlotmath
= TRUE) invisibly.

See Also

r3d, rgl.texts, plotmath3d, rglExtrafonts for adding fonts

Examples

open3d()
famnum <- rep(1:3, 8)
family <- c("serif", "sans", "mono")[famnum]
font <- rep(rep(1:4, each = 3), 2)
cex <- rep(1:2, each = 12)
text3d(font, cex, famnum, text = paste(family, font), adj = 0.5,

color = "blue", family = family, font = font, cex = cex)

thigmophobe3d Find the direction away from the closest point in a 3d projection

Description

Jim Lemon’s thigmophobe function in the plotrix package computes good directions for labels in
a 2D plot. This function does the same for a particular projection in a 3D plot by projecting down
to 2D and calling his function.

Usage

thigmophobe3d(x, y = NULL, z = NULL,
P = par3d("projMatrix"),
M = par3d("modelMatrix"),
windowRect = par3d("windowRect"))

Arguments

x, y, z point coordinates. Any reasonable way of defining the coordinates is acceptable.
See the function xyz.coords for details.

P, M, windowRect

The projection and modelview matrices, and the size and position of the display
in pixels.

Details

Since thigmophobe3d projects using fixed P and M, it will not necessarily choose good directions if
the user rotates the display or makes any other change to the projection.

thigmophobe3d 195

Value

A vector of values from 1 to 4 to be used as the pos argument in text3d.

Note

The example below shows how to update the directions during an animation; I find that the moving
labels are distracting, and prefer to live with fixed ones.

Author(s)

Duncan Murdoch

References

plotrix

See Also

text3d

Examples

if (requireNamespace("plotrix", quietly = TRUE)) {
Simulate some data
xyz <- matrix(rnorm(30), ncol = 3)

Plot the data first, to establish the projection
plot3d(xyz)

Now thigmophobe3d can choose directions
textid <- text3d(xyz, texts = 1:10, pos = thigmophobe3d(xyz))

Update the label positions during an animation
if (interactive() && !rgl.useNULL()) {
spin <- spin3d(rpm = 5)
f <- function(time) {

par3d(skipRedraw = TRUE)
on.exit(par3d(skipRedraw = FALSE))
pop3d(id = textid)
Need to rotate before thigmophobe3d is called
result <- spin(time)
par3d(userMatrix = result$userMatrix)
textid <<- text3d(xyz, texts = 1:10, pos = thigmophobe3d(xyz))
result

}
play3d(f, duration = 5)

} else
textid # just print the static display

}

https://CRAN.R-project.org/package=plotrix

196 tkpar3dsave

tkpar3dsave Modal dialog for saving par3d settings

Description

This function opens a TCL/TK modal dialog to allow particular views of an RGL scene to be saved.

Usage

tkpar3dsave(params = c("userMatrix", "scale", "zoom", "FOV"),
times = FALSE, dev = cur3d(), ...)

Arguments

params Which parameters to save

times Should times be saved as well?

dev Which RGL device to work with

... Additional parameters to pass to tktoplevel

Details

This opens a TCL/TK modal dialog box with Record and Quit buttons. Each time Record is
clicked, a snapshot is taken of current par3d settings. When Quit is clicked, the dialog closes and
the values are returned in a list.

If times == TRUE, then the times at which the views are recorded will also be saved, so that the
play3d function will play back with the same timing.

Value

A list of the requested components. Each one will consist of a list of values that were current
when the Record button was clicked. These are suitable to be passed directly to the par3dinterp
function.

Author(s)

Duncan Murdoch

See Also

par3d, par3dinterp

tkspin3d 197

Examples

if (interactive() && !in_pkgdown_example()) {

Record a series of positions, and then play them back immediately
at evenly spaced times, in an oscillating loop
example(plot3d)
play3d(par3dinterp(tkpar3dsave()))

As above, but preserve the click timings

play3d(par3dinterp(tkpar3dsave(times=TRUE)))
}

tkrgl The former tkrgl package

Description

Functions from the former tkrgl package.

Details

The tkrgl package contained functions to use TCL/TK to control an RGL scene on screen. These
functions have now been merged into the rgl package, and the tkrgl package has been archived.

To avoid conflicts with RGL names and to indicate the TCL/TK nature of these functions, they have
all been prefixed with tk:

tkpar3dsave Formerly tkrgl::par3dsave, allows interactive saving of scene parameters.

tkspin3d, tkspinControl Formerly tkrgl::spin3d and tkrgl::spinControl, create buttons
to spin the scene.

History:

0.2-2 First public release
0.3 Added possibility to control multiple windows
0.4 Compatibility with 2.0.0 tcltk package
0.5 Added continuous rotation
0.6 Added par3dsave
0.7 Added parameters to tkspinControl, fixed startup
0.8 Minor fixes to pass checks
0.9 Merge functions into rgl

tkspin3d Create TCL/TK controller for RGL window

198 tkspinControl

Description

This function creates a TCL/TK window containing buttons to spin and resize one or more RGL
windows.

Usage

tkspin3d(dev = cur3d(), ...)

Arguments

dev A vector of one or more RGL device numbers to control

... Named parameters in that match named formal arguments to tkspinControl
are passed there, while others are passed to tktoplevel

Author(s)

Ming Chen and Duncan Murdoch

See Also

tkspinControl

Examples

if (interactive() && !in_pkgdown_example()) {
open3d()
points3d(rnorm(100), rnorm(100), rnorm(100), size=3)
axes3d()
box3d()
tkspin3d()

}

tkspinControl Create a spin control in a TCL/TK window

Description

This function may be used to embed a spin control in a TCL/TK window.

Usage

tkspinControl(base, dev = cur3d(),
continue=FALSE, speed=30, scale=100, ...)

tkspinControl 199

Arguments

base The TCL/TK frame in which to insert this control.

dev A vector of one or more RGL device numbers to control.

continue Initial setting for continuous rotation checkbox.

speed Initial setting for speed slider.

scale Initial setting for scale slider.

... Additional parameters to pass to tkframe

Author(s)

Ming Chen and Duncan Murdoch

See Also

spin3d

Examples

if (interactive() && !in_pkgdown_example()) {
library(tcltk)
open3d()
win1 <- cur3d()
plot3d(rexp(100), rexp(100), rexp(100), size=3, col='green')

open3d()
win2 <- cur3d()
plot3d(rt(100,2), rt(100,2), rt(100, 2), size=3, col='yellow')

open3d()
win3 <- cur3d()
plot3d(rexp(100), rexp(100), rexp(100), size=3, col='red')

open3d()
win4 <- cur3d()

plot3d(rbinom(100,10,0.5), rbinom(100,10,0.5), rbinom(100,10,0.5), size=3, col='cyan')

base <- tktoplevel()
tkwm.title(base, "Spinners")
con1 <- tkspinControl(base, dev=c(win1,win2))
con2 <- tkspinControl(base, dev=c(win3,win4))
tkpack(con1, con2)

}

200 toggleWidget

toggleWidget An HTML widget to toggle display of elements of a scene

Description

This function produces a button in an HTML scene that will toggle the display of items in the scene.

Usage

toggleWidget(sceneId,
ids = tagged3d(tags), tags = NULL, hidden = integer(),
subscenes = NULL,
label,
...)

Arguments

sceneId The HTML id of the RGL scene being controlled, or an object as in playwidget.

ids, hidden The RGL id numbers of the objects to toggle. Those in ids are initially shown;
those in hidden are initially hidden.

tags Alternate way to specify ids. Ignored if ids is given.

subscenes The subscenes in which to toggle the objects.

label The label to put on the button. The default is set from the expression passed to
ids or the value of tags.

... Additional arguments to pass to playwidget.

Details

Like playwidget, this function is designed to work within the htmlwidgets framework. If the value
is printed, the button will be inserted into the output.

It is also designed to work with magrittr-style pipes: the result of rglwidget or other widgets can
be piped into it to add it to a display. It can also appear first in the pipeline, if sceneId is set to NA.

Value

A widget suitable for use in an Rmarkdown-generated web page, or elsewhere.

Author(s)

Duncan Murdoch

See Also

toggleButton for the older style of HTML control.

triangulate 201

Examples

theplot <- plot3d(rnorm(100), rnorm(100), rnorm(100), col = "red")
widget <- rglwidget(height = 300, width = 300) %>%

toggleWidget(theplot["data"],
hidden = theplot[c("xlab", "ylab", "zlab")],
label = "Points")

if (interactive() || in_pkgdown_example())
widget

triangulate Triangulate a two-dimensional polygon

Description

This algorithm decomposes a general polygon into simple polygons and uses the “ear-clipping”
algorithm to triangulate it. Polygons with holes are supported.

Usage

triangulate(x, y = NULL, z = NULL, random = TRUE, plot = FALSE, partial = NA)

Arguments

x, y, z Coordinates of a two-dimensional polygon in a format supported by xyz.coords.
See Details for how z is handled.

random Whether to use a random or deterministic triangulation.
plot Whether to plot the triangulation; mainly for debugging purposes.
partial If the triangulation fails, should partial results be returned?

Details

Normally triangulate looks only at the x and y coordinates. However, if one of those is constant,
it is replaced with the z coordinate if present.
The algorithm works as follows. First, it breaks the polygon into pieces separated by NA values in
x or y. Each of these pieces should be a simple, non-self-intersecting polygon, separate from the
other pieces. (Though some minor exceptions to this rule may work, none are guaranteed). The
nesting of these pieces is determined.
The “outer” polygon(s) are then merged with the polygons that they immediately contain, and each
of these pieces is triangulated using the ear-clipping algorithm.
Finally, all the triangulated pieces are put together into one result.

Value

A three-by-n array giving the indices of the vertices of each triangle. (No vertices are added; only
the original vertices are used in the triangulation.)
The array has an integer vector attribute "nextvert" with one entry per vertex, giving the index of
the next vertex to proceed counter-clockwise around outer polygon boundaries, clockwise around
inner boundaries.

202 turn3d

Note

Not all inputs will succeed, even when a triangulation is possible. Generally using random = TRUE
will find a successful triangulation if one exists, but it may occasionally take more than one try.

Author(s)

Duncan Murdoch

References

See the Wikipedia article “polygon triangulation” for a description of the ear-clipping algorithm.

See Also

extrude3d for a solid extrusion of a polygon, polygon3d for a flat display; both use triangulate.

Examples

theta <- seq(0, 2*pi, len = 25)[-25]
theta <- c(theta, NA, theta, NA, theta, NA, theta, NA, theta)
r <- c(rep(1.5, 24), NA, rep(0.5, 24), NA, rep(0.5, 24), NA, rep(0.3, 24), NA, rep(0.1, 24))
dx <- c(rep(0, 24), NA, rep(0.6, 24), NA, rep(-0.6, 24), NA, rep(-0.6, 24), NA, rep(-0.6, 24))
x <- r*cos(theta) + dx
y <- r*sin(theta)
plot(x, y, type = "n")
polygon(x, y)
triangulate(x, y, plot = TRUE)
open3d()
polygon3d(x, y, x - y, col = "red")

turn3d Create a solid of rotation from a two-dimensional curve

Description

This function “turns” the curve (as on a lathe) to form a solid of rotation along the x axis.

Usage

turn3d(x, y = NULL, n = 12, smooth = FALSE, ...)

Arguments

x, y Points on the curve, in a form suitable for xy.coords. The y values must be
non-negative.

n How many steps in the rotation?

smooth logical; whether to add normals for a smooth appearance.

... Additional parameters to pass to tmesh3d.

vertexControl 203

Value

A mesh object containing triangles and/or quadrilaterals.

Author(s)

Fang He and Duncan Murdoch

See Also

extrude3d

Examples

x <- 1:10
y <- rnorm(10)^2
open3d()
shade3d(turn3d(x, y), col = "green")

vertexControl Set attributes of vertices

Description

This is a function to produce actions in a web display. A playwidget or Shiny input control (e.g. a
sliderInput control) sets a value which controls attributes of a selection of vertices.

Usage

vertexControl(value = 0, values = NULL, vertices = 1, attributes,
objid = tagged3d(tag), tag,
param = seq_len(NROW(values)) - 1, interp = TRUE)

Arguments

value The value to use for input (typically input$value in a Shiny app.) Not needed
with playwidget.

values A matrix of values, each row corresponding to an input value.

vertices Which vertices are being controlled? Specify vertices as a number from 1 to
the number of vertices in the objid.

attributes A vector of attributes of a vertex, from c("x","y","z","red","green","blue","alpha","nx","ny","nz","radii","ox","oy","oz","ts","tt","offset").
See Details.

objid A single RGL object id.

tag An alternate way to specify objid.

param Parameter values corresponding to each row of values.

interp Whether to interpolate between rows of values.

204 vertexControl

Details

This function modifies attributes of vertices in a single object. The attributes are properties of
each vertex in a scene; not all are applicable to all objects. In order, they are: coordinates of the
vertex "x","y","z", color of the vertex "red","green","blue","alpha", normal at the vertex
"nx","ny","nz", radius of a sphere at the vertex "radius", origin within a texture "ox","oy" and
perhaps "oz", texture coordinates "ts","tt".

Planes are handled specially. The coefficients a,b,c in the planes3d or clipplanes3d specifica-
tion are controlled using "nx","ny","nz", and d is handled as "offset". The vertices argument
is interpreted as the indices of the planes when these attributes are set.

If only one attribute of one vertex is specified, values may be given as a vector and will be treated
as a one-column matrix. Otherwise values must be given as a matrix with ncol(values) ==
max(length(vertices),length(attributes)). The vertices and attributes vectors will
be recycled to the same length, and entries from column j of values will be applied to vertex
vertices[j], attribute attributes[j].

The value argument is translated into a row (or two rows if interp = TRUE) of values by finding
its location in param.

Value

A list of class "rglControl" of cleaned up parameter values, to be used in an RGL widget.

Author(s)

Duncan Murdoch

Examples

saveopts <- options(rgl.useNULL = TRUE)

theta <- seq(0, 6*pi, len=100)
xyz <- cbind(sin(theta), cos(theta), theta)
plot3d(xyz, type="l")
id <- spheres3d(xyz[1,,drop=FALSE], col="red")

widget <- rglwidget(width=500, height=300) %>%
playwidget(vertexControl(values=xyz,

attributes=c("x", "y", "z"),
objid = id, param=1:100),

start = 1, stop = 100, rate=10)
if (interactive() || in_pkgdown_example())

widget
options(saveopts)

viewpoint 205

viewpoint Set up viewpoint

Description

Set the viewpoint orientation.

Usage

view3d(theta = 0, phi = 15, ...)
rgl.viewpoint(theta = 0, phi = 15, fov = 60, zoom = 1,

scale = par3d("scale"), interactive = TRUE, userMatrix,
type = c("userviewpoint", "modelviewpoint"))

Arguments

theta, phi polar coordinates

... additional parameters to pass to rgl.viewpoint

fov field-of-view angle in degrees

zoom zoom factor

scale real length 3 vector specifying the rescaling to apply to each axis

interactive logical, specifying if interactive navigation is allowed

userMatrix 4x4 matrix specifying user point of view

type which viewpoint to set?

Details

The data model can be rotated using the polar coordinates theta and phi. Alternatively, it can
be set in a completely general way using the 4x4 matrix userMatrix. If userMatrix is specified,
theta and phi are ignored.

The pointing device of your graphics user-interface can also be used to set the viewpoint interac-
tively. With the pointing device the buttons are by default set as follows:

left adjust viewpoint position

middle adjust field of view angle

right or wheel adjust zoom factor

The user’s view can be set with fov and zoom.

If the fov angle is set to 0, a parallel or orthogonal projection is used. Small non-zero values (e.g.
0.01 or less, but not 0.0) are likely to lead to rendering errors due to OpenGL limitations.

Prior to version 0.94, all of these characteristics were stored in one viewpoint object. With that
release the characteristics are split into those that affect the projection (the user viewpoint) and
those that affect the model (the model viewpoint). By default, this function sets both, but the type
argument can be used to limit the effect.

206 webGLcontrols

See Also

par3d

Examples

Not run:
animated round trip tour for 10 seconds

rgl.open()
shade3d(oh3d(), color = "red")

start <- proc.time()[3]
while ((i <- 36*(proc.time()[3] - start)) < 360) {

rgl.viewpoint(i, i/4);
}

End(Not run)

webGLcontrols Obsolete functions to write HTML/Javascript code to control a WebGL
display

Description

These functions write out HTML code to control WebGL displays on the same page. They are
deprecated; most documentation has now been removed.

Usage

subsetSlider(subsets, labels = names(subsets),
fullset = Reduce(union, subsets),
subscenes = currentSubscene3d(), prefixes = "",
accumulate = FALSE, ...)

subsetSetter(subsets, subscenes = currentSubscene3d(), prefixes = "",
fullset = Reduce(union, subsets),

accumulate = FALSE)

clipplaneSlider(a=NULL, b=NULL, c=NULL, d=NULL,
plane = 1, clipplaneids, prefixes = "",
labels = signif(values[,1],3), ...)

toggleButton(subset, subscenes = currentSubscene3d(), prefixes = "",
label = deparse(substitute(subset)),
id = paste0(basename(tempfile("input"))), name = id)

writeASY 207

Arguments

subsets A list of vectors of object identifiers; the slider or setter will choose among them.

labels Labels to display corresponding to each subset. If NULL, numeric labels will be
shown.

fullset Objects in the subscene which are not in fullset will not be touched.

subscenes The subscenes to be controlled.

prefixes The prefixes of the WebGL scenes to be controlled.

accumulate If TRUE, the subsets will accumulate (by union) as the value increases.

id The id of the input control that will be generated.

name The name of the input control that will be generated.

... Arguments to pass to propertySlider.

a,b,c,d The parameter values to change. Leave as NULL to hold the parameter constant.

plane, clipplaneids

The identifier of the particular clipplane to modify.

subset The subset that the button should toggle.

label The button label.

Value

subsetSetter returns a length-one character vector of class "propertySetter".

The other functions use cat to write their output and invisibly return the id of the control that was
generated.

Author(s)

Duncan Murdoch

See Also

playwidget and toggleWidget for a newer, preferred method of inserting controls into a scene.

writeASY Write Asymptote code for an RGL scene

Description

Asymptote is a language for 3D graphics that is highly integrated with LaTeX. This is an experi-
mental function to write an Asymptote program to approximate an RGL scene.

208 writeASY

Usage

writeASY(scene = scene3d(),
title = "scene",
outtype = c("pdf", "eps", "asy", "latex", "pdflatex"),
prc = TRUE,
runAsy = "asy %filename%",
defaultFontsize = 12,
width = 7, height = 7,
ppi = 100,
ids = tagged3d(tags),
tags = NULL,
version = "2.65")

Arguments

scene RGL scene object

outtype What type of file to write? See Details.

prc Whether to produce an interactive PRC scene.

title The base of the filename to produce.

runAsy Code to run the Asymptote program.
defaultFontsize

The default fontsize for text.

width, height Width and height of the output image, in inches.

ppi “Pixels per inch” to assume when converting line widths and point sizes (which
RGL measures in pixels).

ids If not NULL, write out just these RGL objects.

tags Alternate way to specify ids. Ignored if ids is given.

version Asymptote version 2.44 had a definition for its “light()” function that was in-
compatibly changed in versions 2.47 and 2.50. The current code has been tested
with version 2.65. If you are using an older version, set version to your version
number and it may work better.

Details

Asymptote is both a language describing a 2D or 3D graphic, and a program to interpret that lan-
guage and produce output in a variety of formats including EPS, PDF (interactive or static), etc.

The interactive scene produced with prc = TRUE requires outtype = "pdf", and (as of this writing)
has a number of limitations:

• As far as we know, only Adobe Acrobat Reader of a sufficiently recent version can display
these scenes.

• Current versions ignore lighting settings.

Value

The filename of the output file is returned invisibly.

writeOBJ 209

Note

This function is currently under development and limited in the quality of output it produces. Ar-
guments will likely change.

There are a number of differences between the interactive display in Asymptote and the display in
RGL. In particular, many objects that are a fixed size in RGL will scale with the image in Asymptote.
Defaults have been chosen somewhat arbitrarily; tweaking will likely be needed.

Material properties of surfaces are not yet implemented.

On some systems, the program asy used to process the output has bugs and may fail. Run the
example at your own risk!

Author(s)

Duncan Murdoch

References

J. C. Bowman and A. Hammerlindl (2008). Asymptote: A vector graphics language, TUGBOAT:
The Communications of the TeX Users Group, 29:2, 288-294.

See Also

scene3d saves a copy of a scene to an R variable; rglwidget, writePLY, writeOBJ and writeSTL
write the scene to a file in various other formats.

Examples

Not run:
On some systems, the program "asy" used
to process the output has bugs, so this may fail.
x <- rnorm(20)
y <- rnorm(20)
z <- rnorm(20)
plot3d(x, y, z, type = "s", col = "red")
olddir <- setwd(tempdir())
writeASY(title = "interactive") # Produces interactive.pdf
writeASY(title = "noninteractive", prc = FALSE) # Produces noninteractive.pdf
setwd(olddir)

End(Not run)

writeOBJ Read and write Wavefront OBJ format files

Description

writeOBJ writes OBJ files. This is a file format that is commonly used in 3D graphics applications.
It does not represent text, but does represent points, lines, polygons (and many other types that RGL
doesn’t support). readOBJ reads only some parts of OBJ files.

210 writeOBJ

Usage

writeOBJ(con,
pointRadius = 0.005, pointShape = icosahedron3d(),
lineRadius = pointRadius, lineSides = 20,
pointsAsPoints = FALSE, linesAsLines = FALSE,
withNormals = TRUE, withTextures = TRUE,
separateObjects = TRUE,
ids = tagged3d(tags),
tags = NULL)

readOBJ(con, ...)

Arguments

con A connection or filename.
pointRadius, lineRadius

The radius of points and lines relative to the overall scale of the figure, if they
are converted to polyhedra.

pointShape A mesh shape to use for points if they are converted. It is scaled by the pointRadius.

lineSides Lines are rendered as cylinders with this many sides.
pointsAsPoints, linesAsLines

Whether to convert points and lines to “point” and “line” records in the OBJ
output.

withNormals Whether to output vertex normals for smooth shading.
separateObjects

Whether to mark each RGL object as a separate object in the file.

withTextures Whether to output texture coordinates.

ids The identifiers (from ids3d) of the objects to write. If NULL, try to write every-
thing.

tags Alternate way to specify ids. Ignored if ids is given.

... Additional arguments (typically just material) to pass to tmesh3d.

Details

The current writeOBJ implementation only outputs triangles, quads, planes, spheres, points, line
segments, line strips and surfaces. It does not output material properties such as colors, since the
OBJ format does not support the per-vertex colors that RGL uses.

The readOBJ implementation can read faces, normals, and textures coordinates, but ignores material
properties (including the specification of the texture file to use). To read a file that uses a single tex-
ture, specify it in the material argument, e.g. readOBJ("model.OBJ",material = list(color =
"white",texture = "texture.png")). There is no support for files that use multiple textures.

The defaults for pointsAsPoints and linesAsLines have been chosen because Blender (https:
//www.blender.org) does not import points or lines, only polygons. If you are exporting to other
software you may want to change them.

If present, texture coordinates are output by default, but the textures themselves are not.

https://www.blender.org
https://www.blender.org

writeOBJ 211

Individual RGL objects are output as separate objects in the file when separateObjects = TRUE,
the default.

The output file should be readable by Blender and Meshlab; the latter can write in a number of other
formats, including U3D, suitable for import into a PDF document.

Value

writeObj invisibly returns the name of the connection to which the data was written.

readObj returns a mesh object constructed from the input file.

Author(s)

Duncan Murdoch

References

The file format was found at http://www.martinreddy.net/gfx/3d/OBJ.spec on November 11,
2012.

See Also

scene3d saves a copy of a scene to an R variable; rglwidget, writeASY, writePLY and writeSTL
write the scene to a file in various other formats.

Examples

filename <- tempfile(fileext = ".obj")
open3d()
shade3d(icosahedron3d())
writeOBJ(filename)

The motivation for writing readObj() was to read a shape
file of Comet 67P/Churyumov-Gerasimenko, from the ESA.
The file no longer appears to be online, but may still be
available on archive.org. Here was the original URL:
cometurl <- "http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=54726"
This code would read and display it:
open3d()
shade3d(readOBJ(url(cometurl),
material = list(col = "gray")))

Textures are used in a realistic hand image available from
https://free3d.com/3d-model/freerealsichand-85561.html
Thanks to Monte Shaffer for pointing this out.
Decompress the files into the current directory, convert
hand_mapNew.jpg to hand_mapNew.png, then use
Not run:
open3d()
shade3d(readOBJ("hand.OBJ", material = list(color = "white",
shininess = 1, texture = "hand_mapNew.png")))

http://www.martinreddy.net/gfx/3d/OBJ.spec

212 writePLY

End(Not run)

writePLY Write Stanford PLY format files

Description

This function writes PLY files. This is a simple file format that is commonly used in 3D printing.
It does not represent text, only edges and polygons. The writePLY function does the necessary
conversions.

Usage

writePLY(con, format = c("little_endian", "big_endian", "ascii"),
pointRadius = 0.005, pointShape = icosahedron3d(),
lineRadius = pointRadius, lineSides = 20,
pointsAsEdges = FALSE, linesAsEdges = pointsAsEdges,
withColors = TRUE, withNormals = !(pointsAsEdges || linesAsEdges),
ids = tagged3d(tags), tags = NULL)

Arguments

con A connection or filename.

format Which output format. Defaults to little-endian binary.
pointRadius, lineRadius

The radius of points and lines relative to the overall scale of the figure, if they
are converted to polyhedra.

pointShape A mesh shape to use for points if they are converted. It is scaled by the pointRadius.

lineSides Lines are rendered as cylinders with this many sides.
pointsAsEdges, linesAsEdges

Whether to convert points and lines to “Edge” records in the PLY output.

withColors Whether to output vertex color information.

withNormals Whether to output vertex normals for smooth shading.

ids The identifiers (from ids3d) of the objects to write. If NULL, try to write every-
thing.

tags Select objects with matching tags. Ignored if ids is specified.

Details

The current implementation only outputs triangles, quads, planes, spheres, points, line segments,
line strips and surfaces.

The defaults for pointsAsEdges and linesAsEdges have been chosen because Blender (https:
//www.blender.org) does not import lines, only polygons. If you are exporting to other software
you may want to change them.

https://www.blender.org
https://www.blender.org

writeWebGL 213

Since the PLY format only allows one object per file, all RGL objects are combined into a single
object when output.

The output file is readable by Blender and Meshlab; the latter can write in a number of other formats,
including U3D, suitable for import into a PDF document.

Value

Invisibly returns the name of the connection to which the data was written.

Author(s)

Duncan Murdoch

References

The file format was found on https://www.mathworks.com on November 10, 2012 at a URL
that no longer exists; currently the format is described at https://www.mathworks.com/help/
vision/ug/the-ply-format.html.

See Also

scene3d saves a copy of a scene to an R variable; rglwidget, writeASY, writeOBJ and writeSTL
write the scene to a file in various other formats.

Examples

filename <- tempfile(fileext = ".ply")
open3d()
shade3d(icosahedron3d(col = "magenta"))
writePLY(filename)

writeWebGL Write scene to HTML (obsolete)

Description

Obsolete function to write the current scene to a collection of files that contain WebGL code to
reproduce it in a browser. Please use rglwidget instead.

Usage

writeWebGL(dir = "webGL", filename = file.path(dir, "index.html"),
template = system.file(file.path("WebGL", "template.html"), package = "rgl"),

prefix = "",
snapshot = TRUE, commonParts = TRUE, reuse = NULL,
font = "Arial", width, height)

https://www.mathworks.com
https://www.mathworks.com/help/vision/ug/the-ply-format.html
https://www.mathworks.com/help/vision/ug/the-ply-format.html

214 writeWebGL

Arguments

dir Where to write the files.

filename The filename to use for the main file.

template The template web page to which to write the Javascript for the scene. See Details
below.

prefix An optional prefix to use on global identifiers in the scene; use different prefixes
for different scenes displayed on the same web page. If not blank, it should be a
legal identifier in Javascript and HTML.

snapshot Whether to include a snapshot of the scene, to be displayed in browsers that
don’t support WebGL, or a specification of the snapshot to use. See details
below.

commonParts Whether to include parts that would be common to several figures on the same
page. Currently this includes a reference to and copy of the ‘CanvasMatrix.js’
file in the output.

reuse Ignored.

font The font to use for text.

width, height The (optional) width and height in pixels of the image to display. If omitted, the
par3d("windowRect") dimensions will be used.

Details

This obsolete function writes out a web page containing Javascript that reconstructs the scene in
WebGL. It will be formally deprecated in an upcoming release; you should use rglwidget instead
in any new code, and start migrating old code there.

The remaining documentation has been removed to discourage use of this function.

Value

The filename is returned.

Note

If commonParts is TRUE, the output includes a binary copy of the CanvasMatrix Javascript library.
Its source (including the copyright notice and license for free use) is included in the file named by
system.file("htmlwidgets/lib/CanvasMatrix.src.js",package = "rgl").

Author(s)

Duncan Murdoch.

See Also

rglwidget should be used instead of writeWebGL. Other functions which are related: scene3d
saves a copy of a scene to an R variable; writeASY, writePLY, writeOBJ and writeSTL write the
scene to a file in various other formats.

Index

∗ FOV
par3d, 74

∗ activeSubscene
par3d, 74

∗ antialias
par3d, 74

∗ bbox
par3d, 74

∗ cex
par3d, 74

∗ dplot
ellipse3d, 50
par3dinterp, 78
play3d, 92
spin3d, 182

∗ dynamic
abclines3d, 7
addNormals, 8
aspect3d, 24
axes3d, 26
bg3d, 29
cube3d, 43
cylinder3d, 44
grid3d, 57
light, 60
matrices, 63
mesh3d, 67
open3d, 72
par3d, 74
persp3d, 82
planes3d, 91
plot3d, 97
points3d, 104
r3d, 110
rgl-package, 5
rgl.bbox, 116
rgl.bringtotop, 118
rgl.material, 120
rgl.open, 124

rgl.pixels, 125
rgl.postscript, 126
rgl.setMouseCallbacks, 130
rgl.surface, 132
rgl.user2window, 139
scene, 150
select3d, 155
shade3d, 169
shapelist3d, 172
snapshot3d, 179
spheres3d, 181
sprites, 183
subdivision3d, 185
surface3d, 190
text3d, 193
viewpoint, 205

∗ family
par3d, 74

∗ fontname
par3d, 74

∗ font
par3d, 74

∗ graphics
bgplot3d, 31
extrude3d, 52
identify3d, 58
mfrow3d, 69
observer3d, 71
persp3d, 82
persp3d.deldir, 85
persp3d.function, 86
persp3d.triSht, 89
polygon3d, 106
readSTL, 112
rgl.attrib, 114
scene3d, 151
selectpoints3d, 157
subscene3d, 186
subsceneInfo, 189

215

216 INDEX

triangulate, 201
turn3d, 202
writeOBJ, 209
writePLY, 212

∗ ignoreExtent
par3d, 74

∗ listeners
par3d, 74

∗ maxClipPlanes
par3d, 74

∗ modelMatrix
par3d, 74

∗ mouseMode
par3d, 74

∗ projMatrix
par3d, 74

∗ scale
par3d, 74

∗ skipRedraw
par3d, 74

∗ useFreeType
par3d, 74

∗ userMatrix
par3d, 74

∗ userProjection
par3d, 74

∗ utilities
rgl.Sweave, 134
setupKnitr, 161

∗ viewport
par3d, 74

∗ windowRect
par3d, 74

∗ zoom
par3d, 74

.check3d, 6
%>% (import), 59
%>%, 59

abclines3d, 7, 58, 92
addNormals, 8, 16, 17, 66
addToSubscene3d (subscene3d), 186
ageControl, 9, 59, 97
ageSetter, 10
all.equal, 12, 16, 67
all.equal.mesh3d, 12
alphashape3d::ashape3d, 18, 19
arc3d, 13
arrow3d, 14

arrows, 15
as.character, 59
as.mesh3d, 16, 19, 20, 22, 23, 48
as.mesh3d.ashape3d, 18
as.mesh3d.deldir (persp3d.deldir), 85
as.mesh3d.rglId, 16, 20, 67
as.mesh3d.tri (persp3d.triSht), 89
as.mesh3d.triSht (persp3d.triSht), 89
as.rglscene, 21
as.tmesh3d, 22
as.triangles3d, 23
as.triangles3d.rglId, 20
asEuclidean (matrices), 63
asEuclidean2 (matrices), 63
ashape3d, 18
asHomogeneous (matrices), 63
asHomogeneous2 (matrices), 63
aspect3d, 24, 76, 98, 182
asRow, 25
attachDependencies, 62
axes3d, 26, 117
axis, 28
axis3d, 58
axis3d (axes3d), 26

bbox3d, 27, 28, 117, 129, 151
bbox3d (rgl.bbox), 116
bg3d, 29, 31, 32, 73, 122, 152
bgplot3d, 30, 31, 179
box, 28
box3d (axes3d), 26
Buffer, 32

cat, 207
cbind, 178
check3d (.check3d), 6
checkDeldir, 37
clear3d (scene), 150
clearSubsceneList (mfrow3d), 69
clipMesh3d, 20, 37
clipObj3d (clipMesh3d), 37
clipplaneControl, 40
clipplanes3d, 99, 204
clipplanes3d (planes3d), 91
clipplaneSlider (webGLcontrols), 206
close3d (open3d), 72
cloud, 146
col2rgb, 11

INDEX 217

compare_proxy.mesh3d
(all.equal.mesh3d), 12

contour3d, 43
contourLines3d, 39, 41
createWidget, 96, 148
cube3d, 5, 43, 111
cuboctahedron3d (cube3d), 43
cur3d (open3d), 72
currentSubscene3d (subscene3d), 186
curve, 88
cylinder3d, 44

decorate3d, 46, 83, 98
deform.mesh3d (subdivision3d), 185
deldir, 85
delFromSubscene3d (subscene3d), 186
divide.mesh3d (subdivision3d), 185
dodecahedron3d (cube3d), 43
dot3d, 111, 173
dot3d (shade3d), 169
drape3d, 47, 54, 171, 172

elementId2Prefix, 49
ellipse3d, 50, 181
example, 162
expect_known_scene, 51
expect_known_value, 52
expression, 193
extrude3d, 52, 107, 202, 203

facing3d, 48, 53, 172
figHeight (figWidth), 55
figWidth, 55
filledContour3d, 39, 171, 172
filledContour3d (contourLines3d), 41

gc3d, 70
gc3d (subscene3d), 186
getBoundary3d, 55
getr3dDefaults (open3d), 72
getWidgetId (asRow), 25
GramSchmidt, 56
grid, 57
grid3d, 57

highlevel, 162
highlevel (rglIds), 141
hook_rgl, 135
hook_rgl (setupKnitr), 161

hook_rglchunk (setupKnitr), 161
hook_webgl, 135, 149
hook_webgl (setupKnitr), 161
htmlDependency, 62

icosahedron3d (cube3d), 43
identify, 58, 59
identify3d, 58
identityMatrix (matrices), 63
ids3d, 113–115, 184, 210, 212
ids3d (scene), 150
import, 59
in_pkgdown_example, 60
invisible, 161

kde2d, 102

layout, 69–71
layout3d, 188
layout3d (mfrow3d), 69
legend, 31
legend3d (bgplot3d), 31
light, 60
light3d, 151
light3d (light), 60
lines3d, 48, 106, 111
lines3d (points3d), 104
local_edition, 52
locator, 156
lowlevel, 162
lowlevel (rglIds), 141

magick, 93
makeDependency, 62
material3d, 18, 27, 29, 30, 61, 73, 98, 104,

152, 170, 181, 182, 185
material3d (rgl.material), 120
matrices, 63, 77
matrixSetter (propertySetter), 109
merge.mesh3d, 65
mergeVertices, 66
mesh3d, 12, 16, 17, 37, 42, 44, 51, 56, 64, 67,

67, 86, 90, 111, 170, 173, 186
mfrow3d, 69, 188
movie3d, 180
movie3d (play3d), 92
mtext, 28
mtext3d, 122, 129, 178
mtext3d (axes3d), 26

218 INDEX

newSubscene3d, 70, 71, 190
newSubscene3d (subscene3d), 186
next3d (mfrow3d), 69
normalize.mesh3d (subdivision3d), 185

observer3d, 71, 76
octahedron3d (cube3d), 43
oh3d (cube3d), 43
open3d, 5, 6, 72, 77, 78, 99, 111, 124, 138, 151
options, 161

par, 69–71
par3d, 6, 24, 65, 70, 72, 73, 74, 79, 93, 98, 99,

123, 129, 131, 132, 137, 139, 152,
170, 187, 196, 206

par3dinterp, 78, 80, 94, 110, 196
par3dinterpControl, 80
par3dinterpSetter (propertySetter), 109
par3dsave (tkpar3dsave), 196
particles3d (sprites), 183
pch3d, 81
persp, 83, 146, 147, 191
persp3d, 19, 82, 87, 88, 99, 123, 133, 141, 191
persp3d.deldir, 83, 85, 100
persp3d.formula, 83
persp3d.formula (plot3d.formula), 99
persp3d.function, 83, 86
persp3d.tri (persp3d.triSht), 89
persp3d.triSht, 89
pipe, 26
pipe (import), 59
planes3d, 7, 91, 99, 101, 204
play3d, 79, 92, 182, 183, 196
playwidget, 9, 40, 59, 80, 95, 96, 108–110,

148, 149, 155, 174, 200, 203, 207
playwidgetOutput (shiny), 174
plot.default, 99
plot3d, 5, 19, 24, 73, 81–83, 97, 99, 102, 141,

152
plot3d.default, 100
plot3d.deldir, 99
plot3d.deldir (persp3d.deldir), 85
plot3d.formula, 99
plot3d.function, 99
plot3d.function (persp3d.function), 86
plot3d.lm, 101
plot3d.rglobject (scene3d), 151
plot3d.rglscene (scene3d), 151
plot3d.tri (persp3d.triSht), 89

plot3d.triSht (persp3d.triSht), 89
plotmath, 103
plotmath3d, 103, 193, 194
plotrix, 194
png, 31, 178
points, 81, 82
points3d, 13, 82, 104, 111
poly, 102
polygon3d, 15, 53, 106, 202
pop3d, 61, 105, 117
pop3d (scene), 150
pretty, 28, 58, 117
print, 161
print.rglId (rglIds), 141
print.rglobject (scene3d), 151
print.rglscene (scene3d), 151
projectDown (facing3d), 53
propertyControl, 40, 80, 95, 97, 107
propertySetter, 109
propertySlider, 11, 207
propertySlider (propertySetter), 109

qmesh3d, 17, 50
qmesh3d (mesh3d), 67
quads3d, 111
quads3d (points3d), 104
quartz, 160
quote, 193

r3d, 6, 110, 125, 186, 193, 194
r3dDefaults, 73, 77, 123, 137, 151
r3dDefaults (open3d), 72
rainbow, 88
readOBJ (writeOBJ), 209
readSTL, 112
registerSceneChange (sceneChange), 154
renderPlaywidget (shiny), 174
renderRglwidget (shiny), 174
RGL (rgl-package), 5
rgl, 111, 151
rgl (rgl-package), 5
rgl-package, 5
rgl.antialias (rgl.open), 124
rgl.attrib, 10, 114, 116, 153, 157
rgl.attrib.count (rgl.attrib.info), 115
rgl.attrib.info, 115, 115
rgl.bbox, 116, 117, 123, 125
rgl.bg, 123, 125
rgl.bg (bg3d), 29

INDEX 219

rgl.bringtotop, 93, 118, 179, 180
rgl.clear, 61, 125
rgl.close (rgl.open), 124
rgl.cur (rgl.open), 124
rgl.dev.list (rgl.open), 124
rgl.getAxisCallback

(rgl.setAxisCallback), 129
rgl.getMouseCallbacks

(rgl.setMouseCallbacks), 130
rgl.getWheelCallback

(rgl.setMouseCallbacks), 130
rgl.init, 119, 125
rgl.light, 123, 125
rgl.light (light), 60
rgl.lines, 125
rgl.linestrips, 105
rgl.material, 91, 105, 117, 120, 133, 136,

190, 191
rgl.open, 5, 111, 124, 138
rgl.pixels, 125
rgl.planes, 7
rgl.points, 105, 125
rgl.pop, 125
rgl.postscript, 126, 135
rgl.primitive, 69, 104, 123, 170
rgl.printRglwidget (rglwidget), 147
rgl.projection, 155
rgl.projection (rgl.user2window), 139
rgl.quads, 125
rgl.quit (rgl.open), 124
rgl.select, 128
rgl.select3d, 128
rgl.select3d (select3d), 155
rgl.set (rgl.open), 124
rgl.setAxisCallback, 129, 159
rgl.setMouseCallbacks, 75, 130, 164
rgl.setWheelCallback, 76, 164
rgl.setWheelCallback

(rgl.setMouseCallbacks), 130
rgl.snapshot, 94, 125, 126
rgl.snapshot (snapshot3d), 179
rgl.spheres, 125
rgl.sprites, 125
rgl.surface, 125, 132, 191
rgl.Sweave, 134
rgl.texts, 75, 125, 136, 194
rgl.triangles, 125
rgl.useNULL, 6, 73, 120, 125, 138

rgl.user2window, 139
rgl.viewpoint, 78, 125, 180
rgl.viewpoint (viewpoint), 205
rgl.window2user (rgl.user2window), 139
RGL_DEBUGGING (makeDependency), 62
RGL_SLOW_DEV (setGraphicsDelay), 160
rglExtrafonts, 137, 140, 194
rglFonts, 141
rglFonts (rgl.texts), 136
rglHighlevel (rglIds), 141
rglId (rglIds), 141
rglIds, 141
rglLowlevel (rglIds), 141
rglMouse, 143
rglobject-class (scene3d), 151
rglscene-class (scene3d), 151
rglShared, 108, 144, 148, 149
rglToBase (rglToLattice), 146
rglToLattice, 146
rglwidget, 49, 55, 59, 62, 73, 96, 110, 113,

119, 125, 129, 132, 141–144, 147,
153, 158, 159, 162, 163, 167,
174–176, 179, 200, 209, 211, 213,
214

rglwidgetOutput, 149
rglwidgetOutput (shiny), 174
rotate3d, 53, 111, 173
rotate3d (matrices), 63
rotationMatrix (matrices), 63
RweaveLatex, 135

saveWidget, 148
scale3d, 173
scale3d (matrices), 63
scaleMatrix (matrices), 63
scene, 150
scene3d, 21, 51, 113, 147, 148, 151, 154, 166,

179, 209, 211, 213, 214
sceneChange, 154
segments3d, 7, 15, 41, 48, 111
segments3d (points3d), 104
select3d, 59, 75, 111, 139, 155, 157, 158
selectionFunction3d, 149
selectionFunction3d (select3d), 155
selectpoints3d, 156, 157
set3d, 5
set3d (open3d), 72
setAxisCallbacks, 129, 158, 164
setGraphicsDelay, 160

220 INDEX

setupKnitr, 142, 161
setUserCallbacks, 132, 159, 163
setUserShaders, 166
shade3d, 15, 39, 41, 68, 69, 106, 111, 169, 173
shadow3d, 48, 54, 171
shape3d (mesh3d), 67
shapelist3d, 69, 170, 172
shiny, 174
shiny::session$sendCustomMessage, 154
shinyGetPar3d, 175
shinyResetBrush (shinyGetPar3d), 175
shinySetPar3d (shinyGetPar3d), 175
show2d, 177
sliderInput, 40, 95, 203
snapshot3d, 93, 127, 179
spheres3d, 111, 181
spin3d, 94, 182, 199
sprintf, 94
sprites, 183
sprites3d, 81, 111
sprites3d (sprites), 183
subdivision3d, 50, 111, 185
subscene3d, 92, 186
subsceneInfo, 152, 188, 189
subsceneList (mfrow3d), 69
subsetControl, 97
subsetControl (propertyControl), 107
subsetSetter, 108
subsetSetter (webGLcontrols), 206
subsetSlider (webGLcontrols), 206
surface3d, 83, 101, 133, 190
Sweave, 134
Sweave.snapshot (rgl.Sweave), 134
Sys.sleep, 93, 135

tagged3d, 191
tagList, 96, 143
tags, 96
terrain3d, 111, 133
terrain3d (surface3d), 190
test_that, 52
tetrahedron3d (cube3d), 43
text, 103
text3d, 28, 59, 81, 82, 103, 104, 111, 136,

141, 184, 185, 193, 195
texts3d (text3d), 193
thigmophobe, 194
thigmophobe3d, 194
title, 28

title3d (axes3d), 26
tkframe, 199
tkpar3dsave, 79, 196, 197
tkrgl, 197
tkspin3d, 197, 197
tkspinControl, 197, 198, 198
tktoplevel, 196, 198
tmesh3d, 17, 18, 22, 53, 86, 90, 202, 210
tmesh3d (mesh3d), 67
toggleButton, 200
toggleButton (webGLcontrols), 206
toggleWidget, 97, 148, 200, 207
transform3d, 111
transform3d (matrices), 63
translate3d, 173
translate3d (matrices), 63
translationMatrix (matrices), 63
tri.mesh, 89
triangles3d, 23, 92, 111, 113
triangles3d (points3d), 104
triangulate, 53, 106, 107, 201
turn3d, 53, 202

useSubscene3d, 5
useSubscene3d (subscene3d), 186

vertexControl, 96, 97, 203
vertexSetter, 11
vertexSetter (propertySetter), 109
view3d, 127
view3d (viewpoint), 205
viewpoint, 205

webGLcontrols, 206
wire3d, 111, 173
wire3d (shade3d), 169
wireframe, 146, 147
writeASY, 113, 207, 211, 213, 214
writeOBJ, 113, 152, 153, 209, 209, 213, 214
writePLY, 113, 152, 153, 209, 211, 212, 214
writeSTL, 113, 152, 153, 209, 211, 213, 214
writeSTL (readSTL), 112
writeWebGL, 49, 152, 213

xy.coords, 202
xyz.coords, 7, 15, 16, 45, 48, 59, 61, 68, 81,

91, 98, 100, 103, 104, 106, 136, 139,
156, 173, 181, 184, 193, 194, 201

	rgl-package
	.check3d
	abclines3d
	addNormals
	ageControl
	ageSetter
	all.equal.mesh3d
	arc3d
	arrow3d
	as.mesh3d
	as.mesh3d.ashape3d
	as.mesh3d.rglId
	as.rglscene
	as.tmesh3d
	as.triangles3d
	aspect3d
	asRow
	axes3d
	bg3d
	bgplot3d
	Buffer
	checkDeldir
	clipMesh3d
	clipplaneControl
	contourLines3d
	cube3d
	cylinder3d
	decorate3d
	drape3d
	elementId2Prefix
	ellipse3d
	expect_known_scene
	extrude3d
	facing3d
	figWidth
	getBoundary3d
	GramSchmidt
	grid3d
	identify3d
	import
	in_pkgdown_example
	light
	makeDependency
	matrices
	merge.mesh3d
	mergeVertices
	mesh3d
	mfrow3d
	observer3d
	open3d
	par3d
	par3dinterp
	par3dinterpControl
	pch3d
	persp3d
	persp3d.deldir
	persp3d.function
	persp3d.triSht
	planes3d
	play3d
	playwidget
	plot3d
	plot3d.formula
	plot3d.lm
	plotmath3d
	points3d
	polygon3d
	propertyControl
	propertySetter
	r3d
	readSTL
	rgl.attrib
	rgl.attrib.info
	rgl.bbox
	rgl.bringtotop
	rgl.init
	rgl.material
	rgl.open
	rgl.pixels
	rgl.postscript
	rgl.select
	rgl.setAxisCallback
	rgl.setMouseCallbacks
	rgl.surface
	rgl.Sweave
	rgl.texts
	rgl.useNULL
	rgl.user2window
	rglExtrafonts
	rglIds
	rglMouse
	rglShared
	rglToLattice
	rglwidget
	scene
	scene3d
	sceneChange
	select3d
	selectpoints3d
	setAxisCallbacks
	setGraphicsDelay
	setupKnitr
	setUserCallbacks
	setUserShaders
	shade3d
	shadow3d
	shapelist3d
	shiny
	shinyGetPar3d
	show2d
	snapshot3d
	spheres3d
	spin3d
	sprites
	subdivision3d
	subscene3d
	subsceneInfo
	surface3d
	tagged3d
	text3d
	thigmophobe3d
	tkpar3dsave
	tkrgl
	tkspin3d
	tkspinControl
	toggleWidget
	triangulate
	turn3d
	vertexControl
	viewpoint
	webGLcontrols
	writeASY
	writeOBJ
	writePLY
	writeWebGL
	Index

