Package ‘rhino’

April 19, 2022
Title A Framework for Enterprise Shiny Applications
Version 1.0.0
Description A framework that supports creating and extending enterprise Shiny applications us-
ing best practices.
URL https://appsilon.github.io/rhino/,
https://github.com/Appsilon/rhino

BugReports https://github.com/Appsilon/rhino/issues
License LGPL-3

Encoding UTF-8

RoxygenNote 7.1.2

Depends R (>=2.10)

Imports box, cli, config, fs, glue, lintr (>= 2.0.0), logger, purrr,
renv, rstudioapi, sass, shiny, styler, testthat (>= 3.0.0),
utils, withr, yaml

Suggests knitr, rmarkdown
LazyData true
Config/testthat/edition 3
Config/testthat/parallel true
NeedsCompilation no

Author Kamil Zyla [aut, cre],
Jakub Nowicki [aut],
Tymoteusz Makowski [aut],
Marek Rogala [aut],
Appsilon Sp. z 0.0. [cph]

Maintainer Kamil Zyla <kamil@appsilon.com>
Repository CRAN
Date/Publication 2022-04-19 16:10:02 UTC

https://appsilon.github.io/rhino/
https://github.com/Appsilon/rhino
https://github.com/Appsilon/rhino/issues

2 app

R topics documented:

APP + o e e e e e e e e e e e e 2
build_js e 3
build_sass e 4
diagnostics e 5
format 1 L e 6
NIt . . e e e e e e e e 6
LNt s . . . e e 7
LNt T . . e s 8
HNt_SASS . . . o o e 9
1og . . o e 9
rhinos e 10
teSE_C2€ . . . o . e e e e e e e e e e e e 11
173 5 12

Index 13

app Rhino application
Description

The entrypoint for a Rhino application. Your app.R should contain nothing but a call to rhino: :app().

Usage

app()

Details

This function is a wrapper around shiny: :shinyApp(). It reads rhino.yml and performs some
configuration steps (logger, static files, box modules). You can run a Rhino application in typical
fashion using shiny: : runApp().

Rhino will load the app/main.R file as a box module (box: :use(app/main)). It should export two
functions which take a single id argument - the ui and server of your top-level Shiny module.
Value

An object representing the app (can be passed to shiny: : runApp()).

Legacy entrypoint
It is possible to specify a different way to load your application using the legacy_entrypoint
option in rhino.yml:
1. app_dir: Rhino will run the app using shiny: : shinyAppDir("app").

2. source: Rhino will source("app/main.R"). This file should define the top-level ui and
server objects to be passed to shinyApp().

build_js 3

3. box_top_level: Rhino will load app/main.R as a box module (as it does by default), but the
exported ui and server objects will be considered as top-level.

The legacy_entrypoint setting is useful when migrating an existing Shiny application to Rhino.
It is recommended to transform your application step by step:

1. With app_dir you should be able to run your application right away (just put the files in the
app directory).

2. With source setting your application structure must be brought closer to Rhino, but you can
still use 1ibrary () and source() functions.

3. With box_top_level you can be confident that the whole app is properly modularized, as box
modules can only load other box modules (library() and source() won’t work).

4. The last step is to remove the legacy_entrypoint setting completely. Compared to box_top_level
you’ll need to make your top-level ui and server into a Shiny module (functions taking a sin-
gle id argument).

Examples

Not run:
Your ‘app.R‘ should contain nothing but this single call:
rhino: :app()

End(Not run)

build_js Build JavaScript

Description

Builds the app/js/index. js file into app/static/js/app.min. js. The code is transformed and
bundled using Babel and webpack, so the latest JavaScript features can be used (including EC-
MAScript 2015 aka ES6 and newer standards). Requires Node.js and the yarn command to be
available on the system.

Usage

build_js(watch = FALSE)

Arguments

watch Keep the process running and rebuilding JS whenever source files change.

https://shiny.rstudio.com/articles/modules.html
https://babeljs.io
https://webpack.js.org

4 build_sass

Details

Functions/objects defined in the global scope do not automatically become window properties, so
the following JS code:

function sayHello() { alert('Hello!'); }

won’t work as expected if used in R like this:
tags$button(”"Hello!"”, onclick = 'sayHello()');
Instead you should explicitly export functions:

export function sayHello() { alert('Hello!'); }
and access them via the global App object:

tags$button(”Hello!", onclick = "App.sayHello()")

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Build the ‘app/js/index.js‘ file into ‘app/static/js/app.min.js*.
build_js()

}

build_sass Build Sass

Description

Builds the app/styles/main. scss file into app/static/css/app.min.css.

Usage

build_sass(watch = FALSE)

Arguments

watch Keep the process running and rebuilding Sass whenever source files change.
Only supported for sass: node configuration in rhino.yml.

diagnostics 5

Details
The build method can be configured using the sass option in rhino.yml:

1. node: Use Dart Sass (requires Node.js and the yarn command to be available on the system).

2. r: Use the {sass} R package.

It is recommended to use Dart Sass which is the primary, actively developed implementation of
Sass. On systems without yarn you can use the {sass} R package as a fallback. It is not advised
however, as it uses the deprecated LibSass implementation.

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Build the ‘app/styles/main.scss‘ file into ‘app/static/css/app.min.css*.
build_sass()

3

diagnostics Print diagnostics

Description

Prints information which can be useful for diagnosing issues with Rhino.

Usage

diagnostics()

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Print diagnostic information.
diagnostics()

}

https://sass-lang.com/dart-sass
https://sass-lang.com/blog/libsass-is-deprecated

6 init

format_r Format R

Description

Uses the {styler} package to automatically format R sources.

Usage

format_r(paths)

Arguments

paths Character vector of files and directories to format.

Details

The code is formatted according to the styler::tidyverse_style guide with one adjustment:
spacing around math operators is not modified to avoid conflicts with box: :use() statements.

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Format a single file.
format_r("app/main.R")

Format all files in a directory.
format_r("app/view")

}

init Create Rhino application

Description

Generates the file structure of a Rhino application. Can be used to start a fresh project or to migrate
an existing Shiny application created without Rhino.

Usage

init(dir = ".", github_actions_ci = TRUE, rhino_version = "rhino")

lint_js 7

Arguments

dir Name of the directory to create application in.

github_actions_ci
Should the GitHub Actions CI be added?

rhino_version When using an existing renv. lock file, Rhino will install itself using renv: : install(rhino_version).
You can provide this argument to use a specific version / source, e.g.”" Appsilon/rhino@ve.4.0".

Details

The recommended steps for migrating an existing Shiny application to Rhino:
1. Put all app files in the app directory, so that it can be run with shiny: : shinyAppDir("app")
(assuming all dependencies are installed).

2. If you have alist of dependencies in form of library() calls, put them in the dependencies.R
file. If this file does not exist, Rhino will generate it based on renv: : dependencies("app").

3. If your project uses {renv}, put renv.lock and renv directory in the project root. Rhino will
try to only add the necessary dependencies to your lockfile.

4. Run rhino::init() in the project root.

Value

None. This function is called for side effects.

lint_js Lint JavaScript

Description

Runs ESLint on the JavaScript sources in the app/js directory. Requires Node.js and the yarn
command to be available on the system.

Usage

lint_js(fix = FALSE)

Arguments

fix Automatically fix problems.

https://eslint.org

8 lint r

Details

If your JS code uses global objects defined by other JS libraries or R packages, you’ll need to let
the linter know or it will complain about undefined objects. For example, the {1eaflet} package
defines a global object L. To access it without raising linter errors, add /* global L */ comment in
your JS code.

You don’t need to define Shiny and $ as these global variables are defined by default.

If you find a particular ESLint error inapplicable to your code, you can disable a specific rule for
the next line of code with a comment like:

// eslint-disable-next-line no-restricted-syntax

See the ESLint documentation for full details.

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Lint the JavaScript sources in the ‘app/js‘ directory.
lint_js()

3

lint_r Lint R

Description

Uses the {1intr} package to check all R sources in the app and tests/testthat directories for
style errors.

Usage

lint_rQ)

Details

The linter rules can be adjusted in the . lintr file.

You can set the maximum number of accepted style errors with the legacy_max_lint_r_errors
option in rhino.yml. This can be useful when inheriting legacy code with multiple styling issues.

Value

None. This function is called for side effects.

https://eslint.org/docs/user-guide/configuring/rules#using-configuration-comments-1

lint_sass 9

lint_sass Lint Sass

Description

Runs Stylelint on the Sass sources in the app/styles directory. Requires Node.js and the yarn
command to be available on the system.

Usage

lint_sass(fix = FALSE)

Arguments

fix Automatically fix problems.

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Lint the Sass sources in the ‘app/styles‘ directory.
lint_sass()

3

log Logging functions

Description

Convenient way to log messages at a desired severity level.

Usage

log

Format

An object of class 1ist of length 7.

https://stylelint.io/

10 rhinos

Details

The log object is a list of logging functions, in order of decreasing severity:

. fatal
. error
warn
. success
info

. debug

. trace

Rhino configures logging based on settings read from the config.yml file in the root of your
project:

1. rhino_log_level: The minimum severity of messages to be logged.

2. rhino_log_file: The file to save logs to. If NA, standard error stream will be used.
The default config.yml file uses !expr Sys.getenv() so that log level and file can also be configured
by setting the RHINO_LOG_LEVEL and RHINO_LOG_FILE environment variables.

The functions re-exported by the 1og object are aliases for { logger} functions. You can also import
the package and use it directly to utilize its full capabilities.

Examples

Not run:
box: :use(rhino[logl)

Messages can be formatted using glue syntax.
name <- "Rhino”

log$warn("Hello {name}!")

log$info("{1:3} + {1:3} = {2 * (1:3)}")

End(Not run)

rhinos Population of rhinos

Description

A dataset containing population of 5 species of rhinos.

Usage

rhinos

test_e2e 11

Format
A data frame with 58 rows and 3 variables:
Year year

Population rhinos population

Species rhinos species

Source

https://ourworldindata.org/

test_e2e Run Cypress end-to-end tests

Description

Uses Cypress to run end-to-end tests defined in the tests/cypress directory. Requires Node.js
and the yarn command to be available on the system.

Usage

test_e2e(interactive = FALSE)

Arguments

interactive Should Cypress be run in the interactive mode?

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Run the end-to-end tests in the ‘tests/cypress" directory.
test_e2e()

3

https://ourworldindata.org/
https://www.cypress.io/

12 test r

test_r Run R unit tests

Description

Uses the {testhat} package to run all unit tests in tests/testthat directory.

Usage

test_r()

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Run all unit tests in the ‘tests/testthat‘ directory.
test_rQ)

}

Index

x datasets
log, 9
rhinos, 10

app, 2

build_js, 3
build_sass, 4

diagnostics, 5
format_r, 6
init, 6
lint_js, 7
lint_r, 8

lint_sass, 9
log, 9

rhinos, 10

test_e2e, 11
test_r, 12

13

	app
	build_js
	build_sass
	diagnostics
	format_r
	init
	lint_js
	lint_r
	lint_sass
	log
	rhinos
	test_e2e
	test_r
	Index

