
Package ‘riverplot’
January 22, 2021

Type Package

Title Sankey or Ribbon Plots

Version 0.10

Date 2021-01-22

Author January Weiner <january.weiner@gmail.com>

Maintainer January Weiner <january.weiner@gmail.com>

Description Sankey plots are a type of diagram that is convenient to
illustrate how flow of information, resources etc. separates and joins,
much like observing how rivers split and merge. For example, they can be
used to compare different clusterings.

URL https://logfc.wordpress.com

License GPL (>= 2.0)

Encoding UTF-8

Imports methods,RColorBrewer

LazyData true

Suggests knitr,maptools,qpdf,rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-01-22 14:10:02 UTC

R topics documented:
riverplot-package . 2
bglabel . 3
colorRampPaletteAlpha . 4
curveseg . 5
makeRiver . 6
minard . 9

1

https://logfc.wordpress.com

2 riverplot-package

plot.riverplot . 10
riverplot-styles . 13
riverplot.example . 15

Index 16

riverplot-package Sankey / ribbon diagrams

Description

Sankey / ribbon diagrams

Details

Sankey diagrams are a type of flow diagrams, in which the width of the arrows is proportional to
the quantity they illustrate. Riverplot allows the creation, in R, of a basic type of Sankey diagrams.

First, you need to create a specific riverplot object that can be directly plotted. (Use riverplot.example
to generate an example object).

The simplest way is to create a graph-like representation of you diagram as a list of nodes; each
item in the list is a list of partner nodes. Furthermore, you need to know at which position (from left
to right) each node resides. Please take a look at the example section in the makeRiver function.

Once you have created a riverplot object with one of the above methods (or manually), you can plot
it either with plot(x) or riverplot(x) (see riverplot for details).

Mini-gallery

Simple example from riverplot.example function: plot(riverplot.example()).

Recreation of the famous figure by Charles Minard (see minard for details).

bglabel 3

Author(s)

January Weiner <january.weiner@gmail.com>

bglabel Label with background

Description

Create a label with background

Usage

bglabel(
x,
y,
text,
bg = "#cccccc99",
margin = 0.5,
border = NA,
pos = "center",
cex = 1,
...

)

Arguments

x, y numeric vectors (coordinates)

text a character vector of labels

bg character vector; background color for the labels

margin numeric vector; margin (in percentage of a single character) for width and height
around the labels

border character vector; see rect for details

pos character vector; position where labels should be placed, relative to the coordi-
nates. Can be one of "topleft", "top", "topright", "left", "center", "right", "bot-
tomleft", "bottom" and "bottomright".

cex numeric vector; cex to be used for drawing the text

... any further parameters are passed to the text function

Details

Creates a label with a background, a little extra margin (if necessary) etc.

4 colorRampPaletteAlpha

colorRampPaletteAlpha Color interpolation

Description

These functions are replacements for colorRamp and colorRampPalette from the package grDe-
vices, the only difference being that they also interpolate the alpha channel (i.e. transparency).

Usage

colorRampPaletteAlpha(colors, ...)

colorRampAlpha(colors, bias = 1, interpolate = c("linear", "spline"))

Arguments

colors colors to interpolate; must be a valid argument to col2rgb().

... arguments to pass to colorRamp.

bias a positive number. Higher values give more widely spaced colors at the high
end.

interpolate use spline or linear interpolation

Details

These functions are replacements for colorRamp and colorRampPalette from the package grDe-
vices. There are two differences: (i) these functions also interpolate the alpha channel (i.e. trans-
parency) and (ii) there is no space parameter (only rgb space is allowed). For all the other details,
see descriptions of the original package.

Value

Both functions return a function which takes an integer argument. For details, see description of
colorRampPalette

Examples

colorRampPaletteAlpha(c("#FF000033", "#00FF0099"))(5)

curveseg 5

curveseg Draw a curved segment

Description

Draws a curved segment from point (x0,y0) to (x1,y1). The segment is a framgent of a sinusoid,
has a defined width and can either have a single color or a color gradient.

Usage

curveseg(
x0,
x1,
y0,
y1,
width = 1,
nsteps = 50,
col = "#ffcc0066",
grad = NULL,
lty = 1,
form = c("sin", "line"),
fix.pdf = 0

)

Arguments

x0 X coordinate of the starting point

x1 X coordinate of the end point

y0 X coordinate of the starting point

y1 X coordinate of the end point

width Width of the segment to plot

nsteps Number of polygons to use for the segments. The more, the smoother the pic-
ture, but at the same time, the more time-consuming to display.

col Color to use. Ignored if grad is not NULL.

grad Gradient to use. Can be anything that colorRampPalette can understand.

lty Line type for drawing of the segment. Use lty=0 for no line.

form "sin" for a sinusoidal segment. "line" for a straight segment.

fix.pdf Draw a border around segments with line type lty in a desperate attempt to fix
the PDF output.

Value

no value is returned

6 makeRiver

Examples

a DNA strand
plot.new()
par(usr= c(0, 4, -2.5, 2.5))

w <- 0.4
cols <- c("blue", "green")
init <- c(-0.8, -0.5)
pos <- c(1, -1)
step <- 0.5

for(i in rep(rep(c(1, 2), each= 2), 5)) {
curveseg(init[i], init[i] + step, pos[1], pos[2], width= w, col= cols[i])
init[i] <- init[i] + step
pos <- pos * -1

}

makeRiver Create a new riverplot object

Description

Create a new riverplot object

Usage

makeRiver(
nodes,
edges,
node_labels = NULL,
node_xpos = NULL,
node_ypos = NULL,
styles = NULL,
node_styles = NULL,
edge_styles = NULL,
default_style = NULL

)

Arguments

nodes Data frame with node ID’s, positions and optionally other information

edges A named list or a data frame specifying the edges between the nodes.

node_labels A named character vector of labels for the nodes

node_xpos A named vector of numeric values specifying the horizontal positions on the
plot.

node_ypos A named vector of numeric values specifying the vertical positions on the plot.

makeRiver 7

styles A named list specifying the styles for the nodes and edges

node_styles Deprecated

edge_styles Deprecated

default_style list containing style information which is applied to every node and every edge

Details

Functions to create a new object of the riverplot class from the provided data.

makeRiver creates a plot from an object which specifies the graph directly, i.e. all nodes, their
horizontal positions on the plot, provided styles etc. See sections below for detailed explanations.

Value

A riverplot object which can directly be plotted.

Structure of the riverplot objects

A riverplot object is a list with the following entries:

nodes A data frame specifying the nodes, containing at least the columns "ID" and "x" (horizontal
position of the node). Optionally, it can also contain columns "labels" (the labels to display)
and "y" (vertical position of the node on the plot)

edges A data frame specifying the edges and graph topology, containing at least the columns "ID",
"N1", "N2" and "Value", specifying, respectively, the ID of the edge, the parent node, the child
node, and the size of the edge.

styles A named list of styles. Names of this list are the node or edge IDs. Values are styles
specifying the style of the given node or edge (see below).

Whether or not the list used to plot is exactly of class riverplot-class does not matter as long as
it has the correct contents. The makeRiver function is here are for the convenience of checking that
this is the case and converting information in different formats.

Generating riverplot objects

To generate and fool-proof riverplot objects, you can use the makeRiver function. This functions
allows a number of ways of specifying the node and edge information.

Nodes can be specified as a character vector (simply listing the nodes) or as a data frame.

• character vector: in this case, you also need to provide the node_xpos argument to specify the
horizontal positions of the nodes.

• data frame: the data frame must have at least a column called "ID"; the horizontal position can
be specified either with node_xpos argument or by column "x" in the data frame. Optionally,
the data frame can include columns "labels" and "y" (vertical positions of the node). Any NA
values are ignored (not entered into the riverplot project). Additionaly, the data frame may
contain style information.

Edges / graph topology can be specified in one of two objects: either a named list, or a data frame:

8 makeRiver

• you can supply a named list with edges of the graph. The name of each element is the name of
the outgoing (parental) node. Each element is a named list; the names of the list are the names
of the incoming (child) node IDs; the values are the width of the edge between the outgoing
and incoming nodes.

• Alternatively, you can provide the edges as a data frame. Each row corresponds to an edge,
and the data frame must have the following columns:

N1 The ID of the first node
N2 The ID of the second node
Value The width of the edge between N1 and N2

If an ID column is absent, it will be generated from N1 and N2 by joining the N1 and N2
ID’s with the "->" string. Additionaly, the data frame may contain style information. Any NA
values are ignored (not entered into the riverplot object).

Riverplot styles

Styles are lists containing attributes (such as "col" for color or "nodestyle") and values. There is
no real difference between node and edge styles, except that some attributes only apply to nodes or
edges. See riverplot-styles for more information on style attributes.

When makeRiver generates the riverplot object, it combines style information from the following
sources in the following order:

• parameter default_style is a style applied to all nodes and edges

• if the parameter nodes and/or edges is a data frame, it may include columns with names
corresponding to style attributes. For example, a column called "col" will contain the color
attribute for any nodes / edges. NA values in these columns are ignored.

• styles is a lists of styles, with names corresponding to node IDs or edge IDs, which will replace
any previously specified styles.

Author(s)

January Weiner

Examples

nodes <- c(LETTERS[1:3])
edges <- list(A= list(C= 10), B= list(C= 10))
r <- makeRiver(nodes, edges, node_xpos= c(1,1,2),

node_labels= c(A= "Node A", B= "Node B", C= "Node C"),
node_styles= list(A= list(col= "yellow")))

plot(r)

equivalent form:
nodes <- data.frame(ID= LETTERS[1:3],

x= c(1, 1, 2),
col= c("yellow", NA, NA),
labels= c("Node A", "Node B", "Node C"),
stringsAsFactors= FALSE)

r <- makeRiver(nodes, edges)

minard 9

plot(r)
all nodes but "A" will be red:
r <- makeRiver(nodes, edges, default_style= list(col="red"))
plot(r)
overwrite the node information from "nodes":
r <- makeRiver(nodes, edges, node_styles= list(A=list(col="red")))
plot(r)

minard Minard Napoleon Russian campaign data

Description

The data set used by Charles Joseph Minard to generate the famous graph. The example below
shows how to recreate the main panel of the graph using riverplot from the provided data.

Usage

minard

Format

Named list with two data frames:

nodes data frame with geographic locations of the Napoleon army (longitude and latitude) and the
direction of the march

edges connections between positions

Details

First, node and edge data frames must get new column names (see makeRiver function for details).
Then, based on the direction of the Napoleon army, style information (right and left edge color style
for each node) is entered in the nodes variable. Then, a riverplot object is generated from the nodes
and edges data frames.

To use the same color coding as Minard, the direction variable is converted to color codes in the col
column of the edges object.

Finally, a plot is created using lty=1 and a style in which nodes are not shown, and the edges are
straight (like in the original Minard plot) rather than curved.

Author(s)

January Weiner

Source

Charles Joseph Minard

10 plot.riverplot

Examples

example how to convert data into a riverplot object
data(minard)
nodes <- minard$nodes
edges <- minard$edges
colnames(nodes) <- c("ID", "x", "y")
colnames(edges) <- c("N1", "N2", "Value", "direction")

color the edges by troop movement direction
edges$col <- c("#e5cbaa", "black")[factor(edges$direction)]

color edges by their color rather than by gradient between the nodes
The "edgecol" column is interpreted as a style keyword with value "col"
edges$edgecol <- "col"

generate the riverplot object and a style
river <- makeRiver(nodes, edges)
style <- list(edgestyle= "straight", nodestyle= "invisible")

plot the generated object. Given that we want to plot the cities as well
(external data), the user coordinates for the plot and for the external
data should be the same. This is achieved by the adjust.usr option.
Alternatively, one can call plot.new, set usr manually and call riverplot
with the options rescale=FALSE and add=TRUE.
plot_area parameter is for creating suitable margins within the plot area
par(bg="grey98", mar=rep(3,4))
plot(river, lty=1, default_style=style, plot_area=c(0.9, 0.7), adjust.usr=TRUE)
u <- par("usr")
rect(u[1], u[3], u[2], u[4])

add latitude and longitude
abline(h=54:56, col="grey")
bglabel(u[1], 54:56, sprintf("%d°N", 54:56), pos="topright", bg=NA, col="grey", font=3)
lbl <- seq(20, 40, by=5)
abline(v=lbl, col="grey")
bglabel(lbl, u[3], sprintf("%d°E", lbl), pos="topright", bg=NA, col="grey", font=3)

Add cities. Use "bglabel()" to have a background frame and better
positioning.
with(minard$cities, points(Longitude, Latitude, pch=19))
with(minard$cities, bglabel(Longitude, Latitude, Name, pos="topright"))

plot.riverplot Create a Sankey plot

Description

Create a Sankey plot

plot.riverplot 11

Usage

S3 method for class 'riverplot'
plot(x, ...)

riverplot(
x,
direction = "lr",
lty = 0,
default_style = NULL,
gravity = "top",
node_margin = 0.1,
nodewidth = 1.5,
plot_area = c(1, 0.5),
nsteps = 50,
disentangle = TRUE,
add_mid_points = TRUE,
yscale = "auto",
add = FALSE,
usr = NULL,
adjust.usr = FALSE,
rescale = TRUE,
fix.pdf = FALSE,
bty = "n",
...

)

Arguments

x An object of class riverplot

... any further parameters passed to riverplot() are appended to the default style

direction "lr" (left to right) or "rl" (right to left)

lty Line style to use

default_style default graphical style

gravity how the nodes are placed vertically. No effect if node vertical positions are
specified via node_ypos member

node_margin how much vertical space should be kept between the nodes

nodewidth width of the node (relative to font size)

plot_area fraction of vertical and horizontal space to be used as main plot area If it is
a numeric vector of two numbers, the first one is horizontal space, the second
vertical.

nsteps number of interpolating steps in drawing the segments

disentangle try to disentangle connections between the nodes. If FALSE, the vertical order-
ing of the connections is the same as in the x$edges data frame.

add_mid_points attempt to get a smoother plot by adding additional nodes. Set this parameter to
FALSE if you are setting node vertical position manually. If add_mid_points is

12 plot.riverplot

equal to TRUE (the default), then the mid points are added only if node_ypos is
empty.

yscale scale the edge width values by multiplying with this factor. If yscale is equal
to "auto", scaling is done automatically such that the vertical size of the largest
node is approximately 15 If no node_ypos is specified in the riverplot object, no
scaling is done. If yscale is equal to 1, no scaling is done. This parameter only
influences the plot if the y positions of the nodes are provided in x$nodes.

add If TRUE, do not call plot.new(), but add to the existing plot.

usr coordinates at which to draw the plot in form (x0, x1, y0, y1). If NULL,
par("usr") will be used instead.

adjust.usr If TRUE, the par("usr") will be modified to suit the x and y coordinates of the
riverplot nodes (whether the coordinates were given in the nodes, or calculated
by the function). In combination with providing x and y coordinates, this allows
a true representation of a riverplot object. Necessary if you plan to plot addi-
tional, external data. If TRUE, then rescale is set to FALSE. See minard data
set and example for details.

rescale if TRUE, then the plot will be fit into the given user coordinates range (set by
the usr parameter, for example, or the whole plot region). If FALSE, the x and
y positions of the nodes will be treated as user coordinates and used to directly
plot on the device.

fix.pdf Try to fix PDF output if it looks broken (with thin white lines). Don’t use this
option if you are using transparent colors.

bty box type to draw around the plot; see bty in documentation for par for details.

Details

This functions create a Sankey plot given a riverplot object (plot is just a wrapper for the riverplot
function. The object to be drawn is a list specifying the plot; see the makeRiver function for ex-
act specifications and the riverplot.example to see how it can be created. Whether or not the
list used to plot is exactly of class riverplot-class does not matter as long as it has the correct
contents.

Style information which is missing from the riverplot object x (for example, if the node style is not
specified for each node in the object) is taken from the default.style parameter. See functions
default.style() and updateRiverplotStyle() to learn how to create and modify the styles.

Whether or not the list used to plot is exactly of class riverplot-class does not matter as long as
it has the correct contents. These functions here are for the convenience of checking that

The nodes are drawn from bottom to top in the order they are found in the riverplot object. There is
no clever algorithm for placing the nodes minimizing the number of crossing edges yet; you need
to manipulate the object directly to achieve the desired effect.

Value

riverplot returns a riverplot object, a graph which you can plot again with riverplot(), but which
additionally contains information on node position and size in the $nodes member.

riverplot-styles 13

Known problems

There is a problem with transparency and PDFs. In short, if you try to save your riverplot graphics
as PDF, you will observe thin, white vertical lines everywhere on the curves. The reasons for that
are unclear, but have something to do with PDF rendering (if you generate EPS, the output looks
good).

There is a kind of fix to that: use the fix.pdf=TRUE option. Unfortunately, this solution does not
work if you use transparent colors (you will have a different kind of vertical lines). Unfortunately,
I don’t have a solution for that problem yet.

See Also

default.style updateRiverplotStyle minard

Examples

x <- riverplot.example()
plot(x)
plot(x, srt=90, lty=1)

add graphics at nodes
foo <- plot(x, srt=90, lty=1)
points(foo$nodes$x, foo$nodes$y, pch=19, cex=2)

redraw the same graph using positions from foo object
plot(foo, yscale=1)

riverplot-styles Riverplot styles

Description

Riverplot styles

Usage

default.style()

updateRiverplotStyle(style, master)

Arguments

style style to update

master master style to use for updating

14 riverplot-styles

Details

Riverplot styles are just lists with key-value pairs that define how nodes and edges are drawn.
Although there are attributes that are only applicable to either nodes or edges, there are no separate
style lists for these objects.

The default.style function simply returns the default style defined in the riverplot package (in-
cluding edge and node attributes).

The updateRiverplotStyle function updates all missing fields in the style object with the styles
from the master style.

When a node is drawn, the styles are determined by precedence. Command line arguments to
riverplot() function override any defined styles. For all other parameters styles associated with
nodes are used, and if absent, inserted from the default.style argument to the riverplot() func-
tion. If this argument is missing, style is taken from the argument returned by the default.style
function.

Not recognized fields and values will be silently ignored.

Following style fields and values are defined:

nodestyle (default: regular). Values:

regular rectangular box with a label
point a color dot
invisible No node is drawn. This is used to seamlessly integrate edges.

edgestyle (default: sin). Describes how the edge looks like.

sin A sinusoidal edge
straight A straight edge

edgecol (default: "gradient"). How edge color is generated. Values:

gradient A color gradient generated based on parent and child node that form the edge
col The color specified in the "col" attribute of the edge

horizontal (default: FALSE). If set to TRUE, the edge will be drawn horizontally by repositioning
the node on the right hand side. This may mess up the figure, so beware.

col (default: "grey"). Color of the node or edge (for edges, it is used only if the "edgecol" attribute
is "col".

srt (default: "90"). Rotation of the label (see par)

lty (default: 1). Line type to draw around node and edges

textcol (default: "black"). Color of the node label.

textpos (default: NULL). Label position, passed on to "pos" argument of the text() function.

textcex (default: 1). Label cex, passed on to "cex" argument of the text() function.

Value

Both functions return an object of the riverplotStyle class (which is, in fact, just a list with key-value
pairs that you can access, inspect and manipulate manually at will).

Author(s)

January Weiner

riverplot.example 15

Examples

To view the default style specification, type
default.style()

ex <- riverplot.example()
ds <- default.style()
plot(ex, default_style= ds)

nodes with unspecified style will now be semi-transparent red:
ds[["col"]] <- "#FF000099"
plot(ex, default_style= ds)

riverplot.example Generate examples for riverplot

Description

Generate an example for riverplot

Usage

riverplot.example(no = 1)

Arguments

no which example to generate

Details

The plotting functions in the riverplot package work on an object of the riverplot class. This function
returns an object of the riverplot class to demonstrate how such an object (which is actually a simple
list) can be created.

Author(s)

January Weiner <january.weiner@gmail.com>

Examples

x <- riverplot.example()
plot(x)
x <- riverplot.example(no=2)
riverplot(x, lty=1, plot_area=1, disentangle=TRUE,

gravity="c", default_style=list(nodestyle="invisible"))

Index

∗ datasets
minard, 9

bglabel, 3

col2rgb, 4
colorRamp, 4
colorRampAlpha (colorRampPaletteAlpha),

4
colorRampPalette, 4
colorRampPaletteAlpha, 4
curveseg, 5

default.style, 12
default.style (riverplot-styles), 13

makeRiver, 2, 6, 9, 12
minard, 2, 9, 12

par, 12, 14
plot.riverplot, 10

rect, 3
riverplot, 2, 14
riverplot (plot.riverplot), 10
riverplot-package, 2
riverplot-styles, 13
riverplot.example, 2, 12, 15
riverplotStyle-class

(riverplot-styles), 13

text, 3

updateRiverplotStyle, 12
updateRiverplotStyle

(riverplot-styles), 13

16

	riverplot-package
	bglabel
	colorRampPaletteAlpha
	curveseg
	makeRiver
	minard
	plot.riverplot
	riverplot-styles
	riverplot.example
	Index

