
Package ‘robfilter’
November 21, 2019

Version 4.1.2

Date 2019-11-17

Title Robust Time Series Filters

Author Roland Fried [aut, cre],
Karen Schettlinger [aut],
Matthias Borowski [aut],
Robin Nunkesser [ctb],
Thorsten Bernholt [ctb]

Maintainer Roland Fried <fried@statistik.tu-dortmund.de>

Imports stats, graphics, utils

Depends R (>= 3.6.0), robustbase, MASS, lattice

Description Implementations for several robust procedures that allow for (online)
extraction of the signal of univariate or multivariate time series by
applying robust regression techniques to a moving time window are provided.
Included are univariate filtering procedures based on repeated-median
regression as well as hybrid and trimmed filters derived from it;
see Schettlinger et al. (2006) <doi:10.1515/BMT.2006.010>. The adaptive
online repeated median by Schettlinger et al. (2010) <doi:10.1002/acs.1105>
and the slope comparing adaptive repeated median by Borowski and Fried (2013)
<doi:10.1007/s11222-013-9391-7> choose the width of the moving time
window adaptively. Multivariate versions are also provided; see
Borowski et al. (2009) <doi:10.1080/03610910802514972> for a multivariate
online adaptive repeated median and Borowski (2012) <doi:10.17877/DE290R-14393>
for a multivariate slope comparing adaptive repeated median. Furthermore,
a repeated-median based filter with automatic outlier replacement and
shift detection is provided; see Fried (2004) <doi:10.1080/10485250410001656444>.

License GPL (>= 2)

URL http://www.statistik.tu-dortmund.de/fried.html

LazyData yes

Repository CRAN

NeedsCompilation yes

SystemRequirements C++11

Date/Publication 2019-11-21 14:00:02 UTC

1

http://www.statistik.tu-dortmund.de/fried.html

2 robfilter-package

R topics documented:
robfilter-package . 2
adore.filter . 5
const . 8
const.Q . 9
critvals . 10
dfs . 10
dr.filter . 12
dw.filter . 13
hybrid.filter . 17
lms.filter . 20
lqd.filter . 22
lts.filter . 24
madore.filter . 26
med.filter . 28
mscarm.filter . 30
multi.ts . 33
rm.filter . 33
robreg.filter . 35
robust.filter . 38
scarm.filter . 41
sizecorrection . 44
timecorrection . 44
var.n . 45
wrm.filter . 46
wrm.smooth . 47

Index 50

robfilter-package Robust Time Series Filters

Description

Implementations for several robust procedures that allow for (online) extraction of the signal of
univariate or multivariate time series by applying robust regression techniques to a moving time
window are provided. Included are univariate filtering procedures based on repeated-median re-
gression as well as hybrid and trimmed filters derived from it; see Schettlinger et al. (2006)
<doi:10.1515/BMT.2006.010>. The adaptive online repeated median by Schettlinger et al. (2010)
<doi:10.1002/acs.1105> and the slope comparing adaptive repeated median by Borowski and Fried
(2013) <doi:10.1007/s11222-013-9391-7> choose the width of the moving time window adaptively.
Multivariate versions are also provided; see Borowski et al. (2009) <doi:10.1080/03610910802514972>
for a multivariate online adaptive repeated median and Borowski (2012) <doi:10.17877/DE290R-
14393> for a multivariate slope comparing adaptive repeated median. Furthermore, a repeated-
median based filter with automatic outlier replacement and shift detection is provided; see Fried
(2004) <doi:10.1080/10485250410001656444>.

robfilter-package 3

Details

The DESCRIPTION file:

Package: robfilter
Version: 4.1.2
Date: 2019-11-17
Title: Robust Time Series Filters
Authors@R: c(person("Roland", "Fried", email = "fried@statistik.tu-dortmund.de", role = c("aut", "cre")), person("Karen", "Schettlinger", email = "schettlinger@statistik.tu-dortmund.de", role = "aut"), person("Matthias", "Borowski", email = "borowski@statistik.tu-dortmund.de", role = "aut"), person("Robin", "Nunkesser", role = "ctb"), person("Thorsten", "Bernholt", role = "ctb"))
Author: Roland Fried [aut, cre], Karen Schettlinger [aut], Matthias Borowski [aut], Robin Nunkesser [ctb], Thorsten Bernholt [ctb]
Maintainer: Roland Fried <fried@statistik.tu-dortmund.de>
Imports: stats, graphics, utils
Depends: R (>= 3.6.0), robustbase, MASS, lattice
Description: Implementations for several robust procedures that allow for (online) extraction of the signal of univariate or multivariate time series by applying robust regression techniques to a moving time window are provided. Included are univariate filtering procedures based on repeated-median regression as well as hybrid and trimmed filters derived from it; see Schettlinger et al. (2006) <doi:10.1515/BMT.2006.010>. The adaptive online repeated median by Schettlinger et al. (2010) <doi:10.1002/acs.1105> and the slope comparing adaptive repeated median by Borowski and Fried (2013) <doi:10.1007/s11222-013-9391-7> choose the width of the moving time window adaptively. Multivariate versions are also provided; see Borowski et al. (2009) <doi:10.1080/03610910802514972> for a multivariate online adaptive repeated median and Borowski (2012) <doi:10.17877/DE290R-14393> for a multivariate slope comparing adaptive repeated median. Furthermore, a repeated-median based filter with automatic outlier replacement and shift detection is provided; see Fried (2004) <doi:10.1080/10485250410001656444>.
License: GPL (>= 2)
URL: http://www.statistik.tu-dortmund.de/fried.html
LazyData: yes
Repository: CRAN
NeedsCompilation: yes
SystemRequirements: C++11
Packaged: 2018-05-16 19:00:08 UTC; abbas

Index of help topics:

adore.filter A Robust Adaptive Online Repeated Median Filter
for Univariate Time Series

const Correction factors to achieve unbiasedness of
the Qn scale estimator

const.Q Correction factors to achieve unbiasedness of
the regression-free Q scale estimator

critvals Critical Values for the RM Goodness of Fit Test
dfs Degrees of freedom for the SCARM test

statistic.
dr.filter Deepest Regression (DR) filter
dw.filter Robust Double Window Filtering Methods for

Univariate Time Series
hybrid.filter Robust Hybrid Filtering Methods for Univariate

Time Series
lms.filter Least Median of Squares (LMS) filter
lqd.filter Least Quartile Difference filter
lts.filter Least Trimmed Squares (LTS) filter
madore.filter A multivariate adaptive online repeated median

filter
med.filter Median (MED) filter
mscarm.filter MSCARM (Multivariate Slope Comparing Adaptive

Repeated Median)
multi.ts Generated Multivariate Time Series
rm.filter Repeated Median (RM) filter

4 robfilter-package

robfilter-package Robust Time Series Filters
robreg.filter Robust Regression Filters for Univariate Time

Series
robust.filter Robust Filtering Methods for Univariate Time

Series
scarm.filter SCARM (Slope Comparing Adaptive Repeated

Median)
sizecorrection Bias correction factors for the robust scale

estimators MAD, Sn, Qn, and LSH
timecorrection Correction factors for the scale estimation of

the filtering procedure proposed by Fried
(2004).

var.n Variance of the Repeated Median slope
estimator.

wrm.filter Weighted Repeated Median Filters for Univariate
Time Series

wrm.smooth Weighted Repeated Median Smoothing

adore.filter A Robust Adaptive Online Repeated Median Filter
for Univariate Time Series

const.Q Correction factors to achieve unbiasedness of
the regression-free Q scale estimator

const Correction factors to achieve unbiasedness of
the Qn scale estimator

critvals Critical Values for the RM Goodness of Fit Test
dfs Degrees of freedom for the SCARM test statistic
dr.filter Deepest Regression (DR) filter
dw.filter Robust Double Window Filtering Methods for

Univariate Time Series
hybrid.filter Robust Hybrid Filtering Methods for Univariate

Time Series
lms.filter Least Median of Squares (LMS) filter
lqd.filter Least Quartile Difference (LQD) filter
lts.filter Least Trimmed Squares (LTS) filter
madore.filter A Robust Adaptive Online Filter for

Multivariate Time Series
med.filter Median (MED) filter
multi.ts Generated Multivariate Time Series
rm.filter Repeated Median (RM) filter
robreg.filter Robust Regression Filters for Univariate Time

Series
robust.filter Robust Filtering Methods for Univariate Time

Series
scarm.filter SCARM (Slope Comparing Adaptive Repeated Median)
var.n Variance of the Repeated Median slope estimator
wrm.filter Weighted Repeated Median Filters for Univariate

Time Series
wrm.smooth Weighted Repeated Median Smoothing

adore.filter 5

Author(s)

Roland Fried [aut, cre], Karen Schettlinger [aut], Matthias Borowski [aut], Robin Nunkesser [ctb],
Thorsten Bernholt [ctb]

Maintainer: Roland Fried <fried@statistik.tu-dortmund.de>

adore.filter A Robust Adaptive Online Repeated Median Filter for Univariate Time
Series

Description

Procedure for robust online extraction of low frequency components (the signal) from a univariate
time series by a moving window technique with adaptive window width selection (ADaptive Online
REpeated median FILTER).

Usage

adore.filter(y,
p.test=15, minNonNAs=5,
min.width=10, max.width=200,
width.search="geometric",
rtr=2, extrapolate=FALSE,
calc.qn=FALSE, sign.level=0.1)

Arguments

y a numeric vector or (univariate) time series object.
p.test defines the number of most recent Repeated Median residuals within each win-

dow used to test the goodness of fit of the online signal level.
It can be either a value in (0.25, 0.3, 0.5), meaning that floor(p.test*width)
residuals are considered for the goodness of fit test, where width is the currently
used window width, or it can also be a positive integer >= 5 specifying a fixed
number of most recent residuals (default).
If the number of residuals considered for the test exceeds width/2, the proce-
dure sets it to floor(width/2), if it is smaller than five, the number is set to
five.

minNonNAs a positive integer >= 5 defining the minimum number of non-missing observa-
tions within one window which is required for a ‘sensible’ estimation.

min.width a positive integer >= 5 specifying the minimal window width.
max.width a positive integer >= min.width specifying the maximal window width.
width.search a character string defining the search algorithm used for finding an adequate

window width at each point in time.
"linear" The linear search always results in the largest window width possible

and hence yields the smoothest online signal. However, if sudden changes
(like level shifts) appear in the signal it requires a lot of computation time
and thus, an increased variability of the extracted signal may be observed.

6 adore.filter

"binary" The binary search is recommended if it can be expected that the win-
dow width needs to be reduced drastically from a large to a very small value
at certain times (for example at level shifts or trend changes). However, it
may not always result in the largest possible window width.

"geometric" (default) The geometric search is as fast as the binary search but
it puts more weight on large window widths. It offers a good compromise
between the linear and the binary search (computation time vs. smooth
output signal).

rtr a value in 0, 1, 2 specifying whether a ’restrict to range’ rule should be applied.

rtr=0 The estimated signal level consists of the last fitted value of a Repeated
Median regression fit within a time window of adequate width.

rtr=1 The level estimation is restricted to the range of the observations within
each time window.

rtr=2 (default) The level estimation is restricted to the range of the most recent
observations (specified by p.test) i.e., to the range of the observations
which are used to evaluate the goodness of fit.

extrapolate a logical indicating whether the level estimations should be extrapolated to the
beginning of the time series. The extrapolation consists of all fitted values within
the first time window.

calc.qn a logical indicating whether the Qn scale (Rousseeuw, Croux, 1993) should also
be calculated along with the signal level as an estimate of the standard deviation
in each window. Here, the Qn command from the robustbase library is applied
with the built-in finite sample correction.

sign.level significance level of the test procedure; must be a value in (0, 0.5).

Details

The adore.filter works by applying Repeated Median (RM) regression (Siegel, 1982) to a mov-
ing time window with a length varying between min.width and max.width.

For each point in time, the window width is adapted to the current data situation by a goodness of
fit test for the most recent signal level estimation. The test uses the absolute value of the sum of the
RM residuals in the subset specified by p.test. The critical value for the test decision corresponds
to a slightly modified 0.95-quantile of the distribution of the test statistic and is stored in the data
set critvals.

A more detailed description of the filter can be found in Schettlinger, Fried, Gather (2010).

Value

adore.filter returns an object of class adore.filter. An object of class adore.filter is a list
containing the following components:

level a numeric vector containing the signal level extracted by the RM filter with
adaptive window width.

slope a numeric vector containing the corresponding slope within each time window.

width a numeric vector containing the corresponding window width used for the level
and slope estimations.

adore.filter 7

level.list a list which contains with as many elements as the length of the input time series.
If at time t, the window width was not reduced, the entry level.list[[t]]
simply corresponds to level[t]. However, if more than one iteration took
place, level.list[[t]] is a vector which contains all level estimations which
were evaluated until the final estimate mu[t] passed the goodness of fit test and
was stored.

slope.list a list containing the slope estimations corresponding to the values in level.list.

width.list a list containing the window widths used for the estimations in level.list and
slope.list.

sigma a numeric vector containing the corresponding scale within each time window
estimated by the robust Qn estimator (only calculated if calc.qn = TRUE, else
sigma does not exist).

In addition, the original input time series is returned as list member y, and the settings used for
the analysis are returned as the list members min.width, max.width, width.search, p.test,
minNonNAs, rtr, extrapolate, and calc.qn.

Application of the function plot to an object of class aoRM returns a plot showing the original time
series with the filtered output.

Author(s)

Karen Schettlinger

References

Rousseeuw, P. J., Croux, C. (1993) Alternatives to the Median Absolute Deviation, Journal of the
American Statistical Association 88, 1273-1283.

Schettlinger, K., Fried, R., Gather, U. (2010) Real Time Signal Processing by Adaptive Repeated
Median Filters, International Journal of Adaptive Control and Signal Processing 24(5), 346-362.

Siegel, A.F. (1982) Robust Regression Using Repeated Medians, Biometrika 69 (1), 242-244.

See Also

robreg.filter, wrm.filter, madore.filter, scarm.filter.

Examples

#
Short and noise-free time series
series <- c(rep(0,30),rep(10,30),seq(10,5,length=20),seq(5,15,length=20))

Adaptive online signal extraction without & with 'restrict to range' rule
t.without.rtr <- adore.filter(series, rtr=0)
plot(t.without.rtr)
t.with.rtr1 <- adore.filter(series, rtr=1)
lines(t.with.rtr1$level, col="blue")

8 const

t.with.rtr2 <- adore.filter(series)
lines(t.with.rtr2$level, col="green3",lty=2)
legend("top",c("Signal with rtr=1","Signal with rtr=2"),col=c("blue","green3"),lty=c(1,2),bty="n")

#
Short and noise-free time series + 1 outlier
ol.series <- series
ol.series[63] <- 3

Adaptive online signal extraction without & with 'restrict to range' rule
t.without.rtr <- adore.filter(ol.series, rtr=0)
plot(t.without.rtr)
t.with.rtr1 <- adore.filter(ol.series, rtr=1)
lines(t.with.rtr1$level, col="blue")
t.with.rtr2 <- adore.filter(ol.series)
lines(t.with.rtr2$level, col="green3",lty=2)
legend("top",c("Signal with rtr=1","Signal with rtr=2"),col=c("blue","green3"),lty=c(1,2),bty="n")

#
Noisy time series with level shifts, trend changes and shifts in the scale of the error term
true.signal <- c(rep(0,150),rep(10,150),seq(10,5,length=100),seq(5,15,length=100))
series2 <- true.signal + c(rnorm(250,sd=1), rnorm(200,sd=3), rnorm(50,sd=1))

Adaptive online signal extraction with additional Qn scale estimation
s2 <- adore.filter(series2, calc.qn=TRUE)
par(mfrow=c(3,1))
plot(s2)
plot(s2$sigma,type="l",main="Corresponding Qn Scale Estimation",ylab="sigma",xlab="time")
lines(c(rep(1,250),rep(3,200),rep(1,150)),col="grey")
legend("topleft",c("True scale","Qn"),lty=c(1,1),col=c("grey","black"),bty="n")
plot(s2$width,type="l",main="Corresponding Window Width",ylab="width",xlab="time")

const Correction factors to achieve unbiasedness of the Qn scale estimator

Description

This matrix contains correction factors for the univariate Qn scale estimator (Rousseeuw, Croux,
1993) to achieve unbiasedness under Gaussian noise. The madore.filter estimates the local er-
ror covariance matrix by the orthogonalized Gnanadesikan-Kettenring estimator (Gnanadesikan,
Kettenring, 1972, Maronna, Zamar, 2002) which is based on the Qn scale estimator.

Usage

const

Format

A (96x2)-matrix containing the correction factors for the univariate Qn scale estimator for the sam-
ples sizes n = 10, 11, ..., 100, 200, 300, 400, 500, 1000.

const.Q 9

Source

The correction factors have been obtained by simulations.

References

Gnanadesikan, R., Kettenring, J.R. (1972) Robust Estimates, Residuals, and Outlier Detection with
Multiresponse Data, Biometrics 28, 81-124.

Maronna, R.A., Zamar, R.H. (2002) Robust Estimates of Location and Dispersion for High-Dimensional
Datasets, Technometrics 44, 307-317.

Rousseeuw, P.J., Croux, C. (1993) Alternatives to the Median Absolute Deviation, Journal of the
American Statistical Association 88, 1273-1283.

const.Q Correction factors to achieve unbiasedness of the regression-free Q
scale estimator

Description

Correction factors for the regression-free Q scale estimator (Rousseeuw and Hubert, 1996, Gelper
et al., 2009) to achieve unbiasedness under Gaussian noise; required by the function scarm.filter.

Usage

data(const.Q)

Format

The format is: num [1:151] NA NA NA NA 2.17 ...

Source

The correction factors have been obtained by simulations.

References

Rousseeuw, P. and Hubert, M. (1996) Regression-free and robust estimation of scale for bivariate
data, Computational Statistics and Data Analysis, 21(1), 67-85.

Gelper, S., Schettlinger, K., Croux, C., and Gather, U. (2009) Robust online scale estimation in time
series: A model-free approach, Journal of Statistical Planning and Inference, 139(2), 335-349.

10 dfs

critvals Critical Values for the RM Goodness of Fit Test

Description

This matrix contains critical values for the goodness of fit test for the last fitted value of a Repeated
Median regression fit to a sample of size n. The critical values are based on the 0.95-quantiles
of the distribution of a test statistic corresponding to the absolute value of the sum of a subset of
residual signs. The critical value for a test based on the last nI out of n observations corresponds to
critvals[n,nI].

Usage

critvals

Format

A (600x61)-matrix containing 30550 observations.

Source

Simulation.

References

Schettlinger, K., Fried, R., Gather, U. (2008) Real Time Signal Processing by Adaptive Repeated
Median Filters, International Journal of Adaptive Control and Signal Processing, submitted.

Siegel, A.F. (1982) Robust Regression Using Repeated Medians, Biometrika 69 (1), 242-244.

dfs Degrees of freedom for the SCARM test statistic.

Description

This matrix contains degrees of freedom for the t-distributed SCARM test statistic; required by the
function scarm.filter.

Usage

data(dfs)

dfs 11

Format

A data frame with 20 observations on the following 20 variables.

X5 a numeric vector

X10 a numeric vector

X15 a numeric vector

X20 a numeric vector

X25 a numeric vector

X30 a numeric vector

X35 a numeric vector

X40 a numeric vector

X45 a numeric vector

X50 a numeric vector

X55 a numeric vector

X60 a numeric vector

X65 a numeric vector

X70 a numeric vector

X75 a numeric vector

X80 a numeric vector

X85 a numeric vector

X90 a numeric vector

X95 a numeric vector

X100 a numeric vector

Details

The SCARM test from the function scarm.filter is based on the difference of Repeated Median
slopes computed in a left-hand and right-hand window. The distribution of the SCARM test statistic
is approximated by a t-distribution where the degrees of freedom depend on the width of the left-
and right-hand window. This matrix delivers suitable degrees of freedom, obtained by simulations.

Source

The degrees of freedom have been obtained by simulations.

References

Borowski, M. and Fried, R. (2011) Robust moving window regression for online signal extrac-
tion from non-stationary time series: online window width adaption by testing for signal changes,
submitted.

12 dr.filter

dr.filter Deepest Regression (DR) filter

Description

This function extracts signals from time series by means of Deepest regression in a moving time
window.

Usage

dr.filter(y, width, online = FALSE, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.

width a positive integer defining the window width used for fitting.
If online=FALSE (see below) this needs to be an odd integer.

online a logical indicating whether the current level estimate is evaluated at the most
recent time within each time window (TRUE) or centred within each window
(FALSE). Setting online=FALSE requires the width to be odd. Default is online=FALSE.

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of the fitted values within the first time window.

Details

dr.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts. For this, robust Deepest
Regression is applied to a moving window, and the signal level is estimated by the fitted value either
at the end of each time window for online signal extraction without time delay (online=TRUE) or
in the centre of each time window (online=FALSE).

Value

dr.filter returns an object of class robreg.filter. An object of class robreg.filter is a list
containing the following components:

level a data frame containing the extracted signal level.

slope a data frame containing the corresponding slope within each time window.

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, online and extrapolate.

Application of the function plot to an object of class robreg.filter returns a plot showing the
original time series with the filtered output.

dw.filter 13

Author(s)

Roland Fried, Karen Schettlinger and Matthias Borowski

References

Davies, P.L., Fried, R., Gather, U. (2004) Robust Signal Extraction for On-Line Monitoring Data,
Journal of Statistical Planning and Inference 122, 65-78.

Gather, U., Schettlinger, K., Fried, R. (2006) Online Signal Extraction by Robust Linear Regres-
sion, Computational Statistics 21(1), 33-51.

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

See Also

robreg.filter

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Online filtering with DR filter:
y.rr <- dr.filter(y,width=41,online=TRUE)
plot(y.rr)

dw.filter Robust Double Window Filtering Methods for Univariate Time Series

Description

Procedures for robust (online) extraction of low frequency components (the signal) from a univariate
time series based on a moving window technique using two nested time windows in each step.

Usage

dw.filter(y, outer.width, inner.width, method = "all",
scale = "MAD", d = 2,
minNonNAs = 5, online = FALSE, extrapolate = TRUE)

14 dw.filter

Arguments

y a numeric vector or (univariate) time series object.

outer.width a positive integer specifying the window width of the outer window used for
determining the final estimate.
If online=FALSE (see below) this needs to be an odd integer.

inner.width a positive integer (not larger than outer.width) specifying the window width
of the inner window used for determining the initial estimate and trimming fea-
tures.
If online=FALSE (see below) this needs to be an odd integer.

method a (vector of) character string(s) containing the method(s) to be used for the esti-
mation of the signal level.
It is possible to specify any combination of "MED", "RM", "MTM", "TRM", "MRM",
"DWRM", "DWMTM", "DWTRM", "DWMRM" and "all" (for all of the above). Default
is method="all". For a detailed description see the section ‘Methods’ below.

scale a character string specifying the method to be used for robust estimation of the
local variability (within one time window). Possible values are:

"MAD" Median absolute deviation about the median (default)
"QN" Rousseeuw’s and Croux’ (1993) Qn scale estimator
"SN" Rousseeuw’s and Croux’ (1993) Sn scale estimator

d a positive integer defining factor the current scale estimate is multiplied with for
determining the trimming boundaries for outlier detection.
Observations deviating more than d · σ̂t from the current level approximation µ̂t

are replaced by µ̂t where σ̂t denotes the current scale estimate. Default is d = 2
meaning a 2σ rule for outlier detection.

minNonNAs a positive integer defining the minimum number of non-missing observations
within each window which is required for a ‘sensible’ estimation. Default: if
windows contain less than minNonNAs = 5 observations NAs are returned.

online a logical indicating whether the current level and scale estimates are evaluated
at the most recent time within each (inner and outer) window (TRUE) or centred
within the windows (FALSE). Setting online=FALSE requires odd inner.width
and outer.width. Default is online=FALSE.

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of the all fitted values within the first time window.

Details

dw.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts. For this, moving window
techniques are applied.

A short inner window of length inner.width is used in each step for calculating an initial level
estimate (by using either the median or a robust regression fit) and a robust estimate of the local
standard deviation. Observations deviating strongly from this initial fit are trimmed from an outer

dw.filter 15

time window of length outer.width, and the signal level is estimated from the remaining obser-
vations (by using either a location or regression estimator). Values specified in method determine
which combination of estimation methods should be applied to the inner and outer window (see
section ‘Methods’ below).

The applied method should be chosen based on an a-priori guess of the underlying signal and the
data quality: Location based method (MED / MTM) are recommended in case of a locally (piecewise)
constant signal, regression based approaches (RM / DWRM / TRM / MRM) in case of locally linear, mono-
tone trends.

Since no big differences have been reported between TRM and MRM, the quicker and somewhat more
efficient TRM option might be preferred. DWRM is the quickest of all regression based methods and
performs better than the ordinary RM at shifts, but it is the least robust and least efficient method.

If location based methods are used, the inner.width should be chosen at least twice the length of
expected patches of subsequent outliers in the time series; if regression based methods are used,
the inner.width should be at least three times that length, otherwise outlier patches can influence
the estimations strongly. To increase the efficiency of the final estimates, outer.width can then be
chosen rather large - provided that it is smaller than the time between subsequent level shifts.

For robust scale estimation, MAD is the classical choice; SN is a somewhat more efficient and almost
equally robust alternative, while QN is much more efficient if the window widths are not too small,
and it performs very well at the occurrence of level shifts.

The factor d, specifying the trimming boundaries as a multiple of the estimated scale, can be chosen
similarly to classical rules for detecting unusual observations in a Gaussian sample. Choosing d=3
instead of d=2 increases efficiency, but decreases robustness; d=2.5 might be seen as a compromise.

Value

dw.filter returns an object of class dw.filter. An object of class dw.filter is a list containing
the following components:

level a data frame containing the corresponding signal level extracted by the filter(s)
specified in method.

slope a data frame containing the corresponding slope within each time window.
sigma a data frame containing inner.loc.sigma, inner.reg.sigma, outer.loc.sigma

and outer.reg.sigma, the scale estimated from the observations (loc) or the
residuals from the Repeated Median regression (reg) within the inner window
of length inner.width or the outer window of length outer.width, respec-
tively.
MTM uses outer.loc.sigma for trimming outliers, MRM and TRM use outer.reg.sigma
for trimming outliers,
DWMTM uses inner.loc.sigma for trimming outliers, DWMRM and DWTRM use inner.reg.sigma
for trimming outliers;
MED, RM and RM require no scale estimation.
The function only returns values for inner.loc.sigma, inner.reg.sigma, outer.loc.sigma
or outer.reg.sigma if any specified method requires their estimation; other-
wise NAs are returned.

In addition, the original input time series is returned as list member y, and the settings used for
the analysis are returned as the list members outer.width, inner.width, method, scale, d,
minNonNAs, online and extrapolate.

16 dw.filter

Application of the function plot to an object of class dw.filter returns a plot showing the original
time series with the filtered output.

Methods

The following methods are available as method for signal extraction, whereby the prefix DW denotes
the fact that different window widths are used in the first and second step of the calculations within
one window (i.e. inner.width<outer.width) while for the methods MED, RM, MTM, TRM and MRM
the first and second step take place in a window of fixed length outer.width.

MED ordinary running median filter.
The simple median is applied to the observations within a moving time window of length
outer.width.

RM ordinary repeated median filter.
Repeated median regression is applied to the observations within a moving time window of
length outer.width.

MTM, DWMTM modified trimmed mean filters.
In a first step the median is applied to (MTM): the whole window with outer.width or (DWMTM):
the inner window with inner.width; in a second step the mean is applied to the (trimmed)
observations in the whole window (with outer.width).

TRM, DWTRM trimmed repeated median filters.
In a first step repeated median regression is applied to (TRM): the whole window with outer.width
or (DWTRM): the inner window with inner.width; in a second step least squares regression is
applied to the (trimmed) observations in the whole window (with outer.width).

MRM, DWMRM modified repeated median filters.
In a first step repeated median regression is applied to (MRM): the whole window with outer.width
or (DWMRM): the inner window with inner.width; in a second step another repeated median
regression is applied to the (trimmed) observations in the whole window (with outer.width).

DWRM double window repeated median filter.
In a first step repeated median regression is applied to the inner window with inner.width
to determine the trend (slope); in a second step the median is applied to the trend corrected
observations in the whole window with outer.width (without trimming).

Note

Missing values are treated by omitting them and thus by reducing the corresponding window width.
MED, RM, MTM, TRM and MRM require at least minNonNAs non-missing observations in each outer win-
dow; DWRM, DWMTM, DWTRM and DWMRM require at least minNonNAs non-missing observations in each
inner window. Otherwise NAs are returned for level, slope and sigma.

Author(s)

Roland Fried and Karen Schettlinger

References

Bernholt, T., Fried, R., Gather, U., Wegener, I. (2006) Modified Repeated Median Filters, Statistics
and Computing 16, 177-192.
(earlier version: http://www.sfb475.uni-dortmund.de/berichte/tr46-04.ps)

http://www.sfb475.uni-dortmund.de/berichte/tr46-04.ps

hybrid.filter 17

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

See Also

robreg.filter, robust.filter, hybrid.filter, wrm.filter.

Examples

Not run:
Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Filtering with all methods:
y.dw <- dw.filter(y, outer.width=31, inner.width=11, method="all")
Plot:
plot(y.dw)

Filtering with trimmed RM and double window TRM only:
y2.dw <- dw.filter(y, outer.width=31, inner.width=11, method=c("TRM","DWTRM"))
plot(y2.dw)

End(Not run)

hybrid.filter Robust Hybrid Filtering Methods for Univariate Time Series

Description

Procedures for robust extraction of low frequency components (the signal) from a univariate time
series based on a moving window technique using the median of several one-sided half-window
estimates (subfilters) in each step.

Usage

hybrid.filter(y, width, method = "all", minNonNAs=3, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.

width an odd positive integer (≥ 3) defining the window width used for fitting.

18 hybrid.filter

method a (vector of) character string(s) containing the method(s) to be used for the esti-
mation of the signal level.
It is possible to specify any combination of "MED", "RM", "MEAN", FMH, "PFMH",
"CFMH", "MH", "PRMH", "CRMH", "MMH", "PRMMH", "CRMMH", and "all" (for all of
the above). Default is method="all". For a detailed description see the section
‘Methods’ below.

minNonNAs a positive integer defining the minimum number of non-missing observations
within each window (half) which is required for a ‘sensible’ estimation. De-
fault: if a window (half) contains less than minNonNAs = 3 observations an NA is
returned (for that subfilter).

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series. The extrapolation extends the first estimated value to
the first time in the first window and the last estimated value to the last time in
the last time window. Default is extrapolate=TRUE.

Details

hybrid.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts or local extremes. For this,
moving window techniques are applied.

Within each time window several subfilters are applied to half-windows (left and right of the centre);
the final signal level in the centre of the time window is then estimated by the median of the subfilter
outputs.

For the subfilters, both, location-based and regression-based method are available, the former ap-
plying means or medians and the idea of a locally constant signal value, the latter using ordinary
least squares (LS) regression or Siegel’s (1982) repeated median (RM) and the idea of an underlying
locally linear trend.

The methods should be chosen based on an a-priori guess of the underlying signal and the data
quality. Location based methods (MED, MEAN, FMH, MH, MMH) are recommended in case of a locally
(piecewise) constant signal. Regression based and predictive approaches (RM, PFMH, PRMH, PRMMH)
in case of locally linear monotone trends. The combined filters (CFMH, CRMH, CRMMH) can be seen
as a compromise, but are computationally somewhat more expensive and may be inferior to the
predictive filters during steep trends.

The approaches based on the median and RM are robust alternatives to the (in Gaussian samples)
more efficient mean and least squares methods. The hybrid filters preserve shifts and local extremes
much better than MED, MEAN or RM for the price of decreased robustness and / or Gaussian efficiency.

Value

hybrid.filter returns an object of class hybrid.filter. An object of class hybrid.filter is a
list containing the following components:

level a data frame containing the signal level extracted by the filter(s) specified in
method.

slope a data frame (possibly) containing RM, RM.left, RM.right, LS.left and LS.right:
the slope estimated by Repeated Median regression in the whole window (for
method="RM") or in the left and right window half (for any method in "PRMH",

hybrid.filter 19

"CRMH", "PRMMH" and "CRMMH") or the least squares slope estimated from the
left and right window half (for any method in "PRFMH" or "CFMH").
Only those slopes are returned which are required by the filters specified in
method. If only location-based filters are applied (i.e. "MED", "MEAN", "FMH",
"MH" and /or "MMH") NULL is returned for the slope.

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, method and extrapolate.

Application of the function plot to an object of class hybrid.filter returns a plot showing the
original time series with the filtered output.

Methods

The following methods are available as method for signal extraction.

Filters applying only one location or regression estimate to the whole window of length width and
taking the location (in the centre of the time window) as final signal level estimate:

MED ordinary running median filter.

MEAN ordinary moving average filter.

RM ordinary repeated median filter.
Applies repeated median regression to each time window.

Filters applying several subfilters within one window, taking the median of the values listed below
as the final signal level estimate:

FMH FIR median hybrid filter.
Uses half-window averages and the central observation.

PFMH predictive FMH filter.
Uses half-window least squares regression and the central observation.

CFMH combined FMH filter.
Uses half-window averages, half-window least squares regression, and the central observation.

MH median hybrid filter.
Uses half-window medians and the central observation.

PRMH predictive repeated median hybrid filter.
Uses half-window repeated median regression and the central observation.

CRMH combined repeated median hybrid filter.
Uses half-window medians, half-window repeated median regression, and the central obser-
vation.

MMH median/median hybrid filter.
Uses half-window medians and the median of all observations in the window.

PRMMH predictive repeated median/median filter.
Uses half-window repeated median regression and the median of all observations in the win-
dow.

CRMMH combined repeated median/median filter.
Uses half-window medians, half-window repeated median regression, and the median of all
observations in the window.

20 lms.filter

Note

Missing values are treated by omitting them and thus by reducing the corresponding window width.
The hybrid.filter function only offers filters for signal extraction delayed by (width+1)/2 time
units, in contrast to other filters available from the robfilter package which also offer online time
series analysis without time delay.

Author(s)

Roland Fried and Karen Schettlinger

References

Fried, R., Bernholt, T., Gather, U. (2006) Repeated Median and Hybrid Filters, Computational
Statistics \& Data Analysis 50, 2313-2338.
(earlier version: http://www.sfb475.uni-dortmund.de/berichte/tr10-04.ps)

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

See Also

robreg.filter, robust.filter, dw.filter, wrm.filter.

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)
Filtering with all methods:
y.hy <- hybrid.filter(y, width=31)
Plot:
plot(y.hy)

Filtering with running median and PRMH only:
y2.hy <- hybrid.filter(y, width=31, method=c("MED","PRMH"))
plot(y2.hy)

lms.filter Least Median of Squares (LMS) filter

Description

This function extracts signals from time series by means of Least Median of Squares regression in
a moving time window.

http://www.sfb475.uni-dortmund.de/berichte/tr10-04.ps

lms.filter 21

Usage

lms.filter(y, width, online = FALSE, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.

width a positive integer defining the window width used for fitting.
If online=FALSE (see below) this needs to be an odd integer.

online a logical indicating whether the current level estimate is evaluated at the most
recent time within each time window (TRUE) or centred within each window
(FALSE). Setting online=FALSE requires the width to be odd. Default is online=FALSE.

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of the fitted values within the first time window.

Details

lms.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts. For this, robust Least Me-
dian of Squares regression is applied to a moving window, and the signal level is estimated by the
fitted value either at the end of each time window for online signal extraction without time delay
(online=TRUE) or in the centre of each time window (online=FALSE).

Value

lms.filter returns an object of class robreg.filter. An object of class robreg.filter is a list
containing the following components:

level a data frame containing the extracted signal level.

slope a data frame containing the corresponding slope within each time window.

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, online and extrapolate.

Application of the function plot to an object of class robreg.filter returns a plot showing the
original time series with the filtered output.

Author(s)

Roland Fried, Karen Schettlinger and Matthias Borowski

References

Davies, P.L., Fried, R., Gather, U. (2004) Robust Signal Extraction for On-Line Monitoring Data,
Journal of Statistical Planning and Inference 122, 65-78.

22 lqd.filter

Gather, U., Schettlinger, K., Fried, R. (2006) Online Signal Extraction by Robust Linear Regres-
sion, Computational Statistics 21(1), 33-51.

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

See Also

robreg.filter

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Online filtering with LMS filter:
y.rr <- lms.filter(y,width=41,online=FALSE)
plot(y.rr)

lqd.filter Least Quartile Difference filter

Description

This function extracts signals from time series by means of Least Quartile Difference regression in
a moving time window.

Usage

lqd.filter(y, width, online = FALSE, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.

width a positive integer defining the window width used for fitting.
If online=FALSE (see below) this needs to be an odd integer.

online a logical indicating whether the current level estimate is evaluated at the most
recent time within each time window (TRUE) or centred within each window
(FALSE). Setting online=FALSE requires the width to be odd. Default is online=FALSE.

lqd.filter 23

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of the fitted values within the first time window.

Details

lqd.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts. For this, robust Least Quar-
tile Difference regression is applied to a moving window, and the signal level is estimated by the
fitted value either at the end of each time window for online signal extraction without time delay
(online=TRUE) or in the centre of each time window (online=FALSE).

Value

lqd.filter returns an object of class robreg.filter. An object of class robreg.filter is a list
containing the following components:

level a data frame containing the extracted signal level.

slope a data frame containing the corresponding slope within each time window.

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, online and extrapolate.

Application of the function plot to an object of class robreg.filter returns a plot showing the
original time series with the filtered output.

Author(s)

Roland Fried, Karen Schettlinger and Matthias Borowski

References

Davies, P.L., Fried, R., Gather, U. (2004) Robust Signal Extraction for On-Line Monitoring Data,
Journal of Statistical Planning and Inference 122, 65-78.

Gather, U., Schettlinger, K., Fried, R. (2006) Online Signal Extraction by Robust Linear Regres-
sion, Computational Statistics 21(1), 33-51.

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

See Also

robreg.filter

24 lts.filter

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Online filtering with LQD filter:
y.rr <- lqd.filter(y,width=41,online=FALSE)
plot(y.rr)

lts.filter Least Trimmed Squares (LTS) filter

Description

This function extracts signals from time series by means of Least Trimmed Squares regression in a
moving time window.

Usage

lts.filter(y, width, h = floor(width/2) + 1, online = FALSE, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.
width a positive integer defining the window width used for fitting.

If online=FALSE (see below) this needs to be an odd integer.
h a positive integer defining the trimming quantile.
online a logical indicating whether the current level estimate is evaluated at the most

recent time within each time window (TRUE) or centred within each window
(FALSE). Setting online=FALSE requires the width to be odd. Default is online=FALSE.

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of the fitted values within the first time window.

Details

lts.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts. For this, robust Least
Trimmed Squares regression is applied to a moving window, and the signal level is estimated by the
fitted value either at the end of each time window for online signal extraction without time delay
(online=TRUE) or in the centre of each time window (online=FALSE).

lts.filter 25

Value

lts.filter returns an object of class robreg.filter. An object of class robreg.filter is a list
containing the following components:

level a data frame containing the extracted signal level.

slope a data frame containing the corresponding slope within each time window.

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, online and extrapolate.

Application of the function plot to an object of class robreg.filter returns a plot showing the
original time series with the filtered output.

Author(s)

Roland Fried, Karen Schettlinger and Matthias Borowski

References

Davies, P.L., Fried, R., Gather, U. (2004) Robust Signal Extraction for On-Line Monitoring Data,
Journal of Statistical Planning and Inference 122, 65-78.

Gather, U., Schettlinger, K., Fried, R. (2006) Online Signal Extraction by Robust Linear Regres-
sion, Computational Statistics 21(1), 33-51.

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

See Also

robreg.filter

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Online filtering with LTS filter:
y.rr <- lts.filter(y,width=41,online=FALSE)
plot(y.rr)

26 madore.filter

madore.filter A multivariate adaptive online repeated median filter

Description

Procedure for robust signal extraction from a multivariate time series by a moving window tech-
nique with adaptive window width selection (multivariate adaptive online repeated median filter).
The window width adaption is based on the univariate adore.filter.

Usage

madore.filter(Y, byrow=FALSE,
min.width=10, max.width=200,
test.sample.size=min.width/2,
width.search="geometric",
rtr.size=min.width, sign.level=0.1,
NA.sample.size=min.width, minNonNAs=min.width/2)

Arguments

Y a numeric matrix or (multivariate) time series object.

byrow logical. If FALSE (the default), the filtering is done by columns, otherwise the
filtering is done by rows.

min.width a positive integer ≥ 10 specifying the minimal width of the moving time win-
dow.

max.width a positive integer ≥ min.width specifying the maximal width of the moving
time window. If min.width = max.width, the window width is fixed.

test.sample.size

a positive integer in [5, min.width] defining a test window of the rightmost
test.sample.size time points within the current time window. The Repeated
Median (RM) regression residuals within the test window are used for a good-
ness of fit test (see adore.filter) for finding an adequate window width. For
more details about the test, see Schettlinger, Fried, Gather (2010).

width.search a character string defining the search algorithm used for finding an adequate
window width at each point in time.

"linear" The linear search always results in the largest window width possible
and hence yields the smoothest online signal. However, if sudden changes
(like level shifts) appear in the signal it requires a lot of computation time
and thus, an increased variability of the extracted signal may be observed.

"binary" The binary search is recommended if it can be expected that the win-
dow width needs to be reduced drastically from a large to a very small value
at certain times (for example at level shifts or trend changes). However, it
may not always result in the largest possible window width.

madore.filter 27

"geometric" (default) The geometric search is as fast as the binary search but
it puts more weight on large window widths. It offers a good compromise
between the linear and the binary search (computation time vs. smooth
output signal).

rtr.size a non-negative integer specifying the size of a subset of the most recent obser-
vations within each window. The signal estimation is restricted to the range of
the observations within this subset.

sign.level the level of significance for the goodness of fit test (see adore.filter) for find-
ing an adequate window width. For more details about the test, see Schettlinger,
Fried, Gather (2010).

NA.sample.size a positive integer in [10, min.width] specifying the size of a subset of the most
recent observations within each window. See minNonNAs.

minNonNAs a positive integer in [5, NA.sample.size]. If a variable does not offer at least
minNonNAs non-missing observations within the subset specified by NA.sample.size,
the signal is not estimated for this variable at this time point t.

Details

The madore.filter is based on Repeated Median regression (Siegel, 1982) in moving time win-
dows and serves for separating signals from noise and outliers in multivariate time series. At each
time point t the test procedure of the adaptive online Repeated Median filter (Schettlinger, Fried,
Gather, 2010) is used to determine an appropriate window width n(t) in [min.width, max.width].
Then the signal vector at time t is estimated within the time window (t − n(t) + 1, . . . , t) by a
slight modification of the multivariate Trimmed Repeated Median-Least Squares regression (La-
nius, Gather, 2010). A more detailed description of the madore.filter can be found in Borowski,
Schettlinger, Gather (2009).

Value

madore.filter returns an object of class madore.filter. An object of class madore.filter is a
list containing the following components:

signals a matrix containing the estimated signal vectors at each time point t.

widths a matrix containing the individual window widths of each variable at each time
point t.

overall.width a vector containing the overall window widths at each time point t.

In addition, the original input data is returned as list member Y, and the settings used for the analysis
are returned as the list members byrow, min.width, max.width, start.width, test.sample.size,
width.search, rtr.size, extr.delay, NA.sample.size, and minNonNAs. Application of the
function plot to an object of class madore.filter returns a plot showing the original multivariate
time series with the filtered output.

Author(s)

Matthias Borowski

28 med.filter

References

Borowski, M., Schettlinger, K., Gather, U. (2009) Multivariate Real Time Signal Extraction by a
Robust Adaptive Regression Filter, Communications in Statistics - Simulation and Computation 38,
426-440.

Lanius, V., Gather, U. (2010) Robust Online Signal Extraction from Multivariate Time Series, Com-
putational Statistics and Data Analysis 54(4), 966-975.

Schettlinger, K., Fried, R., Gather, U. (2010) Real Time Signal Processing by Adaptive Repeated
Median Filters, International Journal of Adaptive Control and Signal Processing 24(5), 346-362.

Siegel, A.F. (1982) Robust Regression Using Repeated Medians, Biometrika 69(1), 242-244.

See Also

robreg.filter, adore.filter, scarm.filter, mscarm.filter.

Examples

Not run:
data(multi.ts)
extr <- madore.filter(multi.ts)
plot(extr)

End(Not run)

med.filter Median (MED) filter

Description

This function extracts signals from time series by means of a running median.

Usage

med.filter(y, width, minNonNAs = 5, online = FALSE, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.

width a positive integer defining the window width used for fitting.
If online=FALSE (see below) this needs to be an odd integer.

minNonNAs a positive integer defining the minimum number of non-missing observations
within one window which is required for a ‘sensible’ estimation.

med.filter 29

online a logical indicating whether the current level estimate is evaluated at the most
recent time within each time window (TRUE) or centred within each window
(FALSE). Setting online=FALSE requires the width to be odd. Default is online=FALSE.

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of the fitted values within the first time window.

Details

med.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts. For this, the median is
computed in a moving window, and the signal level is estimated either at the end of each time
window for online signal extraction without time delay (online=TRUE) or in the centre of each time
window (online=FALSE).

Value

med.filter returns an object of class robreg.filter. An object of class robreg.filter is a list
containing the following components:

level a data frame containing the extracted signal level.
slope a data frame containing the corresponding slope within each time window.

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, minNonNAs, online and extrapolate.
Application of the function plot to an object of class robreg.filter returns a plot showing the
original time series with the filtered output.

Note

Missing values are treated by omitting them and thus by reducing the corresponding window width.
The signal estimation is only returned as NA if the window the estimation is based on contains less
than minNonNAs non-missing values.

Author(s)

Roland Fried, Karen Schettlinger and Matthias Borowski

References

Davies, P.L., Fried, R., Gather, U. (2004) Robust Signal Extraction for On-Line Monitoring Data,
Journal of Statistical Planning and Inference 122, 65-78.

Gather, U., Schettlinger, K., Fried, R. (2006) Online Signal Extraction by Robust Linear Regres-
sion, Computational Statistics 21(1), 33-51.

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

30 mscarm.filter

See Also

robreg.filter

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Online filtering with MED filter:
y.rr <- med.filter(y,width=41,online=FALSE)
plot(y.rr)

mscarm.filter MSCARM (Multivariate Slope Comparing Adaptive Repeated Me-
dian)

Description

A multivariate version of the scarm.filter which also gives information about parallel running
components of the multivariate time series

Usage

mscarm.filter(time.series,
right.width=30, min.left.width=right.width,
min.width=floor(right.width/3), max.width=200,
sign.level=0.001, bound.noise.sd=0.01,
rtr=TRUE, autocorrelations="automatic",
c.bound=3, r.bound=0)

Arguments

time.series a numeric matrix or multivariate time series object.

right.width a positive integer≥ 5 defining the fixed width of the right-hand window used for
the SCARM test; the choice of right.width is crucial to distinguish between a
patch of outliers and a signal change.

min.left.width a positive integer ≥ right.width defining the minimum width of the left-hand
window used for testing.

min.width a positive integer ≥ 5 specifying the minimum window width.

max.width a positive integer ≥ min.width and ≥ right.width + min.left.width speci-
fying the maximum window width.

mscarm.filter 31

sign.level significance level of the SCARM test procedure; must be a value in (0, 0.5).

bound.noise.sd a lower bound for the estimate of the noise standard deviation; this bound en-
sures that the noise scale estimate cannot be zero due to ties in the data; must be
a value > 0.

rtr if rtr=TRUE, the signal estimation is restricted to the range of the rightmost
min.width observations.

autocorrelations

the mscarm.filter is developed for non-autocorrelated data, but can be adapted
to work for AR(1) processes with parameter φ = −0.9,−0.6, ..., 0.9; autocorrelations
must be either "no" (φ = 0), "high.positive" (φ = 0.9), "moderate.positive"
(φ = 0.6), "small.positive" (φ = 0.3), "small.negative" (φ = −0.3), "mod-
erate.negative (φ = −0.6)", "high.negative (φ = −0.9)" or "automatic"; if
autocorrelations="automatic", the true parameter φ is estimated at each
time point.

c.bound the bound for the SSM (Similar Slope Monitoring) statistic which is the absolute
difference of RM (Repeated Median) trend estimates (of two univariate time
series) relative to the estimated standard deviation of this difference; if the SSM
statistic is not larger than c.bound, a relationship between the two time series is
assumed; c.bound must be a value >0.

r.bound the bound for the ratio of adapted window widths (of two univariate time se-
ries); a relationship between the two time series is only possible, if this ra-
tio (smaller window width divided by larger window width) is smaller than
r.bound; r.bound must be a value in [0, 1].

Details

The mscarm.filter is a procedure for real-time signal extraction from noisy and outlier-contaminated
instationary multivariate time series. It is based on Repeated Median regression (Siegel, 1982) in
moving time windows. At each time point t the test procedure of the SCARM filter (Borowski and
Fried, 2011) is used to determine an appropriate window width n(t) in [min.width, max.width].
Then the signal vector at time t is estimated within the time window (t − n(t) + 1, . . . , t) by a
slight modification of the multivariate Trimmed Repeated Median-Least Squares regression (La-
nius, Gather, 2010). At each time point t, the mscarm.filter uses the Similar Slope Monitoring
(SSM) method to build blocks of currently interrelated univariate time series. This information
is given to the user and is used to improve the signal estimations. A detailed description of the
mscarm.filter can be found in Borowski (2012).

Value

mscarm.filter returns an object of class mscarm.filter. An object of class mscarm.filter is a
list containing the following components:

signal.est a matrix containing the signal estimations

slope.est a matrix containing the slope (or trend) estimations

adapted.width a matrix containing the adapted window widths

noise.sd.est a matrix containing the estimated noise standard deviations

32 mscarm.filter

scarm.signal.est

a matrix containing the signal estimates of the univariate SCARM

scarm.width a matrix containing the adapted window widths of the univariate SCARM
scarm.statistic

a matrix containing the SCARM test statistics

scarm.critval a matrix containing the critical values of the SCARM test

ssm.statistic a matrix containing the SSM statistics

blocks a matrix of the blocks built by the SSM procedure

acf.lag.one a matrix containing the estimated autocorrelations at lag one for each time point;
estimation is done on the recent max.width observations at each time point

time.series the original input data

In addition, the input arguments used for the analysis are returned as list members.

Application of the function plot to an object of class mscarm.filter returns a plot showing the
original time series with the filtered output. If info==TRUE (default), a plot showing the results of
the SSM procedure is given.

Author(s)

Matthias Borowski

References

Borowski, M. (2012) Echtzeit-Extraktion relevanter Information aus multivariaten Zeitreihen basierend
auf robuster Regression, PhD thesis, TU Dortmund University (in German).

Borowski, M. and Fried, R. (2011) Robust repeated median regression in moving windows with
data-adaptive width selection, Discussion Paper 28/2011, SFB 823, TU Dortmund University.

Lanius, V., Gather, U. (2010) Robust Online Signal Extraction from Multivariate Time Series, Com-
putational Statistics and Data Analysis 54(4), 966-975.

Siegel, A.F. (1982) Robust Regression Using Repeated Medians, Biometrika 69(1), 242-244.

See Also

robreg.filter, adore.filter, madore.filter, scarm.filter.

Examples

Not run:
Multivariate time series
data(multi.ts)

apply MSCARM Filter
mscarm.extr <- mscarm.filter(multi.ts)

multi.ts 33

plot(mscarm.extr)

End(Not run)

multi.ts Generated Multivariate Time Series

Description

This data matrix contains a 4-variate time series of length 500. It consists of two Blocks and two
Doppler signals each overlaid by highly correlated bivariate Gaussian noise.

Usage

multi.ts

Format

A (500x4)-matrix containing a 4-variate time series of length 500.

Source

Data generated by means of the packages wmtsa and MASS.

rm.filter Repeated Median (RM) filter

Description

This function extracts signals from time series by means of Repeated Median regression in a moving
time window.

Usage

rm.filter(y, width, minNonNAs = 5, online = FALSE, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.

width a positive integer defining the window width used for fitting.
If online=FALSE (see below) this needs to be an odd integer.

minNonNAs a positive integer defining the minimum number of non-missing observations
within one window which is required for a ‘sensible’ estimation.

online a logical indicating whether the current level estimate is evaluated at the most
recent time within each time window (TRUE) or centred within each window
(FALSE). Setting online=FALSE requires the width to be odd. Default is online=FALSE.

34 rm.filter

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of the fitted values within the first time window.

Details

rm.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts. For this, robust Repeated
Median regression is applied to a moving window, and the signal level is estimated by the fit-
ted value either at the end of each time window for online signal extraction without time delay
(online=TRUE) or in the centre of each time window (online=FALSE).

Value

rm.filter returns an object of class robreg.filter. An object of class robreg.filter is a list
containing the following components:

level a data frame containing the extracted signal level.

slope a data frame containing the corresponding slope within each time window.

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, minNonNAs, online and extrapolate.

Application of the function plot to an object of class robreg.filter returns a plot showing the
original time series with the filtered output.

Note

Missing values are treated by omitting them and thus by reducing the corresponding window width.
The estimated signal level is only returned as NA if the window the estimation is based on contains
less than minNonNAs non-missing values.

Author(s)

Roland Fried, Karen Schettlinger and Matthias Borowski

References

Davies, P.L., Fried, R., Gather, U. (2004) Robust Signal Extraction for On-Line Monitoring Data,
Journal of Statistical Planning and Inference 122, 65-78.

Gather, U., Schettlinger, K., Fried, R. (2006) Online Signal Extraction by Robust Linear Regres-
sion, Computational Statistics 21(1), 33-51.

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

robreg.filter 35

See Also

robreg.filter,scarm.filter,adore.filter,madore.filter

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Online filtering with RM filter:
y.rr <- rm.filter(y,width=41,online=TRUE)
plot(y.rr)

robreg.filter Robust Regression Filters for Univariate Time Series

Description

Procedures for robust (online) extraction of low frequency components (the signal) from a univariate
time series by applying robust regression techniques to moving time windows.

Usage

robreg.filter(y, width, method = "all", h = floor(width/2)+1,
minNonNAs = 5, online = FALSE, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.

width a positive integer defining the window width used for fitting.
If online=FALSE (see below) this needs to be an odd integer.

36 robreg.filter

method a (vector of) character string(s) containing the method(s) to be used for robust
approximation of the signal within one time window. It is possible to specify
any combination of the values:

"DR" Deepest Regression
"LMS" Least Median of Squares regression
"LQD" Least Quartile Difference regression
"LTS" Least Trimmed Squares regression
"MED" Median
"RM" Repeated Median regression
"all" all of the above (default)

Using dr.filter, lms.filter, lqd.filter, lts.filter, med.filter or rm.filter
forces "DR", "LMS", "LQD", "LTS", "MED" or "RM" respectively.
Currently, only method="MED" and method="RM" (med.filter / rm.filter)
can handle missing values in the input time series. For the other regression fil-
ters missing values have to be replaced before the analysis.

h a positive integer defining the trimming quantile for LTS regression.

minNonNAs a positive integer defining the minimum number of non-missing observations
within one window which is required for a ‘sensible’ estimation. Currently, this
option only has an effect for the two methods "MED" and /or "RM" (see method).

online a logical indicating whether the current level estimate is evaluated at the most
recent time within each time window (TRUE) or centred within each window
(FALSE). Setting online=FALSE requires the width to be odd. Default is online=FALSE.

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of the fitted values within the first time window.

Details

robreg.filter is suitable for extracting low frequency components (the signal) from a time series
which may be contaminated with outliers and can contain level shifts. For this, robust regression
methods are applied to a moving window, and the signal level is estimated by the fitted value either
at the end of each time window for online signal extraction without time delay (online=TRUE) or
in the centre of each time window (online=FALSE).

Value

robreg.filter returns an object of class robreg.filter. An object of class robreg.filter is a
list containing the following components:

level a data frame containing the signal level extracted by the filter(s) specified in
method.

slope a data frame containing the corresponding slope within each time window.

robreg.filter 37

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, method, h, minNonNAs, online and extrapolate.

Application of the function plot to an object of class robreg.filter returns a plot showing the
original time series with the filtered output.

Note

Missing values are treated by omitting them and thus by reducing the corresponding window width.
The estimated signal level is only returned as NA if the window the estimation is based on contains
less than minNonNAs non-missing values.

Author(s)

C++ code: Thorsten Bernholt and Robin Nunkesser
Port to R: Roland Fried and Karen Schettlinger

References

Davies, P.L., Fried, R., Gather, U. (2004) Robust Signal Extraction for On-Line Monitoring Data,
Journal of Statistical Planning and Inference 122, 65-78.
(earlier version: http://www.sfb475.uni-dortmund.de/berichte/tr02-02.ps)

Gather, U., Schettlinger, K., Fried, R. (2006) Online Signal Extraction by Robust Linear Regression,
Computational Statistics 21(1), 33-51.
(earlier version: http://www.sfb475.uni-dortmund.de/berichte/tr53-04.ps)

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

See Also

wrm.filter, robust.filter, dw.filter, hybrid.filter.

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Filtering with all methods:
y.rr <- robreg.filter(y, width=31, method=c("RM", "LMS", "LTS", "DR", "LQD"))
Plot:
plot(y.rr)

Delayed filtering with RM and LMS filter:
y2.rr <- robreg.filter(y,width=31,method=c("RM","LMS"))
plot(y2.rr)

http://www.sfb475.uni-dortmund.de/berichte/tr02-02.ps
http://www.sfb475.uni-dortmund.de/berichte/tr53-04.ps

38 robust.filter

Online filtering with RM filter:
y3.rr <- rm.filter(y,width=41,online=TRUE)
plot(y3.rr)

robust.filter Robust Filtering Methods for Univariate Time Series

Description

Procedure for robust (online) extraction of low frequency components (the signal) from a univariate
time series with optional rules for outlier replacement and shift detection.

Usage

robust.filter(y, width, trend = "RM", scale = "QN", outlier = "T",
shiftd = 2, wshift = floor(width/2), lbound = 0.1, p = 0.9,

adapt = 0, max.width = width,
online = FALSE, extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.

width a positive integer defining the window width used for fitting. If online=FALSE
(default) this needs to be an odd number.

trend a character string defining the method to be used for robust approximation of the
signal within one time window. Possible values are:

"MED": Median
"RM": Repeated Median regression (default)
"LTS": Least Trimmed Squares regression
"LMS": Least Median of Squares regression

scale a character string defining the method to be used for robust estimation of the
local variability (within one time window). Possible values are:

"MAD": Median absolute deviation about the median
"QN": Rousseeuw’s and Croux’ (1993) Qn scale estimator (default)
"SN": Rousseeuw’s and Croux’ (1993) Sn scale estimator
"LSH": Length of the shortest half

outlier a single character defining the rule to be used for outlier detection and outlier
treatment. Observations deviating more than d·σ̂t from the current level approx-
imation µ̂t are replaced by µ̂t±kσ̂t where σ̂t denotes the current scale estimate.
Possible values are:

robust.filter 39

"T": Replace (’trim’) large outliers detected by a 3σ-rule (d = 3) by the current
level estimate (k = 0). (default)

"L": Shrink large outliers (d = 3) strongly towards the current level estimate
(k = 1).

"M": Shrink large and moderatly sized outliers (d = 2) strongly towards the
current level estimate (k = 1).

"W": Shrink large and moderatly sized outliers (d = 2) towards the current level
estimate (k = 2).

W is the most efficient, T the most robust method (which should ideally be com-
bined with a suitable value of lbound).

shiftd a positive numeric value defining the factor the current scale estimate is multi-
plied with for shift detection. Default is shiftd=2 corresponding to a 2σ rule
for shift detection.

wshift a positive integer specifying the number of the most recent observations used
for shift detection (regulates therefore also the delay of shift detection). Only
used in the online mode; should be less than half the (minimal) window width
then. In the offline mode (online=FALSE, default), shift detection is based on
the right half of the time window, i.e. wshift=floor(width/2) (default).

lbound a positive real value specifying an optional lower bound for the scale to prevent
the scale estimate from reaching zero (implosion).

p a fraction ∈ [2/3, 1] of observations for additional rules in case of only two or
three different values within one window.
If 100 percent of the observations within one window take on only two different
values, the current level is estimated by the mean of these values regardless of
the trend specification. In case of three differing values the median is taken as
the current level estimate.

adapt a numeric value defining the fraction which regulates the adaption of the moving
window width. adapt can be either 0 or a value ∈ [0.6, 1] . adapt = 0 means
that a fixed window width is used. Otherwise, the window width is reduced
whenever more than a fraction of adapt ∈ [0.6, 1] of the residuals in a certain
part of the current time window are all positive or all negative.

max.width a positive integer (>= width) specifying the maximal width of the time window.
width specifies the minimal (and also the initial) width.

online a logical indicating whether the current level and scale estimates are evaluated at
the most recent time within each window (TRUE) or centered within the window
(FALSE). online=FALSE (default) requires an odd width for the window and
means a time delay of (width+1)/2 time units.

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If online=FALSE the extrapolation consists of the fitted values within the first
half of the first window and the last half of the last window; if online=TRUE the
extrapolation consists of all fitted values within the first time window.

Details

robust.filter works by applying the methods specified by trend and scale to a moving time
window of length width.

40 robust.filter

Before moving the time window, it is checked whether the next (incoming) observation is consid-
ered an ’outlier’ by applying the rule specified by outlier. Therefore, the trend in the current time
window is extrapolated to the next point in time and the residual of the incoming observation is
standardised by the current scale estimate.

After moving the time window, it can be tested whether a level shift has occurred within the window:
If more than half of the residuals in the right part of the window are larger than shiftd·σt, a shift
is detected and appropriate actions are taken. In the online mode, the number of the rightmost
residuals can be chosen by wshift to regulate the resistance of the detection rule against outliers,
its power and the time delay of detection.

A more detailed description of the filter can be found in Fried (2004). The adaption of the window
width is described by Gather and Fried (2004). For more explanations on shift detection, see Fried
and Gather (2007).

Value

robust.filter returns an object of class robust.filter. An object of class robust.filter is a
list containing the following components:

level a numeric vector containing the signal level extracted by the (regression) filter
specified by trend, scale and outlier.

slope a numeric vector containing the corresponding slope within each time window.

sigma a numeric vector containing the corresponding scale within each time window.

ol an outlier indicator. 0: no outlier, +1: positive outlier, -1: negative outlier

level.shift a level shift indicator. 0: no level shift, t: positive level shift detected at pro-
cessing time t, -t: negative level shift detected at processing time t (the position
in the vector gives an estimate of the point in time before which the shift has
occurred).

In addition, the original input time series is returned as list member y, and the settings used for the
analysis are returned as the list members width, trend, scale, outlier, shiftd, wshift, lbound,
p, adapt, max.width, online and extrapolate.

Application of the function plot to an object of class robust.filter returns a plot showing the
original time series with the filtered output.

Note

Missing values have to be replaced or removed from the time series before applying robust.filter.

Author(s)

Roland Fried and Karen Schettlinger

References

Fried, R. (2004), Robust Filtering of Time Series with Trends, Journal of Nonparametric Statistics
16, 313-328.
(earlier version: http://www.sfb475.uni-dortmund.de/berichte/tr30-03.ps)

http://www.sfb475.uni-dortmund.de/berichte/tr30-03.ps

scarm.filter 41

Fried, R., Gather, U. (2007), On Rank Tests for Shift Detection in Time Series, Computational
Statistics and Data Analysis, Special Issue on Machine Learning and Robust Data Mining 52, 221-
233.
(earlier version: http://www.sfb475.uni-dortmund.de/berichte/tr48-06.pdf)

Gather, U., Fried, R. (2004), Methods and Algorithms for Robust Filtering, COMPSTAT 2004: Pro-
ceedings in Computational Statistics, J. Antoch (eds.), Physika-Verlag, Heidelberg, 159-170.

Schettlinger, K., Fried, R., Gather, U. (2006) Robust Filters for Intensive Care Monitoring: Beyond
the Running Median, Biomedizinische Technik 51(2), 49-56.

See Also

robreg.filter, hybrid.filter, dw.filter, wrm.filter.

Examples

Generate random time series:
y <- cumsum(runif(500)) - .5*(1:500)
Add jumps:
y[200:500] <- y[200:500] + 5
y[400:500] <- y[400:500] - 7
Add noise:
n <- sample(1:500, 30)
y[n] <- y[n] + rnorm(30)

Delayed Filtering of the time series with window width 23:
y.rf <- robust.filter(y, width=23)
Plot:
plot(y.rf)

Delayed Filtering with different settings and fixed window width 31:
y.rf2 <- robust.filter(y, width=31, trend="LMS", scale="QN", outlier="W")
plot(y.rf2)

Online Filtering with fixed window width 24:
y.rf3 <- robust.filter(y, width=24, online=TRUE)
plot(y.rf3)

Delayed Filtering with adaptive window width (minimal width 11, maximal width 51):
y.rf4 <- robust.filter(y, width=11, adapt=0.7, max.width=51)
plot(y.rf4)

scarm.filter SCARM (Slope Comparing Adaptive Repeated Median)

Description

A procedure for robust online signal extraction from univariate time series ("smoothing") by a mov-
ing window technique with adaptive window width selection based on Repeated Median regression

http://www.sfb475.uni-dortmund.de/berichte/tr48-06.pdf

42 scarm.filter

Usage

scarm.filter(time.series,
right.width=30, min.left.width=right.width,
min.width=floor(right.width/3), max.width=200,
sign.level=0.001, bound.noise.sd=0.01, rtr=TRUE,
autocorrelations="automatic")

Arguments

time.series a numeric vector or (univariate) time series object.

right.width a positive integer >=5 defining the fixed width of the right-hand window used
for testing; the choice of right.width is crucial to distinguish between a patch
of outliers and a signal change.

min.left.width a positive integer ≥ right.width defining the minimum width of the left-hand
window used for testing.

min.width a positive integer ≥ 5 specifying the minimum window width.

max.width a positive integer ≥ min.width and ≥ right.width + min.left.width speci-
fying the maximum window width.

sign.level significance level of the test procedure; must be a value in (0, 0.5).

bound.noise.sd a lower bound for the estimate of the noise standard deviation; this bound en-
sures that the noise scale estimate cannot be zero due to ties in the data; must be
a value > 0.

rtr if rtr=TRUE, the signal estimation is restricted to the range of the rightmost
min.width observations.

autocorrelations

the scarm.filter is developed for non-autocorrelated data, but can be adapted
to work for AR(1) processes with parameter φ = −0.9,−0.6, ..., 0.9; autocorrelations
must be either "no" (φ = 0), "high.positive" (φ = 0.9), "moderate.positive"
(φ = 0.6), "small.positive" (φ = 0.3), "small.negative" (φ = −0.3), "mod-
erate.negative (φ = −0.6)", "high.negative (φ = −0.9)" or "automatic"; if
autocorrelations="automatic", the true parameter φ is estimated at each
time point.

Details

The scarm.filter fits a Repeated Median (RM, Siegel, 1982) regression line to a moving window
sample with length varying between min.width and max.width.

For each time point, the window width is adapted to the current data situation by a test comparing
two RM slopes estimated in separated sub-windows, a right-hand and a left-hand window.

A more detailed description of the filter can be found in Borowski and Fried (2011).

Value

scarm.filter returns an object of class scarm.filter. An object of class scarm.filter is a list
containing the following components:

scarm.filter 43

signal.est a vector containing the signal estimations

slope.est a vector containing the slope (or trend) estimations

adapted.width a vector containing the adapted window widths

test.statistic a vector containing the SCARM test statistics

critvals a vector containing the critical values for test decision

noise.sd a vector containing the estimates of the noise standard deviation

slope.diff a vector containing the differences of the Repeated Median slopes estimated in
the left-hand and right-hand window

acf.lag.one a vector containing the estimated autocorrelations at lag one for each time point;
estimation is done on the recent max.width observations at each time point

time.series the original input data

In addition, the input arguments used for the analysis are returned as list members.

Application of the function plot to an object of class scarm.filter returns a plot showing the
original time series with the filtered output. If info==TRUE (default), a plot of the adapted window
widths is also given.

Author(s)

Matthias Borowski

References

Borowski, M. and Fried, R. (2011) Robust repeated median regression in moving windows with
data-adaptive width selection, Discussion Paper 28/2011, SFB 823, TU Dortmund University.

Gelper, S., Schettlinger, K., Croux, C., and Gather, U. (2009) Robust online scale estimation in time
series: A model-free approach, Journal of Statistical Planning and Inference, 139(2), 335-349.

Siegel, A.F. (1982) Robust Regression Using Repeated Medians, Biometrika 69(1), 242-244.

See Also

robreg.filter, adore.filter, madore.filter, mscarm.filter.

Examples

Time series
data(multi.ts)
x <- multi.ts[,1]

apply SCARM Filter
scarm.extr <- scarm.filter(x)
plot(scarm.extr)

44 timecorrection

sizecorrection Bias correction factors for the robust scale estimators MAD, Sn, Qn,
and LSH

Description

This matrix contains correction factors for the MAD, Sn, Qn, and LSH scale estimators to achieve
unbiasedness under Gaussian noise.

Usage

sizecorrection

Format

A (31x4)-matrix containing correction factors for the MAD, Sn, Qn, and LSH scale estimators.

Source

The correction factors have been obtained by simulations.

timecorrection Correction factors for the scale estimation of the filtering procedure
proposed by Fried (2004).

Description

Fried’s (2004) signal extraction procedure includes optional rules for outlier replacement based
on local scale estimation. Since detected outliers are treated as missing values, the finite sample
correction for the scale estimation is adjusted for the reduced sample size, using the correction
factors in the dataset ’timecorrection’.

Usage

timecorrection

Format

A (250x16)-matrix containing the correction factors for the scale estimators MAD, Qn, Sn, and
LSH and for the outlier treatments ’trimming’, ’downsizing large values’, ’downsizing moderate
values’, and ’winsorization’.

Source

The correction factors have been obtained by simulations.

var.n 45

References

Fried, R. (2004), Robust Filtering of Time Series with Trends, Journal of Nonparametric Statistics
16, 313-328.

See Also

robust.filter.

var.n Variance of the Repeated Median slope estimator.

Description

Empirical variance of the Repeated Median slope estimator, computed on standard normal noise in
moving windows of width n; required by the function scarm.filter.

Usage

data(var.n)

Format

The format is: num [1:300] NA NA NA NA 0.138 ...

Details

The variance of the Repeated Median slope estimator depends on the size of the window sample,
i.e. the window width n. These are results from simulations, where the Repeated Median slope has
been computed on standard normal noise in moving windows of width n. The value var.n[n] is
the variance for the window width n.

Source

The empirical variances have been obtained by simulations.

References

Borowski, M. and Fried, R. (2011) Robust moving window regression for online signal extrac-
tion from non-stationary time series: online window width adaption by testing for signal changes,
submitted.

46 wrm.filter

wrm.filter Weighted Repeated Median Filters for Univariate Time Series

Description

Filtering procedure based on a weighted version of Siegel’s (1982) repeated median (RM) and a
moving time window for robust extraction of low frequency components (the signal) in the presence
of outliers and shifts. One of several weight functions can be chosen to weight the observations in
each time window.

Usage

wrm.filter(y, width, weight.type = 1, del = floor(width/2), extrapolate = TRUE)

Arguments

y a numeric vector or (univariate) time series object.
width a positive integer defining the window width used for fitting.

If del = floor(width/2) (default) this needs to be an odd number.
weight.type Indicates the weight function used.

weight.type=0: equal weighting
weight.type=1: triangular weights (default)
weight.type=2: Epanechnikov weights

del a positve integer (smaller than width) specifying the delay of the signal extrac-
tion.
del=0 means online signal extraction without delay.
Default is del=floor(width/2).

extrapolate a logical indicating whether the level estimations should be extrapolated to the
edges of the time series.
If del = floor(width/2) (default) the extrapolation consists of the fitted values
within the first half of the first window and the last half of the last window;
if del=0 the extrapolation consists of the all fitted values within the first time
window.

Details

For online signal extraction without time delay, weighted repeated median filtering with triangular
weights is recommendable in the presence of isolated outliers and abrupt level shifts since it reacts
more quickly to shifts than unweighted repeated median filtering and provides higher efficiencies.
The window width should be chosen based on a guess of the minimal time period in which the
signal can be approximated by a straight line without abrupt shifts. Better results can be obtained
by increasing the delay, but often minimization of the time delay itself is one of the objectives so
that one prefers del=0. The procedure replaces missing values by simple extrapolations if these are
not within the first time window used for initialization.
For "offline" situations, it is intuitive to set del roughly equal to width/2. If the focus is rather
on smoothing than on signal extraction, the Epanechnikov kernel should be used rather than the
triangular kernel. In this case one can also use directly function wrm.smooth.

wrm.smooth 47

Value

wrm.filter returns an object of class wrm.filter. An object of class wrm.filter is a list con-
taining the following components:

y the original input time series.

level the corresponding signal level extracted by the filter.

slope the corresponding slope within each time window.

del the parameter specifying the delay of the signal extraction.

width width of the time window.

weight.type name of the weight function used for the fit.

The function plot returns a plot showing the original time series with the filtered output.

Author(s)

Roland Fried and Jochen Einbeck

References

These filtering procedures are described and investigated in
Fried, R., Einbeck, J., Gather, U. (2007), Weighted Repeated Median Smoothing and Filtering,
Journal of the American Statistical Association 102, 1300-1308.
Preliminary version available as technical report from https://eldorado.tu-dortmund.de/handle/
2003/21637

See Also

dw.filter, hybrid.filter, wrm.smooth

Examples

data(Nile)
nile <- as.numeric(Nile)
obj <- wrm.filter(nile, width=11)
plot(obj)

wrm.smooth Weighted Repeated Median Smoothing

Description

A robust smoothing tool using a kernel weighted version of Siegel’s (1982) repeated median. It can
be seen as an alternative to local linear L1 regression.

Usage

wrm.smooth(x, y, h, xgrid, weight = 2)

https://eldorado.tu-dortmund.de/handle/2003/21637
https://eldorado.tu-dortmund.de/handle/2003/21637

48 wrm.smooth

Arguments

x Vector of predictors.

y Vector of responses, needs to have the same length as x.

h Bandwidth, measured in the same units as the explanatory (independent) vari-
able x: (x[0]-h,x[0]+h) is the range of x-values to be included in the local
smoothing at x[0]. Needs to be a positive number.

xgrid Grid on which fitted values are to be evaluated. The default is here to take the in-
put values x for a sample size of at most 100, and seq(min(x),max(x),l=100)
otherwise.

weight Indicates the weight function used.

weight=1 triangular weights
weight=2 Epanechnikov weights (default)
weight=3 Gaussian weights
weight=4 Biweight
weight=5 Uniform weights

Details

Weighted repeated median (WRM) smoothing was suggested in a signal extraction framework by
Fried, Einbeck & Gather (2007). It combines the advantages of weighted and repeated medians, i.e.
the WRM smoother is robust to outliers and adapts to linear trends (through the slope parameter
of the repeated median, which is calculated by applying two consecutive weighted medians onto
the pairwise slopes). The theory and simulations provided by Fried, Einbeck & Gather focus on
online signal extraction from time series. Warning: The case of a kernel weighted repeated median
smoother for arbitraty non-equidistant design (as implemented here) is not fully investigated yet.

The procedure copes with missing values by omitting them.

Value

wrm.smooth returns an object of class wrm.smooth. An object of class wrm.smooth is a list con-
taining the following components:

y the original input time series.

level the corresponding signal level extraceted by the weighted Repeated Median fil-
ter.

slope the corresponding WRM slope within each time window.

h bandwidth.

xgrid vector with grid values.

weight name of the weight function used for the fit.

The function plot returns a plot showing the original data with the smoothed output.

Author(s)

Jochen Einbeck and Roland Fried

wrm.smooth 49

References

Fried, R., Einbeck, J., Gather, U. (2007), Weighted Repeated Median Smoothing and Filtering,
Journal of the American Statistical Association 102, 1300-1308.
Preliminary version available as technical report from https://eldorado.tu-dortmund.de/handle/
2003/21637

Siegel, A.F. (1982). Robust regression using repeated medians. Biometrika 68, 242-244.

See Also

wrm.filter

Examples

data(faithful) # Old Faithful Geyser data
faith.WRM <- wrm.smooth(faithful$w, faithful$e,h=4)
plot(faith.WRM)

https://eldorado.tu-dortmund.de/handle/2003/21637
https://eldorado.tu-dortmund.de/handle/2003/21637

Index

∗Topic datasets
const, 8
const.Q, 9
critvals, 10
dfs, 10
multi.ts, 33
sizecorrection, 44
timecorrection, 44
var.n, 45

∗Topic multivariate
madore.filter, 26

∗Topic regression
madore.filter, 26

∗Topic robust
adore.filter, 5
dr.filter, 12
dw.filter, 13
hybrid.filter, 17
lms.filter, 20
lqd.filter, 22
lts.filter, 24
madore.filter, 26
med.filter, 28
mscarm.filter, 30
rm.filter, 33
robreg.filter, 35
robust.filter, 38
scarm.filter, 41
wrm.filter, 46
wrm.smooth, 47

∗Topic smooth
adore.filter, 5
dr.filter, 12
dw.filter, 13
hybrid.filter, 17
lms.filter, 20
lqd.filter, 22
lts.filter, 24
madore.filter, 26

med.filter, 28
mscarm.filter, 30
rm.filter, 33
robreg.filter, 35
robust.filter, 38
scarm.filter, 41
wrm.smooth, 47

∗Topic ts
adore.filter, 5
dr.filter, 12
dw.filter, 13
hybrid.filter, 17
lms.filter, 20
lqd.filter, 22
lts.filter, 24
madore.filter, 26
med.filter, 28
mscarm.filter, 30
rm.filter, 33
robreg.filter, 35
robust.filter, 38
scarm.filter, 41
wrm.filter, 46

adore.filter, 5, 28, 32, 35, 43

const, 8
const.Q, 9
critvals, 10

dfs, 10
dr.filter, 12
dw.filter, 13, 20, 37, 41, 47

hybrid.filter, 17, 17, 37, 41, 47

lms.filter, 20
lqd.filter, 22
lts.filter, 24

madore.filter, 7, 26, 32, 35, 43

50

INDEX 51

med.filter, 28
mscarm.filter, 28, 30, 43
multi.ts, 33

rm.filter, 33
robfilter (robfilter-package), 2
robfilter-package, 2
robreg.filter, 7, 13, 17, 20, 22, 23, 25, 28,

30, 32, 35, 35, 41, 43
robust.filter, 17, 20, 37, 38, 45

scarm.filter, 7, 28, 32, 35, 41
sizecorrection, 44

timecorrection, 44

var.n, 45

wrm.filter, 7, 17, 20, 37, 41, 46, 49
wrm.smooth, 46, 47, 47

	robfilter-package
	adore.filter
	const
	const.Q
	critvals
	dfs
	dr.filter
	dw.filter
	hybrid.filter
	lms.filter
	lqd.filter
	lts.filter
	madore.filter
	med.filter
	mscarm.filter
	multi.ts
	rm.filter
	robreg.filter
	robust.filter
	scarm.filter
	sizecorrection
	timecorrection
	var.n
	wrm.filter
	wrm.smooth
	Index

