Package ‘rock’

October 31, 2021
Title Reproducible Open Coding Kit
Version 0.5.1
Maintainer Gjalt-Jorn Ygram Peters <gjalt-jorn@behaviorchange.eu>

Description The Reproducible Open Coding Kit (‘(ROCK', and this package, 'rock’)
was developed to facilitate reproducible and open coding, specifically
geared towards qualitative research methods. Although it is a
general-purpose toolkit, three specific applications have been
implemented, specifically an interface to the TENA' package that
implements Epistemic Network Analysis (ENA'"), means to process notes
from Cognitive Interviews ('CIs'), and means to work with decentralized
construct taxonomies ('DCTs").

BugReports https://gitlab.com/r-packages/rock/-/issues

URL https://r-packages.gitlab.io/rock
License GPL-3

Encoding UTF-8

RoxygenNote 7.1.2

Depends R (>=3.0.0)

Imports data.tree (>= 0.7.8), dplyr (>= 0.7.8), DiagrammeR (>= 1.0.0),
DiagrammeRsvg (>= 0.1), ggplot2 (>= 3.2.0), glue (>= 1.3.0),
graphics (>= 3.0.0), htmltools (>= 0.5.0), markdown (>= 1.1),
purrr (>= 0.2.5), stats (>= 3.0.0), utils (>= 3.5.0), yaml (>=
2.2.0), yam (>= 0.1.0)

Suggests covr, googlesheets4, haven (>= 2.4), justifier (>= 0.2),
knitr, openxlsx (>= 4.2), preregr (>= 0.1.9), rENA (>=0.1.6),
readxl, rmarkdown, rstudioapi, testthat, writexl, XLConnect

VignetteBuilder knitr

NeedsCompilation no

Author Gjalt-Jorn Ygram Peters [aut, cre]
(<https://orcid.org/0000-0002-0336-9589>),

Szilvia Zorgo [ctb] (<https://orcid.org/0000-0002-6916-2097>)

Repository CRAN

Date/Publication 2021-10-31 19:40:02 UTC

https://gitlab.com/r-packages/rock/-/issues
https://r-packages.gitlab.io/rock
https://orcid.org/0000-0002-0336-9589
https://orcid.org/0000-0002-6916-2097

2 R topics documented:

R topics documented:

add_html_tags oL e 3
apply_graph_theme L 4
base30toNuUmeric e 5
catl . . . L e e e e 6
CI_GEt_Item o e e e e e e e 6
ci_heatmap e 7
CI_IMPOTt_NTM_SPEC . . .+ v v v o v e e i e e e e e e e e e e e e 8
cleaned_source_to_utteranCe_Vvector i v i i e e 9
clean_source 9
codelds_to_codePaths 13
codePaths_to_namedVector e 14
code_freq_hist. L e 15
COde_SOUICE v v o e e e e e e e e e e 16
codingSchemes_get_all 18
collapse_OCCUrrences v it e e 19
collect_coded_fragments 20
convert_df to_source e e 22
create_codingScheme 27
create_COOCCUITENCE_MALIIX v v v v v v e e e e e e e e e e e e e e e e e 28
CSS v i e e e e e e e e e e 29
expand_attributes L L. L e 30
exportTOHTML o . e 31
exXport_codes_to_tXt. e e e e e e e 32
export_mergedSourceDf_to_csv 34
export_to_html L 35
extract_codings_by_coderld o 36
form_to_rmd_template 37
generate_Uids L e 39
generic_recoding e 40
get_childCodelds e 41
get_source_filter 42
heading e 43
inspect_coded_sources 43
load_source e 44
mask_SOUICE e e 46
match_consecutive_delimiters 48
METZE_SOUICES .« . v v v v v e 49
ODPES . o o e 50
parsed_sources_to_ena_networko Lo 52
PAISE_SOUICE . . .« . v v v vt e i e e e e e e e e e e e e e e 53
parse_source_by_coderld 56
prepend_ids_to_SOUrce e e e e 57
prereg_initialize L. e e 59
printrock_graphlist Lo 60
rbind_dfs 60

rbind_df List. 61

add_html_tags 3

read_spreadsheet e 61
recode_addChildCodes 63
recode_delete 65
1eCOde_MEIZE . . .« . v v o o e e e e e e e e e e e e e e e e e e 66
recode_MOVE v v i e e e e e e e 68
recode Ie€NAME v v v e e e e e e e e e e e e 70
recode_split e e e e 71
TEPEALSIT L e e e e 73
TOCK . . . o e e e 74
root_from_codePaths 74
SAVe_WOTKSPACe L. e e e 75
show_attribute_table 76
show_inductive_code_tree 77
stripCodePathRoot 78
vecTXt . . o e e e e 78
WrapVeCctor e 79
yaml_delimiter_indices 80
Index 81
add_html_tags Add HTML tags to a source
Description

This function adds HTML tags to a source to allow pretty printing/viewing.

Usage

add_html_tags(
X,
context = NULL,
codeClass = rock::opts$get(codeClass),
codeValueClass = rock: :opts$get(codeValueClass),
idClass = rock::opts$get(idClass),
sectionClass = rock::opts$get(sectionClass),
uidClass = rock::opts$get(uidClass),
contextClass = rock::opts$get(contextClass),
utteranceClass = rock: :opts$get(utteranceClass)

Arguments

X A character vector with the source

context Optionally, lines to pass the contextClass

4 apply_graph_theme

codeClass, codeValueClass, idClass, sectionClass, uidClass, contextClass, utteranceClass
The classes to use for, respectively, codes, code values, class instance iden-
tifiers (such as case identifiers or coder identifiers), section breaks, utterance
identifiers, context, and full utterances. All elements except for the full
utterances, which are placed in <div> elements.

Value

The character vector with the replacements made.

Examples

Add tags to a mini example source
add_html_tags("[[cid=participant1]]

This is something this participant may have said.
Just like this. [[thisIsACode]]
---paragraph-break---

And another utterance.”);

apply_graph_theme Apply multiple DiagrammeR global graph attributes

Description

Apply multiple DiagrammeR global graph attributes

Usage
apply_graph_theme(graph, ...)
Arguments
graph The DiagrammeR::DiagrammeR graph to apply the attributes to.
One or more character vectors of length three, where the first element is the
attribute, the second the value, and the third, the attribute type (graph, node, or
edge).
Value

The DiagrammeR::DiagrammeR graph.

Examples

1

exampleSource <-

codes:
id: parentCode
label: Parent code

base30toNumeric 5

children:

id: childCode1
id: childCode2

id: childCode3

label: Child Code

parentId: parentCode

children: [grandChild1l, grandChild2]

parsedSource <-
parse_source(text=exampleSource);
miniGraph <-
apply_graph_theme(data. tree: :ToDiagrammeRGraph (parsedSource$deductiveCodeTrees),
c("color”, "#00QOAA", "node"),
c("shape”, "triangle"”, "node"),
c("fontcolor”, "#FF0000", "node"));
This line should be run when executing this example as test, because
rendering a DiagrammeR graph takes quite long
Not run:
DiagrammeR: :render_graph(miniGraph);

End(Not run)

base30toNumeric Conversion between basel0 and base30

Description

The conversion functions from base10 to base30 and vice versa are used by the generate_uids()
functions.

Usage
base30toNumeric(x)
numericToBase30(x)

Arguments

X The vector to convert (numeric for numericToBase30, character for base3@toNumeric).

Details

The symbols to represent the *base 30” system are the 0-9 followed by the alphabet without vowels
but including the y. This vector is available as base30.

6 ci_get_item

Value

The converted vector (numeric for base3@toNumeric, character for numericToBase30).

Examples

numericToBase30(654321);
base3@toNumeric(numericToBase30(654321));

cato Concatenate to screen without spaces

Description

The catO function is to cat what paste0 is to paste; it simply makes concatenating many strings
without a separator easier.

Usage
cato(..., sep = "")
Arguments
The character vector(s) to print; passed to cat.
sep The separator to pass to cat, of course, "" by default.
Value

Nothing (invisible NULL, like cat).

Examples
cat@("The first variable is '", names(mtcars)[1], "'.");
ci_get_item Get an item in a specific language

Description

This function takes a Narrative Response Model specification as used in NRM-based cognitive
interviews, and composes an item based on the specified template for that item, the specified stimuli,
and the requested language.

Usage

ci_get_item(nrm_spec, item_id, language)

ci_heatmap 7

Arguments
nrm_spec The Narrative Response Model specification.
item_id The identifier of the requested item.
language The language of the stimuli.

Value

A character value with the item.

ci_heatmap Create a heatmap showing issues with items

Description

When conducting cognitive interviews, it can be useful to quickly inspect the code distributions for
each item. These heatmaps facilitate that process.

Usage
ci_heatmap(
X y
itemIdentifier = "uiid”,
codingScheme = "peterson”,

itemlab = "Item"”,

codelab = "Code",

freqlab = "Frequency"”,

plotTitle = "Cognitive Interview Heatmap”,
fillScale = ggplot2::scale_fill_viridis_c(),
theme = ggplot2::theme_minimal()

Arguments
X The object with the parsed coded source(s) as resulting from a call to parse_source()
or parse_sources().
itemIdentifier The column identifying the items.

codingScheme The coding scheme, either as a string if it represents one of the cognitive inter-
viewig coding schemes provided with the rock package, or as a coding scheme
resulting from a call to create_codingScheme().

itemlab, codelab, freqlab
Labels to use for the item and code axes and for the frequency color legend.

plotTitle The title to use for the plot
fillScale Convenient way to specify the fill scale (the colours)

theme Convenient way to specify the ggplot2::ggplot() theme.

8 ci_import_nrm_spec

Value

The heatmap

Examples

examplePath <- file.path(system.file(package="rock"”), 'extdata');
parsedCI <- parse_source(file.path(examplePath,
"ci_example_1.rock"));

ci_heatmap(parsedCI,
codingScheme = "peterson”);

ci_import_nrm_spec Import a Narrative Response Model specification

Description

Narrative Response Models are a description of the theory of how a measurement instrument that
measures a psychological construct works, geared towards conducting cognitive interviews to verify
the validity of that measurement instrument. One a Narrative Response Model has been imported, it
can be used to generate interview schemes, overview of each item’s narrative response model, and
combined with coded cognitive interview notes or transcripts.

Usage

ci_import_nrm_spec(
X,
read_ss_args = list(exportGoogleSheet = TRUE),
silent = rock::opts$get(”silent"”)

)
S3 method for class 'rock_ci_nrm'
print(x, ...)
Arguments
X A path to a file or an URL to a Google Sheet, passed to read_spreadsheet ().

read_ss_args A named list with arguments to pass to read_spreadsheet ().
silent Whether to be silent or chatty.

Additional arguments are ignored.

Value

A rock_ci_nrm object.

cleaned_source_to_utterance_vector 9

cleaned_source_to_utterance_vector
Convert a character vector into an utterance vector

Description

Utterance vectors are split by the utterance marker. Note that if x has more than one element, the
separate elements will remain separate.

Usage

cleaned_source_to_utterance_vector(
X!
utteranceMarker = rock::opts$get("utteranceMarker”),
fixed = FALSE,

perl = TRUE
)
Arguments
X The character vector.
utteranceMarker
The utterance marker (by default, a newline character conform the ROCK stan-
dard).
fixed Whether the utteranceMarker is a regular expression.
perl If the utteranceMarker is a regular expression, whether it is a perl regular
expression.
Examples

cleaned_source_to_utterance_vector("first\nsecond\nthird");

clean_source Cleaning & editing sources

Description

These functions can be used to ’clean’ one or more sources or perform search and replace taks.
Cleaning consists of two operations: splitting the source at utterance markers, and conducting search
and replaces using regular expressions.

10 clean_source

Usage

clean_source(
input,
output = NULL,
replacementsPre = rock: :opts$get(replacementsPre),
replacementsPost = rock::opts$get(replacementsPost),
extraReplacementsPre = NULL,
extraReplacementsPost = NULL,
removeNewlines = FALSE,
removeTrailingNewlines = TRUE,
rlWarn = rock: :opts$get(rlWarn),
utteranceSplits = rock::opts$get(utteranceSplits),
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

clean_sources(
input,
output,
outputPrefix = "",
outputSuffix = "_cleaned”,
recursive = TRUE,
filenameRegex = ".x",
replacementsPre = rock: :opts$get(replacementsPre),
replacementsPost = rock::opts$get(replacementsPost),
extraReplacementsPre = NULL,
extraReplacementsPost = NULL,
removeNewlines = FALSE,
utteranceSplits = rock::opts$get(utteranceSplits),
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

search_and_replace_in_source(
input,
replacements = NULL,
output = NULL,
preventOverwriting = TRUE,
encoding = "UTF-8",
rlWarn = rock: :opts$get(rlWarn),
silent = FALSE

search_and_replace_in_sources(
input,
output,

clean_source 11

replacements = NULL,

outputPrefix = "",

outputSuffix = "_postReplacing”,

preventOverwriting = rock::opts$get("preventOverwriting”),
recursive = TRUE,

filenameRegex = ".*x",

encoding = rock::opts$get(”encoding”),

silent = rock::opts$get(”silent"”)

)
Arguments
input For clean_source and search_and_replace_in_source, either a character
vector containing the text of the relevant source or a path to a file that contains
the source text; for clean_sources and search_and_replace_in_sources, a
path to a directory that contains the sources to clean.
output For clean_source and search_and_replace_in_source, if not NULL, this is

the name (and path) of the file in which to save the processed source (if it is NULL,
the result will be returned visibly). For clean_sources and search_and_replace_in_sources,
output is mandatory and is the path to the directory where to store the processed
sources. This path will be created with a warning if it does not exist. An excep-
tion is if "same" is specified - in that case, every file will be written to the same
directory it was read from.

replacementsPre, replacementsPost
Each is a list of two-element vectors, where the first element in each vector
contains a regular expression to search for in the source(s), and the second el-
ement contains the replacement (these are passed as perl regular expressions;
see regex for more information). Instead of regular expressions, simple words
or phrases can also be entered of course (since those are valid regular expres-
sions). replacementsPre are executed before the utteranceSplits are ap-
plied; replacementsPost afterwards.

extraReplacementsPre, extraReplacementsPost
To perform more replacements than the default set, these can be conveniently
specified in extraReplacementsPre and extraReplacementsPost. This pre-
vents you from having to manually copypaste the list of defaults to retain it.

removeNewlines Whether to remove all newline characters from the source before starting to
clean them. Be careful: if the source contains YAML fragments, these will also
be affected by this, and will probably become invalid!
removeTrailingNewlines
Whether to remove trailing newline characters (i.e. at the end of a character
value in a character vector);

rlWarn Whether to let readLines () warn, e.g. if files do not end with a newline char-

acter.
utteranceSplits

This is a vector of regular expressions that specify where to insert breaks be-

tween utterances in the source(s). Such breakes are specified using utteranceMarker.
preventOverwriting

Whether to prevent overwriting of output files.

12

encoding

silent

clean_source

The encoding of the source(s).

Whether to suppress the warning about not editing the cleaned source.

outputPrefix, outputSuffix

recursive

filenameRegex

replacements

Details

The prefix and suffix to add to the filenames when writing the processed files to
disk.

Whether to search all subdirectories (TRUE) as well or not.

A regular expression to match against located files; only files matching this reg-
ular expression are processed.

The strings to search & replace, as a list of two-element vectors, where the
first element in each vector contains a regular expression to search for in the
source(s), and the second element contains the replacement (these are passed as
perl regular expressions; see regex for more information). Instead of regular
expressions, simple words or phrases can also be entered of course (since those
are valid regular expressions).

The cleaning functions, when called with their default arguments, will do the following:

* Double periods (. .) will be replaced with single periods (.)

* Four or more periods (... or) will be replaced with three periods

* Three or more newline characters will be replaced by one newline character (which will be-
come more, if the sentence before that character marks the end of an utterance)

» All sentences will become separate utterances (in a semi-smart manner; specifically, breaks in
speaking, if represented by three periods, are not considered sentence ends, wheread ellipses
("..." or unicode 2026, see the example) are.

e If there are comma’s without a space following them, a space will be inserted.

Value

A character vector for clean_source, or a list of character vectors, for clean_sources.

Examples

exampleSource <-

"Do you like icecream?

Well, that depends\u2026 Sometimes, when it's..... Nice. Then I do,

but otherwise...

not really, actually.”

Default settings:
cat(clean_source(exampleSource));

First remove existing newlines:
cat(clean_source(exampleSource,

removeNewlines=TRUE));

codelds_to_codePaths 13

#i## Example with a YAML fragment
exampleWithYAML <-

c(
"Do you like icecream?”,

nn
’
nn
’

"Well, that depends\u2026 Sometimes, when it's..... Nice.",
"Then I do,"”,
"but otherwise... not really, actually.”,

nn

"This acts as some YAML. So this won't be split.”,
"Not real YAML, mind... It just has the delimiters, really.”,

"This is an utterance again.”

);

cat(
rock: :clean_source(
exampleWithYAML
)?
sep="\n"

);

exampleSource <-
"Do you like icecream?

Well, that depends\u2026 Sometimes, when it's..... Nice. Then I do,
but otherwise... not really, actually.”

Simple text replacements:
cat(search_and_replace_in_source(exampleSource,
replacements=list(c("”\u2026", "..."),
c("Nice", "Great"))));

Using a regular expression to capitalize all words following
a period:
cat(search_and_replace_in_source(exampleSource,
replacements=1list(c("\\. (\\s*)([a-z1)", ".\\T\\U\\2"))));

codelds_to_codePaths Replace code identifiers with their full paths

Description

This function replaces the column names in the mergedSourceDf data frame in a rock_parsedSource
or rock_parsedSources object with the full paths to those code identifiers.

14 codePaths_to_named Vector

Usage

codeIds_to_codePaths(

X,

stripRootsFromCodePaths = rock: :opts$get(”stripRootsFromCodePaths")
)

Arguments

X A rock_parsedSource or rock_parsedSources object as returned by a call to
parse_source() or parse_sources().

stripRootsFromCodePaths
Whether to strip the roots first (i.e. the type of code)

Value

An adapted rock_parsedSource or rock_parsedSources object.

codePaths_to_namedVector
Get a vector to find the full paths based on the leaf code identifier

Description

This function names a vector with the leaf code using the codeTreeMarker stored in the opts object
as marker.

Usage

codePaths_to_namedVector(x)

Arguments

X A vector of code paths.

Value

The named vector of code paths.

Examples

codePaths_to_namedVector(
c("codes>reason>parent_feels”,
"codes>reason>child_feels")

);

code_freq_hist 15

code_freg_hist Create a frequency histogram for codes

Description

Create a frequency histogram for codes

Usage

code_freq_hist(
X,
codes = ".x",
sortByFreq = "decreasing”,
forceRootStripping = FALSE,
trimSourceldentifiers = 20,
ggplot2Theme = ggplot2::theme(legend.position = "bottom"),
silent = rock::opts$get(”silent"”)

)
Arguments
X A parsed source(s) object.
codes A regular expression to select codes to include.
sortByFreq Whether to sort by frequency decreasingly (decreasing, the default), increas-
ingly (increasing), or alphabetically (NULL).
forceRootStripping

Force the stripping of roots, even if they are different.

trimSourceldentifiers
If not NULL, the number of character to trim the source identifiers to.

ggplot2Theme Can be used to specify theme elements for the plot.

silent Whether to be chatty or silent.

Value

aggplot2::ggplot().

16 code_source

code_source Add one or more codes to one or more sources

Description

These functions add codes to one or more sources that were read with one of the loading_sources
functions.

Usage

code_source(
input,
codes,
indices = NULL,
output = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
rlWarn = rock::opts$get(rlWarn),
encoding = rock: :opts$get(”encoding”),
silent = rock::opts$get(”silent”)

code_sources(
input,
codes,
output = NULL,
indices = NULL,

outputPrefix = "",
outputSuffix = "_coded”,
recursive = TRUE,
filenameRegex = ".x",

preventOverwriting = rock::opts$get("preventOverwriting”),
encoding = rock: :opts$get(”encoding”),
silent = rock::opts$get(”silent"”)

)
Arguments
input The source, or list of sources, as produced by one of the loading_sources
functions.
codes A named character vector, where each element is the code to be added to the

matching utterance, and the corresponding name is either an utterance identifier
(in which case the utterance with that identifier will be coded with that code), a
code (in which case all utterances with that code will be coded with the new code
as well), a digit (in which case the utterance at that line number in the source will
be coded with that code), or a regular expression, in which case all utterances
matching that regular expression will be coded with that source. If specifying an

code_source 17

utterance ID or code, make sure that the code delimiters are included (normally,
two square brackets).

indices If input is a source as loaded by loading_sources, indices can be used to
pass a logical vector of the same length as input that indicates to which utter-
ance the code in codes should be applied. Note that if indices is provided,
only the first element of codes is used, and its name is ignored.

output If specified, the coded source will be written here.
preventOverwriting
Whether to prevent overwriting existing files.

rlWarn Whether to let readLines() warn, e.g. if files do not end with a newline char-
acter.

encoding The encoding to use.

silent Whether to be chatty or quiet.

outputPrefix, outputSuffix
A prefix and/or suffix to prepend and/or append to the filenames to distinguish
them from the input filenames.

recursive Whether to also read files from all subdirectories of the input directory

filenameRegex Only input files matching this patterns will be read.

Value

Invisibly, the coded source object.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock");

Parse single example source
loadedExample <- rock::load_source(exampleFile);

Show line 71
cat(loadedExample[71]);

#i## Specify the rules to code all utterances
containing "Ipsum” with the code 'ipsum' and
all utterances containing the code
codeSpecs <-
c("(?i)ipsum” = "ipsum”,
"BC|AD|\\d\\d\\d\\ds" = "timeRef");

#i## Apply rules
codedExample <- code_source(loadedExample,

18 codingSchemes_get_all

codeSpecs);

Show line 71
cat(codedExample[71]);

Also add code "foo” to utterances with code 'ipsum'
moreCodedExample <- code_source(codedExample,
c("[Lipsum]]” = "foo"));

Show line 71
cat(moreCodedExample[71]);

Use the 'indices' argument to add the code 'bar' to
line 71
overCodedExample <- code_source(moreCodedExample,
"bar",
indices=71);

cat(overCodedExample[71]);

codingSchemes_get_all Convenience function to get a list of all available coding schemes

Description

Convenience function to get a list of all available coding schemes

Usage

codingSchemes_get_all()

Value

A list of all available coding schemes

Examples

rock: :codingSchemes_get_all();

collapse_occurrences 19

collapse_occurrences Collapse the occurrences in utterances into groups

Description

This function collapses all occurrences into groups sharing the same identifier, by default the
stanzald identifier ([[sid=..]]).

Usage

collapse_occurrences(
parsedSource,
collapseBy = "stanzald"”,
columns = NULL,
logical = FALSE

Arguments

parsedSource The parsed sources as provided by parse_source().

collapseBy The column in the sourceDf (in the parsedSource object) to collapse by (i.e.
the column specifying the groups to collapse).

columns The columns to collapse; if unspecified (i.e. NULL), all codes stored in the code
object in the codings object in the parsedSource object are taken (i.e. all used
codes in the parsedSource object).

logical Whether to return the counts of the occurrences (FALSE) or simply whether any
code occurreded in the group at all (TRUE).

Value

A dataframe with one row for each value of of collapseBy and columns for collapseBy and each
of the columns, with in the cells the counts (if logical is FALSE) or TRUE or FALSE (if logical is
TRUE).

Examples

Get path to example source
exampleFile <-
system.file("extdata"”, "example-1.rock”, package="rock");

Parse example source
parsedExample <-
rock: :parse_source(exampleFile);

Collapse logically, using a code (either occurring or not):
collapsedExample <-
rock: :collapse_occurrences(parsedExample,

20 collect_coded_fragments

collapseBy = 'childCodel');

Show result: only two rows left after collapsing,
because 'childCodel' is either @ or 1:
collapsedExample;

Collapse using weights (i.e. count codes in each segment):
collapsedExample <-
rock: :collapse_occurrences(parsedExample,
collapseBy = 'childCodel',
logical=FALSE);

collect_coded_fragments
Create an overview of coded fragments

Description

Collect all coded utterances and optionally add some context (utterances before and utterances after)
to create ann overview of all coded fragments per code.

Usage
collect_coded_fragments(
X,
codes = ".x",

context = 0,

attributes = NULL,

heading = NULL,

headinglLevel = 3,

add_html_tags = TRUE,

cleanUtterances = FALSE,

output = NULL,

outputViewer = "viewer”,

template = "default”,

rawResult = FALSE,

includeCSS = TRUE,

includeBootstrap = rock::opts$get(”includeBootstrap”),
preventOverwriting = rock::opts$get(preventOverwriting),
silent = rock::opts$get(silent)

Arguments

X The parsed source(s) as provided by rock: : parse_source or rock: : parse_sources.

codes The regular expression that matches the codes to include

collect_coded_fragments 21

context How many utterances before and after the target utterances to include in the
fragments.
attributes To only select coded utterances matching one or more values for one or more

attributes, pass a list where every element’s name is a valid (i.e. occurring)
attribute name, and every element is a character value with a regular expression
specifying all values for that attribute to select.

heading Optionally, a title to include in the output. The title will be prefixed with
headingLevel hashes (#), and the codes with headinglLevel+1 hashes. If NULL
(the default), a heading will be generated that includes the collected codes if
those are five or less. If a character value is specified, that will be used. To omit
a heading, set to anything that is not NULL or a character vector (e.g. FALSE).
If no heading is used, the code prefix will be headinglLevel hashes, instead of
headinglLevel+1 hashes.

headinglLevel The number of hashes to insert before the headings.

add_html_tags Whether to add HTML tags to the result.
cleanUtterances
Whether to use the clean or the raw utterances when constructing the fragments

(the raw versions contain all codes). Note that this should be set to FALSE to
have add_html_tags be of the most use.

output Here, a path and filename can be provided where the result will be written. If
provided, the result will be returned invisibly.

outputViewer If showing output, where to show the output: in the console (outputViewer="'console")
or in the viewer (outputViewer="'viewer'), e.g. the RStudio viewer. You’ll
usually want the latter when outputting HTML, and otherwise the former.

template The template to load; either the name of one of the ROCK templates (currently,
only ’default’ is available), or the path and filename of a CSS file.

rawResult Whether to return the raw result, a list of the fragments, or one character value
in markdown format.

includeCSS Whether to include the ROCK CSS in the returned HTML.

includeBootstrap
Whether to include the default bootstrap CSS.

preventOverwriting

Whether to prevent overwriting of output files.

silent Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.

Details

By default, the output is optimized for inclusion in an R Markdown document. To optimize output
for the R console or a plain text file, without any HTML codes, set add_html_tags to FALSE, and
potentially set cleanUtterances to only return the utterances, without the codes.

Value

Either a list of character vectors, or a single character value.

22 convert_df to_source

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(
examplePath, "example-1.rock”

s

#i## Parse single example source
parsedExample <-
rock: :parse_source(
exampleFile

s

Show organised coded fragments in Markdown
cat(
rock: :collect_coded_fragments(
parsedExample
)
)5

Only for the codes containing 'Code2'
cat(
rock: :collect_coded_fragments(
parsedExample,
"Code2’

convert_df_to_source Convert 'rectangular’ or spreadsheet-format data to one or more
sources

Description

These functions first import data from a ’data format’, such as spreadsheets in .x1sx format,
comma-separated values files (. csv), or SPSS data files (. sav). You can also just use R data frames
(imported however you want). These functions then use the columns you specified to convert these
data to one (oneFile=TRUE) or more (oneFile=FALSE) rock source file(s), optionally including
class instance identifiers (such as case identifiers to identify participants, or location identifiers, or
moment identifiers, etc) and using those to link the utterances to attributes from columns you spec-
ified. You can also precode the utterances with codes you specify (if you ever would want to for
some reason).

convert_df to_source

Usage

convert_df_to_source(
data,
output = NULL,
omit_empty_rows = TRUE,
cols_to_utterances = NULL,
cols_to_ciids = NULL,
cols_to_codes = NULL,
cols_to_attributes = NULL,
oneFile = TRUE,
cols_to_sourceFilename = cols_to_ciids,
cols_in_sourceFilename_sep = "="
sourceFilename_prefix = "source_",
sourceFilename_suffix = "",
ciid_labels = NULL,
ciid_separator = "=",
attributesFile = NULL,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

convert_csv_to_source(
file,
importArgs = NULL,
omit_empty_rows = TRUE,
output = NULL,
cols_to_utterances = NULL,
cols_to_ciids = NULL,
cols_to_codes = NULL,
cols_to_attributes = NULL,
oneFile = TRUE,
cols_to_sourceFilename = cols_to_ciids,
cols_in_sourceFilename_sep = "="
sourceFilename_prefix = "source_",
sourceFilename_suffix = ""
ciid_labels = NULL,
ciid_separator = "=",
attributesFile = NULL,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

convert_csv2_to_source(
file,
importArgs = NULL,
omit_empty_rows = TRUE,

24

output = NULL,

cols_to_utterances = NULL,
cols_to_ciids = NULL,

cols_to_codes = NULL,
cols_to_attributes = NULL,

oneFile = TRUE,

cols_to_sourceFilename = cols_to_ciids,

n_n

cols_in_sourceFilename_sep = ,

n

sourceFilename_prefix = "source_",
sourceFilename_suffix = "",
ciid_labels = NULL,

ciid_separator = "=",
attributesFile = NULL,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),

silent = rock::opts$get(silent)

convert_x1lsx_to_source(
file,
importArgs = list(overwrite = !preventOverwriting),
omit_empty_rows = TRUE,
output = NULL,
cols_to_utterances = NULL,
cols_to_ciids = NULL,
cols_to_codes = NULL,
cols_to_attributes = NULL,
oneFile = TRUE,
cols_to_sourceFilename = cols_to_ciids,
cols_in_sourceFilename_sep = "=",
sourceFilename_prefix = "source_",
sourceFilename_suffix = "",
ciid_labels = NULL,
ciid_separator = "=",
attributesFile = NULL,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

convert_sav_to_source(
file,
importArgs = NULL,
omit_empty_rows = TRUE,
output = NULL,
cols_to_utterances = NULL,
cols_to_ciids = NULL,
cols_to_codes = NULL,

convert_df to_source

convert_df to_source

25

cols_to_attributes = NULL,

oneFile = TRUE,

cols_to_sourceFilename = cols_to_ciids,
cols_in_sourceFilename_sep = "=",
sourceFilename_prefix = "source_",

nn

sourceFilename_suffix = s

ciid_labels =
ciid_separator =

NULL,

n_n
]

attributesFile = NULL,

preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),

silent = rock::opts$get(silent)

Arguments

data
output

omit_empty_rows

The data frame containing the data to convert.

If oneFile=TRUE (the default), the name (and path) of the file in which to save
the processed source (if it is NULL, the resulting character vector will be returned
visibly instead of invisibly). Note that the ROCK convention is to use .rock
as extension. If oneFile=FALSE, the path to which to write the sources (if it is
NULL, as a result a list of character vectors will be returned visibly instead of
invisibly).

Whether to omit rows where the values in the columns specified to convert to
utterances are all empty (or contain only whitespace).

cols_to_utterances

cols_to_ciids

cols_to_codes

The names of the columns to convert to utterances, as a character vectors.

The names of the columns to convert to class instance identifiers (e.g. case
identifiers), as a named character vector, with the values being the column names
in the data frame, and

The names of the columns to convert to codes (i.e. codes appended to every
utterance), as a character vectors.

cols_to_attributes

onefFile

The names of the columns to convert to attributes, as a named character vector,
where each name is the name of the class instance identifier to attach the attribute
to. If only one column is passed in cols_to_ciids, names can be omitted and
a regular unnames character vector can be passed.

Whether to store everything in one source, or create one source for each row
of the data (if this is set to FALSE, make sure that cols_to_sourceFilename
specifies one or more columns that together uniquely identify each row; also, in
that case, output must be an existing directory on your PC).

cols_to_sourceFilename

The columns to use as unique part of the filesname of each source. These will
be concatenated using cols_in_sourceFilename_sep as a separator. Note that
the final string must be unique for each row in the dataset, otherwise the file-
names for multiple rows will be the same and will be overwritten! By default,
the columns specified with class instance identifiers are used.

26

convert_df to_source

cols_in_sourceFilename_sep

The separator to use when concatenating the cols_to_sourceFilename.

sourceFilename_prefix, sourceFilename_suffix

ciid_labels

ciid_separator

Strings that are prepended and appended to the col_to_sourceFilename to
create the full filenames. Note that .rock will always be added to the end as
extension.

The labels for the class instance identifiers. Class instance identifiers have brief
codes used in coding (e.g. 'cid’ is the default for Case Identifiers, often used to
identify participants) as well as more ‘readable’ labels that are used in the at-
tributes (e.g. *caseld’ is the default class instance identifier for Case Identifiers).
These can be specified here as a named vector, with each element being the label
and the element’s name the identifier.

The separator for the class instance identifier - by default, either an equals sign
(=) or a colon (:) are supported, but an equals sign is less ambiguous, as a colon
is also used for different types of codes (e.g. codes for cognitive interviews start
with ci:, and unique construct identifiers (UCIDs) from psyverse start with dct:.

attributesFile Optionally, a file to write the attributes to if you don’t want them to be written
to the source file(s).

preventOverwriting
Whether to prevent overwriting of output files.

encoding The encoding of the source(s).

silent Whether to suppress the warning about not editing the cleaned source.

file The path to a file containing the data to convert.

importArgs Optionally, a list with named elements representing arguments to pass when
importing the file.

Value

A source as a character vector.

Examples

Get path to e
examplePath <-
system.file("ex

#i## Get a path to
exampleFile <-
file.path(examp

Read data int
dat <-
read.csv(exampl

Convert data

source_from_df <-

convert_df_to_s
dat,

xample files
tdata"”, package="rock");
file with example data frame
lePath, "spreadsheet-import-test.csv");
o a data frame
eFile);
frame to a source

ource(

create_codingScheme 27

cols_to_utterances = c("open_question_1",
"open_question_2"),

cols_to_ciids = c(cid = "id"),
cols_to_attributes = c("age", "gender"),
cols_to_codes = c("code_1", "code_2"),
ciid_labels = c(cid = "caselId”)
);
Show the result
cat(
source_from_df,
sep = "\n"
);

create_codingScheme Create a coding scheme

Description

This function can be used to specify a coding scheme that can then be used in analysis.

Usage

create_codingScheme (
id,
label,
codes,
codingInstructions = NULL,
description = "",
source = ""

codingScheme_peterson
codingScheme_levine

codingScheme_willis

Arguments
id An identifier for this coding scheme, consisting only of letters, numbers, and
underscores (and not starting with a number).
label A short human-readable label for the coding scheme.
codes A character vector with the codes in this scheme.
codinglInstructions

Coding instructions; a named character vector, where each element is a code’s
coding instruction, and each element’s name is the corresponding code.

28 create_cooccurrence_matrix

description A description of this coding scheme (i.e. for information that does not fit in the
label).
source Optionally, a description, reference, or URL of a source for this coding scheme.
Format

An object of class rock_codingScheme of length 5.
An object of class rock_codingScheme of length 5.

An object of class rock_codingScheme of length 5.

Details
A number of coding schemes for cognitive interviews are provided:
codingScheme_peterson Coding scheme from Peterson, Peterson & Powell, 2017

codingScheme_levine Coding scheme from Levine, Fowler & Brown, 2005

codingScheme_willis Coding scheme from Willis, 1999

Value

The coding scheme object.

create_cooccurrence_matrix
Create a co-occurrence matrix

Description

This function creates a co-occurrence matrix based on one or more coded sources. Optionally, it
plots a heatmap, simply by calling the stats: :heatmap() function on that matrix.

Usage

create_cooccurrence_matrix(
X!
codes = x$convenience$codinglLeaves,
plotHeatmap = FALSE

)

Arguments
X The parsed source(s) as provided by rock: : parse_source or rock: : parse_sources.
codes The codes to include; by default, takes all codes.

plotHeatmap Whether to plot the heatmap.

css 29

Value

The co-occurrence matrix; a matrix.

Examples

#i## Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

Create cooccurrence matrix
rock: :create_cooccurrence_matrix(parsedExamples);

css Create HTML fragment with CSS styling

Description

Create HTML fragment with CSS styling

Usage

css(
template = "default”,
includeBootstrap = rock::opts$get(”includeBootstrap”)

)
Arguments
template The template to load; either the name of one of the ROCK templates (currently,
only ’default’ is available), or the path and filename of a CSS file.
includeBootstrap
Whether to include the default bootstrap CSS.
Value

A character vector with the HTML fragment.

30

expand_attributes

expand_attributes

Expand categorical attribute variables to a series of dichotomous vari-
ables

Description

Expand categorical

Usage

attribute variables to a series of dichotomous variables

expand_attributes(

data,
attributes,
valuelabels =
prefix = "",
glue = "__"
suffix = "",

—_

NULL,

falseValue = 0,

trueValue = 1

’

valueFirst = TRUE,

append = TRUE

Arguments

data

attributes

valuelabels

prefix, suffix

glue

The data frame, normally the $mergedSources data frame that exists in the object
returned by a call to parse_sources().

The name of the attribute(s) to expand.

It’s possible to use different names for the created variables than the values of the
attributes. This can be set with the valuelLabels argument. If only one attribute
is specified, pass a named vector for valuelLabels, and if multiple attributes are
specified, pass a named list of named vectors, where the name of each vector
corresponds to an attribute passed in attributes. The names of the vector
elements must correspond to the values of the attributes (see the example).

The prefix and suffix to add to the variables names that are returned.

The glue to paste the first part ad the second part of the composite variable name
together.

falseValue, trueValue

valueFirst

append

The values to set for rows that, respectively, do not match and do match an
attribute value.

Whether to insert the attribute value first, or the attribute name, in the composite
variable names.

Whether to append the columns to the supplied data frame or not.

exportToHTML 31

Value

A data.frame

Examples

#i## Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock"”);

Parse single example source
parsedExample <- rock: :parse_source(exampleFile);

Create a categorical attribute column
parsedExample$mergedSourceDf$age_group <-
rep(c(”"<18", "18-30", "31-60", ">60"), each=13);

Expand to four logical columns
parsedExample$mergedSourceDf <-
rock: :expand_attributes(
parsedExample$mergedSourceDf,
"age_group”,
valuelLabels =
c(
"<18" = "youngest",
"18-30" = "youngish”,
"31-60" = "oldish",
">60" = "oldest"
),
valueFirst = FALSE
);

Show result

table(parsedExample$mergedSourceDf$age_group,
parsedExample$mergedSourceDf$age_group__youngest);

table(parsedExample$mergedSourceDf$age_group,
parsedExample$mergedSourceDf$age_group__oldish);

exportToHTML Exporting tables to HTML

Description

This function exports data frames or matrices to HTML, sending output to one or more of the
console, viewer, and one or more files.

32 export_codes_to_txt

Usage

exportToHTML (
input,
output = rock::opts$get(”tableOutput”),
tableOutputCSS = rock: :opts$get(”tableOutputCSS")

)
Arguments
input Either a data.frame, table, or matrix, or a list with three elements: pre,
input, and post. The pre and post are simply prepended and postpended to
the HTML generated based on the input$input element.
output The output: a character vector with one or more of "console" (the raw concate-

nated input, without conversion to HTML), "viewer", which uses the RStudio
viewer if available, and one or more filenames in existing directories.

tableOutputCSS The CSS to use for the HTML table.

Value

Invisibly, the (potentially concatenated) input as character vector.

Examples

exportToHTML (mtcars[1:5, 1:51);

export_codes_to_txt Export codes to a plain text file

Description

These function can be used to convert one or more parsed sources to HTML, or to convert all sources
to tabbed sections in Markdown.

Usage

export_codes_to_txt(
input,
output = NULL,
codeTree = "fullyMergedCodeTrees",
codingScheme = "codes”,
regex = ".x",
onlyChildrenOf = NULL,
leavesOnly = TRUE,
includePath = TRUE,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

export_codes_to_txt 33

Arguments
input An object of class rock_parsedSource (as resulting from a call to parse_source)
or of class rock_parsedSources (as resulting from a call to parse_sources.
output THe filename to write to.
codeTree Codes from which code tree to export the codes. Valid options are fullyMergedCodeTrees,

extendedDeductiveCodeTrees, deductiveCodeTrees, and inductiveCodeTrees.

codingScheme With the ROCK, it’s possible to use multiple coding scheme’s in parallel. The
ROCK default is called codes (using the double square brackets as code de-
limiters), but other delimiters can be used as well, and give a different name.
Use codingScheme to specify which code tree you want to export, if you have
multiple.

regex An optional regular expression: only codes matching this regular expression will
be selected.

onlyChildrenOf A character vector of one or more regular expressions that specify codes within
which to search. For example, if the code tree contains codes parent1 and
parent2, and each have a number of child codes, and parent is passed as
onlyChildrenOf, only the codes within parent are selected.

leavesOnly Whether to only write the leaves (i.e. codes that don’t have children) or all codes
in the code tree.

includePath Whether to only return the code itself (e.g. code) or also include the path to the
root (e.g. codel>code2>code).

preventOverwriting
Whether to prevent overwriting of output files.

encoding The encoding to use when writing the exported source(s).
silent Whether to suppress messages.
Value

A character vector.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

Show results of exporting the codes
export_codes_to_txt(parsedExamples);

Only show select a narrow set of codes
export_codes_to_txt(parsedExamples,
leavesOnly=TRUE,
includePath=FALSE,
onlyChildrenOf = "parentCode2”,

34 export_mergedSourceDf_to_csv

regex="5[6");

export_mergedSourceDf_to_csv
Export a merged source data frame

Description

Export a merged source data frame

Usage

export_mergedSourceDf_to_csv(
X,
file,
exportArgs = list(fileEncoding = rock::opts$get(”"encoding"”)),
preventOverwriting = rock::opts$get(”"preventOverwriting”),
silent = rock::opts$get(”"silent"”)

export_mergedSourceDf_to_csv2(
X,
file,
exportArgs = list(fileEncoding = rock::opts$get(”encoding”)),
preventOverwriting = rock::opts$get("preventOverwriting”),
silent = rock::opts$get(”silent"”)

)
export_mergedSourceDf_to_x1sx(
X!
file,
exportArgs = list(overwrite = !preventOverwriting),

preventOverwriting = rock::opts$get("preventOverwriting”),
silent = rock::opts$get(”"silent"”)

export_mergedSourceDf_to_sav(
X,
file,
exportArgs = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
silent = rock::opts$get(”silent"”)

export_to_html 35

Arguments
X The object with parsed sources.
file The file to export to.
exportArgs Optionally, arguments to pass to the function to use to export.
preventOverwriting
Whether to prevent overwriting if the file already exists.
silent Whether to be silent or chatty.
Value

Silently, the object with parsed sources.

export_to_html Export parsed sources to HTML or Markdown

Description

These function can be used to convert one or more parsed sources to HTML, or to convert all sources
to tabbed sections in Markdown.

Usage

export_to_html(
input,
output = NULL,
template = "default”,
fragment = FALSE,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

)

export_to_markdown (
input,
heading = "Sources”,

headinglLevel = 2,
template = "default”,
silent = rock::opts$get(silent)

Arguments

input An object of class rock_parsedSource (as resulting from a call to parse_source)
or of class rock_parsedSources (as resulting from a call to parse_sources.

36 extract_codings_by_coderld

output For export_to_html, either NULL to not write any files, or, if input is a single
rock_parsedSource, the filename to write to, and if input is a rock_parsedSources
object, the path to write to. This path will be created with a warning if it does

not exist.

template The template to load; either the name of one of the ROCK templates (currently,
only ’default’ is available), or the path and filename of a CSS file.

fragment Whether to include the CSS and HTML tags (FALSE) or just return the frag-
ment(s) with the source(s) (TRUE).

preventOverwriting

For export_to_html, whether to prevent overwriting of output files.
encoding For export_to_html, the encoding to use when writing the exported source(s).

silent Whether to suppress messages.

heading, headinglLevel
For

Value

A character vector or a list of character vectors.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

Export results to a temporary directory
tmpDir <- tempdir(check = TRUE);
prettySources <-
export_to_html(input = parsedExamples,
output = tmpDir);

Show first one
print(prettySources[[1]1);

extract_codings_by_coderId
Extract the codings by each coder using the coderld

Description

Extract the codings by each coder using the coderld

form_to_rmd_template 37

Usage
extract_codings_by_coderId(
input,
recursive = TRUE,
filenameRegex = ".x",

postponeDeductiveTreeBuilding = TRUE,
ignoreOddDelimiters = FALSE,
encoding = rock::opts$get(encoding),
silent = rock::opts$get(silent)

)

Arguments
input The directory with the sources.
recursive Whether to also process subdirectories.

filenameRegex Only files matching this regular expression will be processed.

postponeDeductiveTreeBuilding
Whether to build deductive code trees, or only store YAML fragments.

ignoreOddDelimiters
Whether to throw an error when encountering an odd number of YAML delim-
iters.
encoding The encoding of the files to read.
silent Whether to be chatty or silent.
Value

An object with the read sources.

form_to_rmd_template Convert a (pre)registration form to an R Markdown template

Description

This function creates an R Markdown template from a preregr (pre)registrations form specification.
Pass it the URL to a Google Sheet holding the (pre)registration form specification (in preregr for-
mat), see the "Creating a form from a spreadsheet” vignette), the path to a file with a spreadsheet
holding such a specification, or a loaded or imported preregr (pre)registration form.

Usage
form_to_rmd_template(
X’
file = NULL,
title = NULL,

author = NULL,

https://r-packages.gitlab.io/preregr/articles/creating_form_from_spreadsheet.html

38 form_to_rmd_template
date = "‘r format(Sys.time(), \"%H:%M:%S on %Y-%m-%d %Z (UTC%z)\")‘",
output = "html_document”,
yaml = list(title = title, author = author, date = date, output = output),
includeYAML = TRUE,
chunkOpts "echo=FALSE, results='hide'",
justify = FALSE,
headinglLevel = 1,
showSpecification = FALSE,
preventOverwriting = rock::opts$get("preventOverwriting”),
silent = rock::opts$get(”silent"”)
)
Arguments
X The (pre)registration form (as produced by a call to preregr: : form_create()
or preregr: :import_from_html()) or initialized preregr object (as produced
byacalltopreregr: :prereg_initialize() orpreregr::import_from_html());
or, for the printing method, the R Markdown template produced by a call to
preregr::form_to_rmd_template().
file Optionally, a file to save the html to.
title The title to specify in the template’s YAML front matter.
author The author to specify in the template’s YAML front matter.
date The date to specify in the template’s YAML front matter.
output The output format to specify in the template’s YAML front matter.
yaml It is also possible to specify the YAML front matter directly using this argument.
If used, it overrides anything specified in title, author, date and output.
includeYAML Whether to include the YAML front matter or omit it.
chunkOpts The chunk options to set for the chunks in the template.
justify Whether to use preregr: :prereg_specify() as function for specifying the
(pre)registration content (if FALSE), or preregr: :prereg_justify() (if TRUE).
headingLevel The level of the top-most heading to use (the title of the (pre)registration form).
showSpecification
Whether to show the specification in the Rmd output. When FALSE, the preregr
option silent is set to TRUE at the start of the Rmd template; otherwise, it is set
to FALSE.
preventOverwriting
Set to FALSE to override overwrite prevention.
silent Whether to be silent or chatty.
Value

X, invisibly

generate_uids

Examples

preregr::form_create(
title = "Example form”,
version = "0.1.0"

) 1>

preregr::form_to_rmd_template();

39

generate_uids Generate utterance identifiers (UIDs)

Description

This function generates utterance identifiers.

Usage

generate_uids(x, origin = Sys.time())

Arguments
X The number of identifiers te generate.
origin The origin to use when generating the actual identifiers. These identifiers are the
present UNIX timestamp (i.e. the number of seconds elapsed since the UNIX
epoch, the first of january 1970), accurate to two decimal places (i.e. to centisec-
onds), converted to the base 30 system using numericToBase30(). By default,
the present time is used as origin, one one centisecond is added for every identi-
fiers to generate. origin can be set to other values to work with different origins
(of course, don’t use this unless you understand very well what you’re doing!).
Value
A vector of UIDs.
Examples

generate_uids(5);

40 generic_recoding

generic_recoding Generic underlying recoding function

Description

This function contains the general set of actions that are always used when recoding a source (e.g.
check the input, document the justification, etc). Users should normally never call this function.

Usage

generic_recoding(
input,
codes,
func,
filter = TRUE,
output = NULL,
outputPrefix =
outputSuffix = "_recoded”,
decisionLabel = NULL,
justification = NULL,
justificationFile = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
encoding = rock: :opts$get(”encoding”),
silent = rock::opts$get(”silent”),

nn
’

)
Arguments

input One of 1) a character string specifying the path to a file with a source; 2) an ob-
ject with a loaded source as produced by a call to 1load_source(); 3) a character
string specifying the path to a directory containing one or more sources; 4) or an
object with a list of loaded sources as produced by a call to load_sources().

codes The codes to process

func The function to apply.

filter Optionally, a filter to apply to specify a subset of the source(s) to process (see
get_source_filter()).

output If specified, the coded source will be written here.

outputPrefix, outputSuffix
The prefix and suffix to add to the filenames when writing the processed files to
disk, in case multiple sources are passed as input.

decisionLabel A description of the (recoding) decision that was taken.

justification The justification for this action.

get_childCodelds 41

justificationFile

If specified, the justification is appended to this file. If not, it is saved to the
justifier::workspace(). This can then be saved or displayed at the end of
the R Markdown file or R script using justifier::save_workspace().

preventOverwriting
Whether to prevent overwriting existing files when writing the files to output.

encoding The encoding to use.
silent Whether to be chatty or quiet.

Other arguments to pass to fnc.

Value

Invisibly, the recoded source(s) or source(s) object.

get_childCodelds Get the code identifiers of the children of a code with a given identifier

Description

Get the code identifiers of the children of a code with a given identifier

Usage

get_childCodeIds(x, parentCodeld, returnNodes = FALSE)

Arguments

X The parsed sources object
parentCodeld The code identifier of the parent code

returnNodes Set to TRUE to return a list of nodes, not just the code identifiers

Value

A character vector with code identifiers (or a list of nodes)

42 get_source_filter

get_source_filter Create a filter to select utterances in a source

Description

This function takes a character vector with regular expressions, a numeric vector with numeric
indices, or a logical vector that is either as long as the source or has length 1; and then always
returns a logical vector of the same length as the source.

Usage

get_source_filter(
source,
filter,
ignore.case = TRUE,
invert = FALSE,

perl = TRUE,
)
Arguments
source The source to produce the filter for.
filter THe filtering criterion: a character vector with regular expressions, a numeric
vector with numeric indices, or a logical vector that is either as long as the source
or has length 1.
ignore.case Whether to apply the regular expression case sensitively or not (see base: :grepl()).
invert Whether to invert the result or not (i.e. whether the filter specifies what you want
to select (invert=FALSE) or what you don’t want to select (invert=TRUE)).
perl Whether the regular expression (if filter is a character vector) is a perl regular
expression or not (see base: :grepl()).
Any additional arguments are passed on to base: :grepl().
Value

A logical vector of the same length as the source.

heading 43

heading Print a heading

Description

This is just a convenience function to print a markdown or HTML heading at a given *depth’.

Usage

heading(
headinglLevel = rock::opts$get(”"defaultHeadinglLevel”),
output = "markdown”,
cat = TRUE

Arguments

The heading text: pasted together with no separator.

headinglLevel The level of the heading; the default can be set with e.g. rock: :opts$set (defaultHeadinglLevel=1).

output Whether to output to HTML ("html") or markdown (anything else).
cat Whether to cat (print) the heading or just invisibly return it.
Value

The heading, invisibly.

Examples

heading("Hello ", "World"”, headinglLevel=5);
This produces: "\n\n##### Hello World\n\n"

inspect_coded_sources Read sources from a directory, parse them, and show coded fragments
and code tree

Description

This function combines successive calls to parse_sources(), collect_coded_fragments() and
show_inductive_code_tree().

44 load_source

Usage
inspect_coded_sources(
path,
parse_args = list(extension = "rock|dct”, regex = NULL, recursive = TRUE,

ignoreOddDelimiters = FALSE, encoding = rock::opts$get(”encoding”), silent =
rock: :opts$get("silent")),

fragments_args = list(codes = ".*", context = 0),
inductive_tree_args = list(codes = ".x" , output = "both"”, headinglLevel = 3),
deductive_tree_args = list()
)
Arguments
path The path containing the sources to parse and inspect.
parse_args The arguments to pass to parse_sources().

fragments_args The arguments to pass to collect_coded_fragments().

inductive_tree_args
The arguments to pass to show_inductive_code_tree().

deductive_tree_args
Not yet implemented.

Value

The parsedSources object.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Inspect sources
rock: :inspect_coded_sources(examplePath);

load_source Load a source from a file or a string

Description

These functions load one or more source(s) from a file or a string and store it in memory for
further processing. Note that you’ll probably want to clean the sources first, using one of the
clean_sources() functions, and you’ll probably want to add utterance identifiers to each utter-
ance using one of the prepending_uids() functions.

load_source 45

Usage

load_source(

input,

encoding = rock: :opts$get(”encoding”),

silent = rock::opts$get(”silent”),

rlWarn = rock::opts$get(rlWarn),

diligentWarnings = rock::opts$get(”"diligentWarnings”)

load_sources(

input,

filenameRegex = ".x",

ignoreRegex = NULL,

recursive = TRUE,

full.names = FALSE,

encoding = rock: :opts$get(”encoding”),
silent = rock::opts$get(”"silent"”)

)
Arguments

input The filename or contents of the source for load_source and the directory con-
taining the sources for load_sources.

encoding The encoding of the file(s).

silent Whether to be chatty or quiet.

rlWarn Whether to let readLines() warn, e.g. if files do not end with a newline char-
acter.

diligentWarnings

Whether to display very diligent warnings.

filenameRegex A regular expression to match against located files; only files matching this reg-

ular expression are processed.

ignoreRegex Regular expression indicating which files to ignore. This is a perl-style regular
expression (see base::regex).
recursive Whether to search all subdirectories (TRUE) as well or not.
full.names Whether to store source names as filenames only or whether to include paths.
Value

Invisibly, an R character vector of classes rock_source and character.

Examples

Get path to example source
examplePath <-

system.file("extdata”, package="rock");

Get a path to one example file

46

exampleFile <-

file.path(examplePath, "example-1.rock");

#i## Parse single example source
loadedSource <- rock::load_source(exampleFile);

mask_source

mask_source Masking sources

Description

These functions can be used to mask a set of utterances or one or more sources.

Usage

mask_source(

input,

output = NULL,

proportionToMask = 1,

preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),

rlWarn = rock::opts$get(rlWarn),

maskRegex = "[[:alnum:]1]",

maskChar = "X",

perl = TRUE,

silent = rock::opts$get(silent)

mask_sources(

input,

output,

proportionToMask = 1,
outputPrefix = "",
outputSuffix = "_masked”,

maskRegex = "[[:alnum:]1]",

maskChar = "X",

perl = TRUE,

recursive = TRUE,

filenameRegex = ".x",

filenameReplacement = c(”_PRIVATE_", "_public_"),
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),

silent = rock::opts$get(silent)

mask_utterances(

input,

mask_source 47

proportionToMask = 1,
maskRegex = "[[:alnum:]1]",
maskChar = "X",

perl = TRUE
)
Arguments

input For mask_utterance, a character vector where each element is one utterance;
for mask_source, either a character vector containing the text of the relevant
source or a path to a file that contains the source text; for mask_sources, a path
to a directory that contains the sources to mask.

output For mask_source, if not NULL, this is the name (and path) of the file in which to
save the processed source (if it is NULL, the result will be returned visibly). For
mask_sources, output is mandatory and is the path to the directory where to
store the processed sources. This path will be created with a warning if it does
not exist. An exception is if "same" is specified - in that case, every file will be
written to the same directory it was read from.

proportionToMask
The proportion of utterances to mask, from 0 (none) to 1 (all).

preventOverwriting
Whether to prevent overwriting of output files.

encoding The encoding of the source(s).

rlWarn Whether to let readLines () warn, e.g. if files do not end with a newline char-
acter.

maskRegex A regular expresssion (regex) specifying the characters to mask (i.e. replace
with the masking character).

maskChar The character to replace the character to mask with.

perl Whether the regular expression is a perl regex or not.

silent Whether to suppress the warning about not editing the cleaned source.

outputPrefix, outputSuffix
The prefix and suffix to add to the filenames when writing the processed files to
disk.

recursive Whether to search all subdirectories (TRUE) as well or not.

filenameRegex A regular expression to match against located files; only files matching this reg-
ular expression are processed.

filenameReplacement
A character vector with two elements that represent, respectively, the pattern
and replacement arguments of the gsub() function. In other words, the first
argument specifies a regular expression to search for in every processed file-
name, and the second argument specifies a regular expression that replaces any
matches with the first argument. Set to NULL to not perform any replacement on
the output file name.

Value

A character vector for mask_utterance and mask_source, or a list of character vectors, for mask_sources.

48 match_consecutive_delimiters

Examples

Mask text but not the codes
rock: :mask_utterances(
pasted(
"Lorem ipsum dolor sit amet, consectetur adipiscing ",
"elit. [[expAttitude_expectation_73dnt5z1>earplugsFeelUnpleasant]]”
)
)

match_consecutive_delimiters
Match the corresponding indices of (YAML) delimiters in a sequantial
list

Description

Match the corresponding indices of (YAML) delimiters in a sequantial list

Usage

match_consecutive_delimiters(
X?
errorOnInvalidX = FALSE,
errorOnOdd = FALSE,
onOddIgnoreFirst = FALSE

)
Arguments

X The vector with delimiter indices

errorOnInvalidX
Whether to return NA (if FALSE) or throw an error (if TRUE) when x is NULL, NA,
or has less than 2 elements.

erroronOdd Whether to throw an error if the number of delimiter indices is odd.

onOddIgnoreFirst

If the number of delimiter indices is odd and no error is thrown, whether to
ignore the first (TRUE) or the last (FALSE) delimiter.

merge_sources

49

merge_sources Merge source files by different coders

Description

This function takes sets of sources and merges them using the utterance identifiers (UIDs) to match
them.

Usage

merge_sources(

)
Arguments
input The directory containing the input sources.
output The path to the directory where to store the merged sources. This path will be

input,

output,

outputPrefix = "",

outputSuffix = "_merged”,
primarySourcesRegex = ".*",
primarySourcesIgnoreRegex = outputSuffix,
primarySourcesPath = input,

recursive = TRUE,

primarySourcesRecursive = recursive,
filenameRegex = ".x",
postponeDeductiveTreeBuilding = TRUE,
ignoreOddDelimiters = FALSE,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent),
inheritSilence = FALSE

created with a warning if it does not exist. An exception is if "same" is specified
- in that case, every file will be written to the same directory it was read from.

outputPrefix, outputSuffix
A pre- and/or suffix to add to the filename when writing the merged sources

(especially useful when writing them to the same directory).

primarySourcesRegex
A regular expression that specifies how to recognize the primary sources (i.e.

the files used as the basis, to which the codes from other sources are added).

primarySourcesIgnoreRegex

A regular expression that specifies which files to ignore as primary files.

primarySourcesPath

The path containing the primary sources.

50

opts

recursive, primarySourcesRecursive
Whether to read files from sub-directories (TRUE) or not.

filenameRegex Only files matching this regular expression are read.

postponeDeductiveTreeBuilding
Whether to imediately try to build the deductive tree(s) based on the information
in this file (FALSE) or whether to skip that. Skipping this is useful if the full tree
information is distributed over multiple files (in which case you should probably
call parse_sources instead of parse_source).

ignoreOddDelimiters
If an odd number of YAML delimiters is encountered, whether this should result
in an error (FALSE) or just be silently ignored (TRUE).

preventOverwriting
Whether to prevent overwriting existing files or not.

encoding The encoding of the file to read (in file).
silent Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.

inheritSilence If not silent, whether to let functions called by merge_sources inherit that set-
ting.

Value

Invisibly, a list of the parsed, primary, and merged sources.

opts Options for the rock package

Description

The rock: : opts object contains three functions to set, get, and reset options used by the rock pack-
age. Use rock: :opts$set to set options, rock: :opts$get to get options, or rock: :opts$reset
to reset specific or all options to their default values.

Usage

opts

Format

An object of class 1ist of length 4.

Details

It is normally not necessary to get or set rock options. The defaults implement the Reproducible
Open Coding Kit (ROCK) standard, and deviating from these defaults therefore means the pro-
cessed sources and codes are not compatible and cannot be processed by other software that imple-
ments the ROCK. Still, in some cases this degree of customization might be desirable.

The following arguments can be passed:

opts 51

... For rock: :opts$set, the dots can be used to specify the options to set, in the format option =
value, for example, utteranceMarker = "\n". For rock: :opts$reset, a list of options to
be reset can be passed.

option For rock: :opts$set, the name of the option to set.

default For rock: :optss$get, the default value to return if the option has not been manually spec-
ified.

The following options can be set:

codeRegexes A named character vector with one or more regular expressions that specify how to
extract the codes (that were used to code the sources). These regular expressions must each
contain one capturing group to capture the codes.

idRegexes A named character vector with one or more regular expressions that specify how to
extract the different types of identifiers. These regular expressions must each contain one
capturing group to capture the identifiers.

sectionRegexes A named character vector with one or more regular expressions that specify how
to extract the different types of sections.

autoGeneratelds The names of the idRegexes that, if missing, should receive autogenerated iden-
tifiers (which consist of *autogenerated_’ followed by an incrementing number).

persistentlds The names of the idRegexes for the identifiers which, once attached to an utterance,
should be attached to all following utterances as well (until a new identifier with the same
name is encountered, after which that identifier will be attached to all following utterances,
etc).

noCodes This regular expression is matched with all codes after they have been extracted using the
codeRegexes regular expression (i.e. they’re matched against the codes themselves without,
for example, the square brackets in the default code regex). Any codes matching this noCodes
regular expression will be ignored, i.e., removed from the list of codes.

inductiveCodingHierarchyMarker For inductive coding, this marker is used to indicate hierar-
chical relationships between codes. The code at the left hand side of this marker will be
considered the parent code of the code on the right hand side. More than two levels can be
specified in one code (for example, if the inductiveCodingHierarchyMarker is’>’, the code
grandparent>child>grandchild would indicate codes at three levels.

attributeContainers The name of YAML fragments containing case attributes (e.g. metadata,
demographic variables, quantitative data about cases, etc).

codesContainers The name of YAML fragments containing (parts of) deductive coding trees.
delimiterRegEx The regular expression that is used to extract the YAML fragments.

codeDelimiters A character vector of two elements specifying the opening and closing delimiters
of codes (conform the default ROCK convention, two square brackets). The square brackets
will be escaped; other characters will not, but will be used as-is.

ignoreRegex The regular expression that is used to delete lines before any other processing. This
can be used to enable adding comments to sources, which are then ignored during analysis.

includeBootstrap Whether to include the default bootstrap CSS.

utteranceMarker How to specify breaks between utterances in the source(s). The ROCK conven-
tion is to use a newline (\\n).

52 parsed_sources_to_ena_network

coderld A regular expression specifying the coder identifier, specified similarly to the codeRegexes.

idForOmittedCoderlds The identifier to use for utterances that do not have a coder id (i.e. utter-
ance that occur in a source that does not specify a coder id, or above the line where a coder id
is specified).

Examples

Get the default utteranceMarker
rock: :opts$get (utteranceMarker);

Set it to a custom version, so that every line starts with a pipe
rock: :opts$set(utteranceMarker = "\n|");

Check that it worked
rock: :opts$get(utteranceMarker);

Reset this option to its default value
rock: :opts$reset(utteranceMarker);

Check that the reset worked, too
rock: :opts$get (utteranceMarker);

parsed_sources_to_ena_network
Create an ENA network out of one or more parsed sources

Description

Create an ENA network out of one or more parsed sources

Usage
parsed_sources_to_ena_network(
X’
unitCols,
conversationCols = "originalSource”,

codes = x$convenience$codinglLeaves,
metadata = x$convenience$attributesVars

)

Arguments
X The parsed source(s) as provided by rock: : parse_source or rock: : parse_sources.
unitCols The columns that together define units (e.g. utterances in each source that belong

together, for example because they’re about the same topic).

parse_source 53

conversationCols

The columns that together define conversations (e.g. separate sources, but can
be something else, as well).

codes The codes to include; by default, takes all codes.

metadata The columns in the merged source dataframe that contain the metadata. By
default, takes all read metadata.

Value

The result of a call to rENA: :ena.plot.network().

Examples

#i## Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

Add something to indicate which units belong together; normally,
these would probably be indicated using one of the identifier,
#i## for example the stanza identifiers, the sid's
nChunks <- nrow(parsedExamples$mergedSourceDf) %/% 10;
parsedExamples$mergedSourceDf$units <-
c(rep(1:nChunks, each=10), rep(max(nChunks), nrow(parsedExamples$mergedSourceDf) - (10*nChunks)));

Generate ENA plot

enaPlot <-
rock: :parsed_sources_to_ena_network(parsedExamples,
unitCols="units');

Show the resulting plot
print(enaPlot);

parse_source Parsing sources

Description

These function parse one (parse_source) or more (parse_sources) sources and the contained
identifiers, sections, and codes.

54 parse_source

Usage

parse_source(
text,
file,
utterancelLabelRegexes = NULL,
ignoreOddDelimiters = FALSE,
checkClassInstancelds = rock::opts$get(checkClassInstancelds),
postponeDeductiveTreeBuilding = FALSE,
rlWarn = rock: :opts$get(rlWarn),
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

)

S3 method for class 'rock_parsedSource'
print(x, prefix = "### ", ...)

parse_sources(

path,
extension = "rock]|dct"”,
regex = NULL,

recursive = TRUE,
ignoreOddDelimiters = FALSE,
checkClassInstancelds = rock::opts$get(checkClassInstancelds),
mergelnductiveTrees = FALSE,
encoding = rock::opts$get(encoding),
silent = rock::opts$get(silent)
)

S3 method for class 'rock_parsedSources'
print(x, prefix = "### ", ...)

S3 method for class 'rock_parsedSources'
plot(x, ...)

Arguments

text, file As text or file, you can specify a file to read with encoding encoding,
which will then be read using base: :readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base: : readLines()); although if a character vector of one element
and including at least one newline character (\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a
file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.

parse_source

55

utterancelLabelRegexes

Optionally, a list with two-element vectors to preprocess utterances before they
are stored as labels (these ’utterance perl regular expression!

ignoreOddDelimiters

If an odd number of YAML delimiters is encountered, whether this should result
in an error (FALSE) or just be silently ignored (TRUE).

checkClassInstancelds

Whether to check for the occurrence of class instance identifiers specified in the
attributes.

postponeDeductiveTreeBuilding

Whether to imediately try to build the deductive tree(s) based on the information
in this file (FALSE) or whether to skip that. Skipping this is useful if the full tree
information is distributed over multiple files (in which case you should probably
call parse_sources instead of parse_source).

rlWarn Whether to let readLines() warn, e.g. if files do not end with a newline char-
acter.

encoding The encoding of the file to read (in file).

silent Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.

X The object to print.

prefix The prefix to use before the "headings’ of the printed result.
Any additional arguments are passed on to the default print method.

path The path containing the files to read.

extension The extension of the files to read; files with other extensions will be ignored.
Multiple extensions can be separated by a pipe (|).

regex Instead of specifing an extension, it’s also possible to specify a regular expres-
sion; only files matching this regular expression are read. If specified, regex
takes precedece over extension,

recursive Whether to also process subdirectories (TRUE) or not (FALSE).

mergeInductiveTrees
Merge multiple inductive code trees into one; this functionality is currently not
yet implemented.

Examples

#i## Get path to example source

examplePath <-

system.file("extdata”, package="rock");

#i## Get a path to one example file

exampleFile <-

file.path(examplePath, "example-1.rock");

Parse single example source
parsedExample <- rock: :parse_source(exampleFile);

Show inductive code tree for the codes

56

#i## extracted with the regular expression specified with
the name 'codes':
parsedExample$inductiveCodeTrees$codes;

If you want ‘rock‘ to be chatty, use:
parsedExample <- rock::parse_source(exampleFile,
silent=FALSE);

Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

Show combined inductive code tree for the codes

extracted with the regular expression specified with
the name 'codes':
parsedExamples$inductiveCodeTrees$codes;

parse_source_by_coderld

parse_source_by_coderId

Parsing sources separately for each coder

Description

Parsing sources separately for each coder

Usage

parse_source_by_coderId(
input,
ignoreOddDelimiters = FALSE,
postponeDeductiveTreeBuilding = TRUE,
rlWarn = rock: :opts$get(rlWarn),
encoding = "UTF-8",
silent = TRUE

)
parse_sources_by_coderId(
input,
recursive = TRUE,
filenameRegex = ".x",

ignoreOddDelimiters = FALSE,
postponeDeductiveTreeBuilding = TRUE,
encoding = rock: :opts$get(encoding),
silent = rock::opts$get(silent)

prepend_ids_to_source

Arguments

input

57

For parse_source_by_coderId, either a character vector containing the text of
the relevant source or a path to a file that contains the source text; for parse_sources_by_coderId,
a path to a directory that contains the sources to parse.

ignoreOddDelimiters

If an odd number of YAML delimiters is encountered, whether this should result
in an error (FALSE) or just be silently ignored (TRUE).

postponeDeductiveTreeBuilding

rlWarn

encoding
silent
recursive

filenameRegex

Examples

Whether to imediately try to build the deductive tree(s) based on the information
in this file (FALSE) or whether to skip that. Skipping this is useful if the full tree
information is distributed over multiple files (in which case you should probably
call parse_sources instead of parse_source).

Whether to let readLines() warn, e.g. if files do not end with a newline char-
acter.

The encoding of the file to read (in file).
Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.
Whether to search all subdirectories (TRUE) as well or not.

A regular expression to match against located files; only files matching this reg-
ular expression are processed.

Get path to example source

examplePath <-

system.file("extdata”, package="rock");

Get a path to one example file

exampleFile <-

file.path(examplePath, "example-1.rock"”);

Parse single example source

parsedExample <-

rock: :parse_source_by_coderId(exampleFile);

prepend_ids_to_source Prepending unique utterance identifiers

Description

This function prepends unique utterance identifiers to each utterance (line) in a source. Note that
you’ll probably want to clean the sources using clean_sources() first.

58 prepend_ids_to_source

Usage

prepend_ids_to_source(
input,
output = NULL,
origin = Sys.time(),
rlWarn = rock: :opts$get(rlWarn),
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock::opts$get(encoding),
silent = rock::opts$get(silent)

)

prepend_ids_to_sources(
input,
output = NULL,
outputPrefix = "",
outputSuffix = "_withUIDs",

origin = Sys.time(),

preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding),

silent = rock::opts$get(silent)

)
Arguments

input The filename or contents of the source for prepend_ids_to_source and the
directory containing the sources for prepend_ids_to_sources.

output The filename where to write the resulting file for prepend_ids_to_source and
the directory where to write the resulting files for prepend_ids_to_sources

origin The time to use for the first identifier.

rlWarn Whether to let readLines() warn, e.g. if files do not end with a newline char-
acter.

preventOverwriting
Whether to overwrite existing files (FALSE) or prevent that from happening
(TRUE).

encoding The encoding of the file(s).

silent Whether to be chatty or quiet.

outputPrefix, outputSuffix

The prefix and suffix to add to the filenames when writing the processed files to
disk.

Value

The source with prepended uids, either invisible (if output if specified) or visibly (if not).

Examples

Simple example

prereg_initialize 59

rock: :prepend_ids_to_source(
"brief\nexample\nsource”

);

Example including fake YAML fragments
longerExampleText <-

c(

"So this is an utterance (i.e. outside of YAML)",
"This, too.",

"Another real utterance outside of YAML",
"Another one outside”,
"Last 'real utterance'”

);
rock: :prepend_ids_to_source(
longerExampleText
);
prereg_initialize Initialize a (pre)registration
Description

To initialize a (pre)registration, pass the URL to a Google Sheet holding the (pre)registration form
specification (in preregr format), see the "Creating a form from a spreadsheet” vignette), the path to a
file with a spreadsheet holding such a specification, or a loaded or imported preregr (pre)registration

form.
Usage
prereg_initialize(x, initialText = "Unspecified")
Arguments
X The (pre)registration form specification, as a URL to a Google Sheet or online
file or as the path to a locally stored file.
initialText The text to initialize every field with.
Details

For an introduction to working with preregr (pre)registrations, see the "Specifying preregistration
content" vignette.

https://r-packages.gitlab.io/preregr/articles/creating_form_from_spreadsheet.html
https://r-packages.gitlab.io/preregr/articles/specifying_prereg_content.html
https://r-packages.gitlab.io/preregr/articles/specifying_prereg_content.html

60 rbind_dfs

Value

The empty (pre)registration specification.

Examples

rock: :prereg_initialize(
"preregQE_v0_93"
);

print.rock_graphList Plot the graphs in a list of graphs

Description

Plot the graphs in a list of graphs

Usage
S3 method for class 'rock_graphList'
print(x, ...)
Arguments
X The list of graphs
Any other arguments are passed to DiagrammeR: : render_graph().
Value

X, invisibly

rbind_dfs Simple alternative for rbind.fill or bind_rows

Description

Simple alternative for rbind.fill or bind_rows

Usage
rbind_dfs(x, y, clearRowNames = TRUE)

Arguments
X One dataframe
y Another dataframe

clearRowNames Whether to clear row names (to avoid duplication)

rbind_df list

Value

The merged dataframe

Examples

rbind_dfs(Orange, mtcars);

61

rbind_df_list Bind lots of dataframes together rowwise

Description

Bind lots of dataframes together rowwise

Usage

rbind_df_list(x)

Arguments

X A list of dataframes

Value

A dataframe

Examples

rbind_df_list(list(Orange, mtcars, ChickWeight));

read_spreadsheet Convenience function to read spreadsheet-like files

Description

Currently reads spreadsheets from Google Sheets or from x1sx, csv, or sav files.

62 read_spreadsheet

Usage
read_spreadsheet(
X’
sheet = NULL,

columnDictionary = NULL,

localBackup = NULL,

exportGoogleSheet = FALSE,

flattenSingleDf = FALSE,

x1sxPkg = c("rw_x1", "openxlsx"”, "XLConnect"),
failQuietly = FALSE,

silent = rock::opts$get(”silent"”)

)
Arguments

X The URL or path to a file.

sheet Optionally, the name(s) of the worksheet(s) to select.

columnDictionary
Optionally, a dictionary with column names to check for presence. A named list
of vectors.

localBackup If not NULL, a valid filename to write a local backup to.

exportGoogleSheet
If x is a URL to a Google Sheet, instead of using the googlesheets4 package to
download the data, by passing exportGoogleSheet=TRUE, an export link will
be produced and the data will be downloaded as Excel spreadsheet.

flattenSingleDf
Whether to return the result as a data frame if only one data frame is returned as
a result.

x1sxPkg Which package to use to work with Excel spreadsheets.

failQuietly Whether to give an error when x is not a valid URL or existing file, or just return
NULL invisibly.

silent Whether to be silent or chatty.

Value

A list of dataframes, or, if only one data frame was loaded and flattenSingleDf is TRUE, a data
frame.

Examples

This requires an internet connection!
Not run:
read_spreadsheet(
pasted(
"https://docs.google.com/",
"spreadsheets/d/",
"1bHDzpCu4CwEa5_3_q_9vH2691XPhCS3e4Aj_HLhw_U8"

recode_addChildCodes

)
);

End(Not run)

63

recode_addChildCodes Add child codes under a parent code

Description

This function conditionally splits a code into multiple codes. Note that you may want to use
recode_addChildCodes() instead to not lose the original coding.

Usage

recode_addChildCodes(

input,

codes,
childCodes,
filter = TRUE
output = NULL
decisionLabel
justification

’

= NULL,
= NULL,

justificationFile = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
encoding = rock: :opts$get(”encoding”),

silent = rock

Arguments

input

codes
childCodes

::opts$get(”silent”)

One of 1) a character string specifying the path to a file with a source; 2) an ob-
ject with a loaded source as produced by a call to load_source(); 3) a character
string specifying the path to a directory containing one or more sources; 4) or an
object with a list of loaded sources as produced by a call to load_sources().

A single character value with the code to add the child codes to.

A named list with specifying when to add which child code. Each element of
this list is a filtering criterion that will be passed on to get_source_filter()
to create the actual filter that will be applied. The name of each element is
the code that will be applied to utterances matching that filter. When call-
ing recode_addChildCodes() for a single source, instead of passing the fil-
tering criterion, it is also possible to pass a filter (i.e. the result of the call
to get_source_filter()), which allows more finegrained control. Note that
these *child code filters’ and the corresponding codes are processed sequentially
in the order specified in childCodes. Any utterances coded with the code spec-
ified in codes that do not match with any of the ’child code filters’ specified as
the childCodes elements will remain unchanged. To create a catch-all ("else’)
category, pass ".*" or TRUE as a filter (see the example).

64

recode_addChildCodes

filter Optionally, a filter to apply to specify a subset of the source(s) to process (see
get_source_filter()).

output If specified, the recoded source(s) will be written here.
decisionLabel A description of the (recoding) decision that was taken.

justification The justification for this action.

justificationFile
If specified, the justification is appended to this file. If not, it is saved to the
justifier::workspace(). This can then be saved or displayed at the end of
the R Markdown file or R script using justifier::save_workspace().
preventOverwriting
Whether to prevent overwriting existing files when writing the files to output.

encoding The encoding to use.
silent Whether to be chatty or quiet.
Value

Invisibly, the changed source(s) or source(s) object.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock");

Load example source
loadedExampleSource <- rock::load_source(exampleFile);

Split a code into two codes, showing progress (the backticks are
used to be able to specify a name that starts with an underscore)
recoded_source <-
rock: : recode_addChildCodes(
loadedExampleSource,
codes="childCodel",
childCodes = list(
‘_and_t = " and ",
book = "book",
‘_else_* = TRUE
),
silent=FALSE

);

recode_delete 65

recode_delete Remove one or more codes

Description

These functions remove one or more codes from a source, and make it easy to justify that decision.

Usage

recode_delete(
input,
codes,
filter = TRUE,
output = NULL,
childrenReplaceParents = TRUE,
recursiveDeletion = FALSE,
decisionLabel = NULL,
justification = NULL,
justificationFile = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
encoding = rock: :opts$get(”encoding”),
silent = rock::opts$get(”silent"”)

)
Arguments

input One of 1) a character string specifying the path to a file with a source; 2) an ob-
ject with a loaded source as produced by a call to load_source(); 3) a character
string specifying the path to a directory containing one or more sources; 4) or an
object with a list of loaded sources as produced by a call to load_sources().

codes A character vector with codes to remove.

filter Optionally, a filter to apply to specify a subset of the source(s) to process (see
get_source_filter()).

output If specified, the recoded source(s) will be written here.

childrenReplaceParents
Whether children should be deleted (FALSE) or take their parent code’s place
(TRUE). This is ignored if recursiveDeletion=TRUE, in which case children
are always deleted.

recursiveDeletion
Whether to also delete a code’s parents (TRUE), if they have no other children,
and keep doing this until the root is reached, or whether to leave parent codes
alone (FALSE). This takes precedence over childrenReplaceParents.

decisionLabel A description of the (recoding) decision that was taken.

justification The justification for this action.

66 recode_merge

justificationFile
If specified, the justification is appended to this file. If not, it is saved to the
justifier::workspace(). This can then be saved or displayed at the end of
the R Markdown file or R script using justifier::save_workspace().
preventOverwriting
Whether to prevent overwriting existing files when writing the files to output.

encoding The encoding to use.
silent Whether to be chatty or quiet.
Value

Invisibly, the recoded source(s) or source(s) object.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock"”);

Load example source
loadedExample <- rock::load_source(exampleFile);

Delete two codes, moving children to the codes' parents
recoded_source <-
rock: :recode_delete(
loadedExample,
codes=c("childCode2"”, "childCodel"),
silent=FALSE
);

Process an entire directory
list_of_recoded_sources <-
rock: :recode_delete(
examplePath,
codes=c("childCode2", "childCodel"),
silent=FALSE
);

recode_merge Merge two or more codes

Description

This function merges two or more codes into one.

recode_merge 67

Usage

recode_merge(
input,
codes,
mergeToCode,
filter = TRUE,
output = NULL,
decisionLabel = NULL,
justification = NULL,
justificationFile = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
encoding = rock: :opts$get(”encoding”),
silent = rock::opts$get(”"silent"”)

)
Arguments

input One of 1) a character string specifying the path to a file with a source; 2) an ob-
ject with a loaded source as produced by a call to load_source(); 3) a character
string specifying the path to a directory containing one or more sources; 4) or an
object with a list of loaded sources as produced by a call to load_sources().

codes A character vector with the codes to merge.

mergeToCode A single character vector with the merged code.

filter Optionally, a filter to apply to specify a subset of the source(s) to process (see
get_source_filter()).

output If specified, the recoded source(s) will be written here.

decisionLabel A description of the (recoding) decision that was taken.

justification The justification for this action.
justificationFile
If specified, the justification is appended to this file. If not, it is saved to the
justifier: :workspace(). This can then be saved or displayed at the end of
the R Markdown file or R script using justifier::save_workspace().
preventOverwriting
Whether to prevent overwriting existing files when writing the files to output.

encoding The encoding to use.
silent Whether to be chatty or quiet.
Value

Invisibly, the changed source(s) or source(s) object.

Examples

#i## Get path to example source
examplePath <-
system.file("extdata”, package="rock");

68

recode_move

Get a path to one example file
exampleFile <-

file.path(examplePath, "example-1.rock"”);

Load example source
loadedExample <- rock::load_source(exampleFile);

Move two codes to a new parent, showing progress
recoded_source <-

rock: :recode_merge(
loadedExample,
codes=c("childCode2", "grandchildCode2"),
mergeToCode="mergedCode",
silent=FALSE

recode_move Move one or more codes to a different parent

Description

Usage

These functions move a code to a different parent (and therefore, ancestry) in one or more sources.

recode_move (

input,

codes,

newAncestry,

filter = TRUE,

output = NULL,

decisionLabel = NULL,

justification = NULL,
justificationFile = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
encoding = rock: :opts$get(”encoding”),
silent = rock::opts$get(”silent"”)

Arguments

input One of 1) a character string specifying the path to a file with a source; 2) an ob-

ject with a loaded source as produced by a call to load_source(); 3) a character
string specifying the path to a directory containing one or more sources; 4) or an
object with a list of loaded sources as produced by a call to load_sources().

codes A character vector with codes to move.

recode_move 69

newAncestry The new parent code, optionally including the partial or full ancestry (i.e. the
path of parent codes all the way up to the root).

filter Optionally, a filter to apply to specify a subset of the source(s) to process (see
get_source_filter()).

output If specified, the recoded source(s) will be written here.
decisionLabel A description of the (recoding) decision that was taken.

justification The justification for this action.

justificationFile
If specified, the justification is appended to this file. If not, it is saved to the
justifier::workspace(). This can then be saved or displayed at the end of
the R Markdown file or R script using justifier::save_workspace().

preventOverwriting
Whether to prevent overwriting existing files when writing the files to output.

encoding The encoding to use.
silent Whether to be chatty or quiet.
Value

Invisibly, the changed source(s) or source(s) object.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock"”);

Load example source
loadedExample <- rock::load_source(exampleFile);

Move two codes to a new parent, showing progress
recoded_source <-
rock: : recode_move (

loadedExample,
codes=c("childCode2"”, "childCodel"),
newAncestry = "parentCode2”,

silent=FALSE

70 recode_rename

recode_rename Rename one or more codes

Description

These functions rename one or more codes in one or more sources.

Usage

recode_rename(
input,
codes,
filter = TRUE,
output = NULL,
decisionLabel = NULL,
justification = NULL,
justificationFile = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
encoding = rock: :opts$get(”encoding”),
silent = rock::opts$get(”silent"”)

)
Arguments

input One of 1) a character string specifying the path to a file with a source; 2) an ob-
ject with a loaded source as produced by a call to 1oad_source(); 3) a character
string specifying the path to a directory containing one or more sources; 4) or an
object with a list of loaded sources as produced by a call to load_sources().

codes A named character vector with codes to rename. Each element should be the
new code, and the element’s name should be the old code (so e.g. codes =
c(oldcodel = 'newcodel',oldcode2 = "newcode2"')).

filter Optionally, a filter to apply to specify a subset of the source(s) to process (see
get_source_filter()).

output If specified, the recoded source(s) will be written here.

decisionLabel A description of the (recoding) decision that was taken.

justification The justification for this action.

justificationFile
If specified, the justification is appended to this file. If not, it is saved to the
justifier: :workspace(). This can then be saved or displayed at the end of
the R Markdown file or R script using justifier::save_workspace().

preventOverwriting
Whether to prevent overwriting existing files when writing the files to output.

encoding The encoding to use.

silent Whether to be chatty or quiet.

recode_split 71

Value

Invisibly, the changed source(s) or source(s) object.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock");

Load example source
loadedExample <- rock::load_source(exampleFile);

Move two codes to a new parent, showing progress
recoded_source <-
rock: : recode_rename (
loadedExample,
codes=c(childCode2 = "grownUpCode2",
grandchildCode2 = "almostChildCode2"),
silent=FALSE

s

recode_split Split a code into multiple codes

Description

This function conditionally splits a code into multiple codes. Note that you may want to use
recode_addChildCodes () instead to not lose the original coding.

Usage

recode_split(
input,
codes,
splitToCodes,
filter = TRUE,
output = NULL,
decisionLabel = NULL,
justification = NULL,
justificationFile = NULL,
preventOverwriting = rock::opts$get("preventOverwriting”),
encoding = rock::opts$get(”encoding”),
silent = rock::opts$get(”silent"”)

72 recode_split

Arguments
input One of 1) a character string specifying the path to a file with a source; 2) an ob-
ject with a loaded source as produced by a call to load_source(); 3) a character
string specifying the path to a directory containing one or more sources; 4) or an
object with a list of loaded sources as produced by a call to load_sources().
codes A single character value with the code to split.

splitToCodes A named list with specifying when to split to which new code. Each element of
this list is a filtering criterion that will be passed on to get_source_filter()
to create the actual filter that will be applied. The name of each element is
the code that will be applied to utterances matching that filter. When calling
recode_split() for a single source, instead of passing the filtering criterion, it
is also possible to pass a filter (i.e. the result of the call to get_source_filter()),
which allows more finegrained control. Note that these split filters and the corre-
sponding codes are processed sequentially in the order specified in splitToCodes.
This means that once an utterance that was coded with codes has been matched
to one of these ’split filters’ (and so, recoded with the corresponding ’split code’,
i.e., with the name of that split filter in splitToCodes), it will not be recoded
again even if it also matches with other split filters down the line. Any utter-
ances coded with the code to split up (i.e. specified in codes) that do not match
with any of the split filters specified as the splitToCodes elements will not be
recoded and so remain coded with codes. To create a catch-all ("else’) category,
pass ".*" or TRUE as a filter (see the example).

filter Optionally, a filter to apply to specify a subset of the source(s) to process (see
get_source_filter()).

output If specified, the recoded source(s) will be written here.

decisionLabel A description of the (recoding) decision that was taken.

justification The justification for this action.

justificationFile
If specified, the justification is appended to this file. If not, it is saved to the

justifier::workspace(). This can then be saved or displayed at the end of
the R Markdown file or R script using justifier::save_workspace().

preventOverwriting
Whether to prevent overwriting existing files when writing the files to output.
encoding The encoding to use.
silent Whether to be chatty or quiet.
Value

Invisibly, the changed source(s) or source(s) object.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

repeatStr

73

#i## Get a path to one example file

exampleFile <-

file.path(examplePath, "example-1.rock");

Load example source

loadedExample <- rock::load_source(exampleFile);

Split a code into two codes, showing progress (the backticks are
used to be able to specify a name that starts with an underscore)

recoded_source <-
rock: :recode_split(

loadedExample,

codes="childCodel1",

splitToCodes = list(
‘_and_t = " and ",
Y _book_" = "book",
‘_else_* = TRUE

),

silent=FALSE

);
repeatStr Repeat a string a number of times
Description

Repeat a string a number of times

Usage

repeatStr(n = 1, str

Arguments

n, str

—n H)

Normally, respectively the frequency with which to repeat the string and the

string to repeat; but the order of the inputs can be switched as well.

Value

A character vector of length 1.

Examples
10 spaces:
repStr(10);

Three euro symbols:
repStr(”\u20ac”, 3);

74 root_from_codePaths

rock rock: A Reproducible Open Coding Kit

Description

This package implements an open standard for working with qualitative data, as such, it has two
parts: a file format/convention and this R package that facilitates working with .rock files.

The ROCK File Format

The .rock files are plain text files where a number of conventions are used to add metadata. Normally
these are the following conventions:

* The smallest ’codeable unit’ is called an utterance, and utterances are separated by newline
characters (i.e. every line of the file is an utterance);
* Codes are in between double square brackets: [[codel]] and [[code2]];

* Hierarchy in inductive code trees can be indicated using the greater than sign (>): [[par-
entl>child1]];

» Utterances can have unique identifiers called ’utterance identifiers’ or *UIDs’, which are
unique short alphanumeric strings placed in between double square brackets after "uid:’, e.g.
[[uid:73xk2q07]];

* Deductive code trees can be specified using YAML

The rock R Package Functions

The most important functions are parse_source() to parse one source and parse_sources() to
parse multiple sources simultaneously. clean_source() and clean_sources() can be used to
clean sources, and prepend_ids_to_source() and prepend_ids_to_sources() can be used to
quickly generate UIDs and prepend them to each utterance in a source.

For analysis, create_cooccurrence_matrix(), collapse_occurrences(), and collect_coded_fragments()
can be used.

root_from_codePaths Get the roots from a vector with code paths

Description

Get the roots from a vector with code paths

Usage

root_from_codePaths(x)

save_workspace 75

Arguments

X A vector of code paths.

Value

A vector with the root of each element.

Examples

root_from_codePaths(
c("codes>reason>parent_feels”,
"codes>reason>child_feels"”)

);

save_workspace Save your justifications to a file

Description

When conducting analyses, you make many choices that ideally, you document and justify. This
function saves stored justifications to a file.

Usage

save_workspace(
file = rock::opts$get(”justificationFile"),
encoding = rock: :opts$get(”encoding”),
append = FALSE,
preventOverwriting = rock::opts$get("preventOverwriting”),
silent = rock::opts$get(”silent"”)

)

Arguments
file If specified, the file to export the justification to.
encoding The encoding to use when writing the file.
append Whether to append to the file, or replace its contents.
preventOverwriting

Whether to prevent overwriting an existing file.

silent Whether to be silent or chatty.

Value

The result of a call to justifier::export_justification().

76 show_attribute_table

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock"”);

Load example source
loadedExample <- rock::load_source(exampleFile);

Split a code into two codes, showing progress (the backticks are
used to be able to specify a name that starts with an underscore)
recoded_source <-
rock: :recode_split(
loadedExample,
codes="childCodel",
splitToCodes = list(
‘_and_t = " and ",
book = "book",
else = TRUE
),
silent=FALSE,
justification = "Because this seems like a good idea”

s

Save this workspace to a file
temporaryFilename <- tempfile();
rock: :save_workspace(file = temporaryFilename);

show_attribute_table Show a table with all attributes in the RStudio viewer and/or console

Description

Show a table with all attributes in the RStudio viewer and/or console

Usage

show_attribute_table(
X!
output = rock::opts$get(”tableOutput”),
tableOutputCSS = rock: :opts$get(”tableOutputCSS")
)

show_inductive_code_tree 77

Arguments
X A rock_parsedSources object (the result of a call to rock: : parse_sources).
output The output: a character vector with one or more of "console" (the raw concate-

nated input, without conversion to HTML), "viewer", which uses the RStudio
viewer if available, and one or more filenames in existing directories.

tableOutputCSS The CSS to use for the HTML table.

Value

X, invisibly, unless being knitted into R Markdown, in which case a knitr::asis_output()-
wrapped character vector is returned.

show_inductive_code_tree
Show the inductive code tree(s)

Description

This function shows one or more inductive code trees.

Usage
show_inductive_code_tree(
X,
codes = ".x",

output = "both",

headinglLevel = 3,

nodeStyle = list(shape = "box", fontname = "Arial"),
edgeStyle = list(arrowhead = "none"),

graphStyle = list(rankdir = "LR")

)
Arguments
X A rock_parsedSources object (the result of a call to rock: : parse_sources).
codes A regular expression: only code trees from codes coded with a coding pattern
with this name will be shown.
output Whether to show the code tree in the console (text), as a plot (plot), or both

(both).

headinglLevel The level of the heading to insert when showing the code tree as text.
nodeStyle, edgeStyle, graphStyle

Arguments to pass on to, respectively, data. tree: : SetNodeStyle(), data. tree
and data.tree: :SetGraphStyle().

::SetEdgeStyle(),

78 vecTxt

Value

X, invisibly, unless being knitted into R Markdown, in which case a knitr::asis_output()-
wrapped character vector is returned.

stripCodePathRoot Strip the root from a code path

Description

This function strips the root (just the first element) from a code path, using the codeTreeMarker
stored in the opts object as marker.

Usage

stripCodePathRoot (x)
Arguments

X A vector of code paths.
Value

The modified vector of code paths.

Examples

stripCodePathRoot ("codes>reason>parent_feels");

vecTxt Easily parse a vector into a character value

Description

Easily parse a vector into a character value

Usage

vecTxt(
vector,
delimiter = ", ",
useQuote = "",
firstDelimiter = NULL,
lastDelimiter = " & ",
firstElements = 0,
lastElements = 1,
lastHasPrecedence = TRUE

wrap Vector 79
)
vecTxtQ(vector, useQuote = "'", ...)

Arguments
vector The vector to process.

delimiter, firstDelimiter, lastDelimiter

useQuote

The delimiters to use for respectively the middle, first firstElements, and last
lastElements elements.

This character string is pre- and appended to all elements; so use this to quote
all elements (useQuote=""'"), doublequote all elements (useQuote='""), or
anything else (e.g. useQuote='|"). The only difference between vecTxt and
vecTxtQ is that the latter by default quotes the elements.

nan

firstElements, lastElements

The number of elements for which to use the first respective last delimiters

lastHasPrecedence

Value

If the vector is very short, it’s possible that the sum of firstElements and lastEle-
ments is larger than the vector length. In that case, downwardly adjust the num-
ber of elements to separate with the first delimiter (TRUE) or the number of ele-
ments to separate with the last delimiter (FALSE)?

Any addition arguments to vecTxtQ are passed on to vecTxt.

A character vector of length 1.

Examples

vecTxtQ(names(mtcars));

wrapVector

Wrap all elements in a vector

Description

Wrap all elements in a vector

Usage

wrapVector(x, width = 0.9 * getOption("width"), sep = "\n", ...)
Arguments

X The character vector

width The number of

sep The glue with which to combine the new lines

Other arguments are passed to strwrap().

80

Value

A character vector

Examples

res <- wrapVector(
c(
"This is a sentence ready for wrapping”,
"So is this one, although it's a bit longer”
),
width = 10
);

print(res);
cat(res, sep="\n");

yaml_delimiter_indices

yaml_delimiter_indices
Get indices of YAML delimiters

Description

Get indices of YAML delimiters

Usage

yaml_delimiter_indices(x)

Arguments

X The character vector.

Value

A numeric vector.

Examples

yaml_delimiter_indices(
c("not here”,

"above this one”,
"but nothing here”,
"below this one, too",

"_ n

#HH (1] 2 6

Index

+ datasets
create_codingScheme, 27
opts, 50

add_html_tags, 3
apply_graph_theme, 4

base30@conversion (base3@toNumeric), 5
base30toNumeric, 5

base::grepl(), 42
base::readLines(), 54
base: :regex, 45

base: :strsplit(), 54
cat, 6

cato, 6

ci_get_item, 6
ci_heatmap, 7
ci_import_nrm_spec, 8
clean_source, 9
clean_source(), 74
clean_sources (clean_source), 9
clean_sources(), 44,57, 74
cleaned_source_to_utterance_vector, 9
code_freq_hist, 15
code_source, 16
code_sources (code_source), 16
codeIlds_to_codePaths, 13
codePaths_to_namedVector, 14
codingScheme_levine
(create_codingScheme), 27
codingScheme_peterson
(create_codingScheme), 27
codingScheme_willis
(create_codingScheme), 27
codingSchemes_get_all, 18
collapse_occurrences, 19
collapse_occurrences(), 74
collect_coded_fragments, 20
collect_coded_fragments(), 43, 44, 74

81

convert_csv2_to_source
(convert_df_to_source), 22
convert_csv_to_source
(convert_df_to_source), 22
convert_df_to_source, 22
convert_sav_to_source
(convert_df_to_source), 22
convert_xlsx_to_source
(convert_df_to_source), 22
create_codingScheme, 27
create_codingScheme(), 7
create_cooccurrence_matrix, 28
create_cooccurrence_matrix(), 74
css, 29

data.tree::SetEdgeStyle(), 77
data.tree::SetGraphStyle(), 77
data.tree::SetNodeStyle(), 77
DiagrammeR: :DiagrammeR, 4

DiagrammeR: :render_graph(), 60

expand_attributes, 30
export_codes_to_txt, 32
export_mergedSourceDf_to_csv, 34
export_mergedSourceDf_to_csv2
(export_mergedSourceDf_to_csv),
34
export_mergedSourceDf_to_sav
(export_mergedSourceDf_to_csv),
34
export_mergedSourceDf_to_x1lsx
(export_mergedSourceDf_to_csv),
34
export_to_html, 35
export_to_markdown (export_to_html), 35
exportToHTML, 31
extract_codings_by_coderlId, 36

form_to_rmd_template, 37

generate_uids, 39

82

generate_uids(), 5

generic_recoding, 40

get (opts), 50

get_childCodelds, 41

get_source_filter, 42

get_source_filter(), 40, 63-65, 67, 69, 70,
72

ggplot2::ggplot(), 7, 15

gsub(), 47

heading, 43
inspect_coded_sources, 43

justifier::export_justification(), 75
justifier::save_workspace(), 72
justifier::workspace(), 72

knitr::asis_output(), 77, 78

load_source, 44
load_source(), 40, 63, 65, 67, 68, 70, 72
load_sources (load_source), 44
load_sources(), 40, 63, 65, 67, 68, 70, 72

mask_source, 46

mask_sources (mask_source), 46
mask_utterances (mask_source), 46
match_consecutive_delimiters, 48
merge_sources, 49

numericToBase30 (base3@toNumeric), 5
numericToBase30(), 39

opts, 14,50, 78

parse_source, 53
parse_source(), 7, 14, 19, 74
parse_source_by_coderId, 56
parse_sources (parse_source), 53
parse_sources(), 7, 14, 30, 43, 44, 74
parse_sources_by_coderId
(parse_source_by_coderId), 56
parsed_sources_to_ena_network, 52
parsing_sources (parse_source), 53
plot.rock_parsedSources (parse_source),
53
prepend_ids_to_source, 57
prepend_ids_to_source(), 74
prepend_ids_to_sources
(prepend_ids_to_source), 57

INDEX

prepend_ids_to_sources(), 74

prepending_uids
(prepend_ids_to_source), 57

prepending_uids(), 44

prereg_initialize, 59

print.rock_ci_nrm(ci_import_nrm_spec),
8

print.rock_graphList, 60

print.rock_parsedSource (parse_source),
53

print.rock_parsedSources
(parse_source), 53

rbind_df_list, 61
rbind_dfs, 60
read_spreadsheet, 61
read_spreadsheet(), 8
readLines(), 11, 17,45,47,55,57, 58
recode_addChildCodes, 63
recode_addChildCodes(), 63, 71
recode_delete, 65
recode_merge, 66
recode_move, 68
recode_rename, 70
recode_split, 71

regex, 11, 12

reNA: :ena.plot.network(), 53
repeatStr, 73

repStr (repeatStr), 73

reset (opts), 50

rock, 74
root_from_codePaths, 74

save_workspace, 75
search_and_replace_in_source
(clean_source), 9
search_and_replace_in_sources
(clean_source), 9
set (opts), 50
show_attribute_table, 76
show_inductive_code_tree, 77
show_inductive_code_tree(), 43, 44
stats::heatmap(), 28
stripCodePathRoot, 78
strwrap(), 79

vecTxt, 78
vecTxtQ (vecTxt), 78

wrapVector, 79

INDEX

yaml_delimiter_indices, 80

83

	add_html_tags
	apply_graph_theme
	base30toNumeric
	cat0
	ci_get_item
	ci_heatmap
	ci_import_nrm_spec
	cleaned_source_to_utterance_vector
	clean_source
	codeIds_to_codePaths
	codePaths_to_namedVector
	code_freq_hist
	code_source
	codingSchemes_get_all
	collapse_occurrences
	collect_coded_fragments
	convert_df_to_source
	create_codingScheme
	create_cooccurrence_matrix
	css
	expand_attributes
	exportToHTML
	export_codes_to_txt
	export_mergedSourceDf_to_csv
	export_to_html
	extract_codings_by_coderId
	form_to_rmd_template
	generate_uids
	generic_recoding
	get_childCodeIds
	get_source_filter
	heading
	inspect_coded_sources
	load_source
	mask_source
	match_consecutive_delimiters
	merge_sources
	opts
	parsed_sources_to_ena_network
	parse_source
	parse_source_by_coderId
	prepend_ids_to_source
	prereg_initialize
	print.rock_graphList
	rbind_dfs
	rbind_df_list
	read_spreadsheet
	recode_addChildCodes
	recode_delete
	recode_merge
	recode_move
	recode_rename
	recode_split
	repeatStr
	rock
	root_from_codePaths
	save_workspace
	show_attribute_table
	show_inductive_code_tree
	stripCodePathRoot
	vecTxt
	wrapVector
	yaml_delimiter_indices
	Index

