
R package rodeo: Basic Use and Sample Applications

david.kneis @ tu-dresden.de

2021-03-27

Contents

1 Main features of rodeo 2

2 Basic use 3
2.1 Example ODE system . 3
2.2 Creating a rodeo model object . 5
2.3 Defining functions and assigning data . 5
2.4 Computing the stoichiometry matrix . 5
2.5 Generating source code for numerical solvers . 6
2.6 Numerical integration . 6

3 Advanced topics 7
3.1 Multi-box models . 7

3.1.1 Characteristics and use of multi-box models . 7
3.1.2 Non-interacting boxes . 7
3.1.3 Interacting boxes . 9

3.2 Maximizing performance through Fortran . 11
3.3 Forcing functions (time-varying parameters) . 13
3.4 Generating model documentation . 15

3.4.1 Exporting formatted tables . 15
3.4.2 Visualizing the stoichiometry matrix . 16

4 Practical issues 17
4.1 Managing tabular input data . 17
4.2 Stoichiometric matrices . 18

4.2.1 What should go in the matrix? . 18
4.2.2 Automatic creation . 18
4.2.3 Model verification based on row sums . 19

4.3 Writing rodeo-compatible Fortran functions . 20
4.3.1 Reference example . 20
4.3.2 Common Fortran pitfalls . 20
4.3.3 More information on Fortran . 21

4.4 Multi-object models . 21

5 Further examples 22
5.1 Single-box models . 22

5.1.1 Streeter-Phelps like model . 22
5.1.2 Bacteria in a 2-zones stirred tank . 25

5.2 One-dimensional models . 29
5.2.1 Diffusion . 29
5.2.2 Advective-dispersive transport . 32
5.2.3 Ground water flow . 37

1

5.2.4 Antibiotic resistant bacteria in a river . 40
5.3 Multi-object models . 53

5.3.1 Water-sediment interaction . 53

References 63

1 Main features of rodeo

The rodeo package facilitates the implementation of ODE-based models in R. Such models describe the
dynamics of a system with a set simultaneously differential equations. The package is particularly useful
in conjunction with the R packages deSolve and rootSolve providing numerical solvers for initial-value
problems and steady-state estimation. The functionality of rodeo is summarized in the following figure.

1: Instantiation of a rodeo object from a table-based model specification. 2: Assignment of numeric data
through the object’s set methods. 3: Automatic code generation and compilation / interpretation. 4: Access
to numeric data through the object’s get methods. 5: Access to functions.

The specific advantages from using rodeo are:

• The model is formulated independent from source code to facilitate portability, re-usability, and
documentation. Specifically, the model has to be set-up using the well-established Peterson matrix
notation. All ingredients of a model (i. e. the ODE’s right hand sides, declarations, and documentation)
are in tabular form and they can be imported from delimited text files or spreadsheets.

• Owing to the matrix notation, redundant terms are largely eliminated from the differential equations.
This contributes to comprehensibility and increases computational efficiency. The stoichiometry matrix
can also be visualized to better communicate the model to other modelers or end users.

• rodeo provides a code generator which supports R and Fortran as target languages. Using compiled
Fortran can speed up numerical integration by 1 or 2 orders of magnitude (compared to plain R).

• Code can be generated for an arbitrary number of computational boxes (e. g. control volumes in a
spatially discretized model). This allows even partial differential equations (e. g. reactive transport
problems) to be tackled after appropriate semi-discretization. The latter strategy is known as the
method-of-lines.

2

http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=rootSolve
http://en.wikipedia.org/wiki/Petersen_matrix
http://en.wikipedia.org/wiki/Petersen_matrix
http://en.wikipedia.org/wiki/Method_of_lines

2 Basic use

2.1 Example ODE system

In the subsequent sections, the package’s functioning is illustrated with a simple model of bacteria growth
in a continuous flow stirred tank reactor (figure below). It is assumed that the bacteria grow on a single
resource (e. g. a source of organic carbon) which is imported via the reactor’s inflow. Due to mixing, the
reactors contents is spatially homogeneous, hence the density of bacteria as well as the concentration of the
substrate are scalars.

Changes in bacteria density are due to (1) resource-limited growth and (2) wash-out from the reactor (inflow
is assumed to be sterile). The substrate concentration is controlled by (1) the inflow as well as (2) the
consumption by bacteria. A classical Monod term was used to model the resource dependency of bacteria
growth. For the sake of simplicity, the external forcings (i. e. flow rate and substrate load) are held constant
and the reactor’s volume is a parameter rather than a state variable.

The governing differential equations are

d

dt
bac = mu ·

sub

sub + half
· bac +

flow

vol
· (0 − bac)

d

dt
sub = −

1

yield
· mu ·

sub

sub + half
· bac +

flow

vol
· (subin − sub)

where redundant terms are displayed in identical colors (all identifiers are explained in tables below). For use
with rodeo, the equations must be split up into a vector of process rates (r) and a matrix of stoichiometric
factors (S) so that the product of the two yields the vector of the state variables’ derivatives with respect to
time (ẏ). Note that

ẏ = r · S

is the same as

ẏ = ST
· r

In the first form, ẏ and r are row vectors. In the second form which involves the transpose of S, ẏ and r are
column vectors. Adopting the first form, the above set of ODE can be written as

[

d

dt
bac

d

dt
sub

]

=

[

mu ·
sub

sub + half
· bac

flow

vol

]

·

1 −bac

−
1

yield
subin − sub

3

The vector r and the matrix S, together with a declaration of all identifiers appearing in the expressions, can
conveniently be stored in tables, i.e. R data frames. Appropriate data frames are shipped with the package
and can be loaded with the R function data. Their contents is displayed below:

Table 1: Data set vars: Declaration of state variables.

name unit description

bac mg/ml bacteria density
sub mg/ml substrate concentration

Table 2: Data set pars: Declaration of parameters.

name unit description

mu 1/hour intrinsic bacteria growth rate
half mg/ml half saturation concentration of substrate
yield mg/mg biomass produced per amount of substrate
vol ml volume of reactor
flow ml/hour rate of through-flow
sub_in mg/ml substrate concentration in inflow

Table 3: Data set funs: Declaration of functions referenced at the
ODE’s right hand sides.

name unit description

monod - monod expression for resource limitation

Table 4: Data set pros: Definition of process rates.

name unit description expression

growth mg/ml/hour bacteria growth mu * monod(sub, half) * bac
inout 1/hour water in-/outflow flow/vol

Table 5: Data set stoi: Definition of stoichiometric factors pro-
viding the relation between processes and state variables. Note
the (optional) use of a tabular layout instead of the more common
matrix layout.

variable process expression

bac growth 1
bac inout -bac
sub growth -1 / yield
sub inout (sub_in - sub)

4

2.2 Creating a rodeo model object

We start by loading packages and the example data tables whose contents was shown in the above tables.

rm(list=ls()) # Initial clean-up

library(deSolve)

library(rodeo)

data(vars, pars, pros, funs, stoi)

Then, a new object is created with the new method of the R6 class system. This requires us to supply the
name of the class, data frames for initialization, as well as the spatial dimensions. Here, we create a single-box
model (one dimension with no subdivision).

model <- rodeo$new(vars=vars, pars=pars, funs=funs,

pros=pros, stoi=stoi, dim=c(1))

To inspect the object’s contents, we can use the following:

print(model) # Displays object members (output not shown)

print(model$stoichiometry()) # Shows stoichiometry as a matrix

2.3 Defining functions and assigning data

In order to work with the object, we need to define functions that are referenced in the process rate expressions
or stoichiometric factors (i. e. the ODEs’ right hand sides). For non-autonomous models, this includes the
definition of forcings which are functions of a special argument with the reserved name ‘time’ (details follow
in a separate section on forcings).

For the bacteria growth example, we only need to implement a simple Monod function.

monod <- function(c, h) { c / (c + h) }

We also need to assign values to parameters and state variables (initial values) using the dedicated class
methods setPars and setVars. Since we deal with a single-box model, parameters and initial values can be
stored in ordinary named vectors.

model$setVars(c(bac=0.01, sub=0))

model$setPars(c(mu=0.8, half=0.1, yield= 0.1, vol=1000, flow=50, sub_in=1))

2.4 Computing the stoichiometry matrix

Having defined all functions and having set the values of variables and parameters, one can compute the
stoichiometric factors. In general, explicitly computing these factors is not necessary, it may be helpful in
debugging however. To do so, the stoichiometry class method needs to be supplied with the index of the
spatial box (only relevant for multi-box models) as well as the time of interest (in the case of non-autonomous
models).

m <- model$stoichiometry(box=1, time=0)

print(signif(m, 3))

bac sub

growth 1.00 -10

inout -0.01 1

The stoichiometry matrix is also a good means to communicate a model because it shows the interactions
between processes and variables in a concise way. How the stoichiometry matrix can be visualized graphically
is demonstrated in a dedicated section below.

5

https://en.wikipedia.org/wiki/Monod_equation

2.5 Generating source code for numerical solvers

In order to use the model for simulation, we need to generate source code to be passed to numerical solvers.
Specifically, the generated function code shall return the derivatives of the state variables with respect to
time plus additional diagnostic information (here: the process rates).

In this example, R code is generated (Fortran code generation is described elsewhere). The R code is not
‘compiled’ in a strict sense but it is made executable through a combination of the functions eval and parse.

model$compile(fortran=FALSE)

2.6 Numerical integration

We are now ready to compute the evolution of the state variables over time by means of numerical integration.
The call below employs the ode function from package deSolve.

out <- model$dynamics(times=0:96, fortran=FALSE)

plot(out) # plot method for 'deSolve' objects

The graphical output of the above code is displayed below (top row: state variables, bottom row: process
rates).

0 20 40 60 80

0
.0

2
0
.0

8

bac

time

0 20 40 60 80

0
.0

0
0
.0

4

sub

time

0 20 40 60 80

0
.0

0
0

0
.0

0
5

growth

time

0 20 40 60 80

0
.0

3
0

.0
6

inout

time

6

3 Advanced topics

3.1 Multi-box models

3.1.1 Characteristics and use of multi-box models

Imagine a multi-box model like a vector of ODE models. In case of the example considered so far, a multi-box
model would simulate bacteria growth in series of tanks (whereas the single-box version describes just a
single tank). The important point is that, in a multi-box model, the ODE system to be solved is the same in
each box (but parameters can vary from box to box). This distinguishes multi-box models from multi-object

models introduced in a later section.

For multi-box models, there must be a convention regarding the layout of arrays used to store the values of
variables, parameters, and process rates. In conjunction with the method-of-lines, it is desireable to (1) store
the values of a particular variable, parameter, or rate in a contiguous array section and (2) store the data of
neighboring boxes as neighboring array elements. For example, in a 1-dimensional multi-box model with 3
boxes and two state variables A and B, the layout of the states vector is A.1, A.2, A.3, B.1, B.2, B.3 (instead
of A.1, B.1, A.2, . . .). Thus, the index of the box varies faster than the index of the variable. Note that the
same convention automatically applies to the output of the numerical solvers, i. e. the columns of the output
matrix returned from the deSolve methods are ordered as just described.

There are two main areas of use for multi-box models:

1. They can be used, for example, to model an array of experiments, where the individual experiments
different in parameters or initial values. In such a case the boxes do not interact, i.e. the dynamics in
a particular box is from the dynamics in the other boxes.

2. Multi-box models can also be used to represent ODE systems originating from semi-discretization of
partial differential equations. This approach, better known as the method-of-lines (MOL), is applicable
to reactive transport problems, for example. In such a case, neighboring boxes do interact with each
other.

Examples for these two cases are provided below.

3.1.2 Non-interacting boxes

This example applies the bacteria growth model to two tanks, the latter being independent of each other. We
start from a clean environment.

rm(list=ls()) # Initial clean-up

library(deSolve)

library(rodeo)

data(vars, pars, pros, funs, stoi)

First of all, we need to create a model object with the appropriate number of dimensions and the desired
number of boxes in each dimension. These values are specified in the dim argument of rodeo’s initialization
method. Here, we request the creation of two boxes in the first and only dimension.

nBox <- 2

model <- rodeo$new(vars=vars, pars=pars, funs=funs,

pros=pros, stoi=stoi, dim=c(nBox))

Second, the function returning the state variables’ derivatives needs to be re-generated to reflect the altered
number of boxes.

model$compile(fortran=FALSE)

7

http://cran.r-project.org/package=deSolve
http://en.wikipedia.org/wiki/Method_of_lines

monod <- function(c, h) { c / (c + h) }

Third, initial values and parameters need to be specified as arrays now (instead of vectors) because the values
can vary from box to box. For a multi-box model with a single spatial dimension, we must use matrices (being
two-dimensional arrays) whose column names represent the names of variables or parameters, respectively.
The matrix row with index i provides the respective values for the model’s i-th box.

In this example, the two reactors only differ in their storage capacity (parameter vol). All other parameters
and the initial concentrations of substrate and bacteria are kept identical.

rp <- function (x) {rep(x, nBox)} # For convenient replication

v <- cbind(bac=rp(0.01), sub=rp(0))

model$setVars(v)

p <- cbind(mu=rp(0.8), half=rp(0.1), yield= rp(0.1),

vol=c(300, 1000), flow=rp(50), sub_in=rp(1))

model$setPars(p)

Finally, the integration method is called as usual.

out <- model$dynamics(times=0:120, fortran=FALSE)

The dynamics of the state variables in all boxes are conveniently plotted with matplot. Note that the box
index is appended to the state variables’ names and the two parts are separated by a period. For example,
the bacteria density in the first box is found in column ‘bac.1’ of the matrix out.

layout(matrix(1:model$lenVars(), nrow=1))

for (vn in model$namesVars()) {

matplot(out[,"time"], out[,paste(vn, 1:nBox, sep=".")],

type="l", xlab="time", ylab=vn, lty=1:nBox, col=1:nBox)

legend("right", bty="n", lty=1:nBox, col=1:nBox, legend=paste("box",1:nBox))

}

layout(1)

0 20 60 100

0
.0

2
0
.0

6
0
.1

0

time

b
a
c box 1

box 2

0 20 60 100

0
.0

0
0

.1
0

0
.2

0

time

s
u
b box 1

box 2

8

3.1.3 Interacting boxes

In this context, interaction means that the state variables’ derivatives in a box i depend on the state of
another box k. This is typically the case if advection or diffusion-like processes are simulated because fluxes
between boxes (e.g. of mass or heat) are driven by spatial gradients.

rodeo’s support for interactions between boxes is currently limited to models with a single dimension (1D
models). Also, interaction is possible between adjacent boxes only (but not between, e.g., boxes i and i + 2).

The key to the simulation of interactions is that each box can query the values of state variables (or parameters)
in the adjacent boxes. This functionality is implemented through the pseudo-functions ‘left’ and ‘right’. These
can be used in the mathematical expressions forming the ODE’s right hand sides. The functions do what
their names say. For example, if ‘x’ is a state variable, the expression x - left(x) yields the difference
between the value in the current box (index i) and the value in adjacent box i − 1. Likewise, x - right(x)

is used to calculate the difference between the current box (index i) and box i + 1.

The two pseudo-functions must behave specially at the model’s boundaries. In other words, it has to be
defined what left(x) returns for the leftmost box (index 1) and what right(x) returns for the box with
the highest index. The convention is simple: If the index would go out of bounds, the functions return the
respective value for the current cell. See the table below for clarification.

Box index left(x) returns right(x) returns

1 x.1 x.2
2 x.1 x.3
3 x.2 x.4
4 x.3 x.5
5 (highest index) x.4 x.5

This behaviour of ‘left’ and ‘right’ at the models boundaries is often convenient. Consider, for example, a
model of advective transport using the backward finite-difference approximation u/dx * (left(c) - c) (‘u’:
velocity, ‘c’: concentration, ‘dx’: box width). For the leftmost box, the whole term equates to zero since both
c and left(c) point to the concentration in box 1.

Imposing boundary conditions on the leftmost box (index 1) and the righmost box (highest index) is fairly
simple. First, the required term(s) are simply added to the process rate expressions. Second, the term(s) are
multiplied with a mask parameters that take a value of 1 at the desired boundary and 0 elsewhere. In the
just mentioned advection example, a resonable formulation could be

u/dx * (left(c) - c) + leftmost(2 * u/dx * (cUp - c))

where cUp is the concentration just upstream of the model domain, and leftmost is the mask parameter
being set to one for the leftmost box and zero for all other boxes.

Interaction between boxes is demonstrated with a minimum example. It extends the above ‘no-interaction’
example case by introduction of a diffusive flux of substrate between the two tanks.

The original model is first loaded and then extended for the new process.

rm(list=ls()) # Initial clean-up

library(deSolve)

library(rodeo)

data(vars, pars, pros, funs, stoi)

pars <- rbind(pars,

c(name="d", unit="1/hour", description="diffusion parameter")

)

pros <- rbind(pros,

9

c(name="diffSub", unit="mg/ml/hour", description="diffusion of substrate",

expression="d * ((left(sub)-sub) + (right(sub)-sub))")

)

stoi <- rbind(stoi,

c(variable="sub", process="diffSub", expression="1")

)

The following code sections are the same as for the ‘no-interaction’ case.

nBox <- 2

model <- rodeo$new(vars=vars, pars=pars, funs=funs,

pros=pros, stoi=stoi, dim=c(nBox))

model$compile(fortran=FALSE)

monod <- function(c, h) { c / (c + h) }

A value must be assigned to the newly introduced diffusion parameter d as well.

rp <- function (x) {rep(x, nBox)} # For convenient replication

v <- cbind(bac=rp(0.01), sub=rp(0))

model$setVars(v)

p <- cbind(mu=rp(0.8), half=rp(0.1), yield= rp(0.1),

vol=c(300, 1000), flow=rp(50), sub_in=rp(1),

d=rp(.75)) # Added diffusion parameter

model$setPars(p)

The code for integration and plotting is the same as for the ‘no-interaction’ case.

out <- model$dynamics(times=0:120, fortran=FALSE)

layout(matrix(1:model$lenVars(), nrow=1))

for (vn in model$namesVars()) {

matplot(out[,"time"], out[,paste(vn, 1:nBox, sep=".")],

type="l", xlab="time", ylab=vn, lty=1:nBox, col=1:nBox)

legend("right", bty="n", lty=1:nBox, col=1:nBox, legend=paste("box",1:nBox))

}

layout(1)

The output of the above code is displayed below. The effect of substrate diffusion is cleary visible in the
output.

10

0 20 60 100

0
.0

2
0
.0

6
0
.1

0

time

b
a
c box 1

box 2

0 20 60 100

0
.0

0
0
.0

5
0
.1

0
0
.1

5

time

s
u
b box 1

box 2

3.2 Maximizing performance through Fortran

As the number of simultaneous ODE increases and the right hand sides become more complex, computation
times begin to matter. This is especially so in case of stiff systems of equations. In those time-critical cases,
it is recommended to generate source code for a compilable language. The language supported by rodeo is
Fortran. Fortran was chosen because of its superior array support (compared to C) and for compatibility
with existing numerical libraries.

One could use the low-level method

code <- model$generate(name="derivs",lang="f95") # not required for typical uses

to generate a function that computes the state variables’ derivatives in Fortran. However, the interface of
the generated function is optimized for universality. In order to use the generated code with the numerical
solvers from deSolve or rootSolve, a specialized wrapper is required.

To make the use of Fortran as simple as possible, rodeo provides a high-level class method compile which
combines

1. generation of the basic Fortran code via the generate method (see above),

2. generation of the required wrapper for compatibility with deSolve and rootSolve,

3. compilation of all Fortran sources into a shared library (based on the command R CMD SHLIB),

4. loading of the library

model$compile(sources="vignetteData/fortran/functionsCode.f95")

The compile method takes as argument the name of a file holding the Fortran implementation of functions
being referenced in the particular model’s mathematical expressions. This argument can actually be a vector
if the source code is split across several files. Consult the section on Fortran functions for coding guidelines
and take a look at the collection of examples.

The created library is automatically loaded with dyn.load and unloaded with dyn.unload when the object
is garbage collected. The name of the created library and the name of the derivatives function contained
therein are stored in the rodeo object internally. These names can be queried with the method libName()

and libFunc(), respectively.

11

http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=rootSolve

A suitable Fortran implementation of the functions used in the example (contents of file ‘for-
tran/functionsCode.f95’) is shown below. Note that all the functions are collected in a single Fortran module
with implicit typing turned off. The name of this module must be 'functions' and it cannot be changed.
Note that a Fortran module can import other modules which helps to structure more complex source codes.
Also note that the user-supplied source files need to reside in directories with write-access to allow the
creation of intermediate files during compilation.

! This is file 'functionsCode.f95'

module functions

implicit none

contains

double precision function monod(c, h)

double precision, intent(in):: c, h

monod= c / (c + h)

end function

end module

The complete code to run the ‘no-interactions’ model from a previous section using Fortran-based code is
given below. Note the additional arguments dllname and nout being passed to the numerical solver (for
details consult the deSolve help page for method lsoda). It is especially important to pass the correct value
to nout: In case of rodeo-based models, this must be the number of processes multiplied with the total
number of boxes. Disregard of this may trigger segmentation faults that make R crash.

rm(list=ls()) # Initial clean-up

library(deSolve)

library(rodeo)

data(vars, pars, pros, funs, stoi)

nBox <- 2

model <- rodeo$new(vars=vars, pars=pars, funs=funs,

pros=pros, stoi=stoi, dim=c(nBox))

rp <- function (x) {rep(x, nBox)} # For convenient replication

v <- cbind(bac=rp(0.01), sub=rp(0))

model$setVars(v)

p <- cbind(mu=rp(0.8), half=rp(0.1), yield= rp(0.1),

vol=c(300, 1000), flow=rp(50), sub_in=rp(1))

model$setPars(p)

model$compile(sources="vignetteData/fortran/functionsCode.f95")

out <- model$dynamics(times=0:120)

layout(matrix(1:model$lenVars(), nrow=1))

for (vn in model$namesVars()) {

matplot(out[,"time"], out[,paste(vn, 1:nBox, sep=".")],

type="l", xlab="time", ylab=vn, lty=1:nBox, col=1:nBox)

legend("right", bty="n", lty=1:nBox, col=1:nBox, legend=paste("box",1:nBox))

}

layout(1)

The output of the above code is displayed below. It should be identical to the above output from the
corresponding R-code based model.

12

0 20 60 100

0
.0

2
0
.0

6
0
.1

0

time

b
a
c box 1

box 2

0 20 60 100

0
.0

0
0
.1

0
0
.2

0

time

s
u
b box 1

box 2

3.3 Forcing functions (time-varying parameters)

In general, there are two options for dealing with time-variable forcings:

Functions-of-time: For this approach one needs to define the forcings as functions of a formal argument
that represents time. In rodeo, the actual argument must have the reserved name time. The approach is
handy if the forcings can be approximated by parametric functions (like the seasonal cycle of extra-terrestrial
solar radiation, for example). It can also be used with tabulated time series data, but this requires some
extra coding. In any case, it is essential to restrict the integration step size of the solver (e.g. using the hmax

argument of deSolve::lsoda) so that short-term variations in the forcings cannot be ‘missed’.

Stop-and-go: For this approach forcings are implemented as normal parameters. To allow for their
variation in time, the ODE solver is interrupted every time when the forcing data change. The solver is then
re-started with the updated parameters (i.e. forcing data) using the states output from the previous call as
initial values. Hence, the calls to the ODE solver must be embedded within a loop over time. With this
approach, setting a limit on the solver’s integration step size (through argument hmax) is not required since
the solver is interrupted at the ‘critical times’ anyway.

In real-world applications, the ‘stop-and-go’ approach is often simpler to use and the overhead due to
interruption and re-start of the solvers seems to be rather small. It also facilitates the generation of useful
trace-back information in case of exceptions (e.g. due to corrupt time series data).

The remainder of this section demonstrates how the ‘functions-of-time’ approach can be used in Fortran-based
models. It is assumed that information on forcings is stored in delimited text files. Such files can be created,
for example, with spreadsheet software, a data base system, or R. Assume that we have time series of two
meteorological variables exported to a text file ‘meteo.txt’:

dat <- data.frame(time=1:10, temp=round(rnorm(n=10, mean=20, sd=3)),

humid=round(runif(10)*100))

tmpdir <- normalizePath(tempdir())

write.table(x=dat, file=paste0(tmpdir,"/meteo.txt"), col.names=TRUE,

row.names=FALSE, sep="\t", quote=FALSE)

print(dat)

time temp humid

1 1 24 69

13

go:**

2 2 20 24

3 3 24 10

4 4 22 94

5 5 21 71

6 6 16 24

7 7 17 16

8 8 22 60

9 9 23 72

10 10 21 8

In a purely R-based model, one would use approxfun to create the corresponding forcing function. In a
Fortran-based model, we need to use the package’s forcingFunctions method to generate an appropriate
forcing function in Fortran. In the example below, linear interpolation is requested via the method’s mode

argument.

dat <- data.frame(name=c("temp","humid"),

column=c("temp","humid"), file=paste0(tmpdir,"/meteo.txt"), mode=-1, default=FALSE)

code <- forcingFunctions(dat)

write(x=code, file=paste0(tmpdir,"/forc.f95"))

In order to use the generated code, it is necessary to

1. write it to disk (e. g. using write as shown above),

2. declare all forcings as functions in rodeo’s respective input table,

3. insert the statement use forcings at the top (e. g. line 2) of the Fortran module 'functions',

4. pass the generated file to the compile method along with all other Fortran source files.

The following Fortran code demonstrates how the user-defined forcings can be tested/debugged outside the
rodeo environment. The shown utility program can be compiled, for example, using a command like

gfortran <generated_module_file> <file_with_program> -o test

Note that the subroutines rwarn and rexit are available automatically if a shared library is build with the
compile class method (or directly with R CMD SHLIB), i. e. they shouldn’t be defined by the user for normal
applications of rodeo.

! auxiliary routines for testing outside R

subroutine rwarn(x)

character(len=*),intent(in):: x

write(*,*)x

end subroutine

subroutine rexit(x)

character(len=*),intent(in):: x

write(*,*)x

stop

end subroutine

! test program

program test

use forcings ! imports generated module with forcing functions

implicit none

integer:: i

14

double precision, dimension(5):: times= &

dble((/ 1., 1.5, 2., 2.5, 3. /))

do i=1, size(times)

write(*,*) times(i), temp(times(i)), humid(times(i))

end do

end program

3.4 Generating model documentation

3.4.1 Exporting formatted tables

One can use e. g. the package’s exportDF to export the object’s basic information in a format which is
suitable for inclusion in HTML or LaTeX documents. The code section

Select columns to export

df <- model$getVarsTable()[,c("tex","unit","description")]

Define formatting functions

bold <- function(x){paste0("\\textbf{",x,"}")}

mathmode <- function(x) {paste0("$",x,"$")}

Export

tex <- exportDF(x=df, tex=TRUE,

colnames=c(tex="symbol"),

funHead=setNames(replicate(ncol(df),bold),names(df)),

funCell=list(tex=mathmode)

)

cat(tex)

generates the following LaTeX code

\begin{tabular}{lll}\hline

\textbf{symbol} & \textbf{unit} & \textbf{description} \\ \hline

bac & mg/ml & bacteria density \\

sub & mg/ml & substrate concentration \\

\hline

\end{tabular}

holding tabular information on the model’s state variables. To include the result in a document one needs to
write the generated LaTeX code to a file for import with either the input or include directive. Things are
even simpler if the Sweave pre-processor is used which allows the above R code to be embedded in LaTeX
directly between the special markers <<echo=FALSE, results=tex>>= and @.

Alternatively, a markdown compatible version can be generated and used with the kable function from the
knitr package. This will work with html, pdf or word processor formats. The following code section to
create a table of the model’s state variables

knitr::kable(model$getVarsTable()[,c("name","unit","description")])

produces the result:

name unit description

bac mg/ml bacteria density
sub mg/ml substrate concentration

15

3.4.2 Visualizing the stoichiometry matrix

A graphical representation of the stoichiometry matrix is often a good means to communicate a model. To
create such a graphics, one typically wants to replace the stoichiometry factors’ numeric values by symbols
encoding their sign only.

3.4.2.1 Plain R graphics

One can use the class method plotStoichiometry to visualize the matrix using standard R graphics as
demonstrated below. This creates a matrix of triangle symbols where the orientation indicates whether the
value of a state variable increases (upward) or decreases (downward) due to the action of a particular process.

model$plotStoichiometry(box=1, time=0, cex=0.8)

[1] "mu * monod(sub, half) * bac"

[1] "mu" "monod" "sub" "half" "bac"

[1] "bac" "sub"

[1] "flow/vol"

[1] "flow" "vol"

[1] "bac" "sub"

b
a
c

s
u
b

growth

inout

In practice, one needs to fiddle around a bit with the dimensions of the plot and the font size to get an
acceptable scaling of symbols and text. Also, it is hardly possible to nicely display row and column names
containing special formatting like sub- or superscripts.

3.4.2.2 LaTeX documents

The following example generates suitable LaTeX code to display a symbolic stoichiometry matrix (as a table,
not a graphics).

signsymbol <- function(x) {

if (as.numeric(x) > 0) return("\\textcolor{red}{$\\blacktriangle$}")

if (as.numeric(x) < 0) return("\\textcolor{blue}{$\\blacktriangledown$}")

return("")

}

rot90 <- function(x) { paste0("\\rotatebox{90}

{$",gsub(pattern="*", replacement="\\cdot ", x=x, fixed=TRUE),"$}") }

m <- model$stoichiometry(box=1, time=0)

tbl <- cbind(data.frame(process=rownames(m), stringsAsFactors=FALSE),

as.data.frame(m))

tex <- exportDF(x=tbl, tex=TRUE,

colnames= setNames(c("",model$getVarsTable()$tex[match(colnames(m),

model$getVarsTable()$name)]), names(tbl)),

funHead= setNames(replicate(ncol(m),rot90), colnames(m)),

funCell= setNames(replicate(ncol(m),signsymbol), colnames(m)),

lines=TRUE

)

tex <- paste0("%\n% THIS IS A GENERATED FILE\n%\n", tex)

write(tex, file="stoichiometry.tex")

16

The contents of the variable tex must be written to a text file and this file can then be imported in LaTeX
with the input directive.

3.4.2.3 HTML documents

The following example generates suitable code for inclusion in HTML documents.

signsymbol <- function(x) {

if (as.numeric(x) > 0) return("△")

if (as.numeric(x) < 0) return("▽")

return("")

}

m <- model$stoichiometry(box=1, time=0)

tbl <- cbind(data.frame(process=rownames(m), stringsAsFactors=FALSE),

as.data.frame(m))

html <- exportDF(x=tbl, tex=FALSE,

colnames= setNames(c("Process",model$getVarsTable()$html[match(colnames(m),

model$getVarsTable()$name)]), names(tbl)),

funCell= setNames(replicate(ncol(m),signsymbol), colnames(m))

)

html <- paste("<html>", html, "</html>", sep="\n")

write(html, file="stoichiometry.html")

To test this, one needs to write the contents of the variable html to a text file and open that file in a web
browser. In some cases, automatic conversion of the generated HTML into true graphics formats may be
possible, e. g. using auxiliary (Linux) tools like ‘html2ps’ and ‘convert’.

3.4.2.4 Markdown documents

A markdown compatible version can be generated with the kable function from package knitr.

signsymbol <- function(x) {

if (as.numeric(x) > 0) return("$\\color{red}{\\blacktriangle}$")

if (as.numeric(x) < 0) return("$\\color{blue}{\\blacktriangledown}$")

return("")

}

m <- model$stoichiometry(box=1, time=0)

m <- apply(m, MARGIN = c(1, 2), signsymbol)

knitr::kable(m)

bac sub

growth N H

inout H N

4 Practical issues

4.1 Managing tabular input data

rodeo’s tabular input data are typically held in either plain text files or spreadsheets. The two alternatives
have their own pros and cons summarized in the table below.

17

Feature Delimited text Spreadsheet

Portability across programs and operating systems + (-)
Suitability for version control + -
Editing with regular expressions + -
Syntax highlight for expressions (+) -
Display table with proper alignment of columns - +
View multiple tables at a time + (-)

Practice has shown that it is a good compromise to store the tabular data in delimited text files and to open
them either in a spreadsheet program or editor, depending on the particular task. Note that the conventional
‘csv’ format is not recommended since mathematical expressions involving multi-argument functions and text
descriptions may contain commas (hence, they need to be quoted). Using TAB-delimited text is probably the
best option. It can be copied-and-pasted between text and spreadsheet files. Modern editors can highlight
TAB-characters making them distinguishable from ordinary blanks.

4.2 Stoichiometric matrices

4.2.1 What should go in the matrix?

When setting up the input tables for a rodeo-based model, the developer must make a choice on what part
of the ODE’s right hand side should go in the process rates and what terms should appear as stoichiometric
factors. Also, there is often a possibility to split up a process into sub-processes. A minimum guideline could
be as follows:

• Process rates and stoichiometric factors should carry meaningful physical units to make them easy to
interpret.

• Stoichiometric factors are best kept simple at the expense of more complex process rate expressions. This
avoids redundant evaluation of identical terms in multiple ODE. Also, a more compact stoichiometry
matrix is easier to present or print.

• Preference should be given to the most comprehensible implementation unless the advantage of a more
obscure alternative has been proven and such optimization is actually needed.

Typically, this leads to a design where the stoichiometric factors do not contain references to state variables.

4.2.2 Automatic creation

As an example, consider the model presented on the wikipedia page for the Petersen matrix.

A + 2B → S

E + S ⇌ ES

ES → E + P

The corresponding stoichiometry matrix is

A B S E ES P

formationS -1 -2 1 0 0 0

equilibrES_fward 0 0 -1 -1 1 0

equilibrES_bward 0 0 1 1 -1 0

decomposES 0 0 0 1 -1 1

18

https://en.wikipedia.org/wiki/Petersen_matrix

Although the matrix is simple, creating it manually easily introduces mistakes. rodeo provides a (non-class)
function stoiCreate to automatically create a stoichiometrix matrix from a set of reaction equations. To
obtain the above result, one would use

reactions <- c(

formationS= "A + 2 * B -> S",

equilibrES= "E + S <-> ES",

decomposES= "ES -> E + P"

)

stoiMat <- stoiCreate(reactions, eval=TRUE, toRight="_fward", toLeft="_bward")

print(stoiMat)

4.2.3 Model verification based on row sums

Model outputs can be wrong for many reasons, including inadequate process equations, bad inputs, and
numerical problems. Therefore, minimizing the number of spots where mistakes/errors can hide is important.
A simple and efficient means to check the consistency of environmental models is to analyze balances of mass,
matter, and/or energy. This can often be accomplished without actual model simulations, just by analyzing
the row sums of the stoichiometry matrix.

As an example, consider a model for the oxidation of glucose

C6H12O6 + 6O2 → 6CO2 + 6H2O

If this was the only process in the model, the single-row stoichiometry matrix would be

reac <- c(oxidation="C6H12O6 + 6 * O2 -> 6 * CO2 + 6 * H2O")

stoiMat <- stoiCreate(reactions=reac)

print(stoiMat)

C6H12O6 O2 CO2 H2O

oxidation "-1" "-6" "6" "6"

The rows of the stoichiometry matrix can be checked for conservation of mass with respect to an arbitrary
set of elements. This is done by calling stoiCheck on the stoichiometry matrix. As its second argument,
this function requires a matrix specifiying the composition of all state variables (i.e. reactants and products)
with respect to the elements of interest (see below). Note that, in this example, the elemental composition is
obvious from the reaction equation and the composition matrix could in fact be extracted from the latter.
But this is not the case in general (e. g. if ‘glucose’ was used instead of the identifier ‘C6H12O6’).

compMat <- rbind(

Hdyrogen= c(C6H12O6= 12, O2=0, CO2=0, H2O=2),

Oxygen= c(C6H12O6= 6, O2=2, CO2=2, H2O=1),

Carbon= c(C6H12O6= 6, O2=0, CO2=1, H2O=0)

)

stoiCheck(stoiMat, compMat)

Hdyrogen Oxygen Carbon

oxidation 0 0 0

Zero elements in the output matrix of stoiCheck indicate that the mass balance for the respective element
and process is closed. Note that the application of stoiCheck is not limited to chemical reaction models. It
could also be used, for example, to check mass balances of Carbon and nutrients in ecological lake models.
Then, however, some of the return values will be non-zero because, typically, CO2 and N2 released into (or
taken up from) the atmosphere are not explicitly modeled.

19

4.3 Writing rodeo-compatible Fortran functions

4.3.1 Reference example

As a reference, the following Fortran code can be used (after deletion of line numbers). The code declares a
function of two arguments. All identifiers are in uppercase letters just for clarification. Comments have been
added to briefly explain the individual statements. In Fortran, comments start with an exclamation mark.

1 double precision function FUNCNAME (ARG1, ARG2) ! declare the function

2 implicit none ! force type declarations

3 double precision, intent(in):: ARG1, ARG2 ! declare arguments

4 double precision:: LOCAL ! declare local variable

5 double precision, parameter:: CONST=1.d0 ! declare local constant

6 LOCAL= ARG1 * CONST + ARG2 ! local computation(s)

7 FUNCNAME= LOCAL ! set return value

8 end function ! closes the function

For compatibility with rodeo, the function result must be a scalar of type double precision (a floating
point number of typically 8 byte). There are several ways to achieve this but the simplest and recommended
syntax is put the type declaration double precision right before the function’s name (line 1). Then, the
return value must be set by an assignment to the function’s name (line 7). This is best done at a single
location in the body code, typically at the very end.

It is a good habit to always put implicit none in the first line of the function body (line 2). This is to disable
‘implicit typing’ which is a rather dangerous automatism of data type assignment. With this statement, all
arguments (line 3) and any local variables or constants (lines 4 and 5) need to be explicitly declared. As
opposed to C or C++, data types of formal arguments cannot be declared in the function interface (line 1),
making it necessary to waste some extra lines (line 3). All declarations need to be made at the top of the
function’s body right after the implicit none.

In Fortran, identifier names are not case-sensitive (as opposed to R). This applies to the name of the function
itself as well as to the names of arguments and local variables or parameters. Using uppercase names for
constants is a widespread habit.

Note: It is actually sufficient to put a single implicit none statement at the beginning of the module
'functions' (see example in the above section on Fortran code generation). Repetition of implicit none

statements in the individual functions doesn’t do any harm, however.

4.3.2 Common Fortran pitfalls

4.3.2.1 Double precision constants

Fortran has several types to represent floating point numbers that vary in precision but rodeo generally uses
the type double precision. Thus, any local variables and parameters should also be declared as double

precision. To declare a constant of this type, e. g. ‘pi’, one needs to use the special syntax 3.1415d0,
i.e. the conventional ‘e’ in scientific notation must be replaced by ‘d’. Do not use the alternative syntax
3.1415_8 as it is not portable. Some further examples are shown below. Note the use of the parameter

keyword informing the compiler that the declared items are constants rather than variables.

double precision, parameter:: pi= 3.1415d0, e= 2.7183d0 ! math constants

double precision, parameter:: kilograms_per_gram = 1.d-3 ! 1/1000

double precision, parameter:: distance_to_moon = 3.844d+5 ! 384400 km

4.3.2.2 Integers in numeric expressions

20

It is recommended to avoid integers in arithmetic expressions as the result may be unexpected. Use double

precision constants instead of integer constants or, alternatively, explicitly convert types by means of the
dble intrinsic function.

average= (value1 + value2) / 2d0 ! does not use an integer at all

average= (value1 + value2) / dble(2) ! explicit type conversion

It is often even better not to use any literal constants, leading to a code like

double precision, parameter:: TWO= 2.d0

! ... possibly other statements ...

average= (value1 + value2) / TWO

4.3.2.3 Long Fortran statements (continuation lines)

Source code lines should not exceed 80 characters (though some Fortran compilers support longer lines). If
an expression does not fit on a single line, the ampersand (&) must be used to indicate continuation lines.
Missing & characters are a frequent cause of compile time errors and the respective diagnostic messages are
sometimes rather obscure. It is recommended to put the & at the end of any unfinished line as in the following
example:

a = term1 + term2 + &

term3 + term4 + &

term5

4.3.3 More information on Fortran

The code contained in the section on Fortran code generation or the gallery of examples may serve as a
starting point. The Fortran wiki is a good source of additional information, also providing links to standard
documents, books, etc.

4.4 Multi-object models

Real-world applications often require the simulation of multiple interacting compartments. In some cases
it may still be possible to handle those systems with a single set of ODE and to properly set up the
Jacobian matrix. In many cases, however, it will be easier to work with separate ODE models (one for each
compartment) and to allow for inter-model communication at an adequate frequency. The concept of ‘linked
sub-models’ can be used with rodeo and it is also promoted by the OpenMI initiative (Gregersen, Gijsbers,
and Westen 2007). The downsides of the approach are

• a loss of computational efficiency, mainly because the ODE solver needs to re-start frequently,

• a potential loss in accuracy owing to time-step wise decoupling of the equations.

The second aspect is particularly important and, for serious applications, the impact of the chosen frequency
of inter-model communication needs to be understood. In general, a more accurate solution can be expected
if the frequency of communication is increased.

In spite of the mentioned drawbacks, the concept of linked sub-models remains attractive because

• a modular system is easier to develop, debug, document, and re-use,

• one can link rodeo-objects with any ‘foreign’ model objects, which opens the possibility to couple ODE
and non-ODE models.

A simple test case demonstrating the linkage of two rodeo-objects can be found in a dedicated example
section. Note that those parts of rodeo targeted at model coupling (e. g. the class method step) are under
development and details of the implementation may change in the future.

21

http://fortranwiki.org/fortran/show/HomePage

5 Further examples

5.1 Single-box models

5.1.1 Streeter-Phelps like model

5.1.1.1 Problem description

The model is an analog to the classical model of Streeter and Phelps (1925). It simulates aerobic 1st-order
decay of organic matter and atmospheric aeration in a mixed tank (see figure below). The tank has neither
in- nor outflow. It can either be regarded as an actual tank or as a control volume moving down a river.
The model’s two state variables are degradable organic matter (OM) and dissolved oxygen (DO). This is in
contrast to the original model of Streeter and Phelps (1925) which considers biochemical oxygen demand,
BOD, (rather than OM) and the oxygen deficit (rather than DO).

The presented model accounts for the processes of microbial degradation in the simplest possible way. It does
not consider oxygen limitation, hence, it returns non-sense if the system goes anaerobic. Furthermore, the
model neglects temperature dependence of micribioal activity, it does not distinguish between CBOD and
NBOD, the degradation rate constant does not vary over time (meaning that microbes do not reproduce),
and there is no interaction between water and sediment, etc.

In this example, integration is performed using generated R code (in contrast to other examples based on
Fortran).

5.1.1.2 Tabular model definition

The model’s state variables, parameters, and functions are declared below, followed by the speficition of
process rates and stoichiometric factors.

Table 10: Declaration of state variables (file ‘vars.txt’).

name unit description

OM mg/l Organic matter (as carbon)
DO mg/l Dissolved oxygen

Table 11: Declaration of parameters (file ‘pars.txt’).

name unit description

kd 1/day Degradation rate constant
ka 1/day Re-aeration rate constant
s mass ratio g DO consumed per g OM
temp celsius Temperature

22

Table 12: Declaration of functions (file ‘funs.txt’).

name unit description

DOsat mg/l Oxygen saturation as a function of temperature

Table 13: Definition of process rates (file ‘pros.txt’).

name unit description expression

degradation mg/l/d Decay rate kd * OM
reaeration mg/l/d Re-aeration rate ka * (DOsat(temp)-DO)

Table 14: Definition of stoichiometric factors (file ‘stoi.txt’).

process OM DO

degradation -1 -s
reaeration 0 1

5.1.1.3 Implementation of functions

Since the model is run in pure R, the required function is implemented directly in the R below.

5.1.1.4 R code to run the model

A rodeo-based implementation and application of the model is demonstrated by the following R code. It
makes use of the tables displayed above.

rm(list=ls())

Adjustable settings

pars <- c(kd=1, ka=0.5, s=2.76, temp=20) # parameters

vars <- c(OM=1, DO=9.02) # initial values

times <- seq(from=0, to=10, by=1/24) # times of interest

End of settings

Load required packages

library("deSolve")

library("rodeo")

Initialize rodeo object

rd <- function(f, ...) {read.table(file=f,

header=TRUE, sep="\t", stringsAsFactors=FALSE, ...) }

model <- rodeo$new(vars=rd("vars.txt"), pars=rd("pars.txt"), funs=rd("funs.txt"),

pros=rd("pros.txt"), stoi=as.matrix(rd("stoi.txt", row.names="process")),

asMatrix=TRUE, dim=c(1))

Assign initial values and parameters

model$setVars(vars)

model$setPars(pars)

23

Implement required functions

DOsat <- function(t) {

14.652 - 0.41022*t + 7.991e-3*(t**2) - 7.7774e-5*(t**3)

}

Generate R code

model$compile(fortran=FALSE)

Integrate

out <- model$dynamics(times=times, fortran=FALSE)

Plot, using the method for objects of class deSolve

plot(out)

5.1.1.5 Model output

The output from the above code (displayed below) shows the characteristic sag in the dynamics of dissolved
oxygen. Note that the timing of the minimum corresponds to a river station if the simulated tank represents
a moving control volume.

0 2 4 6 8 10

0
.0

0
.4

0
.8

OM

time

0 2 4 6 8 10

7
.6

8
.0

8
.4

8
.8

DO

time

0 2 4 6 8 10

0
.0

0
.4

0
.8

degradation

time

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

reaeration

time

24

5.1.2 Bacteria in a 2-zones stirred tank

5.1.2.1 Problem description

The model simulates the dynamics of bacteria in a continuous-flow system which is subdivided into two tanks.
The main tank is directly connected with the system’s in- and outflow. The second tank is connected to the
main tank but it does not receive external inflow (see figure below and subsequent tables for a declaration of
symbols). Both tanks are assumed to be perfectly mixed. The model accounts for import/export of bacteria
and substrate into/from the two tanks. Growth of bacteria in the two tanks is limited by substrate availability
according to a Monod function.

Instead of simulating the system’s dynamics, we analyze steady-state concentrations of bacteria for different
choices of the model’s parameters. The parameters whose (combined) effect is examined are:

1. the relative volume of the sub-tank in relation to the system’s total volume (parameter fS),

2. the intensity of exchange between the two tanks (parameter qS),

3. the growth rate of bacteria (controlled by parameter mu).

This kind of sensitivity analysis can be used to gain insight into the fundamental impact of transient storage
on bacteria densities. A corresponding real-world systems would be a river section (main tank) that exchanges
water with either a lateral pond or the pore water of the hyporheic zone (sub-tanks). Note that, in this
model, the sub-tank allocates a fraction of the system’s total volume. This is (at least partly) in contrast to
the mentioned real systems, where the total volume increases with increasing thickness of the hyporheic zone
or the size of a lateral pond.

The runsteady method from the rootSolve package is employed for steady-state computation. Thus, we
just perform integration over a time period a sufficient length. While this is not the most efficient strategy it
comes with the advantage of guaranteed convergence independent of the assumed initial state.

5.1.2.2 Tabular model definition

The model’s state variables, parameters, and functions are declared below, followed by the speficition of
process rates and stoichiometric factors.

Table 15: Declaration of state variables (file ‘vars.txt’).

name unit description

bM mg/ml Bacteria concentration in main tank
bS mg/ml Bacteria concentration in sub-tank
sM mg/ml Substrate concentration in main tank
sS mg/ml Substrate concentration in sub-tank

25

https://en.wikipedia.org/wiki/Monod_equation
http://cran.r-project.org/package=rootSolve

Table 16: Declaration of parameters (file ‘pars.txt’).

name unit description

vol ml Total volume (main tank + sub-tank)
fS - Fraction of total volume assigned to sub-tank
qM ml/hour External in-/outflow to/from main tank
qS ml/hour Flow rate in sub-tank branch
bX mg/ml Concentration of bacteria in external inflow to main tank
sX mg/ml Concentration of substrate in external inflow to main tank
mu 1/hour Growth rate constant of bacteria
yield mg/mg Yield coef. (bacteria produced per amount of substrate)
half mg/ml Half saturation conc. of sustrate for bacteria growth

Table 17: Definition of process rates (file ‘pros.txt’).

name unit description expression

bLoadX2M mg/hour Bacteria import to main tank qM * bX
bLoadM2X mg/hour Bacteria export from main tank qM * bM
bLoadM2S mg/hour Bacteria import to sub-tank qS * bM
bLoadS2M mg/hour Bacteria export from sub-tank qS * bS
sLoadX2M mg/hour Substrate import to main tank qM * sX
sLoadM2X mg/hour Substrate export from main tank qM * sM
sLoadM2S mg/hour Substrate import to sub-tank qS * sM
sLoadS2M mg/hour Substrate export from sub-tank qS * sS
bGrowthM mg/ml/hour Bacteria gowth in main tank mu * sM/(sM+half) * bM
bGrowthS mg/ml/hour Bacteria growth in sub-tank mu * sS/(sS+half) * bS

Table 18: Definition of stoichiometric factors (file ‘stoi.txt’).

process bM bS sM sS

bLoadX2M 1/(vol*(1-fS))
bLoadM2X -1/(vol*(1-fS))
bLoadM2S -1/(vol*(1-fS)) 1/(vol*fS)
bLoadS2M 1/(vol*(1-fS)) -1/(vol*fS)
sLoadX2M 1/(vol*(1-fS))
sLoadM2X -1/(vol*(1-fS))
sLoadM2S -1/(vol*(1-fS)) 1/(vol*fS)
sLoadS2M 1/(vol*(1-fS)) -1/(vol*fS)
bGrowthM 1 -1/yield
bGrowthS 1 -1/yield

5.1.2.3 Implementation of functions

For this model, no functions need to be implemented.

5.1.2.4 R code to run the model

A rodeo-based implementation and application of the model is demonstrated by the following R code. It
makes use of the tables displayed above.

26

rm(list=ls())

Adjustable settings

vars <- c(bM=0, bS=0, sM=0, sS=0) # initial values

pars <- c(vol=1000, fS=NA, qM=200, qS=NA, # fixed parameter values

bX=1, sX=20, mu=NA, yield=0.1, half=0.1)

sensList <- list(# parameter values for

fS= seq(from=0.02, to=0.5, by=0.02), # sensitivity analysis

qS= seq(from=2, to=200, by=2),

mu= c(0.07, 0.1, 0.15)

)

commonScale <- TRUE # controls color scale

End of settings

Load packages

library("rootSolve")

library("rodeo")

Initialize rodeo object

rd <- function(f, ...) {read.table(file=f,

header=TRUE, sep="\t", stringsAsFactors=FALSE, ...) }

model <- rodeo$new(vars=rd("vars.txt"), pars=rd("pars.txt"), funs=NULL,

pros=rd("pros.txt"), stoi=as.matrix(rd("stoi.txt", row.names="process")),

asMatrix=TRUE, dim=c(1))

Assign initial values and parameters

model$setVars(vars)

model$setPars(pars)

Generate code, compile into shared library, load library

model$compile(NULL)

Function to return the steady-state solution for specific parameters

f <- function(x) {

testPars <- pars

testPars[names(sensList)] <- x[names(sensList)]

model$setPars(testPars)

st <- rootSolve::runsteady(y=model$getVars(), times=c(0, Inf),

func=model$libFunc(), parms=model$getPars(), dllname=model$libName(),

nout=model$lenPros(), outnames=model$namesPros())

if (!attr(st, "steady"))

st$y <- rep(NA, length(st$y))

setNames(st$y, model$namesVars())

}

Set up parameter sets

sensSets <- expand.grid(sensList)

Apply model to all sets and store results as array

out <- array(apply(sensSets, 1, f),

dim=c(model$lenVars(), lapply(sensList, length)),

dimnames=c(list(model$namesVars()), sensList))

27

Plot results of sensitivity analysis

xlab <- "Sub-tank volume / Total vol."

ylab <- "Flow through sub-tank"

VAR <- c("bM", "bS")

MU <- as.character(sensList[["mu"]])

if (commonScale) {

breaks <- pretty(out[VAR,,,MU], 15)

colors <- colorRampPalette(c("steelblue2","lightyellow","orange2"))(length(breaks)-1)

}

layout(matrix(1:((length(VAR)+1)*length(MU)), ncol=length(VAR)+1,

nrow=length(MU), byrow=TRUE))

for (mu in MU) {

if (!commonScale) {

breaks <- pretty(out[VAR,,,mu], 15)

colors <- colorRampPalette(c("steelblue2","lightyellow","orange2"))(length(breaks)-1)

}

for (var in VAR) {

image(x=as.numeric(rownames(out[var,,,mu])),

y=as.numeric(colnames(out[var,,,mu])), z=out[var,,,mu],

breaks=breaks, col=colors, xlab=xlab, ylab=ylab)

mtext(side=3, var, cex=par("cex"))

legend("topright", bty="n", legend=paste("mu=",mu))

}

plot.new()

br <- round(breaks, 1)

legend("topleft", bty="n", ncol= 2, fill=colors,

legend=paste(br[-length(br)],br[-1],sep="-"))

}

layout(1)

5.1.2.5 Model output

The output from the above code is displayed below. Each individual plot illustrates how the concentration of
bacteria depends on the relative volume of the sub-tank (x-axis) and the flow rate in the pipes connecting the
two tanks (y-axis). The left column shows results for the main tank, the right column refers to the sub-tank.
Each row in the layout corresponds to a specific growth rate (increasing from top to bottom row).

Note that each row has its own color scale. If the variable commonScale is TRUE in the code above, all scales
are identical, allowing colors to be compared across all individual plots. If it is FALSE (which may be desired
when to displaying results for very different growth rates) one can only compare colors in a row.

The figures clearly demonstrate the build-up of higher bacterial concentrations in the sub-tank sheltered
from direct flushing. The difference between the to tanks is especially large when the bacteria’s growth rate
constant is low, making the population more susceptible to flushing losses. In consequence, we would expect
a rapid rise in the bacteria load at the system’s outflow if the exchange of water between the two tanks
(parameter flowS) was suddenly increased.

Interestingly, the figures also suggests that a sub-division of the system (i.e. the existance of the sub-tank)
can, in some circumstances, increase the main tank’s steady-state biomass compared to a single-tank set-up
(biomass for the latter is found at the point of origin in each plot). Thus, for certain configurations, the
existance of the sub-tank boost the bacteria load in the system’s effluent even under steady flow conditions.

28

0.1 0.2 0.3 0.4 0.5

5
0

1
0
0

1
5
0

2
0
0

Sub−tank volume / Total vol.

F
lo

w
 t
h
ro

u
g
h
 s

u
b
−

ta
n
k

bM

mu= 0.07

0.1 0.2 0.3 0.4 0.5

5
0

1
0
0

1
5
0

2
0
0

Sub−tank volume / Total vol.

F
lo

w
 t
h
ro

u
g
h
 s

u
b
−

ta
n
k

bS

mu= 0.07 1.2−1.3
1.3−1.4
1.4−1.5
1.5−1.6
1.6−1.7
1.7−1.8
1.8−1.9
1.9−2
2−2.1

2.1−2.2
2.2−2.3
2.3−2.4
2.4−2.5
2.5−2.6
2.6−2.7
2.7−2.8
2.8−2.9
2.9−3

0.1 0.2 0.3 0.4 0.5

5
0

1
0
0

1
5
0

2
0
0

Sub−tank volume / Total vol.

F
lo

w
 t
h
ro

u
g
h
 s

u
b
−

ta
n
k

bM

mu= 0.1

0.1 0.2 0.3 0.4 0.5

5
0

1
0
0

1
5
0

2
0
0

Sub−tank volume / Total vol.

F
lo

w
 t
h
ro

u
g
h
 s

u
b
−

ta
n
k

bS

mu= 0.1 1.2−1.3
1.3−1.4
1.4−1.5
1.5−1.6
1.6−1.7
1.7−1.8
1.8−1.9
1.9−2
2−2.1

2.1−2.2
2.2−2.3
2.3−2.4
2.4−2.5
2.5−2.6
2.6−2.7
2.7−2.8
2.8−2.9
2.9−3

0.1 0.2 0.3 0.4 0.5

5
0

1
0
0

1
5
0

2
0
0

Sub−tank volume / Total vol.

F
lo

w
 t

h
ro

u
g
h
 s

u
b
−

ta
n
k

bM

mu= 0.15

0.1 0.2 0.3 0.4 0.5

5
0

1
0
0

1
5
0

2
0
0

Sub−tank volume / Total vol.

F
lo

w
 t

h
ro

u
g
h
 s

u
b
−

ta
n
k

bS

mu= 0.15 1.2−1.3
1.3−1.4
1.4−1.5
1.5−1.6
1.6−1.7
1.7−1.8
1.8−1.9
1.9−2
2−2.1

2.1−2.2
2.2−2.3
2.3−2.4
2.4−2.5
2.5−2.6
2.6−2.7
2.7−2.8
2.8−2.9
2.9−3

5.2 One-dimensional models

5.2.1 Diffusion

5.2.1.1 Problem description

This model simulates diffusion into a material driven by a constant known concentration at a boundary (see
figure below). The initial concentration of transported substance is zero in the entire model domain. The

29

latter is subdivided into layers of equal thickness (semi-discretization) and the dispersion term for each layer
is approximated by a central finite difference.

The source code below computes the concentrations in all layers for selected time points by means of numerical
integration. The results are visually compared to analytical solutions for the same initial and boundary
conditions.

5.2.1.2 Tabular model definition

The model’s state variables and parameters are declared below, followed by the speficition of process rates
and stoichiometric factors.

Table 19: Declaration of state variables (file ‘vars.txt’).

name unit description

c mol/m3 concentration

Table 20: Declaration of parameters (file ‘pars.txt’).

name unit description

d m2/s diffusion coefficient
dx m thickness of layer
cb mol/m3 boundary concentration
leftmost none 0/1 mask to select layer with contact to boundary

Table 21: Definition of process rates (file ‘pros.txt’).

name unit description expression

diffCnt mol/m3/s diffusion between layers d/(dxˆ2) * (left(c) - 2*c + right(c))
diffBnd mol/m3/s diffusion accross boundary leftmost * 2 * d/(dxˆ2) * (cb - c)

Table 22: Definition of stoichiometric factors (file ‘stoi.txt’).

process c

diffCnt 1
diffBnd 1

30

5.2.1.3 Implementation of functions

For this model, no functions need to be implemented.

5.2.1.4 R code to run the model

A rodeo-based implementation and application of the model is demonstrated by the following R code.

rm(list=ls())

Adjustable settings

dx <- 0.01 # spatial discretization (m)

nCells <- 100 # number of layers (-)

d <- 5e-9 # diffusion coefficient (m2/s)

cb <- 1 # boundary concentr. at all times (mol/m3)

times <- c(0,1,6,14,30,89)*86400 # times of interest (seconds)

End of settings

Load packages

library("deSolve")

library("rodeo")

Initialize rodeo object

rd <- function(f, ...) {read.table(file=f,

header=TRUE, sep="\t", stringsAsFactors=FALSE, ...) }

model <- rodeo$new(vars=rd("vars.txt"), pars=rd("pars.txt"), funs=NULL,

pros=rd("pros.txt"), stoi=as.matrix(rd("stoi.txt", row.names="process")),

asMatrix=TRUE, dim=c(nCells))

Assign initial values and parameters

model$setVars(cbind(c=rep(0, nCells)))

model$setPars(cbind(d=d, dx=dx,cb=cb,

leftmost= c(1, rep(0, nCells-1))

))

Generate code, compile into shared library, load library

model$compile(NULL)

Numeric solution

solNum <- model$dynamics(times=times, jactype="bandint", bandup=1, banddown=1)

Function providing the analytical solution

erfc <- function(x) { 2 * pnorm(x * sqrt(2), lower=FALSE) }

solAna <- function (x,t,d,cb) { cb * erfc(x / 2 / sqrt(d*t)) }

Graphically compare numerical and analytical solution

nc <- 2

nr <- ceiling(length(times) / nc)

layout(matrix(1:(nc*nr), ncol=nc, byrow=TRUE))

par(mar=c(4,4,1,1))

for (t in times) {

plot(c(0,nCells*dx), c(0,cb), type="n", xlab="Station (m)", ylab="mol/m3")

Numeric solution (stair steps of cell-average)

stations <- seq(from=0, by=dx, length.out=nCells+1)

concs <- solNum[solNum[,1]==t, paste0("c.",1:nCells)]

31

lines(stations, c(concs,concs[length(concs)]), type="s", col="steelblue4")

Analytical solution (for center of cells)

stations <- seq(from=dx/2, to=(nCells*dx)-dx/2, by=dx)

concs <- solAna(x=stations, t=t, d=d, cb=cb)

lines(stations, concs, col="red", lty=2)

Extras

legend("topright", bty="n", paste("After",t/86400,"days"))

if (t == times[1]) legend("right",lty=1:2,

col=c("steelblue4","red"),legend=c("Numeric", "Exact"),bty="n")

abline(v=0)

}

layout(1)

5.2.1.5 Model output

The output from the above code is shown below. The boundary where a constant external concentration was
imposed is marked by the vertical line at station 0.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Station (m)

m
o

l/
m

3

After 0 days

Numeric
Exact

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Station (m)

m
o

l/
m

3
After 1 days

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Station (m)

m
o

l/
m

3

After 6 days

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Station (m)

m
o

l/
m

3

After 14 days

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Station (m)

m
o

l/
m

3

After 30 days

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Station (m)

m
o

l/
m

3

After 89 days

5.2.2 Advective-dispersive transport

5.2.2.1 Problem description

The model simulates the transport of a conservative tracer along a river reach assuming steady-uniform flow,
i.e. constant flow rate and uniform cross-section (see figure below). The tracer is injected somewhere in the
middle of the reach and instantaneous mixing over the cross-section is assumed.

32

For the advection term, a backward finite difference scheme is used. The dispersion term is approximated by
central finite differences. The dispersion coefficient is corrected for the effect of numerical dispersion.

To verify the result of numerical integration, outputs are visually compared to a classic analytical solution of
the one-dimensional advection-dispersion equation.

5.2.2.2 Tabular model definition

The model’s state variables, parameters, and functions are declared below, followed by the speficition of
process rates and stoichiometric factors.

Table 23: Declaration of state variables (file ‘vars.txt’).

name unit description

c mol/m3 tracer concentration

Table 24: Declaration of parameters (file ‘pars.txt’).

name unit description

u m/s advection velocity
d m2/s dispersion coefficient
dx m length of sub-section
leftmost none 0/1 mask to select leftmost sub-section
rightmost none 0/1 mask to select rightmost sub-section

Table 25: Declaration of functions (file ‘funs.txt’).

name unit description

cUp mol/m3/s upstream concentration
cDn mol/m3/s downstream concentration

Table 26: Definition of process rates (file ‘pros.txt’).

name unit description expression

adv mol/m3/s advection u/dx * (left(c)-c)
advL mol/m3/s advection over upstr. boundary u/dx * (cUp(time)-c)

33

name unit description expression

dis mol/m3/s dispersion d/(dxˆ2) * (left(c) - 2*c + right(c))
disL mol/m3/s disp. over upstr. boundary 2 * d/(dxˆ2) * (cUp(time) - c)
disR mol/m3/s disp. over downstr. boundary 2 * d/(dxˆ2) * (cDn(time) - c)

Table 27: Definition of stoichiometric factors (file ‘stoi.txt’).

process variable expression

adv c 1
advL c leftmost
dis c 1
disL c leftmost
disR c rightmost

5.2.2.3 Implementation of functions

The contents of a file ‘functions.f95’ implementing a Fortran module ‘functions’ is shown below. The module
contains all non-intrinsic functions appearing in the process rate expressions or stoichiometric factors.

module functions

implicit none

double precision, parameter:: ZERO= 0d0

contains

function cUp (time) result (r)

double precision, intent(in):: time

double precision:: r

r= ZERO ! same as for analytic solution

end function

function cDn (time) result (r)

double precision, intent(in):: time

double precision:: r

r= ZERO ! same as for analytic solution

end function

end module

5.2.2.4 R code to run the model

A rodeo-based implementation and application of the model is demonstrated by the following R code. It
makes use of the tables and function code displayed above.

rm(list=ls())

Adjustable settings

fileFun <- "functions.f95"

u <- 1 # advective velocity (m/s)

d <- 30 # longit. dispersion coefficient (m2/s)

34

wetArea <- 50 # wet cross-section area (m2)

dx <- 10 # length of a sub-section (m)

nCells <- 1000 # number of sub-sections

inputCell <- 100 # index of sub-section with tracer input

inputMass <- 10 # input mass (g)

times <- c(0,30,60,600,1800,3600) # times (seconds)

End of settings

Load packages

library("deSolve")

library("rodeo")

Make sure that vector of times starts with zero

times <- sort(unique(c(0, times)))

Initialize rodeo object

rd <- function(f) {read.table(file=f,

header=TRUE, sep="\t", stringsAsFactors=FALSE) }

model <- rodeo$new(vars=rd("vars.txt"), pars=rd("pars.txt"),

funs=rd("funs.txt"), pros=rd("pros.txt"), stoi=rd("stoi.txt"),

asMatrix=FALSE, dim=c(nCells))

Numerical dispersion for backward finite-difference approx. of advection term

dNum <- u*dx/2

Assign initial values and parameters

model$setVars(cbind(

c=ifelse((1:nCells)==inputCell, inputMass/wetArea/dx, 0)

))

model$setPars(cbind(

u=u, d=d-dNum, dx=dx,

leftmost= c(1, rep(0, nCells-1)),

rightmost= c(rep(0, nCells-1), 1)

))

Generate code, compile into shared library, load library

model$compile(fileFun)

Numeric solution

solNum <- model$dynamics(times=times, jactype="bandint", bandup=1, banddown=1,

atol=1e-9)

Function providing the analytical solution

solAna <- function (x,t,mass,area,disp,velo) {

mass/area/sqrt(4*pi*disp*t) * exp(-((x-velo*t)^2) / (4*disp*t))

}

Graphically compare numerical and analytical solution

nc <- 2

nr <- ceiling(length(times) / nc)

layout(matrix(1:(nc*nr), ncol=nc, byrow=TRUE))

par(mar=c(4,4,1,1))

for (t in times) {

35

plot(c(0,nCells*dx), c(1e-7,inputMass/wetArea/dx), type="n", xlab="Station (m)",

ylab="g/m3", log="y")

Numeric solution (stair steps of cell-average)

stations <- seq(from=0, by=dx, length.out=nCells+1)

concs <- solNum[solNum[,1]==t, paste0("c.",1:nCells)]

lines(stations, c(concs,concs[length(concs)]), type="s", col="steelblue4")

Analytical solution (for center of cells)

stations <- seq(from=dx/2, to=(nCells*dx)-dx/2, by=dx)

concs <- solAna(x=stations, t=t, mass=inputMass, area=wetArea, disp=d, velo=u)

stations <- stations + (inputCell*dx) - dx/2

lines(stations, concs, col="red", lty=2)

Extras

abline(v=(inputCell*dx) - dx/2, lty=3)

legend("topright", bty="n", paste("After",t,"sec"))

if (t == times[1]) legend("right",lty=1:2,

col=c("steelblue4","red"),legend=c("Numeric", "Exact"),bty="n")

}

layout(1)

5.2.2.5 Model output

The output from the above code is shown below. The location of tracer input is marked by the dashed
vertical line.

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
3

Station (m)

g
/m

3

After 0 sec

Numeric
Exact

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
3

Station (m)

g
/m

3

After 30 sec

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
3

Station (m)

g
/m

3

After 60 sec

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
3

Station (m)

g
/m

3

After 600 sec

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
3

Station (m)

g
/m

3

After 1800 sec

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
3

Station (m)

g
/m

3

After 3600 sec

36

5.2.3 Ground water flow

5.2.3.1 Problem description

The model solves the partial differential equation describing one-dimensional (lateral) ground water flow under
the Dupuit-Forchheimer assumption. Flow is simulated along a transect between the watershed boundary
and a river (see Figure below).

The model has several boundary conditions:

• Zero lateral flow at left margin (boundary of watershed)

• Exchange with river at right margin (leaky aquifer approach, river water level can vary over time)

• No lateral flow accross right boundary (assuming symmetry, i.e. an identical watershed at the other
side of the river).

• Time-variable recharge via percolation through unsaturated zone.

The governing equations can be found in Bronstert et al. (1991). Details on the leakage approach are
presented in Rauch (1993), Kinzelbach (1986), as well as Kinzelbach and Rausch (1995).

5.2.3.2 Tabular model definition

The model’s state variables, parameters, and functions are declared below, followed by the speficition of
process rates and stoichiometric factors.

Table 28: Declaration of state variables (file ‘vars.txt’).

name unit description

h m elevation of ground water surface

Table 29: Declaration of parameters (file ‘pars.txt’).

name unit description

dx m lateral discretizaton
kf m/day hydraulic conductivity
ne - effective porosity
h0 m elevation of aquifer base
hBed m river bottom elevation
wBed m width of river (rectangular x-section)
kfBed m/day hydraulic conductivity of river bottom layer
tBed m thickness of river bottom layer
leaky - 1 for leaky and 0 for normal cells

37

https://en.wikipedia.org/wiki/Dupuit%E2%80%93Forchheimer_assumption

Table 30: Declaration of functions (file ‘funs.txt’).

name unit description

leak m/day exchange flow between river and aquifer
hRiv m river water surface elevation
rch m/day recharge rate

Table 31: Definition of process rates (file ‘pros.txt’).

name unit description expression

flow m/day ground water flow kf * (h-h0) / ne / (dxˆ2) * (left(h) - 2*h + right(h))
recharge m/day recharge rch(time) / ne
leakage m/day exch. with river leaky * leak(h, hRiv(time), hBed, kfBed, tBed, wBed, dx)

Table 32: Definition of stoichiometric factors (file ‘stoi.txt’).

process variable expression

flow h 1
recharge h 1
leakage h 1

5.2.3.3 Implementation of functions

The contents of a file ‘functions.f95’ implementing a Fortran module ‘functions’ is shown below. The module
contains all non-intrinsic functions appearing in the process rate expressions or stoichiometric factors.

! This is file 'functions.f95'

module functions

implicit none

contains

double precision function leak (hAqui, hRiv, hBed, kfBed, tBed, wBed, dx)

double precision, intent(in):: hAqui, hRiv, hBed, kfBed, tBed, wBed, dx

double precision:: wetPerim, leakFact

wetPerim = wBed + 2 * (hRiv - hBed) ! rectangular x-section

leakFact = kfBed / tBed * wetPerim / dx

if (hAqui > hBed) then

leak = leakFact * (hRiv - hAqui)

else

leak = leakFact * (hRiv - hBed)

end if

end function

double precision function rch (time)

double precision, intent(in):: time

rch = 0.2d0 / 365d0 ! held constant at 200 mm/year

end function

double precision function hRiv (time)

double precision, intent(in):: time

38

hRiv = 11 ! held constant at 11 m

end function

end module

5.2.3.4 R code to run the model

A rodeo-based implementation and application of the model is demonstrated by the following R code. It
makes use of the tables and function code displayed above.

rm(list=ls())

Adjustable settings

fileFun <- "functions.f95"

dx <- 10 # spatial discretization (m)

nx <- 100 # number of boxes (-)

times <- seq(0, 12*365, 30) # times of interest (days)

End of settings

Load packages

library("deSolve")

library("rodeo")

Initialize model

rd <- function(f) {read.table(file=f,

header=TRUE, sep="\t", stringsAsFactors=FALSE)}

model <- rodeo$new(vars=rd("vars.txt"), pars=rd("pars.txt"),

funs=rd("funs.txt"), pros=rd("pros.txt"),

stoi=rd("stoi.txt"), asMatrix=FALSE, dim=nx)

Assign initial values and parameters

model$setVars(cbind(h=rep(11, nx)))

model$setPars(cbind(dx=rep(dx, nx), kf=rep(5., nx), ne=rep(0.17, nx),

h0=rep(-10, nx), hBed=rep(10, nx), wBed=rep(0.5*dx, nx), kfBed=rep(5., nx),

tBed=rep(0.1, nx), leaky=c(1, rep(0, nx-1))))

Generate code, compile into shared library, load library

model$compile(fileFun)

Integrate

out <- model$dynamics(times=times, jactype="bandint", bandup=1, banddown=1)

Plot results

filled.contour(x=out[,"time"]/365.25, y=(1:nx)*dx-dx/2,

z=out[,names(model$getVars())], xlab="Years", ylab="Distance to river (m)",

color.palette=colorRampPalette(c("steelblue2","lightyellow","darkorange")),

key.title= mtext(side=3, "Ground water surf. (m)", padj=-0.5))

5.2.3.5 Model output

The output of the above code is shown below. Starting from a flat ground water surface (left margin) the
system runs into a steady state after a couple of years. The steady state ground water surface reflects the

39

equilibrium between recharge and exfiltration to the river governed by the aquifer’s transmissivity as well as
the conductivity of the river bed.

11.0

11.5

12.0

12.5

13.0

Ground water surf. (m)

0 2 4 6 8 10

200

400

600

800

Years

D
is

ta
n

c
e

 t
o

 r
iv

e
r

(m
)

5.2.4 Antibiotic resistant bacteria in a river

5.2.4.1 Problem description

This section demonstrates the re-implementation of an existing model originally published by Hellweger,
Ruan, and Sanchez (2011). It considers the fate of E. coli bacteria in a stream loaded with the antibiotic
Tetracycline. The model covers both the (moving) water column and the (fixed) bottom sediments. In
contrast to the original implementation of Hellweger, Ruan, and Sanchez (2011), the tanks-in-series concept
(see Figure below) was adopted to simulate longitudinal transport in the water column. The key idea of this
concept is to represent a river reach by a cascade of fully-mixed tanks whose number (n) is adjusted to mimic
the relative magnitude of advection and longitudinal dispersion. This is expressed by the relation n = P e

2
+ 1

where Pe is the dimensionless Peclet number. The latter is related to the cross-section average velocity uL,
the reach length L, and the longitudinal dispersion coefficient DL according to Pe = uL·L

DL

(Elgeti 1996).

The tanks-in-series concept comes with two constraints: First, it is inefficient when applied to systems with
negligible dispersion (consider the case DL → 0 in the just mentioned relation). Second, depending on the
solver, the Courant criterion must be obeyed when chosing the maximum integration time step ∆t which

40

should be ∆t ≤
L

n·uL

. Note that the term L/uL can be expanded with the cross-section area to yield the
quotient of storage volume and flow rate, being the usual definition of a mixed tank’s residence time.

5.2.4.2 Tabular model definition

The model’s state variables comprise the concentrations of 12 components listed in the table below. Each
component in the water column (suffix _w) has its counterpart in the sediment (suffix _s). With regard to
bacteria, two strains of E. coli are distinguished: a Tetracycline resistant strain and a susceptible one.

Table 33: Declaration of state variables (file ‘vars.txt’).

name unit description initial

S_w g C/m3 susceptible bacteria in water 0.180
S_s g C/m3 susceptible bacteria in sediment 1.800
R_w g C/m3 resistant bacteria in water 0.020
R_s g C/m3 resistant bacteria in sediment 8.000
POM_w g C/m3 particulate OM in water 10.000
POM_s g C/m3 particulate OM in sediment 75.000
TSS_w g DW/m3 total suspended solids in water 16.000
TSS_s g DW/m3 total suspended solids in sediment 160.000
A_w g/m3 total antibiotic concentration in water 0.002
A_s g/m3 total antibiotic concentration in sediment 0.020
DOM_w g C/m3 dissolved OM in water 3.200
DOM_s g C/m3 dissolved OM in sediment 32.000

The values displayed in the rightmost column of the above table are used as initial values in the model
application. Concentrations are generally specified as mass per bulk volume in units of mg/L. The mass
of total suspended solids is quantified as dry weight; masses of biogenic organic matter, including bacteria,
are expressed on a Carbon basis. For E. coli, biomass can be converted into cell numbers using a factor of
roughly 1 · 10−13 g Carbon / cell.

This conversion is based on information from the bionumbers data base reporting a value of 7e+9 Carbon
atoms per E. coli cell. Taking into account the Avogadro constant (about 6e23 atoms/mol) and the molar
mass of Carbon (12 g/mol), one obtains 7e+9 / 6e23 * 12 = 1.4e-13 g Carbon / cell. An alternative estimate
(Hellweger, Ruan, and Sanchez (2011), supplement page S12) is based on dry weight of E. coli (180e-15 g/cell)
and an approximate ratio of 0.5 g Carbon /g dry weight. The corresponding estimate is 180e-15 * 0.5 =
0.9e-13 g Carbon / cell.

The state variables’ dynamics are controlled by a variety of processes specified in tabular form below.

Table 34: Definition of process rates (file ’pros.txt’); first columns.

id name unit description

1 decay_w g A/m3/d decay of antibiotic in water
2 decay_s g A/m3/d decay of antibiotic in sediment
3 hydrolysis_w g C /m3/d POM hydrolysis in water
4 hydrolysis_s g C /m3/d POM hydrolysis in sediment
5 production g C/m3/d POM production
6 settl_S g C/m2/d settling of susceptible bacteria
7 settl_R g C/m2/d settling of resistant bacteria
8 settl_A g C/m2/d settling of antibiotic
9 settl_POM g C/m2/d settling of particulate OM

10 settl_TSS g DW/m2/d settling of suspended solids

41

http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=103010

11 resusp_S g C/m2/d resuspension of susceptible bacteria
12 resusp_R g C/m2/d resuspension of resistant bacteria
13 resusp_A g C/m2/d resuspension of antibiotic
14 resusp_POM g C/m2/d resuspension of particulate OM
15 resusp_TSS g DW/m2/d resuspension of suspended solids
16 diffusion_A g C/m2/d diff. sed.-water flux of antibiotic
17 diffusion_DOM g C/m2/d diff. sed.-water flux of dissolved OM
18 growth_S_w g C/m3/d growth of susceptible bacs in water
19 growth_S_s g C/m3/d growth of susceptible bacs in sediment
20 growth_R_w g C/m3/d growth of resistant bacs in water
21 growth_R_s g C/m3/d growth of resistant bacs in sediment
22 respiration 1/d respiration of bacteria
23 segregation_w g C/m3/d segregational loss in water
24 segregation_s g C/m3/d segregational loss in sediment
25 conjugation_w g C/m3/d conjugation in water
26 conjugation_s g C/m3/d conjugation in sediment
27 transport_S g C/m3/d transport of susceptible bacteria
28 transport_R g C/m3/d transport of resistant bacteria
29 transport_A g C/m3/d transport of antibiotic
30 transport_DOM g C/m3/d transport of dissolved OM
31 transport_POM g C/m3/d transport of particulate OM
32 transport_TSS g DW/m3/d transport of suspended solids

Table 35: Definition of process rates (file ’pros.txt’); further columns.

id expression

1 ka_w * A_w
2 ka_s * A_s
3 kh_w * POM_w
4 kh_s * POM_s
5 P / dw
6 us * fp * S_w
7 us * fp * R_w
8 us * A_part(A_w, kd_DOM, kd_TSS, DOM_w, TSS_w)
9 us * POM_w
10 us * TSS_w
11 ur * S_s
12 ur * R_s
13 ur * A_part(A_s, kd_DOM, kd_TSS, DOM_s, TSS_s)
14 ur * POM_s
15 ur * TSS_s
16 ud * (A_diss(A_w, kd_DOM, kd_TSS, DOM_w, TSS_w) - por * A_diss(A_s, kd_DOM,

kd_TSS, DOM_s, TSS_s))
17 ud * (DOM_w - por * DOM_s)
18 kg * S_w * DOM_w / (DOM_w + h_DOM) * max(0, 1 - A_free(A_w, kd_DOM, kd_TSS,

DOM_w, TSS_w) / Amic)
19 kg * S_s * DOM_s / (DOM_s + h_DOM) * max(0, 1 - A_free(A_s, kd_DOM, kd_TSS, DOM_s,

TSS_s) / Amic)
20 kg * R_w * DOM_w / (DOM_w + h_DOM) * (1 - alpha)
21 kg * R_s * DOM_s / (DOM_s + h_DOM) * (1 - alpha)
22 kr
23 ks * R_w
24 ks * R_s

42

25 kc * S_w * R_w
26 kc * S_s * R_s
27 1 / V * (Q_in * (S_in - S_w) + Q * (left(S_w) - S_w))
28 1 / V * (Q_in * (R_in - R_w) + Q * (left(R_w) - R_w))
29 1 / V * (Q_in * (A_in - A_w) + Q * (left(A_w) - A_w))
30 1 / V * (Q_in * (DOM_in - DOM_w) + Q * (left(DOM_w) - DOM_w))
31 1 / V * (Q_in * (POM_in - POM_w) + Q * (left(POM_w) - POM_w))
32 1 / V * (Q_in * (TSS_in - TSS_w) + Q * (left(TSS_w) - TSS_w))

Besides the physical phenomena of advection and dispersion, the list of processes includes growth and
respiration losses of bacteria, as well as gene transfer between the two strains of E. coli. Particularly,
the model describes the horizontal transfer of Tetracycline resistance through the exchange of plasmids
(conjugation) as well as the potential loss of the plasmid during cell division (segregational loss). While
carriage of the resistance genes is clearly advantageous under exposure to the antibiotic, the synthesis of
plasmids also has side effects to the cell, e. g. in the form of physiological costs. This phenomenon is described
as a reduction of the growth rate of the Tetracycline-resistant E. coli strain but evolutionary reduction of
plasmid costs (Lenski 1998) is neglected.

Tetracycline undergoes photolytic decay (Wammer et al. 2011) which is modeled as a first-order process.
The antibiotic is also known to bind to organic and inorganic matter in relevant percentages (Tolls 2001).
Hence, sorption effects must be included in the model to obtain realistic estimates of the freely available
Tetracycline concentration to which the bacteriostatic effect is attributed (Chen et al. 2015). As in many
bio-geo-chemical codes, it is assumed that sorption equilibria arise instantaneously. As this leads to a set of
algebraic equations rather than ODE, sorption is not explicitly listed in the above table of processes.

The stoichiometric factors linking the processes with the state variables’ derivatives are provided in matrix
format below.

Table 36: Stoichiometric factors (file ’stoi.txt’); first columns.

process S_w S_s R_w R_s POM_w POM_s

decay_w
decay_s
settl_S -1/dw 1/ds
settl_R -1/dw 1/ds
settl_POM -1/dw 1/ds
settl_TSS
settl_A
resusp_S 1/dw -1/ds
resusp_R 1/dw -1/ds
resusp_POM 1/dw -1/ds
resusp_TSS
resusp_A
diffusion_A
diffusion_DOM
hydrolysis_w -1
hydrolysis_s -1
production 1
growth_S_w 1
growth_S_s 1
growth_R_w 1
growth_R_s 1
respiration -S_w -S_s -R_w -R_s
segregation_w 1 -1

43

segregation_s 1 -1
conjugation_w -1 1
conjugation_s -1 1
transport_S 1
transport_R 1
transport_POM 1
transport_TSS
transport_A
transport_DOM

Table 37: Stoichiometric factors (file ’stoi.txt’); further columns.

process TSS_w TSS_s A_w A_s DOM_w DOM_s

decay_w -1
decay_s -1
settl_S
settl_R
settl_POM
settl_TSS -1/dw 1/ds
settl_A -1/dw 1/ds
resusp_S
resusp_R
resusp_POM
resusp_TSS 1/dw -1/ds
resusp_A 1/dw -1/ds
diffusion_A -1/dw 1/ds
diffusion_DOM -1/dw 1/ds
hydrolysis_w 1
hydrolysis_s 1
production
growth_S_w -1/Y
growth_S_s -1/Y
growth_R_w -1/Y
growth_R_s -1/Y
respiration
segregation_w
segregation_s
conjugation_w
conjugation_s
transport_S
transport_R
transport_POM
transport_TSS 1
transport_A 1
transport_DOM 1

The model specification is completed by the declaration of parameters and functions that appear in the process
rate expressions (Tables below). Table numbers appearing in column ‘references’ refer to the supplement of
the Hellweger, Ruan, and Sanchez (2011) paper.

44

Table 38: Declaration of parameters (file ‘pars.txt’).

name unit description default references

dw m depth of water column 6.0e-01 guess
ds m depth of sediment layer 3.0e-02 guess
por - porosity of sediments 3.0e-01 guess
ka_w 1/d rate constant of antibiotic decay in water 1.0e-01 Table S4
ka_s 1/d rate constant of antibiotic decay in sediments 0.0e+00 Table S4
kd_DOM m3/g C coefficient for antibiotic sorption to DOM 1.6e-02 Table S4
kd_TSS m3/g

DW
coefficient for antibiotic sorption to TSS 2.0e-04 Table S4

us m/d settling velocity NA Table S6
ur m/d resuspension velocity NA Table S6
ud m/d velocity describing turbulent diffusion 5.0e-03 Table S6
P g

C/m2/d
rate of POM production 2.3e+00 Table S6

kh_w 1/d rate constant of POM hydrolysis in water 5.0e-02 Table S6
kh_s 1/d rate constant of POM hydrolysis in sediments 5.0e-02 Table S6
fp - fraction of water-column bacteria being bound to

particles
1.0e-01 Table S6

kr 1/d bacteria respiration rate constant 1.1e-01 Table S4
kg 1/d max. growth rate of sensitive bacteria 2.6e+00 Table S4
h_DOM g C/m3 half saturation concentration of DOM for bacteria

growth
9.1e+00 Table S6

Y - yield; bacterial carbon / DOM carbon 3.6e-01 Table S7
Amic g A/m3 minimum inhibiting conc. of freely dissolved antibiotic 1.3e-02 Table S6
ks 1/d rate constant of segregational loss 4.0e-02 Table S6
kc m3/g

C/d
constant to control conjugation 1.0e-05 Table S6

alpha - reduction of growth rate due to resistance (plasmid cost) 1.0e-01 Table S6
S_in g C/m3 concentrations in inflow 1.8e-02 Table S7
R_in g C/m3 concentrations in inflow 2.0e-03 Table S7
A_in g C/m3 concentrations in inflow 2.0e-03 guess
DOM_in g C/m3 concentrations in inflow 3.2e+00 Table S7
POM_in g C/m3 concentrations in inflow 4.0e-01 Table S7
TSS_in g

TSS/m3
concentrations in inflow 1.6e+01 Table S6

V m3 reactor volume NA -
Q_in m3/d external inflow (not from upstream reactor) NA -
Q m3/d inflow from upstream reactor NA -

Table 39: Declaration of functions (file ‘funs.txt’).

name unit description

A_part mol/m3 concentration of antibiotic; particulate fraction
A_diss mol/m3 concentration of antibiotic; freely dissolved and sorbed to dissolved matter
A_free mol/m3 concentration of antibiotic; freely dissolved
max - maximum of arguments

5.2.4.3 Implementation of functions

45

For computational efficiency, the source code is generated in Fortran, hence, the functions need to be
implemented in Fortran as well (source code shown below). They return the different fractions of the
antibiotic (particulate, dissolved, and freely dissolved) in the presence of two sorbents (DOM, TSS) assuming
linear sorption isothermes. The underlying equations can be found in the supplement of Hellweger, Ruan,
and Sanchez (2011), number S2-S4.

module functions

implicit none

contains

! Consult the functions' declaration table to see what these functions do

double precision function A_part(A_tot, kd_DOM, kd_TSS, DOM, TSS) result (r)

double precision, intent(in):: A_tot, kd_DOM, kd_TSS, DOM, TSS

r= A_tot * kd_TSS * TSS / (1d0 + kd_DOM * DOM + kd_TSS * TSS)

end function

double precision function A_diss(A_tot, kd_DOM, kd_TSS, DOM, TSS) result (r)

double precision, intent(in):: A_tot, kd_DOM, kd_TSS, DOM, TSS

r= A_tot - A_part(A_tot, kd_DOM, kd_TSS, DOM, TSS)

end function

double precision function A_free(A_tot, kd_DOM, kd_TSS, DOM, TSS) result (r)

double precision, intent(in):: A_tot, kd_DOM, kd_TSS, DOM, TSS

r= A_tot / (1d0 + kd_DOM * DOM + kd_TSS * TSS)

end function

end module

5.2.4.4 R code with corresponding graphical outputs

The following code section instantiates a rodeo object using the tabular data from above and it produces the
required Fortran library. Note that basic properties of the simulated system, namely the number of tanks,
are defined at the top of the listing.

After object creation and code generation, the state variables are initialized using the numbers from the
table displayed above (column ‘initial’). Likewise, the values of parameters are taken column ‘default’ of the
respective table. Note that some parameters are set to NA, i.e. they are initially undefined. Those values
are either computed from the system’s physical properties or from mass balance considerations according to
supplement S 3.3.c of Hellweger, Ruan, and Sanchez (2011).

Adjustable settings

Properties of the reach not being parameters of the core model

len <- 125000 # reach length (m)

uL <- 0.5 * 86400 # flow velocity (m/d)

dL <- 300 * 86400 # longitudinal dispersion coefficient (m2/d)

xsArea <- 0.6 * 15 # wet cross-section area (m2)

End of settings

Computational parameters

nTanks <- trunc(uL * len / dL / 2) + 1 # number of tanks; see Elgeti (1996)

dt_max <- 0.5 * len / nTanks / uL # max. time step (d); Courant criterion

46

Load packages

library("rodeo")

library("deSolve")

library("rootSolve")

Initialize rodeo object

rd <- function(f, ...) { read.table(file=f, header=TRUE, sep="\t", ...) }

model <- rodeo$new(vars=rd("vars.txt"), pars=rd("pars.txt"), funs=rd("funs.txt"),

pros=rd("pros.txt"), stoi=as.matrix(rd("stoi.txt", row.names="process")),

asMatrix=TRUE, dim=c(nTanks))

Generate code, compile into shared library, load library

model$compile(sources="functions.f95")

Assign initial values

vars <- matrix(rep(as.numeric(model$getVarsTable()$initial), each=nTanks),

ncol=model$lenVars(), nrow=nTanks, dimnames=list(NULL, model$namesVars()))

model$setVars(vars)

Assign / update values of parameters; River flow is assumed to be steady

and uniform (i.e. constant in space and time); Settling and resuspension

velocities are computed from steady-state mass balance as in Hellweger (2011)

pars <- matrix(

rep(suppressWarnings(as.numeric(model$getParsTable()$default)), each=nTanks),

ncol=model$lenPars(), nrow=nTanks, dimnames=list(NULL, model$namesPars()))

pars[,"V"] <- xsArea * len/nTanks # tank volumes

pars[,"Q"] <- c(0, rep(uL * xsArea, nTanks-1)) # inflow from upstr.

pars[,"Q_in"] <- c(uL * xsArea, rep(0, nTanks-1)) # inflow to tank 1

pars[,"us"] <- pars[,"kh_s"] * pars[,"ds"] / # settling velocity

((vars[,"POM_w"] / vars[,"POM_s"]) -

(vars[,"TSS_w"] / vars[,"TSS_s"]))

pars[,"ur"] <- pars[,"us"] * vars[,"TSS_w"] / # resuspension velo.

vars[,"TSS_s"]

model$setPars(pars)

The following code section creates a graphical representation of the stochiometry matrix. Positive (negative)
stoichiometric factors are indicated by upward (downward) oriented triangles. The stoichiometric factors
for transport processes are displayed as circles since their sign is generally variable as it depends on spatial
gradients.

Plot stoichiometry matrix using symbols

m <- model$stoichiometry(box=1)

clr <- function(x, ignoreSign=FALSE) {

res <- rep("transparent", length(x))

if (ignoreSign) {

res[x != 0] <- "black"

} else {

res[x < 0] <- "lightgrey"

res[x > 0] <- "white"

}

return(res)

}

sym <- function(x, ignoreSign=FALSE) {

res <- rep(NA, length(x))

47

if (ignoreSign) {

res[x != 0] <- 21

} else {

res[x < 0] <- 25

res[x > 0] <- 24

}

return(res)

}

omar <- par("mar")

par(mar=c(1,6,6,1))

plot(c(1,ncol(m)), c(1,nrow(m)), bty="n", type="n", xaxt="n", yaxt="n",

xlab="", ylab="")

abline(h=1:nrow(m), v=1:ncol(m), col="grey")

for (ir in 1:nrow(m)) {

ignoreSign <- grepl(pattern="^transport.*", x=rownames(m)[ir]) ||

grepl(pattern="^diffusion.*", x=rownames(m)[ir])

points(1:ncol(m), rep(ir,ncol(m)), pch=sym(m[ir,1:ncol(m)], ignoreSign),

bg=clr(m[ir,1:ncol(m)], ignoreSign))

}

mtext(side=2, at=1:nrow(m), rownames(m), las=2, line=0.5, cex=0.8)

mtext(side=3, at=1:ncol(m), colnames(m), las=2, line=0.5, cex=0.8)

par(mar=omar)

rm(m)

48

decay_w

decay_s

hydrolysis_w

hydrolysis_s

production

settl_S

settl_R

settl_A

settl_POM

settl_TSS

resusp_S

resusp_R

resusp_A

resusp_POM

resusp_TSS

diffusion_A

diffusion_DOM

growth_S_w

growth_S_s

growth_R_w

growth_R_s

respiration

segregation_w

segregation_s

conjugation_w

conjugation_s

transport_S

transport_R

transport_A

transport_DOM

transport_POM

transport_TSS

S
_

w

S
_

s

R
_

w

R
_

s

P
O

M
_

w

P
O

M
_

s

T
S

S
_

w

T
S

S
_

s

A
_

w

A
_

s

D
O

M
_

w

D
O

M
_

s

The next code section demonstrates how a steady-state solution can be obtained by a call to method
steady.1D from package rootSolve. This specific solver accounts for the banded structure of the Jacobian
matrix resulting from the tanks-in-series approach taking into account the layout of the vector of state
variables (explained in the section on multi-box models). Plotting was restricted to the bacteria concentrations
in the water column and sediment, respectively.

Estimate steady-state

std <- rootSolve::steady.1D(y=model$getVars(), time=NULL, func=model$libFunc(),

parms=model$getPars(), nspec=model$lenVars(), dimens=nTanks, positive=TRUE,

dllname=model$libName(), nout=model$lenPros()*nTanks)

if (!attr(std, which="steady", exact=TRUE))

stop("Steady-state run failed.")

names(std$y) <- names(model$getVars())

Plot bacterial densities

stations= ((1:nTanks) * len/nTanks - len/nTanks/2) / 1000 # stations (km)

49

http://cran.r-project.org/package=rootSolve

domains= c(Water="_w", Sediment="_s") # domain suffixes

layout(matrix(1:length(domains), ncol=length(domains)))

for (i in 1:length(domains)) {

R= match(paste0("R",domains[i],".",1:nTanks), names(std$y)) # resistant bac.

S= match(paste0("S",domains[i],".",1:nTanks), names(std$y)) # susceptibles

plot(x=range(stations), y=range(std$y[c(S,R)]), type="n",

xlab=ifelse(i==1,"Station (km)",""), ylab=ifelse(i==1,"mg/l",""))

lines(stations, std$y[R], lty=1)

lines(stations, std$y[S], lty=2)

if (i==1) legend("topleft", bty="n", lty=1:2, legend=c("Resistant","Suscept."))

mtext(side=3, names(domains)[i])

}

The above code outputs the steady-state longitudinal profiles of E. Coli displayed below. The graphs indicate
elevated concentrations in the sediment as compared to the water column. Predominance of the resistant
strain in sediments is explained by increased antibiotic levels in the dark. Growth conditions for the susceptible
strain improve along the flow path due to photolysis of Tetracycline in the water column and subsequent
dilution of pore water concentrations.

0 40 80 120

0
.0

0
0

.0
6

0
.1

2

Station (km)

m
g

/l

Resistant

Suscept.

Water

0 40 80 120

0
.5

1
.5

2
.5

Sediment

In the next code section, a dynamic solution is obtained using the default integration method from deSolve.
As in the steady-state computation above, the solver is informed on the structure of the Jacobian to speed
up numerical integration.

Graphical output is generated for a single state variable only, displayed right after the code listing. The plot
just illustrates how the computed concentration of susceptibe bacteria in the water column (state variable
S_w) drifts away from the guessed initial state.

Dynamic simulation

times <- seq(0, 7, 1/48) # requested output times

dyn <- deSolve::ode(y=model$getVars(), times=times, func=model$libFunc(),

parms=model$getPars(), NLVL=nTanks, dllname=model$libName(),

hmax=dt_max, nout=model$lenPros()*nTanks,

jactype="bandint", bandup=1, banddown=1)

if (attr(dyn, which="istate", exact=TRUE)[1] != 2)

stop("Dynamic run failed.")

Plot dynamic solution

stations= (1:nTanks) * len/nTanks - len/nTanks/2

name <- "S_w"

50

http://cran.r-project.org/package=deSolve

m <- dyn[,match(paste0(name,".",1:nTanks), colnames(dyn))]

filled.contour(x=stations, y=dyn[,"time"], z=t(m), xlab="Station", ylab="Days",

color.palette=colorRampPalette(c("lightskyblue3","khaki","peru")),

main=name, cex.main=1, font.main=1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

20000 60000 100000

0

1

2

3

4

5

6

7

S_w

Station

D
a
y
s

The code below performs a global sensitivity analysis to test the impact of parameter values on a specific
quantity of interest, namely the proportion of resistant bacteria after passage of the reach. The four selected
parameters were:

1. the constant to control gene transfer by conjugation, kc,

2. the rate constant of segregational loss, ks,

3. the plasmid costs, alpha,

4. the upstream concentration of Tetracycline, A_in.

Define parameter values for sensitivity analysis

testList <- list(

A_in= c(0.002, 0.005), # input of antibiotic

alpha= c(0, 0.25), # cost of resistance

ks= seq(0, 0.02, 0.002), # loss of resistance

kc= 10^seq(from=-4, to=-2, by=0.5)) # transfer of resistance

Set up parameter sets

testSets <- expand.grid(testList)

Function to return the steady-state solution for specific parameters

f <- function(set, y0) {

p <- model$getPars(asArray=TRUE)

p[,names(set)] <- rep(as.numeric(set), each=nTanks) # update parameters

out <- rootSolve::steady.1D(y=y0, time=NULL, func=model$libFunc(),

parms=p, nspec=model$lenVars(), dimens=nTanks, positive=TRUE,

dllname=model$libName(), nout=model$lenPros()*nTanks)

if (attr(out, which="steady", exact=TRUE)) { # solution found?

names(out$y) <- names(model$getVars())

down_S_w <- out$y[paste0("S_w",".",nTanks)] # bacteria concentrations

down_R_w <- out$y[paste0("R_w",".",nTanks)] # at lower end of reach

51

return(unname(down_R_w / (down_R_w + down_S_w))) # fraction of resistant b.

} else {

return(NA) # if solver failed

}

}

Use already computed steady state solution as initial guess

y0 <- array(std$y, dim=c(nTanks, model$lenVars()),

dimnames=list(NULL, model$namesVars()))

Apply model to all sets and store results as 4-dimensional array

res <- array(apply(X=testSets, MARGIN=1, FUN=f, y0=y0),

dim=lapply(testList, length), dimnames=testList)

Plot results of the analysis

omar <- par("mar")

par(mar=c(4,4,1.5,1))

breaks <- pretty(res, 8)

colors <- colorRampPalette(c("steelblue2","khaki2","brown"))(length(breaks)-1)

nr <- length(testList$A_in)

nc <- length(testList$alpha)

layout(cbind(matrix(1:(nr*nc), nrow=nr), rep(nr*nc+1, nr)))

for (alpha in testList$alpha) {

for (A_in in testList$A_in) {

labs <- (A_in == tail(testList$A_in, n=1)) && (alpha == testList$alpha[1])

image(x=log10(as.numeric(dimnames(res)$kc)), y=as.numeric(dimnames(res)$ks),

z=t(res[as.character(A_in), as.character(alpha),,]),

zlim=range(res), breaks=breaks, col=colors,

xlab=ifelse(labs, "log10(kc)", ""), ylab=ifelse(labs, "ks", ""))

if (A_in == testList$A_in[1])

mtext(side=3, paste0("alpha = ",alpha), cex=par("cex"), line=.2)

if (alpha == tail(testList$alpha, n=1))

mtext(side=4, paste0("A_in = ",A_in), cex=par("cex"), las=3, line=.2)

}

}

plot.new()

legend("left", bty="n", title="% resistant", fill=colors,

legend=paste0(breaks[-length(breaks)]*100," - ", breaks[-1]*100))

layout(1)

par(mar=omar)

Thanks to the Fortran-based model implementation, a reasonable section of the parameter space can be
explored within acceptable times. On a recent machine (3 GHz CPU, 8 GB memory) a single steady-state run
takes less than 50 ms. This opens up the possibility for more demanding analysis like, for example, Bayesian
parameter estimation or more exhaustive sensitivity analyses.

The graphics created by the above listing (see below) illustrate the effect of the four varied parameters on the
model output. The analyzed output variable is the percentage of suspended E. coli at the downstream end of
the reach being resistant to Tetracycline. The sensitivity with respect to the rate constants of conjugation
(kc, x-axis) and segregational loss (ks, y-axis) is displayed in the individual plots. The input concentration
of Tetracycline (A_in) increases from the top to the bottom panel; plasmid costs (alpha) increase from left
to right column. The figure clearly illustrates that Tetracycline resistance is promoted by high conjugation
rates, low segregational losses, marginal plasmid costs, and, of course, increased levels of the antibiotic.

52

−4.0 −3.5 −3.0 −2.5 −2.0

0
.0

0
0

0
.0

1
0

0
.0

2
0 alpha = 0

−4.0 −3.5 −3.0 −2.5 −2.0

0
.0

0
0

0
.0

1
0

0
.0

2
0

log10(kc)

k
s

−4.0 −3.5 −3.0 −2.5 −2.0

0
.0

0
0

0
.0

1
0

0
.0

2
0 alpha = 0.25

A
_
in

 =
 0

.0
0
2

−4.0 −3.5 −3.0 −2.5 −2.0

0
.0

0
0

0
.0

1
0

0
.0

2
0

A
_
in

 =
 0

.0
0
5

% resistant

35 − 40
40 − 45
45 − 50
50 − 55
55 − 60
60 − 65
65 − 70
70 − 75
75 − 80

5.3 Multi-object models

5.3.1 Water-sediment interaction

5.3.1.1 Problem description

The model considers interaction between water column and the underlying bottom sediments (figure below).
Both, water column and sediment are treated as being perfectly mixed. A particulate component x is
transfered from water to sediment via settling and it undergoes degradation in both water and sediment.
Degradation releases a dissolved component s being subject to diffusive transport across the sediment-water
interface. The water column concentrations are also affected by external in-/outflow of x and s. For the sake
of simplicity, the model has no spatial resolution.

The model is implemented in two versions.

In the single-object version, water and sediment compartment are treated together as a single object,
resulting in an ordinary, 0-dimensional ODE model. This is the reference implementation producing the
‘exact’ numerical solution. Integration is performed with the default method of deSolve.

In the multi-object version, water and sediment are treated as two separate, 0-dimensional objects. Data
are exchanged between the two sub-models after predefined time steps. At present, the coupling time step is
identical to the output time step (but automatic adjustment would be possible). The dynamic simulation can
be performed either with deSolve or with the rodeo-internal ODE solver (see class method step).

53

http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=deSolve

In general, objects are either linked via state variables or flux rates. In the latter case, a ‘work-share
convention’ is required that specifies which object (of the two linked objects) actually computes the flux. In
the considered case, it seems reasonable to let the water column object compute the settling flux of x and
make the sediment object responsible for the diffusive flux of s. The linkage between the two objects is fully
described by the table below. It specifies which output (source item/type) of which object (source object)
supplies the value for a particular parameter in a different object (target).

Link process Target obj. Target param. Source obj. Source item Source type

sett sed flux_x wat sett process rate
diff sed xWat wat xWat state variable
diff wat flux_s sed diff process rate

5.3.1.2 Single-object version

The tabular model definition, function implementation, R source code, and output of the single-object version
follows below.

Table 41: Declaration of state variables (file ‘vars.txt’).

name unit description

xWat mol/m3 conc. of x in water column
xSed mol/m3 bulk conc. of x in sediment
sWat mol/m3 conc. of s in water column
sSed mol/m3 liquid conc. of s in pore water

Table 42: Declaration of parameters (file ‘pars.txt’).

name unit description

kWat 1/d decay constant in water
kSed 1/d decay constant in sediment
kDif m2/d diffusion coefficient
hDif m diffusion distance
por - porosity of sediment
uSet m/d effective settling velocity
zWat m depth of water column
zSed m thickness of sediment layer
vol m3 volume of water body
s_x mol/mol stoichiometric ratio s:x

Table 43: Declaration of functions (file ‘funs.txt’).

name unit description

q m3/d flow rate
xInf mM concentration of x in inflow
sInf mM concentration of s in inflow

54

Table 44: Definition of process rates (file ‘pros.txt’).

name unit description expression

flow m3/d flow through water column q(time)/vol
sett mol/m2/d settling of x uSet * xWat
diff mol/m2/d diffusion at w/s interf. kDif/hDif * por * (sSed-sWat)
degrWat mol/m3/d degrad. of x in water kWat * xWat
degrSed mol/m3/d degrad. of x in sediment kSed * xSed

Table 45: Definition of stoichiometric factors (file ‘stoi.txt’).

process xWat xSed sWat sSed

flow (xInf(time)-xWat) NA (sInf(time)-sWat) NA
sett -1/zWat 1/zSed NA NA
diff NA NA 1/zWat -1/zSed/por
degrWat -1 NA s_x NA
degrSed NA -1 NA s_x/por

module functions

implicit none

contains

function q(time) result (res)

double precision, intent(in):: time

double precision:: res

res= 86400d0

end function

function xInf(time) result (res)

double precision, intent(in):: time

double precision:: res

res= 10.0d0

end function

function sInf(time) result (res)

double precision, intent(in):: time

double precision:: res

res= 0.0d0

end function

end module

rm(list=ls())

Adjustable settings

times <- seq(from=0, to=2*365, by=1) # Times of interest

pars <- c(kWat=0.1, kSed=0.02, kDif=1e-9*86400, hDif=0.05, # Parameters

por=0.9, uSet=0.5, zWat=5, zSed=0.1, vol=10e6, s_x=1/106)

vars <- c(xWat=0, xSed=0, sWat=0, sSed=0) # Initial values

End of settings

55

Load packages

library("rodeo")

library("deSolve")

Initialize rodeo object

rd <- function(f, ...) {read.table(file=paste0("singleObject/",f),

sep="\t", header=TRUE, ...)}

model <- rodeo$new(

vars=rd("vars.txt"), pars=rd("pars.txt"), funs=rd("funs.txt"), pros=rd("pros.txt"),

stoi=as.matrix(rd("stoi.txt", row.names="process")), asMatrix=TRUE, dim=1)

Assign initial values and parameters

model$setVars(vars)

model$setPars(pars)

Generate code, compile into shared library, load library

model$compile("functions.f95")

Integrate

out <- model$dynamics(times=times)

Plot method for deSolve objects

plot(out)

56

0 200 400 600

0
.0

0
.2

0
.4

xWat

time

0 200 400 600

0
4

0
8

0

xSed

time

0 200 400 600

0
.0

0
0

.0
4

0
.0

8

sWat

time

0 200 400 600

0
.0

0
.6

1
.2

sSed

time

0 200 400 600

0
.0

0
5

0
.0

0
9

flow

time

0 200 400 600

0
.0

0
0

.1
0

0
.2

0

sett

time

0 200 400 600

0
.0

0
0

0
0

.0
0

1
5

diff

time

0 200 400 600

0
.0

0
0

.0
2

0
.0

4

degrWat

time

0 200 400 600

0
.0

1
.0

2
.0

degrSed

time

5.3.1.3 Multi-object version

In the multi-object version, the objects need to be instantiated from a separate set of tables (shown below).
The function implementation does not differ from the above single-object case.

Table 46: State variables of the water column object (file
‘wat_vars.txt’).

name unit description

xWat mol/m3 conc. of x in water column
sWat mol/m3 conc. of s in water column

Table 47: State variables of the sediment object (file ‘sed_vars.txt’).

name unit description

xSed mol/m3 bulk conc. of x in sediment
sSed mol/m3 liquid conc. of s in pore water

57

name unit description

Table 48: Parameters of the water column object (file
‘wat_pars.txt’).

name unit description

kWat 1/d decay constant in water
uSet m/d effective settling velocity
zWat m depth of water column
vol m3 volume of water body
s_x mol/mol stoichiometric ratio s:x
flux_s mol/m2/d flux of s accross s/w interface

Table 49: Parameters of the sediment object (file ‘sed_pars.txt’).

name unit description

kSed 1/d decay constant in sediment
kDif m2/d diffusion coefficient
hDif m diffusion distance
por - porosity of sediment
zSed m thickness of sediment layer
s_x mol/mol stoichiometric ratio s:x
flux_x mol x/m2/d flux of x across s/w interface
sWat mol/m3 concentration of s in overlying water

Table 50: Functions of the water column object (file ‘wat_funs.txt’).

name unit description

q m3/d flow rate
xInf mM concentration of x in inflow
sInf mM concentration of s in inflow

Table 51: Functions of the sediment object (file ‘sed_funs.txt’).

name unit description

dummy none dummy function

Table 52: Processes of the water column object (file ‘wat_pros.txt’).

name unit description expression

flow m3/d flow through water column q(time)/vol
sett mol/m2/d settling of x uSet * xWat
diff mol/m2/d diffusion at w/s interf. flux_s
degrWat mol/m3/d degrad. of x in water kWat * xWat

58

Table 53: Processes of the sediment object (file ‘sed_pros.txt’).

name unit description expression

sett mol/m2/d settling of x flux_x
diff mol/m2/d diffusion at w/s interf. kDif/hDif * por * (sSed-sWat)
degrSed mol/m3/d degrad. of x in sediment kSed * xSed

Table 54: Stoichiometry of the water column object (file ‘wat-
stoi.txt’).

process xWat sWat

flow (xInf(time)-xWat) (sInf(time)-sWat)
sett -1/zWat NA
diff NA 1/zWat
degrWat -1 s_x

Table 55: Stoichiometry of the sediment object (file ‘sedstoi.txt’).

process xSed sSed

sett 1/zSed NA
diff NA -1/zSed/por
degrSed -1 s_x/por

In the R source code (see below), the two objects are stored in a list to allow for convenient iteration using
methods like lapply. The code section performing the actual simulation is wrapped into a system.time()

construct. This can be used to compare the performance of the deSolve-based solution with the one based
on rodeo’s internal ODE solver.

rm(list=ls())

Adjustable settings

internal <- TRUE # Use internal solver instead of deSolve?

times <- seq(from=0, to=365*2, by=1) # Times of interest

objects <- c("wat", "sed") # Object names

pars <- list(# Fixed parameters

wat= c(kWat=0.1, uSet=0.5, zWat=5, vol=10e6, s_x=1/106),

sed= c(kSed=0.02, kDif=1e-9*86400, hDif=0.05, por=0.9, zSed=0.1, s_x=1/106)

)

vars <- list(# Initial values

wat= c(xWat=0, sWat=0),

sed= c(xSed=0, sSed=0)

)

Parameters used for model coupling; these need to be initialized

pars$wat["flux_s"] <- 0

pars$sed["flux_x"] <- 0

pars$sed["sWat"] <- vars$w["sWat"]

Definition of links between objects

59

The value for a parameter in a target object (needs data) is provided by a

source object (supplier). Supplied is either a state variable or process rate.

links <- rbind(

link1= c(tarObj="wat", tarPar="flux_s", srcObj="sed", srcItem="diff"),

link2= c(tarObj="sed", tarPar="flux_x", srcObj="wat", srcItem="sett"),

link3= c(tarObj="sed", tarPar="sWat", srcObj="wat", srcItem="sWat")

)

End of settings

Load packages

library("rodeo")

library("deSolve")

Create list of rodeo objects

rd <- function(dir,f, ...) {read.table(file=paste0("multiObject/",obj,"_",f),

sep="\t", header=TRUE, ...)}

models <- list()

for (obj in objects) {

models[[obj]] <- rodeo$new(

vars=rd(obj, "vars.txt"), pars=rd(obj, "pars.txt"),

funs=rd(obj, "funs.txt"), pros=rd(obj, "pros.txt"),

stoi=as.matrix(rd(obj, "stoi.txt", row.names="process")), asMatrix=TRUE,

dim=1)

}

Generate and load Fortran library for selected integrator

if (internal) {

for (obj in objects)

models[[obj]]$initStepper("functions.f95", method="rk5")

} else {

for (obj in objects) {

models[[obj]]$compile("functions.f95")

}

}

Set initial parameters and initial values

invisible(lapply(objects, function(obj) {models[[obj]]$setVars(vars[[obj]])}))

invisible(lapply(objects, function(obj) {models[[obj]]$setPars(pars[[obj]])}))

Function to update parameters of a particular object using the linkage table

Inputs:

objPar: Parameters of a particular target object (numeric vector)

src: States and process rates of all objects (list of numeric vectors)

links: Object linkage table (matrix of type character)

Returns: objPar after updating of values

updatePars <- function (objPar, src, links) {

if (nrow(links) > 0) {

f <- function(i) {

objPar[links[i,"tarPar"]] <<- src[[links[i,"srcObj"]]][links[i,"srcItem"]]

NULL

}

lapply(1:nrow(links), f)

}

60

objPar

}

Wrapper for integration methods

integr <- function(obj, t0, t1, models, internal, check) {

if (internal) {

return(models[[obj]]$step(t0, h=t1-t0, check=check))

} else {

return(models[[obj]]$dynamics(times=c(t0, t1))[2,-1])

}

}

Simulate coupled models over a single time step

advance <- function(i, times, objects, models, internal) {

Call integrator

out <- sapply(objects, integr, t0=times[i], t1=times[i+1], models=models,

internal=internal, check=(i==1), simplify=FALSE)

Update parameters affected by coupling

lapply(objects, function(obj)

{models[[obj]]$setPars(

updatePars(models[[obj]]$getPars(useNames=TRUE), out,

links[links[,"tarObj"]==obj,,drop=FALSE]))})

Re-initialize state variables

lapply(objects, function(obj)

{models[[obj]]$setVars(out[[obj]][models[[obj]]$namesVars()])})

Return all outputs in a single vector

unlist(out)

}

Solve for all time steps

system.time({

out <- t(sapply(1:(length(times)-1), advance, times=times, objects=objects,

models=models, internal=internal))

})

Plot

out <- cbind(time= times[2:length(times)], out)

class(out) <- "deSolve"

plot(out, mfrow=c(4,3))

61

0 200 400 600

0
.1

0
0

.2
5

0
.4

0
wat.xWat

time

0 200 400 600

0
.0

0
0

.0
4

0
.0

8

wat.sWat

time

0 200 400 600

0
.0

0
5

0
.0

0
9

wat.flow

time

0 200 400 600

0
.0

5
0

.1
5

wat.sett

time

0 200 400 600

0
.0

0
0

0
0

.0
0

1
5

wat.diff

time

0 200 400 600

0
.0

1
0

0
.0

3
0

wat.degrWat

time

0 200 400 600

0
4

0
8

0

sed.xSed

time

0 200 400 600

0
.0

0
.6

1
.2

sed.sSed

time

0 200 400 600

0
.0

0
0

.1
0

0
.2

0

sed.sett

time

0 200 400 600

0
.0

0
0

0
0

.0
0

1
5

sed.diff

time

0 200 400 600

0
.0

1
.0

2
.0

sed.degrSed

time

user system elapsed

0.192 0.000 0.190

The above graphical output from the multi-object version shows good agreement with the reference (i. e. the
output of the single-object version). This finding, however, is not universal and the mismatch can be large
for other models depending on the frequency of inter-model communication.

62

References

Bronstert, A., P. Schmitt, E. J. Plate, and J. Wald. 1991. “A Physically Based Distributed Watershed
Model to Simulate Floods and Flood Protection Measures in a Flat Area with Shallow Ground Water Table.”
International Association for Hydraulic Research, XXIV Congress, Madrid, Spain.

Chen, Z., Y. Zhang, Y. Gao, S. A. Boyd, D. Zhu, and H. Li. 2015. “Influence of Dissolved Organic Matter on
Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium.” Environmental Science and Technology

49: 10903–10.

Elgeti, K. 1996. “A New Equation for Correlating a Pipe Flow Reactor with a Cascade of Mixed Reactors.”
Chemical Engineering Science 51 (23): 5077–80.

Gregersen, J. B., P. J. A. Gijsbers, and S. J. P. Westen. 2007. “OpenMI: Open Modelling Interface.” Journal

of Hydroinformatics 9 (3): 175–91.

Hellweger, F. L., X. Ruan, and S. Sanchez. 2011. “A Simple Model of Tetracycline Antibiotic Resistance in
the Aquatic Environment (with Application to the Poudre River).” Int. J. Environ. Res. Public Health 8 (2):
480–97.

Kinzelbach, W. 1986. “Groundwater Modelling - an Introduction with Sample Programs in Basic.” In
Developments in Water Science. Vol. 25. Elsevier.

Kinzelbach, W., and R. Rausch. 1995. Grundwassermodellierung. Gebrüder Bornträger, Stuttgart.

Lenski, R. E. 1998. “Bacterial Evolution and the Cost of Antibiotic Resistance.” International Microbiology

1: 265–70.

Rauch, W. 1993. “Über Die Hydraulische Wechselwirkung von Oberflächengewässern Und Grundwasserkör-
pern.” Wasserwirtschaft 83: 14–18.

Streeter, W. H., and W. B. Phelps. 1925. “A Study of the Pollution and Natural Purification of the Ohio
River.” Public Health Bull. 146, US Public Health Service, Washington DC.

Tolls, J. 2001. “Sorption of Veterinary Pharmaceuticals in Soils: A Review.” Environmental Science and

Technology 35 (17): 3397–3406.

Wammer, K.H., M.T. Slattery, A.M. Stemig, and J.L. Ditty. 2011. “Tetracycline Photolysis in Natural
Waters: Loss of Antibacterial Activity.” Chemosphere 85 (9): 1505–10.

63

	Main features of rodeo
	Basic use
	Example ODE system
	Creating a rodeo model object
	Defining functions and assigning data
	Computing the stoichiometry matrix
	Generating source code for numerical solvers
	Numerical integration

	Advanced topics
	Multi-box models
	Characteristics and use of multi-box models
	Non-interacting boxes
	Interacting boxes

	Maximizing performance through Fortran
	Forcing functions (time-varying parameters)
	Generating model documentation
	Exporting formatted tables
	Visualizing the stoichiometry matrix

	Practical issues
	Managing tabular input data
	Stoichiometric matrices
	What should go in the matrix?
	Automatic creation
	Model verification based on row sums

	Writing rodeo-compatible Fortran functions
	Reference example
	Common Fortran pitfalls
	More information on Fortran

	Multi-object models

	Further examples
	Single-box models
	Streeter-Phelps like model
	Bacteria in a 2-zones stirred tank

	One-dimensional models
	Diffusion
	Advective-dispersive transport
	Ground water flow
	Antibiotic resistant bacteria in a river

	Multi-object models
	Water-sediment interaction

	References

