
Package ‘rorutadis’
January 17, 2017

Type Package

Title Robust Ordinal Regression UTADIS

Version 0.4.2

Date 2017-01-18

Author Krzysztof Ciomek

Maintainer Krzysztof Ciomek <k.ciomek@gmail.com>

URL https://github.com/kciomek/rorutadis

Depends Rglpk (>= 0.5-1), ggplot2 (>= 0.9.3.1), gridExtra (>= 0.9.1),
hitandrun (>= 0.5-2)

Description Implementation of Robust Ordinal Regression for multiple criteria value-based sort-
ing with preference information provided in form of possibly imprecise assignment exam-
ples, assignment-based pairwise comparisons, and desired class cardinalities [Kadzin-
ski et al. 2015, <doi:10.1016/j.ejor.2014.09.050>].

License GPL-3

Suggests testthat (>= 0.7.1)

NeedsCompilation no

Repository CRAN

Date/Publication 2017-01-17 23:07:43

R topics documented:
rorutadis-package . 2
addAssignmentPairwiseAtLeastComparisons . 3
addAssignmentPairwiseAtMostComparisons . 4
addAssignmentsLB . 5
addAssignmentsUB . 5
addMaximalClassCardinalities . 6
addMinimalClassCardinalities . 7
buildProblem . 8
calculateAssignments . 9
calculateExtremeClassCardinalities . 10

1

https://github.com/kciomek/rorutadis

2 rorutadis-package

calculateStochasticResults . 10
checkConsistency . 11
compareAssignments . 12
deteriorateAssignment . 13
drawUtilityPlots . 14
explainAssignment . 15
findInconsistencies . 16
findRepresentativeFunction . 16
findSimpleFunction . 18
findSolutionWithIncomplete . 19
getAssignments . 20
getCharacteristicPoints . 20
getMarginalUtilities . 21
getPreferentialCore . 21
getRestrictions . 22
getThresholds . 23
improveAssignment . 24
investigateUtility . 25
mergeAssignments . 26
plotComprehensiveValue . 27
plotVF . 28
removeAssignmentPairwiseAtLeastComparisons . 29
removeAssignmentPairwiseAtMostComparisons . 30
removeAssignmentsLB . 31
removeAssignmentsUB . 31
removeMaximalClassCardinalities . 32
removeMinimalClassCardinalities . 33

Index 35

rorutadis-package Robust Ordinal Regression UTADIS

Description

Implementation of Robust Ordinal Regression for multiple criteria value-based sorting with some
extensions and additional tools.

Details

Package: rorutadis
Type: Package
Version: 0.4.2
Date: 2017-01-18
License: GPL-3

addAssignmentPairwiseAtLeastComparisons 3

Author(s)

Krzysztof Ciomek

Maintainer: Krzysztof Ciomek <k.ciomek at gmail.com>

addAssignmentPairwiseAtLeastComparisons

Add assignment pairwise at least comparisons

Description

The comparison of a pair of alternatives may indicate that a_i should be assigned to a class at least as
good as class of a_j or at least better by k classes. The function assignmentPairwiseAtLeastComparisons
allows to define such pairwise comparisons.

Usage

addAssignmentPairwiseAtLeastComparisons(problem, ...)

Arguments

problem Problem to which preference information will be added.
... Comparisons as three-element vectors. Each vector c(i, j, k) represents a

single assignment comparison: alternative a_i has to be assigned to class at least
better by k classes then class of a_j.

Value

Problem with added comparisons.

See Also

buildProblem removeAssignmentPairwiseAtLeastComparisons

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

add comparisons:
alternative 2 to class at least as good as class of alternative 1
alternative 4 to class at least better by 1 class then class
of alternative 3
problem <- addAssignmentPairwiseAtLeastComparisons(problem,

c(4, 3, 1), c(2, 1, 0))

4 addAssignmentPairwiseAtMostComparisons

addAssignmentPairwiseAtMostComparisons

Add assignment pairwise at most comparisons

Description

The comparison of a pair of alternatives may indicate that alternative a_i should be assigned to a
class at most better by k classes then class of a_j. The function assignmentPairwiseAtMostComparisons
allows to define such pairwise comparisons.

Usage

addAssignmentPairwiseAtMostComparisons(problem, ...)

Arguments

problem Problem to which preference information will be added.

... Comparisons as three-element vectors. Each vector c(i, j, k) represents a
single assignment comparison: alternative a_i has to be assigned to class at most
better by k classes then class of a_j.

Value

Problem with added comparisons.

See Also

buildProblem removeAssignmentPairwiseAtMostComparisons

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

add comparison:
alternative 4 to class at most better by 1 class then class
of alternative 3
problem <- addAssignmentPairwiseAtMostComparisons(problem, c(4, 3, 1))

addAssignmentsLB 5

addAssignmentsLB Add lower bound of alternative possible assignments

Description

This function adds lower bounds of possible assignments to a problem.

Usage

addAssignmentsLB(problem, ...)

Arguments

problem Problem to which preference information will be added.

... Assignments as two-element vectors. Each vector c(i, j) represents assign-
ment of an alternative a_i to class at least as good as class C_j.

Value

Problem with added assignment examples.

See Also

buildProblem removeAssignmentsLB

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

add assignment examples: alternative 1 to class at least as good as class 2
and alternative 2 to class at least as good as class 3
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

addAssignmentsUB Add upper bound of alternative possible assignments

Description

This function adds upper bounds of possible assignments to a problem.

Usage

addAssignmentsUB(problem, ...)

6 addMaximalClassCardinalities

Arguments

problem Problem to which preference information will be added.

... Assignments as two-element vectors. Each vector c(i, j) represents assign-
ment of an alternative a_i to at most class as good as C_j.

Value

Problem with added assignment examples.

See Also

buildProblem removeAssignmentsUB

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

add assignment examples: alternative 3 at most to class as good as class 1
and alternative 4 to class at most as good as class 2
problem <- addAssignmentsUB(problem, c(3, 1), c(4, 2))

addMaximalClassCardinalities

Add maximal class cardinality restrictions

Description

This function allows to define maximal cardinality of particular classes.

Usage

addMaximalClassCardinalities(problem, ...)

Arguments

problem Problem to which preference information will be added.

... Minimal cardinalities as two-element vectors c(i, j), where j is a maximal
cardinality of class C_i.

Value

Problem with added preference information.

addMinimalClassCardinalities 7

See Also

buildProblem removeMaximalClassCardinalities

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

set maximal class cardinalities:
at most two alternatives could be assigned to class 2
and at most one alternative could be assigned to class 3
problem <- addMaximalClassCardinalities(problem, c(2, 2), c(3, 1))

addMinimalClassCardinalities

Add minimal class cardinality restrictions

Description

This function allows to define minimal cardinality of particular classes.

Usage

addMinimalClassCardinalities(problem, ...)

Arguments

problem Problem to which preference information will be added.

... Minimal cardinalities as two-element vectors c(i, j), where j is a minimal
cardinality of class C_i.

Value

Problem with added preference information.

See Also

buildProblem removeMinimalClassCardinalities

8 buildProblem

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

set minimal class cardinalities:
at least one alternative has to be assigned to class 2
and at least one alternative has to be assigned to class 3
problem <- addMinimalClassCardinalities(problem, c(2, 1), c(3, 1))

buildProblem Build a representation of a problem

Description

This function creates representation of a given problem for usage in farther computations.

Usage

buildProblem(perf, nrClasses, strictVF, criteria, characteristicPoints)

Arguments

perf A n x m performance matrix of n alternatives evaluated on m criteria.

nrClasses Number of classes.

strictVF TRUE for strictly monotonic marginal value functions, FALSE for weakly mono-
tonic.

criteria A vector containing type of each criterion ('g' - gain, 'c' - cost).

characteristicPoints

A vector of integers that for each criterion contains number of characteristic
points or 0 for general marginal value function.

Value

Representation of a problem as a list with named members.

See Also

addAssignmentsLB removeAssignmentsLB addAssignmentsUB removeAssignmentsUB addAssignmentPairwiseAtLeastComparisons
removeAssignmentPairwiseAtLeastComparisons addAssignmentPairwiseAtMostComparisons
removeAssignmentPairwiseAtMostComparisons addMinimalClassCardinalities removeMinimalClassCardinalities
addMaximalClassCardinalities removeMaximalClassCardinalities

calculateAssignments 9

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

calculateAssignments Calculate assignments

Description

This function calculates possible and necessary assignments.

Usage

calculateAssignments(problem, necessary)

Arguments

problem Problem for which assignments will be calculated.

necessary Whether necessary or possible assignments.

Value

n x p logical matrix, where each row represents one of n alternatives and each column represents
one of p classes. Element [i, h] is TRUE if:

• for necessary assignments: alternative a_i is always assigned to class C_h,

• for possible assignments: alternative a_i can be assigned to class C_h.

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

possibleAssignments <- calculateAssignments(problem, FALSE)
necessaryAssignments <- calculateAssignments(problem, TRUE)

10 calculateStochasticResults

calculateExtremeClassCardinalities

Calculate extreme class cardinalities

Description

This function calculates minimal and maximal possible cardinality of each class.

Usage

calculateExtremeClassCardinalities(problem)

Arguments

problem Problem for which extreme class cardinalities will be calculated.

Value

p x 2 matrix, where p is the number of classes. Value at [h, 1] is a minimal possible cardinality of
class C_h, and value at [h, 2] is a maximal possible cardinality of class C_h.

See Also

addMinimalClassCardinalities addMaximalClassCardinalities

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

extremeClassCardinalities <- calculateExtremeClassCardinalities(problem)

calculateStochasticResults

Stochastic results

Description

The function calculates stochastic results for alternative assignments, assignment-based preference
relation and class cardinalities. The results are computed by sampling the space of compatible
models.

Usage

calculateStochasticResults(problem, nrSamples = 100)

checkConsistency 11

Arguments

problem A problem to consider.

nrSamples Number of samples. Use more for better quality of results.

Value

List with the following named elements:

• assignments - n x p matrix, where n is the number of alternatives and p is number of classes;
each element [i, j] contains the rate of samples, for which alternative a_i was assigned to
class C_j. The exact result can be calculated with function calculateAssignments.

• preferenceRelation - n x n matrix, where n is the number of alternatives; each element [i, j]
contains the rate of samples, for which alternative a_i was assigned to class at least as good as
class of a_j. The exact result can be calculated with function compareAssignments.

• classCardinalities - p x (n + 1) matrix, where n is the number of alternatives and p is number
of classes; each element [i, j] contains the rate of samples, for which j-1 alternatives were
assigned to class C_i. Note! first column corresponds to 0 elements. The exact result can be
calculated with function calculateExtremeClassCardinalities.

See Also

buildProblem calculateAssignments compareAssignments calculateExtremeClassCardinalities

Examples

perf <- matrix(c(2,1,1,2), 2)
problem <- buildProblem(perf, 2, FALSE, c('g', 'g'), c(0, 0))

calculateStochasticResults(problem, 1000)

checkConsistency Check problem consistency

Description

This function allows to check if preference information is consistent.

Usage

checkConsistency(problem)

Arguments

problem Problem to check.

Value

TRUE if a model of a problem is feasible and FALSE otherwise.

12 compareAssignments

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

isConsistent <- checkConsistency(problem)

compareAssignments Compare assignments

Description

This function compares assignments.

Usage

compareAssignments(problem, necessary = TRUE)

Arguments

problem Problem for which assignments will be compared.

necessary Whether necessary or possible assignments.

Value

n x n logical matrix, where n is a number of alternatives. Cell [i, j] is TRUE if a_i is assigned to
class at least as good as class of a_j for all compatible value functions.

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

resultOfComparison <- compareAssignments(problem)

deteriorateAssignment 13

deteriorateAssignment Post factum analysis: deteriorate assignment

Description

This function checks how much an alternative evaluations can be deteriorated so that that alternative
would stay possibly (or necessarily) in at least some specific class. Deterioration is based on min-
imization value of rho in multiplication of an alternative evaluations on selected criteria by value
rho (where 0 < rho <= 1). Note! This function works for problems with only non-negative
alternative evaluations.

Usage

deteriorateAssignment(alternative, atLeastToClass, criteriaManipulability,
necessary, problem)

Arguments

alternative An alternative for assignment deterioration.

atLeastToClass An assignment to investigate.
criteriaManipulability

Vector containing a logical value for each criterion. Each value denotes whether
multiplying by rho on corresponding criterion is allowed or not. At least one
criterion has to be available for that manipulation.

necessary Whether necessary or possible assignment is considered.

problem Problem for which deterioration will be performed.

Value

Value of rho or NULL if given assignment is not possible in any scenario.

See Also

improveAssignment

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.5), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

rho <- deteriorateAssignment(4, 1, c(TRUE, TRUE), FALSE, problem)

14 drawUtilityPlots

drawUtilityPlots Draw marginal value functions and chart of alternative utilities

Description

This function draws marginal value functions and alternative utilities chart.

Usage

drawUtilityPlots(problem, solution, printLabels = TRUE, criteria = NULL,
plotsPerRow = 2, descending = NULL)

Arguments

problem Problem.

solution Solution.

printLabels Whether to print labels.

criteria Vector containing 0 for utility chart and/or indices of criteria for which marginal
value functions should be plotted. If this parameter was NULL functions for all
criteria and utility chart will be plotted (default NULL).

plotsPerRow Number of plots per row (default 2).

descending Mode of sorting alternatives on utility chart:

• NULL - unsorted, preserved problem$perf order,

• TRUE - sorted descending by value of utility,

• FALSE - sorted ascending by value of utility.

Details

This function is deprecated. Use plotVF and plotComprehensiveValue.

See Also

plotVF plotComprehensiveValue

explainAssignment 15

explainAssignment Explain assignment

Description

This function allows to obtain explanation of an alternative assignment to a specific class interval
or one class in case if assignment is necessary. The function returns all preferential reducts for an
assignment relation.

Usage

explainAssignment(alternative, classInterval, problem)

Arguments

alternative Index of an alternative.

classInterval Two-element vector c(l, u) that represents an assignment of alternative to
class interval [C_l, C_u] (l <= u).

problem Problem for which computations will be performed.

Value

List of all preferential reducts for an assignment relation. If the assignment is not influenced by
restrictions then empty list will be returned. Each element of the list is a preferential reduct repre-
sented as a vector of restriction indices. To identify preferential core use getPreferentialCore.
To find out about restrictions by their indices use getRestrictions.

See Also

getPreferentialCore getRestrictions calculateAssignments

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.5), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

possibleAssignments <- calculateAssignments(problem, FALSE)
alternative <- 4
assignment <- c(min(which(possibleAssignments[alternative,])),

max(which(possibleAssignments[alternative,])))

preferentialReducts <- explainAssignment(alternative,
assignment, problem)

preferentialCore <- getPreferentialCore(preferentialReducts)
coreRestrictions <- getRestrictions(problem, preferentialCore)

16 findRepresentativeFunction

findInconsistencies Find inconsistencies in preference information

Description

This function finds sets of pieces of preference information that make problem inconsistent.

Usage

findInconsistencies(problem)

Arguments

problem Problem to investigate.

Value

List of ordered by cardinality sets of indices of preference information that makes problem incon-
sistent. Use getRestrictions on sets to find out related preference information.

Examples

perf <- matrix(c(1, 2, 2, 1), ncol = 2)
problem <- buildProblem(perf, 3, TRUE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsUB(problem, c(1, 1))
problem <- addAssignmentsLB(problem, c(2, 2))

checkConsistency(problem) # TRUE

problem <- addAssignmentsLB(problem, c(1, 3)) # added inconsistency

checkConsistency(problem) # FALSE

inconsistencies <- findInconsistencies(problem)

setsOfprefInfo <- lapply(inconsistencies,
function(x) { getRestrictions(problem, x) })

findRepresentativeFunction

Find representative utility function

Description

This function finds a representative utility function for a problem.

findRepresentativeFunction 17

Usage

findRepresentativeFunction(problem, mode, relation = NULL)

Arguments

problem Problem to investigate.

mode An integer that represents a method of a computing representative utility func-
tion:

• 0 - iterative mode,

• 1 - compromise mode.

relation A matrix of assignment pairwise comparisons (see compareAssignments). If
the parameter is NULL, the relation will be computed.

Value

List with named elements:

• vf - list of 2-column matrices with marginal value functions (characteristic point in rows),

• thresholds,

• assignments,

• alternativeValues,

• epsilon.

NULL is returned if representative function cannot be found.

See Also

plotVF plotComprehensiveValue findSimpleFunction

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

representativeFunction <- findRepresentativeFunction(problem, 0)
assignments <- representativeFunction$assignments

18 findSimpleFunction

findSimpleFunction Find one value function

Description

This function finds single value function that is consistent with provided preferece information.
Search is done by epsilon maximization.

Usage

findSimpleFunction(problem)

Arguments

problem Problem

Value

List with named elements:

• vf - list of 2-column matrices with marginal value functions (characteristic point in rows),

• thresholds,

• assignments,

• alternativeValues,

• epsilon.

See Also

plotVF plotComprehensiveValue findRepresentativeFunction

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

simpleFunction <- findSimpleFunction(problem)

findSolutionWithIncomplete 19

findSolutionWithIncomplete

Find single value function from incomplete preference information

Description

This function finds a single value function from incomplete preference information for a problem.

Usage

findSolutionWithIncomplete(problem, stochasticResults, method, reg = 1e-20,
accuracy = 1e-10)

Arguments

problem Problem to investigate.
stochasticResults

Stochastic results (see calculateStochasticResults).

method cai-product, apoi-product, or combined-product.

reg Reg

accuracy Accuracy

Value

List with named elements:

• vf - list of 2-column matrices with marginal value functions (characteristic point in rows),

• thresholds,

• assignments,

• alternativeValues,

• epsilon.

See Also

calculateStochasticResults findRepresentativeFunction plotComprehensiveValue findSimpleFunction

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

stochasticResults <- calculateStochasticResults(problem, 100)
representativeFunction <- findSolutionWithIncomplete(problem, stochasticResults, "cai-product")
assignments <- representativeFunction$assignments

20 getCharacteristicPoints

getAssignments Get assignments

Description

This function returns assignments for given model solution.

Usage

getAssignments(problem, solution)

Arguments

problem Problem whose model was solved.

solution Result of model solving (e.g. result of findRepresentativeFunction or investigateUtility).

Details

Function is deprecated. Solution already contains assignments.

Value

Vector of alternative assignments. Each element contains an index of a class that corresponding
alternative was assigned to.

getCharacteristicPoints

Get characteristic points

Description

This function extracts values of characteristic points from model solution.

Usage

getCharacteristicPoints(problem, solution)

Arguments

problem Problem whose model was solved.

solution Result of model solving (e.g. result of findRepresentativeFunction or investigateUtility).

Details

Function is deprecated. Solution already contains characteristic points.

getMarginalUtilities 21

Value

List of m matrices for each of m criteria. Each row c(g, u) of each matrix contains coordinates of
a single characteristic point, where g - evaluation on corresponding criterion, u - marginal utility.

getMarginalUtilities Get marginal utilities

Description

This function extracts alternatives marginal values from model solution.

Usage

getMarginalUtilities(problem, solution)

Arguments

problem Problem whose model was solved.

solution Result of model solving (e.g. result of findRepresentativeFunction or investigateUtility).

Details

Function is deprecated. Solution already contains marginal utilities.

Value

A n x m matrix containing marginal values of n alternatives on m criteria.

getPreferentialCore Identify preferential core

Description

This function identifies preferential core.

Usage

getPreferentialCore(preferentialReducts)

Arguments

preferentialReducts

List of all preferential reducts (a result of explainAssignment).

22 getRestrictions

Value

Preferential core as a vector of restriction indices. To find out about restrictions by their indices use
getRestrictions.

See Also

explainAssignment getRestrictions

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.5), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

possibleAssignments <- calculateAssignments(problem, FALSE)
alternative <- 4
assignment <- c(min(which(possibleAssignments[alternative,])),

max(which(possibleAssignments[alternative,])))

preferentialReducts <- explainAssignment(alternative,
assignment, problem)

preferentialCore <- getPreferentialCore(preferentialReducts)
coreRestrictions <- getRestrictions(problem, preferentialCore)

getRestrictions Get restrictions by indices

Description

This function gets restrictions by indices.

Usage

getRestrictions(problem, indices)

Arguments

problem Problem whose restrictions will be searched.

indices A vector of restriction indices (eg. a result of calling getPreferentialCore.)
Incorrect indices are skipped.

Value

List with named elements. Each element is a matrix which contains set of restrictions of same type.

See Also

getPreferentialCore explainAssignment

getThresholds 23

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.5), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

possibleAssignments <- calculateAssignments(problem, FALSE)
alternative <- 4
assignment <- c(min(which(possibleAssignments[alternative,])),

max(which(possibleAssignments[alternative,])))

preferentialReducts <- explainAssignment(alternative,
assignment, problem)

preferentialCore <- getPreferentialCore(preferentialReducts)
coreRestrictions <- getRestrictions(problem, preferentialCore)

getThresholds Get thresholds

Description

This function extracts values of thresholds from solution.

Usage

getThresholds(problem, solution)

Arguments

problem Problem whose model was solved.

solution Result of model solving (e.g. result of findRepresentativeFunction or investigateUtility).

Details

Function is deprecated. Solution already contains thresholds.

Value

Vector containing h-1 thresholds from t_1 to t_h-1 where t_p-1 is lower threshold of class C_p
and h is number of classes.

24 improveAssignment

improveAssignment Post factum analysis: improve assignment

Description

This function calculates minimal rho by which alternative evaluations on selected criteria have to
be multiplied for that alternative to be possibly (or necessarily) assigned to at least some specific
class (rho >= 1). Note! This function works for problems with only non-negative alternative
evaluations.

Usage

improveAssignment(alternative, atLeastToClass, criteriaManipulability,
necessary, problem)

Arguments

alternative An alternative for assignment improvement.

atLeastToClass Desired assignment.
criteriaManipulability

Vector containing a logical value for each criterion. Each value denotes whether
multiplying by rho on corresponding criterion is allowed or not. At least one
criterion has to be available for that manipulation.

necessary Whether necessary or possible assignment is considered.

problem Problem for which improvement will be performed.

Value

Value of rho or NULL if given assignment is not possible in any scenario.

See Also

deteriorateAssignment

Examples

perf <- matrix(c(8, 2, 1, 7, 0.5, 0.9, 0.4, 0.5), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsUB(problem, c(1, 2), c(2, 3))

a_1 dominates a_4 and a_1 is assigned at most to class C_2
How many times evaluations of a_4 should be improved
that a_4 will be assigned possibly to class C_3?
rho <- improveAssignment(4, 3, c(TRUE, TRUE), FALSE, problem)

investigateUtility 25

investigateUtility Post factum analysis: check how much utility is missing

Description

This function calculates missing value of an alternative utility for that alternative to be possibly (or
necessarily) assigned to at least some specific class.

Usage

investigateUtility(alternative, atLeastToClass, necessary, problem)

Arguments

alternative An alternative index.

atLeastToClass An assignment to investigate.

necessary Whether necessary or possible assignment is considered.

problem Problem for investigation.

Value

List with named elements:

• ux - value of missing utility,

• solution - result of solving model. It can be used for further computations (getAssignments,
getThresholds, getMarginalUtilities, getCharacteristicPoints).

NULL is returned if given assignment is not possible.

See Also

getMarginalUtilities getCharacteristicPoints getThresholds improveAssignment

Examples

perf <- matrix(c(8, 2, 1, 7, 0.5, 0.9, 0.4, 0.5), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
problem <- addAssignmentsUB(problem, c(1, 2), c(2, 3))

result <- investigateUtility(4, 3, FALSE, problem)

26 mergeAssignments

mergeAssignments Merge different assignments

Description

This function allows to merge different assignments, e.g. from various decision makers (group
result, group assignment). There are four types of group assignments:

• Possible Possible - alternative a_i is possibly in class C_h for at least one decision maker,

• Possible Necessary - alternative a_i is possibly in class C_h for all decision makers,

• Necessary Possible - alternative a_i is necessarily in class C_h for at least one decision
maker,

• Necessary Necessary - alternative a_i is necessarily in class C_h for all decision makers.

The first possible-necessary parameter depends on decision makers assignments computed earlier,
and the second is define as function parameter.

Usage

mergeAssignments(assignmentList, necessary)

Arguments

assignmentList List of assignment matrices (results of calling calculateAssignments func-
tion).

necessary Whether necessary or possible merging.

Value

n x p logical matrix, where each row represents one of n alternatives and each column represents
one of p classes. Element [i, h] is TRUE if alternative a_i can be assigned to class C_h.

See Also

calculateAssignments

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))
DM1Problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))
DM2Problem <- addAssignmentsLB(problem, c(2, 2), c(4, 2))

necessary <- FALSE
assignmentList <- list()
assignmentList[[1]] <- calculateAssignments(DM1Problem, necessary)
assignmentList[[2]] <- calculateAssignments(DM2Problem, necessary)

plotComprehensiveValue 27

generate possible - necessary assignments
PNAssignments <- mergeAssignments(assignmentList, TRUE)

plotComprehensiveValue

Plot comprehensive values of altarnatives

Description

This function draws bar chart of comprehensive values of altarnatives.

Usage

plotComprehensiveValue(solution, order = "alternatives",
showThresholds = FALSE, title = FALSE)

Arguments

solution Solution to plot (e.g. result of findRepresentativeFunction, findSimpleFunction
or investigateUtility).

order Order of alternatives ("alternatives", "asc", "desc").

showThresholds Whether to print threholds (dashed lines).

title Title for chart or boolean value whether default title should be used.

Value

Plot.

See Also

findRepresentativeFunction findSimpleFunction investigateUtility plotVF

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('c', 'g'), c(3, 3))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

representativeFunction <- findRepresentativeFunction(problem, 0)
plotComprehensiveValue(representativeFunction)

28 plotVF

plotVF Plot value function

Description

This function draws value function for selected criteria.

Usage

plotVF(solution, criteria = NULL, yAxis = "max", showAlternatives = FALSE,
titles = TRUE, plotsPerRow = 2)

Arguments

solution Solution to plot (e.g. result of findRepresentativeFunction, findSimpleFunction
or investigateUtility).

criteria Indices of criteria to plot. If NULL all criteria will be plotted.

yAxis Y axis limit ("adjusted" - maximal value on single plot, "max" - maximal value
on all criteria, "unit" - one).

showAlternatives

Whether to mark values of alternatives.

titles Vector of titles for charts or boolean value(s) whether default title should be
used.

plotsPerRow Maximal plots per row.

See Also

findRepresentativeFunction findSimpleFunction investigateUtility plotComprehensiveValue

Examples

perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('c', 'g'), c(3, 3))
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

representativeFunction <- findRepresentativeFunction(problem, 0)
plotVF(representativeFunction)

removeAssignmentPairwiseAtLeastComparisons 29

removeAssignmentPairwiseAtLeastComparisons

Remove assignment pairwise at least comparisons

Description

This function removes pairwise at least comparisons. For more information see addPairwiseAtLeastComparisons.

Usage

removeAssignmentPairwiseAtLeastComparisons(problem, ...)

Arguments

problem Problem from which preference information will be removed

... Comparisons as three-element vectors and/or two-element vectors. Each argu-
ment represents comparison to remove. If c(i, j, k) vector was provided a
corresponding comparison will be removed. In case where two-element vector
c(i,j) was given a comparison of an alternative a_i with a_j will be removed
regardless of value of k. If a specific comparison was not found nothing will
happen.

Value

Problem with removed comparisons.

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

add comparisons:
alternative 2 to class at least as good as class of alternative 1
alternative 4 to class at least better by 1 class then class
of alternative 3
problem <- addAssignmentPairwiseAtLeastComparisons(problem,

c(4, 3, 1), c(2, 1, 0))
remove comparison between alternative 4 and 3
problem <- removeAssignmentPairwiseAtLeastComparisons(problem, c(4, 3))

30 removeAssignmentPairwiseAtMostComparisons

removeAssignmentPairwiseAtMostComparisons

Remove assignment pairwise at most comparisons

Description

This function removes pairwise at most comparisons. For more information see addPairwiseAtMostComparisons.

Usage

removeAssignmentPairwiseAtMostComparisons(problem, ...)

Arguments

problem Problem from which preference information will be removed

... Comparisons as three-element vectors and/or two-element vectors. Each argu-
ment represents comparison to remove. If c(i, j, k) vector was provided a
corresponding comparison will be removed. In case where two-element vector
c(i,j) was given a comparison of an alternative a_i with a_j will be removed
regardless of value of k. If a specific comparison was not found nothing will
happen.

Value

Problem with removed comparisons.

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

add comparison:
alternative 4 to class at most better by 1 class then class
of alternative 3
problem <- addAssignmentPairwiseAtMostComparisons(problem, c(4, 3, 1))
remove comparison between alternative 4 and 3
problem <- removeAssignmentPairwiseAtMostComparisons(problem, c(4, 3))

removeAssignmentsLB 31

removeAssignmentsLB Remove lower bound of alternative possible assignments

Description

This function removes lower bounds of possible assignments from a problem.

Usage

removeAssignmentsLB(problem, ...)

Arguments

problem Problem from which preference information will be removed.

... Assignments as two-element vectors and/or integers. Each argument represents
assignment to remove. If c(i, j) vector was provided an assignment of an
alternative a_i to at least class C_j will be removed. In case where single value
i was given an assignment of an alternative a_i will be removed regardless of
class. If a specific assignment was not found nothing will happen.

Value

Problem with removed assignment examples.

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

add assignment examples: alternative 1 at least to class 2
alternative 2 at least to class 3
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

and remove the assignments
problem <- removeAssignmentsLB(problem, c(1, 2), 2)

removeAssignmentsUB Remove upper bound of alternative possible assignments

Description

This function removes upper bounds of possible assignments from a problem.

32 removeMaximalClassCardinalities

Usage

removeAssignmentsUB(problem, ...)

Arguments

problem Problem from which preference information will be removed.

... Assignments as two-element vectors and/or integers. Each argument represents
assignment to remove. If c(i, j) vector was provided an assignment of an
alternative a_i to at most class C_j will be removed. In case where single value
i was given an assignment of an alternative a_i will be removed regardless of
class. If a specific assignment was not found nothing will happen.

Value

Problem with removed assignment examples.

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

add assignment examples: alternative 1 at least to class 2
alternative 2 at least to class 3
problem <- addAssignmentsLB(problem, c(1, 2), c(2, 3))

and remove the assignments
problem <- removeAssignmentsLB(problem, c(1, 2), 2)

removeMaximalClassCardinalities

Remove maximal class cardinality restrictions

Description

This function allows to remove defined maximal cardinality of particular classes.

Usage

removeMaximalClassCardinalities(problem, ...)

removeMinimalClassCardinalities 33

Arguments

problem Problem from which preference information will be removed.

... Two-element vectors and/or integers. Each argument represents restriction to
remove. If c(i, j) vector was provided then defined maximal cardinality j for
class C_i will be removed. In case where single value i was given, a restric-
tion for class a_i will be removed regardless of maximal cardinality value. If a
specific restriction was not found nothing will happen.

Value

Problem with removed preference information.

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

set maximal class cardinalities:
at most two alternatives could be assigned to class 2
and at most one alternative could be assigned to class 3
problem <- addMaximalClassCardinalities(problem, c(2, 2), c(3, 1))
remove defined restriction for class 2
problem <- removeMaximalClassCardinalities(problem, 2)

removeMinimalClassCardinalities

Remove minimal class cardinality restrictions

Description

This function allows to remove defined minimal cardinality of particular classes.

Usage

removeMinimalClassCardinalities(problem, ...)

Arguments

problem Problem from which preference information will be removed.

... Two-element vectors and/or integers. Each argument represents restriction to
remove. If c(i, j) vector was provided then defined minimal cardinality j for
class C_i will be removed. In case where single value i was given a restric-
tion for class a_i will be removed regardless of minimal cardinality value. If a
specific restriction was not found nothing will happen.

34 removeMinimalClassCardinalities

Value

Problem with removed preference information.

Examples

4 alternatives, 2 gain criteria, 3 classes, monotonously increasing
and general marginal value functions
perf <- matrix(c(5, 2, 1, 7, 0.5, 0.9, 0.4, 0.4), ncol = 2)
problem <- buildProblem(perf, 3, FALSE, c('g', 'g'), c(0, 0))

set minimal class cardinalities:
at least one alternative has to be assigned to class 2
and at least one alternative has to be assigned to class 3
problem <- addMinimalClassCardinalities(problem, c(2, 1), c(3, 1))
remove defined restriction for class 2
problem <- removeMinimalClassCardinalities(problem, 2)

Index

∗Topic mcda ordinal package
regression robust ror
rorutadis sorting uta utadis

rorutadis-package, 2

addAssignmentPairwiseAtLeastComparisons,
3, 8

addAssignmentPairwiseAtMostComparisons,
4, 8

addAssignmentsLB, 5, 8
addAssignmentsUB, 5, 8
addMaximalClassCardinalities, 6, 8, 10
addMinimalClassCardinalities, 7, 8, 10

buildProblem, 3–7, 8, 11

calculateAssignments, 9, 11, 15, 26
calculateExtremeClassCardinalities, 10,

11
calculateStochasticResults, 10, 19
checkConsistency, 11
compareAssignments, 11, 12, 17

deteriorateAssignment, 13, 24
drawUtilityPlots, 14

explainAssignment, 15, 21, 22

findInconsistencies, 16
findRepresentativeFunction, 16, 18–21,

23, 27, 28
findSimpleFunction, 17, 18, 19, 27, 28
findSolutionWithIncomplete, 19

getAssignments, 20, 25
getCharacteristicPoints, 20, 25
getMarginalUtilities, 21, 25
getPreferentialCore, 15, 21, 22
getRestrictions, 15, 16, 22, 22
getThresholds, 23, 25

improveAssignment, 13, 24, 25
investigateUtility, 20, 21, 23, 25, 27, 28

mergeAssignments, 26

plotComprehensiveValue, 14, 17–19, 27, 28
plotVF, 14, 17, 18, 27, 28

removeAssignmentPairwiseAtLeastComparisons,
3, 8, 29

removeAssignmentPairwiseAtMostComparisons,
4, 8, 30

removeAssignmentsLB, 5, 8, 31
removeAssignmentsUB, 6, 8, 31
removeMaximalClassCardinalities, 7, 8,

32
removeMinimalClassCardinalities, 7, 8,

33
rorutadis (rorutadis-package), 2
rorutadis-package, 2

35

	rorutadis-package
	addAssignmentPairwiseAtLeastComparisons
	addAssignmentPairwiseAtMostComparisons
	addAssignmentsLB
	addAssignmentsUB
	addMaximalClassCardinalities
	addMinimalClassCardinalities
	buildProblem
	calculateAssignments
	calculateExtremeClassCardinalities
	calculateStochasticResults
	checkConsistency
	compareAssignments
	deteriorateAssignment
	drawUtilityPlots
	explainAssignment
	findInconsistencies
	findRepresentativeFunction
	findSimpleFunction
	findSolutionWithIncomplete
	getAssignments
	getCharacteristicPoints
	getMarginalUtilities
	getPreferentialCore
	getRestrictions
	getThresholds
	improveAssignment
	investigateUtility
	mergeAssignments
	plotComprehensiveValue
	plotVF
	removeAssignmentPairwiseAtLeastComparisons
	removeAssignmentPairwiseAtMostComparisons
	removeAssignmentsLB
	removeAssignmentsUB
	removeMaximalClassCardinalities
	removeMinimalClassCardinalities
	Index

