Package 'rpms'

June 26, 2021

Type Package

Title Recursive Partitioning for Modeling Survey Data

Version 0.5.1 **Date** 2021-06-16

Maintainer Daniell Toth <danielltoth@yahoo.com>

Description Functions to allow users to build and analyze design consistent tree and random forest models using survey data from a complex sample design. The tree model algorithm can fit a linear model to survey data in each node obtained by recursively partitioning the data. The splitting variables and selected splits are obtained using a randomized permutation test procedure which adjusted for complex sample design features used to obtain the data. Likewise the model fitting algorithm produces design-consistent coefficients to any specified least squares linear model between the dependent and independent variables used in the end nodes. The main functions return the resulting binary tree or random forest as an object of ``rpms" or ``rpms_forest" type. The package also provides methods modeling a ``boosted" tree or forest model and a tree model for zero-inflated data as well as a number of functions and methods available for use with these object types.

License CC0

Depends R (>= 2.10)

Imports Rcpp (>= 0.12.3), stats

LinkingTo Rcpp, RcppArmadillo

Suggests parallel

RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation yes

LazyData true

Author Daniell Toth [aut, cre]

Repository CRAN

Date/Publication 2021-06-25 23:40:02 UTC

2 rpms-package

R topics documented:

	rpms-package	2
	boxes	3
	box_ind	3
	CE	4
	end_nodes	6
	grow_rpms	7
	in_node	8
	linearize	9
	node_plot	9
	predict.rpms	10
	predict.rpms_boost	11
	predict.rpms_forest	12
	predict.rpms_proj	12
	predict.rpms_zinf	13
	print.rpms	13
	print.rpms_forest	14
	print.rpms_zinf	14
	prune_rpms	15
	qtree	15
	r2stat	16
	rpms	17
	rpms_boost	18
	rpms_forest	19
	rpms_proj	20
	rpms_zinf	21
Index		23

rpms-package

Recursive Partitioning for Modeling Survey Data (rpms)

Description

This package provides a function rpms to produce an rpms object and method functions that operate on them. The rpms object is a representation of a regression tree achieved by recursively partitioning the dataset, fitting the specified linear model on each node separately. The recursive partitioning algorithm has an unbiased variable selection and accounts for the sample design. The algorithm accounts for one-stage of stratification and clustering as well as unequal probability of selection. There are also functions for producing random forest estimator (a list of rpms objects), a boosted regression tree and tree based zero-inflated model.

boxes 3

boxes boxes

Description

returns end boxes that partition the data

Usage

boxes(x)

Arguments

x rpms object

Value

data.frame including end_node, sample size, splits, and values for each end node

box_ind box_ind

Description

For each row of data, returns a vector indicators whether observation is in that box or not

Usage

```
box_ind(x, newdata)
```

Arguments

x rpms object

newdata dataframe containing the variables used for the recursive partitioning.

Value

Matrix where each row is a vector of indicators whether observation is in box or not.

4 CE

CE

CE Consumer expenditure data 2015

Description

A dataset containing consumer unit characteristics, assets and expenditure data from the Bureau of Labor Statistics' Consumer Expenditure Survey public use interview data file.

Usage

CE

Format

A data frame with 68.415 observations on 47 variables:

Sample-design information

NEWID Consumer unit identifying variable, constructed using the first seven digits of NEWID BLS derived

PSU Primary Sampling Unit code for the 21 biggest clusters

CID Cluster Identifier for all clusters, (created using PSU, REGION, STATE, and POPSIZE) not part of CE data

QINTRVMO Month for which data was collected

FINLWT21 Final sample weight to make inference to total population

Location of Consumer Unit

STATE State FIPS code

REGION Region code: 1 Northeast; 2 Midwest; 3 South; 4 West

BLS_URBN Urban = 1, Rural = 2

POPSIZE Population size class of PSU: 1-biggest 5-smallest

Housing and transportation

CUTENURE Housing tenure: 1 Owned with mortgage; 2 Owned without mortgage 3 Owned mortgage not reported; 4 Rented; 5 Occupied without payment of cash rent; 6 Student housing

ROOMSQ Number of rooms, including finished living areas and excluding all baths

BATHRMQ Number of bathrooms

BEDROOMQ Number of bedrooms

VEHQ Number of owned vehicles

VEHQL Number of leased vehicles

CE 5

Family Information

FAM_TYPE CU code based on relationship of members to reference person (children incldue blood-related, step and adopted): 1 Married Couple only; 2 Married Couple, children (oldest < 6 years old); 3 Married Couple, children (oldest 6 to 17 years old); 4 Married Couple, children (oldest > 17 years old); 5 All other Married Couple CUs 6 One parent (male), children (at least one child < 18 years old); 7 One parent (female), children (at least one child < 18 years old); 8 Single consumers; 9 Other CUs

FAM SIZE Number of members in CU

PERSLT18 Number of people <18 yrs old

PERSOT64 Number of people >64 yrs old

NO EARNR Number of earners

Primary Earner Information

AGE Age of primary earner

EDUCA Education level coded: 1 None; 2 1st-8th Grade; 3 some HS; 4 HS; 5 Some college; 6 AA degree; 7 Bachelors degree; 8 Advanced degree

SEX Gender Code: F (Female); M (Male)

MARITAL Marital Status Coded: 1 Married; 2 Widowed; 3 Divorced; 4 Separated; 5 Never Married

MEMBRACE Race code: 1 White; 2 Black; 3 Native American; 4 Asian; 5 Pacific Islander; 6 Multi-race

HORIGIN Hispanic, Latino, or Spanish origin? Y (Yes); N (No)

ARM_FORC Member of armed forces? Y (Yes); N (No)

IN_COLL Currently enrolled in college? Full (full time); Part (part time); No

Labor Status of Primary Earner

EARNER Earn income: Y (Yes); N (No)

EARNTYPE 1 Full time all year; 2 Part time all year; 3 Full time part of the year; 2 Part time part of the year;

OCCUCODE The job in which the member received the most earnings during the past 12 months fits best in the following category: 01 Administrator, manager; 02 Teacher; 03 Professional Administrative support, technical, sales; 04 Administrative support, including clerical; 05 Sales, retail; 06 Sales, business goods and services; 07 Technician; 08 Protective service; 09 Private household service; 10 Other service; 11 Machine operator, assembler, inspector; 12 Transportation operator; 13 Handler, helper, laborer; 14 Mechanic, repairer, precision production; 15 Construction, mining; 16 Farming; 17 Forestry, fishing, grounds-keeping; 18 Armed forces

INCOMEY Type of employment: 1 An employee of a PRIVATE company, business, or individual 2 A Federal government employee 3 A State government employee 4 A local government employee 5 Self-employed in OWN business, professional practice or farm 6 Working WITH-OUT PAY in family business or farm

INCNONWK Reason did not work during the past 12 months: 1 Retired; 2 Home maker; 3 School; 4 health; 5 Unable to find work; 6 Doing something else

6 end_nodes

Income

FINCBTAX Amount of CU income before taxes in past 12 months

SALARYX Amount of wage or salary income received in past 12 months, before any deductions

SOCRRX Amount income received from Social Security and Railroad Retirement in past 12 months

Assetts and Liabilities

IRAX Total value of all retirement accounts

LIQUIDX Value of liquid assets

STOCKX Total value of all directly-held stocks, bonds

STUDNTX Amount owed on all student loans

Expenditures

TOTEXPCQ Total expenditures for current quarter

TOTXEST Total taxes paid (estimated)

EHOUSNGC Total expenditures for housing paid this quarter

HEALTHCQ Expenditures on health care quarter

FOODCQ Expenditure on food this quarter

TOBACCCQ Tobacco and smoking supplies this quarter

FOOTWRCQ Expenditure on footware1 this quarter

end describe

Source

https://www.bls.gov/cex/pumd_data.htm

end_nodes

end_nodes

Description

Either a vector of end-node labels for each opbservation in newdata or a vector of the endnodes in the tree model if newdata is not provided.

Usage

```
end_nodes(object, newdata = NULL)
```

Arguments

object rpms object newdata data.frame

grow_rpms 7

Value

vector of end_node labels

Examples

```
{
# model mean of retirement account value for households with reported
# retirment account values > 0 using a binary tree while accounting for
# clusterd data and sample weights.

s1<- which(CE$IRAX > 0)
r1 <-rpms(IRAX~EDUCA+AGE+BLS_URBN, data = CE[s1,], weights=~FINLWT21, clusters=~CID)
end_nodes(r1)
}</pre>
```

grow_rpms

grow_rpms

Description

grow an rpms tree from a given node

Usage

```
grow_rpms(
    x,
    node,
    data,
    weights = ~1,
    strata = ~1,
    clusters = ~1,
    pval = NA,
    bin_size = NA
)
```

Arguments

X	rpms object
node	node from which to grow tree further
data	data.frame that includes variables used in rp_equ, e_equ, and design information
weights	formula or vector of sample weights for each observation
strata	formula or vector of strata labels
clusters	formula or vector of cluster labels
pval	numeric p-value used to reject null hypothesis in permutation test
bin_size	numeric minimum number of observations in each node

in_node

Value

rpms tree expanded from node.

in_node

in_node

Description

Get index of elements in dataframe that are in the specified end-node of an rpms object. A "which" function for end-nodes.

Usage

```
in_node(x, node, data)
```

Arguments

x rpms object

node integer label of the desired end-node.

data frame containing the variables used for the recursive partitioning.

Value

vector of indexes for observations in the end-node.

Examples

```
{
# model mean of retirement account value for households with reported
# retirment account values > 0 using a binary tree while accounting for
# clusterd data and sample weights.

s1<- which(CE$IRAX > 0)
r1 <-rpms(IRAX~EDUCA+AGE+BLS_URBN, data = CE[s1,], weights=~FINLWT21, clusters=~CID)
# Get summary statistics of CUTENURE for households in end-nodes 7 and 8 of the tree
if(7 %in% end_nodes(r1))
   summary(CE$CUTENURE[in_node(node=7, r1, data=CE[s1,])])
if(8 %in% end_nodes(r1))
   summary(CE$CUTENURE[in_node(node=8, r1, data=CE[s1,])])
}</pre>
```

linearize 9

Description

returns a linerized version of the splits. The coefficients represent the effect that each split has on the mean

Usage

```
linearize(x, data, weights = ~1, strata = ~1, clusters = ~1, type = "part")
```

Arguments

X	rpms object
data	data.frame
weights	formula or vector of sample weights for each observation

strata formula or vector of strata labels
clusters formula or vector of cluster labels

type is on of "part" or "lin"

Value

data.frame including splits and estimates for the coefficient and their standard errors

node_plot node_plot

Description

plots end-node of object of class rpms

Usage

```
node_plot(object, node, data, variable = NA, ...)
```

Arguments

object	rpms object
node	integer label of the desired end-node.
data	data.frame that includes variables used in rp_equ, e_equ, and design information
variable	string name of variable in data to use as x-axis in plot

. . . further arguments passed to plot function.

10 predict.rpms

Examples

```
# model mean of retirement account value for households with reported
# retirment account values > 0 using a binary tree while accounting for
# clusterd data and sample weights.

s1<- which(CE$IRAX > 0)
r1 <-rpms(IRAX~EDUCA+AGE+BLS_URBN, data = CE[s1,], weights=~FINLWT21, clusters=~CID)

# plot node 6 if it is an end-node of the tree
if(6 %in% end_nodes(r1))
   node_plot(object=r1, node=6, data=CE[s1,])

# plot node 6 if it is an end-node of the tree
if(8 %in% end_nodes(r1))
   node_plot(object=r1, node=8, data=CE[s1,])

}</pre>
```

predict.rpms

predict.rpms

Description

Predicted values based on rpms object

Usage

```
## S3 method for class 'rpms'
predict(object, newdata, ...)
```

Arguments

object Object inheriting from rpms

newdata data frame with variables to use for predicting new values.

further arguments passed to or from other methods.

Value

vector of predicticed values for each row of newdata

predict.rpms_boost 11

Examples

predict.rpms_boost

predict.rpms_boost

Description

Predicted values based on rpms_boost object

Usage

```
## S3 method for class 'rpms_boost'
predict(object, newdata, ...)
```

Arguments

object Object inheriting from rpms_boost

newdata data frame with variables to use for predicting new values.

... further arguments passed to or from other methods.

Value

vector of predicticed values for each row of newdata

12 predict.rpms_proj

Description

Gets predicted values given new data based on rpms_forest model.

Usage

```
## S3 method for class 'rpms_forest'
predict(object, newdata, ...)
```

Arguments

object Object inheriting from rpms_forest

newdata data frame with variables to use for predicting new values.

... further arguments passed to or from other methods.

Value

vector of predicticed values for each row of newdata

```
predict.rpms_proj
```

Description

Predicted values based on rpms_zinf model

Usage

```
## S3 method for class 'rpms_proj'
predict(object, newdata, ...)
```

Arguments

object Object inheriting from rpms_zinf

newdata data frame with variables to use for predicting new values.

... further arguments passed to or from other methods.

Value

vector of predicticed values for each row of newdata

predict.rpms_zinf 13

Description

Predicted values based on rpms_zinf model

Usage

```
## S3 method for class 'rpms_zinf'
predict(object, newdata, ...)
```

Arguments

object Object inheriting from rpms_zinf

newdata data frame with variables to use for predicting new values.

... further arguments passed to or from other methods.

Value

vector of predicticed values for each row of newdata

print.rpms

Description

print method for class rpms

Usage

```
## S3 method for class 'rpms'
print(x, ...)
```

Arguments

x rpms object

. . . further arguments passed to or from other methods.

print.rpms_zinf

print.rpms_forest

print.rpms_forest

Description

Prints information for a given rpms_forest model.

Usage

```
## S3 method for class 'rpms_forest'
print(x, ...)
```

Arguments

x Object inheriting from rpms_forest

... further arguments passed to or from other methods.

Value

vector of predicticed values for each row of newdata

```
print.rpms_zinf
```

print.rpms_zinf

Description

```
print method for class rpms_zinf
```

Usage

```
## S3 method for class 'rpms_zinf'
print(x, ...)
```

Arguments

```
x rpms_zinf object
```

... further arguments passed to or from other methods.

prune_rpms 15

prune_rpms

prune_rpms

Description

prune rpms tree to given node

Usage

```
prune_rpms(x, node)
```

Arguments

x rpms object

node number of node to prune to.

Value

subtree ending clipping off any splits after given node.

qtree

qtree

Description

Code to write a latex qtree plot takes a rpm frame and returns latex code to produce qtree uses linearize as a guide Produces text code to produce tree structure in tex document Requires using LaTex packages and the following commands in preamble of LaTex doc: \usepackage{lscape} and \usepackage{tikz-qtree}

Usage

```
qtree(
  t1,
  title = NULL,
  label = NA,
  caption = "",
  digits = 2,
  s_size = TRUE,
  scale = 1,
  lscape = FALSE,
  subnode = 1
)
```

16 r2stat

Arguments

t1 rpms object created by rpms function title string for the top node of the tree label string used for labeling the tree figure string used for caption caption digits integer number of displayed digits s_size boolean indicating whether or not to include sample size numeric factor for scaling size of tree scale 1scape boolean to display tree in landscape mode subnode starting node of subtree to plot

Examples

```
{
# model mean of retirement account value for households with reported
# retirment account values > 0 using a binary tree while accounting for
# clusterd data and sample weights.

s1<- which(CE$IRAX > 0)
r1 <-rpms(IRAX~EDUCA+AGE+BLS_URBN, data = CE[s1,], weights=~FINLWT21, clusters=~CID)
# get Latex code
qtree(r1)
}</pre>
```

r2stat r2

Description

Returns the estimated R^2 statistic for determining the fit of the given model to the data

Usage

```
r2stat(t1, data, adjusted = TRUE)
```

Arguments

t1 Object inheriting from rpms rpms_forest rpms_boost or rpms_zinf data data frame with variables used to estimate model adjusted TRUE/FALSE whether to compute adjusted R^2

Value

R^2 statistic computed using the model and provided data

rpms 17

Description

main function producing a regression tree using variables from rp_equ to partition the data and fit the model e_equ on each node. Currently only uses data with complete cases of continuous variables.

Usage

```
rpms(
    rp_equ,
    data,
    weights = ~1,
    strata = ~1,
    clusters = ~1,
    e_equ = ~1,
    e_fn = "survLm",
    l_fn = NULL,
    bin_size = NULL,
    gridpts = 3,
    perm_reps = 1000L,
    pval = 0.05
)
```

Arguments

rp_equ	formula containing all variables for partitioning
data	data.frame that includes variables used in rp_equ, e_equ, and design information
weights	formula or vector of sample weights for each observation
strata	formula or vector of strata labels
clusters	formula or vector of cluster labels
e_equ	formula for modeling data in each node
e_fn	string name of function to use for modeling (only "survLm" is operational)
l_fn	loss function (ignored)
bin_size	integer specifying minimum number of observations in each node
gridpts	integer number of middle points to do in search; set to n for categorical variables when e_equ is used.
perm_reps	integer specifying the number of thousands of permutation replications to use to estimate p-value
pval	numeric p-value used to reject null hypothesis in permutation test

18 rpms_boost

Value

```
object of class "rpms"
```

Examples

```
{
# model mean of retirement account value for households with reported
# retirment account values > 0 using a binary tree while accounting for
# clusterd data and sample weights.

s1<- which(CE$IRAX > 0)
rpms(IRAX~EDUCA+AGE+BLS_URBN, data=CE[s1,], weights=~FINLWT21, clusters=~CID)

# model linear fit between retirement account value and amount of income
# conditioning on education and accounting for clusterd data for households
# with reported retirment account values > 0

rpms(IRAX~EDUCA, e_equ=IRAX~FINCBTAX, data=CE[s1,], weights=~FINLWT21, clusters=~CID)
}
```

rpms_boost

rpms_boost

Description

function for producing boosted rpms models (trees or random forests)

Usage

```
rpms_boost(
  rp_equ,
  data,
  weights = ~1,
  strata = ~1,
  clusters = ~1,
  e_equ = ~1,
  bin_size = NULL,
  gridpts = 3,
  perm_reps = 100L,
  pval = 0.05,
  f_size = 200L,
  model_type = "tree",
  times = 2L
)
```

rpms_forest 19

Arguments

rp_equ	formula containing all variables for partitioning
data	data.frame that includes variables used in rp_equ, e_equ, and design information
weights	formula or vector of sample weights for each observation
strata	formula or vector of strata labels
clusters	formula or vector of cluster labels
e_equ	formula for modeling data in each node
bin_size	numeric minimum number of observations in each node
gridpts	integer number of middle points to do in search
perm_reps	integer specifying the number of thousands of permuation replications to use to estimate p-value
pval	numeric p-value used to reject null hypothesis in permutation test
f_size	integer specifying the number of trees in the forest (only used if model_type is "forest")
model_type	string: one of "tree" or "forest"
times	integer specifying number of boosting levels to try.

Value

```
object of class "rpms_boost"
```

Examples

```
{
# model mean of retirement contributions with a binary tree while accounting
# for clusterd data and sample weights.

rpms_boost(IRAX~EDUCA+AGE+BLS_URBN, data = CE, weights=~FINLWT21, clusters=~CID, pval=.01)
}
```

rpms_forest

Description

produces a random forest using rpms to create the individual trees.

20 rpms_proj

Usage

```
rpms_forest(
  rp_equ,
  data,
  weights = ~1,
  strata = ~1,
  clusters = ~1,
  e_fn = "survLm",
  l_fn = NULL,
  bin_size = 5,
  f_size = 500,
  cores = 1
)
```

Arguments

rp_equ	formula containing all variables for partitioning
data	data.frame that includes variables used in rp_equ, e_equ, and design information
weights	formula or vector of sample weights for each observation
strata	formula or vector of strata labels
clusters	formula or vector of cluster labels
e_fn	string name of function to use for modeling (only "survLm" is operational)
l_fn	loss function (ignored)
bin_size	numeric minimum number of observations in each node
f_size	integer specifying the number of trees in the forest
cores	integer number of cores to use in parallel if > 1 (doesn't work with Windows operating systems)

Value

object of class "rpms"

Description

Returns a survLm_fit object with coeficients projecting new data onto splits from the given rpms model.

Usage

```
rpms_proj(object, newdata, weights = ~1, strata = ~1, clusters = ~1)
```

rpms_zinf 21

Arguments

object	Object inheriting from rpms
newdata	data frame with variables used to estimate model
weights	formula or vector of sample weights for each observation
strata	formula or vector of strata labels
clusters	formula or vector of cluster labels

Value

survLm_fit object

|--|

Description

main function producing a regression tree using variables from rp_equ to partition the data and fit the model e_equ on each node. Currently only uses data with complete cases.

Usage

```
rpms_zinf(
    rp_equ,
    data,
    weights = ~1,
    strata = ~1,
    clusters = ~1,
    e_equ = ~1,
    e_fn = "survLm",
    l_fn = NULL,
    bin_size = NULL,
    gridpts = 3,
    perm_reps = 1000L,
    pval = 0.05
)
```

Arguments

rp_equ	formula containing all variables for partitioning
data	data.frame that includes variables used in rp_equ, e_equ, and design information
weights	formula or vector of sample weights for each observation
strata	formula or vector of strata labels
clusters	formula or vector of cluster labels
e_equ	formula for modeling data in each node

22 rpms_zinf

e_fn string name of function to use for modeling (only "survLm" is operational)

1_fn loss function (does nothing yet)

bin_size numeric minimum number of observations in each node

gridpts integer number of middle points to do in search

perm_reps integer specifying the number of thousands of permuation replications to use to

estimate p-value

pval numeric p-value used to reject null hypothesis in permutation test

Value

object of class "rpms"

Index

```
* datasets
    CE, 4
box_ind, 3
boxes, 3
CE, 4
end\_nodes, 6
grow_rpms, 7
in_node, 8
linearize, 9
node\_plot, 9
\verb|predict.rpms|, 10
predict.rpms_boost, 11
predict.rpms_forest, 12
predict.rpms_proj, 12
predict.rpms_zinf, 13
print.rpms, 13
print.rpms_forest, 14
print.rpms_zinf, 14
prune_rpms, 15
qtree, 15
r2stat, 16
rpms, 17
rpms-package, 2
rpms_boost, 18
rpms_forest, 19
rpms_proj, 20
rpms_zinf, 21
```