
Package ‘rsample’
November 8, 2021

Title General Resampling Infrastructure

Version 0.1.1

Maintainer Julia Silge <julia.silge@rstudio.com>

Description Classes and functions to create and summarize different types
of resampling objects (e.g. bootstrap, cross-validation).

License MIT + file LICENSE

URL https://rsample.tidymodels.org,

https://github.com/tidymodels/rsample

BugReports https://github.com/tidymodels/rsample/issues

Depends R (>= 3.2)

Imports dplyr (>= 1.0.0), ellipsis, furrr, generics, lifecycle,
methods, purrr, rlang (>= 0.4.10), slider (>= 0.1.5), tibble,
tidyr, tidyselect, vctrs (>= 0.3.0)

Suggests broom, covr, ggplot2, knitr, modeldata, recipes (>= 0.1.4),
rmarkdown, stats, testthat, utils, xml2

VignetteBuilder knitr

Config/Needs/website GGally, nlstools, survival, tidymodels,
tidyposterior, tidyverse/tidytemplate

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Julia Silge [aut, cre] (<https://orcid.org/0000-0002-3671-836X>),
Fanny Chow [aut],
Max Kuhn [aut],
Hadley Wickham [aut],
RStudio [cph]

Repository CRAN

Date/Publication 2021-11-08 21:00:02 UTC

1

https://rsample.tidymodels.org
https://github.com/tidymodels/rsample
https://github.com/tidymodels/rsample/issues
https://orcid.org/0000-0002-3671-836X

2 .get_fingerprint

R topics documented:

.get_fingerprint . 2
add_resample_id . 3
apparent . 4
as.data.frame.rsplit . 5
attrition . 6
bootstraps . 6
complement . 8
drinks . 9
form_pred . 9
group_vfold_cv . 10
initial_split . 11
int_pctl . 13
labels.rset . 15
labels.rsplit . 16
loo_cv . 16
make_splits . 17
make_strata . 18
manual_rset . 19
mc_cv . 20
nested_cv . 21
permutations . 23
populate . 24
reg_intervals . 25
rolling_origin . 26
rsample . 28
rsample-dplyr . 28
rsample2caret . 30
rset_reconstruct . 31
slide-resampling . 32
tidy.rsplit . 36
two_class_dat . 38
validation_split . 38
vfold_cv . 39

Index 42

.get_fingerprint Obtain a identifier for the resamples

Description

This function returns a hash (or NA) for an attribute that is created when the rset was initially
constructed. This can be used to compare with other resampling objects to see if they are the same.

add_resample_id 3

Usage

.get_fingerprint(x, ...)

Default S3 method:
.get_fingerprint(x, ...)

S3 method for class 'rset'
.get_fingerprint(x, ...)

Arguments

x An rset or tune_results object.

... Not currently used.

Value

A character value or NA_character_ if the object was created prior to rsample version 0.1.0.

Examples

set.seed(1)
.get_fingerprint(vfold_cv(mtcars))

set.seed(1)
.get_fingerprint(vfold_cv(mtcars))

set.seed(2)
.get_fingerprint(vfold_cv(mtcars))

set.seed(1)
.get_fingerprint(vfold_cv(mtcars, repeats = 2))

add_resample_id Augment a data set with resampling identifiers

Description

For a data set, add_resample_id() will add at least one new column that identifies which resample
that the data came from. In most cases, a single column is added but for some resampling methods,
two or more are added.

Usage

add_resample_id(.data, split, dots = FALSE)

4 apparent

Arguments

.data A data frame

split A single rset object.

dots A single logical: should the id columns be prefixed with a "." to avoid name
conflicts with .data?

Value

An updated data frame.

See Also

labels.rsplit

Examples

library(dplyr)

set.seed(363)
car_folds <- vfold_cv(mtcars, repeats = 3)

analysis(car_folds$splits[[1]]) %>%
add_resample_id(car_folds$splits[[1]]) %>%
head()

car_bt <- bootstraps(mtcars)

analysis(car_bt$splits[[1]]) %>%
add_resample_id(car_bt$splits[[1]]) %>%
head()

apparent Sampling for the Apparent Error Rate

Description

When building a model on a data set and re-predicting the same data, the performance estimate
from those predictions is often called the "apparent" performance of the model. This estimate can
be wildly optimistic. "Apparent sampling" here means that the analysis and assessment samples
are the same. These resamples are sometimes used in the analysis of bootstrap samples and should
otherwise be avoided like old sushi.

Usage

apparent(data, ...)

as.data.frame.rsplit 5

Arguments

data A data frame.
... Not currently used.

Value

A tibble with a single row and classes apparent, rset, tbl_df, tbl, and data.frame. The results
include a column for the data split objects and one column called id that has a character string with
the resample identifier.

Examples

apparent(mtcars)

as.data.frame.rsplit Convert an rsplit object to a data frame

Description

The analysis or assessment code can be returned as a data frame (as dictated by the data argument)
using as.data.frame.rsplit. analysis and assessment are shortcuts.

Usage

S3 method for class 'rsplit'
as.data.frame(x, row.names = NULL, optional = FALSE, data = "analysis", ...)

analysis(x, ...)

assessment(x, ...)

Arguments

x An rsplit object.
row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.
optional A logical: should the column names of the data be checked for legality?
data Either "analysis" or "assessment" to specify which data are returned.
... Additional arguments to be passed to or from methods. Not currently used.

Examples

library(dplyr)
set.seed(104)
folds <- vfold_cv(mtcars)

model_data_1 <- folds$splits[[1]] %>% analysis()
holdout_data_1 <- folds$splits[[1]] %>% assessment()

6 bootstraps

attrition Job Attrition

Description

Job Attrition

Details

These data are from the IBM Watson Analytics Lab. The website describes the data with “Uncover
the factors that lead to employee attrition and explore important questions such as ‘show me a
breakdown of distance from home by job role and attrition’ or ‘compare average monthly income
by education and attrition’. This is a fictional data set created by IBM data scientists.”. There are
1470 rows.

These data are now in the modeldata package.

bootstraps Bootstrap Sampling

Description

A bootstrap sample is a sample that is the same size as the original data set that is made using
replacement. This results in analysis samples that have multiple replicates of some of the original
rows of the data. The assessment set is defined as the rows of the original data that were not included
in the bootstrap sample. This is often referred to as the "out-of-bag" (OOB) sample.

Usage

bootstraps(
data,
times = 25,
strata = NULL,
breaks = 4,
pool = 0.1,
apparent = FALSE,
...

)

Arguments

data A data frame.

times The number of bootstrap samples.

strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

bootstraps 7

breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

apparent A logical. Should an extra resample be added where the analysis and holdout
subset are the entire data set. This is required for some estimators used by the
summary function that require the apparent error rate.

... Not currently used.

Details

The argument apparent enables the option of an additional "resample" where the analysis and
assessment data sets are the same as the original data set. This can be required for some types of
analysis of the bootstrap results.

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

An tibble with classes bootstraps, rset, tbl_df, tbl, and data.frame. The results include a
column for the data split objects and a column called id that has a character string with the resample
identifier.

Examples

bootstraps(mtcars, times = 2)
bootstraps(mtcars, times = 2, apparent = TRUE)

library(purrr)
library(modeldata)
data(wa_churn)

set.seed(13)
resample1 <- bootstraps(wa_churn, times = 3)
map_dbl(resample1$splits,

function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")

})

set.seed(13)
resample2 <- bootstraps(wa_churn, strata = churn, times = 3)
map_dbl(resample2$splits,

function(x) {
dat <- as.data.frame(x)$churn

8 complement

mean(dat == "Yes")
})

set.seed(13)
resample3 <- bootstraps(wa_churn, strata = tenure, breaks = 6, times = 3)
map_dbl(resample3$splits,

function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")

})

complement Determine the Assessment Samples

Description

This method and function help find which data belong in the analysis and assessment sets.

Usage

complement(x, ...)

S3 method for class 'rsplit'
complement(x, ...)

S3 method for class 'rof_split'
complement(x, ...)

S3 method for class 'sliding_window_split'
complement(x, ...)

S3 method for class 'sliding_index_split'
complement(x, ...)

S3 method for class 'sliding_period_split'
complement(x, ...)

S3 method for class 'apparent_split'
complement(x, ...)

Arguments

x An rsplit object

... Not currently used

drinks 9

Details

Given an rsplit object, complement() will determine which of the data rows are contained in
the assessment set. To save space, many of the rsplit objects will not contain indices for the
assessment split.

Value

A integer vector.

See Also

populate()

Examples

set.seed(28432)
fold_rs <- vfold_cv(mtcars)
head(fold_rs$splits[[1]]$in_id)
fold_rs$splits[[1]]$out_id
complement(fold_rs$splits[[1]])

drinks Sample Time Series Data

Description

Sample Time Series Data

Details

Drink sales. The exact name of the series from FRED is: "Merchant Wholesalers, Except Manufac-
turers’ Sales Branches and Offices Sales: Nondurable Goods: Beer, Wine, and Distilled Alcoholic
Beverages Sales"

These data are now in the modeldata package.

form_pred Extract Predictor Names from Formula or Terms

Description

all.vars returns all variables used in a formula. This function only returns the variables explicitly
used on the right-hand side (i.e., it will not resolve dots unless the object is terms with a data set
specified).

10 group_vfold_cv

Usage

form_pred(object, ...)

Arguments

object A model formula or stats::terms() object.

... Arguments to pass to all.vars()

Value

A character vector of names

Examples

form_pred(y ~ x + z)
form_pred(terms(y ~ x + z))

form_pred(y ~ x + log(z))
form_pred(log(y) ~ x + z)

form_pred(y1 + y2 ~ x + z)
form_pred(log(y1) + y2 ~ x + z)

will fail:
form_pred(y ~ .)

form_pred(terms(mpg ~ (.)^2, data = mtcars))
form_pred(terms(~ (.)^2, data = mtcars))

group_vfold_cv Group V-Fold Cross-Validation

Description

Group V-fold cross-validation creates splits of the data based on some grouping variable (which
may have more than a single row associated with it). The function can create as many splits as there
are unique values of the grouping variable or it can create a smaller set of splits where more than
one value is left out at a time. A common use of this kind of resampling is when you have repeated
measures of the same subject.

Usage

group_vfold_cv(data, group = NULL, v = NULL, ...)

initial_split 11

Arguments

data A data frame.

group A variable in data (single character or name) used for grouping observations
with the same value to either the analysis or assessment set within a fold.

v The number of partitions of the data set. If let NULL, v will be set to the number
of unique values in the group.

... Not currently used.

Value

A tibble with classes group_vfold_cv, rset, tbl_df, tbl, and data.frame. The results include a
column for the data split objects and an identification variable.

Examples

set.seed(3527)
test_data <- data.frame(id = sort(sample(1:20, size = 80, replace = TRUE)))
test_data$dat <- runif(nrow(test_data))

set.seed(5144)
split_by_id <- group_vfold_cv(test_data, group = "id")

get_id_left_out <- function(x)
unique(assessment(x)$id)

library(purrr)
table(map_int(split_by_id$splits, get_id_left_out))

set.seed(5144)
split_by_some_id <- group_vfold_cv(test_data, group = "id", v = 7)
held_out <- map(split_by_some_id$splits, get_id_left_out)
table(unlist(held_out))
number held out per resample:
map_int(held_out, length)

initial_split Simple Training/Test Set Splitting

Description

initial_split creates a single binary split of the data into a training set and testing set. initial_time_split
does the same, but takes the first prop samples for training, instead of a random selection. training
and testing are used to extract the resulting data.

12 initial_split

Usage

initial_split(data, prop = 3/4, strata = NULL, breaks = 4, pool = 0.1, ...)

initial_time_split(data, prop = 3/4, lag = 0, ...)

training(x)

testing(x)

Arguments

data A data frame.

prop The proportion of data to be retained for modeling/analysis.

strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

... Not currently used.

lag A value to include a lag between the assessment and analysis set. This is useful
if lagged predictors will be used during training and testing.

x An rsplit object produced by initial_split

Details

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

An rsplit object that can be used with the training and testing functions to extract the data in
each split.

Examples

set.seed(1353)
car_split <- initial_split(mtcars)
train_data <- training(car_split)
test_data <- testing(car_split)

int_pctl 13

data(drinks, package = "modeldata")
drinks_split <- initial_time_split(drinks)
train_data <- training(drinks_split)
test_data <- testing(drinks_split)
c(max(train_data$date), min(test_data$date)) # no lag

With 12 period lag
drinks_lag_split <- initial_time_split(drinks, lag = 12)
train_data <- training(drinks_lag_split)
test_data <- testing(drinks_lag_split)
c(max(train_data$date), min(test_data$date)) # 12 period lag

int_pctl Bootstrap confidence intervals

Description

Calculate bootstrap confidence intervals using various methods.

Usage

int_pctl(.data, statistics, alpha = 0.05)

int_t(.data, statistics, alpha = 0.05)

int_bca(.data, statistics, alpha = 0.05, .fn, ...)

Arguments

.data A data frame containing the bootstrap resamples created using bootstraps().
For t- and BCa-intervals, the apparent argument should be set to TRUE. Even
if the apparent argument is set to TRUE for the percentile method, the apparent
data is never used in calculating the percentile confidence interval.

statistics An unquoted column name or dplyr selector that identifies a single column
in the data set that contains the individual bootstrap estimates. This can be
a list column of tidy tibbles (that contains columns term and estimate) or a
simple numeric column. For t-intervals, a standard tidy column (usually called
std.err) is required. See the examples below.

alpha Level of significance

.fn A function to calculate statistic of interest. The function should take an rsplit
as the first argument and the ... are required.

... Arguments to pass to .fn.

14 int_pctl

Details

Percentile intervals are the standard method of obtaining confidence intervals but require thousands
of resamples to be accurate. T-intervals may need fewer resamples but require a corresponding
variance estimate. Bias-corrected and accelerated intervals require the original function that was
used to create the statistics of interest and are computationally taxing.

Value

Each function returns a tibble with columns .lower, .estimate, .upper, .alpha, .method, and
term. .method is the type of interval (eg. "percentile", "student-t", or "BCa"). term is the name of
the estimate. Note the .estimate returned from int_pctl() is the mean of the estimates from the
bootstrap resamples and not the estimate from the apparent model.

References

Davison, A., & Hinkley, D. (1997). Bootstrap Methods and their Application. Cambridge: Cam-
bridge University Press. doi:10.1017/CBO9780511802843

https://rsample.tidymodels.org/articles/Applications/Intervals.html

See Also

reg_intervals()

Examples

library(broom)
library(dplyr)
library(purrr)
library(tibble)

lm_est <- function(split, ...) {
lm(mpg ~ disp + hp, data = analysis(split)) %>%
tidy()

}

set.seed(52156)
car_rs <-

bootstraps(mtcars, 500, apparent = TRUE) %>%
mutate(results = map(splits, lm_est))

int_pctl(car_rs, results)
int_t(car_rs, results)
int_bca(car_rs, results, .fn = lm_est)

putting results into a tidy format
rank_corr <- function(split) {

dat <- analysis(split)
tibble(
term = "corr",
estimate = cor(dat$sqft, dat$price, method = "spearman"),

https://rsample.tidymodels.org/articles/Applications/Intervals.html

labels.rset 15

don't know the analytical std.err so no t-intervals
std.err = NA_real_

)
}

set.seed(69325)
data(Sacramento, package = "modeldata")
bootstraps(Sacramento, 1000, apparent = TRUE) %>%

mutate(correlations = map(splits, rank_corr)) %>%
int_pctl(correlations)

labels.rset Find Labels from rset Object

Description

Produce a vector of resampling labels (e.g. "Fold1") from an rset object. Currently, nested_cv is
not supported.

Usage

S3 method for class 'rset'
labels(object, make_factor = FALSE, ...)

S3 method for class 'vfold_cv'
labels(object, make_factor = FALSE, ...)

Arguments

object An rset object

make_factor A logical for whether the results should be a character or a factor.

... Not currently used.

Value

A single character or factor vector.

Examples

labels(vfold_cv(mtcars))

16 loo_cv

labels.rsplit Find Labels from rsplit Object

Description

Produce a tibble of identification variables so that single splits can be linked to a particular resample.

Usage

S3 method for class 'rsplit'
labels(object, ...)

Arguments

object An rsplit object

... Not currently used.

Value

A tibble.

See Also

add_resample_id

Examples

cv_splits <- vfold_cv(mtcars)
labels(cv_splits$splits[[1]])

loo_cv Leave-One-Out Cross-Validation

Description

Leave-one-out (LOO) cross-validation uses one data point in the original set as the assessment data
and all other data points as the analysis set. A LOO resampling set has as many resamples as rows
in the original data set.

Usage

loo_cv(data, ...)

Arguments

data A data frame.

... Not currently used.

make_splits 17

Value

An tibble with classes loo_cv, rset, tbl_df, tbl, and data.frame. The results include a column
for the data split objects and one column called id that has a character string with the resample
identifier.

Examples

loo_cv(mtcars)

make_splits Constructors for split objects

Description

Constructors for split objects

Usage

make_splits(x, ...)

Default S3 method:
make_splits(x, ...)

S3 method for class 'list'
make_splits(x, data, class = NULL, ...)

S3 method for class 'data.frame'
make_splits(x, assessment, ...)

Arguments

x A list of integers with names "analysis" and "assessment", or a data frame of
analysis or training data.

... Further arguments passed to or from other methods (not currently used).

data A data frame.

class An optional class to give the object.

assessment A data frame of assessment or testing data, which can be empty.

18 make_strata

make_strata Create or Modify Stratification Variables

Description

This function can create strata from numeric data and make non-numeric data more conducive for
stratification.

Usage

make_strata(x, breaks = 4, nunique = 5, pool = 0.1, depth = 20)

Arguments

x An input vector.

breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

nunique An integer for the number of unique value threshold in the algorithm.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

depth An integer that is used to determine the best number of percentiles that should
be used. The number of bins are based on min(5,floor(n / depth)) where n =
length(x). If x is numeric, there must be at least 40 rows in the data set (when
depth = 20) to conduct stratified sampling.

Details

For numeric data, if the number of unique levels is less than nunique, the data are treated as cate-
gorical data.

For categorical inputs, the function will find levels of x than occur in the data with percentage less
than pool. The values from these groups will be randomly assigned to the remaining strata (as will
data points that have missing values in x).

For numeric data with more unique values than nunique, the data will be converted to being cate-
gorical based on percentiles of the data. The percentile groups will have no more than 20 percent
of the data in each group. Again, missing values in x are randomly assigned to groups.

Value

A factor vector.

manual_rset 19

Examples

set.seed(61)
x1 <- rpois(100, lambda = 5)
table(x1)
table(make_strata(x1))

set.seed(554)
x2 <- rpois(100, lambda = 1)
table(x2)
table(make_strata(x2))

small groups are randomly assigned
x3 <- factor(x2)
table(x3)
table(make_strata(x3))

`oilType` data from `caret`
x4 <- rep(LETTERS[1:7], c(37, 26, 3, 7, 11, 10, 2))
table(x4)
table(make_strata(x4))
table(make_strata(x4, pool = 0.1))
table(make_strata(x4, pool = 0.0))

not enough data to stratify
x5 <- rnorm(20)
table(make_strata(x5))

set.seed(483)
x6 <- rnorm(200)
quantile(x6, probs = (0:10)/10)
table(make_strata(x6, breaks = 10))

manual_rset Manual resampling

Description

manual_rset() is used for constructing the most minimal rset possible. It can be useful when you
have custom rsplit objects built from make_splits(), or when you want to create a new rset from
splits contained within an existing rset.

Usage

manual_rset(splits, ids)

Arguments

splits A list of "rsplit" objects. It is easiest to create these using make_splits().
ids A character vector of ids. The length of ids must be the same as the length of

splits.

20 mc_cv

Examples

df <- data.frame(x = c(1, 2, 3, 4, 5, 6))

Create an rset from custom indices
indices <- list(

list(analysis = c(1L, 2L), assessment = 3L),
list(analysis = c(4L, 5L), assessment = 6L)

)

splits <- lapply(indices, make_splits, data = df)

manual_rset(splits, c("Split 1", "Split 2"))

You can also use this to create an rset from a subset of an
existing rset
resamples <- vfold_cv(mtcars)
best_split <- resamples[5,]
manual_rset(best_split$splits, best_split$id)

mc_cv Monte Carlo Cross-Validation

Description

One resample of Monte Carlo cross-validation takes a random sample (without replacement) of the
original data set to be used for analysis. All other data points are added to the assessment set.

Usage

mc_cv(data, prop = 3/4, times = 25, strata = NULL, breaks = 4, pool = 0.1, ...)

Arguments

data A data frame.

prop The proportion of data to be retained for modeling/analysis.

times The number of times to repeat the sampling.

strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

... Not currently used.

nested_cv 21

Details

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

An tibble with classes mc_cv, rset, tbl_df, tbl, and data.frame. The results include a column for
the data split objects and a column called id that has a character string with the resample identifier.

Examples

mc_cv(mtcars, times = 2)
mc_cv(mtcars, prop = .5, times = 2)

library(purrr)
data(wa_churn, package = "modeldata")

set.seed(13)
resample1 <- mc_cv(wa_churn, times = 3, prop = .5)
map_dbl(resample1$splits,

function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")

})

set.seed(13)
resample2 <- mc_cv(wa_churn, strata = churn, times = 3, prop = .5)
map_dbl(resample2$splits,

function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")

})

set.seed(13)
resample3 <- mc_cv(wa_churn, strata = tenure, breaks = 6, times = 3, prop = .5)
map_dbl(resample3$splits,

function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")

})

nested_cv Nested or Double Resampling

22 nested_cv

Description

nested_cv can be used to take the results of one resampling procedure and conduct further resam-
ples within each split. Any type of resampling used in rsample can be used.

Usage

nested_cv(data, outside, inside)

Arguments

data A data frame.

outside The initial resampling specification. This can be an already created object or an
expression of a new object (see the examples below). If the latter is used, the
data argument does not need to be specified and, if it is given, will be ignored.

inside An expression for the type of resampling to be conducted within the initial pro-
cedure.

Details

It is a bad idea to use bootstrapping as the outer resampling procedure (see the example below)

Value

An tibble with nested_cv class and any other classes that outer resampling process normally con-
tains. The results include a column for the outer data split objects, one or more id columns, and a
column of nested tibbles called inner_resamples with the additional resamples.

Examples

Using expressions for the resampling procedures:
nested_cv(mtcars, outside = vfold_cv(v = 3), inside = bootstraps(times = 5))

Using an existing object:
folds <- vfold_cv(mtcars)
nested_cv(mtcars, folds, inside = bootstraps(times = 5))

The dangers of outer bootstraps:
set.seed(2222)
bad_idea <- nested_cv(mtcars,

outside = bootstraps(times = 5),
inside = vfold_cv(v = 3))

first_outer_split <- bad_idea$splits[[1]]
outer_analysis <- as.data.frame(first_outer_split)
sum(grepl("Volvo 142E", rownames(outer_analysis)))

For the 3-fold CV used inside of each bootstrap, how are the replicated
`Volvo 142E` data partitioned?
first_inner_split <- bad_idea$inner_resamples[[1]]$splits[[1]]
inner_analysis <- as.data.frame(first_inner_split)

permutations 23

inner_assess <- as.data.frame(first_inner_split, data = "assessment")

sum(grepl("Volvo 142E", rownames(inner_analysis)))
sum(grepl("Volvo 142E", rownames(inner_assess)))

permutations Permutation sampling

Description

A permutation sample is the same size as the original data set and is made by permuting/shuffling
one or more columns. This results in analysis samples where some columns are in their original
order and some columns are permuted to a random order. Unlike other sampling functions in
rsample, there is no assessment set and calling assessment() on a permutation split will throw an
error.

Usage

permutations(data, permute = NULL, times = 25, apparent = FALSE, ...)

Arguments

data A data frame.

permute One or more columns to shuffle. This argument supports tidyselect selectors.
Multiple expressions can be combined with c(). Variable names can be used as
if they were positions in the data frame, so expressions like x:y can be used to
select a range of variables. See language for more details.

times The number of permutation samples.

apparent A logical. Should an extra resample be added where the analysis is the standard
data set.

... Not currently used.

Details

The argument apparent enables the option of an additional "resample" where the analysis data
set is the same as the original data set. Permutation-based resampling can be especially helpful
for computing a statistic under the null hypothesis (e.g. t-statistic). This forms the basis of a
permutation test, which computes a test statistic under all possible permutations of the data.

Value

A tibble with classes permutations, rset, tbl_df, tbl, and data.frame. The results include a
column for the data split objects and a column called id that has a character string with the resample
identifier.

24 populate

Examples

permutations(mtcars, mpg, times = 2)
permutations(mtcars, mpg, times = 2, apparent = TRUE)

library(purrr)
resample1 <- permutations(mtcars, starts_with("c"), times = 1)
resample1$splits[[1]] %>% analysis()

resample2 <- permutations(mtcars, hp, times = 10, apparent = TRUE)
map_dbl(resample2$splits, function(x) {

t.test(hp ~ vs, data = analysis(x))$statistic
})

populate Add Assessment Indices

Description

Many rsplit and rset objects do not contain indicators for the assessment samples. populate()
can be used to fill the slot for the appropriate indices.

Usage

populate(x, ...)

Arguments

x A rsplit and rset object.

... Not currently used

Value

An object of the same kind with the integer indices.

Examples

set.seed(28432)
fold_rs <- vfold_cv(mtcars)

fold_rs$splits[[1]]$out_id
complement(fold_rs$splits[[1]])

populate(fold_rs$splits[[1]])$out_id

fold_rs_all <- populate(fold_rs)
fold_rs_all$splits[[1]]$out_id

reg_intervals 25

reg_intervals A convenience function for confidence intervals with linear-ish para-
metric models

Description

A convenience function for confidence intervals with linear-ish parametric models

Usage

reg_intervals(
formula,
data,
model_fn = "lm",
type = "student-t",
times = NULL,
alpha = 0.05,
filter = term != "(Intercept)",
keep_reps = FALSE,
...

)

Arguments

formula An R model formula with one outcome and at least one predictor.

data A data frame.

model_fn The model to fit. Allowable values are "lm", "glm", "survreg", and "coxph".
The latter two require that the survival package be installed.

type The type of bootstrap confidence interval. Values of "student-t" and "percentile"
are allowed.

times A single integer for the number of bootstrap samples. If left NULL, 1,001 are
used for t-intervals and 2,001 for percentile intervals.

alpha Level of significance.

filter A logical expression used to remove rows from the final result, or NULL to keep
all rows.

keep_reps Should the individual parameter estimates for each bootstrap sample be re-
tained?

... Options to pass to the model function (such as family for glm()).

Value

A tibble with columns "term", ".lower", ".estimate", ".upper", ".alpha", and ".method". If keep_reps
= TRUE, an additional list column called ".replicates" is also returned.

26 rolling_origin

References

Davison, A., & Hinkley, D. (1997). Bootstrap Methods and their Application. Cambridge: Cam-
bridge University Press. doi:10.1017/CBO9780511802843

Bootstrap Confidence Intervals, https://rsample.tidymodels.org/articles/Applications/
Intervals.html

See Also

int_pctl(), int_t()

Examples

set.seed(1)
reg_intervals(mpg ~ I(1/sqrt(disp)), data = mtcars)

set.seed(1)
reg_intervals(mpg ~ I(1/sqrt(disp)), data = mtcars, keep_reps = TRUE)

rolling_origin Rolling Origin Forecast Resampling

Description

This resampling method is useful when the data set has a strong time component. The resamples
are not random and contain data points that are consecutive values. The function assumes that the
original data set are sorted in time order.

Usage

rolling_origin(
data,
initial = 5,
assess = 1,
cumulative = TRUE,
skip = 0,
lag = 0,
...

)

Arguments

data A data frame.

initial The number of samples used for analysis/modeling in the initial resample.

assess The number of samples used for each assessment resample.

https://rsample.tidymodels.org/articles/Applications/Intervals.html
https://rsample.tidymodels.org/articles/Applications/Intervals.html

rolling_origin 27

cumulative A logical. Should the analysis resample grow beyond the size specified by
initial at each resample?.

skip A integer indicating how many (if any) additional resamples to skip to thin the
total amount of data points in the analysis resample. See the example below.

lag A value to include a lag between the assessment and analysis set. This is useful
if lagged predictors will be used during training and testing.

... Not currently used.

Details

The main options, initial and assess, control the number of data points from the original data
that are in the analysis and assessment set, respectively. When cumulative = TRUE, the analysis set
will grow as resampling continues while the assessment set size will always remain static. skip
enables the function to not use every data point in the resamples. When skip = 0, the resampling
data sets will increment by one position. Suppose that the rows of a data set are consecutive days.
Using skip = 6 will make the analysis data set to operate on weeks instead of days. The assessment
set size is not affected by this option.

Value

An tibble with classes rolling_origin, rset, tbl_df, tbl, and data.frame. The results include a
column for the data split objects and a column called id that has a character string with the resample
identifier.

See Also

sliding_window(), sliding_index(), and sliding_period() for additional time based resam-
pling functions.

Examples

set.seed(1131)
ex_data <- data.frame(row = 1:20, some_var = rnorm(20))
dim(rolling_origin(ex_data))
dim(rolling_origin(ex_data, skip = 2))
dim(rolling_origin(ex_data, skip = 2, cumulative = FALSE))

You can also roll over calendar periods by first nesting by that period,
which is especially useful for irregular series where a fixed window
is not useful. This example slides over 5 years at a time.
library(dplyr)
library(tidyr)
data(drinks, package = "modeldata")

drinks_annual <- drinks %>%
mutate(year = as.POSIXlt(date)$year + 1900) %>%
nest(-year)

multi_year_roll <- rolling_origin(drinks_annual, cumulative = FALSE)

28 rsample-dplyr

analysis(multi_year_roll$splits[[1]])
assessment(multi_year_roll$splits[[1]])

rsample rsample: General Resampling Infrastructure for R

Description

rsample has functions to create variations of a data set that can be used to evaluate models or to
estimate the sampling distribution of some statistic.

Terminology

• A resample is the result of a two-way split of a data set. For example, when bootstrapping,
one part of the resample is a sample with replacement of the original data. The other part
of the split contains the instances that were not contained in the bootstrap sample. The data
structure rsplit is used to store a single resample.

• When the data are split in two, the portion that is used to estimate the model or calculate
the statistic is called the analysis set here. In machine learning this is sometimes called the
"training set" but this would be poorly named since it might conflict with any initial split of
the original data.

• Conversely, the other data in the split are called the assessment data. In bootstrapping, these
data are often called the "out-of-bag" samples.

• A collection of resamples is contained in an rset object.

Basic Functions

The main resampling functions are: vfold_cv(), bootstraps(), mc_cv(), rolling_origin(),
and nested_cv().

rsample-dplyr Compatibility with dplyr

Description

rsample should be fully compatible with dplyr 1.0.0.

With older versions of dplyr, there is partial support for the following verbs: mutate(), arrange(),
filter(), rename(), select(), and slice(). We strongly recommend updating to dplyr 1.0.0 if
possible to get more complete integration with dplyr.

rsample-dplyr 29

Version Specific Behavior

rsample performs somewhat differently depending on whether you have dplyr >= 1.0.0 (new) or
dplyr < 1.0.0 (old). Additionally, version 0.0.7 of rsample (new) introduced some changes to how
rsample objects work with dplyr, even on old dplyr. Most of these changes influence the return
value of a dplyr verb and determine whether it will be a tibble or an rsample rset subclass.

The table below attempts to capture most of these changes. These examples are not exhaustive and
may not capture some edge-cases.

Joins:
The following affect all of the dplyr joins, such as left_join(), right_join(), full_join(),
and inner_join().
Joins that alter the rows of the original rset object:

operation old rsample + old dplyr new rsample + old dplyr new rsample + new dplyr
join(rset, tbl) error error tibble

The idea here is that, if there are less rows in the result, the result should not be an rset object. For
example, you can’t have a 10-fold CV object without 10 rows.
Joins that keep the rows of the original rset object:

operation old rsample + old dplyr new rsample + old dplyr new rsample + new dplyr
join(rset, tbl) error error rset

As with the logic above, if the original rset object (defined by the split column and the id col-
umn(s)) is left intact, the results should be an rset.

Row Subsetting:
As mentioned above, this should result in a tibble if any rows are removed or added. Simply
reordering rows still results in a valid rset with new rsample.
Cases where rows are removed or added:

operation old rsample + old dplyr new rsample + old dplyr new rsample + new dplyr
rset[ind,] tibble tibble tibble
slice(rset) rset tibble tibble
filter(rset) rset tibble tibble

Cases where all rows are kept, but are possibly reordered:

operation old rsample + old dplyr new rsample + old dplyr new rsample + new dplyr
rset[ind,] tibble rset rset
slice(rset) rset rset rset
filter(rset) rset rset rset
arrange(rset) rset rset rset

30 rsample2caret

Column Subsetting:
When the splits column or any id columns are dropped or renamed, the result should no longer
be considered a valid rset.
Cases when the required columns are removed or renamed:

operation old rsample + old dplyr new rsample + old dplyr new rsample + new dplyr
rset[,ind] tibble tibble tibble
select(rset) rset tibble tibble
rename(rset) tibble tibble tibble

Cases when no required columns are affected:

operation old rsample + old dplyr new rsample + old dplyr new rsample + new dplyr
rset[,ind] tibble rset rset
select(rset) rset rset rset
rename(rset) rset rset rset

Other Column Operations:
Cases when the required columns are altered:

operation old rsample + old dplyr new rsample + old dplyr new rsample + new dplyr
mutate(rset) rset tibble tibble

Cases when no required columns are affected:

operation old rsample + old dplyr new rsample + old dplyr new rsample + new dplyr
mutate(rset) rset rset rset

rsample2caret Convert Resampling Objects to Other Formats

Description

These functions can convert resampling objects between rsample and caret.

Usage

rsample2caret(object, data = c("analysis", "assessment"))

caret2rsample(ctrl, data = NULL)

rset_reconstruct 31

Arguments

object An rset object. Currently, nested_cv is not supported.

data The data that was originally used to produce the ctrl object.

ctrl An object produced by trainControl that has had the index and indexOut
elements populated by integers. One method of getting this is to extract the
control objects from an object produced by train.

Value

rsample2caret returns a list that mimics the index and indexOut elements of a trainControl
object. caret2rsample returns an rset object of the appropriate class.

rset_reconstruct Extending rsample with new rset subclasses

Description

rset_reconstruct() encapsulates the logic for allowing new rset subclasses to work properly with
vctrs (through vctrs::vec_restore()) and dplyr (through dplyr::dplyr_reconstruct()). It is
intended to be a developer tool, and is not required for normal usage of rsample.

Usage

rset_reconstruct(x, to)

Arguments

x A data frame to restore to an rset subclass.

to An rset subclass to restore to.

Details

rset objects are considered "reconstructable" after a vctrs/dplyr operation if:

• x and to both have an identical column named "splits" (column and row order do not
matter).

• x and to both have identical columns prefixed with "id" (column and row order do not matter).

Value

x restored to the rset subclass of to.

32 slide-resampling

Examples

to <- bootstraps(mtcars, times = 25)

Imitate a vctrs/dplyr operation,
where the class might be lost along the way
x <- tibble::as_tibble(to)

Say we added a new column to `x`. Here we mock a `mutate()`.
x$foo <- "bar"

This is still reconstructable to `to`
rset_reconstruct(x, to)

Say we lose the first row
x <- x[-1,]

This is no longer reconstructable to `to`, as `x` is no longer an rset
bootstraps object with 25 bootstraps if one is lost!
rset_reconstruct(x, to)

slide-resampling Time-based Resampling

Description

These resampling functions are focused on various forms of time series resampling.

• sliding_window() uses the row number when computing the resampling indices. It is inde-
pendent of any time index, but is useful with completely regular series.

• sliding_index() computes resampling indices relative to the index column. This is often
a Date or POSIXct column, but doesn’t have to be. This is useful when resampling irregular
series, or for using irregular lookback periods such as lookback = lubridate::years(1)
with daily data (where the number of days in a year may vary).

• sliding_period() first breaks up the index into less granular groups based on period, and
then uses that to construct the resampling indices. This is extremely useful for constructing
rolling monthly or yearly windows from daily data.

Usage

sliding_window(
data,
...,
lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L

slide-resampling 33

)

sliding_index(
data,
index,
...,
lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L

)

sliding_period(
data,
index,
period,
...,
lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L,
every = 1L,
origin = NULL

)

Arguments

data A data frame.

... These dots are for future extensions and must be empty.

lookback The number of elements to look back from the current element when computing
the resampling indices of the analysis set. The current row is always included in
the analysis set.

• For sliding_window(), a single integer defining the number of rows to
look back from the current row.

• For sliding_index(), a single object that will be subtracted from the
index as index -lookback to define the boundary of where to start search-
ing for rows to include in the current resample. This is often an integer
value corresponding to the number of days to look back, or a lubridate Pe-
riod object.

• For sliding_period(), a single integer defining the number of groups
to look back from the current group, where the groups were defined from
breaking up the index according to the period.

In all cases, Inf is also allowed to force an expanding window.

34 slide-resampling

assess_start, assess_stop

This combination of arguments determines how far into the future to look when
constructing the assessment set. Together they construct a range of [index + as-
sess_start, index + assess_stop] to search for rows to include in the assessment
set.
Generally, assess_start will always be 1 to indicate that the first value to po-
tentially include in the assessment set should start one element after the current
row, but it can be increased to a larger value to create "gaps" between the analy-
sis and assessment set if you are worried about high levels of correlation in short
term forecasting.

• For sliding_window(), these are both single integers defining the number
of rows to look forward from the current row.

• For sliding_index(), these are single objects that will be added to the
index to compute the range to search for rows to include in the assessment
set. This is often an integer value corresponding to the number of days to
look forward, or a lubridate Period object.

• For sliding_period(), these are both single integers defining the number
of groups to look forward from the current group, where the groups were
defined from breaking up the index according to the period.

complete A single logical. When using lookback to compute the analysis sets, should
only complete windows be considered? If set to FALSE, partial windows will be
used until it is possible to create a complete window (based on lookback). This
is a way to use an expanding window up to a certain point, and then switch to a
sliding window.

step A single positive integer. After computing the resampling indices, step is used
to thin out the results by selecting every step-th result by subsetting the indices
with seq(1L,n_indices,by = step). step is applied after skip. Note that
step is independent of any time index used.

skip A single positive integer, or zero. After computing the resampling indices, the
first skip results will be dropped by subsetting the indices with seq(skip +
1L,n_indices). This can be especially useful when combined with lookback =
Inf, which creates an expanding window starting from the first row. By skipping
forward, you can drop the first few windows that have very few data points. skip
is applied before step. Note that skip is independent of any time index used.

index The index to compute resampling indices relative to, specified as a bare column
name. This must be an existing column in data.

• For sliding_index(), this is commonly a date vector, but is not required.
• For sliding_period(), it is required that this is a Date or POSIXct vector.

The index must be an increasing vector, but duplicate values are allowed. Ad-
ditionally, the index cannot contain any missing values.

period The period to group the index by. This is specified as a single string, such as
"year" or "month". See the .period argument of slider::slide_index()
for the full list of options and further explanation.

every A single positive integer. The number of periods to group together.
For example, if the period was set to "year" with an every value of 2, then the
years 1970 and 1971 would be placed in the same group.

slide-resampling 35

origin The reference date time value. The default when left as NULL is the epoch time
of 1970-01-01 00:00:00, in the time zone of the index.
This is generally used to define the anchor time to count from, which is relevant
when the every value is > 1.

See Also

rolling_origin()

slider::slide(), slider::slide_index(), and slider::slide_period(), which power these
resamplers.

Examples

library(vctrs)
library(tibble)
library(modeldata)
data("Chicago")

index <- new_date(c(1, 3, 4, 7, 8, 9, 13, 15, 16, 17))
df <- tibble(x = 1:10, index = index)
df

Look back two rows beyond the current row, for a total of three rows
in each analysis set. Each assessment set is composed of the two rows after
the current row.
sliding_window(df, lookback = 2, assess_stop = 2)

Same as before, but step forward by 3 rows between each resampling slice,
rather than just by 1.
rset <- sliding_window(df, lookback = 2, assess_stop = 2, step = 3)
rset

analysis(rset$splits[[1]])
analysis(rset$splits[[2]])

Now slide relative to the `index` column in `df`. This time we look back
2 days from the current row's `index` value, and 2 days forward from
it to construct the assessment set. Note that this series is irregular,
so it produces different results than `sliding_window()`. Additionally,
note that it is entirely possible for the assessment set to contain no
data if you have a highly irregular series and "look forward" into a
date range where no data points actually exist!
sliding_index(df, index, lookback = 2, assess_stop = 2)

With `sliding_period()`, we can break up our date index into less granular
chunks, and slide over them instead of the index directly. Here we'll use
the Chicago data, which contains daily data spanning 16 years, and we'll
break it up into rolling yearly chunks. Three years worth of data will
be used for the analysis set, and one years worth of data will be held out
for performance assessment.
sliding_period(

Chicago,

36 tidy.rsplit

date,
"year",
lookback = 2,
assess_stop = 1

)

Because `lookback = 2`, three years are required to form a "complete"
window of data. To allow partial windows, set `complete = FALSE`.
Here that first constructs two expanding windows until a complete three
year window can be formed, at which point we switch to a sliding window.
sliding_period(

Chicago,
date,
"year",
lookback = 2,
assess_stop = 1,
complete = FALSE

)

Alternatively, you could break the resamples up by month. Here we'll
use an expanding monthly window by setting `lookback = Inf`, and each
assessment set will contain two months of data. To ensure that we have
enough data to fit our models, we'll `skip` the first 4 expanding windows.
Finally, to thin out the results, we'll `step` forward by 2 between
each resample.
sliding_period(

Chicago,
date,
"month",
lookback = Inf,
assess_stop = 2,
skip = 4,
step = 2

)

tidy.rsplit Tidy Resampling Object

Description

The tidy function from the broom package can be used on rset and rsplit objects to generate
tibbles with which rows are in the analysis and assessment sets.

Usage

S3 method for class 'rsplit'
tidy(x, unique_ind = TRUE, ...)

S3 method for class 'rset'
tidy(x, ...)

tidy.rsplit 37

S3 method for class 'vfold_cv'
tidy(x, ...)

S3 method for class 'nested_cv'
tidy(x, ...)

Arguments

x A rset or rsplit object

unique_ind Should unique row identifiers be returned? For example, if FALSE then boot-
strapping results will include multiple rows in the sample for the same row in
the original data.

... Not currently used.

Details

Note that for nested resampling, the rows of the inner resample, named inner_Row, are relative row
indices and do not correspond to the rows in the original data set.

Value

A tibble with columns Row and Data. The latter has possible values "Analysis" or "Assessment".
For rset inputs, identification columns are also returned but their names and values depend on the
type of resampling. vfold_cv contains a column "Fold" and, if repeats are used, another called
"Repeats". bootstraps and mc_cv use the column "Resample".

Examples

library(ggplot2)
theme_set(theme_bw())

set.seed(4121)
cv <- tidy(vfold_cv(mtcars, v = 5))
ggplot(cv, aes(x = Fold, y = Row, fill = Data)) +

geom_tile() + scale_fill_brewer()

set.seed(4121)
rcv <- tidy(vfold_cv(mtcars, v = 5, repeats = 2))
ggplot(rcv, aes(x = Fold, y = Row, fill = Data)) +

geom_tile() + facet_wrap(~Repeat) + scale_fill_brewer()

set.seed(4121)
mccv <- tidy(mc_cv(mtcars, times = 5))
ggplot(mccv, aes(x = Resample, y = Row, fill = Data)) +

geom_tile() + scale_fill_brewer()

set.seed(4121)
bt <- tidy(bootstraps(mtcars, time = 5))
ggplot(bt, aes(x = Resample, y = Row, fill = Data)) +

geom_tile() + scale_fill_brewer()

38 validation_split

dat <- data.frame(day = 1:30)
Resample by week instead of day
ts_cv <- rolling_origin(dat, initial = 7, assess = 7,

skip = 6, cumulative = FALSE)
ts_cv <- tidy(ts_cv)
ggplot(ts_cv, aes(x = Resample, y = factor(Row), fill = Data)) +

geom_tile() + scale_fill_brewer()

two_class_dat Two Class Data

Description

Two Class Data

Details

There are artificial data with two predictors (A and B) and a factor outcome variable (Class).

These data are now in the modeldata package.

validation_split Create a Validation Set

Description

validation_split() takes a single random sample (without replacement) of the original data set
to be used for analysis. All other data points are added to the assessment set (to be used as the
validation set). validation_time_split() does the same, but takes the first prop samples for
training, instead of a random selection.

Usage

validation_split(data, prop = 3/4, strata = NULL, breaks = 4, pool = 0.1, ...)

validation_time_split(data, prop = 3/4, lag = 0, ...)

Arguments

data A data frame.

prop The proportion of data to be retained for modeling/analysis.

strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

vfold_cv 39

breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

... Not currently used.

lag A value to include a lag between the assessment and analysis set. This is useful
if lagged predictors will be used during training and testing.

Details

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

An tibble with classes validation_split, rset, tbl_df, tbl, and data.frame. The results in-
clude a column for the data split objects and a column called id that has a character string with the
resample identifier.

Examples

validation_split(mtcars, prop = .9)

data(drinks, package = "modeldata")
validation_time_split(drinks)

vfold_cv V-Fold Cross-Validation

Description

V-fold cross-validation (also known as k-fold cross-validation) randomly splits the data into V
groups of roughly equal size (called "folds"). A resample of the analysis data consisted of V-1
of the folds while the assessment set contains the final fold. In basic V-fold cross-validation (i.e. no
repeats), the number of resamples is equal to V.

Usage

vfold_cv(data, v = 10, repeats = 1, strata = NULL, breaks = 4, pool = 0.1, ...)

40 vfold_cv

Arguments

data A data frame.

v The number of partitions of the data set.

repeats The number of times to repeat the V-fold partitioning.

strata A variable in data (single character or name) used to conduct stratified sam-
pling. When not NULL, each resample is created within the stratification variable.
Numeric strata are binned into quartiles.

breaks A single number giving the number of bins desired to stratify a numeric stratifi-
cation variable.

pool A proportion of data used to determine if a particular group is too small and
should be pooled into another group. We do not recommend decreasing this
argument below its default of 0.1 because of the dangers of stratifying groups
that are too small.

... Not currently used.

Details

With more than one repeat, the basic V-fold cross-validation is conducted each time. For example, if
three repeats are used with v = 10, there are a total of 30 splits: three groups of 10 that are generated
separately.

With a strata argument, the random sampling is conducted within the stratification variable. This
can help ensure that the resamples have equivalent proportions as the original data set. For a cat-
egorical variable, sampling is conducted separately within each class. For a numeric stratification
variable, strata is binned into quartiles, which are then used to stratify. Strata below 10% of the
total are pooled together; see make_strata() for more details.

Value

A tibble with classes vfold_cv, rset, tbl_df, tbl, and data.frame. The results include a column
for the data split objects and one or more identification variables. For a single repeat, there will be
one column called id that has a character string with the fold identifier. For repeats, id is the repeat
number and an additional column called id2 that contains the fold information (within repeat).

Examples

vfold_cv(mtcars, v = 10)
vfold_cv(mtcars, v = 10, repeats = 2)

library(purrr)
data(wa_churn, package = "modeldata")

set.seed(13)
folds1 <- vfold_cv(wa_churn, v = 5)
map_dbl(folds1$splits,

function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")

})

vfold_cv 41

set.seed(13)
folds2 <- vfold_cv(wa_churn, strata = churn, v = 5)
map_dbl(folds2$splits,

function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")

})

set.seed(13)
folds3 <- vfold_cv(wa_churn, strata = tenure, breaks = 6, v = 5)
map_dbl(folds3$splits,

function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")

})

Index

.get_fingerprint, 2

add_resample_id, 3
all.vars(), 10
analysis (as.data.frame.rsplit), 5
apparent, 4
as.data.frame.rsplit, 5
assessment (as.data.frame.rsplit), 5
attrition, 6

bootstraps, 6
bootstraps(), 28

caret2rsample (rsample2caret), 30
complement, 8

drinks, 9

form_pred, 9

group_vfold_cv, 10

initial_split, 11
initial_time_split (initial_split), 11
int_bca (int_pctl), 13
int_pctl, 13
int_pctl(), 26
int_t (int_pctl), 13
int_t(), 26

labels.rset, 15
labels.rsplit, 16
labels.vfold_cv (labels.rset), 15
language, 23
loo_cv, 16

make_splits, 17
make_splits(), 19
make_strata, 18
make_strata(), 7, 12, 21, 39, 40
manual_rset, 19

mc_cv, 20
mc_cv(), 28

nested_cv, 21
nested_cv(), 28

permutations, 23
populate, 24
populate(), 9

reg_intervals, 25
reg_intervals(), 14
rolling_origin, 26
rolling_origin(), 28, 35
rsample, 28
rsample-dplyr, 28
rsample2caret, 30
rset_reconstruct, 31

slide-resampling, 32
slider::slide(), 35
slider::slide_index(), 34, 35
slider::slide_period(), 35
sliding_index (slide-resampling), 32
sliding_index(), 27
sliding_period (slide-resampling), 32
sliding_period(), 27
sliding_window (slide-resampling), 32
sliding_window(), 27
stats::terms(), 10

testing (initial_split), 11
tidy.nested_cv (tidy.rsplit), 36
tidy.rset (tidy.rsplit), 36
tidy.rsplit, 36
tidy.vfold_cv (tidy.rsplit), 36
training (initial_split), 11
two_class_dat, 38

validation_split, 38

42

INDEX 43

validation_time_split
(validation_split), 38

vfold_cv, 39
vfold_cv(), 28

	.get_fingerprint
	add_resample_id
	apparent
	as.data.frame.rsplit
	attrition
	bootstraps
	complement
	drinks
	form_pred
	group_vfold_cv
	initial_split
	int_pctl
	labels.rset
	labels.rsplit
	loo_cv
	make_splits
	make_strata
	manual_rset
	mc_cv
	nested_cv
	permutations
	populate
	reg_intervals
	rolling_origin
	rsample
	rsample-dplyr
	rsample2caret
	rset_reconstruct
	slide-resampling
	tidy.rsplit
	two_class_dat
	validation_split
	vfold_cv
	Index

