
Response-surface illustration

Russ Lenth

October 6, 2021

Abstract

In this vignette, we give an illustration, using simulated data, of a sequential-experimentation process

to optimize a response surface. I hope that this is helpful for understanding both how to use the rsm

package and RSM methodology in general.

1 The scenario

We will use simulated data from a hypothetical baking experiment. Our goal is to find the optimal amounts
of flour, butter, and sugar in a recipe. The response variable is some rating of the texture and flavor of the
product. The baking temperature, procedures, equipment, and operating environment will be held constant.

2 Initial experiment

Our current recipe calls for 1 cup of flour, .50 cups of sugar, and .25 cups of butter. Our initial experiment
will center at this recipe, and we will vary each ingredient by ±0.1 cup. Let’s start with a minimal first-order
experiment, a half-fraction of a 23 design plus 4 center points. This is a total of 8 experimental runs, which
is quite enough given the labor involved. The philosophy of RSM is to do minimal experiments that can be
augmented later if necessary if more detail is needed. We’ll generate and randomize the experiment using
cube, in terms of coded variables x1, x2, x3:

R> library(rsm)

R> expt1 = cube(~ x1 + x2, x3 ~ x1 * x2, n0 = 4,

R> coding = c(x1 ~ (flour - 1)/.1, x2 ~ (sugar - .5)/.1, x3 ~ (butter - .25)/.1))

So here is the protocol for the first design.

R> expt1

run.order std.order flour sugar butter

1 1 2 1.1 0.4 0.15

2 2 7 1.0 0.5 0.25

3 3 3 0.9 0.6 0.15

4 4 4 1.1 0.6 0.35

5 5 1 0.9 0.4 0.35

6 6 6 1.0 0.5 0.25

7 7 5 1.0 0.5 0.25

8 8 8 1.0 0.5 0.25

Data are stored in coded form using these coding formulas ...

x1 ~ (flour - 1)/0.1

x2 ~ (sugar - 0.5)/0.1

x3 ~ (butter - 0.25)/0.1

1

It’s important to understand that cube returns a coded dataset; this facilitates response-surface methodology
in that analyses are best done on a coded scale. The above design is actually stored in coded form, as we
can see by looking at it as an ordinary data.frame:

R> as.data.frame(expt1)

run.order std.order x1 x2 x3

1 1 2 1 -1 -1

2 2 7 0 0 0

3 3 3 -1 1 -1

4 4 4 1 1 1

5 5 1 -1 -1 1

6 6 6 0 0 0

7 7 5 0 0 0

8 8 8 0 0 0

3 But hold on a minute. . . First, assess the strategy

But wait! Before collecting any data, we really should plan ahead and make sure this is all going to work.

3.1 First-order design capability

First of all, will this initial design do the trick? One helpful tool in rsm is the varfcn function, which allows
us to examine the variance of the predictions we will obtain. We don’t have any data yet, so this is done in
terms of a scaled variance, defined as N

σ2 Var(ŷ(x)), where N is the number of design points, σ
2 is the error

variance and ŷ(x) is the predicted value at a design point x. In turn, ŷ(x) depends on the model as well as
the experimental design. Usually, Var(ŷ(x)) depends most strongly on how far x is from the center of the
design (which is 0 in coded units). Accordingly, the varfcn function requires us to supply the design and
the model, and a few different directions to go from the origin along which to plot the scaled variance (some
defaults are supplied if not specified). We can look either at a profile plot or a contour plot:

R> par(mfrow=c(1,2))

R> varfcn(expt1, ~ FO(x1,x2,x3))

R> varfcn(expt1, ~ FO(x1,x2,x3), contour = TRUE)

0.0 0.5 1.0 1.5 2.0

2
4

6
8

expt1: ~ FO(x1, x2, x3)

Distance from center

S
c
a
le

d
 p

re
d
ic

ti
o
n
 v

a
ri

a
n
c
e

expt1: ~ FO(x1, x2, x3)

x1

x
2

 2

 4

 6

 8

 10

 10

 10

 10

 12

 1
2

 12

 12

 14

 1
4

 1
4

 14

−2 −1 0 1 2

−
2

−
1

0
1

2

2

Not surprisingly, the variance increases as we go farther out—that is, estimation is more accurate in the center
of the design than in the periphery. This particular design has the same variance profile in all directions:
this is called a rotatable design.

Another important outcome of this is what do not see: there are no error messages. That means we can
actually fit the intended model. If we intend to use this design to fit a second-order model, it’s a different
story:

R> varfcn(expt1, ~ SO(x1,x2,x3))

Error in solve.default(t(mm) %*% mm) :

Lapack routine dgesv: system is exactly singular: U[5,5] = 0

The point is, varfcn is a useful way to make sure you can estimate the model you need to fit, before collecting
any data.

3.2 Looking further ahead

As we mentioned, response-surface experimentation uses a building-block approach. It could be that we will
want to augment this design so that we can fit a second-order surface. A popular way to do that is to do
a followup experiment on axis or “star” points at locations ±α so that the two experiments combined may
be used to fit a second-order model. Will this work? And if so, what does the variance function look like?
Let’s find out. It turns out that a rotatable design is not achievable by adding star points:

R> djoin(expt1, star(n0 = 2, alpha = "rotatable"))

Error in star(n0 = 2, alpha = "rotatable", basis = structure(list(run.order = 1:8, :

Rotatable design is not achievable: inconsistent design moments

But here are the characteristics of a design with α = 1.5:

R> par(mfrow=c(1,2))

R> followup = djoin(expt1, star(n0 = 2, alpha = 1.5))

R> varfcn(followup, ~ Block + SO(x1,x2,x3))

R> varfcn(followup, ~ Block + SO(x1,x2,x3), contour = TRUE)

0.0 0.5 1.0 1.5 2.0

1
0

2
0

3
0

4
0

5
0

followup: ~ Block + SO(x1, x2, x3)

Distance from center

S
c
a
le

d
 p

re
d
ic

ti
o
n
 v

a
ri

a
n
c
e

followup: ~ Block + SO(x1, x2, x3)

x1

x
2

 20

 40

 40

 40

 40

 60

 6
0

 6
0

 60

 80

 8
0

 8
0

 80

 100

 1
00

 1
00

 100

 120

 1
20

 1
20

 120

 160

 1
60

 1
60

 160

−2 −1 0 1 2

−
2

−
1

0
1

2

From this we can tell that we can at least augment the design to fit a second-order model. The model
includes a block effect to account for the fact that two separately radomized experiments are combined.

3

4 OK, now we can collect some data

Just like on TV cooking shows, we’ll immediately pull the results out of the oven, using a simulation. The
ratings we obtained for experiment 1 were added as the ratings column, and we thus have these data ready
to analyze:

R> expt1

run.order std.order flour sugar butter rating

1 1 2 1.1 0.4 0.15 28.9

2 2 7 1.0 0.5 0.25 25.5

3 3 3 0.9 0.6 0.15 20.2

4 4 4 1.1 0.6 0.35 27.1

5 5 1 0.9 0.4 0.35 21.5

6 6 6 1.0 0.5 0.25 24.7

7 7 5 1.0 0.5 0.25 25.0

8 8 8 1.0 0.5 0.25 24.7

Data are stored in coded form using these coding formulas ...

x1 ~ (flour - 1)/0.1

x2 ~ (sugar - 0.5)/0.1

x3 ~ (butter - 0.25)/0.1

We can now analyze the data using a first-order model (implemented in rsm by the FO function). The model
is fitted in terms of the coded variables.

R> anal1 = rsm(rating ~ FO(x1,x2,x3), data=expt1)

R> summary(anal1)

Call:

rsm(formula = rating ~ FO(x1, x2, x3), data = expt1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.70000 0.17963 137.5077 1.678e-08 ***

x1 3.57500 0.25403 14.0731 0.0001479 ***

x2 -0.77500 0.25403 -3.0508 0.0379977 *

x3 -0.12500 0.25403 -0.4921 0.6484543

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Multiple R-squared: 0.9811, Adjusted R-squared: 0.9669

F-statistic: 69.2 on 3 and 4 DF, p-value: 0.0006658

Analysis of Variance Table

Response: rating

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 53.587 17.8625 69.2010 0.0006658

Residuals 4 1.033 0.2581

Lack of fit 1 0.605 0.6050 4.2456 0.1314343

Pure error 3 0.428 0.1425

Direction of steepest ascent (at radius 1):

x1 x2 x3

0.97672947 -0.21173856 -0.03415138

4

Corresponding increment in original units:

flour sugar butter

0.097672947 -0.021173856 -0.003415138

The take-home message here is that the first-order model does help explain the variations in the response
(significant F statistic for the model, as well as two of the three coefficients of xj are fairly significant); and
also that there is no real evidence that the model does not fit (fairly nonsignificant F for lack of fit). Finally,
there is information on the direction of steepest ascent, which suggests that we could improve the ratings by
increasing the flour and decreasing the sugar and butter (by smaller amounts in terms of coded units).

5 Explore the path of steepest-ascent

The direction of steepest ascent is our best guess as the how we can improve the recipe. The steepest

function provides an easy way to find some steps in the right direction, up to a distance of 5 (in coded units)
by default:

R> (sa1 = steepest(anal1))

Path of steepest ascent from ridge analysis:

dist x1 x2 x3 | flour sugar butter | yhat

1 0.0 0.000 0.000 0.000 | 1.0000 0.5000 0.2500 | 24.700

2 0.5 0.488 -0.106 -0.017 | 1.0488 0.4894 0.2483 | 26.529

3 1.0 0.977 -0.212 -0.034 | 1.0977 0.4788 0.2466 | 28.361

4 1.5 1.465 -0.318 -0.051 | 1.1465 0.4682 0.2449 | 30.190

5 2.0 1.953 -0.423 -0.068 | 1.1953 0.4577 0.2432 | 32.018

6 2.5 2.442 -0.529 -0.085 | 1.2442 0.4471 0.2415 | 33.851

7 3.0 2.930 -0.635 -0.102 | 1.2930 0.4365 0.2398 | 35.680

8 3.5 3.419 -0.741 -0.120 | 1.3419 0.4259 0.2380 | 37.512

9 4.0 3.907 -0.847 -0.137 | 1.3907 0.4153 0.2363 | 39.341

10 4.5 4.395 -0.953 -0.154 | 1.4395 0.4047 0.2346 | 41.170

11 5.0 4.884 -1.059 -0.171 | 1.4884 0.3941 0.2329 | 43.002

The yhat values show what the fitted model anticipates for the rating; but as we move to further distances,
these are serious extrapolations and can’t be trusted. What we need is real data! So let’s do a little
experiment along this path, using the distances from 0.5 to 4.0, for a total of 8 runs. The dupe function
makes a copy of these runs and re-randomizes the order.

R> expt2 = dupe(sa1[2:9,])

Now the data are collected; and we have these results:

R> expt2

run.order std.order dist x1 x2 x3 | flour sugar butter |.1 yhat rating

1 1 8 4.0 3.907 -0.847 -0.137 | 1.3907 0.4153 0.2363 | 39.341 24.3

2 2 4 2.0 1.953 -0.423 -0.068 | 1.1953 0.4577 0.2432 | 32.018 26.6

3 3 1 0.5 0.488 -0.106 -0.017 | 1.0488 0.4894 0.2483 | 26.529 24.8

4 4 3 1.5 1.465 -0.318 -0.051 | 1.1465 0.4682 0.2449 | 30.190 27.5

5 5 7 3.5 3.419 -0.741 -0.120 | 1.3419 0.4259 0.2380 | 37.512 27.3

6 6 6 3.0 2.930 -0.635 -0.102 | 1.2930 0.4365 0.2398 | 35.680 27.8

7 7 5 2.5 2.442 -0.529 -0.085 | 1.2442 0.4471 0.2415 | 33.851 26.0

8 8 2 1.0 0.977 -0.212 -0.034 | 1.0977 0.4788 0.2466 | 28.361 25.3

The idea is to find the highest point along this path, and center the next experiment there. To that end,
let’s look at it graphically:

5

R> plot(rating ~ dist, data = expt2)

R> anal2 = lm(rating ~ poly(dist, 2), data = expt2)

R> with(expt2, {

R> ord = order(dist)

R> lines(dist[ord], predict(anal2)[ord])

R> })

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2
4

.5
2

5
.0

2
5

.5
2

6
.0

2
6

.5
2

7
.0

2
7

.5

dist

ra
ti
n

g

There is a fair amount of variation here, so the fitted quadratic curve provides useful guidance. It suggests
that we do our next experiment at a distance of about 2.5 in coded units, i.e., near point #6 in the steepest-
ascent path, sa1. Let’s use somewhat rounder values: flour: 1.25 cups, sugar: 0.45 cups, and butter: 0.25 cups
(unchanged from expt1).

6 Relocated experiment

We can run basically the same design we did the first time around, only with the new center. This is easily
done using dupe and changing the codings:

R> expt3 = dupe(expt1)

R> codings(expt3) = c(x1 ~ (flour - 1.25)/.1, x2 ~ (sugar - .45)/.1, x3 ~ (butter - .25)/.1)

Once the data are collected, we have:

R> expt3

run.order std.order flour sugar butter rating

1 1 5 1.25 0.45 0.25 26.6

2 2 2 1.35 0.35 0.15 25.3

3 3 4 1.35 0.55 0.35 23.7

4 4 3 1.15 0.55 0.15 26.0

5 5 7 1.25 0.45 0.25 27.8

6 6 6 1.25 0.45 0.25 26.2

7 7 1 1.15 0.35 0.35 27.3

6

8 8 8 1.25 0.45 0.25 27.2

Data are stored in coded form using these coding formulas ...

x1 ~ (flour - 1.25)/0.1

x2 ~ (sugar - 0.45)/0.1

x3 ~ (butter - 0.25)/0.1

. . . and we do the same analysis:

R> anal3 = rsm(rating ~ FO(x1,x2,x3), data=expt3)

R> summary(anal3)

Call:

rsm(formula = rating ~ FO(x1, x2, x3), data = expt3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.26250 0.40509 64.8306 3.391e-07 ***

x1 -1.07500 0.57289 -1.8765 0.1338

x2 -0.72500 0.57289 -1.2655 0.2744

x3 -0.07500 0.57289 -0.1309 0.9022

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Multiple R-squared: 0.5624, Adjusted R-squared: 0.2341

F-statistic: 1.713 on 3 and 4 DF, p-value: 0.3015

Analysis of Variance Table

Response: rating

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 6.7475 2.2492 1.7132 0.30145

Residuals 4 5.2512 1.3128

Lack of fit 1 3.7812 3.7812 7.7168 0.06911

Pure error 3 1.4700 0.4900

Direction of steepest ascent (at radius 1):

x1 x2 x3

-0.82768868 -0.55820864 -0.05774572

Corresponding increment in original units:

flour sugar butter

-0.082768868 -0.055820864 -0.005774572

This may not seem too dissimilar to the anal1 results, and if you think so, that would suggest we just do
another steepest-ascent step. However, none of the linear (first-order) effects are statistically significant, nor
are they even jointly significant (P ≈ .30 in the ANOVA table); so we don’t have a compelling case that we
even know what that direction might be! It seems better to instead collect more data in this region and see
if we get more clarity.

6.1 Foldover experiment

Recall that our first experiment was a half-fraction plus center points. We can get more information by
doing the other fraction. This is accomplished using the foldover function, which reverses the signs of some
or all of the coded variables (and also re-randomizes the experiment). In this case, the original experiment
was generated using x3 = x1x2, so if we reverse x1, we will have x3 = −x1x2, thus the other half of the
experiment.

7

R> expt4 = foldover(expt3, variable = "x1")

Once the data are collected, we have:

R> expt4$rating = simBake(decode.data(expt4))

R> expt4

run.order std.order flour sugar butter rating

1 1 2 1.15 0.35 0.15 34.0

2 2 7 1.25 0.45 0.25 35.1

3 3 3 1.35 0.55 0.15 31.0

4 4 4 1.15 0.55 0.35 34.6

5 5 5 1.25 0.45 0.25 35.5

6 6 6 1.25 0.45 0.25 34.9

7 7 8 1.25 0.45 0.25 35.1

8 8 1 1.35 0.35 0.35 33.3

Data are stored in coded form using these coding formulas ...

x1 ~ (flour - 1.25)/0.1

x2 ~ (sugar - 0.45)/0.1

x3 ~ (butter - 0.25)/0.1

Note that this experiment does indeed have different factor combinations (e.g., (1.15, .35, .15)) not present
in expt3. For analysis, we will combine expt3 and expt4, which is easily accomplished with the djoin

function. Note that djoin creates an additional blocking factor:

R> names(djoin(expt3, expt4))

[1] "run.order" "std.order" "x1" "x2" "x3" "rating" "Block"

It’s important to include this in the model because we have two separately randomized experiments. In
this particular case, it’s especially important because expt4 seems to have higher values overall than expt3;
either the raters are in a better mood, or ambient conditions have changed. Here is our analysis:

R> anal4 = rsm(rating ~ Block + FO(x1,x2,x3), data = djoin(expt3, expt4))

R> summary(anal4)

Call:

rsm(formula = rating ~ Block + FO(x1, x2, x3), data = djoin(expt3,

expt4))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.26250 0.40329 65.1208 1.388e-15 ***

Block2 7.92500 0.57034 13.8953 2.543e-08 ***

x1 -1.07500 0.40329 -2.6656 0.02197 *

x2 -0.57500 0.40329 -1.4258 0.18169

x3 0.32500 0.40329 0.8059 0.43739

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Multiple R-squared: 0.9486, Adjusted R-squared: 0.9299

F-statistic: 50.72 on 4 and 11 DF, p-value: 5.075e-07

Analysis of Variance Table

Response: rating

8

Df Sum Sq Mean Sq F value Pr(>F)

Block 1 251.223 251.223 193.0793 2.543e-08

FO(x1, x2, x3) 3 12.735 4.245 3.2625 0.063177

Residuals 11 14.313 1.301

Lack of fit 5 12.653 2.531 9.1464 0.008934

Pure error 6 1.660 0.277

Direction of steepest ascent (at radius 1):

x1 x2 x3

-0.8520282 -0.4557360 0.2575899

Corresponding increment in original units:

flour sugar butter

-0.08520282 -0.04557360 0.02575899

Now the first-order terms are still not very significant; and, partly because we now have more df for lack
of fit, the lack of fit test is quite significant. Response-surface experimentation is different from some other
kinds of experiments in that it’s actually “good” in a way to have nonsignificant effects, especially first-order
ones, because it suggests we might be close to the peak.

6.2 Augmenting further to estimate a second-order response surface

Because there is lack of fit, it’s now a good idea to collect data at the “star” or axis points so that we can
fit a second-order model. As illustrated in Section 3.2, the star function does this for us. We will choose
the parameter alpha (α) so that the star block is orthogonal to the cube blocks; this seems like a good idea,
given how strong we have observed the block effect to be. So here is the next experiment, using the six axis
points and 2 center points (we already have 8 center points at this location), for 8 runs. The analysis will
be based on combining the cube clock, its foldover, and the star block:

R> expt5 = star(expt4, n0 = 2, alpha = "orthogonal")

R> par(mfrow=c(1,2))

R> comb = djoin(expt3, expt4, expt5)

R> varfcn(comb, ~ Block + SO(x1,x2,x3))

R> varfcn(comb, ~ Block + SO(x1,x2,x3), contour = TRUE)

0.0 0.5 1.0 1.5 2.0

1
0

2
0

3
0

4
0

comb: ~ Block + SO(x1, x2, x3)

Distance from center

S
c
a
le

d
 p

re
d
ic

ti
o
n
 v

a
ri

a
n
c
e

comb: ~ Block + SO(x1, x2, x3)

x1

x
2

 10

 20

 30

 40 50

 50

 50

 50

 60

 60

 60

 60

 70

 70

 70

 70

 80

 8
0

 8
0

 80

−2 −1 0 1 2

−
2

−
1

0
1

2

This is not the second-order design we contemplated earlier, because it involves adding star points to the
complete 23 design; but it has reasonable prediction-variance properties. Time passes, the data are collected,
and we have:

9

R> expt5

run.order std.order flour sugar butter rating

1 1 4 1.250000 0.5914214 0.2500000 26.0

2 2 2 1.391421 0.4500000 0.2500000 23.9

3 3 6 1.250000 0.4500000 0.3914214 27.6

4 4 7 1.250000 0.4500000 0.2500000 26.7

5 5 1 1.108579 0.4500000 0.2500000 26.7

6 6 5 1.250000 0.4500000 0.1085786 27.3

7 7 3 1.250000 0.3085786 0.2500000 29.3

8 8 8 1.250000 0.4500000 0.2500000 27.4

Data are stored in coded form using these coding formulas ...

x1 ~ (flour - 1.25)/0.1

x2 ~ (sugar - 0.45)/0.1

x3 ~ (butter - 0.25)/0.1

We will fit a second-order model, accounting for the block effect.

R> anal5 = rsm(rating ~ Block + SO(x1,x2,x3), data = djoin(expt3, expt4, expt5))

R> summary(anal5)

Call:

rsm(formula = rating ~ Block + SO(x1, x2, x3), data = djoin(expt3,

expt4, expt5))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.6996e+01 2.5051e-01 107.7647 < 2.2e-16 ***

Block2 7.9250e+00 2.9641e-01 26.7366 4.601e-12 ***

Block3 6.0000e-01 2.9641e-01 2.0242 0.065795 .

x1 -1.0466e+00 1.7113e-01 -6.1160 5.208e-05 ***

x2 -7.7224e-01 1.7113e-01 -4.5125 0.000711 ***

x3 2.5202e-01 1.7113e-01 1.4727 0.166578

x1:x2 -4.0000e-01 2.0959e-01 -1.9085 0.080537 .

x1:x3 -1.5000e-01 2.0959e-01 -0.7157 0.487888

x2:x3 1.7903e-15 2.0959e-01 0.0000 1.000000

x1^2 -1.2393e+00 1.9405e-01 -6.3865 3.471e-05 ***

x2^2 -6.4286e-02 1.9405e-01 -0.3313 0.746139

x3^2 -1.6429e-01 1.9405e-01 -0.8466 0.413766

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Multiple R-squared: 0.9881, Adjusted R-squared: 0.9772

F-statistic: 90.77 on 11 and 12 DF, p-value: 8.46e-10

Analysis of Variance Table

Response: rating

Df Sum Sq Mean Sq F value Pr(>F)

Block 2 311.523 155.762 443.2137 5.678e-12

FO(x1, x2, x3) 3 21.064 7.021 19.9791 5.849e-05

TWI(x1, x2, x3) 3 1.460 0.487 1.3848 0.294838

PQ(x1, x2, x3) 3 16.845 5.615 15.9771 0.000172

Residuals 12 4.217 0.351

Lack of fit 5 2.312 0.462 1.6993 0.252578

10

Pure error 7 1.905 0.272

Stationary point of response surface:

x1 x2 x3

1.0644952 -9.3180901 0.2810583

Stationary point in original units:

flour sugar butter

1.3564495 -0.4818090 0.2781058

Eigenanalysis:

$values

[1] -0.03002067 -0.16052168 -1.27731479

$vectors

[,1] [,2] [,3]

x1 0.16811860 -0.04985422 0.98450530

x2 -0.98128332 -0.10360829 0.16232180

x3 -0.09391048 0.99336795 0.06633959

There are significant first and second-order terms now, and nonsignificant lack of fit. The summary includes a
canonical analysis which gives the coordinates of the estimated stationary point and the canonical directions
(eigenvectors) from that point. That is, the fitted surface is characterized in the form ŷ(v1, v2, v3) = ŷs +
λ1v2

1
+ λ2v2

2 + λ3v2
3 where ŷs is the fitted value at the stationary point, the eigenvalues are denoted λj, and

the eigenvectors are denoted vj. Since all three eigenvalues are negative, the estimated surface decreases in
all directions from its value at ŷs and hence has a maximum there. However, the stationary point is nowhere
near the experiment, so this is an extreme extrapolation and not to be trusted at all. (In fact, in decoded
units, the estimated optimum calls for a negative amount of sugar!) So the best bet now is to experiment
on some path that leads us vaguely toward this distant stationary point.

7 Ridge analysis (second-order steepest ascent)

The steepest function again may be used; this time it computes a curved path of steepest ascent, based on
ridge analysis:

R> steepest(anal5)

Path of steepest ascent from ridge analysis:

dist x1 x2 x3 | flour sugar butter | yhat

1 0.0 0.000 0.000 0.000 | 1.2500 0.4500 0.2500 | 26.996

2 0.5 -0.227 -0.417 0.156 | 1.2273 0.4083 0.2656 | 27.484

3 1.0 -0.235 -0.922 0.307 | 1.2265 0.3578 0.2807 | 27.817

4 1.5 -0.189 -1.431 0.408 | 1.2311 0.3069 0.2908 | 28.102

5 2.0 -0.126 -1.939 0.473 | 1.2374 0.2561 0.2973 | 28.358

6 2.5 -0.055 -2.446 0.514 | 1.2445 0.2054 0.3014 | 28.591

7 3.0 0.020 -2.951 0.536 | 1.2520 0.1549 0.3036 | 28.804

8 3.5 0.098 -3.456 0.546 | 1.2598 0.1044 0.3046 | 28.999

9 4.0 0.178 -3.959 0.546 | 1.2678 0.0541 0.3046 | 29.177

10 4.5 0.258 -4.459 0.538 | 1.2758 0.0041 0.3038 | 29.337

11 5.0 0.339 -4.961 0.525 | 1.2839 -0.0461 0.3025 | 29.481

After a distance of about 3, it starts venturing into unreasonable combinations of design factors. So let’s
experiment at 8 distances spread 2/3 apart in coded units:

R> expt6 = dupe(steepest(anal5, dist = (2:9)/3))

11

Path of steepest ascent from ridge analysis:

Here are the results after data-collection is complete:

R> expt6

run.order std.order dist x1 x2 x3 | flour sugar butter |.1 yhat rating

1 1 3 1.3333333 -0.207 -1.261 0.379 | 1.2293 0.3239 0.2879 | 28.011 35.5

2 2 5 2.0000000 -0.126 -1.939 0.473 | 1.2374 0.2561 0.2973 | 28.358 33.8

3 3 2 1.0000000 -0.235 -0.922 0.307 | 1.2265 0.3578 0.2807 | 27.817 35.0

4 4 1 0.6666667 -0.241 -0.584 0.212 | 1.2259 0.3916 0.2712 | 27.603 34.1

5 5 7 2.6666667 -0.030 -2.615 0.523 | 1.2470 0.1885 0.3023 | 28.664 33.3

6 6 6 2.3333333 -0.079 -2.278 0.502 | 1.2421 0.2222 0.3002 | 28.516 34.2

7 7 4 1.6666667 -0.169 -1.600 0.433 | 1.2331 0.2900 0.2933 | 28.190 34.7

8 8 8 3.0000000 0.020 -2.951 0.536 | 1.2520 0.1549 0.3036 | 28.804 33.4

And let’s do an analysis like that of expt2:

R> plot(rating ~ dist, data = expt6)

R> anal6 = lm(rating ~ poly(dist, 2), data = expt6)

R> with(expt6, {

R> ord = order(dist)

R> lines(dist[ord], predict(anal6)[ord])

R> })

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0

3
3
.5

3
4
.0

3
4
.5

3
5
.0

3
5
.5

dist

ra
ti
n
g

It looks like we should center the new experiment at a distance of 1.5 or so—perhaps flour still at 1.25, and
both sugar and butter at .30.

8 Second-order design at the new location

We are now in a situation where we already know we have curvature, so we might as well go straight to
a second-order experiment. It is less critical to assess lack of fit, so we don’t need as many center points.

12

Note that each of the past experiments has 8 runs—that is the practical size for one block. All these things
considered, we decide to run a central-composite design with the cube portion being a complete 23 design
(8 runs with no center points), and the star portion including two center points (another block of 8 runs).
Let’s generate the design, and magically do the cooking and the rating for these two 8-run experiments:

R> expt7 = ccd(~ x1 + x2 + x3, n0 = c(0, 2), alpha = "orth", coding = c(

R> x1 ~ (flour - 1.25)/.1, x2 ~ (sugar - .3)/.1, x3 ~ (butter - .3)/.1))

. . . and after the data are collected:

R> expt7

run.order std.order flour sugar butter Block rating

1 1 5 1.15 0.2 0.4 1 26.6

2 2 1 1.15 0.2 0.2 1 25.6

3 3 6 1.35 0.2 0.4 1 26.6

4 4 3 1.15 0.4 0.2 1 26.2

5 5 8 1.35 0.4 0.4 1 24.5

6 6 7 1.15 0.4 0.4 1 27.3

7 7 2 1.35 0.2 0.2 1 23.5

8 8 4 1.35 0.4 0.2 1 24.7

9 1 8 1.25 0.3 0.3 2 27.9

10 2 2 1.45 0.3 0.3 2 22.0

11 3 5 1.25 0.3 0.1 2 25.2

12 4 3 1.25 0.1 0.3 2 26.5

13 5 4 1.25 0.5 0.3 2 25.9

14 6 6 1.25 0.3 0.5 2 27.8

15 7 1 1.05 0.3 0.3 2 26.0

16 8 7 1.25 0.3 0.3 2 29.3

Data are stored in coded form using these coding formulas ...

x1 ~ (flour - 1.25)/0.1

x2 ~ (sugar - 0.3)/0.1

x3 ~ (butter - 0.3)/0.1

It turns out that to obtain orthogonal blocks, locating the star points at ±α = ±2 is the correct choice
for these numbers of center points; hence the nice round values. Here’s our analysis; we’ll go straight to the
second-order model, and again, we need to include the block effect in the model.

R> anal7 = rsm(rating ~ Block + SO(x1,x2,x3), data = expt7)

R> summary(anal7)

Call:

rsm(formula = rating ~ Block + SO(x1, x2, x3), data = expt7)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.90000 0.52417 53.2274 4.426e-08 ***

Block2 0.70000 0.37064 1.8886 0.117568

x1 -0.90000 0.18532 -4.8564 0.004648 **

x2 -0.05000 0.18532 -0.2698 0.798093

x3 0.63750 0.18532 3.4400 0.018436 *

x1:x2 -0.27500 0.26208 -1.0493 0.342094

x1:x3 0.10000 0.26208 0.3816 0.718466

x2:x3 -0.40000 0.26208 -1.5262 0.187476

x1^2 -1.15000 0.18532 -6.2055 0.001587 **

x2^2 -0.60000 0.18532 -3.2376 0.023010 *

13

x3^2 -0.52500 0.18532 -2.8329 0.036549 *

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Multiple R-squared: 0.9421, Adjusted R-squared: 0.8262

F-statistic: 8.131 on 10 and 5 DF, p-value: 0.01602

Analysis of Variance Table

Response: rating

Df Sum Sq Mean Sq F value Pr(>F)

Block 1 1.9600 1.9600 3.5669 0.117568

FO(x1, x2, x3) 3 19.5025 6.5008 11.8305 0.010422

TWI(x1, x2, x3) 3 1.9650 0.6550 1.1920 0.401731

PQ(x1, x2, x3) 3 21.2550 7.0850 12.8935 0.008653

Residuals 5 2.7475 0.5495

Lack of fit 4 1.7675 0.4419 0.4509 0.789337

Pure error 1 0.9800 0.9800

Stationary point of response surface:

x1 x2 x3

-0.3421914 -0.1772769 0.6420873

Stationary point in original units:

flour sugar butter

1.2157809 0.2822723 0.3642087

Eigenanalysis:

$values

[1] -0.3390336 -0.7534946 -1.1824718

$vectors

[,1] [,2] [,3]

x1 0.1562180 -0.1664741 0.973592470

x2 -0.6513590 0.7236263 0.228246488

x3 0.7425142 0.6698144 -0.004609058

The model fits decently, and there are important second-order terms. The most exciting news is that the
stationary point is quite close to the design center, and it is indeed a maximum since all three eigenvalues
are negative. It looks like the best recipe is around 1.22 c. flour, .28 c. sugar, and .36 c. butter. Let’s look
at this graphically using the contour function, slicing the fitted surface at the stationary point.

R> par(mfrow=c(1,3))

R> contour(anal7, ~ x1 + x2 + x3, at = xs(anal7), image = TRUE)

1.1 1.2 1.3 1.4

0
.1

0
.2

0
.3

0
.4

0
.5

flour
Slice at butter = 0.36, x1 = −0.342191359222045, x2 = −0.177276900596134

s
u

g
a

r

 1
9

 21
 2

2

 2
2

 23

 24

 24

 25

 2
5

 25

 26

 27

 28

1.1 1.2 1.3 1.4

0
.1

0
.2

0
.3

0
.4

0
.5

flour
Slice at sugar = 0.28, x1 = −0.342191359222045, x3 = 0.642087261253569

b
u

tt
e

r

 1
9

 2
1

 2
2

 2
3 24 2

4
 25

 2
5

 26

 27

 28

0.1 0.2 0.3 0.4 0.5

0
.1

0
.2

0
.3

0
.4

0
.5

sugar
Slice at flour = 1.22, x2 = −0.177276900596134, x3 = 0.642087261253569

b
u

tt
e

r

 22
 23

 24 25

 25

 25
 26

 26

 27

 28

14

It’s also helpful to know how well we have estimated the stationary point. A simple bootstrap procedure
helps us understand this. In the code below, we simulate 200 re-fits of the model, after scrambling the
residuals and adding them back to the fitted values; then plot the their stationary points along with the one
estimated from anal7. The replicate function returns a matrix with 3 rows and 200 columns (one for each
bootstrap replication); so we need to transpose the result and decode the values.

R> fits = predict(anal7)

R> resids = resid(anal7)

R> boot.raw = replicate(200, xs(update(anal7, fits + sample(resids, replace=TRUE) ~ .)))

R> boot = code2val(as.data.frame(t(boot.raw)), codings=codings(anal7))

R> par(mfrow = c(1,3))

R> plot(sugar ~ flour, data = boot, col = "gray"); points(1.215, .282, col = "red", pch = 7)

R> plot(butter ~ flour, data = boot, col = "gray"); points(1.215, .364, col = "red", pch = 7)

R> plot(butter ~ sugar, data = boot, col = "gray"); points(.282, .364, col = "red", pch = 7)

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●●

●●

●●
●●

●

●

●

●

●

●●
●

●●
●

●

●
●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

1.20 1.21 1.22 1.23 1.24 1.25 1.26

0
.1

5
0
.2

0
0
.2

5
0
.3

0

flour

s
u

g
a

r

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

1.20 1.21 1.22 1.23 1.24 1.25 1.26

0
.3

5
0
.4

0
0
.4

5

flour

b
u

tt
e

r

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0.15 0.20 0.25 0.30

0
.3

5
0
.4

0
0
.4

5

sugar

b
u

tt
e

r

These plots show something akin to a confidence region for the best recipe. Note they do not follow symmet-
rical elliptical patterns, as would a multivariate normal; this is due primarily to nonlinearity in estimating
the stationary point.

9 Summary

For convenience, here is a tabular summary of what we did

Expt Center Type Runs Result

1 (1.00, .50, .25) 23−1 + 4 × 0 8 Fit OK, but we’re on a slope

2 SA path 8 Re-center at distance ∼ 2.5

3 (1.25, .45, .25) 23−1 + 4 × 0 8 Need more data to say much

4 same Foldover +8 LOF; need second-order design

5 same Star block +8 Suggests move to a new center

6 SA path 8 Re center at distance ∼ 1.5

7 (1.25, .30, .30) CCD: 23; star+ 2 × 0 8 + 8 Best recipe ≈ (1.22, .28, .36)

It has required 64 experimental runs to find this optimum. That is not too bad considering how much
variation there is in the response measures.

15

	The scenario
	Initial experiment
	But hold on a minute… First, assess the strategy
	First-order design capability
	Looking further ahead

	OK, now we can collect some data
	Explore the path of steepest-ascent
	Relocated experiment
	Foldover experiment
	Augmenting further to estimate a second-order response surface

	Ridge analysis (second-order steepest ascent)
	Second-order design at the new location
	Summary

