
Package ‘rtdists’
January 7, 2022

Type Package

Title Response Time Distributions

Depends R (>= 3.0.0)

Suggests testthat, glba, knitr, rmarkdown, dplyr, tidyr, purrr,
lattice, latticeExtra, binom, RWiener

Imports evd, msm, gsl, stats, Rcpp

LinkingTo Rcpp

Description Provides response time distributions (density/PDF,
distribution function/CDF, quantile function, and random
generation): (a) Ratcliff diffusion model (Ratcliff &
McKoon, 2008, <doi:10.1162/neco.2008.12-06-420>) based on C
code by Andreas and Jochen Voss and (b) linear ballistic
accumulator (LBA; Brown & Heathcote, 2008,
<doi:10.1016/j.cogpsych.2007.12.002>) with different
distributions underlying the drift rate.

URL https://github.com/rtdists/rtdists/

License GPL (>= 3)

BugReports https://github.com/rtdists/rtdists/issues

VignetteBuilder knitr

LazyData true

Version 0.11-5

RoxygenNote 6.1.1

NeedsCompilation yes

Author Henrik Singmann [aut, cre] (<https://orcid.org/0000-0002-4842-3657>),
Scott Brown [aut],
Matthew Gretton [aut],
Andrew Heathcote [aut],
Andreas Voss [ctb],
Jochen Voss [ctb],
Andrew Terry [ctb]

1

https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://github.com/rtdists/rtdists/
https://github.com/rtdists/rtdists/issues
https://orcid.org/0000-0002-4842-3657

2 rtdists-package

Maintainer Henrik Singmann <singmann@gmail.com>

Repository CRAN

Date/Publication 2022-01-07 14:02:42 UTC

R topics documented:
rtdists-package . 2
Diffusion . 3
LBA . 9
LBA-race . 15
rr98 . 18
single-LBA . 20
speed_acc . 23

Index 25

rtdists-package The rtdists Package

Description

Response Time Distributions.

Details

Package: rtdists
Type: Package
Version: 0.8-3
Date: 2018-06-23
Depends: R (>= 3.0.0)
License: GPL (>=3)
URL: https://github.com/rtdists/rtdists/

Provides response time distributions (density/PDF, distribution function/CDF, quantile function,
and random generation): (a) Ratcliff diffusion model (Ratcliff & McKoon, 2008, <doi:10.1162/neco.2008.12-
06-420>) based on C code by Andreas and Jochen Voss and (b) linear ballistic accumulator (LBA;
Brown & Heathcote, 2008, <doi:10.1016/j.cogpsych.2007.12.002>) with different distributions un-
derlying the drift rate.

Author(s)

Henrik Singmann, Scott Brown, Matthew Gretton, Andrew Heathcote, with contributions from
Andreas Voss, Jochen Voss, Andrew Terry

Diffusion 3

Diffusion The Ratcliff Diffusion Model

Description

Density, distribution function, quantile function, and random generation for the Ratcliff diffusion
model with following parameters: a (threshold separation), z (starting point), v (drift rate), t0 (non-
decision time/response time constant), d (differences in speed of response execution), sv (inter-
trial-variability of drift), st0 (inter-trial-variability of non-decisional components), sz (inter-trial-
variability of relative starting point), and s (diffusion constant). Note that the parameterization or
defaults of non-decision time variability st0 and diffusion constant s differ from what is often
found in the literature and that the parameterization of z and sz have changed compared to
previous versions (now absolute and not relative).

Usage

recalc_t0(t0, st0)

ddiffusion(rt, response = "upper", a, v, t0, z = 0.5 * a, d = 0,
sz = 0, sv = 0, st0 = 0, s = 1, precision = 3,
stop_on_error = FALSE)

pdiffusion(rt, response = "upper", a, v, t0, z = 0.5 * a, d = 0,
sz = 0, sv = 0, st0 = 0, s = 1, precision = 3, maxt = 20,
stop_on_error = FALSE, use_precise = TRUE)

qdiffusion(p, response = "upper", a, v, t0, z = 0.5 * a, d = 0,
sz = 0, sv = 0, st0 = 0, s = 1, precision = 3, maxt = 20,
interval = c(0, 10), scale_p = FALSE, scale_max = Inf,
stop_on_error = FALSE, max_diff = 1e-04)

rdiffusion(n, a, v, t0, z = 0.5 * a, d = 0, sz = 0, sv = 0,
st0 = 0, s = 1, precision = 3, stop_on_error = TRUE, maxt = 20,
interval = c(0, 10), method = c("fastdm", "qdiffusion"))

Arguments

t0 non-decision time or response time constant (in seconds). Lower bound for
the duration of all non-decisional processes (encoding and response execution).
Typical range: 0.1 < t0 < 0.5

st0 inter-trial-variability of non-decisional components. Range of a uniform dis-
tribution with mean t0 + st0/2 describing the distribution of actual t0 values
across trials. Accounts for response times below t0. Reduces skew of predicted
RT distributions. Values different from 0 can slow computation considerably.
Typical range: 0 < st0 < 0.2. Default is 0.

rt a vector of RTs. Or for convenience also a data.frame with columns rt and
response (such as returned from rdiffusion or rLBA). See examples.

4 Diffusion

response character vector. Which response boundary should be tested? Possible values
are c("upper","lower"), possibly abbreviated and "upper" being the default.
Alternatively, a numeric vector with values 1=lower and 2=upper. For conve-
nience, response is converted via as.numeric also allowing factors (see exam-
ples). Ignored if the first argument is a data.frame.

a threshold separation. Amount of information that is considered for a decision.
Large values indicate a conservative decisional style. Typical range: 0.5 < a < 2

v drift rate. Average slope of the information accumulation process. The drift
gives information about the speed and direction of the accumulation of informa-
tion. Large (absolute) values of drift indicate a good performance. If received
information supports the response linked to the upper threshold the sign will be
positive and vice versa. Typical range: -5 < v < 5

z starting point. Indicator of an a priori bias in decision making. When the relative
starting point z deviates from 0.5*a, the amount of information necessary for a
decision differs between response alternatives. Default is 0.5*a (i.e., no bias).

d differences in speed of response execution (in seconds). Positive values indi-
cate that response execution is faster for responses linked to the upper threshold
than for responses linked to the lower threshold. Typical range: -0.1 < d < 0.1.
Default is 0.

sz inter-trial-variability of starting point. Range of a uniform distribution with
mean z describing the distribution of actual starting points from specific tri-
als. Values different from 0 can predict fast errors (but can slow computation
considerably). Typical range: 0 < sz < 0.5. Default is 0.

sv inter-trial-variability of drift rate. Standard deviation of a normal distribution
with mean v describing the distribution of actual drift rates from specific trials.
Values different from 0 can predict slow errors. Typical range: 0 < sv < 2.
Default is 0.

s diffusion constant; standard deviation of the random noise of the diffusion pro-
cess (i.e., within-trial variability), scales a, v, and sv. Needs to be fixed to a
constant in most applications. Default is 1. Note that the default used by Rat-
cliff and in other applications is often 0.1.

precision numerical scalar value. Precision of calculation. Corresponds roughly to the
number of decimals of the predicted CDFs that are calculated accurately. De-
fault is 3.

stop_on_error Should the diffusion functions return 0 if the parameters values are outside the
allowed range (= FALSE) or produce an error in this case (= TRUE).

maxt maximum rt allowed, used to stop integration problems. Larger values lead to
considerably longer calculation times.

use_precise boolean. Should pdiffusion use the precise version for calculating the CDF?
The default is TRUE which is highly recommended. Using FALSE (i.e., the im-
precise version) is hardly any faster and produces clearly wrong results for most
parameter settings.

p vector of probabilities. Or for convenience also a data.frame with columns p
and response. See examples.

Diffusion 5

interval a vector containing the end-points of the interval to be searched for the desired
quantiles (i.e., RTs) in qdiffusion. Default is c(0,10).

scale_p logical. Should entered probabilities automatically be scaled by maximally pre-
dicted probability? Default is FALSE. Convenience argument for obtaining pre-
dicted quantiles. Can be slow as the maximally predicted probability is calcu-
lated individually for each p.

scale_max numerical scalar. Value at which maximally predicted RT should be calculated
if scale_p is TRUE.

max_diff numeric. Maximum acceptable difference between desired and observed proba-
bility of the quantile function (qdiffusion).

n is a desired number of observations.

method character. Experimentally implementation of an alternative way of generating
random variates via the quantile function (qdiffusion) and random uniform
value. For simple calls, the default method "fastdm" is dramatically faster.

Details

The Ratcliff diffusion model (Ratcliff, 1978) is a mathematical model for two-choice discrimination
tasks. It is based on the assumption that information is accumulated continuously until one of two
decision thresholds is hit. For introductions see Ratcliff and McKoon (2008), Voss, Rothermund,
and Voss (2004), Voss, Nagler, and Lerche (2013), or Wagenmakers (2009).

All functions are fully vectorized across all parameters as well as the response to match the length
or rt (i.e., the output is always of length equal to rt). This allows for trialwise parameters for each
model parameter.

For convenience, all functions (with the exception of rdiffusion) allow that the first argument is
a data.frame containing the information of the first and second argument in two columns (i.e.,
rt/p and response). Other columns (as well as passing response separately argument) will be
ignored. This allows, for example, to pass the data.frame generated by rdiffusion directly to
pdiffusion. See examples.

Quantile Function: Due to the bivariate nature of the diffusion model, the diffusion processes
reaching each response boundary only return the defective CDF that does not reach 1. Only the
sum of the CDF for both boundaries reaches 1. Therefore, qdiffusion can only return quan-
tiles/RTs for any accumulator up to the maximal probability of that accumulator’s CDF. This can
be obtained by evaluating the CDF at Inf.
As a convenience for the user, if scale_p = TRUE in the call to qdiffusion the desired probabili-
ties are automatically scaled by the maximal probability for the corresponding response. Note that
this can be slow as the maximal probability is calculated separately for each desired probability.
See examples.
Also note that quantiles (i.e., predicted RTs) are obtained by numerically minimizing the absolute
difference between desired probability and the value returned from pdiffusion using optimize.
If the difference between the desired probability and probability corresponding to the returned
quantile is above a certain threshold (currently 0.0001) no quantile is returned but NA. This can
be either because the desired quantile is above the maximal probability for this accumulator or
because the limits for the numerical integration are too small (default is c(0,10)).

6 Diffusion

Value

ddiffusion gives the density, pdiffusion gives the distribution function, qdiffusion gives the
quantile function (i.e., predicted RTs), and rdiffusion generates random response times and deci-
sions (returning a data.frame with columns rt (numeric) and response (factor)).

The length of the result is determined by n for rdiffusion, equal to the length of rt for ddiffusion
and pdiffusion, and equal to the length of p for qdiffusion.

The distribution parameters (as well as response) are recycled to the length of the result. In other
words, the functions are completely vectorized for all parameters and even the response boundary.

Note

The parameterization of the non-decisional components, t0 and st0, differs from the parameteriza-
tion used by, for example, Andreas Voss or Roger Ratcliff. In the present case t0 is the lower bound
of the uniform distribution of length st0, but not its midpoint. The parameterization employed here
is in line with the parametrization for the LBA code (where t0 is also the lower bound).

The default diffusion constant s is 1 and not 0.1 as in most applications of Roger Ratcliff and others.

We have changed the parameterization of the start point z which is now the absolute start point in
line with most published literature (it was the relative start point in previous versions of rtdists).

Author(s)

Underlying C code by Jochen Voss and Andreas Voss. Porting and R wrapping by Matthew Gretton,
Andrew Heathcote, Scott Brown, and Henrik Singmann. qdiffusion by Henrik Singmann.

References

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice
decision tasks. Neural Computation, 20(4), 873-922.

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model:
An empirical validation. Memory & Cognition. Vol 32(7), 32, 1206-1220.

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion Models in Experimental Psychology: A
Practical Introduction. Experimental Psychology, 60(6), 385-402. doi:10.1027/1618-3169/a000218

Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model
for response time and accuracy. Psychonomic Bulletin & Review, 14(1), 3-22.

Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion
model of response times and accuracy. European Journal of Cognitive Psychology, 21(5), 641-671.

Examples

identical calls (but different random values)
rt1 <- rdiffusion(500, a=1, v=2, t0=0.5)
head(rt1)
rt2 <- rdiffusion(500, a=1, v=2, t0=0.5, d=0, sz=0, sv=0, st0=0)
head(rt2)

Diffusion 7

get density for random RTs (possible to specify arguments for pdiffusion in same way):
sum(log(ddiffusion(rt1$rt, rt1$response, a=1, v=2, t0=0.5))) # response is factor
sum(log(ddiffusion(rt1$rt, as.numeric(rt1$response), a=1, v=2, t0=0.5))) # response is numeric
sum(log(ddiffusion(rt1$rt, as.character(rt1$response), a=1, v=2, t0=0.5))) # response is character
sum(log(ddiffusion(rt1, a=1, v=2, t0=0.5))) # response is data.frame

sum(log(ddiffusion(rt2$rt, rt2$response, a=1, v=2, t0=0.5)))

can we recover the parameters?
ll_diffusion <- function(pars, rt, response)
{

densities <- ddiffusion(rt, response=response,
a=pars[1], v=pars[2], t0=pars[3],
sz=pars[4],
st0=pars[5], sv=pars[6])

if (any(densities == 0)) return(1e6)
return(-sum(log(densities)))

}

Not run:)
start <- c(runif(2, 0.5, 3), 0.1, runif(3, 0, 0.5))
names(start) <- c("a", "v", "t0", "sz", "st0", "sv")
recov <- nlminb(start, ll_diffusion, lower = 0, rt=rt1$rt, response=rt1$response)
round(recov$par, 3)
a v t0 sz st0 sv
1.019 1.879 0.496 0.000 0.000 0.389
results of course depend on random seed for rdiffusion and runif

End(Not run)

Not run:
replicate Table 1 from Wagenmakers et al. (2007) using rdiffusion:

n <- 1e5 # number of samples
take parameter valeus from Table 2 and set s to 0.1
george <- rdiffusion(n, a = 0.12, v = 0.25, t0 = 0.3, s = 0.1)
rich <- rdiffusion(n, a = 0.12, v = 0.25, t0 = 0.25, s = 0.1)
amy <- rdiffusion(n, a = 0.08, v = 0.25, t0 = 0.3, s = 0.1)
mark <- rdiffusion(n, a = 0.08, v = 0.25, t0 = 0.25, s = 0.1)

george$id <- "george"
rich$id <- "rich"
amy$id <- "amy"
mark$id <- "mark"

wag <- rbind(george, rich, amy, mark)
wag$id <- factor(wag$id, levels = c("george", "rich", "amy", "mark"))

opt <- options()
options(digits = 3)

8 Diffusion

aggregate(cbind(rt, as.numeric(response)-1) ~ id, wag, mean)
id rt V2
1 george 0.517 0.952
2 rich 0.467 0.953
3 amy 0.422 0.881
4 mark 0.372 0.882
options(digits = 1)
aggregate(rt ~ id, wag, var)
id rt
1 george 0.024
2 rich 0.024
3 amy 0.009
4 mark 0.009
options(opt)

End(Not run)

plot density:
curve(ddiffusion(x, a=1, v=2, t0=0.5, response = "upper"),

xlim=c(0,3), main="Density of upper responses", ylab="density", xlab="response time")
curve(ddiffusion(x, a=1, v=2, t0=0.5, st0=0.2, response = "upper"),

add=TRUE, lty = 2)
legend("topright", legend=c("no", "yes"), title = "Starting Point Variability?", lty = 1:2)

plot cdf:
curve(pdiffusion(x, a=1, v=2, t0=0.5, st0=0.2, response="u"),

xlim = c(0, 3),ylim = c(0,1),
ylab = "cumulative probability", xlab = "response time",
main = "CDF of diffusion model with start point variability")

curve(pdiffusion(x, a=1, v=2, t0=0.5, st0=0.2, response="l"),
add=TRUE, lty = 2)

legend("topleft", legend=c("upper", "lower"), title="response boundary", lty=1:2)

Not run:
qdiffusion can only return values up to maximal predicted probability:
(max_p <- pdiffusion(Inf, a=1, v=2, t0=0.5, st0=0.2, sz = 0.1, sv = 0.5, response="u"))
[1] 0.87
(Note that with the current integration routine for pdiffusion use Inf and not smaller values.)

qdiffusion(0.87, a=1, v=2, t0=0.5, st0=0.2, sz = 0.1, sv = 0.5, response="u")
[1] 1.945802

qdiffusion(0.88, a=1, v=2, t0=0.5, st0=0.2, sz = 0.1, sv = 0.5, response="u")
NA with warning.

to get predicted quantiles, scale required quantiles by maximally predicted response rate:
qs <- c(.1, .3, .5, .7, .9)
qdiffusion(qs*max_p, a=1, v=2, t0=0.5, st0=0.2, sz = 0.1, sv = 0.5, response="u")

or set scale_p to TRUE which scales automatically by maximum p
(but can be slow as it calculates max_p for each probability separately)
qdiffusion(qs, a=1, v=2, t0=0.5, st0=0.2, sz = 0.1, sv = 0.5, response="u", scale_p = TRUE)

LBA 9

qdiffusion also accepts a data.frame as first argument:
t3 <- data.frame(p = rep(c(0.05, 0.1, 0.87), 2), response = rep(c("upper", "lower"), each = 3))
p response
1 0.05 upper
2 0.10 upper
3 0.87 upper
4 0.05 lower
5 0.10 lower
6 0.87 lower
qdiffusion(t3, a=1, v=2, t0=0.5, st0=0.2, sz = 0.1, sv = 0.5, scale_p = TRUE)

End(Not run)

LBA and diffusion can be used interchangeably:
rt1 <- rLBA(500, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))
rt2 <- rdiffusion(500, a=1, v=2, t0=0.5)

data can also be passed as data.frame (same is true for pLBA):
sum(log(dLBA(rt1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))))
sum(log(dLBA(rt2, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))))

sum(log(ddiffusion(rt1, a=1, v=2, t0=0.5)))
sum(log(ddiffusion(rt2, a=1, v=2, t0=0.5)))

LBA The Linear Ballistic Accumulator (LBA)

Description

Density, distribution function, quantile function, and random generation for the LBA model with
the following parameters: A (upper value of starting point), b (response threshold), t0 (non-decision
time), and driftrate (v). All functions are available with different distributions underlying the drift
rate: Normal (norm), Gamma (gamma), Frechet (frechet), and log normal (lnorm). The functions
return their values conditional on the accumulator given in the response argument winning.

Usage

dLBA(rt, response, A, b, t0, ..., st0 = 0, distribution = c("norm",
"gamma", "frechet", "lnorm"), args.dist = list(), silent = FALSE)

pLBA(rt, response, A, b, t0, ..., st0 = 0, distribution = c("norm",
"gamma", "frechet", "lnorm"), args.dist = list(), silent = FALSE)

qLBA(p, response, A, b, t0, ..., st0 = 0, distribution = c("norm",
"gamma", "frechet", "lnorm"), args.dist = list(), silent = FALSE,
interval = c(0, 10), scale_p = FALSE, scale_max = Inf)

10 LBA

rLBA(n, A, b, t0, ..., st0 = 0, distribution = c("norm", "gamma",
"frechet", "lnorm"), args.dist = list(), silent = FALSE)

Arguments

rt vector of RTs. Or for convenience also a data.frame with columns rt and
response (such as returned from rLBA or rdiffusion). See examples.

response integer vector of winning accumulators/responses corresponding to the vector
of RTs/p (i.e., used for specifying the response for a given RT/probability). Will
be recycled if necessary. Cannot contain values larger than the number of ac-
cumulators. First response/accumulator must receive value 1, second 2, and so
forth. For conmvenience, response is converted via as.numeric thereby allow-
ing factors to be passed as well (such as returned from rdiffusion). Ignored if
rt or p is a data.frame.

A start point interval or evidence in accumulator before beginning of decision pro-
cess. Start point varies from trial to trial in the interval [0, A] (uniform distribu-
tion). Average amount of evidence before evidence accumulation across trials is
A/2.

b response threshold. (b - A/2) is a measure of "response caution".

t0 non-decision time or response time constant (in seconds). Lower bound for the
duration of all non-decisional processes (encoding and response execution).

... two named drift rate parameters depending on distribution (e.g., mean_v and
sd_v for distribution=="norm"). The parameters can either be given as a
numeric vector or a list. If a numeric vector is passed each element of the vector
corresponds to one accumulator. If a list is passed each list element corresponds
to one accumulator allowing again trialwise driftrates. The shorter parameter
will be recycled as necessary (and also the elements of the list to match the
length of rt). See details.

st0 variability of non-decision time, such that t0 is uniformly distributed between
t0 and t0 + st0. Default is 0. Can be trialwise, and will be recycled to length
of rt.

distribution character specifying the distribution of the drift rate. Possible values are c("norm","gamma","frechet","lnorm"),
default is "norm".

args.dist list of optional further arguments to the distribution functions (i.e., posdrift or
robust for distribution=="norm", see single-LBA).

silent logical. Should the number of accumulators used be suppressed? Default is
FALSE which prints the number of accumulators.

p vector of probabilities. Or for convenience also a data.frame with columns p
and response. See examples.

interval a vector containing the end-points of the interval to be searched for the desired
quantiles (i.e., RTs) in qLBA. Default is c(0,10).

scale_p logical. Should entered probabilities automatically be scaled by maximally pre-
dicted probability? Default is FALSE. Convenience argument for obtaining pre-
dicted quantiles. Can be slow as the maximally predicted probability is calcu-
lated individually for each p.

LBA 11

scale_max numerical scalar. Value at which maximally predicted RT should be calculated
if scale_p is TRUE.

n desired number of observations (scalar integer).

Details

For convenience, all functions (with the exception of rdiffusion) allow that the first argument is a
data.frame containing the information of the first and second argument in two columns (i.e., rt/p
and response). Other columns will be ignored. This allows, for example, to pass the data.frame
generated by rLBA directly to pLBA. See examples.

Parameters: The following arguments are allowed as ... drift rate parameters:

• mean_v,sd_v mean and standard deviation of normal distribution for drift rate (norm). See
Normal

• shape_v,rate_v,scale_v shape, rate, and scale of gamma (gamma) and scale and shape of
Frechet (frechet) distributions for drift rate. See GammaDist or frechet. For Gamma, scale
= 1/shape and shape = 1/scale.

• meanlog_v,sdlog_v mean and standard deviation of lognormal distribution on the log scale
for drift rate (lnorm). See Lognormal.

As described above, the accumulator parameters can either be given as a numeric vector or a list.
If a numeric vector is passed each element of the vector corresponds to one accumulator. If a list is
passed each list element corresponds to one accumulator allowing trialwise driftrates. The shorter
parameter will be recycled as necessary (and also the elements of the list to match the length of
rt).
The other LBA parameters (i.e., A, b, and t0, with the exception of st0) can either be a single
numeric vector (which will be recycled to reach length(rt) or length(n) for trialwise parame-
ters) or a list of such vectors in which each list element corresponds to the parameters for this
accumulator (i.e., the list needs to be of the same length as there are accumulators). Each list will
also be recycled to reach length(rt) for trialwise parameters per accumulator.
To make the difference between both paragraphs clear: Whereas for the accumulators both a
single vector or a list corresponds to different accumulators, only the latter is true for the other
parameters. For those (i.e., A, b, and t0) a single vector always corresponds to trialwise values
and a list must be used for accumulator wise values.
st0 can only vary trialwise (via a vector). And it should be noted that st0 not equal to zero will
considerably slow done everything.

Quantile Function: Due to the bivariate nature of the LBA, single accumulators only return
defective CDFs that do not reach 1. Only the sum of all accumulators reaches 1. Therefore,
qLBA can only return quantiles/RTs for any accumulator up to the maximal probability of that
accumulator’s CDF. This can be obtained by evaluating the CDF at Inf.
As a conveniece for the user, if scale_p = TRUE in the call to qLBA the desired probabilities are
automatically scaled by the maximal probability for the corresponding response. Note that this
can be slow as the maximal probability is calculated separately for each desired probability. See
examples.
Also note that quantiles (i.e., predicted RTs) are obtained by numerically minimizing the absolute
difference between desired probability and the value returned from pLBA using optimize. If the
difference between the desired probability and probability corresponding to the returned quantile

12 LBA

is above a certain threshold (currently 0.0001) no quantile is returned but NA. This can be either
because the desired quantile is above the maximal probability for this accumulator or because the
limits for the numerical integration are too small (default is c(0,10)).

RNG: For random number generation at least one of the distribution parameters (i.e., mean_v,
sd_v, shape_v, scale_v, rate_v, meanlog_v, and sdlog_v) should be of length > 1 to receive
RTs from multiple responses. Shorter vectors are recycled as necessary.
Note that for random number generation from a normal distribution for the driftrate the number
of returned samples may be less than the number of requested samples if posdrifts==FALSE.

Value

dLBA returns the density (PDF), pLBA returns the distribution function (CDF), qLBA returns the
quantile/RT, rLBA return random response times and responses (in a data.frame).

The length of the result is determined by n for rLBA, equal to the length of rt for dLBA and pLBA,
and equal to the length of p for qLBA.

The distribution parameters (as well as response) are recycled to the length of the result. In other
words, the functions are completely vectorized for all parameters and even the response.

Note

These are the top-level functions intended for end-users. To obtain the density and cumulative
density the race functions are called for each response time with the corresponding winning accu-
mulator as first accumulator (see LBA-race).

References

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Lin-
ear ballistic accumulation. Cognitive Psychology, 57(3), 153-178. doi:10.1016/j.cogpsych.2007.12.002

Donkin, C., Averell, L., Brown, S., & Heathcote, A. (2009). Getting more from accuracy and re-
sponse time data: Methods for fitting the linear ballistic accumulator. Behavior Research Methods,
41(4), 1095-1110. doi:10.3758/BRM.41.4.1095

Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Fron-
tiers in Psychology, 3, 292. doi:10.3389/fpsyg.2012.00292

Examples

generate random LBA data:
rt1 <- rLBA(500, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))
head(rt1)
prop.table(table(rt1$response))

original parameters have 'high' log-likelihood:
sum(log(dLBA(rt1$rt, rt1$response, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))))

data can also be passed as data.frame (same is true for pLBA):
sum(log(dLBA(rt1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))))

LBA 13

objective_fun <- function(par, rt, response, distribution = "norm") {
simple parameters
spar <- par[!grepl("[12]$", names(par))]

distribution parameters:
dist_par_names <- unique(sub("[12]$", "", grep("[12]$" ,names(par), value = TRUE)))
dist_par <- vector("list", length = length(dist_par_names))
names(dist_par) <- dist_par_names
for (i in dist_par_names) dist_par[[i]] <- as.list(unname(par[grep(i, names(par))]))
dist_par$sd_v <- c(1, dist_par$sd_v) # fix first sd to 1

get summed log-likelihood:
d <- do.call(dLBA, args = c(rt=list(rt), response=list(response), spar, dist_par,

distribution=distribution, silent=TRUE))
if (any(d < 0e-10)) return(1e6)
else return(-sum(log(d)))

}

gives same value as manual calculation above:
objective_fun(c(A=0.5, b=1, t0=0.5, mean_v1=2.4, mean_v2=1.6, sd_v2=1.2),

rt=rt1$rt, response=rt1$response)

Not run:
can we recover the parameters?
should be run several times with different random values of init_par
init_par <- runif(6)
init_par[2] <- sum(init_par[1:2]) # ensures b is larger than A
init_par[3] <- runif(1, 0, min(rt1$rt)) #ensures t0 is mot too large
names(init_par) <- c("A", "b", "t0", "mean_v1", "mean_v2", "sd_v2")
nlminb(objective_fun, start = init_par, rt=rt1$rt, response=rt1$response, lower = 0)

End(Not run)

plot cdf (2 accumulators):
curve(pLBA(x, response = 1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2)),

xlim = c(0, 2), ylim = c(0,1),
ylab = "cumulative probability", xlab = "response time",
main = "Defective CDFs of LBA")

curve(pLBA(x, response = 2, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2)),
add=TRUE, lty = 2)

legend("topleft", legend=c("1", "2"), title="Response", lty=1:2)

plot cdf (3 accumulators):
curve(pLBA(x, response = 1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6, 1.0), sd_v=c(1,1.2, 2.0)),

xlim = c(0, 2), ylim = c(0,1),
ylab = "cumulative probability", xlab = "response time",
main = "Defective CDFs of LBA")

curve(pLBA(x, response = 2, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6, 1.0), sd_v=c(1,1.2, 2.0)),
add=TRUE, lty = 2)

curve(pLBA(x, response = 3, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6, 1.0), sd_v=c(1,1.2, 2.0)),
add=TRUE, lty = 3)

14 LBA

legend("topleft", legend=c("1", "2", "3"), title="Response", lty=1:2)

qLBA can only return values up to maximal predicted probability:
(max_p <- pLBA(Inf, response = 1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2)))
[1] 0.6604696

qLBA(0.66, response = 1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))
2.559532

qLBA(0.67, response = 1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))
NA

to get predicted quantiles, scale required quantiles by maximally predicted response rate:
qs <- c(.1, .3, .5, .7, .9)
qLBA(qs*max_p, response = 1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))

or set scale_p to TRUE which scales automatically by maximum p
(but can be slow as it calculates max_p for each probability separately)
qLBA(qs, response = 1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2), scale_p=TRUE)

qLBA also accepts a data.frame as first argument:
t <- data.frame(p = rep(c(0.05, 0.1, 0.66), 2), response = rep(1:2, each = 3))
p response
1 0.05 1
2 0.10 1
3 0.66 1
4 0.05 2
5 0.10 2
6 0.66 2
qLBA(t, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))

LBA and diffusion can be used interchangeably:
rt1 <- rLBA(500, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))
rt2 <- rdiffusion(500, a=1, v=2, t0=0.5)

data can also be passed as data.frame (same is true for pLBA):
sum(log(dLBA(rt1, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))))
sum(log(dLBA(rt2, A=0.5, b=1, t0 = 0.5, mean_v=c(2.4, 1.6), sd_v=c(1,1.2))))

sum(log(ddiffusion(rt1, a=1, v=2, t0=0.5)))
sum(log(ddiffusion(rt2, a=1, v=2, t0=0.5)))

trial wise parameters work as expected (only since package version 0.9):
x1 <- dLBA(rt=c(1,1), response=c(1,2), A=1,b=list(c(1,3),c(2,4)),

t0=0.1, mean_v=c(3,3), sd_v=c(1,1),distribution="norm")
x2a <- dLBA(rt=c(1), response=c(1), A=1,b=list(c(1),c(2)),

t0=0.1,mean_v=c(3,3),sd_v=c(1,1),distribution="norm")
x2b <- dLBA(rt=c(1), response=c(2), A=1,b=list(c(3),c(4)),

t0=0.1,mean_v=c(3,3),sd_v=c(1,1),distribution="norm")
all(x1 == c(x2a, x2b)) ## should be TRUE

LBA-race 15

LBA-race LBA race functions: Likelihood for first accumulator to win.

Description

n1PDF and n1CDF take RTs, the distribution functions of the LBA, and corresponding parameter
values and put them throughout the race equations and return the likelihood for the first accumulator
winning (hence n1) in a set of accumulators.

Usage

n1PDF(rt, A, b, t0, ..., st0 = 0, distribution = c("norm", "gamma",
"frechet", "lnorm"), args.dist = list(), silent = FALSE)

n1CDF(rt, A, b, t0, ..., st0 = 0, distribution = c("norm", "gamma",
"frechet", "lnorm"), args.dist = list(), silent = FALSE)

Arguments

rt a vector of RTs.

A, b, t0 LBA parameters, see LBA. Can either be a single numeric vector (which will
be recycled to reach length(rt) for trialwise parameters) or a list of such
vectors in which each list element corresponds to the parameters for this accu-
mulator (i.e., the list needs to be of the same length as there are accumulators).
Each list will also be recycled to reach length(rt) for trialwise parameters per
accumulator.

... two named drift rate parameters depending on distribution (e.g., mean_v and
sd_v for distribution=="norm"). The parameters can either be given as a
numeric vector or a list. If a numeric vector is passed each element of the vector
corresponds to one accumulator. If a list is passed each list element corresponds
to one accumulator allowing again trialwise driftrates. The shorter parameter
will be recycled as necessary (and also the elements of the list to match the
length of rt). See examples.

st0 parameter specifying the variability of t0 (which varies uniformly from t0 to t0
+ st0). Can be trialwise, and will be recycled to length of rt.

distribution character specifying the distribution of the drift rate. Possible values are c("norm","gamma","frechet","lnorm"),
default is "norm".

args.dist list of optional further arguments to the distribution functions (i.e., posdrift or
robust for distribution=="norm").

silent logical. Should the number of accumulators used be suppressed? Default is
FALSE which prints the number of accumulators.

16 LBA-race

Details

For a set of N independent accumulators i = 1...N , the race likelihood for a given accumulator i is
given by

L(unit i wins) = fi(t)×
∏
j<>i

[Sj(t)]

where f(t) is the PDF (dlba_...) and Sj(t) = 1 − Fj(t) is the survivor function, that is the
complement of the CDF F (t) (plba_...) at time t.

In other words, this is just the PDF/CDF for the winning accumulator at time t times the probability
that no other accumulators have finished at time t.

See Also

For more user-friendly functions that return the PDF or CDF for the corresponding (and not first)
accumulator winning see /code/linkLBA.

Examples

check random generated values against race functions:

1. Without st0:
r_lba <- rLBA(1e4, A=0.5, b=1, t0 = 0.5, mean_v=c(1.2, 1), sd_v=0.2)
x <- seq(0.5, 4, length.out = 100) # for plotting
PDF
y <- n1PDF(x, A=0.5, b=1, t0 = 0.5, mean_v=c(1.2, 1.0), sd_v=0.2) # PDF
hist(r_lba$rt[r_lba$response==1],probability = TRUE, breaks = "FD")
lines(x=x,y=y/mean(r_lba$response == 1))
CDF
plot(ecdf(r_lba$rt[r_lba$response==1]))
y <- n1CDF(x, A=0.5, b=1, t0 = 0.5, st0 = 0, mean_v=c(1.2, 1.0), sd_v=0.2)
lines(x=x,y=y/mean(r_lba$response == 1), col = "red", lwd = 4.5, lty = 2)
KS test
Not run:
normalised_n1CDF = function(rt,...) n1CDF(rt,...)/n1CDF(rt=Inf,...)
ks.test(r_lba$rt[r_lba$response==1], normalised_n1CDF, A=0.5, b=1, t0 = 0.5,

mean_v=c(1.2, 1.0), sd_v=0.2)

End(Not run)

Not run:
Other examples (don't run to save time):

2. With st0 = 0.2:
r_lba <- rLBA(1e4, A=0.5, b=1, t0 = 0.5, st0 = 0.2, mean_v=c(1.2, 1), sd_v=0.2)
x <- seq(0.5, 4, length.out = 100) # for plotting
PDF
y <- n1PDF(x, A=0.5, b=1, t0 = 0.5, st0 = 0.2, mean_v=c(1.2, 1.0), sd_v=0.2) # PDF
hist(r_lba$rt[r_lba$response==1],probability = TRUE, breaks = "FD")
lines(x=x,y=y/mean(r_lba$response == 1))

LBA-race 17

CDF
plot(ecdf(r_lba$rt[r_lba$response==1]))
y <- n1CDF(x, A=0.5, b=1, t0 = 0.5, st0 = 0.2, mean_v=c(1.2, 1.0), sd_v=0.2)
lines(x=x,y=y/mean(r_lba$response == 1), col = "red", lwd = 4.5, lty = 2)
KS test
normalised_n1CDF = function(rt,...) n1CDF(rt,...)/n1CDF(rt=Inf,...)
ks.test(r_lba$rt[r_lba$response==1], normalised_n1CDF, A=0.5, b=1, t0 = 0.5,

st0 = 0.2, mean_v=c(1.2, 1.0), sd_v=0.2)

xx <- rLBA(10, A=0.5, b=1, t0 = 0.5, mean_v=1.2, sd_v=0.2)

default uses normal distribution for drift rate:
n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, mean_v=c(1.2, 1.0), sd_v=0.2)

other distributions:
n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, shape_v=c(1.2, 1), scale_v=c(0.2,0.3), distribution = "gamma")
n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, shape_v=c(1.2, 1), scale_v=c(0.2,0.3), distribution = "frechet")
n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, meanlog_v = c(0.5, 0.8), sdlog_v = 0.5, distribution = "lnorm")

add st0:
n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, mean_v=c(1.2, 1.0), sd_v=0.2, st0 = 0.4)

use different A parameters for each RT:
n1PDF(xx$rt, A=runif(10, 0.4, 0.6),

b=1, t0 = 0.5, mean_v=c(1.2, 1.0), sd_v=0.2)

use different A parameters for each RT and each accumulator:
n1PDF(xx$rt, A=list(runif(10, 0.4, 0.6), runif(10, 0.2, 0.4)),

b=1, t0 = 0.5, mean_v=c(1.2, 1.0), sd_v=0.2)

vectorize drift rates:

vector versus list:
v1 <- n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, mean_v=c(1.2, 1.0), sd_v=0.2)
v2 <- n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, mean_v=list(1.2, 1.0), sd_v=0.2)
identical(v1, v2) # TRUE

drift rate per trial:
n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, mean_v=list(rnorm(10, 1.2), rnorm(10, 1)), sd_v=0.2)

combine list with vector:
n1PDF(xx$rt, A=0.5, b=1, t0 = 0.5, mean_v=list(rnorm(10, 1.2), rnorm(10, 1)), sd_v=c(0.2, 0.1))

t0 per trial and accumulator:
n1PDF(xx$rt, A=0.5, b=1, t0 = c(0.5), mean_v=c(1.2, 1.0), sd_v=0.2)
n1PDF(xx$rt, A=0.5, b=1, t0 = c(0.5, 0.6), mean_v=c(1.2, 1.0), sd_v=0.2) # per trial only
n1PDF(xx$rt, A=0.5, b=1, t0 = list(0.5, 0.6), mean_v=c(1.2, 1.0), sd_v=0.2) # per drift rate only
n1PDF(xx$rt, A=0.5, b=1, t0 = list(c(0.4, 0.5), c(0.5, 0.6)), mean_v=c(1.2, 1.0), sd_v=0.2)

End(Not run)

18 rr98

rr98 Ratcliff and Rouder (1998, Exp. 1) Luminance Discrimination Data

Description

Responses and response times from an experiment in which three participants were asked to decide
whether the overall brightness of pixel arrays displayed on a computer monitor was "high" or "low".
In addition, instruction manipulated speed and accuracy between blocks.

Usage

rr98

Format

A data.frame with 24,358 obs. and 12 variables:

id participant id, factor with three levels

session session number, integer

block block number, integer

trial trial number within a block, integer

instruction factor with two levels: "accuracy" for blocks with accuracy instructions; "speed" for
blocks with speed instruction

source factor with two levels: distribution strength was drawn from, "dark" and "light"

strength proportion of white to black pixels were varied by 33 equally spaced proportions from
zero (all 1,024 pixels were black) to 1 (all 1,024 pixels were white). with 0 darkest and 32
lightest. Integer.

response factor with two levels: "dark" and "light"

response_num numeric response variable such that 1="dark" and 2="light"

correct boolean indicating whether or not source==response. (Does not seem to be used in the
original analysis.)

rt response time in seconds

outlier boolean indicating whether or not the response was considered an outlier by Ratcliff and
Rouder (1998), i.e., RTs outside of (200ms, 2500ms)

Details

The Experiment is described in the following by Ratcliff and Rouder (1998, pp. 349):

In Experiment 1, subjects were asked to decide whether the overall brightness of pixel arrays dis-
played on a computer monitor was "high" or "low". The brightness of a display was controlled
by the proportion of the pixels that were white. For each trial, the proportion of white pixels was
chosen from one of two distributions, a high distribution [i.e., light] or a low [i.e., dark] distribu-
tion, each with fixed mean and standard deviation. Feedback was given after each trial to tell the
subject whether his or her decision had correctly indicated the distribution from which the stimulus

rr98 19

had been chosen. Other than this feedback, a subject had no information about the distributions.
Because the distributions overlapped substantially, a subject could not be highly accurate. A display
with 50 from the high distribution on one trial and the low distribution on another.

Stimuli:
The stimulus display for Experiment 1 was a square that was 64 pixels on each side and subtended
3.8 degree of visual angle on a PC-VGA monitor. [...] In each square, 3,072 randomly chosen
pixels were neutral gray, like the background, and the remaining 1,024 pixels were either black or
white; the proportion of white to black pixels provided the brightness manipulation. There were
33 equally spaced proportions from zero (all 1,024 pixels were black) to 1 (all 1,024 pixels were
white). The two distributions from which the bright and dark stimuli were chosen were centered
at .375 (low brightness) and .625 (high brightness), and they each had a standard deviation of
.1875.

Procedure: A subject’s task was to decide, on each trial, from which distribution, high or
low brightness in Experiment 1, the observed stimulus (stimuli) had been sampled. Subjects
made their decision by pressing one of two response keys. On each trial, a 500-ms foreperiod,
during which the display consisted solely of neutral gray, was followed by presentation of the
stimulus; presentation was terminated by the subject’s response. In Experiment 1, speed-versus-
accuracy instructions were manipulated. For some blocks of trials, subjects were instructed to
respond as quickly as possible, and a "too slow" message followed every response longer than 550
ms. For other blocks of trials, subjects were instructed to be as accurate as possible, and a "bad
error" message followed incorrect responses to stimuli from the extreme ends of the distributions.
Experiment 1 had ten 35-min sessions, and Experiments 2 and 3 had four sessions. In Experiment
1, subjects switched from emphasis on speed to emphasis on accuracy every 204 trials. Each
session consisted of eight blocks of 102 trials per block, for a total of 8,160 trials per subject.
Each session consisted of eight blocks of 102 trials, for a total of 3,264 trials per subject in
each experiment. For all trials in each experiment, subjects were instructed to maintain a high
level of accuracy while responding quickly, and an "error" message indicated incorrect responses.
Responses were followed by a 300-ms blank interval, and the error message was displayed for
300 ms after the blank interval.

Note

The data is already prepared following Ratcliff and Rouder (1998) by removing the following trials:

• the first session for each participant

• the first 20 trials of each session

• the first trial of each block (each change in speed accuracy starts a new block)

To fully replicate the data used by Ratcliff and Rouder (1998) one only needs to remove the trials
that are TRUE in column outlier (i.e., RTs outside of (200ms, 2500ms)). The full raw data is also
available as part of this package, see:
system.file("extdata","rr98-data",package = "rtdists") and system.file("extdata","rr98-data.codes",package
= "rtdists")

Source

Ratcliff, R., & Rouder, J. N. (1998). Modeling Response Times for Two-Choice Decisions. Psy-
chological Science, 9(5), 347-356. http://doi.org/10.1111/1467-9280.00067

20 single-LBA

Examples

data(rr98)
rr98 <- rr98[!rr98$outlier,] #remove outliers
head(rr98)
id session block trial instruction source strength response response_num correct rt outlier
1 jf 2 1 21 accuracy dark 8 dark 1 TRUE 0.801 FALSE
2 jf 2 1 22 accuracy dark 7 dark 1 TRUE 0.680 FALSE
3 jf 2 1 23 accuracy light 19 light 2 TRUE 0.694 FALSE
4 jf 2 1 24 accuracy dark 21 light 2 FALSE 0.582 FALSE
5 jf 2 1 25 accuracy light 19 dark 1 FALSE 0.925 FALSE
6 jf 2 1 26 accuracy dark 10 dark 1 TRUE 0.605 FALSE

See vignette for more examples.

single-LBA Single accumulator of linear ballistic accumulator (LBA)

Description

Density, distribution function, and random generation for a single accumulator of the LBA model
with the following parameters: A (upper value of starting point), b (response threshold), t0 (non-
decision time), and driftrate (v). All functions are available with different distributions underlying
the drift rate: Normal (norm), Gamma (gamma), Frechet (frechet), and log normal (lnorm).

Usage

dlba_norm(rt, A, b, t0, mean_v, sd_v, posdrift = TRUE, robust = FALSE)

plba_norm(rt, A, b, t0, mean_v, sd_v, posdrift = TRUE, robust = FALSE)

rlba_norm(n, A, b, t0, mean_v, sd_v, st0 = 0, posdrift = TRUE)

dlba_gamma(rt, A, b, t0, shape_v, rate_v, scale_v)

plba_gamma(rt, A, b, t0, shape_v, rate_v, scale_v)

rlba_gamma(n, A, b, t0, shape_v, rate_v, scale_v, st0 = 0)

dlba_frechet(rt, A, b, t0, shape_v, scale_v)

plba_frechet(rt, A, b, t0, shape_v, scale_v)

rlba_frechet(n, A, b, t0, shape_v, scale_v, st0 = 0)

dlba_lnorm(rt, A, b, t0, meanlog_v, sdlog_v, robust = FALSE)

single-LBA 21

plba_lnorm(rt, A, b, t0, meanlog_v, sdlog_v, robust = FALSE)

rlba_lnorm(n, A, b, t0, meanlog_v, sdlog_v, st0 = 0)

Arguments

rt a vector of RTs.

A start point interval or evidence in accumulator before beginning of decision pro-
cess. Start point varies from trial to trial in the interval [0, A] (uniform distribu-
tion). Average amount of evidence before evidence accumulation across trials is
A/2.

b response threshold. (b - A/2) is a measure of "response caution".

t0 non-decision time or response time constant (in seconds). Lower bound for the
duration of all non-decisional processes (encoding and response execution).

mean_v, sd_v mean and standard deviation of normal distribution for drift rate (norm). See
Normal

posdrift logical. Should driftrates be forced to be positive? Default is TRUE. (Uses trun-
cated normal for random generation).

robust logical. Should robust normal distributions be used for norm and lnorm? Can be
helpful in rare cases but is approximately three times slower than the non-robust
versions. Default is FALSE.

n desired number of observations (scalar integer).

st0 variability of non-decision time, such that t0 is uniformly distributed between
t0 and t0 + st0. Only available in random number generation functions rlba_.

shape_v, rate_v, scale_v

shape, rate, and scale of gamma (gamma) and scale and shape of Frechet (frechet)
distributions for drift rate. See GammaDist or frechet. For Gamma, scale =
1/shape and shape = 1/scale.

meanlog_v, sdlog_v

mean and standard deviation of lognormal distribution on the log scale for drift
rate (lnorm). See Lognormal.

Details

These functions are mainly for internal purposes. We do not recommend to use them. Use the
high-level functions described in /link{LBA} instead.

Value

All functions starting with a d return the density (PDF), all functions starting with p return the
distribution function (CDF), and all functions starting with r return random response times and
responses (in a matrix).

22 single-LBA

Note

Density (i.e., dlba_), distribution (i.e., plba_), and random derivative (i.e., rlba_) functions are
vectorized for all parameters (i.e., in case parameters are not of the same length as rt, parameters
are recycled). Furthermore, the random derivative functions also accept a matrix of length n in
which each column corresponds to a accumulator specific value (see rLBA for a more user-friendly
way).

References

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Lin-
ear ballistic accumulation. Cognitive Psychology, 57(3), 153-178. doi:10.1016/j.cogpsych.2007.12.002

Donkin, C., Averell, L., Brown, S., & Heathcote, A. (2009). Getting more from accuracy and re-
sponse time data: Methods for fitting the linear ballistic accumulator. Behavior Research Methods,
41(4), 1095-1110. doi:10.3758/BRM.41.4.1095

Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Fron-
tiers in Psychology, 3, 292. doi:10.3389/fpsyg.2012.00292

Examples

random number generation using different distributions for v:
rlba_norm(10, A=0.5, b=1, t0 = 0.5, mean_v=c(1.2, 1), sd_v=c(0.2,0.3))
rlba_gamma(10, A=0.5, b=1, t0 = 0.5, shape_v=c(1.2, 1), scale_v=c(0.2,0.3))
rlba_frechet(10, A=0.5, b=1, t0 = 0.5, shape_v=c(1.2, 1), scale_v=c(0.2,0.3))
rlba_lnorm(10, A=0.5, b=1, t0 = 0.5, meanlog_v=c(1.2, 1), sdlog_v=c(0.2, 0.3))

use somewhat plausible values for plotting:
A <- 0.2
b <- 0.5
t0 <- 0.3

plot density:
curve(dlba_norm(x, A=A, b=b, t0=t0, mean_v = 1.0, sd_v = 0.5), ylim = c(0, 4),

xlim=c(0,3), main="Density/PDF of LBA versions", ylab="density", xlab="response time")
curve(dlba_gamma(x, A=A, b=b, t0=t0, shape_v=1, scale_v=1), add=TRUE, lty = 2)
curve(dlba_frechet(x, A=A, b=b, t0=t0, shape_v=1,scale_v=1.0), add=TRUE, lty = 3)
curve(dlba_lnorm(x, A=A, b=b, t0=t0, meanlog_v = 0.5, sdlog_v = 0.5), add=TRUE, lty = 4)
legend("topright", legend=c("Normal", "Gamma", "Frechet", "Log-Normal"),

title = expression("Distribution of"~~italic(v)), lty = 1:4)

plot cdf:
curve(plba_norm(x, A=A, b=b, t0=t0, mean_v=1.0, sd_v=1.0),

xlim = c(0, 3),ylim = c(0,1),
ylab = "cumulative probability", xlab = "response time",
main = "Distribution/CDF of LBA versions")

curve(plba_gamma(x, A=A, b=b, t0=t0, shape_v=1,scale_v=1), add=TRUE, lty = 2)
curve(plba_frechet(x, A=A, b=b, t0=t0, shape=1, scale=1), add=TRUE, lty = 3)
curve(plba_lnorm(x, A=A, b=b, t0=t0, meanlog_v=0.5, sdlog_v = 0.5), add=TRUE, lty = 4)
legend("bottomright", legend=c("Normal", "Gamma", "Frechet", "Log-Normal"),

speed_acc 23

title = expression("Distribution of"~~italic(v)), lty = 1:4)

speed_acc Speed-Accuracy Data from Wagenmakers, Ratcliff, Gomez, & McKoon
(2008, Experiment 1)

Description

Responses and response times from an experiment in which instruction manipulated speed and
accuracy between blocks. This data was also analyzed by Heathcote and Love (2012) who were the
first to use the 17 participants also included here.

Usage

speed_acc

Format

A data.frame with 31,522 obs. and 9 variables:

id participant id

block block number

condition accuracy for blocks with accuracy instructions; speed for blocks with speed instruction

stim unique identifier of stimulus, stimuli are nested in frequency conditions

stim_cat category of stimulus, either word or non-word

frequency "high frequency word", "low frequency word", "very low frequency word", or non-
words derived from the first three categories

response word, nonword, or not interpretable response (error, i.e., pushed a button, but not the
right one and also not the one next to the right button)

rt response time in seconds

censor boolean indicating whether or not a response should be eliminated prior to analysis; unin-
terpretable response, too fast response (<180 ms), too slow response (>3 sec)

Details

The data excludes the practice blocks but includes all trials. Variable censor can be used for
excluding all trials also excluded from the papers using it namely uninterpretable response, too fast
response (<180 ms), too slow response (>3 sec). Heathcote and Love (2012, p. 7) describe the data
as follows:

We fit the LBA and LNR models to data from Wagenmaker et al.’s (2008) experiment one, where
participants made decisions about whether a string of letters constituted a word. These lexical
decisions were made about four types of stimuli, non-words (nw) and high-frequency (hf), low-
frequency (lf), and very low-frequency (vlf) words. Participants made decisions either under speed
or accuracy emphasis instructions in different experimental blocks. Accuracy blocks were preceded
by the message "Try to respond accurately" and "ERROR" was displayed after each wrong response.

24 speed_acc

Speed blocks were preceded by the message "Try to respond accurately" and "TOO SLOW" was
displayed after each response slower than 0.75 s.We report analyses of data from 17 participants
(31,412 data points) in their Experiment 1, including the 15 participants analyzed in Wagenmakers
et al. (2008) and two extras (we thank Eric-Jan Wagenmakers for supplying this data).

Source

Wagenmakers, E.-J., Ratcliff, R., Gomez, P., & McKoon, G. (2008). A diffusion model account of
criterion shifts in the lexical decision task. Journal of Memory and Language, 58(1), 140-159.

References

Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Fron-
tiers in Psychology: Cognitive Science, 3, 292. doi:10.3389/fpsyg.2012.00292

Examples

data(speed_acc)
str(speed_acc)

remove excluded trials:
speed_acc <- droplevels(speed_acc[!speed_acc$censor,])

new factors for obtaining values as in Table 1, Wagenmakers et al. (2008, p. 152)
speed_acc$freq <- with(speed_acc,

factor(ifelse(stim_cat == "nonword", "nonword",
as.character(frequency)),

levels = c("high", "low", "very_low", "nonword")))
corr = correct (0 = correct, 1 = error)
speed_acc$corr <- with(speed_acc, 1-as.numeric(stim_cat == response))

str(speed_acc)

aggregated RTs:
aggregate(rt ~ condition + freq + corr, speed_acc, mean)
Error Rate:
aggregate(corr ~ condition + freq + corr, speed_acc, mean)

Index

∗ dataset
rr98, 18
speed_acc, 23

∗ package
rtdists-package, 2

ddiffusion (Diffusion), 3
Diffusion, 3
diffusion (Diffusion), 3
dLBA (LBA), 9
dlba_frechet (single-LBA), 20
dlba_gamma (single-LBA), 20
dlba_lnorm (single-LBA), 20
dlba_norm (single-LBA), 20

frechet, 11, 21

GammaDist, 11, 21

LBA, 6, 9, 15
LBA-race, 15
Lognormal, 11, 21

n1CDF (LBA-race), 15
n1PDF (LBA-race), 15
Normal, 11, 21

optimize, 5, 11

pdiffusion (Diffusion), 3
pLBA (LBA), 9
plba_frechet (single-LBA), 20
plba_gamma (single-LBA), 20
plba_lnorm (single-LBA), 20
plba_norm (single-LBA), 20

qdiffusion (Diffusion), 3
qLBA (LBA), 9

rdiffusion, 10
rdiffusion (Diffusion), 3

recalc_t0 (Diffusion), 3
rLBA, 3, 22
rLBA (LBA), 9
rlba_frechet (single-LBA), 20
rlba_gamma (single-LBA), 20
rlba_lnorm (single-LBA), 20
rlba_norm (single-LBA), 20
rr98, 18
rtdists-package, 2

single-LBA, 20
speed_acc, 23

25

	rtdists-package
	Diffusion
	LBA
	LBA-race
	rr98
	single-LBA
	speed_acc
	Index

