Package ‘rtweet’

January 9, 2020
Type Package
Version 0.7.0
Title Collecting Twitter Data

Description An implementation of calls designed to collect and organize Twitter data via Twit-
ter's REST and stream Application Program Interfaces (API), which can be found at the follow-
ing URL: <https://developer.twitter.com/en/docs>.
This package has been peer-reviewed by rOpenSci (v. 0.6.9).

Depends R (>=3.1.0)

Imports httr (>= 1.3.0), jsonlite (>= 0.9.22), magrittr (>= 1.5),
tibble (>= 1.3.4), utils, progress, Rcpp, httpuv

License MIT + file LICENSE
URL https://CRAN.R-project.org/package=rtweet

BugReports https://github.com/ropensci/rtweet/issues
Encoding UTF-8

Suggests ggplot2, knitr, magick, openssl, readr, rmarkdown, testthat
(>=2.1.0), webshot, covr, igraph

VignetteBuilder knitr
LazyData yes
RoxygenNote 7.0.2
NeedsCompilation no

Author Michael W. Kearney [aut, cre] (<https://orcid.org/0000-0002-0730-4694>),
Andrew Heiss [rev] (<https://orcid.org/0000-0002-3948-3914>),
Francois Briatte [rev]

Maintainer Michael W. Kearney <kearneymw@missouri.edu>
Repository CRAN
Date/Publication 2020-01-08 23:00:10 UTC

https://CRAN.R-project.org/package=rtweet
https://github.com/ropensci/rtweet/issues

2 R topics documented:

R topics documented:

rtweet-package L L e 3
AS_SCIEENNAIME+ o o v e e e e e e e e e e e e e e 4
bearer_token 5
create_toKen e e 6
direct_mesSages v . e e e e e e e e e e e e e e e e 7
direct_messages_received L. e e 9
do_call rbind L s 11
BMOJIS &+ ¢ v v e v v e 12
flatten e 12
get_collections 13
get_favorites L L e e e 14
get_followers e 16
get_friends e 18
GEL_MENIONS . « . . v v v vttt e e e e e e e e e e e e e e e e 20
get_my_timeline 22
GELTELWEEIETS o v v v v v e 23
GELTELWERLS vt v v i e e e e e e e e e e e e e e e e e e 24
get_timeline e e e e e 25
et tOKENS e e e 27
get_trends e e e 28
langs 29
lat_Ing e 30
LiStS_MEMDErS e e e 31
LStS_StatuSES . . . v v v o e e e e e e e e 33
lists_subscribers e e e e e e e e e e e 35
lists_subscriptions L. e e 36
LSES_USEIS . . o v o o o o e e 37
lookup_collections 38
lookup_coordso 39
lookup_friendships 40
lookup_sStatuses o . e e e e e e e e 41
lookup_USers e e 42
my_friendships 43
network_data e 44
NEXE_CUISOT . v v v v v o o e e e e e e e e e e e e e e 45
PArSE_SIEAM v it e e e e e e e e e e e e e e e e 47
plain_tweets e e e 48
post_favorite e 48
post_follow L 49
post_friendship 50
POStLISt . . . o e 51
POSL_MESSAZE . . .« v o v v e 52
POSL_EWEEL o o o o e e e e e e e e 53
rate_limit e e e 55
read_tWItLEr CSV o o e e e e e e e e 56

round_time e e s 57

rtweet-package 3

search_30day e 58
search_fullarchive 60
search_twWeets e e e e e 62
Search_USEIS e e 67
stopwordslangs 68
SIFEAM_TWEETLS v v v e e e e e e e e e e e e e e e 69
suggested_SIugs L e e e 72
trends_available 73
ts_data L e s 74
tS_plot . . . e 75
tweets_data L e e e 76
TWEELS_WIth_USEIS o e e e e e 77
tweet_shot e e e e e 78
users_data L e e 79
WIIEE_AS_CSV o v v o o o o e e e e e e e e 80

Index 82

rtweet-package rtweet: Collecting Twitter data
Description

rtweet provides users a range of functions designed to extract data from Twitter’s REST and stream-
ing APIs.
Details
It has three main goals:
* Formulate and send requests to Twitter’s REST and stream APIs.

e Retrieve and iterate over returned data.

* Wrangling data into tidy structures.

Author(s)

Maintainer: Michael W. Kearney <kearneymw@missouri.edu> (ORCID)

Other contributors:

¢ Andrew Heiss (ORCID) [reviewer]

¢ Francois Briatte [reviewer]

See Also
Useful links:

e https://CRAN.R-project.org/package=rtweet
* Report bugs at https://github.com/ropensci/rtweet/issues

https://orcid.org/0000-0002-0730-4694
https://orcid.org/0000-0002-3948-3914
https://CRAN.R-project.org/package=rtweet
https://github.com/ropensci/rtweet/issues

4 as_screenname

Examples

Not run:
for instructions on access tokens, see the tokens vignette
vignette("auth”)

for a quick demo check the rtweet vignette
vignette("rtweet")

End(Not run)

as_screenname Coerces user identifier(s) to be evaluated as a screen name(s).

Description

Coerces user identifier(s) to be evaluated as a screen name(s).

Usage

as_screenname (x)

as_userid(x)

Arguments
X A vector consisting of one or more Twitter user identifiers (i.e., screen names or
user IDs).
Details

Default rtweet function behaviors will treat "1234" as a user ID, but the inverse (i.e., treating
"2973406683" as a screen name) should rarely be an issue. However, in those cases, users may
need to mix both screen names and user IDs. To do so, make sure to combine them as a list (and
not a character vector, which will override conflicting user identifier classes). See examples code
for example of mixing user IDs with screen names. Note: this only works with certain functions,
e.g., get_friends, get_followers.

Value

A vector of class screen_name or class user_id

See Also

Other users: 1lists_subscribers(), lookup_users(), search_users(), tweets_with_users(),
users_data()

bearer token 5

Examples

Not run:
get friends list for user with the handle "1234"
get_friends(as_screenname("”1234"))

as_screenname coerces all elements to class "screen_name”
sns <- as_screenname(c("kearneymw”, "1234", "jack"))
class(sns)

print will display user class type
sns

BAD: combine user id and screen name using c()
users <- c(as_userid("2973406683"), as_screenname("1234"))
class(users)

GOOD: combine user id and screen name using list()

users <- list(as_userid(”2973406683"), as_screenname("”1234"))
users

get friend networks for each user

get_friends(users)

End(Not run)

bearer_token Bearer token

Description

Convert default token into bearer token for application only (user-free) authentication method

Usage

bearer_token(token = NULL)

Arguments
token Oauth token created via create_token. See details for more information on
valid tokens.
Details

bearer_token () will only work on valid tokens generated from a user-created Twitter app (requires
a Twitter developer account; see create_token for more information). Unlike the default token
returned by create_token, bearer tokens operate without any knowledge/information about the
user context-meaning, bearer token requests cannot engage in user actions (e.g., posting tweets,
reading DMs), and the information returned by Twitter will not include user-specific variables (e.g.,

6 create_token

if the user is following a certain account). The upside to this authentication method is that it can
afford users with more generous rate limits. For example, the rate limit for the standard search API
is 18,000 tweets per fifteen minutes. With a bearer token, the rate limit is 45,000 tweets per fifteen
minutes. However, this is not true for all endpoints. For a breakdown/comparison of rate limits, see
https://developer.twitter.com/en/docs/basics/rate-limits.html.

Value

A bearer token

Examples

Not run:
use bearer token to search for >18k tweets (up to 45k) w/o hitting rate limit
verified_user_tweets <- search_tweets("filter:verified”, n = 30000, token = bearer_token())

get followers (user == app)

- USER (normal) token rate limit 15req/15min

cnn_flw <- get_followers(”"cnn”, n = 75000)

#i## - APP (bearer) token rate limit 15req/15min

cnn_flw <- get_followers("cnn”, n = 75000, token = bearer_token())

get timelines (user < app)

- USER (normal) token rate limit 90@req/15min

cnn_flw_data <- get_timelines(cnn_flw$user_id[1:900])

#i## - APP (bearer) token rate limit 1500req/15min

cnn_flw_data <- get_timelines(cnn_flw$user_id[1:1500], token = bearer_token())

lookup statuses (user > app)

- USER (normal) token rate limit 90@req/15min

cnn_flw_data2 <- lookup_tweets(cnn_flw_data$status_id[1:90000])

#i## - APP (bearer) token rate limit 300req/15min

cnn_flw_data2 <- lookup_tweets(cnn_flw_data$status_id[1:30000], token = bearer_token())

End(Not run)

create_token Creating Twitter authorization token(s).

Description

Sends request to generate OAuth 1.0 tokens. Twitter also allows users to create user-only (OAuth
2.0) access token. Unlike the 1.0 tokens, OAuth 2.0 tokens are not at all centered on a host user.
Which means these tokens cannot be used to send information (follow requests, Twitter statuses,
etc.). If you have no interest in those capabilities, then 2.0 OAuth tokens do offer some higher rate
limits. At the current time, the difference given the functions in this package is trivial, so I have yet
to verified OAuth 2.0 token method. Consequently, I encourage you to use 1.0 tokens.

https://developer.twitter.com/en/docs/basics/rate-limits.html

direct_messages 7

Usage

create_token(
app = "mytwitterapp”,
consumer_key,
consumer_secret,
access_token = NULL,
access_secret = NULL,
set_renv = TRUE

Arguments

app Name of user created Twitter application

consumer_key Application API key
consumer_secret

Application API secret User-owned application must have Read and write ac-
cess level and Callback URL of http://127.0.0.1:1410.

access_token Access token as supplied by Twitter (apps.twitter.com)
access_secret Access secret as supplied by Twitter (apps.twitter.com)

set_renv Logical indicating whether to save the created token as the default environ-
ment twitter token variable. Defaults to TRUE, meaning the token is saved
to user’s home directory as ".rtweet_token.rds" (or, if that already exists, then
rtweet_tokenl.rds or .rtweet_token2.rds, etc.) and the path to the token to said
token is then set in the user’s .Renviron file and re- read to start being used in
current active session.

Value

Twitter OAuth token(s) (Token1.0).

See Also

https://developer.twitter.com/en/docs/basics/authentication/overview/oauth

Other tokens: get_tokens(), rate_limit()

direct_messages Get direct messages sent to and received by the authenticating user
from the past 30 days

Description

Returns all Direct Message events (both sent and received) within the last 30 days. Sorted in reverse-
chronological order.

https://developer.twitter.com/en/docs/basics/authentication/overview/oauth

Usage

direct_messages

direct_messages(n = 50, next_cursor = NULL, parse = TRUE, token = NULL)

direct_messages_sent(
since_id = NULL,
max_id = NULL,

n = 200,
parse = TRUE,
token = NULL
)
Arguments
n

next_cursor

parse

token

since_id

max_id

Details

optional Specifies the number of direct messages to try and retrieve, up to a
maximum of 50.

If there are more than 200 DMs in the last 30 days, responses will include a
next_cursor value, which can be supplied in additional requests to scroll through
pages of results.

Logical indicating whether to convert response object into nested list. Defaults
to true.

Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

optional Returns results with an ID greater than (that is, more recent than) the
specified ID. There are limits to the number of Tweets which can be accessed
through the API. If the limit of Tweets has occurred since the since_id, the
since_id will be forced to the oldest ID available.

Character, returns results with an ID less than (that is, older than) or equal to
‘max_id°.

Includes detailed information about the sender and recipient user. You can request up to 50 direct
messages per call, and only direct messages from the last 30 days will be available using this

endpoint.

Important: This method requires an access token with read, write, and direct message permissions.
If you own the Twitter application, you can change permissions through Twitter’s developer portal.
Once you have made changes to the application permission settings, you will need to regenerate
your token before those effect of those changes can take effect.

Value

Return parsed or non-parsed response object.

direct_messages_received 9

Examples

Not run:

get my direct messages
dms <- direct_messages()

inspect data structure
str(dms)

End(Not run)

direct_messages_received

(DEPRECATED) Get the most recent direct messages sent to the au-
thenticating user.

Description

Retrieves up to 200 of the most recently received direct messages by the authenticating (home) user.
This function requires access token with read, write, and direct messages access.

Usage

direct_messages_received(
since_id = NULL,
max_id = NULL,

n = 200,
parse = TRUE,
token = NULL
)
Arguments
since_id optional Returns results with an ID greater than (that is, more recent than) the
specified ID. There are limits to the number of Tweets which can be accessed
through the API. If the limit of Tweets has occurred since the since_id, the
since_id will be forced to the oldest ID available.
max_id Character, returns results with an ID less than (that is, older than) or equal to
‘max_id°.
n optional Specifies the number of direct messages to try and retrieve, up to a

maximum of 200. The value of count is best thought of as a limit to the number
of Tweets to return because suspended or deleted content is removed after the
count has been applied.

10 direct_messages_received

parse Logical indicating whether to convert response object into nested list. Defaults
to true.
token Every user should have their own Oauth (Twitter API) token. By default token

= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

Details

Includes detailed information about the sender and recipient user. You can request up to 200 di-
rect messages per call, and only the most recent 200 direct messages will be available using this
endpoint.

Important: This method requires an access token with read, write, and direct message permissions.
If you own the Twitter application, you can change permissions through Twitter’s developer portal.
Once you have made changes to the application permission settings, you will need to regenerate
your token before those effect of those changes can take effect.

Value

Return object converted to nested list. If status code of response object is not 200, the response
object is returned directly.

Examples

Not run:

get my direct messages
dms <- direct_messages_received()

inspect data structure
str(dms)

get direct messages I've sent
sdms <- direct_messages_sent()

inspect data structure
str(dms)

End(Not run)

do_call rbind 11

do_call_rbind Binds list of data frames while preserving attribute (tweets or users)
data.

Description

Row bind lists of tweets/users data whilst also preserving and binding users/tweets attribute data.

Usage
do_call_rbind(x)

Arguments
X List of parsed tweets data or users data, each of which presumably contains
an attribute of the other (i.e., users data contains tweets attribute; tweets data
contains users attribute).
Value

A single merged (by row) data frame (tbl) of tweets or users data that also contains as an attribute
a merged (by row) data frame (tbl) of its counterpart, making it accessible via the users_data or
tweets_data extractor functions.

See Also

Other parsing: tweets_with_users()

Examples

Not run:

lapply through three different search queries

1rt <- lapply(
c("rstats OR tidyverse"”, "data science”, "python"),
search_tweets,
n = 5000

)

convert list object into single parsed data rame
rt <- do_call_rbind(1lrt)

preview tweets data
rt

preview users data
users_data(rt)

12 flatten

End(Not run)

emojis Emojis codes and descriptions data.

Description

This data comes from "Unicode.org", http://unicode.org/emoji/charts/full-emoji-list.
html. The data are codes and descriptions of Emojis.

Usage
emojis
Format

A tibble with two variables and 2,623 observations.

Examples

head(emojis)

flatten flatten/unflatten data frame

Description

Converts list columns that containing all atomic elements into character vectors and vice versa (for
appropriate named variables according to the rtweet package)

Usage

flatten(x)

unflatten(x)

Arguments

X Data frame with list columns or converted-to-character (flattened) columns.

http://unicode.org/emoji/charts/full-emoji-list.html
http://unicode.org/emoji/charts/full-emoji-list.html

get_collections 13

Details

If recursive list columns are contained within the data frame, relevant columns will still be converted
to atomic types but output will also be accompanied with a warning message.

‘flatten’ flattens list columns by pasting them into a single string for each observations. For example,
a tweet that mentions four other users, for the mentions_user_id variable, it will include the four
user IDs separated by a space.

‘unflatten‘ splits on spaces to convert into list columns any columns with the following names: hash-

tags, symbols, urls_url, urls_t.co, urls_expanded_url, media_url, media_t.co, media_expanded_url,

media_type, ext_media_url, ext_media_t.co, ext_media_expanded_url, mentions_user_id, mentions_screen_name,
geo_coords, coords_coords, bbox_coords, mentions_screen_name

Value

If flattened, then data frame where non-recursive list columns—that is, list columns that contain
only atomic, or non-list, elements—have been converted to character vectors. If unflattened, this
function splits on spaces columns originally returned as lists by functions in rtweet package. See
details for more information.

See Also

Other datafiles: read_twitter_csv(), write_as_csv()

Other datafiles: read_twitter_csv(), write_as_csv()

get_collections Get collections by user or status id.

Description

Find collections (themed grouping of statuses) created by specific user or status id. Results include
user, status, and collection features.

Usage

get_collections(
user,
status_id = NULL,
n = 200,
cursor = NULL,
parse = TRUE,
token = NULL

14 get_favorites

Arguments
user Screen name or user id of target user. Requests must provide a value for one of
user or status_id.
status_id Optional, the identifier of the tweet for which to return results. Requests must
provide a value for one of user or status_id.
n Maximum number of results to return. Defaults to 200.
cursor Page identifier of results to retrieve. If parse = TRUE, the next cursor value for
any given request—if available—is stored as an attribute, accessible via next_cursor
parse Logical indicating whether to convert response object into nested list. Defaults
to true.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
Value

Return object converted to nested list if parsed otherwise an HTTP response object is returned.

Examples

Not run:

lookup a specific collection
cnnc <- get_collections(”cnn")

inspect data
str(cnnc)

by status id
wwe <- get_collections(status_id = "925172982313570306")

inspect data
str(wwe)

End(Not run)

get_favorites Get tweets data for statuses favorited by one or more target users.

Description

Returns up to 3,000 statuses favorited by each of one or more specific Twitter users.

get_favorites 15

Usage

get_favorites(
user,
n = 200,
since_id = NULL,
max_id = NULL,

parse = TRUE,
token = NULL

)

Arguments

user Vector of user names, user IDs, or a mixture of both.

n Specifies the number of records to retrieve. Defaults to 200. 3000 is the max
number of favorites returned per token. Due to suspended or deleted content,
this function may return fewer tweets than the desired (n) number. Must be of
length 1 or of length equal to the provided number of users.

since_id Returns results with an status_id greater than (that is, more recent than) the
specified status_id. There are limits to the number of tweets returned by the
REST APL If the limit is hit, since_id is adjusted (by Twitter) to the oldest ID
available.

max_id Character, returns results with an ID less than (that is, older than) or equal to
‘max_id°.

parse Logical, indicating whether to return parsed vector or nested list object. By
default, parse = TRUE saves you the time [and frustrations] associated with dis-
entangling the Twitter API return objects.

token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()* sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

Value

A tbl data frame of tweets data with users data attribute.

See Also

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-favorites-1list
Other tweets: get_mentions(), get_my_timeline(), get_timeline(), lists_statuses(), lookup_statuses(),
search_tweets(), tweets_data(), tweets_with_users()

Examples

Not run:

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-favorites-list

16 get_followers

get max number of statuses favorited by KFC
kfc <- get_favorites("KFC", n = 3000)
kfc

get 400 statuses favorited by each of three users

favs <- get_favorites(c("Lesdoggg"”, "pattonoswalt”, "meganamram”))
favs

End(Not run)

get_followers Get user IDs for accounts following target user.

Description

Returns a list of user IDs for the accounts following specified user. To return more than 75,000 user
IDs in a single call (the rate limit maximum), set "retryonratelimit" to TRUE.

Usage

get_followers(

user,

n = 5000,

page - u_-I n ,
retryonratelimit = FALSE,
parse = TRUE,

verbose = TRUE,

token = NULL

)

Arguments

user Screen name or user ID of target user from which the user IDs of followers will
be retrieved.

n Number of followers to return. Defaults to 5000, which is the max number of
followers returned by a single API request. Twitter allows up to 15 of these
requests every 15 minutes, which means 75,000 is the max number of followers
to return without waiting for the rate limit to reset. If this number exceeds either
75,000 or the remaining number of possible requests for a given token, then the
returned object will only return what it can (less than n) unless retryonratelimit
is set to true.

page Default page = -1 specifies first page of JSON results. Other pages specified via

cursor values supplied by Twitter API response object. If parse = TRUE then the
cursor value can be extracted from the return object by using the next_cursor
function.

get_followers 17

retryonratelimit
If you’d like to retrieve more than 75,000 followers in a single call, then set
retryonratelimit = TRUE and this function will use base Sys. sleep until rate
limits reset and the desired n is achieved or the number of total followers is
exhausted. This defaults to FALSE. See details for more info regarding possible
issues with timing misfires.

parse Logical, indicating whether to return parsed vector or nested list object. By
default, parse = TRUE saves you the time [and frustrations] associated with dis-
entangling the Twitter API return objects.

verbose Logical indicating whether or not to print messages. Only relevant if retryon-
ratelimit = TRUE. Defaults to TRUE, prints sleep times and followers gathered
counts.

token Every user should have their own Oauth (Twitter API) token. By default token

= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

Details

When retryonratelimit = TRUE this function internally makes a rate limit API call to get infor-
mation on (a) the number of requests remaining and (b) the amount of time until the rate limit resets.
So, in theory, the sleep call should only be called once between waves of data collection. However,
as a fail safe, if a system’s time is calibrated such that it expires before the rate limit reset, or if,
in another session, the user dips into the rate limit, then this function will wait (use Sys.sleep for
a second time) until the next rate limit reset. Users should monitor and test this before making
especially large calls as any systematic issues could create sizable inefficiencies.

At this time, results are ordered with the most recent following first — however, this ordering
is subject to unannounced change and eventual consistency issues. While this remains true it is
possible to iteratively build follower lists for a user over time.

Value

A tibble data frame of follower IDs (one column named "user_id").

See Also

https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/
api-reference/get-followers-ids

Other ids: get_friends(), next_cursor()

Examples

Not run:

get 5000 ids of users following the KFC account
(kfc <- get_followers("KFC"))

https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids

18 get_friends

get max number [per fresh token] of POTUS follower IDs
(pres <- get_followers("potus”, n = 75000))

resume data collection (warning: rate limits reset every 15 minutes)
pres2 <- get_followers("potus”, n = 75000, page = next_cursor(pres))

store next cursor in object before merging data
nextpage <- next_cursor(pres2)

merge data frames
pres <- rbind(pres, pres2)

store next cursor as an attribute in the merged data frame
attr(pres, "next_cursor”) <- next_page

view merged ddata
pres

End(Not run)

get_friends Get user IDs of accounts followed by target user(s).

Description

Returns a list of user IDs for the accounts following BY one or more specified users. To return the
friends of more than 15 users in a single call (the rate limit maximum), set "retryonratelimit" to
TRUE.

Usage
get_friends(
users,
n = 5000,
retryonratelimit = FALSE,
page = H_-I n ,
parse = TRUE,
verbose = TRUE,
token = NULL
)
Arguments
users Screen name or user ID of target user from which the user IDs of friends (ac-

counts followed BY target user) will be retrieved.

get_friends 19

n Number of friends (user IDs) to return. Defaults to 5,000, which is the maxi-
mum returned by a single API call. Users are limited to 15 of these requests
per 15 minutes. Twitter limits the number of friends a user can have to 5,000.
To follow more than 5,000 accounts (to have more than 5 thousand "friends")
accounts must meet certain requirements (e.g., a certain ratio of followers to
friends). Consequently, the vast majority of users follow fewer than five thou-
sand accounts. This function has been oriented accordingly (i.e., it assumes the
maximum value of n is 5000). To return more than 5,000 friends for a single
user, call this function multiple times with requests after the first using the page
parameter.

retryonratelimit
If you’d like to retrieve 5,000 or fewer friends for more than 15 target users,
then set retryonratelimit = TRUE and this function will use base Sys.sleep
until rate limits reset and the desired number of friend networks is retrieved.
This defaults to FALSE. See details for more info regarding possible issues with
timing misfires.

page Default page = -1 specifies first page of JSON results. Other pages specified via
cursor values supplied by Twitter API response object. This is only relevant if a
user has over 5000 friends (follows more than 5000 accounts).

parse Logical, indicating whether to return parsed vector or nested list object. By
default, parse = TRUE saves you the time [and frustrations] associated with dis-
entangling the Twitter API return objects.

verbose Logical indicating whether or not to include output messages. Defaults to TRUE,
which includes printing a success message for each inputted user.

token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

Details

When retryonratelimit = TRUE this function internally makes a rate limit API call to get infor-
mation on (a) the number of requests remaining and (b) the amount of time until the rate limit resets.
So, in theory, the sleep call should only be called once between waves of data collection. However,
as a fail safe, if a system’s time is calibrated such that it expires before the rate limit reset, or if,
in another session, the user dips into the rate limit, then this function will wait (use Sys.sleep for
a second time) until the next rate limit reset. Users should monitor and test this before making
especially large calls as any systematic issues could create sizable inefficiencies.

At this time, results are ordered with the most recent following first — however, this ordering
is subject to unannounced change and eventual consistency issues. While this remains true it is
possible to iteratively build friends lists for a user over time.

Value

A tibble data frame with two columns, "user" for name or ID of target user and "user_id" for
follower IDs.

20 get_mentions

See Also

https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/
api-reference/get-friends-ids

Other ids: get_followers(), next_cursor()
Examples

Not run:

get user ids of accounts followed by Donald Trump
(djt <- get_friends("realDonaldTrump"”))

get user ids of accounts followed by (friends) KFC, Trump, and Nate Silver.
(fds <- get_friends(c("kfc"”, "jack”, "NateSilver538")))

End(Not run)

get_mentions Get mentions for the authenticating user.

Description

Returns data on up to 200 of the most recent mentions (Tweets containing a users’s screen_name)
of the authenticating user.

Usage

get_mentions(
n = 200,
since_id = NULL,
max_id = NULL,

parse = TRUE,
token = NULL,
)
Arguments
n Specifies the number of Tweets to try and retrieve, up to a maximum of 200 (the

default). The value of count is best thought of as a limit to the number of tweets
to return because suspended or deleted content is removed after the count has
been applied.

https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-ids
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-ids

get_mentions 21

since_id Returns results with an ID greater than (that is, more recent than) the specified
ID. There are limits to the number of Tweets which can be accessed through the
API. If the limit of Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available.

max_id Character, returns results with an ID less than (that is, older than) or equal to
‘max_id°.

parse Logical indicating whether to convert the response object into an R list. Defaults
to TRUE.

token Every user should have their own Oauth (Twitter API) token. By default token

= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

Other arguments passed as parameters in composed API query.

Details

The timeline returned is the equivalent of the one seen when you view your mentions on twitter.com.
This method can only return up to 800 tweets.

Value

Tibble of mentions data.

See Also

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-mentions_
timeline

Other tweets: get_favorites(), get_my_timeline(), get_timeline(), lists_statuses(),
lookup_statuses(), search_tweets(), tweets_data(), tweets_with_users()

Examples

Not run:

get most recent 200 mentions of authenticating user
mymentions <- get_mentions()

view data
mymentions

End(Not run)

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-mentions_timeline
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-mentions_timeline

22

get_my_timeline

get_my_timeline

Get your timeline

Description

Returns a collection of the most recent Tweets and Retweets posted by the authenticating user and
the users they follow. The home timeline is central to how most users interact with the Twitter

service.

The authenticating user is determined from the token.

Usage

get_my_timeline(

n = 100,

max_id = NULL,

parse
check
token

Arguments

n

max_id

parse

check

token

Value

TRUE,
TRUE,
NULL,

Number of tweets to return per timeline. Defaults to 100. Must be of length 1
or equal to length of user.

Character, returns results with an ID less than (that is, older than) or equal to
max_id.

Logical, indicating whether to return parsed (data.frames) or nested list object.
By default, parse = TRUE saves users from the time (and frustrations) associated
with disentangling the Twitter API return objects.

Logical indicating whether to remove check available rate limit. Ensures the
request does not exceed the maximum remaining number of calls. Defaults to
TRUE.

Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what create_token() sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., vignettes("auth”, "rtweet") or see ?tokens.

Further arguments passed on as parameters in API query.

A tbl data frame of tweets data with users data attribute.

get_retweeters 23

See Also

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_
timeline

Other tweets: get_favorites(), get_mentions(), get_timeline(), lists_statuses(), lookup_statuses(),
search_tweets(), tweets_data(), tweets_with_users()

Examples

Not run:

tweets_from_me_and_the_ppl_i_follow <- get_my_timeline(n = 3200)

End(Not run)

get_retweeters Get user IDs of users who retweeted a given status.

Description
Returns user IDs of users who retweeted a given status. At the current time, this function is limited
in returning a maximum of 100 users for a given status.

Usage

get_retweeters(status_id, n = 100, parse = TRUE, token = NULL)

Arguments
status_id required The status ID of the desired status.
n Specifies the number of records to retrieve. Best if intervals of 100.
parse Logical indicating whether to convert the response object into an R list. Defaults
to TRUE.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
Details

At time of writing, pagination offers no additional data.

Value

data

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline

24 get_retweets

See Also

Other retweets: get_retweets()

get_retweets Get the most recent retweets of a specific Twitter status

Description

Returns a collection of the 100 most recent retweets of a given status. NOTE: Twitter’s API is
currently limited to 100 or fewer retweeters.

Usage
get_retweets(status_id, n = 100, parse = TRUE, token = NULL, ...)
Arguments
status_id required The numerical ID of the desired status.
n optional Specifies the number of records to retrieve. Must be less than or equal
to 100.
parse Logical indicating whether to convert the response object into an R list. Defaults
to TRUE.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
Other arguments used as parameters in the query sent to Twitter’s rest API, for
example, trim_user = TRUE.
Details

NOTE: Twitter’s API is currently limited to 100 or fewer retweeters.

Value

Tweets data of the most recent retweets of a given status

See Also

Other retweets: get_retweeters()

get_timeline

25

get_timeline

Get one or more user timelines (tweets posted by target user(s)).

Description

Returns up to 3,200 statuses posted to the timelines of each of one or more specified Twitter users.

Usage

get_timeline(

user,

n = 100,

max_id = NULL,

Vector of user names, user IDs, or a mixture of both.

Number of tweets to return per timeline. Defaults to 100. Must be of length 1
or equal to length of user. This number should not exceed 3200 as Twitter limits
returns to the most recent 3,200 statuses posted or retweeted by each user.

Character, returns results with an ID less than (that is, older than) or equal to
‘max_id°.

Logical, indicating whether to return a user-timeline or home-timeline. By de-
fault, home is set to FALSE, which means get_timeline returns tweets posted
by the given user. To return a user’s home timeline feed, that is, the tweets
posted by accounts followed by a user, set home to TRUE.

home = FALSE,
parse = TRUE,
check = TRUE,
token = NULL,

)

get_timelines(
user,
n = 100,
max_id = NULL,
home = FALSE,
parse = TRUE,
check = TRUE,
token = NULL,

)

Arguments

user

n

max_id

home

parse

Logical, indicating whether to return parsed (data.frames) or nested list object.
By default, parse = TRUE saves users from the time [and frustrations] associated
with disentangling the Twitter API return objects.

26 get_timeline

check Logical indicating whether to remove check available rate limit. Ensures the
request does not exceed the maximum remaining number of calls. Defaults to
TRUE.

token Every user should have their own Oauth (Twitter API) token. By default token

= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instructions on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

Further arguments passed on as parameters in API query.

Value

A tbl data frame of tweets data with users data attribute.

See Also

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_
timeline

Other tweets: get_favorites(), get_mentions(), get_my_timeline(), lists_statuses(),
lookup_statuses(), search_tweets(), tweets_data(), tweets_with_users()

Examples

Not run:

get most recent 3200 tweets posted by Donald Trump's account
djt <- get_timeline("realDonaldTrump”, n = 3200)

data frame where each observation (row) is a different tweet
djt

users data for realDonaldTrump is also retrieved
users_data(djt)

retrieve timelines of mulitple users
tmls <- get_timeline(c("KFC", "ConanOBrien”, "NateSilver538"), n = 1000)

it's returned as one data frame
tmls

count observations for each timeline
table(tmls$screen_name)

End(Not run)

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timeline
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timeline

get_tokens 27

get_tokens Fetching Twitter authorization token(s).

Description

Call function used to fetch and load Twitter OAuth tokens. Since Twitter application key should
be stored privately, users should save the path to token(s) as an environment variable. This allows
Tokens to be instantly [re]loaded in future sessions. See the "tokens" vignette for instructions on
obtaining and using access tokens.

Usage

get_tokens()

get_token()

Details
This function will search for tokens using R, internal, and global environment variables (in that

order).

Value

Twitter OAuth token(s) (Token1.0).

See Also

Other tokens: create_token(), rate_limit()

Examples

Not run:
fetch default token(s)
token <- get_tokens()

print token
token

End(Not run)

28

get_trends

get_trends

Get Twitter trends data.

Description

Get Twitter trends data.

Usage

get_trends(
woeid = 1,
lat = NULL,
lng = NULL,

exclude_hashtags = FALSE,

token
parse = TRUE

Arguments

woeid

lat

Ing

Numeric, WOEID (Yahoo! Where On Earth ID) or character string of de-
sired town or country. Users may also supply latitude and longitude coor-
dinates to fetch the closest available trends data given the provided location.
Latitude/longitude coordinates should be provided as WOEID value consist-
ing of 2 numeric values or via one latitude value and one longitude value (to
the appropriately named parameters). To browse all available trend places, see
trends_available

Optional alternative to WOEID. Numeric, latitude in degrees. If two coordinates
are provided for WOEID, this function will coerce the first value to latitude.

Optional alternative to WOEID. Numeric, longitude in degrees. If two coor-
dinates are provided for WOEID, this function will coerce the second value to
longitude.

exclude_hashtags

token

parse

Value

Logical, indicating whether or not to exclude hashtags. Defaults to FALSE-
meaning, hashtags are included in returned trends.

Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

Logical, indicating whether or not to parse return trends data. Defaults to true.

Tibble data frame of trends data for a given geographical area.

langs 29

See Also

Other trends: trends_available()

Examples

Not run:

Retrieve available trends
trends <- trends_available()
trends

Store WOEID for Worldwide trends
worldwide <- trends$woeid[grep("world”, trends$name, ignore.case = TRUE)[1]]

Retrieve worldwide trends datadata
ww_trends <- get_trends(worldwide)

Preview trends data
ww_trends

Retrieve trends data using latitude, longitude near New York City
nyc_trends <- get_trends_closest(lat = 40.7, lng = -74.0)

should be same result if lat/long supplied as first argument
nyc_trends <- get_trends_closest(c(40.7, -74.0))

Preview trends data
nyc_trends

Provide a city or location name using a regular expression string to

have the function internals do the WOEID lookup/matching for you
(luk <- get_trends("london"))

End(Not run)

langs Language codes recognized by Twitter data.

Description

This data comes from the Library of Congress, http://www.loc.gov/standards/is0639-2/
IS0-639-2_utf-8.txt. The data are descriptions and codes associated with internationally rec-
ognized languages. Variables include translations for each language represented as bibliographic,
terminologic, alpha, english, and french.

http://www.loc.gov/standards/iso639-2/ISO-639-2_utf-8.txt
http://www.loc.gov/standards/iso639-2/ISO-639-2_utf-8.txt

30 lat_Ing

Usage

langs

Format

A tibble with five variables and 486 observations.

Examples

head(langs)

lat_lng Adds single-point latitude and longitude variables to tweets data.

Description

Appends parsed Twitter data with latitude and longitude variables using all available geolocation

information.
Usage
lat_lng(x, coords = c("coords_coords”, "bbox_coords"”, "geo_coords"))
Arguments
X Parsed Twitter data as returned by various rtweet functions. This should be a
data frame with variables such as "bbox_coords", "coords_coords", and "geo_coords"
(among other non-geolocation Twitter variables).
coords Names of variables containing latitude and longitude coordinates. Priority is
given to bounding box coordinates (each obs consists of eight entries) followed
by the supplied order of variable names. Defaults to "bbox_coords", "coords_coords",
and "geo_coords") (which are the default column names of data returned by
most status-oriented rtweet functions).
Details

On occasion values may appear to be outliers given a previously used query filter (e.g., when search-
ing for tweets sent from the continental US). This is typically because those tweets returned a large
bounding box that overlapped with the area of interest. This function converts boxes into their ge-
ographical midpoints, which works well in the vast majority of cases, but sometimes includes an
otherwise puzzling result.

Value

Returns updated data object with full information latitude and longitude vars.

lists_members 31

See Also

Other geo: lookup_coords()

Examples

Not run:

stream tweets sent from the US
rt <- stream_tweets(lookup_coords(”usa”), timeout = 10)

use lat_lng to recover full information geolocation data
rtll <- lat_lng(rt)

plot points
with(rtll, plot(lng, lat))

End(Not run)

lists_members Get Twitter list members (users on a given list).

Description

Get Twitter list members (users on a given list).

Get Twitter list memberships (lists containing a given user)

Usage

lists_members(
list_id = NULL,
slug = NULL,
owner_user = NULL,
n = 5000,
cursor = "-1",
token = NULL,
parse = TRUE,

lists_memberships(
user = NULL,
n = 200,
cursor = "-1",
filter_to_owned_lists = FALSE,

32

token =
parse =

NULL,
TRUE,

lists_members

previous_cursor = NULL

)

Arguments
list_id
slug

owner_user

cursor

token

parse

user

required The numerical id of the list.

required You can identify a list by its slug instead of its numerical id. If you
decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_user parameters.

optional The screen name or user ID of the user who owns the list being re-
quested by a slug.

Specifies the number of results to return per page (see cursor below). For
‘list_memberships()‘, the default and max is 200 per page. Twitter technically
allows up to 1,000 per page, but above 200 frequently results in an over capacity
error. For ‘lists_members()‘, the default, and max number of users per list, is
5,000.

optional Breaks the results into pages. Provide a value of -1 to begin pag-
ing. Provide values as returned in the response body’s next_cursor and previ-
ous_cursor attributes to page back and forth in the list.

Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

Logical indicating whether to convert the response object into an R list. Defaults
to TRUE.

Other arguments used as parameters in query composition.

The user id or screen_name of the user for whom to return results for.

filter_to_owned_lists

previous_cursor

Details

When set to true . t or 1, will return just lists the authenticating user owns, and
the user represented by user_id or screen_name is a member of.

If you wish to use previous cursor instead of next, input value here to override
next cursor.

Due to deleted or removed lists, the returned number of memberships is often less than the provided
n value. This is a reflection of the API and not a unique quirk of rtweet.

Value

Either a nested list (if parsed) or an HTTP response object.

lists_statuses 33

See Also

Other lists: lists_statuses(), lists_subscribers(), lists_subscriptions(), lists_users()
Examples
Not run:

get list members for a list of polling experts using list_id
(pollsters <- lists_members("105140588"))

get list members of cspan's senators list

sens <- lists_members(slug = "senators"”, owner_user = "cspan”)
sens

get list members for an rstats list using list topic slug

list owner's screen name

rstats <- lists_members(slug = "rstats”, owner_user = "scultrera”)
rstats

End(Not run)

Not run:

get up to 1000 Twitter lists that include Nate Silver
ns538 <- lists_memberships(”NateSilver538", n = 1000)

view data
ns538

End(Not run)

lists_statuses Get a timeline of tweets authored by members of a specified list.

Description

Get a timeline of tweets authored by members of a specified list.

Usage

lists_statuses(
list_id = NULL,
slug = NULL,
owner_user = NULL,
since_id = NULL,
max_id = NULL,

34 lists_statuses

n = 200,
include_rts = TRUE,
parse = TRUE,
token = NULL
)
Arguments
list_id required The numerical id of the list.
slug required You can identify a list by its slug instead of its numerical id. If you
decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_screen_name parameters.
owner_user optional The screen name or user ID of the user who owns the list being re-
quested by a slug.
since_id optional Returns results with an ID greater than (that is, more recent than) the
specified ID. There are limits to the number of Tweets which can be accessed
through the APIL If the limit of Tweets has occurred since the since_id, the
since_id will be forced to the oldest ID available.
max_id optional Returns results with an ID less than (that is, older than) or equal to the
specified ID.
n optional Specifies the number of results to retrieve per "page."
include_rts optional When set to either true, t or 1, the list timeline will contain native
retweets (if they exist) in addition to the standard stream of tweets. The out-
put format of retweeted tweets is identical to the representation you see in
home_timeline.
parse Logical indicating whether to convert the response object into an R list. Defaults
to TRUE.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
Value
data
See Also

Other lists: 1ists_members(), lists_subscribers(), lists_subscriptions(), lists_users()

Other tweets: get_favorites(), get_mentions(), get_my_timeline(), get_timeline(), lookup_statuses(),
search_tweets(), tweets_data(), tweets_with_users()

lists_subscribers 35

lists_subscribers Get subscribers of a specified list.

Description

Get subscribers of a specified list.

Usage

lists_subscribers(
list_id = NULL,

slug = NULL,
owner_user = NULL,
n = 20,
cursor = "-1",
parse = TRUE,
token = NULL
)
Arguments
list_id required The numerical id of the list.
slug required You can identify a list by its slug instead of its numerical id. If you
decide to do so, note that you’ll also have to specify the list owner using the
owner_id or owner_user parameters.
owner_user optional The screen name or user ID of the user who owns the list being re-
quested by a slug.
n optional Specifies the number of results to return per page (see cursor below).
The default is 20, with a maximum of 5,000.
cursor semi-optional Causes the collection of list members to be broken into "pages"
of consistent sizes (specified by the count parameter). If no cursor is provided,
a value of -1 will be assumed, which is the first "page." The response from the
API will include a previous_cursor and next_cursor to allow paging back and
forth. See Using cursors to navigate collections for more information.
parse Logical indicating whether to convert the response object into an R list. Defaults
to TRUE.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
See Also

Other lists: 1ists_members(), lists_statuses(), lists_subscriptions(), lists_users()

Other users: as_screenname(), lookup_users(), search_users(), tweets_with_users(), users_data()

36

Examples

Not run:

lists_subscriptions

get subscribers of new york times politics list
rstats <- lists_subscribers(
slug = "new-york-times-politics”,

owner_user =
n = 1000

End(Not run)

"nytpolitics”,

lists_subscriptions Get list subscriptions of a given user.

Description

Get list subscriptions of a given user.

Usage
lists_subscriptions(user, n = 20, cursor = "-1", parse = TRUE, token = NULL)
Arguments
user Either the user ID or screen name of user.
n Specifies the number of results to return per page (see cursor below). The default
is 20, with a maximum of 1000.
cursor Causes the collection of list members to be broken into "pages" of consistent
sizes (specified by the count parameter). If no cursor is provided, a value of
-1 will be assumed, which is the first "page." The response from the API will
include a previous_cursor and next_cursor to allow paging back and forth. See
Using cursors to navigate collections for more information.
parse Logical indicating whether to convert the response object into an R list. Defaults
to TRUE.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
See Also

Other lists: 1ists_members(), lists_statuses(), lists_subscribers(), lists_users()

lists_users 37

Examples

Not run:

get subscriptions of new york times politics list
rstats <- lists_subscriptions(

slug = "new-york-times-politics”,

n = 1000

End(Not run)

lists_users Get all lists a specified user subscribes to, including their own.

Description

Get all lists a specified user subscribes to, including their own.

Usage

lists_users(user, reverse = FALSE, token = NULL, parse = TRUE)

Arguments
user The ID of the user or screen name for whom to return results.
reverse optional Set this to true if you would like owned lists to be returned first. See
description above for information on how this parameter works.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
parse Logical indicating whether to convert the response object into an R list. Defaults
to TRUE.
Value
data
See Also

Other lists: 1ists_members(), lists_statuses(), lists_subscribers(), lists_subscriptions()

38 lookup_collections

Examples

Not run:

get lists subsribed to by Nate Silver
lists_users(”"NateSilver538")

End(Not run)

lookup_collections Get collections by user or status id.

Description

Return data for specified collection (themed grouping of Twitter statuses). Response data varies
significantly compared to most other users and tweets data objects returned in this package.

Usage
lookup_collections(id, n = 200, parse = TRUE, token = NULL, ...)
Arguments
id required. The identifier of the Collection to return results for e.g., "custom-
539487832448843776"
n Specifies the maximum number of results to include in the response. Specify
count between 1 and 200.
parse Logical indicating whether to convert response object into nested list. Defaults
to true.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
Other arguments passed along to composed request query.
Value

Return object converted to nested list if parsed otherwise an HTTP response object is returned.

lookup_coords 39

Examples

Not run:

lookup a specific collection
cc <- lookup_collections("custom-539487832448843776")

inspect data
str(cc)

End(Not run)

lookup_coords Get coordinates of specified location.

Description

Convenience function for looking up latitude/longitude coordinate information for a given loca-
tion. Returns data as a special "coords" object, which is specifically designed to interact smoothly
with other relevant package functions. NOTE: USE OF THIS FUNCTION REQUIRES A VALID
GOOGLE MAPS API KEY.

Usage
lookup_coords(address, components = NULL, apikey = NULL, ...)
Arguments
address Desired location typically in the form of place name, subregion, e.g., address
= "lawrence, KS". Also accepts the name of countries, e.g., address = "usa",
address = "brazil" or states, e.g., address = "missouri" or cities, e.g., address =
"chicago". In most cases using only address should be sufficient.
components Unit of analysis for address e.g., components = "country:US". Potential compo-
nents include postal_code, country, administrative_area, locality, route.
apikey A valid Google Maps API key. If NULL, ‘lookup_coords()‘ will look for a rele-
vant API key stored as an environment variable (e.g., ‘GOOGLE_MAPS_KEY").
Additional arguments passed as parameters in the HTTP request
Details

Since Google Maps implemented stricter API requirements, sending requests to Google’s APl isn’t
very convenient. To enable basic uses without requiring a Google Maps API key, a number of the
major cities throughout the word and the following two larger locations are baked into this function:
world’ and ’usa’. If world’ is supplied then a bounding box of maximum latitutde/longitude
values, i.e., c(-180,-90,180,90), and a center point c(@, @) are returned. If "usa’ is supplied then

40 lookup_friendships

estimates of the United States’ bounding box and mid-point are returned. To specify a city, provide
the city name followed by a space and then the US state abbreviation or country name. To see a list
of all included cities, enter rtweet: : :citycoords in the R console to see coordinates data.

Value

Object of class coords.

See Also

Other geo: lat_lng()

Examples

Not run:

get coordinates associated with the following addresses/components
sf <- lookup_coords("san francisco, CA", "country:US")

usa <- lookup_coords("usa")

1nd <- lookup_coords("”london")

bz <- lookup_coords("brazil")

pass a returned coords object to search_tweets
bztw <- search_tweets(geocode = bz)

or stream tweets
ustw <- stream_tweets(usa, timeout = 10)

End(Not run)

lookup_friendships Lookup friendship information between two specified users.

Description

Gets information on friendship between two Twitter users.

Usage

lookup_friendships(source, target, parse = TRUE, token = NULL)

lookup_statuses 41

Arguments
source Screen name or user id of source user.
target Screen name or user id of target user.
parse Logical indicating whether to return parsed data frame. Defaults to true.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
Value

Data frame converted form returned JSON object. If parse is not true, the HTTP response object is
returned instead.

See Also

Other friends: my_friendships()

lookup_statuses Get tweets data for given statuses (status IDs).

Description

Returns data on up to 90,000 Twitter statuses. To return data on more than 90,000 statuses, users
must iterate through status IDs whilst avoiding rate limits, which reset every 15 minutes.

Usage

lookup_statuses(statuses, parse = TRUE, token = NULL)

lookup_tweets(statuses, parse = TRUE, token = NULL)

Arguments
statuses User id or screen name of target user.
parse Logical, indicating whether or not to parse return object into data frame(s).
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
Value

A tibble of tweets data.

42 lookup_users

See Also

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-1lookup

Other tweets: get_favorites(), get_mentions(), get_my_timeline(), get_timeline(), lists_statuses(),
search_tweets(), tweets_data(), tweets_with_users()

Examples

Not run:

create object containing status IDs

statuses <- c(
"567053242429734913",
"266031293945503744" ,
"440322224407314432"

)

lookup tweets data for given statuses
tw <- lookup_statuses(statuses)
tw

End(Not run)

lookup_users Get Twitter users data for given users (user IDs or screen names).

Description
Returns data on up to 90,000 Twitter users. To return data on more than 90,000 users, code must be
written to iterate through user IDs whilst avoiding rate limits, which reset every 15 minutes.

Usage

lookup_users(users, parse = TRUE, token = NULL)

Arguments
users User id or screen name of target user.
parse Logical, indicating whether or not to parse return object into data frame(s).
token Every user should have their own Oauth (Twitter API) token. By default token

= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-lookup

my._friendships 43

Value

A tibble of users data.

See Also

https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/
api-reference/get-users-1lookup

Other users: as_screenname(), lists_subscribers(), search_users(), tweets_with_users(),
users_data()

Examples

Not run:

select one or more twitter users to lookup
users <- c(
"potus”, "hillaryclinton”, "realdonaldtrump”,
"fivethirtyeight”, "cnn", "espn”, "twitter”

)

n

get users data
usr_df <- lookup_users(users)

view users data
usr_df

view tweet data for these users via tweets_data()
tweets_data(usr_df)

End(Not run)

my_friendships Lookup friendship information between users.

Description

Gets information on friendship between authenticated user and up to 100 other users.

Usage

my_friendships(user, parse = TRUE, token = NULL)

https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-users-lookup
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-users-lookup

44

Arguments

user
parse

token

Value

network _data

Screen name or user id of target user.
Logical indicating whether to return parsed data frame. Defaults to true.

OAuth token. By default token = NULL fetches a non-exhausted token from an
environment variable. Find instructions on how to create tokens and setup an
environment variable in the tokens vignette (in r, send ?tokens to console).

Data frame converted form returned JSON object. If parse is not true, the HTTP response object is

returned instead.

See Also

Other friends: lookup_friendships()

network_data

Network data

Description

Convert Twitter data into a network-friendly data frame

Convert Twitter data into network graph object (igraph)

Usage

network_data(.x, .e = c("mention,retweet,reply,quote”))

network_graph(.x, .e = c("mention,retweet,reply,quote”))

Arguments

. X

.e

Details

Data frame returned by rtweet function

non non non

Type of edge/link—i.e., "mention", "retweet", "quote", "reply". This must be a
character vector of length one or more. This value will be split on punctuation
and space (so you can include multiple types in the same string separated by a
comma or space). The values "all" and "semantic" are assumed to mean all edge

types, which is equivalent to the default value of c("mention, retweet, reply,quote”)

network_data returns a data frame that can easily be converted to various network classes. For
direct conversion to a network object, see network_graph.

network_graph requires previous installation of the igraph package. To return a network-friendly
data frame, see network_data

next_cursor 45

Value

A from/to data edge data frame
An igraph object

See Also

network_graph

network_data

Examples

Not run:
search for #rstats tweets
rstats <- search_tweets("#rstats”, n = 200)

create from-to data frame representing retweet/mention/reply connections
rstats_net <- network_data(rstats, "retweet,mention,reply"”)

view edge data frame
rstats_net

view user_id->screen_name index
attr(rstats_net, "idsn")

if igraph is installed...
if (requireNamespace("igraph”, quietly = TRUE)) {

(1) convert directly to graph object representing semantic network
rstats_net <- network_graph(rstats)

(2) plot graph via igraph.plotting
plot(rstats_net)
3

End(Not run)

next_cursor next_cursor/previous_cursor/max_id

Description

Method for returning next value (used to request next page or results) object returned from Twitter
APIs.

Paginate in reverse (limited integration)

Get the newest ID collected to date.

46 next_cursor

Usage
next_cursor(x)
max_id(.x)
previous_cursor(x)

since_id(.x)

Arguments
X Data object returned by Twitter APL.
X id

Value

Character string of next cursor value used to retrieved the next page of results. This should be used
to resume data collection efforts that were interrupted by API rate limits. Modify previous data
request function by entering the returned value from next_cursor for the page argument.

See Also

Other ids: get_followers(), get_friends()
Other extractors: tweets_data(), users_data()
Other ids: get_followers(), get_friends()

Other extractors: tweets_data(), users_data()

Examples

Not run:

Retrieve user ids of accounts following POTUS
f1 <- get_followers("potus”, n = 75000)

store next_cursor in page
page <- next_cursor(f1)

max. number of ids returned by one token is 75,000 every 15

minutes, so you'll need to wait a bit before collecting the

next batch of ids

sys.Sleep(15 * 60) ## Suspend execution of R expressions for 15 mins

Use the page value returned from \code{next_cursor} to continue
where you left off.
f2 <- get_followers("potus”, n = 75000, page = page)

combine
f <- do.call("rbind”, list(f1, f2))

parse_stream 47

count rows
nrow(f)

End(Not run)

parse_stream Converts Twitter stream data (JSON file) into parsed data frame.

Description

Converts Twitter stream data (JSON file) into parsed data frame.

Usage
parse_stream(path, ...)
Arguments
path Character, name of JSON file with data collected by stream_tweets.
Other arguments passed on to internal data_from_stream function.
Value

A tbl of tweets data with attribute of users data

See Also

Other stream tweets: stream_tweets()

Examples

Not run:

run and save stream to JSON file

stream_tweets(
"the,a,an,and”, timeout = 60,
file_name = "theaanand.json",
parse = FALSE

)

parse stream file into tibble data frame
rt <- parse_stream("”theaanand. json")

End(Not run)

48 post_favorite

plain_tweets Clean up character vector (tweets) to more of a plain text.

Description

Clean up character vector (tweets) to more of a plain text.

Usage

plain_tweets(x)

Arguments
X The desired character vector or data frame/list with named column/element "text"
to be cleaned and processed.
Value

Data reformatted with ascii encoding and normal ampersands and without URL links, line breaks,
fancy spaces/tabs, fancy apostrophes,

post_favorite Favorites target status id.

Description

Favorites target status id.

Usage

post_favorite(
status_id,
destroy = FALSE,
include_entities = FALSE,

token = NULL
)
Arguments
status_id Status id of target tweet.
destroy Logical indicating whether to post (add) or remove (delete) target tweet as fa-

vorite.
include_entities

Logical indicating whether to include entities object in return.

token OAuth token. By default token = NULL fetches a non-exhausted token from an
environment variable tokens.

post_follow 49

See Also

Other post: post_follow(), post_friendship(), post_tweet()

Examples

Not run:
rt <- search_tweets("rstats")
r <- lapply(rt$user_id, post_favorite)

End(Not run)

post_follow Follows target twitter user.

Description

Follows target twitter user.

Usage

post_follow(
user,
destroy = FALSE,
mute = FALSE,
notify = FALSE,
retweets = TRUE,
token = NULL

post_unfollow_user(user, token = NULL)

post_mute(user, token = NULL)

Arguments

user Screen name or user id of target user.

destroy Logical indicating whether to post (add) or remove (delete) target tweet as fa-
vorite.

mute Logical indicating whether to mute the intended friend (you must already be
following this account prior to muting them)

notify Logical indicating whether to enable notifications for target user. Defaults to
false.

retweets Logical indicating whether to enable retweets for target user. Defaults to true.

token OAuth token. By default token = NULL fetches a non-exhausted token from an

environment variable tokens.

50

See Also

post_friendship

Other post: post_favorite(), post_friendship(), post_tweet()

Examples

Not run:

post_follow("BarackObama")

End(Not run)

post_friendship

Updates friendship notifications and retweet abilities.

Description

Updates friendship notifications and retweet abilities.

Usage

post_friendship(user, device = FALSE, retweets = FALSE, token = NULL)

Arguments

user

device

retweets

token

See Also

Screen name or user id of target user.

Logical indicating whether to enable or disable device notifications from target
user behaviors. Defaults to false.

Logical indicating whether to enable or disable retweets from target user behav-
iors. Defaults to false.

OAuth token. By default token = NULL fetches a non-exhausted token from an
environment variable tokens.

Other post: post_favorite(), post_follow(), post_tweet()

post_list

51

post_list Manage Twitter lists

Description

Create, add users, and destroy Twitter lists

Usage
post_list(
users = NULL,
name = NULL,

description = NULL,
private = FALSE,
destroy = FALSE,
list_id = NULL,

Logical indicating whether created list should be private. Defaults to false,

Logical indicating whether to delete a list. Either ‘list_id‘ or ‘slug‘ must be

OAuth token associated with user who owns [or will own] the list of interest.

slug = NULL,
token = NULL
)
Arguments
users Character vectors of users to be added to list.
name Name of new list to create.
description Optional, description of list (single character string).
private
meaning the list would be public. Not applicable if list already exists.
destroy
provided if ‘destroy = TRUE".
list_id Optional, numeric ID of list.
slug Optional, list slug.
token
Token must have write permissions!
Value

Response object from HTTP request.

Examples

Not run:

CNN twitter accounts

users <- c("cnn”, "cnnbrk", "cnni"”, "cnnpolitics”, "cnnmoney",
"cnnnewsroom”, "cnnspecreport”, "CNNNewsource",
"CNNNSdigital”, "CNNTonight")

52 post_message

create CNN-accounts list with 9 total users
(cnn_lst <- post_list(users,
"cnn-accounts”, description = "Official CNN accounts”))

view list in browser
browseURL (sprintf("https://twitter.com/%s/lists/cnn-accounts”,
rtweet:: :home_user()))

search for more CNN users
cnn_users <- search_users("CNN", n = 200)

filter and select more users to add to list

more_users <- cnn_users %>%
subset(verified & !tolower(screen_name) %in% tolower(users)) %>%
.$screen_name %>%
grep(”"cnn”, ., ignore.case = TRUE, value = TRUE)

add more users to list- note: can only add up to 100 at a time
post_list(users = more_users, slug = "cnn-accounts")

view updated list in browser (should be around 100 users)
browseURL (sprintf("https://twitter.com/%s/lists/cnn-accounts”,
rtweet:::home_user()))

n n

select users on list without in their name field
drop_users <- cnn_users %>%
subset(screen_name %in% more_users & !grepl("cnn”, name, ignore.case = TRUE)) %>%

.$screen_name

cnn

drop these users from the cnn list
post_list(users = drop_users, slug = "cnn-accounts”,
destroy = TRUE)

view updated list in browser (should be around 100 users)

browseURL (sprintf("https://twitter.com/%s/lists/cnn-accounts”,
rtweet:::home_user()))

delete list entirely

post_list(slug = "cnn-accounts"”, destroy = TRUE)

End(Not run)

post_message Posts direct message from user’s Twitter account

Description

Posts direct message from user’s Twitter account

post_tweet 53

Usage

post_message(text, user, media = NULL, token = NULL)

Arguments
text Character, text of message.
user Screen name or user ID of message target.
media File path to image or video media to be included in tweet.
token OAuth token. By default token = NULL fetches a non-exhausted token from an
environment variable tokens.
post_tweet Posts status update to user’s Twitter account
Description

Posts status update to user’s Twitter account

Usage
post_tweet(
status = "my first rtweet #rstats”,
media = NULL,
token = NULL,

in_reply_to_status_id = NULL,

destroy_id = NULL,

retweet_id = NULL,
auto_populate_reply_metadata = FALSE
)
Arguments
status Character, tweet status. Must be 280 characters or less.
media File path to image or video media to be included in tweet.
token OAuth token. By default token = NULL fetches a non-exhausted token from an

environment variable tokens.

in_reply_to_status_id
Status ID of tweet to which you’d like to reply. Note: in line with the Twit-
ter API, this parameter is ignored unless the author of the tweet this parameter
references is mentioned within the status text.

destroy_id To delete a status, supply the single status ID here. If a character string is sup-
plied, overriding the default (NULL), then a destroy request is made (and the
status text and media attachments) are irrelevant.

54 post_tweet

retweet_id To retweet a status, supply the single status ID here. If a character string is
supplied, overriding the default (NULL), then a retweet request is made (and
the status text and media attachments) are irrelevant.
auto_populate_reply_metadata
If set to TRUE and used with in_reply_to_status_id, leading @mentions will

be looked up from the original Tweet, and added to the new Tweet from there.
Defaults to FALSE.

See Also

Other post: post_favorite(), post_follow(), post_friendship()

Examples

Not run:

generate data to make/save plot (as a .png file)
X <= rnorm(300)

y <= x + rnorm(300, 0, .75)

col <- c(rep("#002244aa", 50), rep("#440000aa", 50))
bg <- c(rep("#6699ffaa", 50), rep("#dd6666aa", 50))

crate temporary file name
tmp <- tempfile(fileext = ".png")

save as png

png(tmp, 6, 6, "in", res = 127.5)

par(tcl = -.15, family = "Inconsolata”,
font.main = 2, bty = "n", xaxt = "1", yaxt = "1",
bg = "#fofofe", mar = c(3, 3, 2, 1.5))

plot(x, y, xlab = NULL, ylab = NULL, pch = 21, cex = 1,
bg = bg, col = col,

main = "This image was uploaded by rtweet”)
grid(8, lwd = .15, 1ty = 2, col = "#00000088")
dev.off()

post tweet with media attachment
post_tweet("a tweet with media attachment”, media = tmp)

example of replying within a thread
first post
post_tweet(status="first in a thread")

lookup status_id
my_timeline <- get_timeline(rtweet:::home_user())

ID for reply
reply_id <- my_timeline$status_id[1]

post reply
post_tweet("second in the thread”,
in_reply_to_status_id = reply_id)

rate_limit 55

End(Not run)

rate_limit Get rate limit data for given Twitter access tokens.

Description

Returns rate limit information for one or more Twitter tokens, optionally filtered by rtweet function
or specific Twitter API path(s)

Usage
rate_limit(token = NULL, query = NULL, parse = TRUE)

rate_limits(token = NULL, query = NULL, parse = TRUE)

Arguments

token One or more OAuth tokens. By default token = NULL fetches a non-exhausted
token from an environment variable. Find instructions on how to create tokens
and setup an environment variable in the tokens vignette (in r, send ?tokens to
console).

query Specific API (path) or a character function name, e.g., query = "get_timeline",
used to subset the returned data. If null, this function returns entire rate limit
request object as a tibble data frame. Otherwise, query returns specific values
matching the query of interest; e.g., query = "lookup/users" returns remaining
limit for user lookup requests; type = "followers/ids" returns remaining limit for
follower id requests; type = "friends/ids" returns remaining limit for friend id
requests.

parse Logical indicating whether to parse response object into a data frame.

Details

If multiple tokens are provided, this function will return the names of the associated [token] appli-
cations as new variable (column) or as a named element (if parse = FALSE).

Value

Tibble data frame with rate limit information pertaining to the limit (max allowed), remaining (spe-
cific to token), reset (minutes until reset), and reset_at (time of rate limit reset). If query is specified,
only relevant rows are returned.

See Also

https://developer.twitter.com/en/docs/developer-utilities/rate-limit-status/api-reference/
get-application-rate_limit_status

Other tokens: create_token(), get_tokens()

https://developer.twitter.com/en/docs/developer-utilities/rate-limit-status/api-reference/get-application-rate_limit_status
https://developer.twitter.com/en/docs/developer-utilities/rate-limit-status/api-reference/get-application-rate_limit_status

56 read_twitter_csv

Examples

Not run:

get all rate_limit information for default token
rate_limit()

get rate limit info for API used in lookup_statuses
rate_limit("lookup_statuses”)

get rate limit info for specific token
token <- get_tokens()

rate_limit(token)

rate_limit(token, "search_tweets")

End(Not run)

read_twitter_csv Read comma separated value Twitter data.

Description

Reads Twitter data that was previously saved as a CSV file.

Usage

read_twitter_csv(file, unflatten = FALSE)

Arguments
file Name of CSV file.
unflatten Logical indicating whether to unflatten (separate hasthags and mentions columns
on space, converting characters to lists), defaults to FALSE.
Value

A tbl data frame of Twitter data

See Also

Other datafiles: flatten(), write_as_csv()

round_time 57

Examples

Not run:

read in data.csv
rt <- read_twitter_csv("data.csv")

End(Not run)

round_time A generic function for rounding date and time values

Description

A generic function for rounding date and time values

Usage

round_time(x, n, tz)

Arguments
X A vector of class POSIX or Date.
n Unit to round to. Defaults to mins. Numeric values treated as seconds. Other-
wise this should be one of "mins", "hours", "days", "weeks", "months", "years"
(plural optional).
tz Time zone to be used, defaults to "UTC" (Twitter default)
Value

If POSIXCct then POSIX. If date then Date.

Examples

class posixct
round_time(Sys.time(), "12 hours")

class date
unique(round_time(seq(Sys.Date(), Sys.Date() + 100, "1 day"”), "weeks"))

58

search_30day

search_30@day Search last 30day (PREMIUM)

Description

Search Twitter’s *30day’ (PREMIUM) API

Usage
search_30day(
q,
n = 100,

fromDate = NULL,
toDate = NULL,

env_name = NULL,
safedir = NULL,

parse = TRUE,
token = NULL
)
Arguments

q Search query on which to match/filter tweets. See details for information about
available search operators.

n Number of tweets to return; it is best to set this number in intervals of 100 for the
’30day’ API and either 100 (for sandbox) or 500 (for paid) for the ’fullarchive’
API. Default is 100.

fromDate Oldest date-time (YYYYMMDDHHMM) from which tweets should be searched
for.

toDate Newest date-time (YYYYMMDDHHMM) from which tweets should be searched
for.

env_name Name/label of developer environment to use for the search.

safedir Name of directory to which each response object should be saved. If the direc-
tory doesn’t exist, it will be created. If NULL (the default) then a dir will be
created in the current working directory. To override/deactivate safedir set this
to FALSE.

parse Logical indicating whether to convert data into data frame.

token A token associated with a user-created APP (requires a developer account),
which is converted to a bearer token in order to make premium API requests

Value

A tibble data frame of Twitter data

search_30day 59

Developer Account

Users must have an approved developer account and an active/labeled environment to access Twit-
ter’s premium APIs. For more information, to check your current Subscriptions and Dev Environ-
ments, or to apply for a developer account visit https://developer.twitter.com.

Search operators

Note: Bolded operators ending with a colon should be immediately followed by a word or quoted
phrase (if appropriate)—e.g., lang:en

Keyword

~~ match exact phrase
* # ~~ hashtag

¢ @ ~~ at mentions)

* url: ~~ found in URL

* lang: ~~ language of tweet

Accounts of interest

* from: ~~ authored by
* to: ~~ sent to
e retweets_of: ~~ retweet author

Tweet attributes

* is:retweet ~~ only retweets

¢ has:mentions ~~ uses mention(s)

* has:hashtags ~~ uses hashtags(s)

¢ has:media ~~ includes media(s)

¢ has:videos ~~ includes video(s)

* has:images ~~ includes image(s)

¢ has:links ~~ includes URL(s)

* is:verified ~~ from verified accounts

Geospatial

* bounding_box:[west_long south_lat east_long north_lat] ~~ lat/long coordinates box
* point_radius:[lon lat radius] ~~ center of search radius

 has:geo ~~ uses geotagging

* place: ~~ by place

* place_country: ~~ by country

* has:profile_geo ~~ geo associated with profile

 profile_country: ~~ country associated with profile

* profile_region: ~~ region associated with profile

* profile_locality: ~~ locality associated with profile

https://developer.twitter.com

60

Examples

Not run:
format datetime for one week ago
toDate <- format(Sys.time() - 60 x 60 x 24 x 7, "%Y%m%d%H%M")

search_fullarchive

search 30day for up to 300 rstats tweets sent before the last week
rt <- search_30day("#rstats”, n = 300,

env_name

= "research”, toDate = toDate)

End(Not run)

search_fullarchive Search fullarchive (PREMIUM)

Description

Search Twitter’s *fullarchive’ (PREMIUM) API

Usage
search_fullarchive(
q,
n = 100,
fromDate = NULL,
toDate = NULL,
env_name = NULL,
safedir = NULL,
parse = TRUE,
token = NULL
)
Arguments
q Search query on which to match/filter tweets. See details for information about
available search operators.
n Number of tweets to return; it is best to set this number in intervals of 100 for the
’30day’ API and either 100 (for sandbox) or 500 (for paid) for the ’fullarchive’
API. Default is 100.
fromDate Oldest date-time (YYYYMMDDHHMM) from which tweets should be searched
for.
toDate Newest date-time (YYYYMMDDHHMM) from which tweets should be searched
for.
env_name Name/label of developer environment to use for the search.

search_fullarchive 61

safedir Name of directory to which each response object should be saved. If the direc-

tory doesn’t exist, it will be created. If NULL (the default) then a dir will be
created in the current working directory. To override/deactivate safedir set this

to FALSE.
parse Logical indicating whether to convert data into data frame.
token A token associated with a user-created APP (requires a developer account),

Value

which is converted to a bearer token in order to make premium API requests

A tibble data frame of Twitter data

Developer Account

Users must have an approved developer account and an active/labeled environment to access Twit-
ter’s premium APIs. For more information, to check your current Subscriptions and Dev Environ-
ments, or to apply for a developer account visit https://developer.twitter.com.

Search operators

Note: Bolded operators ending with a colon should be immediately followed by a word or quoted
phrase (if appropriate)—e.g., lang:en

Keyword

~~ match exact phrase
~~ hashtag

@ ~~ at mentions)

url: ~~ found in URL
lang: ~~ language of tweet

Accounts of interest

from: ~~ authored by
to: ~~ sent to

retweets_of: ~~ retweet author

Tweet attributes

is:retweet ~~ only retweets
has:mentions ~~ uses mention(s)
has:hashtags ~~ uses hashtags(s)
has:media ~~ includes media(s)
has:videos ~~ includes video(s)
has:images ~~ includes image(s)
has:links ~~ includes URL(s)

is:verified ~~ from verified accounts

https://developer.twitter.com

62 search_tweets

Geospatial

* bounding_box:[west_long south_lat east_long north_lat] ~~ lat/long coordinates box
 point_radius:[lon lat radius] ~~ center of search radius

* has:geo ~~ uses geotagging

* place: ~~ by place

* place_country: ~~ by country

* has:profile_geo ~~ geo associated with profile

* profile_country: ~~ country associated with profile

* profile_region: ~~ region associated with profile

* profile_locality: ~~ locality associated with profile

Examples
Not run:
search fullarchive for up to 300 rstats tweets sent in Jan 2014
rt <- search_fullarchive("#rstats”, n = 300, env_name = "research”,

fromDate = "201401010000", toDate = "201401312359")

End(Not run)

search_tweets Get tweets data on statuses identified via search query.

Description

Returns Twitter statuses matching a user provided search query. ONLY RETURNS DATA FROM
THE PAST 6-9 DAYS. To return more than 18,000 statuses in a single call, set "retryonratelimit" to
TRUE.

search_tweets2 Passes all arguments to search_tweets. Returns data from one OR MORE search
queries.

Usage

search_tweets(
q,
n = 100,
type = "recent”,
include_rts = TRUE,
geocode = NULL,
max_id = NULL,
parse = TRUE,
token = NULL,

search_tweets

63

retryonratelimit = FALSE,
verbose = TRUE,

search_tweets2(...)

Arguments

q

type

include_rts

geocode

Query to be searched, used to filter and select tweets to return from Twitter’s
REST API. Must be a character string not to exceed maximum of 500 charac-
ters. Spaces behave like boolean "AND" operator. To search for tweets con-
taining at least one of multiple possible terms, separate each search term with
spaces and "OR" (in caps). For example, the search q = "data science” looks
for tweets containing both "data" and "science" located anywhere in the tweets
and in any order. When "OR" is entered between search terms, query = "data
OR science”, Twitter’s REST API should return any tweet that contains either
"data" or "science." It is also possible to search for exact phrases using double
quotes. To do this, either wrap single quotes around a search query using double

quotes, e.g.,q = '"data science

"

or escape each internal double quote with a

single backslash, e.g., g = "\"data science\"".

Some other useful query tips:

Exclude retweets via "-filter:retweets”

Exclude quotes via "-filter:quote”

Exclude replies via "-filter:replies”

Filter (return only) verified via "filter:verified”

Exclude verified via "-filter:verified”

Get everything (firehose for free) via "-filter:verified OR filter:verified”
Filter (return only) tweets with links to news articles via "filter:news”

Filter (return only) tweets with media "filter:media”

Integer, specifying the total number of desired tweets to return. Defaults to 100.
Maximum number of tweets returned from a single token is 18,000. To return
more than 18,000 tweets, users are encouraged to set retryonratelimit to
TRUE. See details for more information.

Character string specifying which type of search results to return from Twitter’s
REST API. The current default is type = "recent”, other valid types include
type = "mixed"” and type = "popular”.

Logical, indicating whether to include retweets in search results. Retweets are
classified as any tweet generated by Twitter’s built-in "retweet" (recycle arrows)
function. These are distinct from quotes (retweets with additional text provided
from sender) or manual retweets (old school method of manually entering "RT"
into the text of one’s tweets).

Geographical limiter of the template "latitude,longitude,radius" e.g., geocode =
"37.78,-122.40,1mi".

64

max_id

parse

token

search_tweets

Character, returns results with an ID less than (that is, older than) or equal
to ‘max_id‘. Especially useful for large data returns that require multiple it-
erations interrupted by user time constraints. For searches exceeding 18,000
tweets, users are encouraged to take advantage of rtweet’s internal automation
procedures for waiting on rate limits by setting retryonratelimit argument to
TRUE. It some cases, it is possible that due to processing time and rate limits,
retrieving several million tweets can take several hours or even multiple days.
In these cases, it would likely be useful to leverage retryonratelimit for sets
of tweets and max_id to allow results to continue where previous efforts left off.

Logical, indicating whether to return parsed data.frame, if true, or nested list, if
false. By default, parse = TRUE saves users from the wreck of time and frustra-
tion associated with disentangling the nasty nested list returned from Twitter’s
API. As Twitter’s APIs are subject to change, this argument would be especially
useful when changes to Twitter’s APIs affect performance of internal parsers.
Setting parse = FALSE also ensures the maximum amount of possible informa-
tion is returned. By default, the rtweet parse process returns nearly all bits of
information returned from Twitter. However, users may occasionally encounter
new or omitted variables. In these rare cases, the nested list object will be the
only way to access these variables.

Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

retryonratelimit

verbose

Logical indicating whether to wait and retry when rate limited. This argument
is only relevant if the desired return (n) exceeds the remaining limit of available
requests (assuming no other searches have been conducted in the past 15 min-
utes, this limit is 18,000 tweets). Defaults to false. Set to TRUE to automate
process of conducting big searches (i.e., n > 18000). For many search queries,
esp. specific or specialized searches, there won’t be more than 18,000 tweets
to return. But for broad, generic, or popular topics, the total number of tweets
within the REST window of time (7-10 days) can easily reach the millions.

Logical, indicating whether or not to include output processing/retrieval mes-
sages. Defaults to TRUE. For larger searches, messages include rough estimates
for time remaining between searches. It should be noted, however, that these
time estimates only describe the amount of time between searches and not the
total time remaining. For large searches conducted with retryonratelimit set
to TRUE, the estimated retrieval time can be estimated by dividing the number
of requested tweets by 18,000 and then multiplying the quotient by 15 (token
reset time, in minutes).

Further arguments passed as query parameters in request sent to Twitter’s REST
API. To return only English language tweets, for example, use lang = "en". For
more options see Twitter’s API documentation.

search_tweets 65

Details

Twitter API documentation recommends limiting searches to 10 keywords and operators. Complex
queries may also produce API errors preventing recovery of information related to the query. It
should also be noted Twitter’s search API does not consist of an index of all Tweets. At the time of
searching, the search API index includes between only 6-9 days of Tweets.

Number of tweets returned will often be less than what was specified by the user. This can happen
because (a) the search query did not return many results (the search pool is already thinned out
from the population of tweets to begin with), (b) because user hitting rate limit for a given token,
or (c) of recent activity (either more tweets, which affect pagination in returned results or deletion
of tweets). To return more than 18,000 tweets in a single call, users must set retryonratelimit
argument to true. This method relies on updating the max_id parameter and waiting for token rate
limits to refresh between searches. As a result, it is possible to search for 50,000, 100,000, or even
10,000,000 tweets, but these searches can take hours or even days. At these durations, it would not
be uncommon for connections to timeout. Users are instead encouraged to breakup data retrieval
into smaller chunks by leveraging retryonratelimit and then using the status_id of the oldest
tweet as the max_id to resume searching where the previous efforts left off.

Value

List object with tweets and users each returned as a data frame.

A tbl data frame with additional "query" column.

See Also

https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets

Other tweets: get_favorites(), get_mentions(), get_my_timeline(), get_timeline(), lists_statuses(),
lookup_statuses(), tweets_data(), tweets_with_users()

Examples

Not run:

search for 1000 tweets mentioning Hillary Clinton
hrc <- search_tweets(q = "hillaryclinton”, n = 1000)

data frame where each observation (row) is a different tweet
hrc

users data also retrieved. can access it via users_data()
users_data(hrc)

search for 1000 tweets in English
djt <- search_tweets(q = "realdonaldtrump”, n = 1000, lang = "en")

preview tweets data
djt

preview users data

https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets

66

users_data(djt)

exclude retweets
rt <- search_tweets("rstats”, n = 500, include_rts = FALSE)

perform search for lots of tweets

rt <- search_tweets(
"trump OR president OR potus”, n = 100000,
retryonratelimit = TRUE

)

plot time series of tweets frequency
ts_plot(rt, by = "mins")

make multiple independent search queries
ds <- Map(
"search_tweets"”,
c("\"data science\"", "rstats OR python"),
n = 1000

bind by row whilst preserving users data
ds <- do_call_rbind(ds)

preview tweets data
ds

preview users data
users_data(ds)

End(Not run)

Not run:

search using multilple queries

st2 <- search_tweets2(
c("\"data science\"", "rstats OR python"),
n = 500

preview tweets data
st2

preview users data
users_data(st2)

check breakdown of results by search query
table(st2$query)

End(Not run)

search_tweets

search_users 67

search_users Get users data on accounts identified via search query.

Description

Returns data for up to 1,000 users matched by user provided search query.

Usage

search_users(qg, n = 100, parse = TRUE, token = NULL, verbose = TRUE)

Arguments

q Query to be searched, used in filtering relevant tweets to return from Twitter’s
REST API. Should be a character string not to exceed 500 characters maxi-
mum. Spaces are assumed to function like boolean "AND" operators. To search
for tweets including one of multiple possible terms, separate search terms with
spaces and the word "OR". For example, the search query = "data science”
searches for tweets using both "data" and "science" though the words can appear
anywhere and in any order in the tweet. However, when OR is added between
search terms, query = "data OR science”, Twitter’s REST API should return
any tweet that includes either "data" or "science" appearing in the tweets. At
this time, Twitter’s users/search API does not allow complex searches or queries
targeting exact phrases as is allowed by search_tweets.

n Numeric, specifying the total number of desired users to return. Defaults to 100.
Maximum number of users returned from a single search is 1,000.

parse Logical, indicating whether to return parsed (data.frames) or nested list object.
By default, parse = TRUE saves users from the time [and frustrations] associated
with disentangling the Twitter API return objects.

token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

verbose Logical, indicating whether or not to output processing/retrieval messages.

Value

Data frame of users returned by query.

See Also

https://dev.twitter.com/overview/documentation

Other users: as_screenname(), lists_subscribers(), lookup_users(), tweets_with_users(),
users_data()

https://dev.twitter.com/overview/documentation

68 stopwordslangs

Examples

Not run:

search for up to 1000 users using the keyword rstats
rstats <- search_users(q = "rstats”, n = 1000)

data frame where each observation (row) is a different user
rstats

tweets data also retrieved. can access it via tweets_data()
tweets_data(rstats)

End(Not run)

stopwordslangs Twitter stop words in multiple languages data.

Description

This data comes form a group of Twitter searches conducted at several times during the calendar
year of 2017. The data are commonly observed words associated with 10 different languages, in-

cludingc("ar”,"en”,"es","fr", "in","ja","pt","ru”,"tr","und"). Variables include "word"

(potential stop words), "lang" (two or three word code), and "p" (probability value associated with
frequency position along a normal distribution with higher values meaning the word occurs more
frequently and lower values meaning the words occur less frequently).

Usage

stopwordslangs

Format

A tibble with three variables and 24,000 observations

Examples

head(stopwordslangs)

stream_tweets 69

stream_tweets Collect a live stream of Twitter data.

Description
Returns public statuses via one of the following four methods:

* 1. Sampling a small random sample of all publicly available tweets
* 2. Filtering via a search-like query (up to 400 keywords)
* 3. Tracking via vector of user ids (up to 5000 user_ids)

* 4. Location via geo coordinates (1-360 degree location boxes)

Stream with hardwired reconnection method to ensure timeout integrity.

Usage

stream_tweets(

nn

q:
timeout = 30,
parse = TRUE,
token = NULL,
file_name = NULL,
verbose = TRUE,

I e+ -

)
stream_tweets2(..., dir = NULL, append = FALSE)
Arguments

q Query used to select and customize streaming collection method. There are four
possible methods. (1) The default, g = "", returns a small random sample of all
publicly available Twitter statuses. (2) To filter by keyword, provide a comma
separated character string with the desired phrase(s) and keyword(s). (3) Track
users by providing a comma separated list of user IDs or screen names. (4)
Use four latitude/longitude bounding box points to stream by geo location. This
must be provided via a vector of length 4, e.g., c(-125, 26, -65, 49).

timeout Numeric scalar specifying amount of time, in seconds, to leave connection open
while streaming/capturing tweets. By default, this is set to 30 seconds. To
stream indefinitely, use timeout = FALSE to ensure JSON file is not deleted upon
completion or timeout = Inf.

parse Logical, indicating whether to return parsed data. By default, parse = TRUE,

this function does the parsing for you. However, for larger streams, or for au-
tomated scripts designed to continuously collect data, this should be set to false
as the parsing process can eat up processing resources and time. For other uses,
setting parse to TRUE saves you from having to sort and parse the messy list

70 stream_tweets

structure returned by Twitter. (Note: if you set parse to false, you can use the
parse_stream function to parse the JSON file at a later point in time.)

token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.

file_name Character with name of file. By default, a temporary file is created, tweets are
parsed and returned to parent environment, and the temporary file is deleted.

verbose Logical, indicating whether or not to include output processing/retrieval mes-
sages.

Insert magical parameters, spell, or potion here. Or filter for tweets by language,
e.g., language = "en".

dir Name of directory in which json files should be written. The default, NULL,
will create a timestamped "stream” folder in the current working directory. If a
dir name is provided that does not already exist, one will be created.

append Logical indicating whether to append or overwrite file_name if the file already
exists. Defaults to FALSE, meaning this function will overwrite the preexisting
file_name (in other words, it will delete any old file with the same name as
file_name) meaning the data will be added as new lines to file if pre-existing.

Value

Tweets data returned as data frame with users data as attribute.

Returns data as expected using original search_tweets function.

See Also

https://developer.twitter.com/en/docs/tweets/sample-realtime/api-reference/decahose

Other stream tweets: parse_stream()

Examples

Not run:
stream tweets mentioning "election” for 90 seconds
e <- stream_tweets("election”, timeout = 90)

data frame where each observation (row) is a different tweet
e

plot tweet frequency
ts_plot(e, "secs")

stream tweets mentioning Obama for 3@ seconds
djt <- stream_tweets("realdonaldtrump”, timeout = 30)

preview tweets data
djt

https://developer.twitter.com/en/docs/tweets/sample-realtime/api-reference/decahose

stream_tweets 71

get user IDs of people who mentioned trump
usrs <- users_data(djt)

lookup users data
usrdat <- lookup_users(unique(usrs$user_id))

preview users data
usrdat

store large amount of tweets in files using continuous streams
by default, stream_tweets() returns a random sample of all tweets
leave the query field blank for the random sample of all tweets.
stream_tweets(

timeout = (60 * 10),

parse = FALSE,

file_name = "tweets1”
)
stream_tweets(

timeout = (60 * 10),

parse = FALSE,

file_name = "tweets2"

parse tweets at a later time using parse_stream function
twl <- parse_stream("tweets1.json")
twl

tw2 <- parse_stream("tweets2.json")
tw2

streaming tweets by specifying lat/long coordinates

stream continental US tweets for 5 minutes
usa <- stream_tweets(

c(-125, 26, -65, 49),

timeout = 300

use lookup_coords() for a shortcut verson of the above code
usa <- stream_tweets(

lookup_coords("usa"),

timeout = 300

stream world tweets for 5 mins, save to JSON file
shortcut coords note: lookup_coords("world")
world.old <- stream_tweets(

c(-180, -90, 180, 90),

timeout = (60 * 5),

parse = FALSE,

file_name = "world-tweets.json"

72

read in JSON file
rtworld <- parse_stream("word-tweets. json")

world data set with with lat lng coords variables
x <- lat_lng(rtworld)

End(Not run)

suggested_slugs

suggested_slugs Get user [account] suggestions for authenticating user

Description

Returns Twitter’s list of suggested user categories.

Returns users data for all users in Twitter’s suggested categories.

Usage

suggested_slugs(lang = NULL, token = NULL)

suggested_users(slug, lang = NULL, parse = TRUE, token = NULL)

suggested_users_all(slugs = NULL, parse = TRUE, token = NULL)

Arguments
lang optional Restricts the suggested categories to the requested language. The lan-
guage must be specified by the appropriate two letter ISO 639-1 representation.
token Every user should have their own Oauth (Twitter API) token. By default token
= NULL this function looks for the path to a saved Twitter token via environment
variables (which is what ‘create_token()‘ sets up by default during initial to-
ken creation). For instruction on how to create a Twitter token see the tokens
vignette, i.e., ‘vignettes("auth", "rtweet")‘ or see ?tokens.
slug required The short name of list or a category
parse Logical indicating whether to parse the returned data into a tibble data frame.
See details for more on the returned users data.
slugs Optional, one or more slugs returned by suggested_slugs. API rate limits
this to 15 max (function will return warnings for slugs provided beyond the
remaining limit).
Details

Currently, this parsing process drops all recursive (list) columns, which mostly means you are
shorted some entities data. To maximize users data, however, it is recommended to make an addi-
tional lookup_users call using the user IDs returned by this function.

trends_available 73

Value

List of recommended categories which can be passed along as the "slug" parameter in suggested_users

Recommended users

Examples

Not run:

get slugs
slugs <- suggested_slugs()

use slugs to get suggested users
suggested_users(slugs$slug[1])

alternatively, get all users from all slugs in one function
sugs <- all_suggested_users()

print data
sugs

for complete users data, lookup user IDs
sugs_usr <- lookup_users(sugs$user_id)

view users data
sugs_usr

End(Not run)

trends_available Available Twitter trends along with associated WOEID.

Description

Available Twitter trends along with associated WOEID.

Usage
trends_available(token = NULL, parse = TRUE)

Arguments
token OAuth token. By default token = NULL fetches a non-exhausted token from an
environment variable. Find instructions on how to create tokens and setup an
environment variable in the tokens vignette (in r, send ?tokens to console).
parse Logical, indicating whether to return parsed (data.frames) or nested list object.

By default, parse = TRUE saves users from the time [and frustrations] associated
with disentangling the Twitter API return objects.

74

Value

ts_data

Data frame with WOEID column. WOEID is a Yahoo! Where On Earth ID.

See Also

Other trends: get_trends()

Examples

Not run:

Retrieve available trends
trends <- trends_available()

trends

End(Not run)

ts_data

Converts tweets data into time series-like data object.

Description

Returns data containing the frequency of tweets over a specified interval of time.

Usage

ts_data(data, by = "days”, trim = @L, tz = "UTC")

Arguments
data

by

trim

tz

Value

Data frame or grouped data frame.

"non

Desired interval of time expressed as numeral plus one of "secs", "mins", "hours",

"non non

"days", "weeks", "months", or "years". If a numeric is provided, the value is as-
sumed to be in seconds.

Number of observations to trim off the front and end of each time series

Time zone to be used, defaults to "UTC" (Twitter default)

Data frame with time, n, and grouping column if applicable.

ts_plot 75

Examples

Not run:

handles of women senators
sens <- c("”SenatorBaldwin”, "SenGillibrand”, "PattyMurray”, "SenatorHeitkamp")

get timelines for each
sens <- get_timeline(sens, n = 3200)

get single time series for tweets
ts_data(sens)

using weekly intervals
ts_data(sens, "weeks")

group by screen name and then use weekly intervals
sens %>%

dplyr::group_by(screen_name) %>%

ts_plot("weeks")

End(Not run)

ts_plot Plots tweets data as a time series-like data object.

Description

Creates a ggplot2 plot of the frequency of tweets over a specified interval of time.

Usage
ts_plot(data, by = "days”, trim = oL, tz = "UTC", ...)
Arguments
data Data frame or grouped data frame.
by Desired interval of time expressed as numeral plus one of "secs", "mins", "hours",
"days", "weeks", "months", or "years". If a numeric is provided, the value is as-
sumed to be in seconds.
trim The number of observations to drop off the beginning and end of the time series.
tz Time zone to be used, defaults to "UTC" (Twitter default)

Other arguments passed to geom_line.

76 tweets_data

Value

If ggplot2 is installed then a ggplot plot object.

Examples

Not run:

search for tweets containing "rstats”
rt <- search_tweets("rstats”, n = 10000)

plot frequency in 1 min intervals
ts_plot(rt, "mins")

plot multiple time series--retweets vs non-retweets
rt %>%

dplyr::group_by(is_retweet) %>%

ts_plot("hours™”)

compare account activity for some important US political figures
tmls <- get_timeline(

c("SenSchumer”, "SenGillibrand”, "realDonaldTrump"),

n = 3000

examine all twitter activity using weekly intervals
ts_plot(tmls, "weeks")

group by screen name and plot each time series
ts_plot(dplyr::group_by(tmls, screen_name), "weeks")

group by screen name and is_retweet

tmls %>%
dplyr::group_by(tmls, screen_name, is_retweet) %>%
ts_plot("months")

End(Not run)

tweets_data Extracts tweets data from users data object.

Description

Extracts tweets data from users data object.

Usage

tweets_data(users)

https://cran.r-project.org/package=ggplot2

tweets_with_users 77

Arguments
users Parsed data object of users data as returned via search_users, lookup_users,
etc.
Value

Tweets data frame.

See Also

Other tweets: get_favorites(), get_mentions(), get_my_timeline(), get_timeline(), lists_statuses(),
lookup_statuses(), search_tweets(), tweets_with_users()

Other extractors: next_cursor(), users_data()

Examples

Not run:
get twitter user data
jack <- lookup_users("jack")

get data on most recent tweet from user(s)
tweets_data(jack)

search for 100 tweets containing the letter r
r <- search_tweets("r")

print tweets data (only first 10 rows are shown)
head(r, 10)

preview users data
head(users_data(r))

End(Not run)

tweets_with_users Parsing data into tweets/users data tibbles

Description

Parsing data into tweets/users data tibbles

Usage

tweets_with_users(x)

users_with_tweets(x)

78 tweet_shot

Arguments

X Unparsed data returned by rtweet API request.

Value

A tweets/users tibble (data frame) with users/tweets tibble attribute.

See Also

Other parsing: do_call_rbind()

Other tweets: get_favorites(), get_mentions(), get_my_timeline(), get_timeline(), lists_statuses(),
lookup_statuses(), search_tweets(), tweets_data()

Other parsing: do_call_rbind()

Other users: as_screenname(), lists_subscribers(), lookup_users(), search_users(), users_data()

Examples

Not run:
search with parse = FALSE
rt <- search_tweets("rstats”, n = 500, parse = FALSE)

parse to tweets data tibble with users data attribute object
tweets_with_users(rt)

search with parse = FALSE
usr <- search_users("rstats”, n = 300, parse = FALSE)

parse to users data tibble with users data attribute object
users_with_tweets(usr)

End(Not run)

tweet_shot Capture an image of a tweet/thread

Description

Provide a status id or a full Twitter link to a tweet and this function will capture an image of the
tweet — or tweet + thread (if there are Twitter-linked replies) — from the mobile version of said
tweet/thread.

Usage

tweet_shot(statusid_or_url, zoom = 3, scale = TRUE)

users_data 79

Arguments

statusid_or_url
a valid Twitter status id (e.g. "947082036019388416") or a valid Twitter status
URL (e.g. "https://twitter.com/jhollist/status/947082036019388416").

zoom a positive number >= 1. See the help for [webshot::webshot()] for more infor-
mation.
scale auto-scale the image back to 1:1? Default it TRUE, which means magick will

be used to return a "normal" sized tweet. Set it to FALSE to perform your own
image manipulation.
Details

For this to work, you will need to ensure the packages in Suggests: are installed as they will be
loaded upon the first invocation of this function.

Use the zoom factor to get more pixels which may improve the text rendering of the tweet/thread.

Value

magick object

Examples

Not run:
tweet_shot ("947082036019388416")
tweet_shot("https://twitter.com/jhollist/status/947082036019388416")

End(Not run)

users_data Extracts users data from tweets data object.

Description

Extracts users data from tweets data object.

Usage

users_data(tweets)

Arguments
tweets Parsed data object of tweets data as returned via get_timeline, search_tweets,
stream_tweets, etc..
Value

Users data frame from tweets returned in a tweets data object.

80 write_as_csv

See Also

Other users: as_screenname(), lists_subscribers(), lookup_users(), search_users(), tweets_with_users()

Other extractors: next_cursor(), tweets_data()

Examples

Not run:

search for 100 tweets containing the letter r
r <- search_tweets("r")

print tweets data (only first 10 rows are shown)
head(r, 10)

extract users data
head(users_data(r))

End(Not run)

write_as_csv Save Twitter data as a comma separated value file.

Description

Saves as flattened CSV file of Twitter data.

Usage
write_as_csv(x, file_name, prepend_ids = TRUE, na = "", fileEncoding = "UTF-8")
save_as_csv(x, file_name, prepend_ids = TRUE, na = "", fileEncoding = "UTF-8")
Arguments
X Data frame returned by an rtweet function.
file_name Desired name to save file as. If ‘file_name* does not include the extension ".csv"
it will be added automatically.
prepend_ids Logical indicating whether to prepend an "x" before all Twitter IDs (for users,
statuses, lists, etc.). It’s recommended when saving to CSV as these values
otherwise get treated as numeric and as a result the values are often less precise
due to rounding or other class-related quirks. Defaults to true.
na Value to be used for missing (NA)s. Defaults to empty character, "".

fileEncoding Encoding to be used when saving to CSV. defaults to "UTF-8".

write_as_csv

Value

Saved CSV files in current working directory.

See Also

Other datafiles: flatten(), read_twitter_csv()
Other datafiles: flatten(), read_twitter_csv()

81

Index

+Topic datasets
emojis, 12
langs, 29
stopwordslangs, 68

as_screenname, 4, 35, 43, 67, 78, 80
as_userid (as_screenname), 4

bearer_token, 5
create_token, 5,6, 27, 55

data_tweet (tweets_data), 76

data_tweets (tweets_data), 76

data_user (users_data), 79

data_users (users_data), 79

direct_messages, 7

direct_messages_received, 9

direct_messages_sent (direct_messages),
7

do_call_rbind, 11,78

emojis, 12

favorite_tweet (post_favorite), 48
flatten, 12, 56, 81

follow_user (post_follow), 49
friendship_update (post_friendship), 50

geom_line, 75

get_collections, 13

get_favorites, 14, 21, 23, 26, 34,42, 65, 77,
78

get_followers, 16, 20, 46

get_friends, 17, 18, 46

get_mentions, 15, 20, 23, 26, 34, 42, 65, 77,
78

get_my_timeline, 15, 21,22, 26, 34, 42, 65,
77,78

get_retweeters, 23, 24

get_retweets, 24, 24

82

get_timeline, 15, 21, 23, 25, 34, 42, 65,
77-79

get_timelines (get_timeline), 25

get_token (get_tokens), 27

get_tokens, 7,27, 55

get_trends, 28, 74

ggplot, 76

langs, 29
lat_1ng, 30, 40
lists_members, 31, 34-37
lists_memberships (lists_members), 31
lists_statuses, 15, 21, 23, 26, 33, 33,
35-37,42,65,77, 78
lists_subscribers, 4, 33, 34, 35, 36, 37,43,
67,78, 80
lists_subscriptions, 33-35, 36, 37
lists_users, 33-36, 37
lookup_collections, 38
lookup_coords, 31, 39
lookup_friendships, 40, 44
lookup_statuses, 15, 21, 23, 26, 34, 41, 65,
77,78
lookup_tweets (lookup_statuses), 41
lookup_users, 4, 35,42, 67, 72,77, 78, 80

max_id (next_cursor), 45
mute_user (post_follow), 49
my_friendships, 41, 43

network_data, 44, 44
network_graph, 44

network_graph (network_data), 44
next_cursor, 14, 17, 20,45, 77, 80

parse_stream, 47, 70
plain_tweets, 48
post_favorite, 48, 50, 54
post_favourite (post_favorite), 48
post_follow, 49, 49, 50, 54

INDEX

post_friendship, 49, 50, 50, 54
post_list, 51

post_message, 52

post_mute (post_follow), 49
post_status (post_tweet), 53
post_tweet, 49, 50, 53
post_unfollow_user (post_follow), 49
previous_cursor (next_cursor), 45

rate_limit, 7, 27,55
rate_limits (rate_limit), 55
read_twitter_csv, /3, 56, 81
round_time, 57

rtweet (rtweet-package), 3
rtweet-package, 3

save_as_csv (write_as_csv), 80
search_30day, 58
search_fullarchive, 60
search_tweets, 15, 21, 23, 26, 34, 42, 62,
77-79
search_tweets2 (search_tweets), 62
search_users, 4, 35,43,67,77, 78, 80
since_id (next_cursor), 45
stopwordslangs, 68
stream_tweets, 47, 69, 79
stream_tweets2 (stream_tweets), 69
suggested_slugs, 72, 72
suggested_users, 73
suggested_users (suggested_slugs), 72
suggested_users_all (suggested_slugs),
72

trends_available, 28, 29,73

ts_data, 74

ts_plot, 75

tweet_data (tweets_data), 76

tweet_shot, 78

tweets_data, /1, 15,21, 23, 26, 34, 42, 46,
65,76, 78, 80

tweets_with_users, 4, 11, 15,21, 23, 26, 34,
35,42, 43,65,67,77,77, 80

unflatten (flatten), 12

unfollow_user (post_follow), 49

user_data (users_data), 79

users_data, 4, 11, 35, 43,46, 67,77, 78,79

users_with_tweets (tweets_with_users),
77

write_as_csv, 13, 56, 80

83

	rtweet-package
	as_screenname
	bearer_token
	create_token
	direct_messages
	direct_messages_received
	do_call_rbind
	emojis
	flatten
	get_collections
	get_favorites
	get_followers
	get_friends
	get_mentions
	get_my_timeline
	get_retweeters
	get_retweets
	get_timeline
	get_tokens
	get_trends
	langs
	lat_lng
	lists_members
	lists_statuses
	lists_subscribers
	lists_subscriptions
	lists_users
	lookup_collections
	lookup_coords
	lookup_friendships
	lookup_statuses
	lookup_users
	my_friendships
	network_data
	next_cursor
	parse_stream
	plain_tweets
	post_favorite
	post_follow
	post_friendship
	post_list
	post_message
	post_tweet
	rate_limit
	read_twitter_csv
	round_time
	search_30day
	search_fullarchive
	search_tweets
	search_users
	stopwordslangs
	stream_tweets
	suggested_slugs
	trends_available
	ts_data
	ts_plot
	tweets_data
	tweets_with_users
	tweet_shot
	users_data
	write_as_csv
	Index

