Package 'rust'

October 31, 2021
Type Package
Title Ratio-of-Uniforms Simulation with Transformation
Version 1.3.13
Date 2021-10-30
Description Uses the generalized ratio-of-uniforms (RU) method to simulate from univariate and (low-dimensional) multivariate continuous distributions. The user specifies the log-density, up to an additive constant. The RU algorithm is applied after relocation of mode of the density to zero, and the user can choose a tuning parameter r. For details see Wakefield, Gelfand and Smith (1991) DOI:10.1007/BF01889987, Efficient generation of random variates via the ratio-of-uniforms method, Statistics and Computing (1991) 1, 129-133. A Box-Cox variable transformation can be used to make the input density suitable for the RU method and to improve efficiency. In the multivariate case rotation of axes can also be used to improve efficiency.
From version 1.2.0 the 'Rcpp' package
https://cran.r-project.org/package=Rcpp can be used to improve efficiency.
Imports graphics, $\operatorname{Rcpp}(>=0.12 .10)$, stats
License GPL (>= 2)
Encoding UTF-8
Depends R (>= 3.3.0)
RoxygenNote 7.1.1
Suggests bang, knitr, microbenchmark, revdbayes, rmarkdown, testthat
VignetteBuilder knitr
URL https://paulnorthrop.github.io/rust/,
https://github.com/paulnorthrop/rust
BugReports https://github.com/paulnorthrop/rust/issues
LinkingTo Rcpp (>= 0.12.10), RcppArmadillo
NeedsCompilation yes
Author Paul J. Northrop [aut, cre, cph]
Maintainer Paul J. Northrop p.northrop@ucl.ac.uk

Repository CRAN

Date/Publication 2021-10-31 06:00:05 UTC

R topics documented:

create_log_j_xptr2
create_phi_to_theta_xptr 3
create_xptr 3
find_lambda 3
find_lambda_one_d 7
find_lambda_one_d_rcpp 10
find_lambda_rcpp 13
gpd_init 17
gpd_logpost 19
gpd_sum_stats 20
plot.ru 21
print.ru 23
print.summary.ru 23
rgpd 24
ru 25
rust 32
ru_rcpp 33
summary.ru 41
Index 43

create_log_j_xptr Create external pointer to a $C++$ function for $\log _{-} j$

Description

Create external pointer to a $\mathrm{C}++$ function for $\log _{-} \mathrm{j}$

Usage

create_log_j_xptr(fstr)

Arguments

fstr A string indicating the $\mathrm{C}++$ function required.

```
create_phi_to_theta_xptr
    Create external pointer to a C++ function for phi_to_theta
```


Description

Create external pointer to a $\mathrm{C}++$ function for phi_to_theta

Usage

create_phi_to_theta_xptr(fstr)

Arguments

fstr A string indicating the $\mathrm{C}++$ function required.

$$
\text { create_xptr } \quad \text { Create external pointer to a } C++ \text { function for } \log f
$$

Description

Create external pointer to a $\mathrm{C}++$ function for $\log f$

Usage

create_xptr(fstr)

Arguments

fstr A string indicating the $\mathrm{C}++$ function required.
find_lambda
Selecting Box-Cox parameter lambda for general d.

Description

Finds a value of the Box-Cox transformation parameter lambda for which the (positive) random variable with log-density logf has a density closer to that of a Gaussian random variable. In the following we use theta to denote the argument of logf on the original scale and phi on the Box-Cox transformed scale.

Usage

```
find_lambda(
    logf,
    ...,
    \(\mathrm{d}=1\),
    n_grid \(=\) NULL,
    ep_bc = 1e-04,
    min_phi \(=\) rep (ep_bc, d),
    max_phi \(=\operatorname{rep}(10, d)\),
    which_lam = 1:d,
    lambda_range \(=c(-3,3)\),
    init_lambda = NULL,
    phi_to_theta \(=\) NULL,
    log_j = NULL
)
```


Arguments

logf A function returning the log of the target density f.
... further arguments to be passed to logf and related functions.
d
n_grid A numeric scalar. Number of ordinates for each variable in phi. If this is not supplied a default value of ceiling $\left(2501^{\wedge}(1 / \mathrm{d})\right)$ is used.
ep_bc A (positive) numeric scalar. Smallest possible value of phi to consider. Used to avoid negative values of phi.
min_phi, max_phi
Numeric vectors. Smallest and largest values of phi at which to evaluate logf, i.e. the range of values of phi over which to evaluate logf. Any components in min_phi that are not positive are set to ep_bc.
which_lam A numeric vector. Contains the indices of the components of phi that ARE to be Box-Cox transformed.
lambda_range A numeric vector of length 2. Range of lambda over which to optimise.
init_lambda A numeric vector of length 1 or d. Initial value of lambda used in the search for the best lambda. If init_lambda is a scalar then rep (init_lambda, d) is used.
phi_to_theta A function returning (inverse) of the transformation from theta to phi used to ensure positivity of phi prior to Box-Cox transformation. The argument is phi and the returned value is theta.
$\log _{-} j \quad$ A function returning the \log of the Jacobian of the transformation from theta to phi, i.e. based on derivatives of phi with respect to theta. Takes theta as its argument.

Details

The general idea is to evaluate the density f on a d-dimensional grid, with n _grid ordinates for each of the d variables. We treat each combination of the variables in the grid as a data point and
perform an estimation of the Box-Cox transformation parameter lambda, in which each data point is weighted by the density at that point. The vectors min_phi and max_phi define the limits of the grid and which_lam can be used to specify that only certain components of phi are to be transformed.

Value

A list containing the following components
lambda A numeric vector. The value of lambda.
gm A numeric vector. Box-cox scaling parameter, estimated by the geometric mean of the values of phi used in the optimisation to find the value of lambda, weighted by the values of f evaluated at phi.
init_psi A numeric vector. An initial estimate of the mode of the Box-Cox transformed density
sd_psi A numeric vector. Estimates of the marginal standard deviations of the Box-Cox transformed variables.
phi_to_theta as detailed above (only if phi_to_theta is supplied)
log_j as detailed above (only if $\log _{-} j$ is supplied)

References

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.

Andrews, D. F. and Gnanadesikan, R. and Warner, J. L. (1971) Transformations of Multivariate Data, Biometrics, 27(4).

See Also

ru and ru_rcpp to perform ratio-of-uniforms sampling.
find_lambda_one_d and find_lambda_one_d_rcpp to produce (somewhat) automatically a list for the argument lambda of ru/ru_rcpp for the $d=1$ case.
find_lambda_rcpp for a version of find_lambda that uses the Rcpp package to improve efficiency.

Examples

```
# Log-normal density ===================
# Note: the default value max_phi = 10 is OK here but this will not always
# be the case
lambda <- find_lambda(logf = dlnorm, log = TRUE)
lambda
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, trans = "BC",
    lambda = lambda)
# Gamma density ===================
alpha <- 1
# Choose a sensible value of max_phi
max_phi <- qgamma(0.999, shape = alpha)
# [Of course, typically the quantile function won't be available. However,
```

```
# In practice the value of lambda chosen is quite insensitive to the choice
# of max_phi, provided that max_phi is not far too large or far too small.]
lambda <- find_lambda(logf = dgamma, shape = alpha, log = TRUE,
    max_phi = max_phi)
lambda
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,
    trans = "BC", lambda = lambda)
# Generalized Pareto posterior distribution ====================
# Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = -0.5, sigma = 1)
# Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
# Calculate an initial estimate
init <- c(mean(gpd_data), 0)
n <- 1000
# Sample on original scale, with no rotation -----------------
x1 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, init = init,
    lower = c(0, -Inf), rotate = FALSE)
plot(x1, xlab = "sigma", ylab = "xi")
# Parameter constraint line xi > -sigma/max(data)
# [This may not appear if the sample is far from the constraint.]
abline(a = 0, b = -1 / ss$xm)
summary(x1)
# Sample on original scale, with rotation -----------------
x2 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, init = init,
    lower = c(0, -Inf))
plot(x2, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x2)
# Sample on Box-Cox transformed scale ----------------
# Find initial estimates for phi = (phi1, phi2),
# where phi1 = sigma
# and phi2 = xi + sigma / max(x),
# and ranges of phi1 and phi2 over over which to evaluate
# the posterior to find a suitable value of lambda.
temp <- do.call(gpd_init, ss)
min_phi <- pmax(0, temp$init_phi - 2 * temp$se_phi)
max_phi <- pmax(0, temp$init_phi + 2 * temp$se_phi)
# Set phi_to_theta() that ensures positivity of phi
# We use phi1 = sigma and phi2 = xi + sigma / max(data)
phi_to_theta <- function(phi) c(phi[1], phi[2] - phi[1] / ss$xm)
log_j <- function(x) 0
lambda <- find_lambda(logf = gpd_logpost, ss = ss, d = 2, min_phi = min_phi,
```

```
    max_phi = max_phi, phi_to_theta = phi_to_theta, log_j = log_j)
lambda
# Sample on Box-Cox transformed, without rotation
x3 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, trans = "BC",
    lambda = lambda, rotate = FALSE)
plot(x3, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x3)
# Sample on Box-Cox transformed, with rotation
x4 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, trans = "BC",
    lambda = lambda)
plot(x4, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x4)
def_par <- graphics::par(no.readonly = TRUE)
par(mfrow = c(2,2), mar = c(4, 4, 1.5, 1))
plot(x1, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
    main = "mode relocation")
plot(x2, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
    main = "mode relocation and rotation")
plot(x3, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
    main = "Box-Cox and mode relocation")
plot(x4, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
    main = "Box-Cox, mode relocation and rotation")
graphics::par(def_par)
```

find_lambda_one_d Selecting Box-Cox parameter lambda in the one-dimensional case

Description

Finds a value of the Box-Cox transformation parameter lambda for which the (positive univariate) random variable with log-density logf has a density closer to that of a Gaussian random variable. Works by estimating a set of quantiles of the distribution implied by logf and treating those quantiles as data in a standard Box-Cox analysis. In the following we use theta to denote the argument of $\log f$ on the original scale and phi on the Box-Cox transformed scale.

Usage

```
find_lambda_one_d(
    logf,
    ep_bc = 1e-04,
    min_phi = ep_bc,
    max_phi = 10,
```

```
    num = 1001,
    xdiv = 100,
    probs = seq(0.01, 0.99, by = 0.01),
    lambda_range = c(-3, 3),
    phi_to_theta = NULL,
    log_j = NULL
)
```


Arguments

$\log f \quad$ A function returning the \log of the target density f .
... further arguments to be passed to logf and related functions.
ep_bc A (positive) numeric scalar. Smallest possible value of phi to consider. Used to avoid negative values of phi.
min_phi, max_phi
Numeric scalars. Smallest and largest values of phi at which to evaluate logf, i.e. the range of values of phi over which to evaluate logf. Any components in min_phi that are not positive are set to ep_bc.
num A numeric scalar. Number of values at which to evaluate logf.
xdiv A numeric scalar. Only values of phi at which the density f is greater than the (maximum of f) / xdiv are used.
probs A numeric scalar. Probabilities at which to estimate the quantiles of that will be used as data to find lambda.
lambda_range A numeric vector of length 2. Range of lambda over which to optimise.
phi_to_theta A function returning (inverse) of the transformation from theta to phi used to ensure positivity of phi prior to Box-Cox transformation. The argument is phi and the returned value is theta.
$\log _{-} j \quad$ A function returning the \log of the Jacobian of the transformation from theta to phi, i.e. based on derivatives of phi with respect to theta. Takes theta as its argument. If this is not supplied then a constant Jacobian is used.

Details

The general idea is to estimate quantiles of f corresponding to a set of equally-spaced probabilities in probs and to use these estimated quantiles as data in a standard estimation of the Box-Cox transformation parameter lambda.

The density f is first evaluated at num points equally spaced over the interval (min_phi, max_phi). The continuous density f is approximated by attaching trapezium-rule estimates of probabilities to the midpoints of the intervals between the points. After standardizing to account for the fact that f may not be normalized, (min_phi, max_phi) is reset so that values with small estimated probability (determined by xdiv) are excluded and the procedure is repeated on this new range. Then the required quantiles are estimated by inferring them from a weighted empirical distribution function based on treating the midpoints as data and the estimated probabilities at the midpoints as weights.

Value

A list containing the following components

lambda	A numeric scalar. The value of lambda.
gm	A numeric scalar. Box-cox scaling parameter, estimated by the geometric mean of the quantiles used in the optimisation to find the value of lambda.
init_psi	A numeric scalar. An initial estimate of the mode of the Box-Cox transformed density
sd_psi	A numeric scalar. Estimates of the marginal standard deviations of the Box-Cox transformed variables.
phi_to_theta	as detailed above (only if phi_to_theta is supplied) log_j
as detailed above (only if $l_{\text {log_j is supplied) }}$	

References

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.
Andrews, D. F. and Gnanadesikan, R. and Warner, J. L. (1971) Transformations of Multivariate Data, Biometrics, 27(4).

See Also

ru and ru_rcpp to perform ratio-of-uniforms sampling.
find_lambda and find_lambda_rcpp to produce (somewhat) automatically a list for the argument lambda of ru/ru_rcpp for any value of d.
find_lambda_one_d_rcpp for a version of find_lambda_one_d that uses the Rcpp package to improve efficiency.

Examples

```
# Log-normal density =====================
# Note: the default value of max_phi = 10 is OK here but this will not
# always be the case.
lambda <- find_lambda_one_d(logf = dlnorm, log = TRUE)
lambda
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, trans = "BC",
    lambda = lambda)
# Gamma density ===================
alpha <- 1
# Choose a sensible value of max_phi
max_phi <- qgamma(0.999, shape = alpha)
# [I appreciate that typically the quantile function won't be available.
# In practice the value of lambda chosen is quite insensitive to the choice
# of max_phi, provided that max_phi is not far too large or far too small.]
```

```
lambda <- find_lambda_one_d(logf = dgamma, shape = alpha, log = TRUE,
    max_phi = max_phi)
lambda
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,
    trans = "BC", lambda = lambda)
alpha <- 0.1
# NB. for alpha < 1 the gamma(alpha, beta) density is not bounded
# So the ratio-of-uniforms emthod can't be used but it may work after a
# Box-Cox transformation.
# find_lambda_one_d() works much better than find_lambda() here.
max_phi <- qgamma(0.999, shape = alpha)
lambda <- find_lambda_one_d(logf = dgamma, shape = alpha, log = TRUE,
    max_phi = max_phi)
lambda
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,
    trans = "BC", lambda = lambda)
plot(x)
plot(x, ru_scale = TRUE)
```

find_lambda_one_d_rcpp
Selecting Box-Cox parameter lambda in the one-dimensional case us-
ing $C++$ via Rcpp

Description

Finds a value of the Box-Cox transformation parameter lambda for which the (positive univariate) random variable with log-density logf has a density closer to that of a Gaussian random variable. Works by estimating a set of quantiles of the distribution implied by logf and treating those quantiles as data in a standard Box-Cox analysis. In the following we use theta to denote the argument of logf on the original scale and phi on the Box-Cox transformed scale.

Usage

find_lambda_one_d_rcpp(
logf,
...,
ep_bc = 1e-04,
min_phi = ep_bc,
max_phi = 10,
num $=1001 \mathrm{~L}$,
$x d i v=100$,
probs $=\operatorname{seq}(0.01,0.99$, by $=0.01)$,

```
    lambda_range = c(-3, 3),
    phi_to_theta = NULL,
    log_j = NULL,
    user_args = list()
)
```


Arguments

logf	A pointer to a compiled C++ function returning the log of the target density f.
further arguments to be passed to logf and related functions.	
ep_bc	A (positive) numeric scalar. Smallest possible value of phi to consider. Used to avoid negative values of phi.
min_phi, max_phi	
Numeric scalars. Smallest and largest values of phi at which to evaluate logf,	
i.e. the range of values of phi over which to evaluate logf. Any components in	
min_phi that are not positive are set to ep_bc.	

Details

The general idea is to estimate quantiles of f corresponding to a set of equally-spaced probabilities in probs and to use these estimated quantiles as data in a standard estimation of the Box-Cox transformation parameter lambda.
The density f is first evaluated at num points equally spaced over the interval (min_phi, max_phi). The continuous density f is approximated by attaching trapezium-rule estimates of probabilities to the midpoints of the intervals between the points. After standardizing to account for the fact that f may not be normalized, (min_phi, max_phi) is reset so that values with small estimated probability (determined by xdiv) are excluded and the procedure is repeated on this new range. Then the required quantiles are estimated by inferring them from a weighted empirical distribution function based on treating the midpoints as data and the estimated probabilities at the midpoints as weights.

Value

A list containing the following components
\(\left.\left.\left.$$
\begin{array}{ll}\text { lambda } & \begin{array}{l}\text { A numeric scalar. The value of lambda. } \\
\text { gm }\end{array} \\
\text { A numeric scalar. Box-cox scaling parameter, estimated by the geometric mean } \\
\text { of the quantiles used in the optimisation to find the value of lambda. }\end{array}
$$\right] $$
\begin{array}{l}\text { A numeric scalar. An initial estimate of the mode of the Box-Cox transformed } \\
\text { density }\end{array}
$$\right] \begin{array}{l}A numeric scalar. Estimates of the marginal standard deviations of the Box-Cox

transformed variables.\end{array}\right]\)| sd_psi |
| :--- |
| phi_to_theta |
| as detailed above (only if phi_to_theta is supplied) |
| user_args | | as detailed above (only if log_j is supplied) |
| :--- |
| as detailed above (only if user_args is supplied) |

References

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.

Andrews, D. F. and Gnanadesikan, R. and Warner, J. L. (1971) Transformations of Multivariate Data, Biometrics, 27(4).
Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of Statistical Software, 40(8), 1-18. doi: 10.18637/jss.v040.i08

Eddelbuettel, D. (2013). Seamless R and $C++$ Integration with Rcpp, Springer, New York. ISBN 978-1-4614-6867-7.

See Also

ru_rcpp to perform ratio-of-uniforms sampling.
find_lambda_rcpp to produce (somewhat) automatically a list for the argument lambda of ru for any value of d.

Examples

```
# Log-normal density ====================
# Note: the default value of max_phi = 10 is OK here but this will not
# always be the case.
ptr_lnorm <- create_xptr("logdlnorm")
mu <- 0
sigma <- 1
lambda <- find_lambda_one_d_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma)
lambda
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, log = TRUE, d = 1,
    n = 1000, trans = "BC", lambda = lambda)
```

\# Gamma density ===================
alpha <- 1
\# Choose a sensible value of max_phi
max_phi <- qgamma(0.999, shape = alpha)
\# [I appreciate that typically the quantile function won't be available.
\# In practice the value of lambda chosen is quite insensitive to the choice
\# of max_phi, provided that max_phi is not far too large or far too small.]
ptr_gam <- create_xptr("logdgamma")
lambda <- find_lambda_one_d_rcpp(logf = ptr_gam, alpha = alpha, max_phi = max_phi)
lambda
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, $\mathrm{n}=1000$, trans = "BC",
lambda = lambda)
alpha <- 0.1
\# NB. for alpha <1 the gamma(alpha, beta) density is not bounded
\# So the ratio-of-uniforms emthod can't be used but it may work after a
\# Box-Cox transformation.
\# find_lambda_one_d() works much better than find_lambda() here.
max_phi <- qgamma(0.999, shape = alpha)
lambda <- find_lambda_one_d_rcpp(logf = ptr_gam, alpha = alpha, max_phi = max_phi)
lambda
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d=1, $\mathrm{n}=1000$, trans = "BC", lambda $=$ lambda)
plot (x)
plot(x, ru_scale = TRUE)
find_lambda_rcpp Selecting Box-Cox parameter lambda for general d using $C++$ via Rcpp.

Description

Finds a value of the Box-Cox transformation parameter lambda for which the (positive) random variable with log-density logf has a density closer to that of a Gaussian random variable. In the following we use theta to denote the argument of logf on the original scale and phi on the Box-Cox transformed scale.

Usage

find_lambda_rcpp(
logf,
...,
$d=1$,

```
    n_grid = NULL,
    ep_bc = 1e-04,
    min_phi = rep(ep_bc, d),
    max_phi = rep(10, d),
    which_lam = 1:d,
    lambda_range = c(-3, 3),
    init_lambda = NULL,
    phi_to_theta = NULL,
    log_j = NULL,
    user_args = list()
)
```


Arguments

logf	A pointer to a compiled C++ function returning the log of the target density f.
\ldots	further arguments to be passed to logf and related functions.
d	A numeric scalar. Dimension of f.

Numeric vectors. Smallest and largest values of phi at which to evaluate logf, i.e. the range of values of phi over which to evaluate logf. Any components in min_phi that are not positive are set to ep_bc.
which_lam A numeric vector. Contains the indices of the components of phi that ARE to be Box-Cox transformed.
lambda_range A numeric vector of length 2. Range of lambda over which to optimise.
init_lambda A numeric vector of length 1 or d. Initial value of lambda used in the search for the best lambda. If init_lambda is a scalar then rep(init_lambda, d) is used.
phi_to_theta A pointer to a compiled C++ function returning (the inverse) of the transformation from theta to phi used to ensure positivity of phi prior to Box-Cox transformation. The argument is phi and the returned value is theta. If phi_to_theta is undefined at the input value then the function should return NA.
$\log _{-} \mathrm{j} \quad$ A pointer to a compiled $\mathrm{C}++$ function returning the \log of the Jacobian of the transformation from theta to phi, i.e. based on derivatives of phi with respect to theta. Takes theta as its argument.
user_args A list of numeric components providing arguments to the user-supplied functions phi_to_theta and log_j.

Details

The general idea is to evaluate the density f on a d-dimensional grid, with n _grid ordinates for each of the d variables. We treat each combination of the variables in the grid as a data point and perform an estimation of the Box-Cox transformation parameter lambda, in which each data point is weighted by the density at that point. The vectors min_phi and max_phi define the limits of the grid and which_lam can be used to specify that only certain components of phi are to be transformed.

Value

A list containing the following components
lambda A numeric vector. The value of lambda.
gm
init_psi A numeric vector. An initial estimate of the mode of the Box-Cox transformed density
sd_psi A numeric vector. Estimates of the marginal standard deviations of the Box-Cox transformed variables.
phi_to_theta as detailed above (only if phi_to_theta is supplied)
$\log _{-} \mathrm{j} \quad$ as detailed above (only if $\log _{-} \mathrm{j}$ is supplied)
user_args as detailed above (only if user_args is supplied)

References

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.

Andrews, D. F. and Gnanadesikan, R. and Warner, J. L. (1971) Transformations of Multivariate Data, Biometrics, 27(4).
Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of Statistical Software, 40(8), 1-18. doi: 10.18637/jss.v040.i08
Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp, Springer, New York. ISBN 978-1-4614-6867-7.

See Also

ru_rcpp to perform ratio-of-uniforms sampling.
find_lambda_one_d_rcpp to produce (somewhat) automatically a list for the argument lambda of $r u$ for the $d=1$ case.

Examples

```
# Log-normal density ===================
# Note: the default value max_phi = 10 is OK here but this will not always
# be the case
ptr_lnorm <- create_xptr("logdlnorm")
mu <- 0
sigma <- 1
lambda <- find_lambda_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma)
lambda
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = 1000,
    trans = "BC", lambda = lambda)
# Gamma density ===================
```

```
alpha <- 1
# Choose a sensible value of max_phi
max_phi <- qgamma(0.999, shape = alpha)
# [Of course, typically the quantile function won't be available. However,
# In practice the value of lambda chosen is quite insensitive to the choice
# of max_phi, provided that max_phi is not far too large or far too small.]
ptr_gam <- create_xptr("logdgamma")
lambda <- find_lambda_rcpp(logf = ptr_gam, alpha = alpha, max_phi = max_phi)
lambda
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = 1000, trans = "BC",
    lambda = lambda)
# Generalized Pareto posterior distribution ===================
n <- 1000
# Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = -0.5, sigma = 1)
# Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
# Calculate an initial estimate
init <- c(mean(gpd_data), 0)
n <- 1000
# Sample on original scale, with no rotation -----------------
ptr_gp <- create_xptr("loggp")
for_ru_rcpp <- c(list(logf = ptr_gp, init = init, d = 2, n = n,
                                    lower = c(0, -Inf)), ss, rotate = FALSE)
x1 <- do.call(ru_rcpp, for_ru_rcpp)
plot(x1, xlab = "sigma", ylab = "xi")
# Parameter constraint line xi > -sigma/max(data)
# [This may not appear if the sample is far from the constraint.]
abline(a = 0, b = -1 / ss$xm)
summary(x1)
# Sample on original scale, with rotation ----------------
for_ru_rcpp <- c(list(logf = ptr_gp, init = init, d = 2, n = n,
    lower = c(0, -Inf)), ss)
x2 <- do.call(ru_rcpp, for_ru_rcpp)
plot(x2, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x2)
# Sample on Box-Cox transformed scale ----------------
# Find initial estimates for phi = (phi1, phi2),
# where phi1 = sigma
# and phi2 = xi + sigma / max(x),
# and ranges of phi1 and phi2 over over which to evaluate
# the posterior to find a suitable value of lambda.
temp <- do.call(gpd_init, ss)
min_phi <- pmax(0, temp$init_phi - 2 * temp$se_phi)
```

```
max_phi <- pmax(0, temp$init_phi + 2 * temp$se_phi)
# Set phi_to_theta() that ensures positivity of phi
# We use phi1 = sigma and phi2 = xi + sigma / max(data)
# Create an external pointer to this C++ function
ptr_phi_to_theta_gp <- create_phi_to_theta_xptr("gp")
# Note: log_j is set to zero by default inside find_lambda_rcpp()
lambda <- find_lambda_rcpp(logf = ptr_gp, ss = ss, d = 2, min_phi = min_phi,
max_phi = max_phi, user_args = list(xm = ss$xm),
phi_to_theta = ptr_phi_to_theta_gp)
lambda
# Sample on Box-Cox transformed, without rotation
x3 <- ru_rcpp(logf = ptr_gp, ss = ss, d = 2, n = n, trans = "BC",
    lambda = lambda, rotate = FALSE)
plot(x3, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x3)
# Sample on Box-Cox transformed, with rotation
x4 <- ru_rcpp(logf = ptr_gp, ss = ss, d = 2, n = n, trans = "BC",
    lambda = lambda)
plot(x4, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x4)
def_par <- graphics::par(no.readonly = TRUE)
par(mfrow = c(2,2), mar = c(4, 4, 1.5, 1))
plot(x1, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
    main = "mode relocation")
plot(x2, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
    main = "mode relocation and rotation")
plot(x3, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
    main = "Box-Cox and mode relocation")
plot(x4, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
    main = "Box-Cox, mode relocation and rotation")
graphics::par(def_par)
```

gpd_init Initial estimates for Generalized Pareto parameters

Description

Calculates initial estimates and estimated standard errors (SEs) for the generalized Pareto parameters sigma and xi based on an assumed random sample from this distribution. Also, calculates initial estimates and estimated standard errors for phil $=$ sigma and $\mathrm{phi} 2=\mathrm{xi}+\operatorname{sigma} / \mathrm{xm}$.

Usage

```
gpd_init(gpd_data, m, xm, sum_gp = NULL, xi_eq_zero = FALSE, init_ests = NULL)
```


Arguments

gpd_data
m
xm
sum_gp
xi_eq_zero
init_ests

A numeric vector containing positive sample values.
A numeric scalar. The sample size, i.e. the length of gpd_data.
A numeric scalar. The sample maximum.
A numeric scalar. The sum of the sample values.
A logical scalar. If TRUE assume that the shape parameter $\mathrm{xi}=0$.
A numeric vector. Initial estimate of theta = (sigma, xi). If supplied gpd_init () just returns the corresponding initial estimate of $\mathrm{phi}=(\mathrm{phi} 1, \mathrm{phi} 2)$.

Details

The main aim is to calculate an admissible estimate of theta, i.e. one at which the log-likelihood is finite (necessary for the posterior log-density to be finite) at the estimate, and associated estimated SEs. These are converted into estimates and SEs for phi. The latter can be used to set values of min_phi and max_phi for input to find_lambda.
In the default setting (xi_eq_zero = FALSE and init_ests = NULL) the methods tried are Maximum Likelihood Estimation (MLE) (Grimshaw, 1993), Probability-Weighted Moments (PWM) (Hosking and Wallis, 1987) and Linear Combinations of Ratios of Spacings (LRS) (Reiss and Thomas, 2007, page 134) in that order.

For $x i<-1$ the likelihood is unbounded, MLE may fail when xi is not greater than -0.5 and the observed Fisher information for (sigma, xi) has finite variance only if xi>-0.25. We use the ML estimate provided that the estimate of xi returned from gpd_mle is greater than -1 . We only use the SE if the MLE of xi is greater than -0.25.
If either the MLE or the SE are not OK then we try PWM. We use the PWM estimate only if is admissible, and the MLE was not OK. We use the PWM SE, but this will be c(NA,NA) is the PWM estimate of $x i$ is $>1 / 2$. If the estimate is still not OK then we try LRS. As a last resort, which will tend to occur only when xi is strongly negative, we set $x i=-1$ and estimate sigma conditional on this.

Value

If init_ests is not supplied by the user, a list is returned with components
init A numeric vector. Initial estimates of sigma and xi.
se A numeric vector. Estimated standard errors of sigma and xi.
init_phi A numeric vector. Initial estimates of phi1 = sigma and phi $2=x i+\operatorname{sigma} / \mathrm{xm}$, where xm is the maximum of gpd_data.
se_phi A numeric vector. Estimated standard errors of phi1 and phi2.
If init_ests is supplied then only the numeric vector init_phi is returned.

References

Grimshaw, S. D. (1993) Computing Maximum Likelihood Estimates for the Generalized Pareto Distribution. Technometrics, 35(2), 185-191. and Computing (1991) 1, 129-133. doi: 10.1007/ BF01889987.
Hosking, J. R. M. and Wallis, J. R. (1987) Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics, 29(3), 339-349. doi: 10.2307/1269343.

Reiss, R.-D., Thomas, M. (2007) Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields.Birkhauser. doi: 10.1007/9783764373993.

See Also

gpd_sum_stats to calculate summary statistics for use in gpd_loglik.
rgpd for simulation from a generalized Pareto
find_lambda to produce (somewhat) automatically a list for the argument lambda of ru.

Examples

```
# Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = 0, sigma = 1)
# Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
# Calculate initial estimates
do.call(gpd_init, ss)
```

gpd_logpost Generalized Pareto posterior log-density

Description

Calculates the generalized Pareto posterior log-density based on a particular prior for the generalized Pareto parameters, a Maximal Data Information (MDI) prior truncated to $\mathrm{xi}>=-1$ in order to produce a posterior density that is proper.

Usage

gpd_logpost(pars, ss)

Arguments

pars A numeric vector containing the values of the generalized Pareto parameters sigma and xi.
ss
A numeric list. Summary statistics to be passed to the generalized Pareto loglikelihood. Calculated using gpd_sum_stats

Value

A numeric scalar. The value of the log-likelihood.

References

Northrop, P. J. and Attalides, N. (2016) Posterior propriety in Bayesian extreme value analyses using reference priors. Statistica Sinica, 26(2), 721-743, doi: 10.5705/ss.2014.034.

See Also

gpd_sum_stats to calculate summary statistics for use in gpd_loglik.
rgpd for simulation from a generalized Pareto

Examples

```
# Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = 0, sigma = 1)
# Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
# Calculate the generalized Pareto log-posterior
gpd_logpost(pars = c(1, 0), ss = ss)
```

```
gpd_sum_stats
```

Generalized Pareto summary statistics

Description

Calculates summary statistics involved in the Generalized Pareto log-likelihood.

Usage

gpd_sum_stats(gpd_data)

Arguments

gpd_data A numeric vector containing positive values.

Value

A list with components
gpd_data A numeric vector. The input vector with any missings removed.
$m \quad$ A numeric scalar. The sample size, i.e. the number of non-missing values.
xm A numeric scalar. The sample maximum
sum_gp A numeric scalar. The sum of the non-missing sample values.

See Also

rgpd for simulation from a generalized Pareto distribution.

Examples

```
# Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = 0, sigma = 1)
# Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
```

plot.ru Plot diagnostics for an ru object

Description

plot method for class "ru". For $\mathrm{d}=1$ a histogram of the simulated values is plotted with a the density function superimposed. The density is normalized crudely using the trapezium rule. For d $=2$ a scatter plot of the simulated values is produced with density contours superimposed. For $d>$ 2 pairwise plots of the simulated values are produced.

Usage

```
    ## S3 method for class 'ru'
    plot(
        x,
        y,
        ...,
        n = ifelse(x$d == 1, 1001, 101),
        prob = c(0.1, 0.25, 0.5, 0.75, 0.95, 0.99),
        ru_scale = FALSE,
        rows = NULL,
        xlabs = NULL,
        ylabs = NULL,
        points_par = list(col = 8)
    )
```


Arguments

X
$y \quad$ Not used.
... Additional arguments passed on to hist, lines, contour or points.
n
an object of class "ru", a result of a call to ru.

A numeric scalar. Only relevant if $x \$ d=1$ or $x \$ d=2$. The meaning depends on the value of $x \$ d$.

- For $\mathrm{d}=1: \mathrm{n}+1$ is the number of abscissae in the trapezium method used to normalize the density.
- For $\mathrm{d}=2$: an n by n regular grid is used to contour the density.
prob Numeric vector. Only relevant for $\mathrm{d}=2$. The contour lines are drawn such that the respective probabilities that the variable lies within the contour are approximately prob.
ru_scale A logical scalar. Should we plot data and density on the scale used in the ratio-of-uniforms algorithm (TRUE) or on the original scale (FALSE)?
rows A numeric scalar. When $d>2$ this sets the number of rows of plots. If the user doesn't provide this then it is set internally.
xlabs, ylabs Numeric vectors. When $\mathrm{d}>2$ these set the labels on the x and y axes respectively. If the user doesn't provide these then the column names of the simulated data matrix to be plotted are used.
points_par A list of arguments to pass to points to control the appearance of points depicting the simulated values. Only relevant when $d=2$.

See Also

summary. ru for summaries of the simulated values and properties of the ratio-of-uniforms algorithm.

Examples

```
# Log-normal density ---------------
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, lower = 0, init = 1)
plot(x)
# Improve appearance using arguments to plot() and hist()
plot(x, breaks = seq(0, ceiling(max(x$sim_vals)), by = 0.25),
    xlim = c(0, 10))
# Two-dimensional normal with positive association ------------------
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
log_dmvnorm <- function(x, mean = rep(0, d), sigma = diag(d)) {
    x <- matrix(x, ncol = length(x))
    d <- ncol(x)
    - 0.5 * (x - mean) %*% solve(sigma) %*% t(x - mean)
}
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0))
plot(x)
```

```
    print.ru Print method for an "ru" object
```


Description

print method for class "ru".

Usage

\#\# S3 method for class 'ru'
print(x, ...)

Arguments

$x \quad$ an object of class "ru", a result of a call to ru or ru_rcpp.
... Additional arguments. None are used in this function.

Details

Simply prints the call to ru or ru_rcpp.

Value

The argument x , invisibly, as for all print methods.

See Also

summary. ru for summaries of the simulated values and properties of the ratio-of-uniforms algorithm.
plot.ru for a diagnostic plot.

```
print.summary.ru Print method for objects of class "summary.ru"
```


Description

print method for an object object of class "summary.ru".

Usage

\#\# S3 method for class 'summary.ru'
print(x, ...)

Arguments

x
... Additional optional arguments to be passed to print.

Value

Prints

- a summary of the simulated values, via summary (object\$sim_vals)
- an estimate of the probability of acceptance, i.e. object\$pa
- information about the ratio-of-uniforms bounding box, i.e. object $\$ b o x$

See Also

summary. ru for summaries of the simulated values and properties of the ratio-of-uniforms algorithm.
plot.ru for a diagnostic plot.
ru for descriptions of object\$sim_vals and object\$box.

Examples

```
# one-dimensional standard normal ---------------
x <- ru(logf = function(x) -x ^ 2 / 2, d = 1, n = 1000, init = 0)
summary(x)
# two-dimensional normal with positive association ------------------
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
log_dmvnorm <- function(x, mean = rep(0, d), sigma = diag(d)) {
    x <- matrix(x, ncol = length(x))
    d <- ncol(x)
    - 0.5 * (x - mean) %*% solve(sigma) %*% t(x - mean)
}
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0))
summary(x)
```

 rgpd Generalized Pareto simulation

Description

Simulates a sample of size m from a generalized Pareto distribution.

Usage

```
rgpd(m = 1, sigma = 1, xi = 0)
```


Arguments

m
sigma
xi

A numeric scalar. The size of sample required.
A numeric scalar. The generalized Pareto scale parameter.
A numeric scalar. The generalized Pareto shape parameter.

Value

A numeric vector. A generalized Pareto sample of size m.

Examples

```
# Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = 0, sigma = 1)
```

ru Generalized ratio-of-uniforms sampling

Description

Uses the generalized ratio-of-uniforms method to simulate from a distribution with log-density $\log f$ (up to an additive constant). The density f must be bounded, perhaps after a transformation of variable.

Usage

ru(
logf,
...,
$\mathrm{n}=1$,
d $=1$,
init = NULL,
trans = c("none", "BC", "user"),
phi_to_theta $=$ NULL,
log_j = NULL,
user_args = list(),
lambda $=\operatorname{rep}(1 \mathrm{~L}, \mathrm{~d})$,
lambda_tol = 1e-06,
gm = NULL,
rotate = ifelse(d == 1, FALSE, TRUE),
lower = rep(-Inf, d),
upper $=\operatorname{rep}(\operatorname{Inf}, d)$, $r=1 / 2$,
ep = 0L,
a_algor = if (d == 1) "nlminb" else "optim",

```
    b_algor = c("nlminb", "optim"),
    a_method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
    b_method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
    a_control = list(),
    b_control = list(),
    var_names = NULL,
    shoof = 0.2
)
```


Arguments

logf	A function returning the log of the target density f. This function should return -Inf when the density is zero.
\ldots	Further arguments to be passed to logf and related functions.
n	A numeric scalar. Number of simulated values required.
d	A numeric scalar. Dimension of f.
A numeric vector. Initial estimates of the mode of logf. If trans="BC" or	
trans = "user" this is after Box-Cox transformation or user-defined transfor-	
mation, but before any rotation of axes.	
A character scalar. "none" for no transformation, "BC" for Box-Cox transforma-	
tion, "user" for a user-defined transformation. If trans = "user" then the trans-	
formation should be specified using phi_to_theta and log_j and user_args	
may be used to pass arguments to phi_to_theta and log_j.	

This list may be created using find_lambda_one_d (for d=1) or find_lambda (for any d).
lambda_tol A numeric scalar. Any values in lambda that are less than lambda_tol in magnitude are set to zero.
gm A numeric vector. Box-cox scaling parameters (optional). If lambda\$gm is supplied in input list lambda then lambda\$gm is used, not gm.
rotate A logical scalar. If TRUE ($d>1$ only) use Choleski rotation. If $d=1$ and rotate $=$ TRUE then rotate will be set to FALSE with a warning.
lower, upper Numeric vectors. Lower/upper bounds on the arguments of the function after any transformation from theta to phi implied by the inverse of phi_to_theta. If rotate $=$ FALSE these are used in all of the optimizations used to construct the bounding box. If rotate $=$ TRUE then they are use only in the first optimisation to maximise the target density.‘ If trans = "BC" components of lower that are negative are set to zero without warning and the bounds implied after the BoxCox transformation are calculated inside ru.
$r \quad$ A numeric scalar. Parameter of generalized ratio-of-uniforms.
ep A numeric scalar. Controls initial estimates for optimizations to find the bbounding box parameters. The default $(\mathrm{ep}=0)$ corresponds to starting at the mode of logf small positive values of ep move the constrained variable slightly away from the mode in the correct direction. If ep is negative its absolute value is used, with no warning given.
a_algor, b_algor
Character scalars. Either "nlminb" or "optim". Respective optimization algorithms used to find a(r) and (bi-(r), bi+(r)).
a_method, b_method
Character scalars. Respective methods used by optim to find a(r) and (bi-(r), bi+(r)). Only used if optim is the chosen algorithm. If $d=1$ then a_method and b_method are set to "Brent" without warning.
a_control, b_control
Lists of control arguments to optim or nlminb to find a(r) and (bi-(r), bi+(r)) respectively.
var_names A character vector. Names to give to the column(s) of the simulated values.
shoof A numeric scalar in [0, 1]. Sometimes a spurious non-zero convergence indicator is returned from optim or nlminb). In this event we try to check that a minimum has indeed been found using different algorithm. shoof controls the starting value provided to this algorithm. If shoof $=0$ then we start from the current solution. If shoof $=1$ then we start from the initial estimate provided to the previous minimisation. Otherwise, shoof interpolates between these two extremes, with a value close to zero giving a starting value that is close to the current solution. The exception to this is when the initial and current solutions are equal. Then we start from the current solution multiplied by 1 -shoof.

Details

If trans $=$ "none" and rotate $=$ FALSE then ru implements the (multivariate) generalized ratio of uniforms method described in Wakefield, Gelfand and Smith (1991) using a target density whose mode is relocated to the origin ('mode relocation') in the hope of increasing efficiency.

If trans = " BC " then marginal Box-Cox transformations of each of the d variables is performed, with parameters supplied in lambda. The function phi_to_theta may be used, if necessary, to ensure positivity of the variables prior to Box-Cox transformation.
If trans = "user" then the function phi_to_theta enables the user to specify their own transformation.

In all cases the mode of the target function is relocated to the origin after any user-supplied transformation and/or Box-Cox transformation.

If d is greater than one and rotate $=$ TRUE then a rotation of the variable axes is performed after mode relocation. The rotation is based on the Choleski decomposition (see chol) of the estimated Hessian (computed using optimHess of the negated log-density after any user-supplied transformation or Box-Cox transformation. If any of the eigenvalues of the estimated Hessian are non-positive (which may indicate that the estimated mode of logf is close to a variable boundary) then rotate is set to FALSE with a warning. A warning is also given if this happens when $\mathrm{d}=1$.
The default value of the tuning parameter r is $1 / 2$, which is likely to be close to optimal in many cases, particularly if trans $=" B C "$.
See vignette("rust-a-vignette", package = "rust") for full details.

Value

An object of class "ru" is a list containing the following components:
sim_vals An n by d matrix of simulated values.
box $\quad A(2 * d+1)$ by $d+2$ matrix of ratio-of-uniforms bounding box information, with row names indicating the box parameter. The columns contain
column 1 values of box parameters.
columns 2 to ($\mathbf{2}+\mathrm{d}-\mathbf{1}$) values of variables at which these box parameters are obtained.
column 2+d convergence indicators.
Scaling of f within ru and relocation of the mode to the origin means that the first row of box will always be $c(1, \operatorname{rep}(0, d))$.
pa A numeric scalar. An estimate of the probability of acceptance.
d
$\log f$
logf_rho A function. The target function actually used in the ratio-of-uniforms algorithm.
sim_vals_rho An n by d matrix of values simulated from the function used in the ratio-ofuniforms algorithm.
logf_args A list of further arguments to logf.
f_mode
The estimated mode of the target density f , after any Box-Cox transformation and/or user supplied transformation, but before mode relocation.

References

Wakefield, J. C., Gelfand, A. E. and Smith, A. F. M. (1991) Efficient generation of random variates via the ratio-of-uniforms method. Statistics and Computing (1991), 1, 129-133. doi: 10.1007/ BF01889987.

See Also

ru_rcpp for a version of ru that uses the Rcpp package to improve efficiency.
summary.ru for summaries of the simulated values and properties of the ratio-of-uniforms algorithm.
plot. ru for a diagnostic plot.
find_lambda_one_d to produce (somewhat) automatically a list for the argument lambda of ru for the $\mathrm{d}=1$ case.
find_lambda to produce (somewhat) automatically a list for the argument lambda of ru for any value of d.
optim for choices of the arguments a_method, b_method, a_control and b_control.
nlminb for choices of the arguments a_control and b_control.
optimHess for Hessian estimation.
chol for the Choleski decomposition.

Examples

```
# Normal density ===================
# One-dimensional standard normal ---------------
x <- ru(logf = function(x) -x ^ 2 / 2, d = 1, n = 1000, init = 0.1)
# Two-dimensional standard normal ----------------
x<- ru(logf = function(x) - (x[1]^2 + x[2]^2) / 2, d = 2, n = 1000,
        init = c(0, 0))
# Two-dimensional normal with positive association ------------------
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
log_dmvnorm <- function(x, mean = rep(0, d), sigma = diag(d)) {
    x <- matrix(x, ncol = length(x))
    d <- ncol(x)
    - 0.5 * (x - mean) %*% solve(sigma) %*% t(x - mean)
}
    # No rotation.
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0),
        rotate = FALSE)
# With rotation.
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0))
    # three-dimensional normal with positive association
```

```
covmat <- matrix(rho, 3, 3) + diag(1 - rho, 3)
# No rotation. Slow !
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 3, n = 1000,
        init = c(0, 0, 0), rotate = FALSE)
# With rotation.
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 3, n = 1000,
        init = c(0, 0, 0))
# Log-normal density ===================
# Sampling on original scale -----------------
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, lower = 0, init = 1)
# Box-Cox transform with lambda = 0 ----------------
lambda <- 0
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, lower = 0, init = 0.1,
    trans = "BC", lambda = lambda)
# Equivalently, we could use trans = "user" and supply the (inverse) Box-Cox
# transformation and the log-Jacobian by hand
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, init = 0.1,
    trans = "user", phi_to_theta = function(x) exp(x),
    log_j = function(x) - log(x))
# Gamma(alpha, 1) density =====================
# Note: the gamma density in unbounded when its shape parameter is < 1.
# Therefore, we can only use trans="none" if the shape parameter is >= 1.
# Sampling on original scale
alpha <- 10
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,
    lower = 0, init = alpha)
alpha <- 1
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,
    lower = 0, init = alpha)
# Box-Cox transform with lambda = 1/3 works well for shape >= 1.
alpha <- 1
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,
    trans = "BC", lambda = 1/3, init = alpha)
summary(x)
# Equivalently, we could use trans = "user" and supply the (inverse) Box-Cox
# transformation and the log-Jacobian by hand
# Note: when phi_to_theta is undefined at x this function returns NA
phi_to_theta <- function(x, lambda) {
```

```
    ifelse(x * lambda + 1 > 0, (x * lambda + 1) ^ (1 / lambda), NA)
}
log_j <- function(x, lambda) (lambda - 1) * log(x)
lambda <- 1/3
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,
    trans = "user", phi_to_theta = phi_to_theta, log_j = log_j,
    user_args = list(lambda = lambda), init = alpha)
summary (x)
# Generalized Pareto posterior distribution =====================
# Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = -0.5, sigma = 1)
# Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
# Calculate an initial estimate
init <- c(mean(gpd_data), 0)
# Mode relocation only -----------------
n <- 1000
x1 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, init = init,
    lower = c(0, -Inf), rotate = FALSE)
plot(x1, xlab = "sigma", ylab = "xi")
# Parameter constraint line xi > -sigma/max(data)
# [This may not appear if the sample is far from the constraint.]
abline(a = 0, b = -1 / ss$xm)
summary(x1)
# Rotation of axes plus mode relocation
x2 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, init = init,
    lower = c(0, -Inf))
plot(x2, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x2)
# Cauchy ==========================
# The bounding box cannot be constructed if r < 1. For r = 1 the
# bounding box parameters b1-(r) and b1+(r) are attained in the limits
# as x decreases/increases to infinity respectively. This is fine in
# theory but using r > 1 avoids this problem and the largest probability
# of acceptance is obtained for r approximately equal to 1.26.
res <- ru(logf = dcauchy, log = TRUE, init = 0, r = 1.26, n = 1000)
# Half-Cauchy ====================
log_halfcauchy <- function(x) {
    return(ifelse(x < 0, -Inf, dcauchy(x, log = TRUE)))
}
# Like the Cauchy case the bounding box cannot be constructed if r<1.
```

```
# We could use r > 1 but the mode is on the edge of the support of the
# density so as an alternative we use a log transformation.
x <- ru(logf = log_halfcauchy, init = 0, trans = "BC", lambda = 0, n = 1000)
x$pa
plot(x, ru_scale = TRUE)
# Example 4 from Wakefield et al. (1991) =====================
# Bivariate normal x bivariate student-t
log_norm_t <- function(x, mean = rep(0, d), sigma1 = diag(d), sigma2 = diag(d)) {
    x <- matrix(x, ncol = length(x))
    d <- ncol(x)
    log_h1 <- -0.5 * (x - mean) %*% solve(sigma1) %*% t(x - mean)
    log_h2 <- -2 * log(1 + 0.5 * x %*% solve(sigma2) %*% t(x))
    return(log_h1 + log_h2)
}
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
y<- c(0, 0)
# Case in the top right corner of Table 3
x <- ru(logf = log_norm_t, mean = y, sigma1 = covmat, sigma2 = covmat,
    d = 2, n = 10000, init = y, rotate = FALSE)
x$pa
# Rotation increases the probability of acceptance
x <- ru(logf = log_norm_t, mean = y, sigma1 = covmat, sigma2 = covmat,
    d = 2, n = 10000, init = y, rotate = TRUE)
x$pa
```

rust
rust: Ratio-of-Uniforms Simulation with Transformation

Description

Uses the multivariate generalized ratio-of-uniforms method to simulate from a distribution with logdensity logf (up to an additive constant). logf must be bounded, perhaps after a transformation of variable.

Details

The main functions in the rust package are ru and ru_rcpp, which implement the generalized ratio-of-uniforms algorithm. The latter uses the Rcpp package to improve efficiency. Also provided are two functions, find_lambda and find_lambda_one_d, that may be used to set a suitable value for the parameter lambda if Box-Cox transformation is used prior to simulation. If ru_rcpp is used the equivalent functions are find_lambda_rcpp and find_lambda_one_d_rcpp Basic plot and summary methods are also provided.
See vignette("rust-a-vignette", package = "rust") for an overview of the package.

References

Wakefield, J. C., Gelfand, A. E. and Smith, A. F. M. Efficient generation of random variates via the ratio-of-uniforms method. Statistics and Computing (1991) 1, 129-133. doi: 10.1007/BF01889987.
Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.
Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of Statistical Software, 40(8), 1-18. doi: 10.18637/jss.v040.i08.
Eddelbuettel, D. (2013) Seamless R and C++ Integration with Rcpp. Springer, New York. ISBN 978-1-4614-6867-7.

See Also

ru and ru_rcpp to perform ratio-of-uniforms sampling.
summary. ru for summaries of the simulated values and properties of the ratio-of-uniforms algorithm.
plot.ru for a diagnostic plot.
find_lambda_one_d and find_lambda_one_d_rcpp to produce (somewhat) automatically a list for the argument lambda of ru for the $d=1$ case.
find_lambda and find_lambda_rcpp to produce (somewhat) automatically a list for the argument lambda of ru for any value of d.

```
ru_rcpp Generalized ratio-of-uniforms sampling using C++ via Rcpp
```


Description

Uses the generalized ratio-of-uniforms method to simulate from a distribution with log-density $\log f$ (up to an additive constant). f must be bounded, perhaps after a transformation of variable. The file file 'user_fns.cpp' that is sourced before running the examples below is available at the rust Github page at https://raw.githubusercontent.com/paulnorthrop/rust/master/src/ user_fns.cpp.

Usage

```
ru_rcpp(
    logf,
    ...,
    n = 1,
    d = 1,
    init = NULL,
    trans = c("none", "BC", "user"),
    phi_to_theta = NULL,
    log_j = NULL,
    user_args = list(),
```

```
    lambda = rep(1L, d),
    lambda_tol = 1e-06,
    gm = NULL,
    rotate = ifelse(d == 1, FALSE, TRUE),
    lower = rep(-Inf, d),
    upper = rep(Inf, d),
    r=1/2,
    ep = 0L,
    a_algor = if (d == 1) "nlminb" else "optim",
    b_algor = c("nlminb", "optim"),
    a_method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
    b_method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
    a_control = list(),
    b_control = list(),
    var_names = NULL,
    shoof = 0.2
)
```


Arguments

logf	An external pointer to a compiled $\mathrm{C}++$ function returning the \log of the target density f. This function should return -Inf when the density is zero. See the vignette("rust-c-using-rcpp-vignette", package = "rust"), particularly the Section Providing a C++ function to ru_rcpp, for details.
	Further arguments to be passed to logf and related functions.
n	A numeric scalar. Number of simulated values required.
d	A numeric scalar. Dimension of f.
init	A numeric vector. Initial estimates of the mode of logf. If trans $=" B C "$ or trans = "user" this is after Box-Cox transformation or user-defined transformation, but before any rotation of axes.
trans	A character scalar. "none" for no transformation, "BC" for Box-Cox transformation, "user" for a user-defined transformation. If trans = "user" then the transformation should be specified using phi_to_theta and log_j and user_args may be used to pass arguments to phi_to_theta and log_j.
phi_to_theta	An external pointer to a compiled $\mathrm{C}++$ function returning (the inverse) of the transformation from theta to phi used to ensure positivity of phi prior to BoxCox transformation. The argument is phi and the returned value is theta. If phi_to_theta is undefined at the input value then the function should return NA.
log_j	An external pointer to a compiled $\mathrm{C}++$ function returning the \log of the Jacobian of the transformation from theta to phi, i.e. based on derivatives of phi with respect to theta. Takes theta as its argument.
user_args	A list of numeric components. If trans = '`user' ' then user_args is a list providing arguments to the user-supplied functions phi_to_theta and log_j.
lambda	Either

- A numeric vector. Box-Cox transformation parameters, or
- A list with components
lambda A numeric vector. Box-Cox parameters (required).
gm A numeric vector. Box-cox scaling parameters (optional). If supplied this overrides any gm supplied by the individual gm argument described below.
init_psi A numeric vector. Initial estimate of mode after Box-Cox transformation (optional).
sd_psi A numeric vector. Estimates of the marginal standard deviations of the Box-Cox transformed variables (optional).
phi_to_theta as above (optional).
$\log _{\boldsymbol{j}} \mathbf{j}$ as above (optional).
user_args as above (optional).
This list may be created using find_lambda_one_d_rcpp (for $d=1$) or find_lambda_rcpp (for any d).
lambda_tol A numeric scalar. Any values in lambda that are less than lambda_tol in magnitude are set to zero.
gm A numeric vector. Box-cox scaling parameters (optional). If lambda\$gm is supplied in input list lambda then lambda\$gm is used, not gm.
rotate A logical scalar. If TRUE ($\mathrm{d}>1$ only) use Choleski rotation. If $\mathrm{d}=1$ and rotate $=$ TRUE then rotate will be set to FALSE with a warning.
lower, upper Numeric vectors. Lower/upper bounds on the arguments of the function after any transformation from theta to phi implied by the inverse of phi_to_theta. If rotate $=$ FALSE these are used in all of the optimizations used to construct the bounding box. If rotate $=$ TRUE then they are use only in the first optimisation to maximise the target density.' If trans $=" B C$ " components of lower that are negative are set to zero without warning and the bounds implied after the BoxCox transformation are calculated inside ru.
$r \quad$ A numeric scalar. Parameter of generalized ratio-of-uniforms.
ep A numeric scalar. Controls initial estimates for optimizations to find the bbounding box parameters. The default (ep=0) corresponds to starting at the mode of logf small positive values of ep move the constrained variable slightly away from the mode in the correct direction. If ep is negative its absolute value is used, with no warning given.
a_algor, b_algor
Character scalars. Either "nlminb" or "optim". Respective optimization algorithms used to find a(r) and (bi-(r), bi+(r)).
a_method, b_method
Character scalars. Respective methods used by optim to find a(r) and (bi-(r), bi+(r)). Only used if optim is the chosen algorithm. If $d=1$ then a_method and b_method are set to "Brent" without warning.
a_control, b_control
Lists of control arguments to optim or nlminb to find a(r) and (bi-(r), bi+(r)) respectively.
var_names A character vector. Names to give to the column(s) of the simulated values.
shoof A numeric scalar in [0, 1]. Sometimes a spurious non-zero convergence indicator is returned from optim or nlminb). In this event we try to check that a minimum has indeed been found using different algorithm. shoof controls the starting value provided to this algorithm. If shoof $=0$ then we start from the current solution. If shoof $=1$ then we start from the initial estimate provided to the previous minimisation. Otherwise, shoof interpolates between these two extremes, with a value close to zero giving a starting value that is close to the current solution. The exception to this is when the initial and current solutions are equal. Then we start from the current solution multiplied by 1 -shoof.

Details

If trans = "none" and rotate $=$ FALSE then ru implements the (multivariate) generalized ratio of uniforms method described in Wakefield, Gelfand and Smith (1991) using a target density whose mode is relocated to the origin ('mode relocation') in the hope of increasing efficiency.
If trans = " BC " then marginal Box-Cox transformations of each of the d variables is performed, with parameters supplied in lambda. The function phi_to_theta may be used, if necessary, to ensure positivity of the variables prior to Box-Cox transformation.
If trans = "user" then the function phi_to_theta enables the user to specify their own transformation.

In all cases the mode of the target function is relocated to the origin after any user-supplied transformation and/or Box-Cox transformation.
If d is greater than one and rotate $=$ TRUE then a rotation of the variable axes is performed after mode relocation. The rotation is based on the Choleski decomposition (see chol) of the estimated Hessian (computed using optimHess of the negated log-density after any user-supplied transformation or Box-Cox transformation. If any of the eigenvalues of the estimated Hessian are non-positive (which may indicate that the estimated mode of logf is close to a variable boundary) then rotate is set to FALSE with a warning. A warning is also given if this happens when $\mathrm{d}=1$.
The default value of the tuning parameter r is $1 / 2$, which is likely to be close to optimal in many cases, particularly if trans = "BC".
See vignette("rust-b-using-rcpp-vignette", package = "rust") and vignette("rust-a-vignette", package = "rust") for full details.

Value

An object of class "ru" is a list containing the following components:
sim_vals An n by d matrix of simulated values.
box $\quad A(2 * d+1)$ by $d+2$ matrix of ratio-of-uniforms bounding box information, with row names indicating the box parameter. The columns contain
column 1 values of box parameters.
columns 2 to (2+d-1) values of variables at which these box parameters are obtained.
column 2+d convergence indicators.
Scaling of f within ru and relocation of the mode to the origin means that the first row of box will always be $c(1, \operatorname{rep}(0, d))$.
pa A numeric scalar. An estimate of the probability of acceptance.
d A numeric scalar. The dimension of logf.
$\log f \quad$ A function. logf supplied by the user, but with f scaled by the maximum of the target density used in the ratio-of-uniforms method (i.e. logf_rho), to avoid numerical problems in contouring f in plot. ru when $\mathrm{d}=2$.
logf_rho A function. The target function actually used in the ratio-of-uniforms algorithm.
sim_vals_rho An n by d matrix of values simulated from the function used in the ratio-ofuniforms algorithm.
logf_args A list of further arguments to logf.
logf_rho_args A list of further arguments to logf_rho. Note: this component is returned by ru_rcpp but not by ru.
f_mode The estimated mode of the target density f, after any Box-Cox transformation and/or user supplied transformation, but before mode relocation.

References

Wakefield, J. C., Gelfand, A. E. and Smith, A. F. M. (1991) Efficient generation of random variates via the ratio-of-uniforms method. Statistics and Computing (1991), 1, 129-133. doi: 10.1007/ BF01889987.

Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of Statistical Software, 40(8), 1-18. doi: 10.18637/jss.v040.i08

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp, Springer, New York. ISBN 978-1-4614-6867-7.

See Also

ru for a version of ru_rcpp that accepts R functions as arguments.
summary. ru for summaries of the simulated values and properties of the ratio-of-uniforms algorithm.
plot.ru for a diagnostic plot.
find_lambda_one_d_rcpp to produce (somewhat) automatically a list for the argument lambda of $r u$ for the $d=1$ case.
find_lambda_rcpp to produce (somewhat) automatically a list for the argument lambda of ru for any value of d.
optim for choices of the arguments a_method, b_method, a_control and b_control.
nlminb for choices of the arguments a_control and b_control.
optimHess for Hessian estimation.
chol for the Choleski decomposition.

Examples

```
n <- 1000
# Normal density ====================
# One-dimensional standard normal -----------------
ptr_N01 <- create_xptr("logdN01")
x <- ru_rcpp(logf = ptr_N01, d = 1, n = n, init = 0.1)
# Two-dimensional standard normal
ptr_bvn <- create_xptr("logdnorm2")
rho <- 0
x <- ru_rcpp(logf = ptr_bvn, rho = rho, d = 2, n = n,
    init = c(0, 0))
# Two-dimensional normal with positive association ====================
rho <- 0.9
# No rotation.
x <- ru_rcpp(logf = ptr_bvn, rho = rho, d = 2, n = n, init = c(0, 0),
    rotate = FALSE)
# With rotation.
x <- ru_rcpp(logf = ptr_bvn, rho = rho, d = 2, n = n, init = c(0, 0))
# Using general multivariate normal function.
ptr_mvn <- create_xptr("logdmvnorm")
covmat <- matrix(rho, 2, 2) + diag(1 - rho, 2)
x<- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 2, n = n, init = c(0, 0))
# Three-dimensional normal with positive association ------------------
covmat <- matrix(rho, 3, 3) + diag(1 - rho, 3)
# No rotation.
x <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 3, n = n,
    init = c(0, 0, 0), rotate = FALSE)
# With rotation.
x <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 3, n = n,
    init = c(0, 0, 0))
# Log-normal density ===================
ptr_lnorm <- create_xptr("logdlnorm")
mu <- 0
sigma <- 1
# Sampling on original scale ---------------
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = n,
    lower = 0, init = exp(mu))
# Box-Cox transform with lambda = 0
lambda <- 0
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = n,
```

```
lower = 0, init = exp(mu), trans = "BC", lambda = lambda)
# Equivalently, we could use trans = "user" and supply the (inverse) Box-Cox
# transformation and the log-Jacobian by hand
ptr_phi_to_theta_lnorm <- create_phi_to_theta_xptr("exponential")
ptr_log_j_lnorm <- create_log_j_xptr("neglog")
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = n,
    init = 0.1, trans = "user", phi_to_theta = ptr_phi_to_theta_lnorm,
    log_j = ptr_log_j_lnorm)
# Gamma (alpha, 1) density ====================
# Note: the gamma density in unbounded when its shape parameter is < 1.
# Therefore, we can only use trans="none" if the shape parameter is >= 1.
# Sampling on original scale
ptr_gam <- create_xptr("logdgamma")
alpha <- 10
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = n,
    lower = 0, init = alpha)
alpha <- 1
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = n,
    lower = 0, init = alpha)
# Box-Cox transform with lambda = 1/3 works well for shape >= 1.
alpha <- 1
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = n,
    trans = "BC", lambda = 1/3, init = alpha)
summary(x)
# Equivalently, we could use trans = "user" and supply the (inverse) Box-Cox
# transformation and the log-Jacobian by hand
lambda <- 1/3
ptr_phi_to_theta_bc <- create_phi_to_theta_xptr("bc")
ptr_log_j_bc <- create_log_j_xptr("bc")
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = n,
    trans = "user", phi_to_theta = ptr_phi_to_theta_bc, log_j = ptr_log_j_bc,
    user_args = list(lambda = lambda), init = alpha)
summary (x)
# Generalized Pareto posterior distribution =====================
# Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = -0.5, sigma = 1)
# Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
# Calculate an initial estimate
init <- c(mean(gpd_data), 0)
```

```
n <- 1000
# Mode relocation only
ptr_gp <- create_xptr("loggp")
for_ru_rcpp <- c(list(logf = ptr_gp, init = init, d = 2, n = n,
                        lower = c(0, -Inf)), ss, rotate = FALSE)
x1 <- do.call(ru_rcpp, for_ru_rcpp)
plot(x1, xlab = "sigma", ylab = "xi")
# Parameter constraint line xi > -sigma/max(data)
# [This may not appear if the sample is far from the constraint.]
abline(a = 0, b = -1 / ss$xm)
summary (x1)
# Rotation of axes plus mode relocation -----------------
for_ru_rcpp <- c(list(logf = ptr_gp, init = init, d = 2, n = n,
    lower = c(0, -Inf)), ss)
x2 <- do.call(ru_rcpp, for_ru_rcpp)
plot(x2, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x2)
# Cauchy ========================
```

```
ptr_c <- create_xptr("logcauchy")
```

ptr_c <- create_xptr("logcauchy")

The bounding box cannot be constructed if r < 1. For r = 1 the

The bounding box cannot be constructed if r < 1. For r = 1 the

bounding box parameters b1-(r) and b1+(r) are attained in the limits

bounding box parameters b1-(r) and b1+(r) are attained in the limits

as x decreases/increases to infinity respectively. This is fine in

as x decreases/increases to infinity respectively. This is fine in

theory but using r > 1 avoids this problem and the largest probability

theory but using r > 1 avoids this problem and the largest probability

of acceptance is obtained for r approximately equal to 1.26.

of acceptance is obtained for r approximately equal to 1.26.

res <- ru_rcpp(logf = ptr_c, log = TRUE, init = 0, r = 1.26, n = 1000)
res <- ru_rcpp(logf = ptr_c, log = TRUE, init = 0, r = 1.26, n = 1000)

Half-Cauchy ===================

Half-Cauchy ===================

ptr_hc <- create_xptr("loghalfcauchy")
ptr_hc <- create_xptr("loghalfcauchy")

Like the Cauchy case the bounding box cannot be constructed if r < 1.

Like the Cauchy case the bounding box cannot be constructed if r < 1.

We could use r> 1 but the mode is on the edge of the support of the

We could use r> 1 but the mode is on the edge of the support of the

density so as an alternative we use a log transformation.

density so as an alternative we use a log transformation.

x <- ru_rcpp(logf = ptr_hc, init = 0, trans = "BC", lambda = 0, n = 1000)
x <- ru_rcpp(logf = ptr_hc, init = 0, trans = "BC", lambda = 0, n = 1000)
x$pa
x$pa
plot(x, ru_scale = TRUE)
plot(x, ru_scale = TRUE)

Example 4 from Wakefield et al. (1991) =================

Example 4 from Wakefield et al. (1991) =================

Bivariate normal x bivariate student-t

Bivariate normal x bivariate student-t

ptr_normt <- create_xptr("lognormt")
ptr_normt <- create_xptr("lognormt")
rho <- 0.9
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
y <- c(0, 0)

```
y <- c(0, 0)
```

```
\# Case in the top right corner of Table 3
x <- ru_rcpp(logf = ptr_normt, mean = y, sigma1 = covmat, sigma2 = covmat,
        \(\mathrm{d}=2, \mathrm{n}=10000\), init \(=\mathrm{y}\), rotate = FALSE)
    x\$pa
    \# Rotation increases the probability of acceptance
    x <- ru_rcpp(logf = ptr_normt, mean = y, sigma1 = covmat, sigma2 = covmat,
        \(\mathrm{d}=2, \mathrm{n}=10000\), init \(=\mathrm{y}\), rotate \(=\) TRUE)
    x\$pa
```

 summary.ru Summarizing ratio-of-uniforms samples

Description

summary method for class "ru"

Usage

\#\# S3 method for class 'ru'
summary (object, ...)

Arguments

object
an object of class "ru", a result of a call to ru.
... Additional arguments passed on to summary.

Value

Prints

- information about the ratio-of-uniforms bounding box, i.e. object\$box
- an estimate of the probability of acceptance, i.e. object\$pa
- a summary of the simulated values, via summary (object\$sim_vals)

See Also

ru for descriptions of object\$sim_vals and object\$box.
plot.ru for a diagnostic plot.

Examples

```
# one-dimensional standard normal ------------------
x <- ru(logf = function(x) -x ^ 2 / 2, d = 1, n = 1000, init = 0)
summary(x)
# two-dimensional normal with positive association ------------------
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
log_dmvnorm <- function(x, mean = rep(0, d), sigma = diag(d)) {
    x <- matrix(x, ncol = length(x))
    d <- ncol(x)
    - 0.5 * (x - mean) %*% solve(sigma) %*% t(x - mean)
}
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0))
summary(x)
```


Index

```
chol, 28, 29, 36, }3
create_log_j_xptr, 2
create_phi_to_theta_xptr, 3
create_xptr,3
find_lambda, 3, 5, 9, 19, 27, 29, 33
find_lambda_one_d, 5, 7, 9, 27, 29, 33
find_lambda_one_d_rcpp, 5, 9, 10, 15, 33,
    35,37
find_lambda_rcpp, 5, 9, 12, 13, 33, 35, 37
gpd_init, 17
gpd_logpost,19
gpd_sum_stats, 19, 20, 20
nlminb, 27, 29, 36, 37
optim, 27, 29, 36, 37
optimHess, 28, 29, 36, 37
plot.ru, 21, 23, 24, 28, 29, 33, 37,41
points,22
print, 23, 24
print.ru, 23
print.summary.ru, 23
rgpd, 19-21, 24
ru, 5, 9, 23, 24, 25, 29, 32, 33, 37, 41
ru_rcpp, 5, 9, 12, 15, 23, 29, 32, 33, 33, 37
rust, 32
summary.ru, 22-24, 29, 33, 37,41
```

