Package 'schumaker'

September 10, 2021
Type Package
Title Schumaker Shape-Preserving Spline
Version 1.2.1
Date 2021-09-09
Author Stuart Baumann [aut, cre], Margaryta Klymak[aut]
Maintainer Stuart Baumann Stuart@StuartBaumann.com
Description This is a shape preserving spline doi:10.1137/0720057which is guaranteed to be monotonic and concave or convex if thedata is monotonic and concave or convex. It does not use anyoptimisation and is therefore quick and smoothly converges to afixed point in economic dynamics problems including value functioniteration. It also automatically gives the first two derivativesof the spline and options for determining behaviour when evaluatedoutside the interpolation domain.
License MIT + file LICENSE
Suggests testhat, knitr, numDeriv, cobs, scam, rbenchmark
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-09-09 22:00:03 UTC
R topics documented:
make_approx_functions_from_dataframe 2
ppmak 3
ppmak2Deriv 3
ppmakDeriv 4
Schumaker 5
SchumakerIndInterval 6
Index 7

```
make_approx_functions_from_dataframe
                                    make_approx_functions_from_dataframe
```


Description

make_approx_functions_from_dataframe

Usage

make_approx_functions_from_dataframe(dataframe, group_vars, x_var, y_var, approx_func
)

Arguments

$$
\begin{array}{ll}
\text { dataframe } & \text { A data.frame with your data. } \\
\text { group_vars } & \text { The variable names in the dataframe that subset the data into the various groups. } \\
\text { x_var } & \text { The name of the } x \text { variable in the dataframe } \\
\text { y_var } & \text { The name of the y variable in the dataframe. } \\
\text { approx_func } & \begin{array}{l}
\text { A function that takes in two arguments, an } x \text { vector and a y vector. Make sure it } \\
\text { can handle vectors of length } 0 \text { (if that can happen in your data). }
\end{array}
\end{array}
$$

Value

A function of the form function(groupvar1, groupvar2, \ldots, x).

Examples

\# Generating example data.
\# Consider we have equity prices for several days and times.
RICs = c("BARC.L", "VOD.L", "IBM.L")
Dates = as.Date(c("11-11-2019", "12-11-2019", "13-11-2019",
"14-11-2019", "15-11-2019"), format="\%d-\%m-\%Y")
times $=\operatorname{seq}(0,28800$, length.out $=10)$ \# The number of seconds into the trading day.
dd $=$ expand.grid(TIME $=$ times, Date $=$ Dates, RIC $=$ RICs)
dd = merge(dd, data.frame(RIC = RICs, PRICE = c(160.00, 162.24, 137.24)))
randomness = rlnorm(dim(dd)[1])
dd\$PRICE = dd\$PRICE * cumprod(randomness)
approx_func $=$ function(x, y) \{approxfun($x, y)\}$
dispatched_approxfun = make_approx_functions_from_dataframe(dd, group_vars = c("RIC", "Date"),

```
    x_var = "TIME", y_var = "PRICE",
    approx_func)
    dispatched_approxfun("BARC.L", Dates[2], c(100, 156, 6045))
```

ppmak ppmak

Description

Create a spline with given intervals and quadratic coefficients. This is an internal function that is called from the Schumaker function. It roughly works like ppmak in matlab.

Usage

ppmak(IntStarts, SpCoefs, Vectorised = TRUE)

Arguments

IntStarts This is a vector with the start of each interval.
SpCoefs This is a matrix with three columns. The first is the coefficient of the squared term followed by linear term coefficients and constants.
Vectorised This is a boolean parameter. Set to TRUE if you want to be able to input vectors to the created spline. If you will only input single values set this to FALSE as it is a bit faster.

Value

A spline function for the given intervals and quadratic curves. Each function takes an x value (or vector if Vectorised $=$ TRUE) and outputs the interpolated y value (or relevent derivative).
ppmak2Deriv ppmak2Deriv

Description

Create the second derivative of the spline defined by given intervals and quadratic coefficients. This is an internal function that is called from the Schumaker function.

Usage

ppmak2Deriv(IntStarts, SpCoefs, Vectorised = TRUE)

Arguments

IntStarts This is a vector with the start of each interval.
SpCoefs This is a matrix with three columns. The first is the coefficient of the squared term followed by linear term coefficients and constants.

Vectorised This is a boolean parameter. Set to TRUE if you want to be able to input vectors to the created spline. If you will only input single values set this to FALSE as it is a bit faster.

Value

A spline function for the given intervals and quadratic curves. Each function takes an x value (or vector if Vectorised $=$ TRUE) and outputs the interpolated y value (or relevent derivative).

```
ppmakDeriv ppmakDeriv
```


Description

Create the derivative of the spline defined by given intervals and quadratic coefficients. This is an internal function that is called from the Schumaker function.

Usage

ppmakDeriv(IntStarts, SpCoefs, Vectorised = TRUE)

Arguments

IntStarts This is a vector with the start of each interval.
SpCoefs This is a matrix with three columns. The first is the coefficient of the squared term followed by linear term coefficients and constants.

Vectorised This is a boolean parameter. Set to TRUE if you want to be able to input vectors to the created spline. If you will only input single values set this to FALSE as it is a bit faster.

Value

A spline function for the given intervals and quadratic curves. Each function takes an x value (or vector if Vectorised $=$ TRUE) and outputs the interpolated y value (or relevent derivative).

Description

Create a Schumaker spline

Usage

```
    Schumaker(
        x,
        y,
        gradients = NA,
        Vectorised = TRUE,
        Extrapolation = c("Curve", "Constant", "Linear"),
        edgeGradients = c(NA, NA)
    )
```


Arguments

$x \quad$ A vector of x coordinates
$y \quad$ A corresponding vector of y coordinates
gradients (Optional) A corresponding vector of gradiants at the data points. If this is NA then it will be estimated.
Vectorised This is a boolean parameter. Set to TRUE if you want to be able to input vectors to the created spline. If you will only input single values set this to FALSE as it is a bit faster.

Extrapolation This determines how the spline function responds when an input is recieved outside the domain of x. The options are "Curve" which outputs the result of the point on the quadratic curve at the nearest interval, "Constant" which outputs the y value at the end of the x domain and "Linear" which extends the spline using the gradiant at the edge of x.
edgeGradients This gives the options of specifing the gradients at either edge of the domain. By default this is $c(N A, N A)$ meaning that the defaults from the original paper are used. If this is set to $\mathrm{c}(0, \mathrm{NA})$ for instance this will mean that the left edge gradient is zero and the right edge gradient is as recommended in the original paper. This setting has no impact if a full set of gradients is input.

Value

A list with 3 spline functions and a table with spline intervals and coefficients. The first spline is the schumaker spline, the second spline is the first derivative of the schumaker spline, the third spline is the second derivative of the schumaker spline. Each function takes an x value (or vector if Vectorised $=$ TRUE) and outputs the interpolated y value (or relevant derivative).

References

Schumaker, L.L. 1983. On shape-preserving quadratic spline interpolation. SIAM Journal of Numerical Analysis 20: 854-64.
Judd (1998). Numerical Methods in Economics. MIT Press

Examples

```
x = seq(1,6)
y= log(x)
SSS = schumaker::Schumaker(x,y, Vectorised = TRUE)
xarray = seq(1,6,0.01)
Result = SSS$Spline(xarray)
Result2 = SSS$DerivativeSpline(xarray)
Result3 = SSS$SecondDerivativeSpline(xarray)
plot(xarray, Result, ylim=c(-0.5,2))
lines(xarray, Result2, col = 2)
lines(xarray, Result3, col = 3)
```


SchumakerIndInterval SchumakerIndInterval

Description

This creates quadratic coefficients for one interval of a domain. This is an internal function that is called from the Schumaker function.

Usage

SchumakerIndInterval(z, s, Smallt)

Arguments

Z
s
Smallt

This is the y value at edges of an interval.
This is the slope at edges of an interval.
This is x values at the edge of an interval.

Value

The location of the knot and quadratic coefficients for an interval.

Index

make_approx_functions_from_dataframe, 2
ppmak, 3
ppmak2Deriv, 3
ppmakDeriv, 4
Schumaker, 5
SchumakerIndInterval, 6

