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1 CONCEPTS

This document provides an introduction to statistical disclosure control (SDC)
and guidelines on how to apply SDC methods to microdata. Section 1 introduces
basic concepts and presents a general workflow. Section 2 discusses methods of
measuring disclosure risks for a given micro dataset and disclosure scenario. Sec-
tion 3 presents some common anonymization methods. Section 4 introduces how
to assess utility of a micro dataset after applying disclosure limitation methods.

1. Concepts

A microdata file is a dataset that holds information collected on individual units;
examples of units include people, households or enterprises. For each unit, a set of
variables is recorded and available in the dataset. This section discusses concepts
related to disclosure and SDC methods, and provides a workflow that shows how
to apply SDC methods to microdata.

1.1. Categorization of Variables

In accordance with disclosure risks, variables can be classified into three groups,
which are not necessarily disjunctive:

Direct Identifiers are variables that precisely identify statistical units. For exam-
ple, social insurance numbers, names of companies or persons and addresses
are direct identifiers.

Key variables are a set of variables that, when considered together, can be used
to identify individual units. For example, it may be possible to identify
individuals by using a combination of variables such as gender, age, region
and occupation. Other examples of key variables are income, health status,
nationality or political preferences. Key variables are also called implicit
identifiers or quasi-identifiers. When discussing SDC methods, it is preferable
to distinguish between categorical and continuous key variables based on the
scale of the corresponding variables.

Non-identifying variables are variables that are not direct identifiers or key vari-
ables.

For specific methods such as l-diversity, another group of sensitive variables is
defined in Section 2.3).

1.2. What is disclosure?

In general, disclosure occurs when an intruder uses the released data to reveal
previously unknown information about a respondent. There are three different
types of disclosure:

Identity disclosure: In this case, the intruder associates an individual with a re-
leased data record that contains sensitive information, i.e. linkage with ex-
ternal available data is possible. Identity disclosure is possible through direct
identifiers, rare combinations of values in the key variables and exact knowl-
edge of continuous key variable values in external databases. For the latter,

proofreading
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extreme data values (e.g., extremely high turnover values for an enterprise)
lead to high re-identification risks, i.e. it is likely that responends with ex-
treme data values are disclosed.

Attribute disclosure: In this case, the intruder is able to determine some charac-
teristics of an individual based on information available in the released data.
For example, if all people aged 56 to 60 who identify their race as black in
region 12345 are unemployed, the intruder can determine the value of the
variable labor status.

Inferential disclosure: In this case, the intruder, though with some uncertainty,
can predict the value of some characteristics of an individual more accu-
rately with the released data.

If linkage is successful based on a number of identifiers, the intruder will have
access to all of the information related to a specific corresponding unit in the
released data. This means that a subset of critical variables can be exploited to
disclose everything about a unit in the dataset.

1.3. Remarks on SDC Methods

In general, SDC methods borrow techniques from other fields. For instance, multi-
variate (robust) statistics are used to modify or simulate continuous variables and
to quantify information loss. Distribution-fitting methods are used to quantify
disclosure risks. Statistical modeling methods form the basis of perturbation algo-
rithms, to simulate synthetic data, to quantify risk and information loss. Linear
programming is used to modify data but minimize the impact on data quality.

Problems and challenges arise from large datasets and the need for efficient
algorithms and implementations. Another layer of complexity is produced by
complex structures of hierarchical, multidimensional data sampled with complex
survey designs. Missing values are a challenge, especially for computation time
issues; structural zeros (values that are by definition zero) also have impact on
the application of SDC methods. Furthermore, the compositional nature of many
components should always be considered, but adds even more complexity.

SDC techniques can be divided into three broad topics:

• Measuring disclosure risk (see Section 2)

• Methods to anonymize micro-data (see Section 3)

• Comparing original and modified data (information loss) (see Section 4)

1.4. Risk Versus Data Utility and Information Loss

The goal of SDC is always to release a safe micro dataset with high data utility and
a low risk of linking confidential information to individual respondents. Figure 1
shows the trade-off between disclosure risk and data utility. We applied two SDC
methods with different parameters to the European Union Structure of Earnings
Statistics (SES) data [see Templ et al., 2014a, for more on anonymization of this
dataset].

For Method 1 (in this example adding noise), the parameter varies between 10
(small perturbation) to 100 (perturbation is 10 times higher). When the parameter
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value is 100, the disclosure risk is low since the data are heavily perturbed, but the
information loss is very high, which also corresponds to very low data utility. When
only low perturbation is applied to a dataset, both risk and data utility are high. It
is easy to see that data anonymized with Method 2 (we used microaggregation with
different aggregation levels) have considerably lower risk; therefore, this method
is preferable. In addition, information loss increases only slightly if the parameter
value increases; therefore, Method 2 with parameter value of approximately 7
would be a good choice in this case since this provides both, low disclosure risk
and low information loss. For higher values, the perturbation is higher but the
gain is only minimal, lower values reports higher disclosure risk. Method 1 should
not be chosen since the disclosure risk and the information loss is higher than for
method 2. However, if for some reasons method 1 is chosen, the parameter for
perturbation might be chosen around 40 if 0.1 risk is already considered to be
safe. For data sets concerning very sensible information (like cancer) the might
be, however, to high risk and a perturbation value of 100 or above should then be
chosen for method 1 and a parameter value above 10 might be chosen for method
2.

In real-world examples, things are often not as clear, so data anonymization spe-
cialists should base their decisions regarding risk and data utility on the following
considerations:

What is the legal situation regarding data privacy? Laws on data privacy vary
between countries; some have quite restrictive laws, some don’t, and laws often
differ for different kinds of data (e.g., business statistics, labor force statistics,
social statistics, and medical data).

How sensitive is the data information and who has access to the anonymized
data file? Usually, laws consider two kinds of data users: users from universities
and other research organizations, and general users, i.e., the public. In the first
case, special contracts are often made between data users and data producers.
Usually these contracts restrict the usage of the data to very specific purposes, and
allow data saving only within safe work environments. For these users, anonymized
microdata files are called scientific use files, whereas data for the public are called
public use files. Of course, the disclosure risk of a public use file needs to be very
low, much lower than the corresponding risks in scientific use files. For scientific
use files, data utility is typically considerably higher than data utility of public
use files.

Another aspect that must be considered is the sensitivity of the dataset. Data
on individuals’ medical treatments are more sensitive than an establishment’s
turnover values and number of employees. If the data contains very sensitive in-
formation, the microdata should have greater security than data that only contain
information that is not likely to be attacked by intruders.

Which method is suitable for which purpose? Methods for Statistical Disclo-
sure Control always imply to remove or to modify selected variables. The data
utility is reduced in exchange of more protection. While the application of some
specific methods results in low disclosure risk and large information loss, other
methods may provide data with acceptable, low disclosure risks.

General recommendations can not be given here since the strenghtness and weak-
ness of methods depends on the underlying data set used. Decisions on which vari-
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Figure 1: Risk versus information loss obtained for two specific perturbation meth-
ods and different parameter choices applied to SES data on continuous
scaled variables. Note that the information loss for the original data is
0 and the disclosure risk is 1 respecively, i.e. the two curves starts from
(1,0).

ables will be modified and which method is to be used result are partly arbitrary
and partly result from a prior knowledge of what the users will do with the data.

Generally, when having only few categorical key variables in the data set, re-
coding and local suppression to achieve low disclosure risk for categorical key
variables is recommended. In addition, in case of continous scaled key variables,
microaggregation is easy to apply and to understand and gives good results. For
more experienced users, shuffling may often give the best results as long a strong
relationship between the key variables to other variables in the data set is present.

In case of many categorical key variables, post-randomization might be applied
to several of these variables. Still methods, such as post-randomization (PRAM),
may provide high or low disclosure risks and data utility, depending on the specific
choice of parameter values, e.g. the swapping rate.

Beside these recommendations, in any case, data holders should always estimate
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the disclosure risk for their original datasets as well as the disclosure risks and
data utility for anonymized versions of the data. To achieve good results (i.e., low
disclosure risk, high data utility), it is necessary to anonymize in an explanatory
manner by applying different methods using different parameter settings until a
suitable trade-off between risk and data utility has been achieved.

1.5. R-Package sdcMicro and sdcMicroGUI

SDC methods introduced in this guideline can be implemented by the R-Package
sdcMicro. Users who are not familiar with the native R command line interface
can use sdcMicroGUI, an easy-to-use and interactive application. For details,
see Templ et al. [2014b, 2013]. Please note, in packageVersions >= 5.0.0, the
interactive functionality is provided within a shiny app that can be started with
sdcApp().

2. Measuring the Disclosure Risk

Measuring risk in a micro dataset is a key task. Risk measurements are essential
to determine if the dataset is secure enough to be released. To assess disclosure
risk, one must make realistic assumptions about the information data users might
have at hand to match against the micro dataset; these assumptions are called
disclosure risk scenarios. This goes hand in hand with the selection of categorical
key variables because the choice these identifying variables defines a specific dis-
closure risk scenario. The specific set of chosen key variables has direct influence
on the risk assessment because their distribution is a key input for the calculation
of both individual and global risk measures as it is now discussed.

Measuring risk in a micro dataset is a key task. Risk measurements are essential
to determine if the dataset is secure enough to be released. To assess disclosure
risk, one must make realistic assumptions about the information data users might
have at hand to match against the micro dataset; these assumptions are called
disclosure risk scenarios. This goes hand in hand with the selection of categorical
key variables because the choice these identifying variables defines a specific disclo-
sure risk scenario. The specific set of chosen key variables has direct influence on
the risk assessment because their distribution is a key input for the estimation of
both individual and global risk measures as it is now discussed. For example, for a
disclosure scenario for the European Union Structure of Earnings Statistics we can
assume that information on company size, economic activity, age and earnings of
employees are available in available data bases. Based on a specific disclosure risk
scenario, it is necessary to define a set of key variables (i.e., identifying variables)
that can be used as input for the risk evaluation procedure. Usually different sce-
narios are considered. For example, for the European Union Structure of Earnings
Statistics a second scenario based on an additional key varibles is of interest to
look at, e.g. occupation might be considered as well as an categorical key variable.
The resulting risk might now be higher than for the previous scenario. It needs
discussion with subject matter specialists which scenario is most realistic and an
evaluation of different scenarios helps to get a broader picture about the disclosure
risk in the data.
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2.1. Population Frequencies and the Individual Risk Appoach

Typically, risk evaluation is based on the concept of uniqueness in the sample
and/or in the population. The focus is on individual units that possess rare com-
binations of selected key variables. The assumption is that units having rare
combinations of key variables can be more easily identified and thus have a higher
risk of re-identification/disclosure. It is possible to cross-tabulate all identifying
variables and view their cast. Keys possessed by only very few individuals are
considered risky, especially if these observations also have small sampling weights.
This means that the expected number of individuals with these patterns is ex-
pected to be low in the population as well.

To assess whether a unit is at risk, a threshold approach is typically used. If the
risk of re-identification for an individual is above a certain threshold value, the unit
is said to be at risk. To compute individual risks, it is necessary to estimate the
frequency of a given key pattern in the population. Let us define frequency counts
in a mathematical notation. Consider a random sample of size n drawn from a
finite population of size N . Let πj, j = 1, . . . , N be the (first order) inclusion
probabilities – the probability that element uj of a population of the size N is
chosen in a sample of size n.

All possible combinations of categories in the key variables (i.e., keys or patterns)
can be calculated by cross-tabulation of these variables. Let fi, i = 1, . . . , n be
the frequency counts obtained by cross-tabulation and let Fi be the frequency
counts of the population which belong to the same pattern. If fi = 1 applies, the
corresponding observation is unique in the sample given the key-variables. If Fi =
1, then the observation is unique in the population as well and automatically unique
or zero in the sample. Fi is usually not known, since, in statistics, information on
samples is collected to make inferences about populations.

In Table 1 a very simple data set is used to explain the calulation of sample
frequency counts and the (first rough) estimation of population frequency counts.
One can easily see that observation 1 and 8 are equal, given the key-variables Age
Class, Location, Sex and Education. Because the values of observations 1 and
8 are equal and therefore the sample frequency counts are f1 = 2 and f8 = 2.
Estimated population frequencies are obtained by summing up the sample weights
for equal observations. Population frequencies F̂1 and F̂8 can then be estimated
by summation over the corresponding sampling weights, w1 and w8. In summary,
two observations with the pattern (key) (1, 2, 5, 1) exist in the sample and 110
observations with this pattern (key) can be expected to exist in the population.

## ––––

## This is sdcMicro v5.6.1.

## For references, please have a look at citation(’sdcMicro’)

## Note: since version 5.0.0, the graphical user-interface is a shiny-app

that can be started with sdcApp().

## Please submit suggestions and bugs at: https://github.com/sdcTools/sdcMicro/issues

## ––––

One can show, however, that these estimates almost always overestimate small
population frequency counts [see, e.g., Templ and Meindl, 2010]. A better ap-
proach is to use so-called super-population models, in which population frequency
counts are modeled given certain distributions. For example, the estimation pro-
cedure of sample counts given the population counts can be modeled by assuming
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Table 1: Example of sample and estimated population frequency counts.

Age Location Sex Education w risk fk Fk
1 1 2 2 1 18.0 0.017 2 110.0
2 1 2 1 1 45.5 0.022 2 84.5
3 1 2 1 1 39.0 0.022 2 84.5
4 3 3 1 5 17.0 0.177 1 17.0
5 4 3 1 4 541.0 0.012 1 541.0
6 4 3 1 1 8.0 0.297 1 8.0
7 6 2 1 5 5.0 0.402 1 5.0
8 1 2 2 1 92.0 0.017 2 110.0

Table 2: k-anonymity and l-diversity on a toy data set.

sex race sens fk ldiv
1 1 1 50 3 2
2 1 1 50 3 2
3 1 1 42 3 2
4 1 2 42 1 1
5 2 2 62 2 1
6 2 2 62 2 1

a negative binomial distribution [see Rinott and Shlomo, 2006] and is implemented
in sdcMicro in function measure_risk() [see Templ et al., 2013] and called by the
sdcMicroGUI [Kowarik et al., 2013].

2.2. k-Anonymity

Based on a set of key variables, one desired characteristic of a protected micro
dataset is often to achieve k-anonymity [Samarati and Sweeney, 1998, Samarati,
2001, Sweeney, 2002]. This means that each possible pattern of key variables con-
tains at least k units in the microdata. This is equal to fi ≥ k , i = 1, ..., n. A
typical value is k = 3.

k-anonymity is typically achieved by recoding categorical key variables into fewer
categories and by suppressing specific values of key variables for some units; see
Section 3.1 and 3.2.

2.3. l-Diversity

An extension of k-anonymity is l-diversity [Machanavajjhala et al., 2007]. Consider
a group of observations with the same pattern/keys in the key variables and let
the group fulfill k-anonymity. A data intruder can therefore by definition not
identify an individual within this group. If all observations have the same entries
in an additional sensitive variable, however (e.g., cancer in the variable medical
diagnosis), an attack will be successful if the attacker can identify at least one
individual of the group, as the attacker knows that this individual has cancer
with certainty. The distribution of the target-sensitive variable is referred to as
l-diversity.
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Table 2 considers a small example dataset that highlights the calculations of
l-diversity. It also points out the slight difference compared to k-anonymity. The
first two columns present the categorical key variables. The third column of the
data defines a variable containing sensitive information. Sample frequency counts
fi appear in the fourth column. They equal 3 for the first three observations;
the fourth observation is unique and frequency counts fi are 2 for the last two
observations. Only the fourth observation violates 2-anonymity.

Looking closer at the first three observations, we see that only two different
values are present in the sensitive variable. Thus the l-(distinct) diversity is just
2. For the last two observations, 2-anonymity is achieved, but the intruder still
knows the exact information of the sensitive variable. For these observations, the
l-diversity measure is 1, indicating that sensitive information can be disclosed,
since the value of the sensitive variable is = 62 for both of these observations.

Diversity in values of sensitive variables can be measured differently. We present
here the distinct diversity that counts how many different values exist within a
pattern. Additional methods such as entropy, recursive and multi-recursive are
implemented in sdcMicro. For more information, see the help files of sdcMicro

[Templ et al., 2013].

2.4. Sample Frequencies on Subsets: SUDA

The Special Uniques Detection Algorithm (SUDA) is an often discussed method
to estimate the risk, but applications of this method can be rarely found. For
the sake of completeness this algorithm is implemented in sdcMicro (but not in
sdcMicroGUI) and explained in this document, but to evaluate the usefulness of
this method it needs more research. In the following the interested reader will
see that the SUDA approach is more than the sample frequency estimation shown
before. It consider also subsets of key variables. SUDA estimates disclosure risks
for each unit. SUDA2 [e.g., Manning et al., 2008] is the computationally improved
version of SUDA. It is a recursive algorithm to find Minimal Sample Uniques
(MSUs). SUDA2 generates all possible variable subsets of selected categorical key
variables and scans for unique patterns within subsets of these variables. The risk
of an observation primarily depends on two aspects:

(a) The lower the number of variables needed to receive uniqueness, the higher
the risk (and the higher the SUDA score) of the corresponding observation.

(b) The larger the number of minimal sample uniqueness contained within an
observation, the higher the risk of this observation.

Item (a) is considered by calculating for each observation i by li =
∏m−1

k=MSUmini
(m−

k) , i = 1, ..., n. In this formula, m corresponds to the depth, which is the max-
imum size of variable subsets of the key variables, MSUmini is the number of
MSUs of observation and i and n are the number of observations of the dataset.
Since each observation is treated independently, a specific value li belonging to a
specific pattern are summed up. This results in a common SUDA score for each
of the observations contained in this pattern; this summation is the contribution
mentioned in item (b).

The final SUDA score is calculated by normalizing these SUDA scores by di-
viding them by p!, with p being the number of key variables. To receive the
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so-called Data Intrusion Simulation (DIS) score, loosely speaking, an iterative al-
gorithm based on sampling of the data and matching of subsets of the sampled
data with the original data is applied. This algorithm calculates the probabilities
of correct matches given unique matches. It is, however, out of scope to precisely
describe this algorithm here; reference Elliot [2000] for details. The DIS SUDA
score is calculated from the SUDA and DIS scores, and is available in sdcMicro

as disScore).
Note that this method does not consider population frequencies in general, but

does consider sample frequencies on subsets. The DIS SUDA scores approximate
uniqueness by simulation based on the sample information population, but to our
knowledge, they generally do not consider sampling weights, and biased estimates
may therefore result.

Table 3: Example of SUDA scores (scores) and DIS SUDA scores (disScores).

Age Location Sex Education fk scores disScores
1 1 2 2 1 2 0.00 0.0000
2 1 2 1 1 2 0.00 0.0000
3 1 2 1 1 2 0.00 0.0000
4 3 3 1 5 1 2.25 0.0149
5 4 3 1 4 1 1.75 0.0111
6 4 3 1 1 1 1.00 0.0057
7 6 2 1 5 1 2.25 0.0149
8 1 2 2 1 2 0.00 0.0000

In Table 3, we use the same test dataset as in Section 2.1. Sample frequency
counts fi as well as the SUDA and DIS SUDA scores have been calculated. The
SUDA scores have the largest value for observation 4 and 6 since subsets of key
variables of these observation are also unique, while for observations 1 − 3, 5 and
8, less subsets are unique.

In sdcMicro (function suda2()) additional output, such as the contribution
percentages of each variable to the score, are available. The contribution to the
SUDA score is calculated by assessing how often a category of a key variable
contributes to the score.

2.5. Calculating Cluster (Household) Risks

Micro datasets often contain hierarchical cluster structures; an example is social
surveys, when individuals are clustered in households. The risk of re-identifying
an individual within a household may also affect the probability of disclosure of
other members in the same household. Thus, the household or cluster-structure
of the data must be taken into account when calculating risks.

It is commonly assumed that the risk of re-identfication of a household is the risk
that at least one member of the household can be disclosed. Thus this probability
can be simply estimated from individual risks as 1 minus the probability that no
member of the household can be identfied. Thus, if we consider a single household
with three persons that have individual risks of re-identification of 0.1, 0.05 and
0.01, respectively, the risk-measure for the entire household will be calculated as
1-(0.1+0.05+0.01). This is also the implementation strategy from sdcMicro.



2 MEASURING THE DISCLOSURE RISK

2.6. Measuring the Global Risk

Sections 2.1 through 2.5 discuss the theory of individual risks and the extension
of this approach to clusters such as households. In many applications, however,
estimating a measure of global risk is preferred. Any global risk measure is result
in one single number that can be used to assess the risk of an entire micro dataset.
The following global risk measures are available in sdcMicroGUI, except the last
one presented in Section 2.7.2 that is computationally expensive is only made
available in sdcMicro.

2.6.1. Measuring the global risk using individual risks

Two approaches can be used to determine the global risk for a dataset using indi-
vidual risks:

Benchmark: This approach counts the number of observations that can be con-
sidered risky and also have higher risk as the main part of the data. For
example, we consider units with individual risks being both ≥ 0.1 and twice
as large as the median of all individual risks + 2 times the median abso-
lute deviation (MAD) of all unit risks. This statistics in also shown in the
sdcMicroGUI.

Global risk: The sum of the individual risks in the dataset gives the expected
number of re-identifications [see Hundepool et al., 2008].

The benchmark approach indicates whether the distribution of individual risk
occurrences contains extreme values; it is a relative measure that depends on the
distribution of individual risks. It is not valid to conclude that observations with
higher risk as this benchmark are of very high risk; it evaluates whether some
unit risks behave differently compared to most of the other individual risks. The
global risk approach is based on an absolute measure of risk. Following is the print
output of the corresponding function from sdcMicro, which shows both measures
(see the example in the manual of sdcMicro [Templ et al., 2013]):

## Risk measures:

##

## Number of observations with higher risk than the main part of the

data: 0

## Expected number of re-identifications: 10.78 (0.24 %)

##

## Information on hierarchical risk:

## Expected number of re-identifications: 51.81 (1.13 %)

## –––––––––––––––––––––––––––––––––––

The global risk measurement taking into account this hierarchical structure if a
variable expressing it is defined.

2.6.2. Measuring the global risk using log-linear models

Sample frequencies, considered for each of M patterns m, fm , m = 1, ..., M can
be modeled by a Poisson distribution. In this case, global risk can be defined as
the following [see also Skinner and Holmes, 1998]:
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τ1 =
M
∑

m=1

exp

(

−
µm(1 − πm)

πm

)

, with µm = πmλm. (1)

For simplicity, the (first order) inclusion probabilities are assumed to be equal,
πm = π , m = 1, ..., M . τ1 can be estimated by log-linear models that include both
the primary effects and possible interactions. This model is defined as:

log(πmλm) = log(µm) = xmβ.

To estimate the µm’s, the regression coefficients β have to be estimated using,
for example, iterative proportional fitting. The quality of this risk measurement
approach depends on the number of different keys that result from cross-tabulating
all key variables. If the cross-tabulated key variables are sparse in terms of how
many observations have the same patterns, predicted values might be of low qual-
ity. It must also be considered that if the model for prediction is weak, the quality
of the prediction of the frequency counts is also weak. Thus, the risk measurement
with log-linear models may lead to acceptable estimates of global risk only if not
too many key variables are selected and if good predictors are available in the
dataset.

In sdcMicro, global risk measurement using log-linear models can be completed
with function LLmodGlobalRisk(). This function is experimental and needs fur-
ther testing, however. It should be used only by expert users.

2.7. Measuring Risk for Continuous Key Variables

The concepts of uniqueness and k-anonymity cannot be directly applied to con-
tinuous key variables because almost every unit in the dataset will be identified as
unique. As a result, this approach will fail. The following sections present methods
to measure risk for continuous key variables.

2.7.1. Distance-based record linkage

If detailed information about a value of a continuous variable is available, i.e. the
risk comes from the fact that multiple datasets can be available to the attacker,
one of which contains identifiers like income, for example, attackers may be able
to identify and eventually obtain further information about an individual. Thus,
an intruder may identify statistical units by applying, for example, linking or
matching algorithms. The anonymization of continuous key variables should avoid
the possibility of successfully merging the underlying microdata with other external
data sources.

We assume that an intruder has information about a statistical unit included
in the microdata; the intruder’s information overlaps on some variables with the
information in the data. In simpler terms, we assume that the intruder’s informa-
tion can be merged with microdata that should be secured. In addition, we also
assume that the intruder is sure that the link to the data is correct, except for
micro-aggregated data (see Section 3.4). Domingo-Ferrer and Torra [2001] showed
that these methods outperform probabilistic methods.

Mateo-Sanz et al. [2004] introduced distance-based record linkage and interval
disclosure. In the first approach, they look for the nearest neighbor from each
observation of the masked data value to the original data points. Then they mark
those units for which the nearest neighbor is the corresponding original value.
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In the second approach, they check if the original value falls within an interval
centered on the masked value. Then they calculate the length of the intervals
based on the standard deviation of the variable under consideration (see Figure 2,
upper left graphic; the boxes expresses the intervals).

2.7.2. Special treatment of outliers when calculating disclosure risks

It is worth to show alternatives to the previous distance-based risk measure. Such
alternatives took either distances between every observation into account or are
based on covariance estimation (as shown here). Thus, they are computationlly
more intensive, which is also the reason why they are not available in sdcMicroGUI

but only in sdcMicro for experienced users.
Almost all datasets used in official statistics contain units whose values in at least

one variable are quite different from the general observations. As a result, these
variables are very asymmetrically distributed. Examples of such outliers might
be enterprises with a very high value for turnover or persons with extremely high
income. In addition, multivariate outliers exist [see Templ and Meindl, 2008a].

Unfortunately, intruders may want to disclose a large enterprise or an enterprise
with specific characteristics. Since enterprises are often sampled with certainty or
have a sampling weight close to 1, intruders can often be very confident that the
enterprise they want to disclose has been sampled. In contrast, an intruder may
not be as interested to disclose statistical units that exhibit the same behavior as
most other observations. For these reasons, it is good practice to define measures
of disclosure risk that take the outlyingness of an observation into account. For de-
tails, see Templ and Meindl [2008a]. Outliers should be much more perturbed than
non-outliers because these units are easier to re-identify even when the distance
from the masked observation to its original observation is relatively large.

This method for risk estimation (called RMDID2 in Figure 2) is also included
in the sdcMicro package. It works as described in Templ and Meindl [2008a] and
is listed as follows:

1. Robust mahalanobis distances (RMD) [see, for example Maronna et al., 2006]
are estimated between observations (continuous variables) to obtain a robust,
multivariate distance for each unit.

2. Intervals are estimated for each observation around every data point of the
original data points. The length of the intervals depends on squared distances
calculated in step 1 and an additional scale parameter. The higher the RMD
of an observation, the larger the corresponding intervals.

3. Check whether the corresponding masked values of a unit fall into the in-
tervals around the original values. If the masked value lies within such an
interval, the entire observation is considered unsafe. We obtain a vector in-
dicating which observations are safe or which are not. For all unsafe units,
at least m other observations from the masked data should be very close.
Close is quantified by specifying a parameter for the length of the intervals
around this observation using Euclidean distances. If more than m points
lie within these small intervals, we can conclude that the observation is safe.

Figure 2 depicts the idea of weighting disclosure risk intervals. For simple meth-
ods (top left and right graphics), the rectangular regions around each value are
the same size for each observation. Our proposed methods take the RMDs of
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Figure 2: Original and corresponding masked observations (perturbed by adding
additive noise). In the bottom right graphic, small additional regions are
plotted around the masked values for RMDID2 procedures. The larger
the intervals the more the observations is an outlier for the latter two
methods.

each observation into account. The difference between the bottom right and left
graphics is that, for method RMDID2, rectangular regions are calculated around
each masked variable as well. If an observation of the masked variable falls into an
interval around the original value, check whether this observation has close neigh-
bors. If the values of at least m other masked observations can be found inside a
second interval around this masked observation, these observations are considered
safe.

These methods are also implemented and available in sdcMicro as dRisk() and
dRiskRMD(). The former is automatically applied to objects of class sdcMi-
croObj, while the latter has to be specified explicitly and can currently not be
applied using the graphical user interface.

3. Anonymisation Methods

In general, there are two kinds of anonymization methods: deterministic and prob-
abilistic. For categorical variables, recoding and local suppression are deterministic
procedures (they are not influenced by randomness), while swapping and PRAM
[Gouweleeuw et al., 1998] are based on randomness and considered probabilistic
methods. For continuous variables, micro-aggregation is a deterministic method,
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while adding correlated noise [Brand, 2004] and shuffling [Muralidhar et al., 1999]
are probabilistic procedures. Whenever probabilistic methods are applied, the ran-
dom seed of the software’s pseudo random number generator should be fixed to
ensure reproducibility of the results.

3.1. Recoding

Global recoding is a non-perturbative method that can be applied to both categor-
ical and continuous key variables. The basic idea of recoding a categorical variable
is to combine several categories into a new, less informative category. A frequent
use case is the recoding of age given in years into age-groups. If the method is ap-
plied to a continuous variable, it means to discretize the variable. An application
would be the to split a variable containing incomes some income groups.

The goal in both cases is to reduce the total number of possible outcomes of a
variable. Typically, recoding is applied to categorical variables where the number
of categories with only few observations (i.e., extreme categories such as persons
being older than 100 years) is reduced. A typical example would be to combine
certain economic branches or to build age classes from the variable age.

A special case of global recoding is top and bottom coding, which can be applied
to ordinal and categorical variables. The idea for this approach is that all values
above (i.e., top coding) and/or below (i.e., bottom coding) a pre-specified threshold
value are combined into a new category. A typical use case for top-coding is to
recode all values of a variable containing age in years that are above 80 into a new
category 80+.

Function globalRecode() can be applied in sdcMicro to perform both global
recoding and top/bottom coding. The sdcMicroGUI offers a more user-friendly
way of applying global recoding.

3.2. Local Suppression

Local suppression is a non-perturbative method that is typically applied to cate-
gorical variables to suppress certain values in at least one variable. Normally, the
input variables are part of the set of key variables that is also used for calculation
of individual risks, as described in Section 2. Individual values are suppressed
in a way that the set of variables with a specific pattern are increased. Local
suppression is often used to achieve k-Anonymity, as described in Section 2.2.

Using function localSupp() of sdcMicro, it is possible to suppress the values of
a key variable for all units having individual risks above a pre-defined threshold,
given a disclosure scenario. This procedure requires user intervention by setting
the threshold. To automatically suppress a minimum amount of values in the key
variables to achieve k-anonymity, one can use function localSuppression(). This
algorithm also allows specification of a user-dependent reference that determines
which key variables are preferred when choosing values that need to be suppressed.
In this implementation, a heuristic algorithm is called to suppress as few values
as possible. It is possible to specify a desired ordering of key variables in terms of
importance, which the algorithm takes into account. It is even possible to specify
key variables that are considered of such importance that almost no values for
these variables are suppressed. This function can also be used in the graphical
user interface of the sdcMicroGUI package [Kowarik et al., 2013, Templ et al.,
2014b].
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3.3. Post-randomization (PRAM)

Post-randomization [Gouweleeuw et al., 1998] PRAM is a perturbation, proba-
bilistic method that can be applied to categorical variables. The idea is that the
values of a categorical variable in the original microdata file are changed into other
categories, taking into account pre-defined transition probabilities. This process is
usually modeled using a known transition matrix. For each category of a categori-
cal variable, this matrix lists probabilities to change into other possible categories.

As an example, consider a variable with only 3 categories: A1, A2 and A3. The
transition of a value from category A1 to category A1 is, for example, fixed with
probability p1 = 0.85, which means that only with probability p1 = 0.15 can a
value of A1 be changed to either A2 or A3. The probability of a change from
category A1 to A2 might be fixed with probability p2 = 0.1 and changes from A1
to A3 with p3 = 0.05. Probabilities to change values from class A2 to other classes
and for A3, respectively, must be specified beforehand. All transition probabilities
must be stored in a matrix that is the main input to function pram() in sdcMicro.

PRAM is applied to each observation independently and randomly. This means
that different solutions are obtained for every run of PRAM if no seed is specified
for the random number generator. A main advantage of the PRAM procedure is
the flexibility of the method. Since the transition matrix can be specified freely as a
function parameter, all desired effects can be modeled. For example, it is possible
to prohibit changes from one category to another by setting the corresponding
probability in the transition matrix to 0.

In sdcMicro and sdcMicroGUI, pram_strat() allows PRAM to be performed.
The corresponding help file can be accessed by typing ?pram into an R console or
using the help-menu of sdcMicroGUI. When using pram_strat(), it is possible
to apply PRAM to sub-groups of the micro dataset independently. In this case,
the user needs to select the stratification variable defining the sub-groups. If
the specification of this variable is omitted, the PRAM procedure is applied to
all observations in the dataset. We note that the output of PRAM is slightly
different in sdcMicroGUI. In this case for each variable values nrChanges shows
the total number of changed values for a given variable while percChanges lists the
percentage of changed values any variable for which PRAM has been applied.

3.4. Microaggregation

Micro-aggregation is a perturbative method that is typically applied to continuous
variables. The idea is that records are partitioned into groups; within each group,
the values of each variable are aggregated. Typically, the arithmetic mean is used
to aggregate the values, but other robust methods are also possible. Individual
values of the records for each variable are replaced by the group aggregation value,
which is often the mean; as an example, see Table 4, where two values that are
most similar are replaced by their column-wise means.

Depending on the method chosen in function microaggregation(), additional
parameters can be specified. For example, it is possible to specify the number of
observations that should be aggregated as well as the statistic used to calculate
the aggregation. It is also possible to perform micro-aggregation independently to
pre-defined clusters or to use cluster methods to achieve the grouping.

However, computationally it is the most challenging task to find a good partition
of the observations to groups. In sdcMicroGUI, five different methods for micro-
aggregation can be selected:
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Table 4: Example of micro-aggregation. Columns 1-3 contain the original vari-
ables, columns 4-6 the micro-aggregated values.

Num1 Num2 Num3 Mic1 Mic2 Mic3
1 0.30 0.400 4 0.65 0.85 8.5
2 0.12 0.220 22 0.15 0.51 15.0
3 0.18 0.800 8 0.15 0.51 15.0
4 1.90 9.000 91 1.45 5.20 52.5
5 1.00 1.300 13 0.65 0.85 8.5
6 1.00 1.400 14 1.45 5.20 52.5
7 0.10 0.010 1 0.12 0.26 3.0
8 0.15 0.500 5 0.12 0.26 3.0

• mdav: grouping is based on classical (Euclidean) distance measures.

• rmd: grouping is based on robust multivariate (Mahalanobis) distance mea-
sures.

• pca: grouping is based on principal component analysis whereas the data
are sorted on the first principal component.

• clustpppca: grouping is based on clustering and (robust) principal compo-
nent analysis for each cluster.

• influence: grouping is based on clustering and aggregation is performed
within clusters.

For computational reasons it is recommended to use the highly efficient imple-
mentation of method mdav. It is almost as fast as the pca method, but performs
better. For data of moderate or small size, method rmd is favorable since the
grouping is based on multivariate (robust) distances.

All of the previous settings (and many more) can be applied in sdcMicro, using
function microaggregation(). The corresponding help file can be viewed with
command ?microaggregation or by using the help-menu in sdcMicroGUI.

3.5. Adding Noise

Adding noise is a perturbative protection method for microdata, which is typically
applied to continuous variables. This approach protects data against exact match-
ing with external files if, for example, information on specific variables is available
from registers.

While this approach sounds simple in principle, many different algorithms can
be used to overlay data with stochastic noise. It is possible to add uncorrelated
random noise. In this case, the noise is usually distributed and the variance of
the noise term is proportional to the variance of the original data vector. Adding
uncorrelated noise preserves means, but variances and correlation coefficients be-
tween variables are not preserved. This statistical property is respected, however,
if correlated noise method(s) are applied.

For the correlated noise method [Brand, 2004]), the noise term is derived from a
distribution having a covariance matrix that is proportional to the co-variance ma-
trix of the original microdata. In the case of correlated noise addition, correlation
coefficients are preserved and at least the co-variance matrix can be consistently
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estimated from the perturbed data. The data structure may differ a great deal,
however, if the assumption of normality is violated. Since this is virtually always
the case when working with real-world datasets, a robust version of the correlated
noise method is included in sdcMicro. This method allows departures from model
assumptions and is described in detail in Templ and Meindl [2008b]). More infor-
mation can be found in the help file by calling ?addNoise or using the graphical
user interface help menu.

In sdcMicro, several other algorithms are implemented that can be used to add
noise to continuous variables. For example, it is possible to add noise only to out-
lying observations. In this case, it is assumed that such observations possess higher
risks than non-outlying observations. Other methods ensure that the amount of
noise added takes into account the underlying sample size and sampling weights.
Noise can be added to variables in sdcMicro using function addNoise() or by
using sdcMicroGUI.

3.6. Shuffling

Various masking techniques based on linear models have been developed in litera-
ture, such as multiple imputation [Rubin, 1993], general additive data perturbation
[Muralidhar et al., 1999] and the information preserving statistical obfuscation syn-
thetic data generators [Burridge, 2003]. These methods are capable of maintaining
linear relationships between variables but fail to maintain marginal distributions
or non-linear relationships between variables.

Several methods are available for shuffling in sdcMicro and sdcMicroGUI, whereas
the first (default) one (ds) is recommended to use. The explanation of all these
methods goes far beyond this guidelines and interested readers might read the
original paper from Muralidhar and Sarathy [2006]. In the following only a brief
introduction to shuffling is given.

Shuffling [Muralidhar and Sarathy, 2006] simulates a synthetic value of the con-
tinuous key variables conditioned on independent, non-confidential variables. After
the simulation of the new values for the continuous key variables, reverse mapping
(shuffling) is applied. This means that ranked values of the simulated values are
replaced by the ranked values of the original data (columnwise).

To explain this theoretical concept more practically we can assume that we have
two continuous variables containing sensitive information on income and savings.
These variables are used as regressors in a regression model where suitable variables
are taken as predictors, like age, occupation, race, education. Of course it is of
crucial to find a good model having good predictive power. New values for the
continuous key variables, income and savings, are simulated based on this model
[for details, have a look at Muralidhar and Sarathy, 2006]. However, these expected
values are not used to replace the original values, but a shuffling of the original
values using the generated values is carried out. This approach (reverse mapping)
is applied to each sensitive variable can be summarized in the following steps:

1 rank original variable

2 rank generated variable

3 for all observations, replace the value of the modified variable with rank i
with the value of the original sensitive variable with rank i.
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4 once finished, the modified variable contains only original values and is finally
used to replace the original sensitive variable.

It can be shown that the structure of the data is preserved when the model fit
is of good quality. In the implementation of sdcMicro, a model of almost any form
and complexity can be specified (see ?shuffling for details).

4. Measuring Data Utility and Information Loss

Measuring data utility of the microdata set after disclosure limitation methods
have been applied is encouraged to assess the impact of these methods.

4.1. General applicable methods

Anonymized data should have almost the same structure of the original data and
should allow any analysis with high precision.

To evaluate the precision, use various classical estimates such as means and co-
variances. Using function dUtility(), it is possible to calculate different measures
based on classical or robust distances for continuous scaled variables. Estimates are
computed for both the original and perturbed data and then compared. Following
are three important information loss measures:

• IL1s is a measures introduced by [Mateo-Sanz et al., 2004]. This measure

is given as IL1 = 1

p

p
∑

j=1

n
∑

i=1

|xij−x
′

ij
|√

2Sj
and can be interpreted as scaled distances

between original and perturbed values for all p continuous key variables.

• eig is a measure calculating relative absolute differences between eigenvalues
of the co-variances from standardized continuous key variables of the original
and perturbed variables. Eigenvalues can be estimated from a robust or
classical version of the co-variance matrix.

• lm is a measure based on regression models. It is defined as |(¯̂yo
w − ¯̂ym

w )/¯̂yo
w|,

with ¯̂yw being fitted values from a pre-specified model obtained from the
original (index o) and the modified data (index m). Index w indicates that
the survey weights should be considered when fitting the model.

Note that these measures are automatically estimated in sdcMicro when an
object of class sdcMicroObj is generated or whenever continuous key variables are
modified in such an object. Thus, no user input is required. We note however
that only the former two measures are automatically presented in the GUI in tab
Continuous) as IL1 and Difference Eigenvalues respectively.

4.2. Specific tools

In practice, it is not possible to create an anonymized file with the same structure as
the original file. An important goal, however, should always be that the difference
in results of the most important statistics based on anonymized and original data
should be very small or even zero. Thus, the goal is to measure the data utility
based on benchmarking indicators [Ichim and Franconi, 2010, Templ, 2011a], which
is in general a better approach to assess data quality than applying general tools.
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The first step in quality assessment is to evaluate what users of the underlying
data are analyzing and then try to determine the most important estimates, or
benchmarking indicators [see, e.g., Templ, 2011b,a]. Special emphasis should be
put on benchmarking indicators that take into account the most important vari-
ables of the micro dataset. Indicators that refer to the most sensitive variables
within the microdata should also be calculated. The general procedure is quite
simple and can be described in the following steps:

• Selection of a set of (benchmarking) indicators

• Choice of a set of criteria as to how to compare the indicators

• Calculation of all benchmarking indicators of the original micro data

• Calculation of the benchmarking indicators on the protected micro data set

• Comparison of statistical properties such as point estimates, variances or
overlaps in confidence intervals for each benchmarking indicator

• Assessment as to whether the data utility of the protected micro dataset is
good enough to be used by researchers

If the quality assessment in the last step of the sketched algorithm is satisfactory,
the anonymized micro dataset is ready to be published. If the deviations of the
main indicators calculated from the original and the protected data are too large,
the anonymization procedure should be restarted and modified. It is possible to
either change some parameters of the applied procedures or start from scratch and
completely change the anonymization process.

Usually the evaluation is focused on the properties of numeric variables, given
unmodified and modified microdata. It is of course also possible to review the im-
pact of local suppression or recoding that has been conducted to reduce individual
re-identification risks. Another possibility to evaluate the data utility of numerical
variables is to define a model that is fitted on the original, unmodified microdata.
The idea is to predict important, sensitive variables using this model both for the
original and protected micro dataset as a first step. In a second step, statistical
properties of the model results, such as the differences in point estimates or vari-
ances, are compared for the predictions, given original and modified microdata,
then the resulting quality is assessed. If the deviations are small enough, one may
go on to publish the safe and protected micro dataset. Otherwise, adjustments
must be made in the protection procedure. This idea is similar to the information
loss measure lm described in Section 4.1.

In addition, it is interesting to evaluate the set of benchmarking indicators not
only for the entire dataset but also independently for subsets of the data. In
this case, the microdata are partitioned into a set of h groups. The evaluation
of benchmarking indicators is then performed for each of the groups and the re-
sults are evaluated by reviewing differences between indicators for original and
modified data in each group. Templ et al. [2014a] gives a detailed description of
benchmarking indicators for the SES data. An excerpt of this study is shown in
the appendix.
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Figure 3: Possibilites for anonymising micro data using different SDC methods.
The most important methods are included in the sdcMicroGUI, such
as basic risk measurement, recoding, local suppression, PRAM (post-
randomization), information loss measures, shuffling, microaggregation,
and adding noise. Other methods listed in the figure for the sake
of completeness are included in the sdcMicro R package and in the
simPopulation R package.

4.3. Workflow

Figure 3 outlines the most common tasks, practices and steps required to obtain
confidential data. The steps are summarized here:

1. The first step is actually to make an inventory of other datasets available to
users, to decide on what an acceptable level of risk will be, and to identify
the key users of the anonymized data to make decisions on anonymisation
to achieve high precision on their estimates on the anonymized data.

2. The first step in anonyimization is always to remove all direct identification
variables and variables that contain direct information about units from the
microdata set.

3. Second, determine the key variables to use for all risk calculations. This
decision is subjective and often involves discussions with subject matter spe-
cialists and interpretation of related national laws. Please see Templ et al.
[2014a] for practical applications on how to define key variables. Note that
for the simulation of fully synthetic data, choosing key variables is not nec-
essary since all variables are produced synthetically, see for example Alfons
et al. [2011].

4. After the selection of key variables, measure disclosure risks of individual
units. This includes the analysis of sample frequency counts as well as the
application of probability methods to estimate corresponding individual re-
identification risks by taking population frequencies into account.

5. Next, modify observations with high individual risks. Techniques such as
recoding and local suppression, recoding and swapping, or PRAM can be
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applied to categorical key variables. In principle, PRAM or swapping can
also be applied without prior recoding of key variables; a lower swapping rate
might be possible, however, if recoding is applied before. The decision as to
which method to apply also depends on the structure of the key variables. In
general, one can use recoding together with local suppression if the amount
of unique combinations of key variables is low. PRAM should be used if
the number of key variables is large and the number of unique combinations
is high; for details, see Sections 3.1 and 3.3 and for practical applications
Templ et al. [2014a]. The values of continuously scaled key variables must be
perturbed as well. In this case, micro-aggregation is always a good choice (see
Section 3.4). More sophisticated methods such as shuffling (see Section 3.6)
often provide promising results but are more complicated to apply.

6. After modifying categorical and numerical key variables of the microdata,
estimate information loss and disclosure risk measures. The goal is to re-
lease a safe micro dataset with low risk of linking confidential information
to individuals and high data utility. If the risks is below a tolerable risk and
the data utility is high, the anonymized dataset is ready for release. Note
that the tolerable risk depends on various factors like national laws and sen-
sitivity of data, but also subjective arbitrary factors play a role and the risk
depends on the selected key variables - the disclosure scenario. If the risk
is too high or the data utility is too low, the entire anonymization process
must be repeated, either with additional perturbations if the remaining re-
identification risks are too high, or with actions that will increase the data
utility.

In general, the following recommendations hold:

Recommendation 1: Carefully choose the set of key variables using knowledge of
both subject matter experts and disclosure control experts. As already mentioned,
the key variables are those variables for which an intruder may possible have
data/information, e.g. age and region from persons or turnover of enterprises.
Which external data are available containing information on key variables is usually
known by subject matter specialist.

Recommendation 2: Always perform a frequency and risk estimation to evaluate
how many observations have a high risk of disclosure given the selection of key
variables.

Recommendation 3: Apply recoding to reduce uniqueness given the set of cat-
egorical key variables. This approach should be done in an exploratory manner.
Recoding on a variable, however, should also be based on expert knowledge to
combine appropriate categories. Alternatively, swapping procedures may be ap-
plied on categorical key variables so that data intruders cannot be certain if an
observation has or has not been perturbed.

Recommendation 4: If recoding is applied, apply local suppression to achieve
k-anonymity. In practice, parameter k is often set to 3.

Recommendation 5: Apply micro-aggregation to continuously scaled key vari-
ables. This automatically provides k-anonymity for these variables.



Recommendation 6: Quantify the data utility not only by using typical esti-
mates such as quantiles or correlations, but also by using the most important
data-specific benchmarking indicators (see Section 4.2).

Recoding and micro-aggregation work well to obtain non-confidential data with
high data quality. While the disclosure risks cannot be calculated in a meaningful
way if probabilistic methods (e.g. PRAM) have been applied, these methods are
advantageous whenever a large number of key variables is selected. This is because
a high number of key variables leads to a high number of unique combinations
that cannot be significantly reduced by applying recoding. More on assessing data
quality can be found in section 4.2.
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A. A brief example on SES data

The European Union Structure of Earnings Statistics (SES) is conducted in almost
all European countries and it includes variables on earnings of employees and
other (demographic) variables on employees and their employment status (e.g.
region, size and economic activity of the current enterprise, gender and age of the
employees, . . . ).

SES is a complex survey of Enterprises and Establishments with more than 10
employees (11600 enterprises in Austria in year 2006) in several business sectors
(NACE C-O), including a large sample of employees (Austria: 207.000). In many
countries, a two-stage design is used whereas in the first stage a stratified sam-
ple of enterprises and establishments on NACE (economic activity) 1-digit level,
NUTS (regional level) 1 and employment size range is drawn with large enterprises
commonly having higher inclusion probabilities. In stage 2, systematic sampling or
simple random sampling of employees is applied in each enterprise. Often, unequal
inclusion probabilities regarding employment size range categories are used.
SES contains information of different perspectives and sources. In the Austrian
case this belongs to:

http://dx.doi.org/10.1007/978-1-84996-238-4_3
http://CRAN.R-project.org/package=sdcMicro
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Information on enterprise level: Question batteries are asked to enterprises like
if an enterprise is private or public or if an enterprise has a collective bar-
gaining agreement (both binary variables). As a multinomial variable, the
kind of collective agreement is included in the questionnaire.

Information on individual employment level: The following questions for em-
ployees comes with the standard questionnaire: social security number, start
date of employment, weekly working time, kind of work agreement, occu-
pation, time for holidays, place of work, gross earning, earning for overtime
and amount of overtime.

Information from registers: All other information may come from registers like
information about age, size of enterprise, occupation, education, amount of
employees, NACE and NUTS classifications.

We now summarize the most important variables on enterprise level:

1. Location: The geographical location of the statistical units is cut into three
areas based on NUTS 1-digit level. The three areas are AT1 (eastern Aus-
tria), AT2 (southern Austria) and AT3 (western Austria).

2. NACE1: The economic activity of enterprises on NACE 1-digit level (C-K,
M,N and a residual class O).

3. Size: The employment size range, split into 5 categories with the following
size-categories:

• 10-49 employees

• 50-249 employees

• 250-499 employees

• 500-999 employees

• 1000 and more employees

4. payAgreement: The form of collective pay agreement consists of seven dif-
ferent levels.

5. EconomicFinanc: The form of economic and financial control has two levels

• A (public control)

• B (private control).

The most important variables on employment level are

1. Sex: The gender of the sampled person

2. Occupation: This variable is coded according to the International Standard
Classification of Occupations, 1988 version at two-digit level.

3. education: a total of six categories of the highest successfully completed
level of education and training coded according to the International Standard
Classification of Education, 1997 version

4. FullPart: indicates if an employee is a full-time worker or part-time worker.

5. contract: contains type of the employment contract
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6. birth: year of birth.

7. Length: the total length of service in the enterprises in the reference month
is based on the number of completed years of service.

8. ShareNormalHours: the share of a full timer’s normal hours. The hours
contractually worked of a part-time employee should be expressed as a per-
centage of the number of normal hours worked by a full-time employee in
the local unit.

9. weeks: represents the number of weeks in the reference year to which the
gross annual earnings relate. That is the employee’s working time actually
paid during the year which should correspond to the actual gross annual
earnings. (2 decimal places).

10. hoursPaid: The number of hours paid in the reference month which means
these hours actually paid including all normal and overtime hours worked
and remunerated by the employee during the month.

11. overtimeHours: contains the number of overtime hours paid in the reference
month. Overtime hours are those worked in addition to those of the normal
working month.

12. holiday: shows the annual days of holiday leave (in full days).

13. earnings: Let earnings be gross annual earnings in the reference year.
The actual gross earnings for the calender year are supplied and not the
gross annual salary featured in the contract.

14. notPaid: examples of annual bonuses and allowances are Christmas and
holiday bonuses, 13th and 14th month payments and productivity bonuses,
hence any periodic, irregular and exceptional bonuses and other payments
that do not feature every pay period. Besides the main difference between
annual earnings and monthly earnings is the inclusion of payments that do
not regularly occur in each pay period.

15. earningsMonth: the gross earnings in the reference month covers renumera-
tion in cash paid during the reference month before any tax deductions and
social security deductions and social security contributions payable by wage
earners and retained by the employer.

16. earningsOvertime: It is also necessary to refer to earnings related to over-
time. The amount of overtime earnings paid for overtime hours is required.

17. paymentsShiftWork: These special payments for shift work are premium
payments during the reference month for shirt work, night work or weekend
work where they are not treated as overtime.

A.1. Selection of variables

No direct identifiers like social insurance number or names or exact addresses are
included in the data. However, if they are included, it would be the first step to
remove these direct identifying variables as soon as possible from the data set.
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First we have to determine the key variables. The identification of an enterprise
may allow an attacker to learn new information about (some) of their employees
and, of course, the identification of an employee would disclose all the information
about this employee.

After discussion with subject matter specialists we assume that the following
variables as categorical key variables on enterprise level:

• Size

• Location

• Economic Activity

This choice can be motivated because it can be assumed that information on
this variables is readily available to possible attackers from other data sources.

In the following we concentrate on the anonymization on employee level where
it can be assumed that also information on these three variables is available in
public data bases and thatin addition the Sex and age is available [see also Ichim
and Franconi, 2007, for a similar scenario]:

• Size

• Age

• Sex

• Location

• Economic Activity

As continuous key variables at employment level the following variables are
selected after careful discussions with subject matter specialists who are aware
about the availability of external information on this data set:

• Earnings

• Overtime Earinings

Thus it is assumed that possible data intruders have information on earnings of
employees and that they can estimate earnings very precise. The data set contains
also a vector of sampling weights (grossingUpFactor.y), which have to be specified
in sdcMicroGUI (or sdcMicro). The economic activity is chosen as a stratification
variable.

A.2. Risk estimation

After careful selection of key variables, the risk have to be estimated. For this
task, the individual risk approach (described in Section 2.1) is chosen. The follow-
ing output is obtained by the sdcMicroGUI (or sdcMicro) after defining the key
variables [see Templ et al., 2014b, how to do this with the GUI].
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Number o f ob s e rva t i on s v i o l a t i n g

− 2−anonymity : 11212
− 3−anonymity : 23682
−−−−−−−−−−−−−−−−−−−−−−−−−−

Percentage o f ob s e rva t i on s v i o l a t i n g
− 2−anonymity : 5 .61 %
− 3−anonymity : 11 .85 %

−−−−−−−−−−−−−−−−−−−−−−−−−−
0 obs . with h igher r i s k than the main part

Expected no . o f re−i d e n t i f i c a t i o n s :
8496.45 [ 4 .25 %]

−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 1: Frequency and risk estimation of the raw SES data.

From the output in Listing 1 it is easy to see the large number of unique combi-
nations from cross-tabulating the categorical key variables (fk= 1) (about 5.61%
of the observations, see Listing 1). All in all, 4.25 % of the observations may have
a considerable large risk.

In addition, the global risk can also be estimated using log-linear models. We
note that the global risk is 2.22% in the original data.

The risk on continuous variables is between 0 and 100% under the chosen sce-
nario. This is reported by sdcMicroGUI automatically.

A.3. Anonymization of the categorical key variables

It is therefore necessary to recode some categories of the key variables to receive
a lower number of uniqueness. This is done by recoding the NACE classification
from 2-digit codes to 1-digit codes, whereas the aggregation of the classifications
are based on expert knowledge, i.e. those categories are combined where the
economic branches are similar. Finally, the age of the employees are categorized
in six age classes ((0,15] (15,29] (29,39] (39,49] (49,59] (59,120]).

After performing the recoding of key variables we can calculate the new frequen-
cies as it is shown in the following

Number o f ob s e rva t i on s v i o l a t i n g

− 2−anonymity : 12
− 3−anonymity : 22
−−−−−−−−−−−−−−−−−−−−−−−−−−

Percentage o f ob s e rva t i on s v i o l a t i n g
− 2−anonymity : 0 .01 %
− 3−anonymity : 0 .01 %

−−−−−−−−−−−−−−−−−−−−−−−−−−
0 obs . with h igher r i s k than the main part
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Expected no . o f re−i d e n t i f i c a t i o n s :
51 .01 [ 0 .03 %]

−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 2: Frequency calculation after recoding

We see that the risk recuded dramatically. When re-estimating the global risk
with linear models we obtain a global risk of 0.

However, still 22 observations violates the 3-anonymity assumption. In general
there are at least four possibilities to achieve k-anonymity. k-anonymity can be
achieved by applying sdcMicro’s (or sdcMicroGUI’s) local suppression algorithm,
whereas as few as possible suppression are carried out. After local suppression, 4
values are suppressed in variable Size and 14 values are suppressed in age.

Note: as an alternative to local suppresion and recoding, post randomization
can be applied to the data. Hereby, the risk cannot be estimated reasonable after
anonymization and the chosen probabilities to swapp a value to another category
determines the risk – the higher the probabilities the less can an intruder be sure
that an identification is correct or not.

Note that also the l-ldiversity ( ldiversity ()) can easily be estimated as soon one
define which variables are the sensitive ones.

A.4. Anonymization of the continous key variables

A bunch of methods are available to perturb continuously scaled (key) variables.
We use the mdav microaggregation method that can be selected in sdcMicroGUI

and sdcMicro. The aggregation level determines how many observations are ag-
gregated together when performing the aggregation.

The risk of the continuous key variables is reduced since the intruder cannot be
sure if the link is correct when at least 6 observations have the same values in the
continuous key variables after microaggregation.

As an alternative, also adding noise can be used (method correlated2 is the
default method for adding noise and recommended). Also shuffling can be applied
alternatively. For example, the two continous key variables are predicted with
variables sex, age and education as predictors.

A.5. Most relevant information to preserve

For the European Union Structure of Earnings Survey the most important indica-
tor is the Gender Pay Gap, i.e. the difference in hourly earnings between men and
women. The estimate of the Gender Pay Gap from the anonymized data should
be very close to the estimate from the original data, which have to be evaluated.

In addition, the regression model given by log hourly earnings predicted by
sex, age, location, economic activity, education is often applied to this data set.
Therefore the resulting regression coefficients from the anonymized data should be
very close to the original estimates.

Exemplarely, we show the utility of the anonymized data on this model fit.
The regression coefficients and their estimated confidence intervals are visual-

ized in Figure 4 whereas the original estimates (in black) are compared with the
estimates from anonymized data (in grey).
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(a) Recoding, local suppression and microag-
gregation.
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(b) Recoding, local suppression and adding
correlated noise.
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(c) Invariant pram and microaggregation.
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(d) Recoding, local suppression and shuffling.

Figure 4: Confidence intervals for the regression coefficients for the original data
(black lines) and the perturbed/anonymized data (grey dotted lines).

We applied different anonymization methods independently. The anonymization
by Recoding + local suppression + microaggregation performs best and the confi-
dence intervals obtained from the anonymised data cover the confidence intervals
obtained from the original data almost always completely. Almost as good is the
quality of data anonymized by recoding + local suppression + adding correlated
noise. The results from invariant pram + microaggregation are good for all coef-
ficients except those are related to economic activitiy. This is not surprising since
this variable was one of the variables which was pramed. Some few coefficients are
well perserved from the recoding + local suppression + shuffling anonymized data,
but others are not. The reason is that even if the distribution of the continuous
shuffled variables are well perserved, the relation to other variables that are not
included in the shuffling model might be not preserved. A better model would
probably lead to better results.
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