Package ‘sdcTable’

December 3, 2021
Version 0.32.2
Date 2021-12-03
Title Methods for Statistical Disclosure Control in Tabular Data

Description Methods for statistical disclosure control in
tabular data such as primary and secondary cell suppression as described for example
in Hundepol et al. (2012) <doi:10.1002/9781118348239> are covered in this package.

Author Bernhard Meindl

Maintainer Bernhard Meindl <bernhard.meindl@gmail.com>
URL https://github.com/sdcTools/sdcTable

BugReports https://github.com/sdcTools/userSupport/issues
Depends R (>=3.5.0), Repp (>= 0.11.0), sdcHierarchies (>=0.19.1)

Imports data.table, knitr, rlang, stringr, methods, Rglpk, slam,
IpSolveAPI, glpkAPI, progress, utils

Suggests testthat (>= 0.3), rmarkdown, webshot, digest
LinkingTo Rcpp

License GPL (>=2)

LazyData true

SystemRequirements GLPK library, including -dev or -devel part
Encoding UTF-8

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-12-03 10:30:02 UTC

https://doi.org/10.1002/9781118348239
https://github.com/sdcTools/sdcTable
https://github.com/sdcTools/userSupport/issues

2

R topics documented:

R topics documented:

Index

argusVersion e e e e e e e e e 3
attack . . . L e e e 3
calc.sdcProblem L e 5
cell_info e 8
change_cellstatus e 10
contributing_indices L. 11
createArguslnput 12
createJJFormat L e e 15
createRegSDClInput e 17
cutList-class e e e 18
dataObj-class e 19
dimInfo-class e e 20
dimVar-class e e 21
get.dimInfo 22
get.problemlnstance oL Lo 23
get.sdcProblem L L 24
getlnfo 26
linProb-class e e e 27
makeProblem 28
microdatal L e e e e e e 30
microdata e e 31
primarySuppression oL L. e e e e e e e e 31
print,dimVar-method L 34
print,sdcProblem-method L Lo 34
problemlnstance-class 35
protectLinkedTables 36
protectTable 39
runArgusBatchFile o 42
safeObj-class 43
sdcProb2df e 44
sdcProblem-class e e e 45
sdc_testproblem L e 46
set.dimInfo 47
set.problemlnstance L. 48
set.sdcProblem L e 49
setinfo L 50
show,sdcProblem-method 51
simpleTriplet-class 52
summary,sdcProblem-method L L 52
writeJJFormat 53

argus Version 3

argusVersion argusVersion

Description

returns the version and build number of a given tau-argus executable specified in argument exe.

Usage

argusVersion(exe, verbose = FALSE)

Arguments
exe a path to a tau-argus executable
verbose (logical) if TRUE, the version info and build number of the given tau-argus exe-
cutable will be printed.
Value

a list with two elements being the tau-argus version and the build-number.

Examples

Not run:
argusVersion(exe="C:\\Tau\\TauArgus.exe", verbose=TRUE)

End(Not run)

attack Attacking primary suppressed cells

Description

Function [attack()] is used to compute lower and upper bounds for a given sdcProblem instance. For
all calculations the current suppression pattern is used when calculating solutions of the attacker’s
problem.

Usage

attack(object, to_attack = NULL, verbose = FALSE, ...)

4 attack

Arguments
object an object of class ‘sdcProblem’
to_attack if ‘NULL* all current primary suppressed cells are attacked; otherwise either
an integerish (indices) or character-vector (str-ids) of the cells that should be
attacked.
verbose a logical scalar determing if additional output should be displayed
placeholder for possible additional input, currently unused;
Value

a ‘data.frame‘ with the following columns: - ‘prim_supps‘: index of primary suppressed cells - ‘sta-
tus‘: the original sdc-status code - ‘val‘ the original value of the cell - ‘low*: computed lower bound
of the attacker’s problem - ‘up‘: computed upper bound of the attacker’s problem - ‘protected*
shows if a given cell is accordingly protected

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

Examples

dims <- list(
vl = sdcHierarchies::hier_create("tot"”, letters[1:4]),
v2 = sdcHierarchies::hier_create("tot”, letters[5:8])

)

N <- 150
df <- data.frame(
vl = sample(letters[1:4], N, replace = TRUE),
v2 = sample(letters[5:8]1, N, replace = TRUE)
)

sdc <- makeProblem(data = df, dimList = dims)

set primary suppressions
specs <- data.frame(
vl = c("a", "b", "a"),
v2 = c("e", "e", "f")
)
won

sdc <- change_cellstatus(sdc, specs = specs, rule = "u")

attack all primary sensitive cells
the cells can be recomputed exactly
attack(sdc, to_attack = NULL)

protect the table and attack again
sdc <- protectTable(sdc, method = "SIMPLEHEURISTIC")
attack(sdc, to_attack = NULL)

attack only selected cells
attack(sdc, to_attack = c(7, 12))

calc.sdcProblem 5

calc.sdcProblem perform calculations on sdcProblem-objects depending on argument
type

Description

perform calculations on sdcProblem-objects depending on argument type
Usage
calc.sdcProblem(object, type, input)

S4 method for signature 'sdcProblem,character,list'’
calc.sdcProblem(object, type, input)

Arguments
object an object of class sdcProblem
type a character vector of length 1 defining what to calculatelreturnimodify. Allowed

types are:
* rule.freq: modify suppression status within object according to frequency
suppression rule

* heuristicSolution: obtain a heuristic (greedy) solution to the problem de-
fined by object

* cutAndBranch: solve a secondary cell suppression problem defined by object
using cut and branch

» anonWorker: is used to solve the suppression problem depending on infor-
mation provided with argument input

e ghmiter: solve a secondary cell suppression problem defined by object
using hypercube algorithm

* preprocess: perform a preprocess procedure by trying to identify primary
suppressed cells that are already protected due to other primary suppressed
cells

¢ cellID: find index of cell defined by information provided with argument
input
* finalize: create an object of class safeObj

» ghmiter.diagObj: calculate codes required to identify diagonal cells given a
valid cell code - used for ghmiter-algorithm only

 ghmiter.calcInformation: calculate information for quaders identified by di-
agonal indices - used for ghmiter-algorithm only

 ghmiter.suppressQuader: suppress a quader based on indices

 ghmiter.selectQuader: select a quader for suppression depending on infor-
mation provided with argument input - used for ghmiter-algorithm only

calc.sdcProblem

* ghmiter.suppressAdditionalQuader: select and suppress an additional quader
(if required) based on information provided with argument input - used for
ghmiter-algorithm only

* contributingIndices: calculate indices within the current problem that con-
tribute to a given cell

* reduceProblem: reduce the problem given by object using a vector of in-
dices

» genStructuralCuts: calculate cuts that are absolute necessary for a valid
solution of the secondary cell suppression problem

input a list depending on argument type.
* a list (typically generated using genParaObj()) specifying parameters for
primary cell suppression if argument type matches 'rule.freq’

e a list if argument type matches "heuristicSolution’ having the following
elements:
— element ’aProb’: an object of class 1inProb defining the attacker’s
problem
— element ’validCuts’: an object of class cutList representing a list of
constraints
— element ’solver’: a character vector of length 1 specifying a solver to
use
— element ’verbose’: a logical vector of length 1 setting if verbose output
is desired
* a list (typically generated using genParaObj()) specifying parameters for
the secondary cell suppression problem if argument type matches *cutAnd-
Branch’, "anonWorker’, ’ghmiter’, preprocess’
* alist of length 3 if argument type matches ’cellID’ having following ele-
ments
— first element: character vector specifying variable names that need to
exist in slot ’dimInfo’ of object
— second element: character vector specifying codes for each variable
that define a specific table cell
— third element: logical vector of length 1 with TRUE setting verbosity
and FALSE to turn verbose output off
* a list of length 3 if argument type matches *ghmiter.diagObj’ having fol-
lowing elements
— first element: numeric vector of length 1
— second element: a list with as many elements as dimensional vari-
ables have been specified and each element being a character vector
of dimension-variable specific codes
— third element: logical vector of length 1 defining if diagonal indices
with frequency == 0 should be allowed or not
* alist of length 4 if argument type matches ’ghmiter.calcInformation’ hav-
ing following elements
— first element: a list object typically generated with method calc.sdcProblem
and type=="ghmiter.diagObj’

calc.sdcProblem 7

— second element: a list with as many elements as dimensional vari-
ables have been specified and each element being a character vector
of dimension-variable specific codes

— third element: numeric vector of length 1 specifying a desired protec-
tion level

— fourth element: logical vector of length 1 defining if quader containing
empty cells should be allowed or not

* alist of length 1 if argument type matches ’ghmiter.suppressQuader’ hav-
ing following element

— first element: numeric vector of indices that should be suppressed

* alist of length 2 if argument type matches ’ghmiter.selectQuader’ having
following elements

— first element: a list object typically generated with method calc.sdcProblem
and type=="ghmiter.calcInformation’

— second element: a list (typically generated using genParaObj())

* alist of length 4 if argument type matches ’ghmiter.suppressAdditionalQuader’
having following elements
— firstelement: a list object typically generated with method calc.sdcProblem
and type=="ghmiter.diagObj’
— second element: a list object typically generated with method calc.sdcProblem
and type=="ghmiter.calcInformation’

— third element: a list object typically generated with method calc.sdcProblem
and type=="ghmiter.selectQuader’

— fourth element: a list (typically generated using genParaObj())

* a list of length 1 if argument type matches ’contributingIndices’ having
following element

— first element: character vector of length 1 being an ID for which con-
tributing indices should be calculated

* alist of length 1 if argument type matches "reduceProblem’ having follow-
ing element

— first element: numeric vector defining indices of cells that should be
kept in the reduced problem

* an empty list if argument type matches ’genStructuralCuts’

Value
information from objects of class sdcProblem depending on argument type

* an object of class sdcProblem if argument type matches ‘rule.freq’, ’cutAndBranch’, *anon-
Worker’, *ghmiter’, ’ghmiter.supressQuader’, *ghmiter.suppressAdditionalQuader’ or ’redu-
ceProblem’

* anumeric vector with elements being 0 or 1 if argument type matches "heuristicSolution’
* alist if argument type matches ’preprocess’ having following elements:

— element ’sdcProblem’: an object of class sdcProblem
— element ’aProb’: an object of class 1inProb

8 cell_info

— element ’validCuts’: an object of class cutList

* a numeric vector of length 1 specifying the index of the cell of interest if argument type
matches ’cellID’

* an object of class safeObj if argument type matches ’finalize’
* alist if argument type matches ’ghmiter.diagObj’ having following elements:

— element ’cellToProtect’: character vector of length 1 defining the ID of the cell to protect
— element indToProtect’: numeric vector of length 1 defining the index of the cell to protect
— element ’diagIndices’: numeric vector defining indices of possible cells defining cubes

* alist containing information about each quader that could possibly be suppressed if argument
type matches ’ghmiter.calcInformation’

* alist containing information about a single quader that should be suppressed if argument type
matches *ghmiter.selectQuader’

* anumeric vector with indices that contribute to the desired table cell if argument type matches
’contributingIndices’

* an object of class cutList if argument type matches *genStructuralCuts’

Note

internal function

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

cell_info Get information about specific cells

Description

Function cellInfo() can be used to query information of a single cell from a sdcProblem object.
If the instance has already been protected using protectTable(), the information is retrieved from
the final protected dataset, otherwise from the current state of the instance.

Usage
cell_info(object, specs, ...)
Arguments
object an object of class sdcProblem
specs input that defines which cells to query; the function expects either (see examples

below)

» anamed character vector: with names referring to the names of the dimen-
sional variables and the values to its labels. In this case each vector-element
must contain a single value (label)

cell_info 9

¢ a data.frame where the column-names refer to the names of the dimen-
sional variables and the values to the labels

additional parameters for potential future use, currently unused.

Value

a data. frame with a row for each of the queried cells; the object contains the following columns:

* id: numeric vector of length 1 specifying the numerical index of the cell

* acolumn striID if object has not yet been protected

* one column for each dimensional variable

* acolumn freq containing the cell-frequencies

* if available, one column for each (possible) numerical value that was tabulated
* acolumn sdcStatus with the current sdc code

* is_primsupp: is TRUE if the cell is a primary sensitive cell

* is_secondsupp: is TRUE if the cell is a secondary suppressed cell

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

Examples

as in makeProblem() with a single primary suppression
p <- sdc_testproblem(with_supps = TRUE)
sdcProb2df (p)

vector input
specs_vec <- c(region = "D", gender = "male")
cell_info(p, specs = specs_vec)

data.frame input
specs_df <- data.frame(
region —_ C(”A”, IIDII’ IIAII)’
gender = c("male"”, "female”, "female")

)
cell_info(p, specs = specs_df)

protect the table
p_safe <- protectTable(p, method = "SIMPLEHEURISTIC")

re-apply
cell_info(p_safe, specs = specs_df)

10

change_cellstatus

change_cellstatus Change anonymization status of a specific cell

Description

Function change_cellstatus() allows to changelmodify the anonymization state of single table
cells for objects of class sdcProblem.

Usage
change_cellstatus(object, specs, rule, verbose = FALSE, ...)
Arguments
object an object of class sdcProblem
specs input that defines which cells to query; the function expects either (see examples
below)

* anamed character vector: with names referring to the names of the dimen-
sional variables and the values to its labels. In this case each vector-element
must contain a single value (label)

¢ a data.frame where the column-names refer to the names of the dimen-
sional variables and the values to the labels

rule scalar character vector specifying a valid anonymization code (Cu’, ’z’, ’x’, ’s’)
to which all the desired cells under consideration should be set.
verbose scalar logical value defining verbosity, defaults to FALSE
additional parameters for potential future use, currently unused.
Value

a sdcProblem object

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

Examples

load example-problem
(same as example from ?makeProblem)
p <- sdc_testproblem(with_supps = FALSE)

goal: set cells with region = "D” and gender != "total” as primary sensitive

using a data.frame as input

specs <-
region
gender

data. frame(
= "
= c("male”, "female”, "total”)

contributing_indices 11

marking the cells as sensitive
p <- change_cellstatus(

object = p,
specs = specs,
rule = "u”

)

check

cell_info(p, specs = specs)

using a named vector for a single cell to revert
setting D/total as primary-sensitive

specs <- c(gender = "total"”, region = "D")

p <- change_cellstatus(

object = p,
specs = specs,
rule = "s”

)

and check again
cell_info(p, specs = specs)

contributing_indices Compute contributing units to table cells

Description
This function computes (with respect to the raw input data) the indices of all contributing units to
given cells identified by ids.

Usage

contributing_indices(prob, ids = NULL)

Arguments
prob a sdcProblem object created with makeProblem()
ids a character vector containing default ids (strIDs) that define table cells. Valid
inputs can be extracted by using sdcProb2df () and looking at column strID.
If this argument is NULL, the corresponding units are computed for all cells in
the table.
Value

a named list where names correspond to the given ids* and the values to the row numbers within the
raw input data.

12 create ArgusInput

Examples

loading test problem
p <- sdc_testproblem(with_supps = FALSE)
dt <- sdcProb2df(p, dimCodes = "original”)

question: which units contribute to cell region = "A" and gender = "female"?

compute the id ("0102")
dt[region == "A" & gender == "female"”, strID]

which indices contribute to the cell?
ids <- contributing_indices(prob = p, ids = "@101")

check

dataObj <- get.sdcProblem(p, "dataObj")
rawData <- slot(dataObj, "rawData")
rawDatal[ids[["0101"]1]]

compute contributing ids for all cells
contributing_indices(p)

createArgusInput Create input files for tauArgus

Description

create required input-files and batch-file for tau-argus given an sdcProblem object

Usage
createArgusInput(
obj,
typ = "microdata”,

verbose = FALSE,

path = getwd(),
solver = "FREE",
method,

primSuppRules = NULL,
responsevar = NULL,
shadowvar = NULL,
costvar = NULL,
requestvar = NULL,
holdingvar = NULL,

createArgusInput

Arguments
obj
typ
verbose

path

solver

method

primSuppRules

responsevar

shadowvar

costvar

13

an object of class sdcProblem from sdcTable
(character) either "microdata” or "tabular”
(logical) if TRUE, the contents of the batch-file are written to the prompt

path, into which (temporary) files will be written to (amongst them being the
batch-files). Each file written to this folder belonging to the same problem con-
tains a random id in its filename.

which solver should be used. allowed choices are

« "FREE"
* "CPLEX”
* "XPRESS”

In case "CPLEX" is used, it is also mandatory to specify argument licensefile
which needs to be the absolute path the the cplex license file

secondary cell suppression algorithm, possible choices include:
e "MOD": modular approach. If specified, the following arguments in . . . can
additionally be set:

— MaxTimePerSubtable: number specifiying max. time (in minutes)
spent for each subtable

— SingleSingle: 0/1 (default=1)
— SingleMultiple: 0/1 (default=1)
— MinFreq: 0/1 (default=1)
e "GH": hypercube. If specified, the following arguments in ... can addi-
tionally be set:
— BoundPercentage: Default percentage to proctect primary suppressed
cells, default 75
— ModelSize: are we dealing with a small (0) or large (1) model? (de-
fault=1)
— ApplySingleton: should singletons be additionally protected? 0/1
(default=1)
e "OPT": optimal cell suppression. If specified, the following arguments in
. can additionally be set:

— MaxComputingTime: number specifiying max. allowed computing time
(in minutes)

rules for primary suppression, provided as a 1ist. For details, please have a
look at the examples below.

which variable should be tabulated (defaults to frequencies). For details see
tau-argus manual section 4.4.4.

if specified, this variable is used to apply the safety rules, defaults to responsevar.
For details see tau-argus manual section 4.4.4.

if specified, this variable describes the costs of suppressing each individual cell.
For details see tau-argus manual section 4.4.4.

14

requestvar

holdingvar

Value

create ArgusInput

if specified, this variable (0/1-coded) contains information about records that
request protection. Records with 1 will be protected in case a corresponding
request rule matches. It is ignored, if tabular input is used.

if specified, this variable contains information about records that should be
grouped together. It is ignored, if tabular input is used.

allows to specify additional parameters for selected suppression-method as de-
scribed above as well as licensefile in clase "CPLEX" was specified in argu-
ment solver.

the filepath to the batch-file

Examples

loading micro data from sdcTable

utils::data("microdatal”, package="sdcTable")

microdatal$numl <- rnorm(mean = 100, sd = 25, nrow(microdatal))
microdatal$num2 <- round(rnorm(mean = 500, sd=125, nrow(microdatal)),2)
microdatal$weight <- sample(10:100, nrow(microdatal), replace = TRUE)

dim_region <- hier_create(root = "Total”, nodes = LETTERS[1:41])

dim_region_dupl <- hier_create(root = "Total”, nodes = LETTERS[1:4])
dim_region_dupl <- hier_add(dim_region_dupl, root = "B", nodes = c("b1"))
dim_region_dupl <- hier_add(dim_region_dupl, root = "D", nodes = c("d1"))

dim_gender <- hier_create(root = "Total”, nodes = c("male”, "female"))

dimList <- list(region = dim_region, gender = dim_gender)
dimList_dupl <- list(region = dim_region_dupl, gender = dim_gender)
dimVarInd <- 1:2

numVarInd <- 3:5

sampWeightInd <- 6

creating an object of class \code{\link{sdcProblem-class}}
obj <- makeProblem(

data = microdatal,

dimList = dimList,

dimVarInd = dimVarlInd,

numVarInd = numVarInd,

sampWeightInd = sampWeightInd)

creating an object of class \code{\1link{sdcProblem-class}} containing "duplicated” codes

obj_dupl <- makeProblem(
data = microdatal,
dimList = dimList_dupl,
dimVarInd = dimVarInd,
numVarInd = numVarlInd,
sampWeightInd = sampWeightInd)

createJJFormat

create primary suppression rules

primSuppRules <- list()

primSuppRules[[1]] <- list(type = "freq”, n =5, rg = 20)
primSuppRules[[2]] <- list(type = "p", n =5, p = 20)

other supported formats are:

list(type = "nk"”, n=5, k=20)
list(type = "zero"”, rg = 5)
list(type = "mis", val = 1)
list(type = "wgt”, val = 1)
list(type = "man”, val = 20)

create batchInput object
bO_md1 <- createArgusInput(

obj = obj,

typ = "microdata”,

path = tempdir(),

solver = "FREE",

method = "OPT",

primSuppRules = primSuppRules,

responsevar = "numl1")

bO_td1 <- createArgusInput(
obj = obj,
typ = "tabular”,
path = tempdir(),
solver = "FREE",
method = "OPT")

bO_td2 <- createArgusInput(
obj = obj_dupl,
typ = "tabular”,
path = tempdir(),
solver = "FREE",
method = "OPT")

Not run:
in case CPLEX should be used, it is required to specify argument licensefile
bO_md2 <- createArgusInput(
obj = obj,
typ = "microdatal”,
path = tempdir(),
solver = "CPLEX",
method = "OPT",
primSuppRules = primSuppRules,
responsevar = "numl1”,
licensefile = "/path/to/my/cplexlicense”)

End(Not run)

createJJFormat Create input for jj_format

16 createJJFormat

Description

This function transforms a sdcProblem object into a list that can be used as input for writeJJFormat ()
to write a problem in "JJ-format” to disk.

Usage

createJJFormat(x)
Arguments

X a sdcProblem object
Value

an input suitable for writeJJFormat ()

Author(s)
Bernhard Meindl (bernhard.meindl @statistik.gv.at) and Sapphire Yu Han (y.han@cbs.nl)

Examples

setup example problem
microdata
utils::data("microdatal”, package = "sdcTable")

create hierarchies
dims <- list(
region = sdcHierarchies::hier_create(root = "Total”, nodes = LETTERS[1:41]),
gender = sdcHierarchies::hier_create(root = "Total”, nodes = c("male”, "female")))

create a problem instance
p <- makeProblem(
data = microdatal,
dimList = dims,
numVarInd = "val")

create suitable input for ‘writeJJFormat®
inp <- createJJFormat(p); inp

write files to disk

frequency table by default

writeJJFormat(
X = inp,
path = file.path(tempdir(), "prob_fregs.jj"),
overwrite = TRUE

)

or using the numeric variable ‘val‘ previously specified
writeJJFormat(
X = inp,

createRegSDClnput 17

tabvar = "val”,
path = file.path(tempdir(), "prob_val.jj"),
overwrite = TRUE

)

createRegSDCInput Create input for RegSDC/other Tools

Description
This function transforms a sdcProblem object into an object that can be used as input for RegSDC::SuppressDec
(among others).

Usage

createRegSDCInput(x, chk = FALSE)

Arguments
X a sdcProblem object
chk a logical value deciding if computed linear relations should be additionally
checked for validity
Value

an list with the following elements:

* mat: linear combinations depending on inner-cells of the given problem instance.
* y: a 1-column matrix containing the frequencies of inner cells
* z: a l-column matrix containing the frequencies of all cells

* z_supp: a l-column matrix containing the frequencies of all cells but suppressed cells have a
value of NA

* info: a data. frame with the following columns:

— cell_id: internal cell-id used in sdcTable

— is_innercell: a binary indicator if the cell is an internal cell (TRUE) or a (sub)total
(FALSE)

Author(s)

Bernhard Meindl (bernhard.meindl @ gmail.com)

18 cutList-class

Examples

Not run:
utils::data("microdatal”, package = "sdcTable")
head(microdatal)

define the problem
dim_region <- hier_create(root = "total”, nodes = sort(unique(microdatal$region)))
dim_gender <- hier_create(root = "total”, nodes = sort(unique(microdatal$gender)))

prob <- makeProblem(
data = microdatal,
dimList = list(region = dim_region, gender = dim_gender),
fregVarInd = NULL

)

suppress some cells
prob <- primarySuppression(prob, type = "freq”, maxN = 15)

compute input for RegSDC-package
inp_regsdc <- createRegSDCInput(x = prob, chk = TRUE)

estimate innner cells based on linear dependencies
res_regsdc <- RegSDC: : SuppressDec(

x = as.matrix(inp_regsdc$x),

z = inp_regsdc$z_supp,

y = inp_regsdc$y)[, 1]

check if inner cells are all protected

df <- data.frame(
freqs_orig = inp_regsdc$z[inp_regsdc$info$is_innercell == TRUE, 1,
freqs_supp = inp_regsdc$z_supplinp_regsdc$info$is_innercell == TRUE, 1,
regsdc = res_regsdc

)

subset(df, df$regsdc == df$fregs_orig & is.na(freqs_supp))

End(Not run)

cutList-class S4 class describing a cutList-object

Description

An object of class cutList holds constraints that can be extracted and used as for objects of class
linProb-class. An object of class cutList consists of a constraint matrix (slot con), a vector
of directions (slot direction) and a vector specifying the right hand sides of the constraints (slot
rhs).

dataObj-class 19

Details

slot con: an object of class simpleTriplet-class specifying the constraint matrix of the problem
slot direction: a character vector holding the directions of the constraints, allowed values are:

e ==: equal

e <:less

e >: greater

e <=: less or equal

e >=: greater or equal

slot rhs: numeric vector holding right hand side values of the constraints

Note

objects of class cutList are dynamically generated (and removed) during the cut and branch algo-
rithm when solving the secondary cell suppression problem

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

dataObj-class S4 class describing a dataObj-object

Description

This class models a data object containing the 'raw’ data for a given problem as well as information
on the position of the dimensional variables, the count variable, additional numerical variables,
weights or sampling weights within the raw data. Also slot ’isMicroData’ shows if slow ‘rawData’
consists of microdata (multiple observations for each cell are possible, isMicroData==TRUE) or if
data have already been aggregated (isMicroData==FALSE)

Details

slot rawData: list with each element being a vector of either codes of dimensional variables, counts,
weights that should be used for secondary cell suppression problem, numerical variables or
sampling weights.

slot dimVarInd: numeric vector (or NULL) defining the indices of the dimensional variables within
slot 'rawData’

slot freqVarInd: numeric vector (or NULL) defining the indices of the frequency variables within
slot ‘rawData’

slot numVarInd: numeric vector (or NULL) defining the indices of the numerical variables within
slot 'rawData’

slot weightVarInd: numeric vector (or NULL) defining the indices of the variables holding weights
within slot ‘rawData’

20 dimInfo-class

slot sampWeightInd: numeric vector (or NULL) defining the indices of the variables holding sam-
pling weights within slot ‘rawData’

slot isMicroData: logical vector of length 1 (or NULL) that is TRUE if slot ‘rawData’ are micro-
Data and FALSE otherwise

Note

objects of class dataObj are input for slot dataObj in class sdcProblem

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

dimInfo-class S4 class describing a dimInfo-object

Description

An object of class dimInfo holds all necessary information about the dimensional variables defining
a hierarchical table that needs to be protected.

Details

slot dimInfo: alist (or NULL) with all list elements being objects of class dimVar

slot strID: a character vector (or NULL) defining IDs that identify each table cell. The ID’s are
based on (default) codes of the dimensional variables defining a cell.

slot strInfo: a list object (or NULL) with each list element being a numeric vector of length 2
defining the start and end-digit that is allocated by the i-th dimensional variable in ID-codes
available in slot strID

slot vNames: a character vector (or NULL) defining the variable names of the dimensional variables
defining the table structure

slot posIndex: a numeric vector (or NULL) holding the position of the dimensional variables
within slot rawData of class dataObj

Note

objects of class dimInfo are input for slots in classes sdcProblem and safeObj

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

dimVar-class 21

dimvar-class S4 class describing a dimVar-object

Description

An object of class dimVar holds all necessary information about a single dimensional variable such
as original and standardized codes, the level-structure, the hierarchical structure, codes that may be
(temporarily) removed from building the complete hierarchy (dups) and their corresponding codes
that correspond to these duplicated codes.

Details

slot codesOriginal: a character vector (or NULL) holding original variable codes
slot codesDefault: a character vector (or NULL) holding standardized codes

slot codesMinimal: alogical vector (or NULL) defining if a code is required to build the complete
hierarchy or not (then the code is a (sub)total)

slot vName: character vector of length 1 (or NULL) defining the variable name of the dimensional
variable

slot 1levels: a numeric vector (or NULL) defining the level structure. For each code the corre-
sponding level is listed with the grand-total always having level==

slot structure: a numeric vector (or NULL) with length of the total number of levels. Each
element shows how many digits the i-th level allocates within the standardized codes (note:
level 1 always allocates exactly 1 digit in the standardized codes)

slot dims: a list (or NULL) defining the hierarchical structure of the dimensional variable. Each
list-element is a character vector with elements available in slot codesDefault and the first
element always being a (sub)total and the remaining elements being the codes that contribute
to the (sub)total

slot dups: character vector (or NULL) having showing original codes that are duplicates in the
hierarchy and can temporarily removed when building a table with this dimensional variable

slot dupsUp: character vector (or NULL) with original codes that are the corresponding upper-
levels to the codes that may be removed because they are duplicates and that are listed in slot
dups
Note

objects of class dimVar form the base for elements in slot dimInfo of class dimInfo.

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

22 get.dimInfo

get.dimInfo query dimInfo-objects depending on argument type

Description

query dimInfo-objects depending on argument type

Usage
get.dimInfo(object, type)

S4 method for signature 'dimInfo,character’
get.dimInfo(object, type)

Arguments

object an object of class dataObj

type a character vector of length 1 defining what to calculatelreturnimodify. Allowed
types are:

* strInfo: info on how many digits in the default codes ach dimensional vari-
able allocates

* dimInfo: a list object with each slot containing an object of class dimVar
» varName: variable names
* strID: character vector of ID’s defining table cells

¢ posIndex vector showing the index of the elements of dimInfo in the un-
derlying data
Value

information from objects of class dimInfo depending on argument type

e alist (or NULL) if argument type matches ’strInfo’, ’dimInfo’
* numeric vector (or NULL) if argument type matches *posIndex’

* character vector (or NULL) if argument type matches 'varName’ or ’strID’

Note

internal function

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

get.problemInstance 23
get.problemInstance query problemInstance-objects depending on argument type
Description
query problemInstance-objects depending on argument type
Usage
get.problemInstance(object, type)
S4 method for signature 'problemInstance,character'’
get.problemInstance(object, type)
Arguments
object an object of class problemInstance
type a character vector of length 1 defining what to calculatelreturnimodify. Allowed

types are:

strID: vector of unique IDs for each table cell
nrVars: total number of table cells
freq: vector of frequencies

w: a vector of weights used in the linear problem (or NULL)

numVars: a list containing numeric vectors containing values for numerical

variables for each table cell (or NULL)

sdcStatus: a vector containing the suppression state for each cell (possible
values are "u’: primary suppression, 'X’: secondary suppression, *z’: forced
for publication, ’s’: publishable cell, "w’: dummy cells that are considered

only when applying the simple greedy heuristic to protect the table)
Ib: lower bound assumed to be known by attackers for each table cell
ub: upper bound assumed to be known by attackers for each table cell
LPL: lower protection level required to protect table cells

UPL: upper protection level required to protect table cells

SPL: sliding protection level required to protect table cells
primSupps: vector of indices of primary sensitive cells

secondSupps: vector of indices of secondary suppressed cells
forcedCells: vector of indices of cells that must not be suppressed
hasPrimSupps: shows if object has primary suppressions or not
hasSecondSupps: shows if object has secondary suppressions or not
hasForcedCells: shows if object has cells that must not be suppressed
weight: gives weight that is used the suppression procedures

suppPattern: gives the current suppression pattern

24 get.sdcProblem

Value
information from objects of class dataObj depending on argument type
¢ alist (or NULL) if argument type matches 'numVars’
* numeric vector if argument type matches ’freq’, ’1b’, 'ub’, "LPL’, "UPL’, *SPL’, *weight’,
“suppPattern’

¢ numeric vector (or NULL) if argument type matches 'w’, "primSupps’, ’secondSupps’, *forced-
Cells’

* character vector if argument type matches ’strID’, ’sdcStatus’, ”

* logical vector of length 1 if argument type matches "hasPrimSupps’, "hasSecondSupps’, "has-
ForcedCells’

* numerical vector of length 1 if argument type matches ’nrVars’

Note

internal function

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

get.sdcProblem query sdcProblem-objects depending on argument type

Description

query sdcProblem-objects depending on argument type

Usage
get.sdcProblem(object, type)

S4 method for signature 'sdcProblem,character'’
get.sdcProblem(object, type)

Arguments
object an object of class sdcProblem
type a character vector of length 1 defining what to calculatelreturnimodify. Allowed

types are:
* dataObj: a list containing the (raw) input data
* problemlInstance: return the current problem instance

* partition: a list containing information on the subtables that are required to
be protected as well as information on the processing order of the subtables

* dimlInfo: information on the variables defining the hierarchical table

get.sdcProblem 25

* indicesDealtWith: a set of indices that have already been dealt with during
the protection algorithmus

* startl: current level at which subtables need to be protected (useful when
restarting HITASIHYPERCUBE)

* start]: current number of the subtable within a given level that needs to be
protected (useful when restarting HITASIHYPERCUBE)

 innerAndMarginalCelllnfo: for a given problem, get indices of inner- and
marginal table cells

Value

information from objects of class sdcProblem depending on argument type

* an object of class dataObj (or NULL) if type matches *dataObj’
* an object of class problemInstance (or NULL) if type matches ’problemInstance’
¢ alist (or NULL) if argument type matches ’partition’ containing the following elements:
— element ’groups’: list with each list-element being a character vector specifying a specific
level-group
— element ’indices’: list with each list-element being a numeric vector defining indices of a
subtable

— element ’strIDs’: list with each list-element being a character vector defining IDs of a
subtable

— element 'nrGroups’: numeric vector of length 1 defining the total number of groups that
have to be considered

— element 'nrTables’: numeric vector of length 1 defining the total number of subtables that
have to be considered

* alist (or NULL) if argument type matches ’innerAndMarginalCelllnfo’ containing the fol-
lowing elements:

element ’innerCells’: character vector specifying ID’s of inner cells

element “totCells’: character vector specifying ID’s of marginal cells

element ’indexInnerCells’: numeric vector specifying indices of inner cells

element ’indexTotCells’: numeric vector specifying indices of marginal cells
* an object of class dimInfo (or NULL) if type matches dimInfo’

* numeric vector of length 1 if argument type matches ’startl’ or ’start)’

Note

internal function

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

26

getInfo

getInfo Retrieve information in sdcProblem or problemInstance objects

Description

Function getInfo() is used to extract values from sdcProblem or problemInstance objects

Usage

getInfo(object, type)

Arguments
object an object of class sdcProblem or problemInstance
type a scalar character specifying the information which should be returned. If object
inherits class problemInstance, the slots are directly accessed, otherwise the
values within slot problemInstance of the sdcProblem object are queried.
Valid choices are:
* the object has not yet been protected
— 1b and ub: current possible lower and upper bounds
— LPL, SPL, UPL: current lower, sliding and upper protection levels
— sdcStatus: current sdc-status of cells
— freq: cell frequencies
— striID: standardized cell ids (chr)
— numVars: NULL or a list with a slot for each tabulated numerical vari-
able;
— w: sampling weights or NULL
* the table has already been protected
— finalData: protected table as a data. table
— nrNonDuplicatedCells: number of unique (non-bogus) cells in the
table
— nrPrimSupps: number of primary sensitive cells that were protected
— nrSecondSupps: number of additional secondary suppressions
— nrPublishableCells: number of cells (status "s or ‘"z") that may be
published
— suppMethod: name of the algorithm used to protect the table
Value

manipulated data depending on arguments object and type

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

linProb-class 27

Examples

define an example problem with two hierarchies
p <- sdc_testproblem(with_supps = FALSE)

apply primary suppression
p <- primarySuppression(p, type = "freq”, maxN = 3)

“p* is an ‘sdcProblem® object
print(class(p))

for (slot in c("1b", "ub", "LPL", "SPL", "UPL", "sdcStatus”,
"freq”, "strID”, "numVars", "w")) {
message(”"slot: ", shQuote(slot))
print(getInfo(p, type = slot))

}

protect the cell and extract results

p_protected <- protectTable(p, method = "SIMPLEHEURISTIC")

for (slot in c("finalData"”, "nrNonDuplicatedCells”, "nrPrimSupps”,
"nrSecondSupps”, "nrPublishableCells”, "suppMethod”)) {

message("slot: ", shQuote(slot))
print(getInfo(p_protected, type = slot))
3
linProb-class S4 class describing a linProb-object
Description

An object of class 1inProb defines a linear problem given by the objective coefficients (slot objective),
a constraint matrix (slot constraints), the direction (slot direction) and the right hand side (slot
rhs) of the constraints. Also, allowed lower (slot boundsLower) and upper (slot boundsUpper)
bounds of the variables as well as its types (slot types) are specified.

Details

slot objective: a numeric vector holding coefficients of the objective function

slot constraints: an object of class simpleTriplet-class specifying the constraint matrix of
the problem

slot direction: a character vector holding the directions of the constraints, allowed values are:
e ==: equal
e <:less
e >: greater
e <=: less or equal
* >=: greater or equal

slot rhs: numeric vector holding right hand side values of the constraints

28 makeProblem

slot boundsLower: a numeric vector holding lower bounds of the objective variables

slot boundsUpper: a numeric vector holding upper bounds of the objective variables

slot types: a character vector specifying types of the objective variables, allowed types are:
 C: binary
* B: continuous
e I:integer

Note

when solving the problems in the procedure, minimization of the objective is performed.

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

makeProblem Create a problem instance

Description

Function makeProblem() is used to create sdcProblem objects.

Usage

makeProblem(
data,
dimList,
dimVarInd = NULL,
freqVarInd = NULL,
numVarInd = NULL,

weightInd = NULL,
sampWeightInd = NULL
)
Arguments
data a data frame featuring at least one column for each desired dimensional variable.
Optionally the input data can feature variables that contain information on cell
counts, weights that should be used during the cut and branch algorithm, addi-
tional numeric variables or variables that hold information on sampling weights.
dimList a (named) list where the names refer to variable names in input data. If the list

is not named, it is required to specify argument dimVarInd. Each list element
can be one of:

* tree: generated with hier_*() functions from package sdcHierarchies

makeProblem

dimVarInd

fregVarInd

numVarInd

weightInd

sampWeightInd

Value

29

* data.frame: a two column data.frame containing the full hierarchy of a
dimensional variable using a top-to-bottom approach. The format of this
data. frame is as follows:

— first column: a character vector specifying levels with each vector ele-
ment being a string only containing of @s from length 1 to n. If a vector
element consists of i-chars, the corresponding code is of level i. The
code @ (one character) equals the grand total (level=1), the code @ @
(two characters) is of level 2 (directly below the overall total).

— second column: a character vector specifying level codes

* path: absolute or relative path to a .csv file that contains two columns
seperated by semicolons (;) having the same structure as the "@; levelname"-
structure described above

if dimList is a named list, this argument is ignored (NULL). Else either a nu-
meric or character vector defining the column indices or names of dimensional
variables (specifying the table) within argument data are expected.

if not NULL, a scalar numeric or character vector defining the column index or
variable name of a variable holding counts in data

if not NULL, a numeric or character vector defining the column indices or variable
names of additional numeric variables with respect to data

if not NULL, a scalar numeric or character vector defining the column index or
variable name holding costs within data that should be used as objective coeffi-
cients when solving secondary cell suppression problems.

if not NULL, a scalar numeric or character vector defining the column index or
variable name of a variable holding sampling weights within data. In case a
complete table is provided, this parameter is ignored.

a sdcProblem object

Author(s)

Bernhard Meindl

Examples

loading micro data
utils::data("microdatal”, package = "sdcTable")

we can observe that we have a micro data set consisting
of two spanning variables ('region' and 'gender') and one
numeric variable ('val')

specify structure of hierarchical variable 'region'
levels 'A' to 'D' sum up to a Total

dim.region <- data.frame(
levels=c('@','@@','@R','@@"','@Q@"),

codes=c('Total’,

'A','B','C','D"),

30 microdatal

stringsAsFactors=FALSE)

specify structure of hierarchical variable 'gender'

using create_node() and add_nodes() (see ?manage_hierarchies)
dim.gender <- hier_create(root = "Total”, nodes = c("male”, "female"))
hier_display(dim.gender)

create a named list with each element being a data-frame
containing information on one dimensional variable and

the names referring to variables in the input data
dimList <- list(region = dim.region, gender = dim.gender)

third column containts a numeric variable
numVarInd <- 3

no variables holding counts, numeric values, weights or sampling
weights are available in the input data
creating an problem instance using numeric indices
p1 <- makeProblem(
data = microdatal,
dimList = dimList,
numVarInd = 3 # third variable in ‘data®

)

using variable names is also possible
p2 <- makeProblem(

data = microdatal,

dimList = dimList,

numVarInd = "val”

)

what do we have?
print(class(p1))

have a look at the data

df1 <- sdcProb2df(p1, addDups = TRUE,
addNumVars = TRUE, dimCodes = "original”)

df2 <- sdcProb2df(p2, addDups=TRUE,
addNumVars = TRUE, dimCodes = "original")

print(df1)

identical(df1, df2)

microdatal Synthetic Microdata (1)

Description

A ‘data.frame‘ used for examples and problem-generation in various examples.

microdata2 31

Usage

data(microdatal)

Format

a ‘data.frame‘ with ‘100° rows and variables ‘region‘, ‘gender‘ and ‘val.

Examples

utils::data("microdatal”, package = "sdcTable")
head(microdatal)

microdata2 Synthetic Microdata (2)

Description

Example microdata used for example in [protect_linked_tables()].

Usage

data(microdata2)

Format
a ‘data.frame* with ‘100° observations containing variables ‘region‘, ‘gender‘, ‘ecoOld‘, ‘ecoNew"
and ‘numVal‘.

Examples

utils::data("microdata2”, package = "sdcTable")
head(microdata2)

primarySuppression Apply primary suppression

Description

Function primarySuppression() is used to identify and suppress primary sensitive table cells in
sdcProblem objects. Argument type allows to select a rule that should be used to identify primary
sensitive cells. At the moment it is possible to identify and suppress sensitive table cells using the
frequency-rule, the nk-dominance rule and the p-percent rule.

Usage

primarySuppression(object, type, ...)

32

Arguments

primarySuppression

object a sdcProblem object

type character vector of length 1 defining the primary suppression rule. Allowed
types are:

freq: apply frequency rule with parameters maxN and allowZeros
nk: apply nk-dominance rule with parameters n, k

p: apply p-percent rule with parameter p

pg: apply pq-rule with parameters p and q

parameters used in the identification of primary sensitive cells. Parameters that
can be modifiedlchanged are:

Details

maxN: numeric vector of length 1 used when applying the frequency rule.
All cells having counts <= maxN are set as primary suppressed. The default
value of maxN is 3.

allowZeros: logical value defining if empty cells (with frequency = 0)
should be considered sensitive when using the frequency rule. Empty cells
are never considered as sensitive when applying dominance rules; The de-
fault value of allowZeros is FALSE so that empty cells are not considered
primary sensitive by default. Such cells (frequency 0) are then flagged as z
which indicates such a cell may be published but should (internally) not be
used for (secondary) suppression in the heuristic algorithms.

p: numeric vector of length 1 specifying parameter p that is used when
applying the p-percent rule with default value of 80.

pg: numeric vector of length 2 specifying parameters p and q that are used
when applying the pg-rule with the default being c(25, 50).

n: numeric vector of length 1 specifying parameter n that is used when
applying the nk-dominance rule. Parameter n is set to 2 by default.

k: scalar numeric specifying parameter k that is used when applying the
nk-dominance rule. Parameter n is set to 85 by default.

numVarName: character scalar specifying the name of the numerical vari-
able that should be used to identify cells that are dominated by dominance
rules (p-rule, pg-rule or nk-rule). This setting is mandatory in package
versions >= (.29 If type is either 'nk’, ’p’ or ’pq’, it is mandatory to specify
either numVarInd or numVarName.

numVarInd: same as numVarName but a scalar numeric specifying the in-
dex of the variable is expected. If both numVarName and numVarInd are
specified, numVarName is used. The index refers to the index of the speci-
fied numvars in makeProblem(). This argument is no longer respected in
versions >= (.29 where numVarName must be used.

since versions >= (.29 it is no longer possible to specify underlying variables for dominance rules
("p", "pq" or "nk") by index; these variables must be set by name using argument numVarName.

Value

a sdcProblem object

primarySuppression

Note

the nk-dominance rule, the p-percent rule and the pq-rule can only be applied if micro data have

been used as input data to function makeProblem()

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

Examples

load micro data
utils::data("microdatal”, package = "sdcTable")

load problem (as it was created in the example in ?makeProblem
p <- sdc_testproblem(with_supps = FALSE)

we have a look at the frequency table by gender and region
xtabs(rep(1, nrow(microdatal)) ~ gender + region, data = microdatal)

2 units contribute to cell with region=='A' and gender=='female'
--> this cell is considered sensitive according the the

freg-rule with 'maxN' equal to 2!

p1 <- primarySuppression(

object = p,
type = "freq”,
maxN = 2

we can also apply a p-percent rule with parameter "p” being 30 as below.
This is only possible if we are dealing with micro data and we also
have to specify the name of a numeric variable.
p2 <- primarySuppression(
object = p,
type = "p”,
p = 30,
numVarName = "val”

looking at anonymization states we see, that one cell is primary
suppressed (sdcStatus == "u")

the remaining cells are possible candidates for secondary cell
suppression (sdcStatus == "s") given the frequency rule with
parameter "maxN = 2".

Applying the p-percent rule with parameter 'p = 30' resulted in
two primary suppressions.
data. frame(
pl_sdc = getInfo(pl, type = "sdcStatus"),
p2_sdc = getInfo(p2, type = "sdcStatus")
)

R T E R

34

print,sdcProblem-method

print,dimVar-method print dimVar-class objects

Description

print dimVar-class objects in a resonable way

Usage
S4 method for signature 'dimVar'
print(x, ...)

Arguments
X An object of class dimVar-class

currently not used

print, sdcProblem-method

print objects of class sdcProblem-class.

Description

print some useful information instead of just displaying the entire object (which may be large)

Usage
S4 method for signature 'sdcProblem'
print(x, ...)

Arguments
X an objects of class sdcProblem-class

currently not used.

problemlInstance-class 35

problemInstance-class S4 class describing a problemiInstance-object

Description

An object of class problemInstance holds the main information that is required to solve the sec-
ondary cell suppression problem.

Details

slot strID: a character vector (or NULL) of ID’s identifying table cells
slot Freq: a numeric vector (or NULL) of counts for each table cell

slot w: a numeric vector (or NULL) of weights that should be used when solving the secondary cell
suppression problem

slot numVars: alist (or NULL) with each element being a numeric vector holding values of speci-
fied numerical variables for each table cell

slot 1b: numeric vector (or NULL) holding assumed lower bounds for each table cell

slot ub: numeric vector (or NULL) holding assumed upper bounds for each table cell

slot LPL: numeric vector (or NULL) holding required lower protection levels for each table cell
slot UPL: numeric vector (or NULL) holding required upper protection levels for each table cell
slot SPL: numeric vector (or NULL) holding required sliding protection levels for each table cell
slot sdcStatus: character vector (or NULL) holding the current anonymization state for each cell.

e z: cell is forced to be published and must not be suppressed
 u: cell has been primary suppressed
* x: cell is a secondary suppression

¢ s: cell can be published

Note

objects of class problemInstance are used as input for slot problemInstance in class sdcProblem

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

36 protectLinkedTables

protectLinkedTables Protect two tables with common cells

Description

protect_linked_tables() can be used to protect tables that have common cells. It is of course re-
quired that after the anonymization process has finished, all common cells have the same anonymiza-
tion state in both tables.

Usage

protectLinkedTables(
objectA,
objectB,
commonCells,
method = "SIMPLEHEURISTIC",

)
protect_linked_tables(x, y, common_cells, method = "SIMPLEHEURISTIC", ...)
Arguments

objectA maps to argument x in protect_linked_tables()

objectB maps to argument y in protect_linked_tables()

commonCells maps to argument common_cells in protect_linked_tables()

method which protection algorithm should be used; choices are "SIMPLEHEURISTIC"
and "SIMPLEHEURISTIC_OLD"
additional arguments to control the secondary cell suppression algorithm. For
details, see protectTable().

X a sdcProblem object

y a sdcProblem object

common_cells alist object defining common cells in x and y. For each variable that has one or
more common codes in both tables, a list element needs to be specified.

* List-elements of length 3: Variable has exact same levels and structure in
both input tables

— first element: scalar character vector specifying the variable name in
argument x

— second element: scalar character vector specifying the variable name
in argument y

— third element: scalar character vector being with keyword "ALL"

* List-elements of length 4: Variable has different codes and levels in inputs
x and y

protectLinkedTables 37

— first element: scalar character vector specifying the variable name in
argument x

— second element: scalar character vector specifying the variable name
in argument y

— third element: character vector defining codes within x

— fourth element: character vector with length that equals the length of
the third list-element. This vector defines codes of the dimensional
variable in y that match the codes given in the third list-element for x.

Value

a list elements x and y containing protected sdcProblem objects

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

See Also

protectTable()

Examples

Not run:
load micro data for further processing
utils::data("microdata2”, package = "sdcTable")

tablel: defined by variables 'gender' and 'ecoOld'
md1 <- microdata2[,c(2,3,5)]

table2: defined by variables 'region', 'gender' and 'ecoNew'
md2 <- microdata2[,c(1,2,4,5)]

we need to create information on the hierarchies
variable 'region': exists only in md2
d_region <- hier_create(root = "Tot", nodes = c("R1", "R2"))

variable 'gender': exists in both datasets
d_gender <- hier_create(root = "Tot", nodes = c("m", "f"))

variable 'ecol': exists only in md1

d_ecol <- hier_create(root = "Tot"”, nodes = c("A", "B"))
d_ecol <- hier_add(d_ecol, root = "A", nodes = c("Aa", "Ab"))
d_ecol <- hier_add(d_ecol, root = "B", nodes = c("Ba", "Bb"))

variable 'ecoNew': exists only in md2

d_eco2 <- hier_create(root = "Tot"”, nodes = c("C", "D"))

d_eco2 <- hier_add(d_eco2, root = "C", nodes = c("Ca", "Cb", "Cc"))
d_eco2 <- hier_add(d_eco2, root = "D", nodes = c("Da", "Db", "Dc"))

creating objects holding information on dimensions

38

protectLinkedTables

dl1 <- list(gender = d_gender, ecoOld = d_ecol)
dl2 <- list(region = d_region, gender = d_gender, ecoNew = d_eco2)
creating input objects for further processing.
For details, see ?makeProblem.
p1 <- makeProblem(

data = md1,

dimList = dl11,

dimVarInd = 1:2,

numVarInd = 3)
p2 <- makeProblem(

data = md2,

dimList = dl2,

dimVarInd = 1:3,

numVarInd = 4)
the cell specified by gender == "Tot"” and ecoOld == "A"
is one of the common cells! -> we mark it as primary suppression
p1 <- change_cellstatus(

object = pi,

specs = data.frame(gender = "Tot", eco0ld = "A"),

rule = "u",

verbose = FALSE)
the cell specified by region == "Tot"” and gender == "f" and ecoNew == "C"

is one of the common cells! -> we mark it as primary suppression
p2 <- change_cellstatus(

object = p2,
specs = data.frame(region = "Tot", gender = "f", ecoNew = "C"),
rule = "u",

verbose = FALSE)

specifying input to define common cells
common_cells <- list()

variable "gender"

common_cells$v.gender <- list()

common_cells$v.gender[[1]] <- "gender" # variable name in "p1”
common_cells$v.gender[[2]] <- "gender" # variable name in "p2"

"gender"” has equal characteristics on both datasets -> keyword "ALL"
common_cells$v.gender[[3]] <- "ALL"

variables: "ecoOld"” and "ecoNew”

common_cells$v.eco <- list()

common_cells$v.eco[[1]] <- "ecoOld" # variable name in "p1"
common_cells$v.eco[[2]] <- "ecoNew” # variable name in "p2"

n

vector of common characteristics:
"A" and "B" in variable "eco0ld"” in
common_cells$v.eco[[3]] <- c("A", "B")

n

p1”

protectTable

39

correspond to codes "C" and "D" in variable "ecoNew" in "p2"
common_cells$v.eco[[4]] <- c("C", "D")

protect the linked data
result <- protect_linked_tables(

X = p1)
y = p2,
common_cells =
verbose = TRUE)

having a look a

common_cells,

t the results

result_tabl <- result$x
result_tab2 <- result$y

summary(result_ta
summary(result_ta

End(Not run)

b1)
b2)

protectTable

Protecting sdcProblem objects

Description

Function protectTable() is used to protect primary sensitive table cells (that usually have been
identified and set using primarySuppression()). The function protects primary sensitive table
cells according to the method that has been chosen and the parameters that have been set. Additional

parameters that are

used to control the protection algorithm are set using parameter

Usage
protectTable(object, method, ...)
Arguments
object a sdcProblem object that has created using makeProblem() and has been modi-
fied by primarySuppression()
method a character vector of length 1 specifying the algorithm that should be used to

protect the primary sensitive table cells. Allowed values are:

e "OPT": protect the complete problem at once using a cut and branch algo-
rithm. The optimal algorithm should be used for small problem-instances
only.

e "HITAS": split the overall problem in smaller problems. These problems
are protected using a top-down approach.

* "HYPERCUBE": protect the complete problem by protecting sub-tables with a
fast heuristic that is based on finding and suppressing geometric structures
(n-dimensional cubes) that are required to protect primary sensitive table
cells.

protectTable

e "SIMPLEHEURISTIC" and "SIMPLEHEURISTIC_OLD": heuristic procedures
which might be applied to large(r) problem instances;

— "SIMPLEHEURISTIC"” is based on constraints; it also solves attacker
problems to make sure each primary sensitive cell cannot be recom-
puted;

— "SIMPLEHEURISTIC_OLD"” was the implementation in sdcTable ver-
sions prior to @.32; this implementation is possibly unsafe but very
fast; it is advised to check results using attack() afterwards.

parameters used in the protection algorithm that has been selected. Parameters
that can be changed are:

* general parameters:

— verbose: logical scalar (default is FALSE) defining if verbose output
should be produced

— save: logical scalar defining if temporary results should be saved in the
current working directory (TRUE) or not (FALSE) which is the default
value.

* parameters used for ""HITAS'" and "OPT'"" algorithms:

— solver: character vector of length 1 defining the solver to be used.
Currently available choices are limited to "glpk”.

— timelLimit: numeric vector of length 1 (or NULL) defining a time limit
in minutes after which the cut and branch algorithm should stop and
return a possible non-optimal solution. Parameter safe has a default
value of NULL

— maxVars: a integerish number (or NULL) defining the maximum prob-
lem size in terms of decision variables for which an optimization should
be tried. If the number of decision variables in the current problem are
larger than parameter maxVars, only a possible non-optimal, heuristic
solution is calculated. Parameter maxVars has a default value of NULL
(no restrictions)

— fastSolution: logical scalar defining (default FALSE) if or if not the
cut and branch algorithm will be started or if the possibly non-optimal
heuristic solution is returned independent of parameter maxVars.

— fixVariables: logical scalar (default TRUE) defining whether or not it
should be tried to fix some variables to @ or 1 based on reduced costs
early in the cut and branch algorithm.

— approxPerc: integerish scalar that defines a percentage for which a
integer solution of the cut and branch algorithm is accepted as optimal
with respect to the upper bound given by the (relaxed) solution of the
master problem. Its default value is set to 10

— useC: logical scalar defining if c++ implementation of the secondary
cell suppression problem should be used, defaults to FALSE

* parameters used for "HYPERCUBE'"' procedure:

— protectionLevel: numeric vector of length 1 specifying the required
protectionlevel for the procedure. Its default value is 80

— suppMethod: character vector of length 1 defining the rule on how to
select the “optimal’ cube to protect a single sensitive cells. Possible
choices are:

protectTable 41

* minSupps: minimize the number of additional secondary suppres-
sions (this is also the default setting).

minSum: minimize the sum of counts of additional suppressed cells

% minSumLogs: minimize the log of the sum of additional suppressed
cells

— suppAdditionalQuader: logical vector of length 1 specfifying if addi-
tional cubes should be suppressed if any secondary suppressions in the
“optimal’ cube are ’singletons’. Parameter suppAdditionalQuader
has a default value of FALSE

 parameter(s) used for protect_linked_tables():

— maxIter: integerish number specifying the maximal number of intera-
tions that should be make while trying to protect common cells of two
different tables. The default value of parameter is 10

* parameters used for the "SIMPLEHEURISTIC" and ""SIMPLEHEURIS-
TIC_OLD" procedure:

— detectSingletons: logical, should a singleton-detection procedure
be run before protecting the data, defaults to FALSE.

— threshold: if not NULL (the default) an integerish number (> 0). If
specified, a procedure similar to the singleton-detection procedure is
run that makes sure that for all (simple) rows in the table instance that
contains primary sensitive cells the suppressed number of contributors
is >= the specified threshold.

Details

The implemented methods may have bugs that yield in not-fully protected tables. Especially the
usage of "OPT", "HITAS" and "HYPERCUBE" in production is not suggested as these methods may
eventually be removed completely. In case you encounter any problems, please report it or use
Tau-Argus (https://research.cbs.nl/casc/tau.htm).

Value

an safeObj object

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

Examples

load example-problem with with a single primary suppression
(same as example from ?primarySuppression)
p <- sdc_testproblem(with_supps = TRUE)

protect the table using the 'HITAS' algorithm with verbose output
resl <- protectTable(p, method = "HITAS"”, verbose = TRUE, useC = TRUE)

resl

protect using the heuristic algorithm

https://research.cbs.nl/casc/tau.htm

42

runArgusBatchFile

res2 <- protectTable(p, method = "SIMPLEHEURISTIC")
res2

protect using the old implmentation of the heuristic algorithm
used in sdcTable versions <@.32

res3 <- protectTable(p, method = "SIMPLEHEURISTIC_OLD")

res3

looking at the final table with result suppression pattern
print(getInfo(res1, type = "finalData"))

runArgusBatchFile runArgusBatchFile

Description

allows to run batch-files for tau argus given the path to an executable of argus. The provided batch
input files can either be created using function createArgusInput or can be arbitrarily created. In
the latter case, argument obj should not be specified and not output is returned, the script is just
executed in tau-argus.

Usage

runArgusBatchFile(
obj = NULL,
batchF,
exe = "C:\\Tau\\TauArgus.exe",
batchDataDir = NULL,
verbose = FALSE

)
Arguments

obj NULL or an object of class sdcProblem-class that was used to generate the
batchfile for argus. If not NULL, this object is used to create correct variable
names. Else, only the output from tau-Argus is read and returned as a data. table.
In this case it is possible to run tau-Argus on arbitrarily created batch-files.

batchF a filepath to an batch-input file created by e.g. createArgusInput.

exe (character) file-path to tau-argus executable

batchDataDir if different from NULL, this directory is used to look for input-file and writes
output files to. This helps to use relative paths in batch input files.

verbose (logical) if TRUE, some additional information is printed to the prompt

Value

a data. table containing the protected table or an error in case the batch-file was not solved cor-
rectly if the batch-file was created using sdcTable (argument obj) was specified. In case an arbitrar-
ily batch-file has been run, NULL is returned.

safeObj-class 43

Note

in case a custom batch-file is used as input (e.g obj is NULL), this functions does currently not try to
read in any tables to the system.

safeObj-class S4 class describing a safeObj-object

Description

Objects of class safeObj are the final result after protection a tabular structure. After a successful
run of protectTable an object of this class is generated and returned. Objects of class safeObj
contain a final, complete data set (slot finalData) that has a column showing the anonymization
state of each cell and the complete information on the dimensional variables that have defined
the table that has been protected (slot dimInfo). Also, the number of non-duplicated table cells
(slot nrNonDuplicatedCells) is returned along with the number of primary (slot nrPrimSupps)
and secondary (slot nrSecondSupps) suppressions. Furthermore, the number of cells that can be
published (slot nrPublishableCells) and the algorithm that has been used to protect the data (slot
suppMethod) is returned.

Details

slot finalData: a data.frame (or NULL) featuring columns for each variable defining the table
(with their original codes), the cell counts and values of any numerical variables and the
anonymization status for each cell with

* s,z: cell can be published
* u: cell is a primary sensitive cell
» x: cell was selected as a secondary suppression

slot dimInfo: an object of class dimInfo-class holding all information on variables defining the
table

slot nrNonDuplicatedCells: numeric vector of length 1 (or NULL) showing the number of non-
duplicated table cells. This value is different from O if any dimensional variable features
duplicated codes. These codes have been re-added to the final dataset.

slot nrPrimSupps: numeric vector of length 1 (or NULL) showing the number of primary sup-
pressed cells

slot nrSecondSupps: numeric vector of length 1 (or NULL) showing the number of secondary
suppressions

slot nrPublishableCells: numeric vector of length 1 (or NULL) showing the number of cells
that may be published

slot suppMethod: character vector of length 1 holding information on the protection method

Note

objects of class safeObj are returned after the function protectTable has finished.

44 sdcProb2df

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

sdcProb2df Transform a problem instance

Description

sdcProb2df () returns a data. table given an sdcProblem input object.

Usage
sdcProb2df (obj, addDups = TRUE, addNumVars = FALSE, dimCodes = "both")

Arguments
obj an sdcProblem object
addDups (logical), if TRUE, duplicated cells are included in the output
addNumVars (logical), if TRUE, numerical variables (if defined in makeProblem() will be in-
cluded in the output.
dimCodes (character) allows to specify in which coding the dimensional variables should
be returned. Possible choices are:
* "both": both original and internally used, standardized codes are included
in the output
* "original”: only original codes of dimensional variables are included in
the output
e "default”: only internally used, standardized codes are included in the
output
Value

a data. table containing information about all cells of the given problem

Examples

loading micro data
utils::data("microdatal”, package = "sdcTable")

we can observe that we have a micro data set consisting
of two spanning variables ('region' and 'gender') and one
numeric variable ('val')

specify structure of hierarchical variable 'region'
levels 'A' to 'D' sum up to a Total

dim.region <- data.frame(
levels=c('@','@Q@','@R"','@@"','@Q"),

sdcProblem-class 45

codes=c('Total', 'A','B','C','D"),
stringsAsFactors=FALSE)

specify structure of hierarchical variable 'gender'

using create_node() and add_nodes() (see ?manage_hierarchies)
dim.gender <- hier_create(root = "Total”, nodes = c(”"male”, "female"))
hier_display(dim.gender)

create a named list with each element being a data-frame
containing information on one dimensional variable and

the names referring to variables in the input data
dimList <- list(region = dim.region, gender = dim.gender)

third column containts a numeric variable
numVarInd <- 3

no variables holding counts, numeric values, weights or sampling
weights are available in the input data
creating an problem instance using numeric indices
p1 <- makeProblem(
data = microdatal,
dimList = dimList,
numVarInd = 3 # third variable in ‘data‘

)

using variable names is also possible
p2 <- makeProblem(

data = microdatal,

dimList = dimList,

numVarInd = "val”

what do we have?
print(class(pl1))

have a look at the data

df1 <- sdcProb2df(p1, addDups = TRUE,
addNumVars = TRUE, dimCodes = "original")

df2 <- sdcProb2df(p2, addDups=TRUE,
addNumVars = TRUE, dimCodes = "original”)

print(df1)

identical(df1, df2)

sdcProblem-class S4 class describing a sdcProblem-object

Description

An object of class sdcProblem contains the entire information that is required to protect the com-
plete table that is given by the dimensional variables. Such an object holds the data itself (slot

46 sdc_testproblem

dataObj), the entire information about the dimensional variables (slot dimInfo), information on all
table cells (ID’s, bounds, values, anonymization state in slot problemInstance), the indices on the
sub tables that need to be considered if one wants to protect primary sensitive cells using a heuristic
approach (slot partition and the information on which groups or rather subtables have already
been protected while performing a heuristic method (slots startI and startJ).

Details

slot dataObj: an object of class dataObj (or NULL) holding information on the underlying data

slot dimInfo: an object of class dimInfo (or NULL) containing information on all dimensional
variables

slot problemInstance: anobject of class problemInstance holding information on values, bounds,
required protection levels as well as the anonymization state for all table cells

slot partition: alistobject (or NULL) that is typically generated with calc.multiple(type="makePartitions’,...)
specifying information on the subtables and the necessary order that need to be protected when
using a heuristic approach to solve the cell suppression problem

slot startI: a numeric vector of length 1 defining the group-level of the subtables in which a
heuristic algorithm needs to start. All subtables having a group-index less than startI have
already been protected

slot startJ: anumeric vector of length 1 defining the number of the table within the group defined
by parameter startI at which a heuristic algorithm needs to start. All tables in the group
having an index j smaller than startJ have already been protected

slot indicesDealtWith: a numeric vector holding indices of table cells that have protected and
whose anonymization state must remain fixed

Note

objects of class sdcProblem are typically generated by function makeProblem and are the input of
functions primarySuppression and protectTable

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

sdc_testproblem A Problem-Instance used for examples/testing

Description

sdc_testproblem() returns a sdc-problem instance with 2 hierarchies and optionally with a single
suppressed cell that is used in various examples and tests.

Usage

sdc_testproblem(with_supps = FALSE)

set.dimInfo 47

Arguments
with_supps if TRUE, a single cell (violating minimal-frquency rule with n = 2) is marked as
primary sensitive.
Value

a problem instance

Examples

p1 <- sdc_testproblem(); p1
sdcProb2df (p1)

a single protected cell
p2 <- sdc_testproblem(with_supps = TRUE); p2
sdcProb2df (p2)

cell status differs in one cell

specs <- c(gender = "female"”, region = c("A"))
cell_info(pl, specs = specs)

cell_info(p2, specs = specs)

set.dimInfo modify dimInfo-objects depending on argument type

Description

modify dimInfo-objects depending on argument type

Usage

set.dimInfo(object, type, input)

S4 method for signature 'dimInfo,character,character'’
set.dimInfo(object, type, input)

Arguments
object an object of class dimInfo
type a character vector of length 1 defining what to calculatelreturnimodify. Allowed
types are:
* strD: set slot ’strID’ of argument object
input a list depending on argument type.
¢ type==strID: a character vector containing ID’s
Value

an object of class dimInfo

48 set.problemInstance

Note

internal function

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

set.problemInstance modify problemlnstance-objects depending on argument type

Description

modify problemInstance-objects depending on argument type

Usage

set.problemInstance(object, type, input)

S4 method for signature 'problemInstance,character,list'’
set.problemInstance(object, type, input)

Arguments

object an object of class problemInstance

type a character vector of length 1 defining what to calculatelreturnimodify. Allowed
types are:

* Ib: set assumed to be known lower bounds
* ub: set assumed to be upper lower bounds
* LPL: set lower protection levels

e UPL: set upper protection levels

» SPL: set sliding protection levels

* sdcStatus: change anonymization status

input a list with elements ’indices’ and ’values’.

 element ’indices’: numeric vector defining the indices of the cells that
should be modified

* element ’values’: numeric vector whose values are going to replace current
values for cells defined by ’indices’ depending on argument type

Value

an object of class problemInstance

Note

internal function

set.sdcProblem 49

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

set.sdcProblem modify sdcProblem-objects depending on argument type

Description

modify sdcProblem-objects depending on argument type

Usage

set.sdcProblem(object, type, input)

S4 method for signature 'sdcProblem,character,list'’
set.sdcProblem(object, type, input)

Arguments
object an object of class sdcProblem
type a character vector of length 1 defining what to calculatelreturnimodify. Allowed
types are:
* problemlInstance: setimodify slot ’problemInstance’ of argument object
* partition: setlmodify slot *partition’ of argument object
* startl: setimodify slot ’startl’ of argument object
* start]: setlmodify slot ’start]’ of argument object
* indicesDealtWith: setimodify slot *indicesDealtWith’ of argument object
input a list with elements depending on argument type.
* an object of class problemInstance if argument type matches *problemlInstance’
* a list (derived from calc.multiple(type="makePartition’, ...) if argument
type matches ’partition’
* anumeric vector of length 1 if argument type matches ’startl’ or ’start)’
* anumeric vector if argument type matches ’indicesDealtWith’
Value

an object of class sdcProblem

Note

internal function

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

50 setlnfo

setInfo Set/Update information in sdcProblem or problemInstance objects

Description

Function setInfo() is used to update values in sdcProblem or problemInstance objects

Usage

setInfo(object, type, index, input)

Arguments

object an object of class sdcProblem or problemInstance

type a scalar character specifying the kind of information that should be changed

or modified; if object inherits class problemInstance, the slots are directly
changed, otherwise the values within slot problemInstance are updated. Valid
choices are:

* 1b: lower possible bounds for the cell

* ub: max. upper bound for the given cell

* LPL: lower protection level

* SPL: sliding protection level

* UPL: upper protection level

* sdcStatus: cell-status

index numeric vector defining cell-indices for which which values in a specified slot
should be changedlmodified

input numeric or character vector depending on argument type with its length match-
ing the length of argument index

* character vector if type matches ’sdcStatus’
* a numeric vector if type matches ’1b’, *ub’, ’LPL’, SPL’ or "UPL’

Value

a sdcProblem- or problemInstance object

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

show,sdcProblem-method

Examples

load example-problem with suppressions
(same as example from ?primarySuppression)
p <- sdc_testproblem(with_supps = TRUE)

which is the overall total?
idx <- which.max(getInfo(p, "freq")); idx

we see that the cell with idx = 1 is the overall total and its
anonymization state of the total can be extracted as follows:
print(getInfo(p, type = "sdcStatus")[idx])

we want this cell to never be suppressed
p <- setInfo(p, type = "sdcStatus”, index = idx, input = "z")

we can verify this:
print(getInfo(p, type = "sdcStatus"”)[idx])

changing slot 'UPL' for all cells
inp <- data.frame(
strID = getInfo(p, "strID"),
UPL_old = getInfo(p, "UPL")
)
inp$UPL_new <- inp$UPL_old + 1
p <- setInfo(p, type = "UPL", index = T:nrow(inp), input = inp$UPL_new)

51

show, sdcProblem-method
show objects of class sdcProblem-class.

Description

just calls the corresponding print-method

Usage

S4 method for signature 'sdcProblem’
show(object)

Arguments

object an objects of class sdcProblem-class

52 summary,sdcProblem-method

simpleTriplet-class S4 class describing a simpleTriplet-object

Description

Objects of class simpleTriplet define matrices that are stored in a sparse format. Only the row-
and column indices and the corresponding values of non-zero cells are stored. Additionally, the
dimension of the matrix given by the total number of rows and columns is stored.

Details
slot i: a numeric vector specifying row-indices with each value being geq 1 and leq of the value in
nrRows

slot j: anumeric vector specifying column-indices with each value being geq 1 and leq of the value
in nrCols

slot v: a numeric vector specifying the values of the matrix in cells specified by the corresponding
row- and column indices

slot nrRows: a numeric vector of length 1 holding the total number of rows of the matrix
slot nrCols: a numeric vector of length 1 holding the total number of columns of the matrix
Note

objects of class simpleTriplet are input of slot constraints in class 1linProb-class and slot
slot con in class cutList-class

Author(s)

Bernhard Meindl <bernhard.meindl@statistik.gv.at>

summary, sdcProblem-method
summarize object of class sdcProblem-class or safeObj-class.

Description

extract and show relevant information stored in object ofs class sdcProblem-class or safeObj-class.

Usage
S4 method for signature 'sdcProblem’
summary (object, ...)
Arguments
object Objects of either class sdcProblem-class or safeObj-class.

currently not used.

writeJJFormat 53

writeJJFormat Write a problem in jj-format to a file

Description

This function allows to write a problem instance in JJ-Format to a file.

Usage

writeJJFormat(x, tabvar = "fregs”, path = "out.jj", overwrite = FALSE)

Arguments
X an input produced by createJJFormat ()
tabvar the name of the variable that will be used when producing the problem in JJ
format. It is possible to specify freqgs (the default) or the name of a numeric
variable that was available in the sdcProblem object used in makeProblem().
path a scalar character defining the name of the file that should be written. This can
be an absolute or relative URL; however the file must not exist.
overwrite logical scalar, if TRUE the file specified in path will be overwritten if it exists
Value

invisibly the path to the file that was created.

Examples

setup example problem
microdata
utils::data("microdatal”, package = "sdcTable")

create hierarchies
dims <- list(
region = sdcHierarchies::hier_create(root = "Total”, nodes = LETTERS[1:41]),
gender = sdcHierarchies::hier_create(root = "Total”, nodes = c("male”, "female")))

create a problem instance
p <- makeProblem(
data = microdatal,
dimList = dims,
numVarInd = "val")

create suitable input for ‘writeJJFormat®
inp <- createJJFormat(p); inp

write files to disk
frequency table by default
writeJJFormat(

54

X = inp,

path = file.path(tempdir(), "prob_fregs.jj"),

overwrite = TRUE
)
or using the numeric variable ‘val‘ previously specified
writeJJFormat(

X = inp,

tabvar = "val”,

path = file.path(tempdir(), "prob_val.jj"),
overwrite = TRUE

writeJJFormat

Index

x datasets makeProblem(), 11, 28, 32, 33, 39, 44, 53
microdatal, 30 microdatal, 30
microdata2, 31 microdataz, 31
argusVersion, 3 primarySuppression, 31, 46
attack, 3 primarySuppression(), 31, 39
attack(), 40 print,dimVar-method, 34

print,sdcProblem-method, 34

calc.sdcProblem, 5) problemInstance-class, 35
calc.schroblem,schroblem,character,llst—metBPgtect linked tables

) (calc.sdcProblem), 5 (protectLinkedTables), 36
cell_info, 8 protect_linked_tables(), 36, 41
celllnfo(), & protectLinkedTables, 36
change_cellstatus, 10 protectTable, 39, 43, 46
change_cellstatus(), /0 protectTable(), 8, 36, 37, 39
contributing_indices, 11
createArgusInput, 12, 42 RegSDC: : SuppressDec, 17
createJJFormat, 15 runArgusBatchFile, 42
createJJFormat(), 53
createRegSDCInput, 17 safeObj, 41
cutlList-class, 18 safeObj-class, 43, 52

sdc_testproblem, 46
sdc_testproblem(), 46
sdcProb2df, 44
sdcProb2df (), 11, 44
sdcProblem, 8, 10-13, 16, 17, 28, 29, 31, 32,
36, 39,44, 53
sdcProblem-class, 34, 45, 51, 52
set.dimInfo, 47
%@Info,dimlnfo,character,character—method
(set.dimInfo), 47
set.problemInstance, 48
set.problemInstance,problemInstance,character,list-method
(set.problemInstance), 48
set.sdcProblem, 49

dataObj-class, 19
dimInfo-class, 20
dimVar-class, 21, 34

get.dimInfo, 22

get.dimInfo,dimInfo,character-method
(get.dimInfo), 22

get.problemInstance, 23

get.problemInstance,problemInstance,charactergﬁgtﬂ
(get.problemInstance), 23

get.sdcProblem, 24

get.sdcProblem, sdcProblem,character-method
(get.sdcProblem), 24

getInfo, 26 .
getInfo(), 26 set.sdcProblem, sdcProblem, character,list-method
(set.sdcProblem), 49
linProb-class, 27 setInfo, 50
setInfo(), 50
makeProblem, 28, 46 show, sdcProblem-method, 51

55

56 INDEX

simpleTriplet-class, 52
summary, sdcProblem-method, 52

writeJJFormat, 53
writeJJFormat(), 16

	argusVersion
	attack
	calc.sdcProblem
	cell_info
	change_cellstatus
	contributing_indices
	createArgusInput
	createJJFormat
	createRegSDCInput
	cutList-class
	dataObj-class
	dimInfo-class
	dimVar-class
	get.dimInfo
	get.problemInstance
	get.sdcProblem
	getInfo
	linProb-class
	makeProblem
	microdata1
	microdata2
	primarySuppression
	print,dimVar-method
	print,sdcProblem-method
	problemInstance-class
	protectLinkedTables
	protectTable
	runArgusBatchFile
	safeObj-class
	sdcProb2df
	sdcProblem-class
	sdc_testproblem
	set.dimInfo
	set.problemInstance
	set.sdcProblem
	setInfo
	show,sdcProblem-method
	simpleTriplet-class
	summary,sdcProblem-method
	writeJJFormat
	Index

