
Package ‘secrdesign’
January 26, 2022

Type Package

Title Sampling Design for Spatially Explicit Capture-Recapture

Version 2.6.0

Depends R (>= 3.5.0), secr (>= 4.2.0)

Imports parallel, abind

Suggests secrlinear

Date 2022-01-26

Author Murray Efford

Maintainer Murray Efford <murray.efford@otago.ac.nz>

Description Tools for designing spatially explicit capture-recapture studies of animal popula-
tions. This is primarily a simulation manager for package 'secr'. Extensions in version 2.5.0 in-
clude costing and evaluation of detector spacing.

License GPL (>= 2)

URL https://www.otago.ac.nz/density/

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-01-25 23:40:02 UTC

R topics documented:
secrdesign-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
costing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getdetectpar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
make.array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
make.scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
optimalSpacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
plot.optimalSpacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
predict.fittedmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
run.scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1

https://www.otago.ac.nz/density/


2 secrdesign-package

saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
scenariosFromStatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
scenarioSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
select.stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
summary.secrdesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
validate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Index 33

secrdesign-package Spatially Explicit Capture–Recapture Study Design

Description

Tools to assist the design of spatially explicit capture–recapture studies of animal populations.

Details

Package: secr
Type: Package
Version: 2.6.0
Date: 2022-01-26
License: GNU General Public License Version 2 or later

The primary use of secrdesign is to predict by Monte Carlo simulation the precision or bias of
density estimates from different detector layouts, given pilot values for density and the detection
parameters lambda0/g0 and sigma.

The simulation functions in secrdesign are:

make.scenarios generate dataframe of parameter values etc.
run.scenarios perform simulations, with or without model fitting
fit.models fit SECR model(s) to rawdata output from run.scenarios
predict.fittedmodels infer ‘real’ parameter estimates from fitted models
select.stats collect output for a particular parameter
summary.selectedstatistics numerical summary of results
plot.selectedstatistics histogram or CI plot for each scenario

Other functions not used exclusively for simulation are:

Enrm expected numbers of individuals n, re-detections r and movements m
minnrRSE approximate RSE(D-hat) given sample size (n, r)
costing various cost components
saturation expected detector saturation (trap success)
scenarioSummary applies Enrm, minnrRSE, and other summaries to each scenario in a dataframe
optimalSpacing optimal detector spacing by rule-of-thumb and simulation RSE(D-hat)



costing 3

scenariosFromStatistics match specified n, r

A vignette documenting the simulation functions is available at secrdesign-vignette.pdf. An Ap-
pendix in that vignette has code for various examples that should help get you started.

Documentation for expected counts is in secrdesign-Enrm.pdf. Another vignette secrdesign-tools.pdf
demonstrates other tools. These include the optimalSpacing function, for finding the detector
spacing that yields the greatest precision for a given detector geometry, number of sampling occa-
sions, density and detection parameters.

Help pages are also available as ../doc/secrdesign-manual.pdf.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

make.grid, sim.popn, sim.capthist, secr.fit

costing Cost of SECR design

Description

The cost of implementing a spatially explicit capture–recapture design depends on the detector
layout, the number of detections and the various unit costs.

Usage

costing(traps, nr, noccasions, unitcost = list(), nrepeats = 1, routelength = NULL,
setupoccasion = TRUE)

Arguments

traps traps object for detector array

nr numeric vector with E(n) and E(r) as first two elements

noccasions integer number of sampling occasions

unitcost list with unit costs (see Details)

nrepeats integer number of repeated arrays

routelength numeric route length (km)

setupoccasion logical; if TRUE then the cost of a setup visit is included (noccasions+1)

https://www.otago.ac.nz/density/pdfs/secrdesign-vignette.pdf
https://www.otago.ac.nz/density/pdfs/secrdesign-Enrm.pdf
https://www.otago.ac.nz/density/pdfs/secrdesign-tools.pdf
../doc/secrdesign-manual.pdf


4 costing

Details

nr is a vector with the expected sample sizes (numbers of individuals and recaptures), usually the
output from Enrm.

unitcost should be a list with at least one of the components ‘perkm’, ‘perarray’, ‘perdetector’,
‘pervisit’ and ‘perdetection’.

The number of occasions (noccasions) is incremented by 1 if setupoccasion is TRUE.

Component Unit cost Costing
Arrays perarray perarray x nrepeats
Detectors perdetector perdetector x nrow(traps) x nrepeats
Travel perkm perkm x routelength x noccasions x nrepeats
Visits pervisit sum(pervisit x trapcost) x noccasions x nrepeats
Detections perdetection perdetection x total detections (E(n) + E(r))

‘Travel’ and ‘Visits’ are alternative ways to cost field time. The variable ‘routelength’ represents
the length of a path followed to visit all detectors; if not specified it is approximated by the sum
of the nearest-trap distances. The variable ‘trapcost’ is a vector of length equal to the number of
detectors. By default it is a vector of 1’s, but detector- specific values may be provided as trap
covariate ‘costpervisit’. In the latter case the value of ‘pervisit’ should probably be 1.0.

‘Arrays’ and ‘Detectors‘ represent one-off costs.

‘Detections’ includes costs such as handling time and laboratory DNA analysis.

See ../doc/secrdesign-tools.pdf for more.

Value

A named numeric vector

See Also

Enrm, scenarioSummary

Examples

tr <- make.grid(8, 8, spacing = 25)
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')
nrm <- Enrm(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
costing (tr, nrm, 5, unitcost = list(pervisit = 5, perdetection = 15))

../doc/secrdesign-tools.pdf


count 5

count Extract Summaries

Description

Reshape results from run.scenarios(...,extractfn = summary) so that they may be passed to
the usual summary functions of secrdesign.

Usage

count(object, ...)

## S3 method for class 'summary'
predict(object, ...)
## S3 method for class 'summary'
coef(object, ...)
## S3 method for class 'summary'
count(object, ...)

Arguments

object summary simulation output from run.scenarios

... other arguments (not used)

Details

The aim is to extract numerical results from simulations performed using run.scenarios(...,extractfn
= summary). The results may then be passed to the summary method for ‘secrdesign’ objects, pos-
sibly via select.stats (see Examples).

Value

An object of class c("estimatetables","secrdesign","list") in which the output component
for each scenario is a list of dataframes, one per replicate. The structure of each dataframe is
indicated in the following table (parameters may vary with model); ‘parameters’ and ‘statistics’
correspond to arguments of select.stats.

Function Row(s) Columns
(parameters) (statistics)

count Number Animals, Detections, Moves
coef D, g0, sigma estimate, SE.estimate, lcl, ucl
predict D, g0, sigma estimate, SE.estimate, lcl, ucl



6 getdetectpar

See Also

predict.secr, coef.secr,

Examples

## generate some simulations
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid(6, 6, spacing = 25)
sims1 <- run.scenarios(nrepl = 2, trapset = traps1, scenarios =

scen1, seed = 345, fit = TRUE, extractfn = summary)

## view the results
count(sims1)$output
predict(sims1)$output

summary(sims1) ## header only

summary(count(sims1)) # equivalent to following
summary(select.stats(count(sims1), parameter = 'Number'))

summary(predict(sims1)) # default select.stats parameter = 'D'
summary(select.stats(predict(sims1), parameter = 'sigma') )

getdetectpar Ballpark Detection Parameters

Description

Detection parameters for an animal population may be guessed from some basic inputs (population
density, a coefficent of home-range overlap, and the expected number of detections on a given
detector array). These values are useful as a starting point for study design. They are not ’estimates’.

Usage

getdetectpar(D, C, sigma = NULL, k = 0.5, ...)

Arguments

D population density animals / hectare; may be scalar or vector of length nrow(mask)

C integer expected total number of detections

sigma numeric spatial scale parameter of chosen detection function, in metres (op-
tional)

k coefficient of overlap - typically in range 0.3 to 1.1

... named arguments passed to Enrm and Lambda (traps, mask, noccasions, detectfn)



Lambda 7

Details

If sigma is missing and detectfn = ‘HHN’ then sigma is first inferred from the relationship σ =
100k

√
D (D in animals per hectare and σ in metres). Other detectfn give an error.

A numerical search is then conducted for the value of lambda0 that results in C expected detections
for the given density and design. The calculation takes account of the detector array, the habitat
mask and the number of sampling occasions (all specified in the . . . argument - see example).

Only hazard detection functions are supported (‘HHN’, ‘HHR’, ‘HEX’, ‘HAN’, ‘HCG’). The de-
fault is ‘HHN’.

Value

A list with one component for each detection parameter.

See Also

Enrm, Lambda

Examples

tr <- traps(captdata)
detector(tr) <- "multi"
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')
getdetectpar(D = 5.48, C = 235, traps = tr, mask = msk, noccasions = 5)

Lambda Expected Detections

Description

Compute the expected number of detections as a function of location (Lambda), and the expected
total numbers of individuals n, recaptures r and movements m for a population sampled with an
array of detectors (Enrm).

Usage

Lambda(traps, mask, detectpar, noccasions, detectfn = c("HHN", "HHR", "HEX",
"HAN", "HCG", 'HN', 'HR', 'EX'))

Enrm(D, ...)

minnrRSE(D, ..., CF = 1.0, distribution = c("poisson","binomial"))



8 Lambda

Arguments

traps traps object

mask mask object

detectpar a named list giving a value for each parameter of detection function

noccasions integer number of sampling occasions

detectfn integer code or character string for shape of detection function – see detectfn

D population density animals / hectare; may be scalar or vector of length nrow(mask)

... arguments passed to Lambda

CF numeric correction factor

distribution character distribution of n

Details

The detector attribute of traps may be ‘multi’, ‘proximity’ or ‘count’. It is assumed that detectpar
and detector type do not differ among occasions.

The calculation is based on an additive hazard model. If detectfn is not a hazard function (‘HHN’,
‘HEX’, ‘HHR’, ‘HAN’ and ‘HCG’) then an attempt is made to approximate one of the hazard
functions (HN -> HHN, HR -> HHR, EX -> HEX). The default is ‘HHN’.

For hazard function λ(d) and S occasions, we define Λ(x) =
∑

s

∑
k λ(dk(x)).

Formulae for expected counts are given in secrdesign-Enrm.pdf.

minnrRSE has mostly the same inputs as Enrm but returns sqrt(CF/min(n,r)). The correction fac-
tor CF may be used to adjust for systematic bias (e.g., for a line of detectors CF = 1.4 may be
appropriate). The default distribution = 'poisson' is for Poisson-distributed N and n. To
adjust the prediction for fixed N (binomial n) use distribution = 'binomial' (see ../doc/
secrdesign-tools.pdf Appendix 2).

Value

Lambda – mask object with covariates ‘Lambda’ (Λ(x)), ‘sumpk’ and ‘sumq2’ (intermediate values
for computation of expected counts - see ../doc/expectedcounts.pdf)

Enrm – numeric vector of length 3, the values of E(n), E(r) and E(m).

minnrRSE – rule-of-thumb RSE(D-hat)

See Also

getdetectpar, optimalSpacing, scenarioSummary

Examples

tr <- traps(captdata)
detector(tr) <- "multi"
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')

L <- Lambda(tr, msk, list(lambda0 = 0.2, sigma = 20), 5)

https://www.otago.ac.nz/density/pdfs/secrdesign-Enrm.pdf
../doc/secrdesign-tools.pdf
../doc/secrdesign-tools.pdf
../doc/expectedcounts.pdf


make.array 9

nrm <- Enrm(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
nrm

plot(L, cov = "Lambda", dots = FALSE)
plot(tr, add = TRUE)
mtext(side = 3, paste(paste(names(nrm), round(nrm,1)), collapse = ", "))

make.array Re-cast Simulated Statistical Output as Array

Description

This function is used internally by summary.secrdesign, and may occasionally be of general use.

Usage

make.array(object)

Arguments

object secrdesign object containing numerical values for a particular parameter (i.e.
output from select.stats inheriting from ‘selectedstatistics’)

Details

make.array converts a particular simulated numerical output into an array with one dimension for
each varying input.

Value

A numeric array with dimensions corresponding to the varying inputs.

See Also

run.scenarios

Examples

## collect raw counts
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 50, trapset = traps1, scenarios = scen1,

fit = FALSE)
make.array(tmp1)



10 make.scenarios

make.scenarios Construct Scenario Data Frame

Description

This function prepares a dataframe in which each row specifies a simulation scenario. The dataframe
is used as input to run.scenarios.

Usage

make.scenarios(trapsindex = 1, noccasions = 3, nrepeats = 1, D, g0, sigma, lambda0,
detectfn = 0, recapfactor = 1, popindex = 1, detindex = 1, fitindex = 1, groups,
crosstraps = TRUE)

Arguments

trapsindex integer vector determining the traps object to use

noccasions integer vector for the number of sampling occasions

nrepeats integer vector of multipliers for D (see Details)

D numeric vector of values for the density parameter (animals / hectare)

g0 numeric vector of values for the g0 parameter

sigma numeric vector of values for the sigma parameter (m)

lambda0 numeric vector of values for the lambda0 parameter

detectfn vector of valid detection function codes (numeric or character)

recapfactor numeric vector of values for recapfactor (sim.capthist)

popindex integer vector determining which population model is used

detindex integer vector determining which detection options are used

fitindex integer vector determining which model is fitted

groups character vector of group labels (optional)

crosstraps logical; if TRUE the output includes all combinations of trapsindex, noccasions
and nrepeats

Details

The index in trapsindex is used in run.scenarios to select particular detector arrays from the
list of arrays provided as an argument to that function.

The function generates all combinations of the given parameter values using expand.grid. By
default, it also generates all combinations of the parameters with trapsindex and the number of
sampling occasions. If crosstraps is FALSE then trapsindex, noccasions, and nrepeats are
merely used to fill in these columns in the output dataframe.

The argument lambda0 replaces g0 for the hazard detection functions 14–18 (detectfn).



make.scenarios 11

Designs may use multiple detector arrays with the same internal geometry (e.g., number and spacing
of traps). The number of such arrays is varied with the nrepeats argument. For example, you may
compare designs with many small arrays or a few large ones. In practice, run.scenarios simulates
a single layout with density D * nrepeats. This shortcut is not appropriate when animals compete
for traps (detector = ‘single’).

fitindex allows a choice of different models when the argument fit.args of run.scenarios is
a compound list.

If groups is provided each scenario is replicated to the length of groups and a column ‘group’ is
added.

Value

Dataframe with one row per scenario (or sub-scenario) and the columns

scenario a number identifying the scenario

group (optional)

trapsindex

noccasions

nrepeats

D

g0 or lambda0

sigma

detectfn see detectfn; always numeric

recapfactor

popindex

detindex

fitindex

An attribute ‘inputs’ is saved for possible use in make.array.

See Also

run.scenarios, scenarioSummary, sim.capthist

Examples

make.scenarios(trapsindex = 1, nrepeats = 1, D = c(5,10), sigma = 25,
g0 = 0.2)



12 optimalSpacing

optimalSpacing Optimal Detector Spacing

Description

Estimate the detector spacing that yields the greatest precision for a given detector geometry, num-
ber of sampling occasions, density and detection parameters.

Usage

optimalSpacing (D, traps, detectpar, noccasions, nrepeats = 1,
detectfn = c('HHN', 'HHR', 'HEX','HAN','HCG', 'HN', 'HR', 'EX'),
fittedmodel = NULL, xsigma = 4, R = seq(0.2, 4, 0.2), CF = 1.0,
distribution = c("poisson", "binomial"),
fit.function = c("none", "secr.fit"),
simulationR = seq(0.4, 4, 0.4), nrepl = 10,
plt = FALSE, ...)

Arguments

D population density animals / hectare (constant)

traps traps object

detectpar named list giving a value for each parameter of detection function (sigma not
needed)

noccasions integer number of sampling occasions

nrepeats integer number of replicate arrays (not yet used)

detectfn integer code or character string for shape of detection function – see detectfn

fittedmodel secr fitted model (instead of preceding arguments)

xsigma numeric buffer width as multiple of sigma

R numeric vector of relative spacings at which to plot rule-of-thumb RSE(D-hat)

CF numeric correction factor for rule-of-thumb RSE

distribution character distribution of number of individuals detected

fit.function character function to use for model fitting

simulationR numeric vector of relative spacings at which to simulate

nrepl integer number of replicate simulations

plt logical; if TRUE then results are plotted

... other arguments passed to various functions (see Details)



optimalSpacing 13

Details

A numerical search over possible spacings uses the rule-of-thumb RSE(D-hat) given by minnrRSE
as the objective function.

traps provides the geometry of the detector layout and the initial spacing s. Function optimize is
used to search for a solution (minimum RSE) in the range of R x s.

The computation emulates variation in detector spacing by inverse variation in sigma (sigma’ =
sigma / R) with compensating variation in density. Mask buffer width and spacing are also scaled
by R.

If fit.function is not "none" then simulations are also performed for the relative spacings in
simulationR. Density, sigma and mask attributes are scaled as for the rule-of-thumb calculations.
Using ‘method = "none"‘ gives fast prediction of RSE (from the Hessian evaluated at the known
parameter values), but does not estimate bias.

The . . . argument may be used to set the values of these arguments:

Function Arguments
make.mask ‘nx’, ‘type’, ‘poly’,‘poly.habitat’
run.scenarios ‘seed’, ‘ncores’, ‘method’
plot.optimalSpacing ‘add’, . . .

The argument CF may be set to NA to suppress rule-of-thumb RSE, including optimisation. range(R)
specifies the search interval for optimisation.

A plot method is provided, with options for plotting different components.

Value

List of two components, one for the rule-of-thumb optimisation (rotRSE) and the other for simula-
tion results, if requested (simRSE).

The optimisation results are

values dataframe with E(n), E(r) and the rule-of-thumb RSE for each requested R
optimum.spacing

the absolute spacing that yields maximum precision (minimum rule-of-thumb
RSE(D-hat))

optimum.R spacing relative to sigma

minimum.RSE final value of the objective function (minimum rule-of-thumb RSE(D-hat))

The simulation results in the dataframe simRSE are the mean and SE of the simulated RSE(D-hat)
for each level of simulationR, with added columns for the relative bias (RB) and relative root-
mean-square-error (rRMSE) of D-hat.

Results are returned invisibly if plt = TRUE.

Warnings

For single-catch traps, use of a maximum likelihood estimate of lambda0 from a fitted multi-catch
model results in negative bias.



14 plot.optimalSpacing

Only hazard-based detection functions are supported. The meaning of the ‘sigma’ parameter de-
pends on the function, and so will the optimal spacing in sigma units.

Note

fit.function = ’openCR.fit’ was deprecated from 2.5.8 and has been removed as an option

See Also

minnrRSE, plot.optimalSpacing

Examples

grid <- make.grid(7, 7) # default multi-catch detector
optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.2, sigma = 20),

noccasions = 5, plt = TRUE)

## Not run:

optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.4, sigma = 20),
detectfn = 'HEX', R = seq(1,6,0.4), noccasions = 10, plt = TRUE, col = "blue")

## with simulations
grid <- make.grid(8, 8, spacing = 20, detector = 'proximity')
optimalSpacing(D = 5, traps = grid, detectfn = "HHN", detectpar =

list(lambda0 = 0.2, sigma = 20), noccasions = 5, nrepl = 20, nx = 32,
ncores = 4, plt = TRUE, col = "blue")

## manual check
grid <- make.grid(8, 8, spacing = 60, detector = 'proximity')
scen <- make.scenarios(D = 5, detectfn = 14, lambda0 = 0.2, sigma = 20,

noccasions = 5)
sim1 <- run.scenarios(nrepl = 20, scen, trapset = list(grid), fit = TRUE,

fit.args = list(detectfn = 14), ncores = 4, byscenario = FALSE)
summary(sim1)

## End(Not run)

plot.optimalSpacing Plot and print methods for optimalSpacing object

Description

Plotsor print results from optimalSpacing.



predict.fittedmodels 15

Usage

## S3 method for class 'optimalSpacing'
plot(x, add = FALSE, plottype = c("RSE", "nrm"), ...)
## S3 method for class 'optimalSpacing'
print(x, ...)

Arguments

x object from optimalSpacing

add logical; if TRUE will add to existing plot

plottype character code

... other arguments for plot, lines or points

Details

If type = "RSE" then RSE(D-hat) is plotted against R (relative detector spacing), otherwise the
expected numbers of individuals, recaptures and movements are plotted against R.

The . . . argument may be used to pass other plotting arguments to override defaults:

Function Arguments Note
plot ‘xlab’, ‘ylab’, ‘xlim’, ‘ylim’, ‘las’, ‘xaxs’, ‘yaxs’ add = FALSE
points ‘col’, ‘cex’, ‘pch’ optimum and simulated RSE
lines ‘col’, ‘lwd’, ‘lty’ rule-of-thumb RSE

The print method removes attributes before printing.

Value

None

See Also

optimalSpacing

predict.fittedmodels Extract Estimates From Fitted Models

Description

If simulations have been saved from run.scenarios as fitted secr models it is necessary to use one
of these functions to extract estimates for later summarization.



16 predict.fittedmodels

Usage

## S3 method for class 'fittedmodels'
predict(object, ...)

## S3 method for class 'fittedmodels'
coef(object, ...)

## S3 method for class 'fittedmodels'
derived(object, ...)

## S3 method for class 'fittedmodels'
region.N(object, ...)

Arguments

object fitted model simulation output from run.scenarios

... other arguments passed to predict, coef, derived or region.N

Details

These functions are used when output from run.scenarios has been saved as fitted models.
derived and region.N require a full fit (including the mask and design0 objects) whereas a trimmed
model is sufficient for predict and coef.

derived is used to compute the Horvitz-Thompson-like estimate of density when secr.fit has
been used with CL = TRUE; it is roughly equivalent to predict.

region.N predicts the realised number (R.N) or expected number (E.N) in a masked area. When
detector layouts and/or sigma vary, the masked area will also vary (arbitrarily, depending on the
buffer argument ‘xsigma’) unless a mask is provided by the user; this may be done either in
run.scenarios or in region.N.

Value

An object with class (‘estimatetables’, ‘secrdesign’, ‘list’) with appropriate outputtype (‘predicted’,
‘coef’, ‘derived’, ‘regionN’; see also run.scenarios).

Note

From secrdesign 2.5.3 the methods described here replace the functions derived.SL and regionN.SL.
This is for compatibility with secr.

See Also

run.scenarios coef.secr predict.secr derived.secr region.N.secr



run.scenarios 17

Examples

## Not run:
scen1 <- make.scenarios(D = c(3,6), sigma = 25, g0 = 0.2)
traps1 <- make.grid() ## default 6 x 6 grid of multi-catch traps
tmp1 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = trim)
tmp2 <- predict(tmp1)
tmp3 <- select.stats(tmp2, 'D', c('estimate','RB','RSE'))
summary(tmp3)

## for derived and region.N need more than just 'trimmed' secr object
## use argument 'keep' to save mask and design0 usually discarded by trim
tmp4 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = trim, keep = c('mask','design0'))

summary(derived(tmp4))

## for region.N we must specify the parameter for which we want statistics
## (default 'D' not relevant)
tmp5 <- select.stats(region.N(tmp4), parameter = 'E.N')
summary(tmp5)

## End(Not run)

run.scenarios Simulate Sampling Designs

Description

This function performs simulations to predict the precision of abundance estimates from simple
1-session SECR designs. Scenarios are specified via an input dataframe that will usually be con-
structed with make.scenarios. Each scenario comprises an index to a detector layout, the number
of sampling occasions, and specified density (D) and detection parameters (usually g0 and σ).

Detector layouts are provided in a separate list trapset. This may comprise an actual field design
input with read.traps or ‘traps’ objects constructed with make.grid etc., as in the Examples.
Even a single layout must be presented as a component of a list (e.g., list(make.grid())).

If byscenario = TRUE then by default each scenario will be run in a separate worker process us-
ing parLapply from parallel (see also Parallel). The number of scenarios should not exceed the
available number of cores (set by the ’ncores’ argument or a prior call to ‘setNumThreads‘).

If byscenario = FALSE then from **secrdesign** 2.6.0 onwards the usual multithreading of **secr**
4.5 is applied. The number of cores should usually be set with ‘setNumThreads‘.

Alternative approaches are offered for predicting precision. Both start by generating a pseudoran-
dom dataset under the design using the parameter values for a particular scenario. The first estimates
the parameter values and their standard errors from each dataset by maximizing the full likelihood,



18 run.scenarios

as usual in secr.fit. The second takes the short cut of computing variances and SE from the Hes-
sian estimated numerically at the known expected values of the parameters, without maximizing the
likelihood. Set method = "none" for this shortcut.

Usage

run.scenarios(nrepl, scenarios, trapset, maskset, xsigma = 4, nx = 32,
pop.args, det.args, fit = FALSE, fit.function = "secr.fit",
fit.args, chatnsim, extractfn = NULL, multisession = FALSE,
ncores = NULL, byscenario = FALSE, seed = 123, ...)

fit.models(rawdata, fit = FALSE, fit.function = "secr.fit",
fit.args, chatnsim, extractfn = NULL, ncores = NULL, byscenario = FALSE,
scen, repl, ...)

Arguments

nrepl integer number of replicate simulations

scenarios dataframe of simulation scenarios

trapset secr traps object or a list of traps objects

maskset secr mask object or a list of mask objects (optional)

xsigma numeric buffer width as multiple of sigma (alternative to maskset)

nx integer number of cells in mask in x direction (alternative to maskset)

pop.args list of named arguments to sim.popn (optional)

det.args list of named arguments to sim.capthist (optional)

fit logical; if TRUE a model is fitted with secr.fit, otherwise data are generated
but no model is fitted

fit.function character name of function to use for model fitting

fit.args list of named arguments to secr.fit (optional)

chatnsim integer number of simulations for overdispersion of mark-resight models

extractfn function to extract a vector of statistics from secr model

multisession logical; if TRUE groups are treated as additional sessions

ncores integer number of cores for parallel processing or NULL

byscenario logical; if TRUE then each scenario is sent to a different core

seed integer pseudorandom number seed

... other arguments passed to extractfn

rawdata ‘rawdata’ object from previous call to run.scenarios

scen integer vector of scenario subscripts

repl integer vector of subscripts in range 1:nrepl



run.scenarios 19

Details

Designs are constructed from the trap layouts in trapset, the numbers of grids in ngrid, and the
numbers of sampling occasions (secondary sessions) in noccasions. These are not crossed: the
number of designs is the maximum length of any of these arguments. Any of these arguments
whose length is less than the maximum will be replicated to match.

pop.args is used to customize the simulated population distribution. It will usually comprise a
single list, but may be a list of lists (one per popindex value in scenarios).

det.args may be used to customize some aspects of the detection modelling in sim.capthist,
but not traps,popn,detectpar,detectfn, and noccasions, which are controlled directly by the
scenarios. It will usually comprise a single list, but may be a list of lists (one per detindex value in
scenarios).

fit.args is used to customize the fitted model; it will usually comprise a single list. If you are
interested in precision alone, use fit.args=list(method = 'none') to obtain variance estimates
from the hessian evaluated at the parameter estimates. This is much faster than a complete model
fit, and usually accurate enough.

If no extractfn is supplied then a default is used - see Examples. Replacement functions should
follow this pattern i.e. test for whether the single argument is an secr object, and if not supply a
named vector of NA values of the correct length.

Using extractfn = summary has the advantage of allowing both model fits and raw statistics to be
extracted from one set of simulations. However, this approach requires an additional step to retrieve
the desired numeric results from each replicate (see count.summary and predict.summary).

From 2.2.0, two or more rows in scenarios may share the same scenario number. This is used to
generate multiple population subclasses (e.g. sexes) differing in density and/or detection parame-
ters. If multisession = TRUE the subclasses become separate sessions in a multi-session capthist
object (this may require a custom extractfn). multisession is ignored with a warning if each
scenario row has a unique number.

When ‘byscenario = TRUE‘ the L’Ecuyer pseudorandom generator is used with a separate random
number stream for each core (see clusterSetRNGStream).

A summary method is provided (see summary.secrdesign). It is usually necessary to process the
simulation results further with predict.fittedmodels and/or select.stats before summariza-
tion.

In fit.models the arguments scen and repl may be used to select a subset of datasets for model
fitting.

chatnsim controls an additional quasi-likelihood model step to adjust for overdispersion of sighting
counts. No adjustment happens when chatnsim = 0; otherwise abs(chatnsim) gives the number
of simulations to perform to estimate overdispersion. If chatnsim < 0 then the quasilikelihood is
used only to re-estimate the variance at the previous MLE (method = "none").

Value

An object of class (x, ‘secrdesign’, ‘list’), where x is one of ‘fittedmodels’, ‘estimatetables’, ‘se-
lectedstatistics’ or ‘rawdata’, with components

call function call

version character string including the software version number



20 run.scenarios

starttime character string for date and time of run

proctime processor time for simulations, in seconds

scenarios dataframe as input

trapset list of trap layouts as input

maskset list of habitat masks (input or generated)

xsigma from input

nx from input

pop.args from input

det.args from input

fit from input

fit.args from input

extractfn function used to extract statistics from each simulation

seed from input

nrepl from input

output list with one component per scenario

outputtype character code - see vignette

If fit = FALSE and extractfn = identity the result is of class (‘rawdata’, ‘secrdesign’, ‘list’).
This may be used as input to fit.models, which interprets each model specification in fit.args
as a new ‘sub-scenario’ of each input scenario (i.e. all models are fitted to every dataset). The
output possibilities are the same as for run.scenarios.

If subclasses have been defined (i.e. scenarios has multiple rows with the same scenario ID), each
simulated capthist object has covariates with a character-valued column named "group" ("1", "2"
etc.) (there is also a column "sex" generated automatically by sim.popn).

Note

100 ha = 1 km^2.

For ncores > 1 it pays to keep an eye on the processes from the Performance page of Windows Task
Manager (<ctrl><alt><del>), or ‘top’ in linux OS. If you interrupt run.scenarios (<Esc> from
Windows) you may occasionally find some processes do not terminate and have to be manually
terminated from the Task Manager - they appear as Rscript.exe on the Processes page.

fit.function = ’openCR.fit’ was deprecated from 2.5.8 and has been removed.

Author(s)

Murray Efford

See Also

predict.fittedmodels, scenarioSummary, select.stats, summary.secrdesign, summary.selectedstatistics,
count.summary, predict.summary, sim.popn, sim.capthist, secr.fit



run.scenarios 21

Examples

## Simple example: generate and summarise trapping data
## at two densities and for two levels of sampling frequency
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2, noccasions =

c(5,10))
traps1 <- make.grid() ## default 6 x 6 trap grid
tmp1 <- run.scenarios(nrepl = 20, trapset = traps1, scenarios = scen1,

fit = FALSE)
summary(tmp1)

## Not run:

setNumThreads(7)

###########################
## 2-phase example
## first make and save rawdata
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid() ## default 6 x 6 trap grid
tmp1 <- run.scenarios(nrepl = 20, trapset = traps1, scenarios = scen1,

fit = FALSE, extractfn = identity)

## review rawdata
summary(tmp1)

## then fit and summarise models
tmp2 <- fit.models(tmp1, fit.args = list(list(model = g0~1),

list(model = g0~T)), fit = TRUE)
summary(tmp2)
###########################

## Construct a list of detector arrays
## Each is a set of 5 parallel lines with variable between-line spacing;
## the argument that we want to vary (spacey) follows nx, ny and spacex
## in the argument list of make.grid().

spacey <- seq(2000,5000,500)
names(spacey) <- paste('line', spacey, sep = '.')
trapset <- lapply(spacey, make.grid, nx = 101, ny = 5, spacex = 1000,

detector = 'proximity')

## Make corresponding set of masks with constant spacing (1 km)
maskset <- lapply(trapset, make.mask, buffer = 8000, spacing = 1000,

type = 'trapbuffer')

## Generate scenarios
scen <- make.scenarios (trapsindex = 1:length(spacey), nrepeats = 8,

noccasions = 2, D = 0.0002, g0 = c(0.05, 0.1), sigma = 1600, cross = TRUE)

## RSE without fitting model
sim <- run.scenarios (50, scenarios = scen, trapset = trapset, maskset = maskset,



22 saturation

fit = TRUE, fit.args = list(method = 'none'), seed = 123)

## Extract statistics for predicted density
sim <- select.stats(sim, parameter = 'D')

## Plot to compare line spacing
summ <- summary (sim, type='array', fields = c('mean','lcl','ucl'))$OUTPUT
plot(0,0,type='n', xlim=c(1.500,5.500), ylim = c(0,0.36), yaxs = 'i',

xaxs = 'i', xlab = 'Line spacing km', ylab = 'RSE (D)')
xv <- seq(2,5,0.5)
points(xv, summ$mean[,1,'RSE'], type='b', pch=1)
points(xv, summ$mean[,2,'RSE'], type='b', pch=16)
segments(xv, summ$lcl[,1,'RSE'], xv, summ$ucl[,1,'RSE'])
segments(xv, summ$lcl[,2,'RSE'], xv, summ$ucl[,2,'RSE'])
legend(4,0.345, pch=c(1,16), title = 'Baseline detection',

legend = c('g0 = 0.05', 'g0 = 0.1'))

## End(Not run)

saturation Detector saturation

Description

Computes the expected proportion of successful detectors (i.e., ‘trap success’). The calculation
does not allow for local variation in realised density (number of animals centred near each detector)
and the predictions are therefore slightly higher than simulations with Poisson local density. The
discrepancy is typically less than 1%.

Usage

saturation(traps, mask, detectpar, detectfn =
c("HHN", "HHR", "HEX", "HAN", "HCG", 'HN', 'HR', 'EX'),
D, plt = FALSE, add = FALSE, ...)

Arguments

traps secr traps object
mask secr mask object
detectpar a named list giving a value for each parameter of detection function
detectfn integer code or character string for shape of detection function – see detectfn
D population density animals / hectare; may be scalar or vector of length nrow(mask)

plt logical; if TRUE then a colour plot is produced
add logical; if TRUE any plot is added to the existing plot
... other arguments passed to plot.mask when plt = TRUE



scenariosFromStatistics 23

Details

The calculation is based on an additive hazard model. If detectfn is not a hazard function (‘HHN’,
‘HEX’, ‘HHR’, ‘HAN’ and ‘HCG’) then an attempt is made to approximate one of the hazard
functions (HN -> HHN, HR -> HHR, EX -> HEX). The default is ‘HHN’.

Computation is not possible for single-catch traps.

An empirical estimate of saturation is the total number of detectors visited divided by the total
number of detectors used. These are outputs from the summary method for capthist objects. See
Examples.

Value

A list with components

bydetector expected saturation for each detector

mean average over detectors

The list is returned invisibly if plt = TRUE.

See Also

Enrm

Examples

tr <- traps(captdata)
detector(tr) <- 'multi'
mask <- make.mask(tr, buffer = 100)
saturation(tr, mask, detectpar = list(lambda0 = 0.27, sigma = 29),

detectfn = 'HHN', D = 5.5, plt = TRUE)
plotMaskEdge(as.mask(tr), add = TRUE) ## boundary line

# empirical - useful for extractfn argument of secrdesign::run.scenarios
satfn <- function(CH) {

sumCH <- summary(CH)$counts
sumCH['detectors visited', 'Total'] / sumCH['detectors used', 'Total']

}
satfn(captdata)

scenariosFromStatistics

Make Scenarios to Match Capture Statistics



24 scenariosFromStatistics

Description

The make.scenarios function requires prior knowledge of population density and the intercept
of the detection function (g0). This function provides an alternative mechanism for generating
scenarios from a value of sigma and target values for the numbers of individuals n and recaptures
r. Only a halfnormal detection function is supported (probability, not hazard), and many options in
make.scenarios have yet to be implemented. Only a single detector layout and single mask may
be specified.

Usage

scenariosFromStatistics(sigma, noccasions, traps, mask, nval, rval,
g0.int = c(0.001, 0.999))

Arguments

sigma numeric vector of one or more values for sigma

noccasions integer vector of number of sampling occasions

traps traps object

mask mask object

nval integer vector of values of n

rval integer vector of values of r

g0.int numeric vector defining the interval to be searched for g0

Details

The algorithm is based on R code in Appendix B of Efford, Dawson and Borchers (2009).

Value

A scenario dataframe with one row for each combination of sigma, noccasions, nval and rval.

References

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

make.scenarios



scenarioSummary 25

Examples

grid36 <- make.grid(nx = 6, ny = 6, spacing = 200)
mask <- make.mask(grid36, buffer = 2000)
scen <- scenariosFromStatistics (sigma = c(200,400), noccasions = 44,

traps = grid36, mask = mask, nval = 14, rval = 34)
sim <- run.scenarios(scen, nrepl = 5, traps = grid36, mask = mask)
summary(sim)

scenarioSummary Summary of Scenarios

Description

Compute various deterministic summaries for scenarios generated by make.scenarios

Usage

scenarioSummary(scenarios, trapset, maskset, xsigma = 4, nx = 64, CF = 1.0,
costing = FALSE, ..., ncores = NULL)

Arguments

scenarios dataframe of simulation scenarios

trapset secr traps object or a list of traps objects

maskset secr mask object or a list of mask objects (optional)

xsigma numeric buffer width as multiple of sigma (alternative to maskset)

nx integer number of cells in mask in x direction (alternative to maskset)

CF numeric correction factor for rule-of-thumb RSE (see minnrRSE)

costing logical; if TRUE then costings will be appended

... arguments passed to costing

ncores integer number of cores for parallel processing

Details

Not all scenarios from make.scenarios() are suitable. Grouped (multi-line) scenarios are ex-
cluded. Hazard detection functions are preferred (‘HHN’, ‘HHR’, ‘HEX’, ‘HAN’, ‘HCG’). ‘HN’,
‘HR’ and ‘EX’ are converted approximately to ‘HHN’, ‘HHR’ and ‘HEX’ respectively, with a
warning; other functions are rejected.

CF may be a vector of values that is recycled across the components of trapset. The correction
factor is a multiplier applied after all other calculations.



26 scenarioSummary

The approximate RSE(D-hat) is rotRSE = CF/ sqrt(min(E(n), E(r))). This assumes n is Poisson-
distributed. For binomial n an ad hoc adjustment is rotRSEB = sqrt(rotRSE^2 - 1 / (D x A)) where
A is the mask area.

If ’ncores’ is NULL then the number of cores is taken from the environment variable RCPP_PARALLEL_NUM_THREADS
set by ‘setNumThreads‘.

The . . . argument is for inputs to costing, including unitcost (required) and routelength (op-
tional).

Value

A dataframe including the first 8 columns from scenarios and the computed columns –

En expected number of individuals

Er expected number of recaptures

Em expected number of movement recaptures

esa effective sampling area (ha)

CF rule-of-thumb correction factor

rotRSE rule-of-thumb relative standard error of density estimate

rotRSEB rotRSE with adjustment for fixed N in region defined by mask (i.e. Binomial n
rather than Poisson n)

arrayN number of detectors in each array

arrayspace array spacing in sigma units

arrayspan largest dimension of array in sigma units

saturation expected proportion of detectors at which detection occurs (trap success)

travel travel cost

arrays cost of each repeated array

detectors fixed cost per detector

visits cost per detector per visit

detections cost per detection

totalcost summed costs

detperHR median number of detectors per 95% home range

Costings (the last 6 columns) are omitted if costing = FALSE.

See Also

make.scenarios, Enrm, costing, minnrRSE

Examples

scen <- make.scenarios(D = c(5,10), sigma = 25, lambda0 = 0.2, detectfn = 'HHN')
grid <- make.grid(6,6, detector = 'multi')
scenarioSummary(scen, list(grid), costing = TRUE, unitcost = list(perkm = 10))



select.stats 27

select.stats Select Statistics to Summarize

Description

When the results of each simulation with run.scenarios are saved as a dataframe (e.g. from
predict()) it is necessary to select estimates of just one parameter for numerical summarization.
This does the job. find.param is a helper function to quickly display the parameters available for
summarisation.

Usage

select.stats(object, parameter = "D", statistics, true)
find.param(object)
find.stats(object)

Arguments

object ‘estimatetables’ object from run.scenarios

parameter character name of parameter to extract

statistics character vector of statistic names

true numeric vector of ‘’true’ values of parameter, one per scenario

Details

select.stats is used to select a particular vector of numeric values for summarization. The ‘pa-
rameter’ argument indexes a row in the data.frame for one replicate (i.e., one ‘real’ parameter).
Each ‘statistic’ is either a column in that data.frame or a statistic derived from a column.

If statistics is not specified, the default is to use all numeric columns in the input (i.e., c(‘estimate’,
‘SE.estimate’, ‘lcl’, ‘ucl’) for predict and c(‘beta’, ‘SE.beta’, ‘lcl’, ‘ucl’) for coef).

statistics may include any of ‘estimate’, ‘SE.estimate’, ‘lcl’, ‘ucl’, ’true’, ‘RB’, ‘RSE’, ‘COV’
and ‘ERR’ (for outputtype ‘coef’ use ‘beta’ and ‘SE.beta’ instead of ‘estimate and ‘SE.estimate’).
‘true’ refers to the known parameter value used to generate the data.

The computed statistics are:

Statistic Name Value
RB Relative bias (estimate - true) / true
RSE Relative SE SE.estimate / estimate
ERR Absolute deviation abs(estimate - true)
COV Coverage (estimate > lcl) & (estimate < ucl)

‘RB’, ‘COV’ and ‘ERR’ relate an estimate to the known (true) value of the parameter in object$scenarios.



28 summary.secrdesign

They are computed only when a model has been fitted without method = ‘none’.

‘COV’ remains binary (0/1) in the output from select.stats; the result of interest is the mean of
this statistic across replicates (see summary.secrdesign). Similarly, ‘ERR’ is used with field ‘rms’
in summary.secrdesign to compute the root-mean-squared-error RMSE.

find.param and find.stats may be used to ‘peek’ at objects of class ‘estimatetables’ and ‘select-
edstatistics’ respectively to recall the available parameter estimates or ‘statistics’.

An attempt is made to extract true automatically if it is not provided. This does not always work
(e.g. with extractfn region.N, region differing from the mask, and a heterogeneous density model).
Check this by including “true” as a statistic to summarise (see Examples).

Value

For select.stats, an object with class c(‘selectedstatistics’,‘secrdesign’, ‘list’) suitable for nu-
merical summarization with summary.selectedstatistics. The value of ‘parameter’ is stored as
an attribute.

For find.param, a character vector of the names of parameters with estimates in object.

See Also

run.scenarios, validate

Examples

## using nrepl = 2 just for checking
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 2, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = secr::trim)
tmp2 <- predict(tmp1)
tmp3 <- select.stats(tmp2, 'D', c('estimate','true','RB','RSE','COV'))
summary(tmp3)

summary.secrdesign Generic Methods for secrdesign Objects

Description

Methods to summarize simulated datasets.

Usage

## S3 method for class 'secrdesign'
summary(object, ...)

## S3 method for class 'rawdata'
summary(object, ...)



summary.secrdesign 29

## S3 method for class 'estimatetables'
summary(object, ...)

## S3 method for class 'selectedstatistics'
summary(object, fields = c('n', 'mean',
'se'), dec = 5, alpha = 0.05, type = c('list','dataframe','array'), ...)

## S3 method for class 'selectedstatistics'
plot(x, scenarios, statistic, type =
c('hist', 'CI'), refline, xlab = NULL, ...)

header(object)

Arguments

object object of class simulations from run.scenarios

dec number of decimal places in output

fields character vector; names of required summary statistics (see Details)

alpha alpha level for confidence intervals and quantiles

type character code for type of output (see Details)

... other arguments – not currently used by summary but passed to hist by the plot
method

x object of class ‘selectedstatistics’ from run.scenarios

scenarios integer indices of scenarios to plot (all plotted if not specified)

statistic integer or character indices if the statistics in x for which histograms are re-
quested

refline logical; if TRUE a reference line is plotted at the true value of a parameter

xlab character; optional label for x-axis

Details

If object inherits from ‘selectedstatistics’ then the numeric results from replicate simulations are
summarized using the chosen ‘fields’ (by default, the number of non-missing values, mean and
standard error), along with header information describing the simulations. Otherwise the header
alone is returned.

fields is a vector of any selection from c(‘n’, ‘mean’, ‘sd’, ‘se’, ‘min’, ‘max’, ‘lcl’, ‘ucl’, ‘median’,
‘q’, ‘rms’), or the character value ‘all’.

Field ‘q’ provides 1000 alpha/2 and 1000[1 - alpha/2] quantiles qxxx and qyyy.

‘lcl’ and ‘ucl’ refer to the upper and lower limits of a 100(1 - alpha)% confidence interval for the
statistic, across replicates.

‘rms’ gives the root-mean-square of the statistic - most useful for the statistic ‘ERR’ (see select.stats)
when it represents the overall accuracy or RMSE.



30 summary.secrdesign

The plot method plots either (i) histograms of the selected statistics (type = ‘hist’) or (ii) the
estimate and confidence interval for each replicate (type = ‘CI’). The default for type = ‘hist’ is
to plot the first statistic - this is usually ‘n’ (number of detected animals) when fit = FALSE, and
‘estimate’ (parameter estimate) when fit = TRUE. If length(statistic) > 1 then more than one plot
will be produced, so a multi-column or multi-row layout should be prepared with par arguments
‘mfcol’ or ‘mfrow’.

For type = ‘CI’ the statistics must include ‘estimate’, ‘lcl’ and ‘ucl’ (or ‘beta’, ‘lcl’ and ‘ucl’ if
outputtype = ‘coef’).

Value

List with components ‘header’

call original function call

starttime from object

proctime from object

constants small dataframe with values of non-varying inputs

varying small dataframe with values of varying inputs

fit.args small dataframe with values arguments for secr.fit, if specified

and ‘OUTPUT’, a list with one component for each field. Each component may be a list or an array.

See Also

run.scenarios, make.array, select.stats validate

Examples

## collect raw counts
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 50, trapset = traps1, scenarios = scen1,

fit = FALSE)

opar <- par(mfrow=c(2,3))
plot(tmp1, statistic = 1:3)
par(opar)

summary(tmp1)

summary(tmp1, field=c('q025', 'median', 'q975'))



validate 31

validate Reject Implausible Statistics

Description

Simulation output may contain rogue values due to idiosyncracies of model fitting. For example,
nonidentifiability due to inadequate data can result in spurious extreme ‘estimates’ of the sampling
variance. Undue influence of rogue replicates can be reduced by using the median as a summary
field rather than the mean. This function is another way to deal with the problem, by setting to NA
selected statistics from replicates for which some ‘test’ statistic is out-of-range.

Usage

validate(x, test, validrange = c(0, Inf), targets = test, quietly = FALSE)

Arguments

x object that inherits from ‘selectedstatistics’

test character; name of statistic to check

validrange numeric vector comprising the minimum and maximum permitted values of
‘test’, or a matrix (see details)

targets character vector with names of one or more statistics to set to missing (NA)
when test is out-of-range

quietly logical; if TRUE messages are suppressed

Details

Values of ‘test’ and ‘targets’ should be columns in each component ‘replicate x statistic’ matrix
(i.e., scenario) of x$output. You can check for these with find.stats.

If validrange is a matrix its first and second columns are interpreted as scenario-specific bounds
(minima and maxima), and the number of rows must match the number of scenarios.

If all non-missing values of ‘test’ are in the valid range, the effect is to force the target statistics to
NA wherever ‘test’ is NA.

The default is to change only the test field itself. If the value of ‘test’ does not appear in ‘targets’
then the test field is unchanged.

If targets = "all" then all columns are set to NA when the test fails.

Value

An object of class c(‘selectedstatistics’, secrdesign’, ‘list’) with the same structure and header in-
formation as the input, but possibly with some values in the ‘output’ component converted to NA.

See Also

select.stats, find.stats



32 validate

Examples

## Not run:

## generate some data
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 5, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = trim)
tmp2 <- predict(tmp1)
tmp3 <- select.stats(tmp2, 'D', c('estimate','RB','RSE','COV'))

## just for demonstration --
## apply scenario-specific +/- 20% bounds for estimated density
## set RB, RSE and COV to NA when estimate is outside this range
permitted <- outer(tmp3$scenarios$D, c(0.8,1.2))
permitted ## a 2 x 2 matrix
tmp4 <- validate(tmp3, 'estimate', permitted, c('RB', 'RSE','COV'))

## what have we done?!
tmp4$output
summary(tmp4)

## End(Not run)



Index

∗ Datagen
run.scenarios, 17

∗ Generic
summary.secrdesign, 28

∗ datagen
count, 5
getdetectpar, 6
scenariosFromStatistics, 23

∗ design
optimalSpacing, 12

∗ hplot
plot.optimalSpacing, 14

∗ manip
Lambda, 7
make.array, 9
make.scenarios, 10
predict.fittedmodels, 15
saturation, 22
select.stats, 27
validate, 31

∗ package
secrdesign-package, 2

clusterSetRNGStream, 19
coef (predict.fittedmodels), 15
coef.secr, 6, 16
coef.summary (count), 5
costing, 2, 3, 25, 26
count, 5
count.summary, 19, 20

derived (predict.fittedmodels), 15
derived.secr, 16
detectfn, 8, 10–12, 22

Enrm, 2, 4, 6, 7, 23, 26
Enrm (Lambda), 7
expand.grid, 10

find.param (select.stats), 27

find.stats, 31
find.stats (select.stats), 27
fit.models, 2
fit.models (run.scenarios), 17

getdetectpar, 6, 8

header (summary.secrdesign), 28
hist, 29

Lambda, 6, 7, 7

make.array, 9, 11, 30
make.grid, 3, 17
make.scenarios, 2, 10, 17, 24, 26
mask, 8
minnrRSE, 2, 13, 14, 25, 26
minnrRSE (Lambda), 7

optimalSpacing, 2, 8, 12, 15
optimize, 13

Parallel, 17
plot.optimalSpacing, 14, 14
plot.selectedstatistics, 2
plot.selectedstatistics

(summary.secrdesign), 28
predict (predict.fittedmodels), 15
predict.fittedmodels, 2, 15, 19, 20
predict.secr, 6, 16
predict.summary, 19, 20
predict.summary (count), 5
print.optimalSpacing

(plot.optimalSpacing), 14

read.traps, 17
region.N (predict.fittedmodels), 15
region.N.secr, 16
run.scenarios, 2, 5, 9–11, 16, 17, 27, 28, 30

saturation, 2, 22

33



34 INDEX

scenariosFromStatistics, 3, 23
scenarioSummary, 2, 4, 8, 11, 20, 25
secr.fit, 3, 16, 18, 20
secrdesign (secrdesign-package), 2
secrdesign-package, 2
select.stats, 2, 5, 9, 19, 20, 27, 29–31
sim.capthist, 3, 10, 11, 18, 20
sim.popn, 3, 18, 20
summary.estimatetables

(summary.secrdesign), 28
summary.rawdata (summary.secrdesign), 28
summary.secrdesign, 9, 19, 20, 28, 28
summary.selectedstatistics, 2, 20, 28
summary.selectedstatistics

(summary.secrdesign), 28

traps, 8, 12

validate, 28, 30, 31


	secrdesign-package
	costing
	count
	getdetectpar
	Lambda
	make.array
	make.scenarios
	optimalSpacing
	plot.optimalSpacing
	predict.fittedmodels
	run.scenarios
	saturation
	scenariosFromStatistics
	scenarioSummary
	select.stats
	summary.secrdesign
	validate
	Index

