
Package ‘selectiveInference’
September 7, 2019

Type Package

Title Tools for Post-Selection Inference

Version 1.2.5

Date 2019-09-04

Author Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor,
Joshua Loftus, Stephen Reid, Jelena Markovic

Maintainer Rob Tibshirani <tibs@stanford.edu>

Depends glmnet, intervals, survival, adaptMCMC, MASS

Suggests Rmpfr

Description New tools for post-selection inference, for use with forward
stepwise regression, least angle regression, the lasso, and the many means
problem. The lasso function implements Gaussian, logistic and Cox survival
models.

License GPL-2

RoxygenNote 5.0.1

LinkingTo Rcpp

Imports Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-09-07 07:00:02 UTC

R topics documented:
debiasingMatrix . 2
estimateSigma . 4
factorDesign . 5
fixedLassoInf . 6
forwardStop . 12
fs . 13
fsInf . 15
groupfs . 18

1

2 debiasingMatrix

groupfsInf . 19
lar . 20
larInf . 22
manyMeans . 24
plot.fs . 26
plot.lar . 27
predict.fs . 28
predict.groupfs . 29
predict.lar . 29
randomizedLasso . 30
randomizedLassoInf . 33
ROSI . 35
scaleGroups . 38
selectiveInference . 38
TG.interval . 42
TG.limits . 43
TG.pvalue . 44

Index 47

debiasingMatrix Find an approximate inverse of a non-negative definite matrix.

Description

Find some rows of an approximate inverse of a non-negative definite symmetric matrix by solving
optimization problem described in Javanmard and Montanari (2013). Can be used for approximate
Newton step from some consistent estimator (such as the LASSO) to find a debiased solution.

Usage

debiasingMatrix(Xinfo,
is_wide,
nsample,
rows,

verbose=FALSE,
bound=NULL,

linesearch=TRUE,
scaling_factor=1.5,

max_active=NULL,
max_try=10,
warn_kkt=FALSE,
max_iter=50,
kkt_stop=TRUE,
parameter_stop=TRUE,
objective_stop=TRUE,

kkt_tol=1.e-4,
parameter_tol=1.e-4,
objective_tol=1.e-4)

debiasingMatrix 3

Arguments

Xinfo Either a non-negative definite matrix S=t(X) is_wide is TRUE, then Xinfo should
be X, otherwise it should be S.

is_wide Are we solving for rows of the debiasing matrix assuming it is a wide matrix so
that Xinfo=X and the non-negative definite matrix of interest is t(X)

nsample Number of samples used in forming the cross-covariance matrix. Used for de-
fault value of the bound parameter.

rows Which rows of the approximate inverse to compute.

verbose Print out progress as rows are being computed.

bound Initial bound parameter for each row. Will be changed if linesearch is TRUE.

linesearch Run a line search to find as small as possible a bound parameter for each row?

scaling_factor In the linesearch, the bound parameter is either multiplied or divided by this
factor at each step.

max_active How large an active set to consider in solving the problem with coordinate de-
scent. Defaults to max(50, 0.3*nsample).

max_try How many tries in the linesearch.

warn_kkt Warn if the problem does not seem to be feasible after running the coordinate
descent algorithm.

max_iter How many full iterations to run of the coordinate descent for each value of the
bound parameter.

kkt_stop If TRUE, check to stop coordinate descent when KKT conditions are approxi-
mately satisfied.

parameter_stop If TRUE, check to stop coordinate descent based on relative convergence of
parameter vector, checked at geometrically spaced iterations 2^k.

objective_stop If TRUE, check to stop coordinate descent based on relative decrease of objec-
tive value, checked at geometrically spaced iterations 2^k.

kkt_tol Tolerance value for assessing whether KKT conditions for solving the dual prob-
lem and feasibility of the original problem.

parameter_tol Tolerance value for assessing convergence of the problem using relative conver-
gence of the parameter.

objective_tol Tolerance value for assessing convergence of the problem using relative decrease
of the objective.

Details

This function computes an approximate inverse as described in Javanmard and Montanari (2013),
specifically display (4). The problem is solved by considering a dual problem which has an objective
similar to a LASSO problem and is solvable by coordinate descent. For some values of bound the
original problem may not be feasible, in which case the dual problem has no solution. An attempt
to detect this is made by stopping when the active set grows quite large, determined by max_active.

Value

M Rows of approximate inverse of Sigma.

4 estimateSigma

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Adel Javanmard and Andrea Montanari (2013). Confidence Intervals and Hypothesis Testing for
High-Dimensional Regression. Arxiv: 1306.3171

Examples

set.seed(10)
n = 50
p = 100
X = matrix(rnorm(n * p), n, p)
S = t(X) %*% X / n
M = debiasingMatrix(S, FALSE, n, c(1,3,5))
M2 = debiasingMatrix(X, TRUE, n, c(1,3,5))
max(M - M2)

estimateSigma Estimate the noise standard deviation in regression

Description

Estimates the standard deviation of the noise, for use in the selectiveInference package

Usage

estimateSigma(x, y, intercept=TRUE, standardize=TRUE)

Arguments

x Matrix of predictors (n by p)

y Vector of outcomes (length n)

intercept Should glmnet be run with an intercept? Default is TRUE

standardize Should glmnet be run with standardized predictors? Default is TRUE

Details

This function estimates the standard deviation of the noise, in a linear regresion setting. A lasso
regression is fit, using cross-validation to estimate the tuning parameter lambda. With sample size
n, yhat equal to the predicted values and df being the number of nonzero coefficients from the
lasso fit, the estimate of sigma is sqrt(sum((y-yhat)^2) / (n-df-1)). Important: if you are
using glmnet to compute the lasso estimate, be sure to use the settings for the "intercept" and
"standardize" arguments in glmnet and estimateSigma. Same applies to fs or lar, where the argument
for standardization is called "normalize".

factorDesign 5

Value

sigmahat The estimate of sigma

df The degrees of freedom of lasso fit used

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Stephen Reid, Jerome Friedman, and Rob Tibshirani (2014). A study of error variance estimation
in lasso regression. arXiv:1311.5274.

Examples

set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise
fsfit = fs(x,y)

estimate sigma
sigmahat = estimateSigma(x,y)$sigmahat

run sequential inference with estimated sigma
out = fsInf(fsfit,sigma=sigmahat)
out

factorDesign Expand a data frame with factors to form a design matrix with the full
binary encoding of each factor.

Description

When using groupfs with factor variables call this function first to create a design matrix.

Usage

factorDesign(df)

Arguments

df Data frame containing some columns which are factors.

6 fixedLassoInf

Value

List containing

x Design matrix, the first columns contain any numeric variables from the original date frame.

index Group membership indicator for expanded matrix.

Examples

Not run:
fd = factorDesign(warpbreaks)
y = rnorm(nrow(fd$x))
fit = groupfs(fdx, y, fdindex, maxsteps=2, intercept=F)
pvals = groupfsInf(fit)

End(Not run)

fixedLassoInf Inference for the lasso, with a fixed lambda

Description

Compute p-values and confidence intervals for the lasso estimate, at a fixed value of the tuning
parameter lambda

Usage

fixedLassoInf(x,
y,
beta,
lambda,
family = c("gaussian", "binomial", "cox"),
intercept=TRUE,
add.targets=NULL,
status=NULL,
sigma=NULL,
alpha=0.1,
type=c("partial","full"),
tol.beta=1e-5,
tol.kkt=0.1,
gridrange=c(-100,100),
bits=NULL,
verbose=FALSE,
linesearch.try=10)

fixedLassoInf 7

Arguments

x Matrix of predictors (n by p);

y Vector of outcomes (length n)

beta Estimated lasso coefficients (e.g., from glmnet). This is of length p (so the
intercept is not included as the first component).
Be careful! This function uses the "standard" lasso objective

1/2‖y − xβ‖22 + λ‖β‖1.

In contrast, glmnet multiplies the first term by a factor of 1/n. So after run-
ning glmnet, to extract the beta corresponding to a value lambda, you need to
use beta = coef(obj,s=lambda/n)[-1], where obj is the object returned by
glmnet (and [-1] removes the intercept, which glmnet always puts in the first
component)

lambda Value of lambda used to compute beta. See the above warning

family Response type: "gaussian" (default), "binomial", or "cox" (for censored survival
data)

sigma Estimate of error standard deviation. If NULL (default), this is estimated using
the mean squared residual of the full least squares fit when n >= 2p, and using
the standard deviation of y when n < 2p. In the latter case, the user should use
estimateSigma function for a more accurate estimate. Not used for family=
"binomial", or "cox"

alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each
tail)

intercept Was the lasso problem solved (e.g., by glmnet) with an intercept in the model?
Default is TRUE. Must be TRUE for "binomial" family. Not used for ’cox"
family, where no intercept is assumed.

add.targets Optional vector of predictors to be included as targets of inference, regardless
of whether or not they are selected by the lasso. Default is NULL.

status Censoring status for Cox model; 1=failurem 0=censored

type Contrast type for p-values and confidence intervals: default is "partial"—meaning
that the contrasts tested are the partial population regression coefficients, within
the active set of predictors; the alternative is "full"—meaning that the full popu-
lation regression coefficients are tested. The latter does not make sense when p
> n.

tol.beta Tolerance for determining if a coefficient is zero

tol.kkt Tolerance for determining if an entry of the subgradient is zero

gridrange Grid range for constructing confidence intervals, on the standardized scale

bits Number of bits to be used for p-value and confidence interval calculations. De-
fault is NULL, in which case standard floating point calculations are performed.
When not NULL, multiple precision floating point calculations are performed
with the specified number of bits, using the R package Rmpfr (if this package
is not installed, then a warning is thrown, and standard floating point calcu-
lations are pursued). Note: standard double precision uses 53 bits so, e.g., a

8 fixedLassoInf

choice of 200 bits uses about 4 times double precision. The confidence interval
computation is sometimes numerically challenging, and the extra precision can
be helpful (though computationally more costly). In particular, extra precision
might be tried if the values in the output columns of tailarea differ noticeably
from alpha/2.

verbose Print out progress along the way? Default is FALSE
linesearch.try When running type="full" (i.e. debiased LASSO) how many attempts in the line

search?

Details

This function computes selective p-values and confidence intervals for the lasso, given a fixed value
of the tuning parameter lambda. Three different response types are supported: gaussian, binomial
and Cox. The confidence interval construction involves numerical search and can be fragile: if the
observed statistic is too close to either end of the truncation interval (vlo and vup, see references),
then one or possibly both endpoints of the interval of desired coverage cannot be computed, and
default to +/- Inf. The output tailarea gives the achieved Gaussian tail areas for the reported
intervals—these should be close to alpha/2, and can be used for error-checking purposes.

Important!: Before running glmnet (or some other lasso-solver) x should be centered, that is x
<- scale(X,TRUE,FALSE). In addition, if standardization of the predictors is desired, x should be
scaled as well: x <- scale(x,TRUE,TRUE). Then when running glmnet, set standardize=F. See
example below.

The penalty.factor facility in glmmet– allowing different penalties lambda for each predictor, is not
yet implemented in fixedLassoInf. However you can finesse this— see the example below. One
caveat- using this approach, a penalty factor of zero (forcing a predictor in) is not allowed.

Note that the coefficients and standard errors reported are unregularized. Eg for the Gaussian, they
are the usual least squares estimates and standard errors for the model fit to the active set from the
lasso.

Value

type Type of coefficients tested (partial or full)
lambda Value of tuning parameter lambda used
pv One-sided P-values for active variables, uses the fact we have conditioned on

the sign.
ci Confidence intervals
tailarea Realized tail areas (lower and upper) for each confidence interval
vlo Lower truncation limits for statistics
vup Upper truncation limits for statistics
vmat Linear contrasts that define the observed statistics
y Vector of outcomes
vars Variables in active set
sign Signs of active coefficients
alpha Desired coverage (alpha/2 in each tail)
sigma Value of error standard deviation (sigma) used
call The call to fixedLassoInf

fixedLassoInf 9

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2013). Exact post-selection inference,
with application to the lasso. arXiv:1311.6238.

Jonathan Taylor and Robert Tibshirani (2016) Post-selection inference for L1-penalized likelihood
models. arXiv:1602.07358

Examples

set.seed(43)
n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)

beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

first run glmnet
gfit = glmnet(x,y,standardize=FALSE)

extract coef for a given lambda; note the 1/n factor!
(and we don't save the intercept term)
lambda = .8
beta = coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE)[-1]

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta,lambda,sigma=sigma)
out

as above, but use lar function instead to get initial
lasso fit (should get same results)
lfit = lar(x,y,normalize=FALSE)
beta = coef(lfit, s=lambda, mode="lambda")
out2 = fixedLassoInf(x, y, beta, lambda, sigma=sigma)
out2

mimic different penalty factors by first scaling x
set.seed(43)

n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)

10 fixedLassoInf

beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
pf=c(rep(1,7),rep(.1,3)) #define penalty factors
pf=p*pf/sum(pf) # penalty factors should be rescaled so they sum to p
xs=scale(x,FALSE,pf) #scale cols of x by penalty factors
first run glmnet
gfit = glmnet(xs, y, standardize=FALSE)

extract coef for a given lambda; note the 1/n factor!
(and we don't save the intercept term)
lambda = .8
beta_hat = coef(gfit, x=xs, y=y, s=lambda/n, exact=TRUE)[-1]

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(xs,y,beta_hat,lambda,sigma=sigma)

#rescale conf points to undo the penalty factor
out$ci=t(scale(t(out$ci),FALSE,pf[out$vars]))
out

#logistic model
set.seed(43)

n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)

beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
y=1*(y>mean(y))
first run glmnet
gfit = glmnet(x,y,standardize=FALSE,family="binomial")

extract coef for a given lambda; note the 1/n factor!
(and here we DO include the intercept term)
lambda = .8
beta_hat = coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE)

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta_hat,lambda,family="binomial")
out

Cox model

set.seed(43)
n = 50
p = 10
sigma = 1

fixedLassoInf 11

x = matrix(rnorm(n*p), n, p)
x = scale(x, TRUE, TRUE)

beta = c(3,2,rep(0,p-2))
tim = as.vector(x%*%beta + sigma*rnorm(n))
tim= tim-min(tim)+1
status=sample(c(0,1),size=n,replace=TRUE)
first run glmnet

y = Surv(tim,status)
gfit = glmnet(x, y, standardize=FALSE, family="cox")

extract coef for a given lambda; note the 1/n factor!

lambda = 1.5
beta_hat = as.numeric(coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE))

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x, tim, beta_hat, lambda, status=status, family="cox")
out

Debiased lasso or "full"

n = 50
p = 100
sigma = 1

x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)

beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

first run glmnet
gfit = glmnet(x, y, standardize=FALSE, intercept=FALSE)

extract coef for a given lambda; note the 1/n factor!
(and we don't save the intercept term)
lambda = 2.8
beta = coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE)[-1]

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x, y, beta, lambda, sigma=sigma, type='full', intercept=FALSE)
out

When n > p and "full" we use the full inverse
instead of Javanmard and Montanari's approximate inverse

n = 200
p = 50
sigma = 1

12 forwardStop

x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)

beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

first run glmnet
gfit = glmnet(x, y, standardize=FALSE, intercept=FALSE)

extract coef for a given lambda; note the 1/n factor!
(and we don't save the intercept term)
lambda = 2.8
beta = coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE)[-1]

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x, y, beta, lambda, sigma=sigma, type='full', intercept=FALSE)
out

forwardStop ForwardStop rule for sequential p-values

Description

Computes the ForwardStop sequential stopping rule of G’Sell et al (2014)

Usage

forwardStop(pv, alpha=0.1)

Arguments

pv Vector of **sequential** p-values, for example from fsInf or larInf

alpha Desired type FDR level (between 0 and 1)

Details

Computes the ForwardStop sequential stopping rule of G’Sell et al (2014). Guarantees FDR control
at the level alpha, for independent p-values.

Value

Step number for sequential stop.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

fs 13

References

Max Grazier G’Sell, Stefan Wager, Alexandra Chouldechova, and Rob Tibshirani (2014). Sequen-
tial selection procedures and Fflse Discovery Rate Control. arXiv:1309.5352. To appear in Journal
of the Royal Statistical Society: Series B.

Examples

set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise
fsfit = fs(x,y)

compute sequential p-values and confidence intervals
(sigma estimated from full model)
out = fsInf(fsfit)
out

estimate optimal stopping point
forwardStop(out$pv, alpha=.10)

fs Forward stepwise regression

Description

This function implements forward stepwise regression, for use in the selectiveInference package

Usage

fs(x, y, maxsteps=2000, intercept=TRUE, normalize=TRUE, verbose=FALSE)

Arguments

x Matrix of predictors (n by p)
y Vector of outcomes (length n)
maxsteps Maximum number of steps to take
intercept Should an intercept be included on the model? Default is TRUE
normalize Should the predictors be normalized? Default is TRUE. (Note: this argument

has no real effect on model selection since forward stepwise is scale invariant
already; however, it is included for completeness, and to match the interface for
the lar function)

verbose Print out progress along the way? Default is FALSE

14 fs

Details

This function implements forward stepwise regression, adding the predictor at each step that max-
imizes the absolute correlation between the predictors—once orthogonalized with respect to the
current model—and the residual. This entry criterion is standard, and is equivalent to choosing the
variable that achieves the biggest drop in RSS at each step; it is used, e.g., by the step function in
R. Note that, for example, the lars package implements a stepwise option (with type="step"), but
uses a (mildly) different entry criterion, based on maximal absolute correlation between the original
(non-orthogonalized) predictors and the residual.

Value

action Vector of predictors in order of entry

sign Signs of coefficients of predictors, upon entry

df Degrees of freedom of each active model

beta Matrix of regression coefficients for each model along the path, one column per
model

completepath Was the complete stepwise path computed?

bls If completepath is TRUE, the full least squares coefficients

Gamma Matrix that captures the polyhedral selection at each step

nk Number of polyhedral constraints at each step in path

vreg Matrix of linear contrasts that gives coefficients of variables to enter along the
path

x Matrix of predictors used

y Vector of outcomes used

bx Vector of column means of original x

by Mean of original y

sx Norm of each column of original x

intercept Was an intercept included?

normalize Were the predictors normalized?

call The call to fs

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

See Also

fsInf, predict.fs,coef.fs, plot.fs

fsInf 15

Examples

set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise, plot results
fsfit = fs(x,y)
plot(fsfit)

compute sequential p-values and confidence intervals
(sigma estimated from full model)
out = fsInf(fsfit)
out

fsInf Selective inference for forward stepwise regression

Description

Computes p-values and confidence intervals for forward stepwise regression

Usage

fsInf(obj, sigma=NULL, alpha=0.1, k=NULL, type=c("active","all","aic"),
gridrange=c(-100,100), bits=NULL, mult=2, ntimes=2, verbose=FALSE)

Arguments

obj Object returned by fs function

sigma Estimate of error standard deviation. If NULL (default), this is estimated using
the mean squared residual of the full least squares fit when n >= 2p, and using
the standard deviation of y when n < 2p. In the latter case, the user should use
estimateSigma function for a more accurate estimate

alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each
tail)

k See "type" argument below. Default is NULL, in which case k is taken to be the
the number of steps computed in the forward stepwise path

type Type of analysis desired: with "active" (default), p-values and confidence inter-
vals are computed for each predictor as it is entered into the active step, all the
way through k steps; with "all", p-values and confidence intervals are computed
for all variables in the active model after k steps; with "aic", the number of steps
k is first estimated using a modified AIC criterion, and then the same type of
analysis as in "all" is carried out for this particular value of k.

16 fsInf

Note that the AIC scheme is defined to choose a number of steps k after which
the AIC criterion increases ntimes in a row, where ntimes can be specified
by the user (see below). Under this definition, the AIC selection event is char-
acterizable as a polyhedral set, and hence the extra conditioning can be taken
into account exactly. Also note that an analogous BIC scheme can be specified
through the mult argument (see below)

gridrange Grid range for constructing confidence intervals, on the standardized scale

bits Number of bits to be used for p-value and confidence interval calculations. De-
fault is NULL, in which case standard floating point calculations are performed.
When not NULL, multiple precision floating point calculations are performed
with the specified number of bits, using the R package Rmpfr (if this package
is not installed, then a warning is thrown, and standard floating point calcu-
lations are pursued). Note: standard double precision uses 53 bits so, e.g., a
choice of 200 bits uses about 4 times double precision. The confidence interval
computation is sometimes numerically challenging, and the extra precision can
be helpful (though computationally more costly). In particular, extra precision
might be tried if the values in the output columns of tailarea differ noticeably
from alpha/2.

mult Multiplier for the AIC-style penalty. Hence a value of 2 (default) gives AIC,
whereas a value of log(n) would give BIC

ntimes Number of steps for which AIC-style criterion has to increase before minimizing
point is declared

verbose Print out progress along the way? Default is FALSE

Details

This function computes selective p-values and confidence intervals (selection intervals) for forward
stepwise regression. The default is to report the results for each predictor after its entry into the
model. See the "type" argument for other options. The confidence interval construction involves
numerical search and can be fragile: if the observed statistic is too close to either end of the trun-
cation interval (vlo and vup, see references), then one or possibly both endpoints of the interval
of desired coverage cannot be computed, and default to +/- Inf. The output tailarea gives the
achieved Gaussian tail areas for the reported intervals—these should be close to alpha/2, and can be
used for error-checking purposes.

Value

type Type of analysis (active, all, or aic)

k Value of k specified in call

khat When type is "active", this is an estimated stopping point declared by forwardStop;
when type is "aic", this is the value chosen by the modified AIC scheme

pv One sided P-values for active variables, uses the sign that a variable entered the
model with.

ci Confidence intervals

tailarea Realized tail areas (lower and upper) for each confidence interval

vlo Lower truncation limits for statistics

fsInf 17

vup Upper truncation limits for statistics

vmat Linear contrasts that define the observed statistics

y Vector of outcomes

vars Variables in active set

sign Signs of active coefficients

alpha Desired coverage (alpha/2 in each tail)

sigma Value of error standard deviation (sigma) used

call The call to fsInf

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Ryan Tibshirani, Jonathan Taylor, Richard Lockhart, and Rob Tibshirani (2014). Exact post-
selection inference for sequential regression procedures. arXiv:1401.3889.

Joshua Loftus and Jonathan Taylor (2014). A significance test for forward stepwise model selection.
arXiv:1405.3920.

See Also

fs

Examples

set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise
fsfit = fs(x,y)

compute sequential p-values and confidence intervals
(sigma estimated from full model)
out.seq = fsInf(fsfit)
out.seq

compute p-values and confidence intervals after AIC stopping
out.aic = fsInf(fsfit,type="aic")
out.aic

compute p-values and confidence intervals after 5 fixed steps
out.fix = fsInf(fsfit,type="all",k=5)
out.fix

18 groupfs

groupfs Select a model with forward stepwise.

Description

This function implements forward selection of linear models almost identically to step with direction
= "forward". The reason this is a separate function from fs is that groups of variables (e.g. dum-
mies encoding levels of a categorical variable) must be handled differently in the selective inference
framework.

Usage

groupfs(x, y, index, maxsteps, sigma = NULL, k = 2, intercept = TRUE,
center = TRUE, normalize = TRUE, aicstop = 0, verbose = FALSE)

Arguments

x Matrix of predictors (n by p).

y Vector of outcomes (length n).

index Group membership indicator of length p. Check that sort(unique(index)) =
1:G where G is the number of distinct groups.

maxsteps Maximum number of steps for forward stepwise.

sigma Estimate of error standard deviation for use in AIC criterion. This determines
the relative scale between RSS and the degrees of freedom penalty. Default
is NULL corresponding to unknown sigma. When NULL, link{groupfsInf}
performs truncated F inference instead of truncated χ. See extractAIC for
details on the AIC criterion.

k Multiplier of model size penalty, the default is k = 2 for AIC. Use k = log(n)
for BIC, or k = 2log(p) for RIC (best for high dimensions, when p > n). If
G < p then RIC may be too restrictive and it would be better to use log(G) < k
< 2log(p).

intercept Should an intercept be included in the model? Default is TRUE. Does not count
as a step.

center Should the columns of the design matrix be centered? Default is TRUE.

normalize Should the design matrix be normalized? Default is TRUE.

aicstop Early stopping if AIC increases. Default is 0 corresponding to no early stop-
ping. Positive integer values specify the number of times the AIC is allowed to
increase in a row, e.g. with aicstop = 2 the algorithm will stop if the AIC crite-
rion increases for 2 steps in a row. The default of step corresponds to aicstop
= 1.

verbose Print out progress along the way? Default is FALSE.

groupfsInf 19

Value

An object of class "groupfs" containing information about the sequence of models in the forward
stepwise algorithm. Call the function groupfsInf on this object to compute selective p-values.

See Also

groupfsInf, factorDesign.

Examples

x = matrix(rnorm(20*40), nrow=20)
index = sort(rep(1:20, 2))
y = rnorm(20) + 2 * x[,1] - x[,4]
fit = groupfs(x, y, index, maxsteps = 5)
out = groupfsInf(fit)
out

groupfsInf Compute selective p-values for a model fitted by groupfs.

Description

Computes p-values for each group of variables in a model fitted by groupfs. These p-values adjust
for selection by truncating the usual χ2 statistics to the regions implied by the model selection
event. If the sigma to groupfs was NULL then groupfsInf uses truncated F statistics instead of
truncated χ. The sigma argument to groupfsInf allows users to override and use χ, but this is not
recommended unless σ can be estimated well (i.e. n > p).

Usage

groupfsInf(obj, sigma = NULL, verbose = TRUE)

Arguments

obj Object returned by groupfs function

sigma Estimate of error standard deviation. Default is NULL and in this case groupfs-
Inf uses the value of sigma specified to groupfs.

verbose Print out progress along the way? Default is TRUE.

Value

An object of class "groupfsInf" containing selective p-values for the fitted model obj. For compar-
ison with fsInf, note that the option type = "active" is not available.

vars Labels of the active groups in the order they were included.

pv Selective p-values computed from appropriate truncated distributions.

sigma Estimate of error variance used in computing p-values.

20 lar

TC or TF Observed value of truncated χ or F .

df Rank of group of variables when it was added to the model.

support List of intervals defining the truncation region of the corresponding statistic.

lar Least angle regression

Description

This function implements least angle regression, for use in the selectiveInference package

Usage

lar(x, y, maxsteps=2000, minlam=0, intercept=TRUE, normalize=TRUE,
verbose=FALSE)

Arguments

x Matrix of predictors (n by p)

y Vector of outcomes (length n)

maxsteps Maximum number of steps to take

minlam Minimum value of lambda to consider

intercept Should an intercept be included on the model? Default is TRUE

normalize Should the predictors be normalized? Default is TRUE

verbose Print out progress along the way? Default is FALSE

Details

The least angle regression algorithm is described in detail by Efron et al. (2002). This function
should match (in terms of its output) that from the lars package, but returns additional information
(namely, the polyhedral constraints) needed for the selective inference calculations.

Value

lambda Values of lambda (knots) visited along the path

action Vector of predictors in order of entry

sign Signs of coefficients of predictors, upon entry

df Degrees of freedom of each active model

beta Matrix of regression coefficients for each model along the path, one model per
column

completepath Was the complete stepwise path computed?

bls If completepath is TRUE, the full least squares coefficients

Gamma Matrix that captures the polyhedral selection at each step

lar 21

nk Number of polyhedral constraints at each step in path

vreg Matrix of linear contrasts that gives coefficients of variables to enter along the
path

mp Value of M+ (for internal use with the spacing test)

x Matrix of predictors used

y Vector of outcomes used

bx Vector of column means of original x

by Mean of original y

sx Norm of each column of original x

intercept Was an intercept included?

normalize Were the predictors normalized?

call The call to lar

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Max G’Sell, Joshua Loftus, Stephen Reid

References

Brad Efron, Trevor Hastie, Iain Johnstone, and Rob Tibshirani (2002). Least angle regression.
Annals of Statistics (with discussion).

See also the descriptions in Trevor Hastie, Rob Tibshirani, and Jerome Friedman (2002, 2009).
Elements of Statistical Learning.

See Also

larInf, predict.lar, coef.lar, plot.lar

Examples

set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run LAR, plot results
larfit = lar(x,y)
plot(larfit)

compute sequential p-values and confidence intervals
(sigma estimated from full model)
out = larInf(larfit)
out

22 larInf

larInf Selective inference for least angle regression

Description

Computes p-values and confidence intervals for least angle regression

Usage

larInf(obj, sigma=NULL, alpha=0.1, k=NULL, type=c("active","all","aic"),
gridrange=c(-100,100), bits=NULL, mult=2, ntimes=2, verbose=FALSE)

Arguments

obj Object returned by lar function (not the lars function!)

sigma Estimate of error standard deviation. If NULL (default), this is estimated using
the mean squared residual of the full least squares fit when n >= 2p, and using
the standard deviation of y when n < 2p. In the latter case, the user should use
estimateSigma function for a more accurate estimate

alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each
tail)

k See "type" argument below. Default is NULL, in which case k is taken to be the
the number of steps computed in the least angle regression path

type Type of analysis desired: with "active" (default), p-values and confidence inter-
vals are computed for each predictor as it is entered into the active step, all the
way through k steps; with "all", p-values and confidence intervals are computed
for all variables in the active model after k steps; with "aic", the number of steps
k is first estimated using a modified AIC criterion, and then the same type of
analysis as in "all" is carried out for this particular value of k.
Note that the AIC scheme is defined to choose a number of steps k after which
the AIC criterion increases ntimes in a row, where ntimes can be specified
by the user (see below). Under this definition, the AIC selection event is char-
acterizable as a polyhedral set, and hence the extra conditioning can be taken
into account exactly. Also note that an analogous BIC scheme can be specified
through the mult argument (see below)

gridrange Grid range for constructing confidence intervals, on the standardized scale

bits Number of bits to be used for p-value and confidence interval calculations. De-
fault is NULL, in which case standard floating point calculations are performed.
When not NULL, multiple precision floating point calculations are performed
with the specified number of bits, using the R package Rmpfr (if this package
is not installed, then a warning is thrown, and standard floating point calcu-
lations are pursued). Note: standard double precision uses 53 bits so, e.g., a
choice of 200 bits uses about 4 times double precision. The confidence interval
computation is sometimes numerically challenging, and the extra precision can
be helpful (though computationally more costly). In particular, extra precision

larInf 23

might be tried if the values in the output columns of tailarea differ noticeably
from alpha/2.

mult Multiplier for the AIC-style penalty. Hence a value of 2 (default) gives AIC,
whereas a value of log(n) would give BIC

ntimes Number of steps for which AIC-style criterion has to increase before minimizing
point is declared

verbose Print out progress along the way? Default is FALSE

Details

This function computes selective p-values and confidence intervals (selection intervals) for least
angle regression. The default is to report the results for each predictor after its entry into the model.
See the "type" argument for other options. The confidence interval construction involves numerical
search and can be fragile: if the observed statistic is too close to either end of the truncation interval
(vlo and vup, see references), then one or possibly both endpoints of the interval of desired coverage
cannot be computed, and default to +/- Inf. The output tailarea gives the achieved Gaussian tail
areas for the reported intervals—these should be close to alpha/2, and can be used for error-checking
purposes.

Value

type Type of analysis (active, all, or aic)

k Value of k specified in call

khat When type is "active", this is an estimated stopping point declared by forwardStop;
when type is "aic", this is the value chosen by the modified AIC scheme

pv P-values for active variables

ci Confidence intervals

tailarea Realized tail areas (lower and upper) for each confidence interval

vlo Lower truncation limits for statistics

vup Upper truncation limits for statistics

vmat Linear contrasts that define the observed statistics

y Vector of outcomes

pv.spacing P-values from the spacing test (here M+ is used)

pv.modspac P-values from the modified form of the spacing test (here M+ is replaced by the
next knot)

pv.covtest P-values from covariance test

vars Variables in active set

sign Signs of active coefficients

alpha Desired coverage (alpha/2 in each tail)

sigma Value of error standard deviation (sigma) used

call The call to larInf

24 manyMeans

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Ryan Tibshirani, Jonathan Taylor, Richard Lockhart, and Rob Tibshirani (2014). Exact post-
selection inference for sequential regression procedures. arXiv:1401.3889.

See Also

lar

Examples

set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run LAR
larfit = lar(x,y)

compute sequential p-values and confidence intervals
(sigma estimated from full model)
out.seq = larInf(larfit)
out.seq

compute p-values and confidence intervals after AIC stopping
out.aic = larInf(larfit,type="aic")
out.aic

compute p-values and confidence intervals after 5 fixed steps
out.fix = larInf(larfit,type="all",k=5)
out.fix

manyMeans Selective inference for many normal means

Description

Computes p-values and confidence intervals for the largest k among many normal means

Usage

manyMeans(y, alpha=0.1, bh.q=NULL, k=NULL, sigma=1, verbose=FALSE)

manyMeans 25

Arguments

y Vector of outcomes (length n)
alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each

tail)
bh.q q parameter for BH(q) procedure
k Number of means to consider
sigma Estimate of error standard deviation
verbose Print out progress along the way? Default is FALSE

Details

This function compute p-values and confidence intervals for the largest k among many normal
means. One can specify a fixed number of means k to consider, or choose the number to consider
via the BH rule.

Value

mu.hat Vector of length n containing the estimated signal sizes. If a sample element is
not selected, then its signal size estimate is 0

selected.set Indices of the vector y of the sample elements that were selected by the proce-
dure (either BH(q) or top-K). Labelled "Selind" in output table.

pv P-values for selected signals
ci Confidence intervals
method Method used to choose number of means
sigma Value of error standard deviation (sigma) used
bh.q BH q-value used
k Desired number of means
threshold Computed cutoff
call The call to manyMeans

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Stephen Reid, Jonathan Taylor, and Rob Tibshirani (2014). Post-selection point and interval esti-
mation of signal sizes in Gaussian samples. arXiv:1405.3340.

Examples

set.seed(12345)
n = 100
mu = c(rep(3,floor(n/5)), rep(0,n-floor(n/5)))
y = mu + rnorm(n)
out = manyMeans(y, bh.q=0.1)
out

26 plot.fs

plot.fs Plot function for forward stepwise regression

Description

Plot coefficient profiles along the forward stepwise path

Usage

S3 method for class 'fs'
plot(x, breaks=TRUE, omit.zeros=TRUE, var.labels=TRUE, ...)

Arguments

x Object returned by a call to fs function

breaks Should vertical lines be drawn at each break point in the piecewise linear coef-
ficient paths? Default is TRUE

omit.zeros Should segments of the coefficients paths that are equal to zero be omitted (to
avoid clutter in the figure)? Default is TRUE

var.labels Should paths be labelled with corresponding variable numbers? Default is TRUE

... Additional arguments for plotting

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

Examples

set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise, plot results
fsfit = fs(x,y)
plot(fsfit)

plot.lar 27

plot.lar Plot function for least angle regression

Description

Plot coefficient profiles along the LAR path

Usage

S3 method for class 'lar'
plot(x, xvar=c("norm","step","lambda"), breaks=TRUE,

omit.zeros=TRUE, var.labels=TRUE, ...)

Arguments

x Object returned by a call to lar function (not the lars function!)

xvar Either "norm" or "step" or "lambda", determining what is plotted on the x-axis

breaks Should vertical lines be drawn at each break point in the piecewise linear coef-
ficient paths? Default is TRUE

omit.zeros Should segments of the coefficients paths that are equal to zero be omitted (to
avoid clutter in the figure)? Default is TRUE

var.labels Should paths be labelled with corresponding variable numbers? Default is TRUE

... Additional arguments for plotting

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

Examples

set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run LAR, plot results
larfit = lar(x,y)
plot(larfit)

28 predict.fs

predict.fs Prediction and coefficient functions for forward stepwise regression

Description

Make predictions or extract coefficients from a forward stepwise object

Usage

S3 method for class 'fs'
predict(object, newx, s, ...)
S3 method for class 'fs'
coef(object, s, ...)

Arguments

object Object returned by a call to fs function

newx Matrix of x values at which the predictions are desired. If NULL, the x values
from forward stepwise fitting are used

s Step number(s) at which predictions or coefficients are desired

... Additional arguments

Value

Either a vector/matrix of predictions, or a vector/matrix of coefficients.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

Examples

set.seed(33)
n = 200
p = 20
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(rep(3,10),rep(0,p-10))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise and predict functions
obj = fs(x,y)
fit = predict(obj,x,s=3)

predict.groupfs 29

predict.groupfs Prediction and coefficient functions for groupfs.

Description

Make predictions or extract coefficients from a groupfs forward stepwise object.

Usage

S3 method for class 'groupfs'
predict(object, newx)

Arguments

object Object returned by a call to groupfs.

newx Matrix of x values at which the predictions are desired. If NULL, the x values
from groupfs fitting are used.

Value

A vector of predictions or a vector of coefficients.

predict.lar Prediction and coefficient functions for least angle regression

Description

Make predictions or extract coefficients from a least angle regression object

Usage

S3 method for class 'lar'
predict(object, newx, s, mode=c("step","lambda"), ...)
S3 method for class 'lar'
coef(object, s, mode=c("step","lambda"), ...)

Arguments

object Object returned by a call to lar function (not the lars function!)

newx Matrix of x values at which the predictions are desired. If NULL, the x values
from least angle regression fitting are used

s Step number(s) or lambda value(s) at which predictions or coefficients are de-
sired

mode Either "step" or "lambda", determining the role of s (above)

... Additional arguments

30 randomizedLasso

Value

Either a vector/matrix of predictions, or a vector/matrix of coefficients.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

Examples

set.seed(33)
n = 200
p = 20
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(rep(3,10),rep(0,p-10))
y = x%*%beta + sigma*rnorm(n)

run lar and predict functions
obj = lar(x,y)
fit = predict(obj,x,s=3)

randomizedLasso Inference for the randomized lasso, with a fixed lambda

Description

Solve a randomly perturbed LASSO problem.

Usage

randomizedLasso(X,
y,
lam,
family=c("gaussian", "binomial"),
noise_scale=NULL,
ridge_term=NULL,
max_iter=100,
kkt_tol=1.e-4,
parameter_tol=1.e-8,
objective_tol=1.e-8,
objective_stop=FALSE,
kkt_stop=TRUE,
parameter_stop=TRUE)

randomizedLasso 31

Arguments

X Matrix of predictors (n by p);

y Vector of outcomes (length n)

lam Value of lambda used to compute beta. See the above warning Be careful! This
function uses the "standard" lasso objective

1/2‖y − xβ‖22 + λ‖β‖1.

In contrast, glmnet multiplies the first term by a factor of 1/n. So after run-
ning glmnet, to extract the beta corresponding to a value lambda, you need to
use beta = coef(obj,s=lambda/n)[-1], where obj is the object returned by
glmnet (and [-1] removes the intercept, which glmnet always puts in the first
component)

family Response type: "gaussian" (default), "binomial".

noise_scale Scale of Gaussian noise added to objective. Default is 0.5 * sd(y) times the sqrt
of the mean of the trace of X^TX.

ridge_term A small "elastic net" or ridge penalty is added to ensure the randomized problem
has a solution. 0.5 * sd(y) times the sqrt of the mean of the trace of X^TX
divided by sqrt(n).

max_iter How many rounds of updates used of coordinate descent in solving randomized
LASSO.

kkt_tol Tolerance for checking convergence based on KKT conditions.

parameter_tol Tolerance for checking convergence based on convergence of parameters.

objective_tol Tolerance for checking convergence based on convergence of objective value.

kkt_stop Should we use KKT check to determine when to stop?

parameter_stop Should we use convergence of parameters to determine when to stop?

objective_stop Should we use convergence of objective value to determine when to stop?

Details

For family="gaussian" this function uses the "standard" lasso objective

1/2‖y − xβ‖22 + λ‖β‖1

and adds a term
−ωTβ +

ε

2
‖β‖22

where omega is drawn from IID normals with standard deviation noise_scale and epsilon given
by ridge_term. See below for default values of noise_scale and ridge_term.

For family="binomial", the squared error loss is replaced by the negative of the logistic log-
likelihood.

32 randomizedLasso

Value

X Design matrix.

y Response vector.

lam Vector of penalty parameters.

family Family: "gaussian" or "binomial".

active_set Set of non-zero coefficients in randomized solution that were penalized. Integers
from 1:p.

inactive_set Set of zero coefficients in randomized solution. Integers from 1:p.
unpenalized_set

Set of non-zero coefficients in randomized solution that were not penalized. In-
tegers from 1:p.

sign_soln The sign pattern of the randomized solution.

full_law List describing sampling parameters for conditional law of all optimization vari-
ables given the data in the LASSO problem.

conditional_law

List describing sampling parameters for conditional law of only the scaling vari-
ables given the data and the observed subgradient in the LASSO problem.

internal_transform

Affine transformation describing relationship between internal representation of
the data and the data compontent of score of the likelihood at the unregularized
MLE based on the sign_vector (a.k.a. relaxed LASSO).

observed_raw Data component of the score at the unregularized MLE.

noise_scale SD of Gaussian noise used to draw the perturbed objective.

soln The randomized solution. Inference is made conditional on its sign vector (so
no more snooping of this value is formally permitted.) If condition_subgrad
== TRUE when sampling, then we may snoop on the observed subgradient.

perturb The random vector in the linear term added to the objective.

Author(s)

Jelena Markovic, Jonathan Taylor

References

Xiaoying Tian, and Jonathan Taylor (2015). Selective inference with a randomized response.
arxiv.org:1507.06739

Xiaoying Tian, Snigdha Panigrahi, Jelena Markovic, Nan Bi and Jonathan Taylor (2016). Selective
inference after solving a convex problem. arxiv:1609.05609

Examples

set.seed(43)
n = 50
p = 10
sigma = 0.2

randomizedLassoInf 33

lam = 0.5

X = matrix(rnorm(n*p), n, p)
X = scale(X, TRUE, TRUE) / sqrt(n-1)

beta = c(3,2,rep(0,p-2))
y = X%*%beta + sigma*rnorm(n)

result = randomizedLasso(X, y, lam)

randomizedLassoInf Inference for the randomized lasso, with a fixed lambda

Description

Compute p-values and confidence intervals based on selecting an active set with the randomized
lasso, at a fixed value of the tuning parameter lambda and using Gaussian randomization.

Usage

randomizedLassoInf(rand_lasso_soln,
targets=NULL,

level=0.9,
sampler=c("norejection", "adaptMCMC"),
nsample=10000,
burnin=2000,
opt_samples=NULL)

Arguments

rand_lasso_soln

A randomized lasso solution as returned by randomizedLasso.

targets If not NULL, should be a list with entries observed_target,cov_target,crosscov_target_internal.
The observed_target should be (pre-selection) asymptotically Gaussian around
targeted parameters. The quantity cov_target should be an estimate of the (pre-
selection) covariance of observed_target. Finally, crosscov_target_internal
should be an estimate of the (pre-selection) covariance of observed_target and
the internal representation of the data of the LASSO. For both "gaussian" and
"binomial", this is the vector

β̂E,MLE , X
T
−E(y − µ(XE β̂E,MLE))

For example, this cross-covariance could be estimated by jointly bootstrapping
the target of interest and the above vector.

level Level for confidence intervals.

sampler Which sampler to use – default is a no-rejection sampler. Otherwise use MCMC
from the adaptMCMC package.

34 randomizedLassoInf

nsample Number of samples of optimization variables to sample.

burnin How many samples of optimization variable to discard (should be less than
nsample).

opt_samples Optional sample of optimization variables. If not NULL then no MCMC will be
run.

Details

This function computes selective p-values and confidence intervals for a randomized version of the
lasso, given a fixed value of the tuning parameter lambda.

Value

targets A list with entries observed_target,cov_target,crosscov_target_internal.
See argument description above.

pvalues P-values testing hypotheses that each specific target is 0.

ci Confidence interval for parameters determined by targets.

Author(s)

Jelena Markovic, Jonathan Taylor

References

Jelena Markovic and Jonathan Taylor (2016). Bootstrap inference after using multiple queries for
model selection. arxiv.org:1612.07811

Xiaoying Tian and Jonathan Taylor (2015). Selective inference with a randomized response. arxiv.org:1507.06739

Xiaoying Tian, Snigdha Panigrahi, Jelena Markovic, Nan Bi and Jonathan Taylor (2016). Selective
inference after solving a convex problem. arxiv.org:1609.05609

Examples

set.seed(43)
n = 50
p = 10
sigma = 0.2
lam = 0.5

X = matrix(rnorm(n*p), n, p)
X = scale(X, TRUE, TRUE) / sqrt(n-1)

beta = c(3,2,rep(0,p-2))
y = X%*%beta + sigma*rnorm(n)

result = randomizedLasso(X, y, lam)
inf_result = randomizedLassoInf(result)

ROSI 35

ROSI Relevant One-step Selective Inference for the LASSO

Description

Compute p-values and confidence intervals for the lasso estimate, at a fixed value of the tuning
parameter lambda using the "relevant" conditioning event of arxiv.org/1801.09037.

Usage

ROSI(X,
y,
soln,
lambda,
penalty_factor=NULL,
dispersion=1,
family=c('gaussian', 'binomial'),
solver=c('QP', 'glmnet'),
construct_ci=TRUE,
debiasing_method=c("JM", "BN"),
verbose=FALSE,
level=0.9,
use_debiased=TRUE)

Arguments

X Matrix of predictors (n by p);

y Vector of outcomes (length n)

soln Estimated lasso coefficients (e.g., from glmnet). This is of length p (so the
intercept is not included as the first component).
Be careful! This function uses the "standard" lasso objective

1/2‖y −Xβ‖22 + λ‖β‖1.

In contrast, glmnet multiplies the first term by a factor of 1/n. So after run-
ning glmnet, to extract the beta corresponding to a value lambda, you need to
use beta = coef(obj,s=lambda/n)[-1], where obj is the object returned by
glmnet (and [-1] removes the intercept, which glmnet always puts in the first
component)

lambda Value of lambda used to compute beta. See the above warning

penalty_factor Penalty factor as used by glmnet. Actual penalty used in solving the problem is

λ ·
p∑

i=1

fi|βi|

with f being the penalty_factor. Defaults to vector of 1s.

36 ROSI

dispersion Estimate of dispersion in the GLM. Can be taken to be 1 for logisitic and should
be an estimate of the error variance for the Gaussian.

family Family used for likelihood.

solver Solver used to solve restricted problems needed to find truncation set. Each
active variable requires solving a new LASSO problem obtained by zeroing out
one coordinate of original problem. The "QP" choice uses coordinate descent
for a specific value of lambda, rather than glmnet which would solve for a new
path each time.

construct_ci Report confidence intervals or just p-values?
debiasing_method

Which method should be used for debiasing? Choices are "JM" (Javanmard,
Montanari) or "BN" (method described in arxiv.org/1703.03282).

verbose Print out progress along the way? Default is FALSE.

level Confidence level for intervals.

use_debiased Use the debiased estimate of the parameter or not. When FALSE, this is the
method desribed in arxiv.org/1801.09037. The default TRUE often produces
noticably shorter intervals and more powerful tests when p is comparable to
n. Ignored when n<p and set to TRUE. Also note that with "BN" as debiasing
method and n > p, this agrees with method in arxiv.org/1801.09037.

Details

???

Value

active_set Active set of LASSO.

pvalues Two-sided P-values for active variables.

intervals Confidence intervals

estimate Relaxed (i.e. unshrunk) selected estimates.

std_err Standard error of relaxed estimates (pre-selection).

dispersion Dispersion parameter.

lower_trunc Lower truncation point. The estimates should be outside the interval formed by
the lower and upper truncation poitns.

upper_trunc Lower truncation point. The estimates should be outside the interval formed by
the lower and upper truncation poitns.

lambda Value of tuning parameter lambda used.

penalty_factor Penalty factor used for solving problem.

level Confidence level.

call The call to fixedLassoInf.

Author(s)

Jelena Markovic, Jonathan Taylor

ROSI 37

References

Keli Liu, Jelena Markovic, Robert Tibshirani. More powerful post-selection inference, with appli-
cation to the Lasso. arXiv:1801.09037

Tom Boot, Didier Nibbering. Inference in high-dimensional linear regression models. arXiv:1703.03282

Examples

library(selectiveInference)
library(glmnet)
set.seed(43)

n = 100
p = 200
s = 2
sigma = 1

x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)

beta = c(rep(10, s), rep(0,p-s)) / sqrt(n)
y = x %*% beta + sigma*rnorm(n)

first run glmnet
gfit = glmnet(x,y,standardize=FALSE)

extract coef for a given lambda; note the 1/n factor!
(and we don't save the intercept term)
lambda = 4 * sqrt(n)
lambda_glmnet = 4 / sqrt(n)
beta = selectiveInference:::solve_problem_glmnet(x,

y,
lambda_glmnet,
penalty_factor=rep(1, p),
family="gaussian")

compute fixed lambda p-values and selection intervals
out = ROSI(x,

y,
beta,
lambda,
dispersion=sigma^2)

out

an alternate approximate inverse from Boot and Nibbering

out = ROSI(x,
y,
beta,
lambda,
dispersion=sigma^2,
debiasing_method="BN")

38 selectiveInference

out

scaleGroups Center and scale design matrix by groups

Description

For internal use by groupfs.

Usage

scaleGroups(x, index, center = TRUE, normalize = TRUE)

Arguments

x Design matrix.

index Group membership indicator of length p.

center Center groups, default is TRUE.

normalize Scale groups by Frobenius norm, default is TRUE.

Value

x Optionally centered/scaled design matrix.

xm Means of groups in original design matrix.

xs Frobenius norms of groups in original design matrix.

selectiveInference Tools for selective inference

Description

Functions to perform post-selection inference for forward stepwise regression, least angle regres-
sion, the lasso and the many normal means problem. The lasso function also supports logistic
regression and the Cox model.

Details

Package: selectiveInference
Type: Package
License: GPL-2

selectiveInference 39

This package provides tools for inference after selection, in forward stepwise regression, least angle
regression, the lasso, and the many normal means problem. The functions compute p-values and
selection intervals that properly account for the inherent selection carried out by the procedure.
These have exact finite sample type I error and coverage under Gaussian errors. For the logistic and
Cox familes (fixedLassoInf), the coverage is asymptotically valid

This R package was developed as part of the selective inference software project in Python and R:

https://github.com/selective-inference

Some of the R code in this work is a modification of Python code from this repository. Here is the
current selective inference software team:

Yuval Benjamini, Leonard Blier, Will Fithian, Jason Lee, Joshua Loftus, Joshua Loftus, Stephen
Reid, Dennis Sun, Yuekai Sun, Jonathan Taylor, Xiaoying Tian, Ryan Tibshirani, Rob Tibshirani

The main functions included in the package are: fs, fsInf, lar, larInf, fixedLassoInf, manyMeans

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

Maintainer: Rob Tibshirani <tibs@stanford.edu>

References

Ryan Tibshirani, Jonathan Taylor, Richard Lockhart, and Rob Tibshirani (2014). Exact post-
selection inference for sequential regression procedures. arXiv:1401.3889.

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2013). Exact post-selection inference,
with application to the lasso. arXiv:1311.6238.

Stephen Reid, Jonathan Taylor, and Rob Tibshirani (2014). Post-selection point and interval esti-
mation of signal sizes in Gaussian samples. arXiv:1405.3340.

Jonathan Taylor and Robert Tibshirani (2016) Post-selection inference for L1-penalized likelihood
models. arXiv:1602.07358

Examples

set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise
fsfit = fs(x,y)

compute sequential p-values and confidence intervals
(sigma estimated from full model)
out.seq = fsInf(fsfit)
out.seq

compute p-values and confidence intervals after AIC stopping

https://github.com/selective-inference

40 selectiveInference

out.aic = fsInf(fsfit,type="aic")
out.aic

compute p-values and confidence intervals after 5 fixed steps
out.fix = fsInf(fsfit,type="all",k=5)
out.fix

NOT RUN---lasso at fixed lambda- Gaussian family
first run glmnet
gfit = glmnet(x,y)

extract coef for a given lambda; note the 1/n factor!
(and we don't save the intercept term)
lambda = .1
beta = coef(gfit, s=lambda/n, exact=TRUE)[-1]

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta,lambda,sigma=sigma)
out

#lasso at fixed lambda- logistic family
#set.seed(43)

n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)

#
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
y=1*(y>mean(y))

first run glmnet
gfit = glmnet(x,y,standardize=FALSE,family="binomial")

extract coef for a given lambda; note the 1/n factor!
(and here we DO include the intercept term)

lambda = .8
beta = coef(gfit, s=lambda/n, exact=TRUE)

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta,lambda,family="binomial")
out

##lasso at fixed lambda- Cox family
#set.seed(43)
n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)

selectiveInference 41

beta = c(3,2,rep(0,p-2))
tim = as.vector(x%*%beta + sigma*rnorm(n))
tim= tim-min(tim)+1

#status=sample(c(0,1),size=n,replace=T)
first run glmnet

gfit = glmnet(x,Surv(tim,status),standardize=FALSE,family="cox")
extract coef for a given lambda; note the 1/n factor!

lambda = 1.5
beta = as.numeric(coef(gfit, s=lambda/n, exact=TRUE))

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,tim,beta,lambda,status=status,family="cox")
out

NOT RUN---many normal means
set.seed(12345)
n = 100
mu = c(rep(3,floor(n/5)), rep(0,n-floor(n/5)))
y = mu + rnorm(n)
out = manyMeans(y, bh.q=0.1)
out

NOT RUN---forward stepwise with groups
set.seed(1)
n = 20
p = 40
x = matrix(rnorm(n*p), nrow=n)
index = sort(rep(1:(p/2), 2))
y = rnorm(n) + 2 * x[,1] - x[,4]
fit = groupfs(x, y, index, maxsteps = 5)
out = groupfsInf(fit)
out

NOT RUN---estimation of sigma for use in fsInf
(or larInf or fixedLassoInf)
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise
fsfit = fs(x,y)

estimate sigma
sigmahat = estimateSigma(x,y)$sigmahat

run sequential inference with estimated sigma
out = fsInf(fit,sigma=sigmahat)
out

42 TG.interval

TG.interval Truncated Gaussian confidence interval.

Description

Compute truncated Gaussian interval of Lee et al. (2016) with arbitrary affine selection and covari-
ance. Z should satisfy A

Usage

TG.interval(Z, A, b, eta, Sigma=NULL, alpha=0.1,
gridrange=c(-100,100),

gridpts=100,
griddepth=2,
flip=FALSE,
bits=NULL)

Arguments

Z Observed data (assumed to follow N(mu, Sigma) with sum(eta*mu)=null_value)

A Matrix specifiying affine inequalities AZ <= b

b Offsets in the affine inequalities AZ <= b.

eta Determines the target sum(eta*mu) and estimate sum(eta*Z).

Sigma Covariance matrix of Z. Defaults to identity.

alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each
tail)

gridrange Grid range for constructing confidence intervals, on the standardized scale.

gridpts ???????

griddepth ???????

flip ???????

bits Number of bits to be used for p-value and confidence interval calculations. De-
fault is NULL, in which case standard floating point calculations are performed.
When not NULL, multiple precision floating point calculations are performed
with the specified number of bits, using the R package Rmpfr (if this package
is not installed, then a warning is thrown, and standard floating point calcu-
lations are pursued). Note: standard double precision uses 53 bits so, e.g., a
choice of 200 bits uses about 4 times double precision. The confidence interval
computation is sometimes numerically challenging, and the extra precision can
be helpful (though computationally more costly). In particular, extra precision
might be tried if the values in the output columns of tailarea differ noticeably
from alpha/2.

TG.limits 43

Details

This function computes selective confidence intervals based on the polyhedral lemma of Lee et al.
(2016).

Value

int Selective confidence interval.
tailarea Realized tail areas (lower and upper) for each confidence interval.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2016). Exact post-selection inference,
with application to the lasso. Annals of Statistics, 44(3), 907-927.

Jonathan Taylor and Robert Tibshirani (2017) Post-selection inference for math L1-penalized like-
lihood models. Canadian Journal of Statistics, xx, 1-21. (Volume still not posted)

Examples

A = diag(5)
b = rep(1, 5)
Z = rep(0, 5)
Sigma = diag(5)
eta = as.numeric(c(1, 1, 0, 0, 0))
TG.interval(Z, A, b, eta, Sigma)

TG.limits Truncation limits and standard deviation.

Description

Compute truncated limits and SD for use in computing p-values or confidence intervals of Lee et
al. (2016). Z should satisfy A

Usage

TG.limits(Z, A, b, eta, Sigma)

Arguments

Z Observed data (assumed to follow N(mu, Sigma) with sum(eta*mu)=null_value)
A Matrix specifiying affine inequalities AZ <= b
b Offsets in the affine inequalities AZ <= b.
eta Determines the target sum(eta*mu) and estimate sum(eta*Z).
Sigma Covariance matrix of Z. Defaults to identity.

44 TG.pvalue

Details

This function computes the limits of truncation and the implied standard deviation in the polyhedral
lemma of Lee et al. (2016).

Value

vlo Lower truncation limits for statistic

vup Upper truncation limits for statistic

sd Standard error of sum(eta*Z)

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2016). Exact post-selection inference,
with application to the lasso. Annals of Statistics, 44(3), 907-927.

Jonathan Taylor and Robert Tibshirani (2017) Post-selection inference for math L1-penalized like-
lihood models. Canadian Journal of Statistics, xx, 1-21. (Volume still not posted)

Examples

A = diag(5)
b = rep(1, 5)
Z = rep(0, 5)
Sigma = diag(5)
eta = as.numeric(c(1, 1, 0, 0, 0))
TG.limits(Z, A, b, eta, Sigma)

TG.pvalue Truncated Gaussian p-value.

Description

Compute truncated Gaussian p-value of Lee et al. (2016) with arbitrary affine selection and covari-
ance. Z should satisfy A

Usage

TG.pvalue(Z, A, b, eta, Sigma, null_value=0, bits=NULL)

TG.pvalue 45

Arguments

Z Observed data (assumed to follow N(mu, Sigma) with sum(eta*mu)=null_value)

A Matrix specifiying affine inequalities AZ <= b

b Offsets in the affine inequalities AZ <= b.

eta Determines the target sum(eta*mu) and estimate sum(eta*Z).

Sigma Covariance matrix of Z. Defaults to identity.

null_value Hypothesized value of sum(eta*mu) under the null.

bits Number of bits to be used for p-value and confidence interval calculations. De-
fault is NULL, in which case standard floating point calculations are performed.
When not NULL, multiple precision floating point calculations are performed
with the specified number of bits, using the R package Rmpfr (if this package
is not installed, then a warning is thrown, and standard floating point calcu-
lations are pursued). Note: standard double precision uses 53 bits so, e.g., a
choice of 200 bits uses about 4 times double precision. The confidence interval
computation is sometimes numerically challenging, and the extra precision can
be helpful (though computationally more costly). In particular, extra precision
might be tried if the values in the output columns of tailarea differ noticeably
from alpha/2.

Details

This function computes selective p-values based on the polyhedral lemma of Lee et al. (2016).

Value

pv One-sided P-values for active variables, uses the fact we have conditioned on
the sign.

vlo Lower truncation limits for statistic

vup Upper truncation limits for statistic

sd Standard error of sum(eta*Z)

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2016). Exact post-selection inference,
with application to the lasso. Annals of Statistics, 44(3), 907-927.

Jonathan Taylor and Robert Tibshirani (2017) Post-selection inference for math L1-penalized like-
lihood models. Canadian Journal of Statistics, xx, 1-21. (Volume still not posted)

46 TG.pvalue

Examples

A = diag(5)
b = rep(1, 5)
Z = rep(0, 5)
Sigma = diag(5)
eta = as.numeric(c(1, 1, 0, 0, 0))
TG.pvalue(Z, A, b, eta, Sigma)
TG.pvalue(Z, A, b, eta, Sigma, null_value=1)

Index

∗Topic package
selectiveInference, 38

coef.fs, 14
coef.fs (predict.fs), 28
coef.lar, 21
coef.lar (predict.lar), 29

debiasingMatrix, 2

estimateSigma, 4, 7, 15, 22
extractAIC, 18

factorDesign, 5, 19
fixedLassoInf, 6, 39
forwardStop, 12, 16, 23
fs, 13, 15, 17, 18, 39
fsInf, 14, 15, 19, 39

groupfs, 5, 18, 19, 29, 38
groupfsInf, 19, 19

lar, 20, 24, 39
larInf, 21, 22, 39

manyMeans, 24, 39

plot.fs, 14, 26
plot.lar, 21, 27
predict.fs, 14, 28
predict.groupfs, 29
predict.lar, 21, 29

randomizedLasso, 30
randomizedLassoInf, 33
ROSI, 35

scaleGroups, 38
selectiveInference, 38
step, 18

TG.interval, 42
TG.limits, 43
TG.pvalue, 44

47

	debiasingMatrix
	estimateSigma
	factorDesign
	fixedLassoInf
	forwardStop
	fs
	fsInf
	groupfs
	groupfsInf
	lar
	larInf
	manyMeans
	plot.fs
	plot.lar
	predict.fs
	predict.groupfs
	predict.lar
	randomizedLasso
	randomizedLassoInf
	ROSI
	scaleGroups
	selectiveInference
	TG.interval
	TG.limits
	TG.pvalue
	Index

