Package 'sensitivity'

October 20, 2021
Version 1.27.0
Title Global Sensitivity Analysis of Model Outputs
Author Bertrand Iooss, Sebastien Da Veiga, Alexandre Janon and Gilles Pujol, with contributions from Baptiste Broto, Khalid Boumhaout, Thibault Delage, Reda El Amri, Jana Fruth, Laurent Gilquin, Joseph Guillaume, Mar-
got Herin, Marouane Il Idrissi, Loic Le Gratiet, Paul Lemaitre, Amandine Marrel, Anouar Meynaoui, Barry L. Nelson, Fil-
ippo Monari, Roelof Oomen, Oldrich Rakovec, Bernardo Ramos, Olivier Roustant, Eunhye Song, Jeremy Staum, Roman Sueur, Taieb Touati, Vanessa Verges, Frank Weber
Maintainer Bertrand Iooss biooss@yahoo.fr
Depends R (>=3.0.0)
Imports boot, numbers, methods, ggplot2, Rcpp, foreach
LinkingTo Rcpp, RcppArmadillo
Suggests condMVNorm, DiceDesign, DiceKriging, doParallel, evd, ggExtra, grid, gplots, gtools, igraph, ks, lattice, MASS, mc2d, mvtnorm, parallel, plotrix, pracma, randtoolbox, RANN, reshape 2 , rgl, triangle, TSP, viridisLite, whitening
Description A collection of functions for factor screening, global sensitivity analysis and robustness analysis. Most of the functions have to be applied on model with scalar output, but several functions support multi-dimensional outputs.
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-10-20 13:20:02 UTC

R topics documented:

sensitivity-package 3
addelman_const 6
decoupling 7
delsa 9
discrepancyCriteria_cplus 11
emvd 12
fast99 16
lmg 18
maximin_cplus 21
morris 22
morrisMultOut 27
parameterSets 29
pcc 30
PLI 32
PLIquantile 36
PLIquantile_multivar 40
PLIsuperquantile 44
PLIsuperquantile_multivar 48
plot.support 52
pme_knn 53
PoincareChaosSqCoef 58
PoincareConstant 63
PoincareOptimal 65
qosa 69
sb 72
sensiFdiv 74
sensiHSIC 76
shapleyBlockEstimation 82
shapleyLinearGaussian 85
shapleyPermEx 87
shapleyPermRand 90
shapleysobol_knn 93
shapleySubsetMc 100
sobol 103
sobol2002 105
sobol2007 107
sobolEff 109
sobolGP 111
soboljansen 115
sobolmara 118
sobolmartinez 120
sobolMultOut 123
sobolowen 125
sobolrank 127
sobolrec 129
sobolrep 132
sobolroalhs 135
sobolroauc 138
sobolSalt 141
sobolshap_knn 143
sobolSmthSpl 147
sobolTIIlo 148
sobolTIIpf 150
soboltouati 152
squaredIntEstim 154
src 156
support 158
template.replace 160
testmodels 161
truncateddistrib 163
weightTSA 164
Index 166
sensitivity-package Sensitivity Analysis

Description

Methods and functions for global sensitivity analysis

Details

The sensitivity package implements some global sensitivity analysis methods:

- Linear regression importance measures (work in regression and classification contexts):
- SRC and SRRC (src),
- PCC, SPCC, PRCC and SPRCC (pcc),
- LMG and LMG on ranks (lmg)
- E-MVD and E-MVD on ranks (lmg);
- Bettonvil's sequential bifurcations (Bettonvil and Kleijnen, 1996) (sb);
- Morris's "OAT" elementary effects screening method (morris);
- Derivative-based Global Sensitivity Measures:
- Poincare constants for Derivative-based Global Sensitivity Measures (DGSM) (Lamboni et al., 2013; Roustant et al., 2017) (PoincareConstant) and (PoincareOptimal),
- Squared coefficients computation in generalized chaos via Poincare differential operators (Roustant et al., 2019) (PoincareChaosSqCoef),
- Distributed Evaluation of Local Sensitivity Analysis (DELSA) (Rakovec et al., 2014) (delsa);
- Variance-based sensitivity indices (Sobol' indices) for independent inputs:
- Estimation of the Sobol' first order indices with with B-spline Smoothing (Ratto and Pagano, 2010) (sobolSmthSpl),
- Monte Carlo estimation of Sobol' indices with independent inputs (also called pick-freeze method):
* Sobol' scheme (Sobol, 1993) to compute the indices given by the variance decomposition up to a specified order (sobol),
* Saltelli's scheme (Saltelli, 2002) to compute first order, second order and total indices (sobolSalt),
* Saltelli's scheme (Saltelli, 2002) to compute first order and total indices (sobol2002),
* Mauntz-Kucherenko's scheme (Sobol et al., 2007) to compute first order and total indices using improved formulas for small indices (sobol2007),
* Jansen-Sobol's scheme (Jansen, 1999) to compute first order and total indices using improved formulas (soboljansen),
* Martinez's scheme using correlation coefficient-based formulas (Martinez, 2011; Touati, 2016) to compute first order and total indices, associated with theoretical confidence intervals (sobolmartinez and soboltouati),
* Janon-Monod's scheme (Monod et al., 2006; Janon et al., 2013) to compute first order indices with optimal asymptotic variance (sobolEff),
* Mara's scheme (Mara and Joseph, 2008) to compute first order indices with a cost independent of the dimension, via permutations on a single matrix (sobolmara),
* Mighty estimator of first-order sensitivity indices based on rank statistics (correlation coefficient of Chatterjee, 2019; Gamboa et al., 2020) (sobolrank),
* Owen's scheme (Owen, 2013) to compute first order and total indices using improved formulas (via 3 input independent matrices) for small indices (sobolowen),
* Total Interaction Indices using Liu-Owen's scheme (Liu and Owen, 2006) (sobolTIIlo) and pick-freeze scheme (Fruth et al., 2014) (sobolTIIpf),
- Replication-based procedures:
* Estimation of the Sobol' first order and closed second order indices using replicated orthogonal array-based Latin hypecube sample (Tissot and Prieur, 2015) (sobolroalhs),
* Recursive estimation of the Sobol' first order and closed second order indices using replicated orthogonal array-based Latin hypecube sample (Gilquin et al., 2016) (sobolrec),
* Estimation of the Sobol' first order, second order and total indices using the generalized method with replicated orthogonal array-based Latin hypecube sample (Tissot and Prieur, 2015) (sobolrep),
* Sobol' indices estimation under inequality constraints (Gilquin et al., 2015) by extension of the replication procedure (Tissot and Prieur, 2015) (sobolroauc),
- Estimation of the Sobol' first order and total indices with Saltelli's so-called "extendedFAST" method (Saltelli et al., 1999) (fast99),
- Estimation of the Sobol' first order and total indices with kriging-based global sensitivity analysis (Le Gratiet et al., 2014) (sobolGP);
- Variance-based sensitivity indices valid for dependent inputs:
- Exact computation of Shapley effects in the linear Gaussian framework (Broto et al., 2019) (shapleyLinearGaussian),
- Computation of Shapley effects in the Gaussian linear framework with an unknown blockdiagonal covariance matrix (Broto et al., 2020) (shapleyBlockEstimation),
- Estimation of Shapley effects by examining all permutations of inputs (Song et al., 2016) (shapleyPermEx),
- Estimation of Shapley effects by randomly sampling permutations of inputs (Song et al., 2016) (shapleyPermRand),
- Estimation of Shapley effects from data using nearest neighbors method (Broto et al., 2018) (shapleySubsetMc),
- Estimation of Shapley effects and all Sobol indices from data using nearest neighbors (Broto et al., 2018) using a fast approximate algorithm, and ranking (Gamboa et al., 2020) (shapleysobol_knn) and (sobolshap_knn),
- Estimation of Shapley effects from data using nearest neighbors method (Broto et al., 2018) with an optimized/parallelized computations and bootstrap confidence intervals estimations (shapleysobol_knn),
- Estimation of Proportional Marginal Effects (PME) (Il Idrissi et al., 2021) (pme_knn);
- Support index functions (support) of Fruth et al. (2016);
- Sensitivity Indices based on Csiszar f-divergence (sensiFdiv) (particular cases: Borgonovo's indices and mutual-information based indices) and Hilbert-Schmidt Independence Criterion (sensiHSIC) (Da Veiga, 2015; Meynaoui et al., 2019);
- First-order quantile-oriented sensitivity indices as defined in Fort et al. (2016) via a kernelbased estimator related (Maume-Deschamps and Niang, 2018) (qosa);
- Target Sensitivity Analysis via Hilbert-Schmidt Independence Criterion (sensiHSIC) (Spagnol et al., 2019);
- Robustness analysis by the Perturbed-Law based Indices (PLI) of Lemaitre et al. (2015), (PLIquantile) of Sueur et al. (2017), (PLIsuperquantile) of Iooss et al. (2021), and extension as (PLIquantile_multivar) and (PLIsuperquantile_multivar) ;
- Extensions to multidimensional outputs for:
- Sobol' indices (sobolMultOut): Aggregated Sobol' indices (Lamboni et al., 2011; Gamboa et al., 2014) and functional (1D) Sobol' indices,
- Shapley effects and Sobol' indices (shapleysobol_knn) and (sobolshap_knn): Functional (1D) indices,
- HSIC indices (sensiHSIC) (Da Veiga, 2015): Aggregated HSIC, potentially via a PCA step (Da Veiga, 2015),
- Morris method (morrisMultOut).

Moreover, some utilities are provided: standard test-cases (testmodels), weight transformation function of the output sample (weightTSA) to perform Target Sensitivity Analysis, normal and Gumbel truncated distributions (truncateddistrib), squared integral estimate (squaredIntEstim), Addelman and Kempthorne construction of orthogonal arrays of strength two (addelman_const), discrepancy criteria (discrepancyCriteria_cplus), maximin criteria (maximin_cplus) and template file generation (template.replace).

Model managing

The sensitivity package has been designed to work either models written in R than external models such as heavy computational codes. This is achieved with the input argument model present in all functions of this package.
The argument model is expected to be either a funtion or a predictor (i.e. an object with a predict function such as $1 m$).

- If model $=m$ where m is a function, it will be invoked once by $y<-m(X)$.
- If model $=m$ where m is a predictor, it will be invoked once by $y<-\operatorname{predict}(m, X)$.
X is the design of experiments, i.e. a data.frame with p columns (the input factors) and n lines (each, an experiment), and y is the vector of length n of the model responses.
The model in invoked once for the whole design of experiment.
The argument model can be left to NULL. This is refered to as the decoupled approach and used with external computational codes that rarely run on the statistician's computer. See decoupling.

Author(s)

Bertrand Iooss, Sebastien Da Veiga, Alexandre Janon and Gilles Pujol with contributions from Paul Lemaitre for PLI, Thibault Delage and Roman Sueur for PLIquantile, Vanessa Verges for PLIquantile, PLIsuperquantile, PLIquantile_multivar and PLIsuperquantile_multivar, Laurent Gilquin for sobolroalhs, sobolroauc, sobolSalt, sobolrep, sobolrec, as well as addelman_const, discrepancyCriteria_cplus and maximin_cplus, Loic le Gratiet for sobolGP, Khalid Boumhaout, Taieb Touati and Bernardo Ramos for sobolowen and soboltouati, Jana Fruth for PoincareConstant, sobolTIIlo and sobolTIIpf, Amandine Marrel, Anouar Meynaoui and Reda El Amri for their contributions to sensiHSIC, Joseph Guillaume and Oldrich Rakovec for delsa and parameterSets, Olivier Roustant for PoincareOptimal, PoincareChaosSqCoef, squaredIntEstim and support, Eunhye Song, Barry L. Nelson and Jeremy Staum for shapleyPermEx and shapleyPermRand, Baptiste Broto for shapleySubsetMc, shapleyLinearGaussian and shapleyBlockEstimation, Filippo Monari for (sobolSmthSpl) and (morrisMultOut), Marouane Il Idrissi for lmg, emvd and shapleysobol_knn, associated to Margot Herin for pme_knn, Frank Weber and Roelof Oomen for other contributions.
(maintainer: Bertrand Iooss biooss@yahoo.fr)

References

S. Da Veiga, F. Gamboa, B. Iooss and C. Prieur, Basics and trends in sensitivity analysis, Theory and practice in R, SIAM, 2021.
R. Faivre, B. Iooss, S. Mahevas, D. Makowski, H. Monod, editors, 2013, Analyse de sensibilite et exploration de modeles. Applications aux modeles environnementaux, Editions Quae.
B. Iooss and A. Saltelli, 2017, Introduction: Sensitivity analysis. In: Springer Handbook on Uncertainty Quantification, R. Ghanem, D. Higdon and H. Owhadi (Eds), Springer.
B. Iooss and P. Lemaitre, 2015, A review on global sensitivity analysis methods. In Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, C. Meloni and G. Dellino (eds), Springer.
A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

```
addelman_const Addelman and Kempthorne construction
```


Description

addelman_const implements the Addelman and Kempthorne construction of orthogonal arrays of strength two.

Usage

addelman_const(dimension, levels, choice="U")

Arguments

dimension The number of columns of the orthogonal array.
levels The number of levels of the orthogonal array. Either a prime number or a prime power number.
choice A character from the list ("U","V","W","X") specifying which orthogonal array to construct (see "Details").

Details

The method of Addelman and Kempthorne allows to construct up to four orthogonal arrays. choice specify which orthogonal array is to be constructed. Note that the four orthognal arrays depends on each others through linear equations.

Value

A matrix corresponding to the orthogonal array constructed.

Author(s)

Laurent Gilquin

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications, Springer Series in Statistics.

Examples

```
dimension <- 6
levels <- 7
OA <- addelman_const(dimension,levels,choice="U")
```

decoupling Decoupling Simulations and Estimations

Description

tell and ask are S3 generic methods for decoupling simulations and sensitivity measures estimations. In general, they are not used by the end-user for a simple R model, but rather for an external computational code. Most of the sensitivity analyses objects of this package overload tell, whereas ask is overloaded for iterative methods only. extract is used as a post-treatment of a sobolshap_knn object

Usage

```
tell(x, y = NULL, ...)
ask(x, ...)
extract(x, ...)
```


Arguments

a typed list storing the state of the sensitivity study (parameters, data, estimates), as returned by sensitivity analyses objects constructors, such as src, morris, etc.
$y \quad$ a vector of model responses.
... additional arguments, depending on the method used.

Details

When a sensitivity analysis method is called with no model (i.e. argument model = NULL), it generates an incomplete object x that stores the design of experiments (field X), allowing the user to launch "by hand" the corresponding simulations. The method tell allows to pass these simulation results to the incomplete object x, thereafter estimating the sensitivity measures.

The extract method is useful if in a first step the Shapley effects have been computed and thus sensitivity indices for all possible subsets are available. The resulting sobolshap_knn object can be post-treated by extract to get first-order and total Sobol indices very easily.
When the method is iterative, the data to simulate are not stored in the sensitivity analysis object x, but generated at each iteration with the ask method; see for example sb.

Value

tell doesn't return anything. It computes the sensitivity measures, and stores them in the list x . Side effect: tell modifies its argument x.
ask returns the set of data to simulate.
extract returns an object, from a sobolshap_knn object, containing first-order and total Sobol indices.

Author(s)

Gilles Pujol and Bertrand Iooss

Examples

```
# Example of use of fast99 with "model = NULL"
x <- fast99(model = NULL, factors = 3, n = 1000,
    q = "qunif", q.arg = list(min = -pi, max = pi))
y <- ishigami.fun(x$X)
tell(x, y)
print(x)
plot(x)
```

```
delsa Distributed Evaluation of Local Sensitivity Analysis
```


Description

delsa implements Distributed Evaluation of Local Sensitivity Analysis to calculate first order parameter sensitivity at multiple locations in parameter space. The locations in parameter space can either be obtained by a call to parameterSets or by specifying X0 directly, in which case the prior variance of each parameter varprior also needs to be specified. Via plot (which uses functions of the package ggplot2 and reshape2), the indices can be visualized.

Usage

delsa(model $=$ NULL, perturb=1.01, par.ranges, samples, method, X0, varprior, varoutput, ...)
\#\# S3 method for class 'delsa'
tell ($\mathrm{x}, \mathrm{y}=$ NULL,..)
\#\# S3 method for class 'delsa'
print(x, ...)
\#\# S3 method for class 'delsa'
plot(x, which=1:3, ask = dev.interactive(), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.
perturb Perturbation used to calculate sensitivity at each evaluation location
par.ranges A named list of minimum and maximum parameter values
samples Number of samples to generate. For the "grid" and "innergrid" method, corresponds to the number of samples for each parameter, and may be a vector.
method Sampling scheme. See parameterSets
X0 Parameter values at which to evaluate sensitivity indices. Can be used instead of specifying sampling method
varprior Prior variance. If X0 is specified, varprior must also be specified.
varoutput Output variance. If "summation" is specified (default value), the ouput variance is computed by summing the first order effects. If "empirical" is specified, the ouput variance is estimated frome the output sample.
... any other arguments for model which are passed unchanged each time it is called.
$x \quad a \operatorname{list}$ of class "delsa" storing the state of the sensitivity study (parameters, data, estimates).

y	a vector of model responses.
which	if a subset of the plots is required, specify a subset of the numbers 1:3
ask	logical; if TRUE, the user is asked before each plot, see par (ask=.)

Details

print shows summary of the first order indices across parameter space.
plot shows: (1) the cumulative distribution function of first order sensitivity across parameter space, (2) variation of first order sensitivity in relation to model response, and (3) sensitivity in relation to parameter value.

Value

delsa returns a list of class "delsa", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data.frame containing the design of experiments.
$y \quad a \quad$ vector of model responses.
delsafirst the first order indices for each location in X0.
deriv the values of derivatives for each location in X0

Author(s)

Conversion for sensitivity package by Joseph Guillaume, based on original R code by Oldrich Rakovec. Addition of the varoutput argument by Bertrand Iooss (2020).

References

Rakovec, O., M. C. Hill, M. P. Clark, A. H. Weerts, A. J. Teuling, R. Uijlenhoet (2014), Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models, Water Resour. Res., 50, 1-18

See Also

parameterSets which is used to generate points, sensitivity for other methods in the package

Examples

```
# Test case : the non-monotonic Sobol g-function
# (there are 8 factors, all following the uniform distribution on [0,1])
```

library(randtoolbox)
x <- delsa(model=sobol.fun,
par. ranges=replicate ($8, \mathrm{c}(0,1)$, simplify=FALSE),
samples=100,method="sobol")
\# Summary of sensitivity indices of each parameter across parameter space

```
print(x)
```

library(ggplot2)
library(reshape2)
plot(x)

```
discrepancyCriteria_cplus
```

 Discrepancy measure

Description

Compute discrepancy criteria. This function uses a C++ implementation of the function discrepancyCriteria from package DiceDesign.

Usage

discrepancyCriteria_cplus(design,type='all')

Arguments

design a matrix corresponding to the design of experiments. The discrepancy criteria are computed for a design in the unit cube $[0,1]^{d}$. If this condition is not satisfied the design is automatically rescaled.
type type of discrepancies (single value or vector) to be computed:

'al1'	all type of discrepancies (default)
'C2'	centered L2-discrepancy
'L2'	L2-discrepancy
'L2star'	L2star-discrepancy
'M2'	modified L2-discrepancy
'S2'	symmetric L2-discrepancy
'W2'	wrap-around L2-discrepancy

Details

The discrepancy measures how far a given distribution of points deviates from a perfectly uniform one. Different discrepancies are available. For example, if we denote by $\operatorname{Vol}(J)$ the volume of a subset J of $[0 ; 1]^{d}$ and $A(X ; J)$ the number of points of X falling in J, the $L 2$ discrepancy is:

$$
D_{L 2}(X)=\left[\int_{[0,1]^{2 d}}\left(\frac{A\left(X, J_{a, b}\right)}{n}-\operatorname{Vol}\left(J_{a, b}\right)\right)^{2} d a d b\right]^{1 / 2}
$$

where $a=\left(a_{1} ; \ldots ; a_{d}\right)^{\prime}, b=\left(b_{1} ; \ldots ; b_{d}\right)^{\prime}$ and $J_{a, b}=\left[a_{1} ; b_{1}\right) \times \ldots \times\left[a_{d} ; b_{d}\right)$. The other L2discrepancies are defined according to the same principle with different form from the subset J.

Among all the possibilities, discrepancyCriteria_cplus implements only the L2 discrepancies because it can be expressed analytically even for high dimension.
Centered L2-discrepancy is computed using the analytical expression done by Hickernell (1998). The user will refer to Pleming and Manteufel (2005) to have more details about the wrap around discrepancy.

Value

A list containing the L2-discrepancies of the design.

Author(s)

Laurent Gilquin

References

Fang K.T, Li R. and Sudjianto A. (2006) Design and Modeling for Computer Experiments, Chapman \& Hall.

Franco J. (2008) Planification d'experiences numerique en phase exploratoire pour la simulation des phenomenes complexes, PhD thesis, Ecole Nationale Superieure des Mines de Saint Etienne.
Hickernell F.J. (1998) A generalized discrepancy and quadrature error bound. Mathematics of Computation, 67, 299-322.
Pleming J.B. and Manteufel R.D. (2005) Replicated Latin Hypercube Sampling, 46th Structures, Structural Dynamics \& Materials Conference, 16-21 April 2005, Austin (Texas) - AIAA 20051819.

See Also

The distance criterion provided by maximin_cplus

Examples

```
dimension <- 2
n <- 40
X <- matrix(runif(n*dimension),n,dimension)
discrepancyCriteria_cplus(X)
```

emvd

Exclusion-respecting Marginal explained-Variance Decomposition indices for linear and logistic models

Description

emvd computes the E-MVD indices derived from Feldman (2005) applied to the explained variance $\left(R^{2}\right)$ as a performance metric. They are also known under the name PMVD (Proportional Marginal Variance Decomposition). They allow for relative importance indices by R^{2} decomposition for linear and logistic regression models. These indices allocate a share of R^{2} to each input based on a Proportional attribution system, allowing for covariates with null regression coefficients to have indices equal to 0 , despite their potential dependence with other covariates (Exclusion principle).

Usage

```
emvd(X, y, logistic = FALSE, tol = NULL, rank = FALSE, nboot = 0,
    conf = 0.95, max.iter = 1000, parl = NULL)
\#\# S3 method for class 'emvd'
print(x, ...)
\#\# S3 method for class 'emvd'
plot(x, ylim = c(0,1), ...)
```


Arguments

X
y
logistic
tol covariates with absolute marginal contributions less or equal to tol are omitted. By default, if tol=NULL, only covariates with no marginal contribution are omitted.
rank logical. If TRUE, the analysis is done on the ranks
nboot the number of bootstrap replicates for the computation of confidence intervals.
conf the confidence level of the bootstrap confidence intervals.
max.iter if logistic=TRUE, the maximum number of iterative optimization steps allowed for the logistic regression. Default is 1000.
parl number of cores on which to parallelize the computation. If NULL, then no parallelization is done.
x the object returned by lmg.
ylim the y-coordinate limits of the plot. arguments to be passed to methods, such as graphical parameters (see par).

Details

The computation of the E-MVD is done using the recursive method defined in Feldman (2005), but using the subset procedure defined in Broto, Bachoc and Depecker (2020), that is computing all the R^{2} for all possible sub-models first, and then computing $P($.$) recursively for all subsets of$ covariates.
For logistic regression (logistic=TRUE), the R^{2} value is equal to:

$$
R^{2}=1-\frac{\text { model deviance }}{\text { null deviance }}
$$

If either a logistic regression model (logistic $=$ TRUE), or any column of X is categorical (i.e., of class factor), then the rank-based indices cannot be computed. In both those cases, rank $=$ FALSE is forced by default (with a warning).

If too many cores for the machine are passed on to the parl argument, the chosen number of cores is defaulted to the available cores minus one.
Spurious covariates are defined by the tol argument. If null, then covariates with:

$$
w(\{i\})=0
$$

are omitted, and their emvd index is set to zero. In other cases, the spurious covariates are detected by:

$$
|w(\{i\})| \leq \text { tol }
$$

Value

emvd returns a list of class "emvd", containing the following components:
call the matched call.
emvd the estimations of the E-MVD indices.
R2s the estimations of the R^{2} for all possible sub-models.
indices list of all subsets corresponding to the structure of R2s.
P the values of $P($.$) of all subsets for recursive computing. Equal to NULL if boot-$ strap estimates are made.
conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap (if nboot>0).
$X \quad$ the observed covariates.
y the observed outcomes.
logistic logical. TRUE if the analysis has been made by logistic regression.
boot logical. TRUE if bootstrap estimates have been produced.
nboot number of bootstrap replicates.
rank logical. TRUE if a rank analysis has been made.
parl number of chosen cores for the computation.
conf level for the confidence intervals by bootstrap.

Author(s)

Marouane Il Idrissi

References

Broto B., Bachoc F. and Depecker M. (2020) Variance Reduction for Estimation of Shapley Effects and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification, 8(2).
D.V. Budescu (1993). Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114:542-551.
Feldman, B. (2005) Relative Importance and Value SSRN Electronic Journal.
U. Gromping (2006). Relative importance for linear regression in R: the Package relaimpo. Journal of Statistical Software, 17:1-27.
M. Il Idrissi, V. Chabridon and B. Iooss (2021). Mesures d'importance relative par decompositions de la performance de modeles de regression, Actes des 52emes Journees de Statistiques de la Societe Francaise de Statistique (SFdS), pp 497-502, Nice, France, Juin 2021

See Also

pcc, src, lmg, pme_knn

Examples

```
library(parallel)
library(gtools)
library(boot)
library(mvtnorm)
set.seed(1234)
n <- 100
beta<-c(1,-2,3)
sigma<-matrix(c(1,0,0,
                0,1,-0.8,
        0,-0.8,1),
    nrow=3,
    ncol=3)
############################
# Gaussian correlated inputs
X <-rmvnorm(n, rep(0,3), sigma)
##############################
# Linear Model
y <- X%*%beta + rnorm(n)
# Without Bootstrap confidence intervals
x<-emvd(X, y)
print(x)
plot(x)
# With Boostrap confidence intervals
x<-emvd(X, y, nboot=100, conf=0.95)
print(x)
plot(x)
# Rank-based analysis
x<-emvd(X, y, rank=TRUE, nboot=100, conf=0.95)
print(x)
plot(x)
############################
# Logistic Regression
```

```
y<-as.numeric(X%*%beta + rnorm(n)>0)
x<-emvd(X,y, logistic = TRUE)
plot(x)
print(x)
# Parallel computing
#x<-emvd(X,y, logistic = TRUE, parl=2)
#plot(x)
#print(x)
```

fast99 Extended Fourier Amplitude Sensitivity Test

Description

fast99 implements the so-called "extended-FAST" method (Saltelli et al. 1999). This method allows the estimation of first order and total Sobol' indices for all the factors (alltogether $2 p$ indices, where p is the number of factors) at a total cost of $n \times p$ simulations.

Usage

```
fast99(model = NULL, factors, n, M = 4, omega = NULL,
            q = NULL, q.arg = NULL, ...)
    ## S3 method for class 'fast99'
    tell(x, y = NULL, ...)
    ## S3 method for class 'fast99'
    print(x, ...)
    ## S3 method for class 'fast99'
    plot(x, ylim = c(0, 1), ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
factors an integer giving the number of factors, or a vector of character strings giving their names.
$\mathrm{n} \quad$ an integer giving the sample size, i.e. the length of the discretization of the s-space (see Cukier et al.).

M an integer specifying the interference parameter, i.e. the number of harmonics to sum in the Fourier series decomposition (see Cukier et al.).
omega a vector giving the set of frequencies, one frequency for each factor (see details below).
q a vector of quantile functions names corresponding to wanted factors distributions (see details below).
q.arg a list of quantile functions parameters (see details below).
x
a list of class "fast99" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
ylim $\quad y$-coordinate plotting limits.
... any other arguments for model which are passed unchanged each time it is called.

Details

If not given, the set of frequencies omega is taken from Saltelli et al. The first frequency of the vector omega is assigned to each factor X_{i} in turn (corresponding to the estimation of Sobol' indices S_{i} and $S_{T_{i}}$), other frequencies being assigned to the remaining factors.
If the arguments q and q.args are not given, the factors are taken uniformly distributed on $[0,1]$. The argument q must be list of character strings, giving the names of the quantile functions (one for each factor), such as qunif, qnorm...It can also be a single character string, meaning same distribution for all. The argument q . arg must be a list of lists, each one being additional parameters for the corresponding quantile function. For example, the parameters of the quantile function qunif could be list ($\min =1$, $\max =2$), giving an uniform distribution on $[1,2]$. If q is a single character string, then q.arg must be a single list (rather than a list of one list).

Value

fast99 returns a list of class "fast99", containing all the input arguments detailed before, plus the following components:
call the matched call.
x
a data. frame containing the factors sample values.
$y \quad a \quad$ vector of model responses.
V the estimation of variance.
D1 the estimations of Variances of the Conditional Expectations (VCE) with respect to each factor.
Dt the estimations of VCE with respect to each factor complementary set of factors ("all but X_{i} ").

Author(s)

Gilles Pujol

References

A. Saltelli, S. Tarantola and K. Chan, 1999, A quantitative, model independent method for global sensitivity analysis of model output, Technometrics, 41, 39-56.
R. I. Cukier, H. B. Levine and K. E. Schuler, 1978, Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys., 26, 1-42.

Examples

```
# Test case : the non-monotonic Ishigami function
x <- fast99(model = ishigami.fun, factors = 3, n = 1000,
    q = "qunif", q.arg = list(min = -pi, max = pi))
print(x)
plot(x)
```


Description

lmg computes the Lindeman, Merenda and Gold (LMG) indices for correlated input relative importance by R^{2} decomposition for linear and logistic regression models. These indices allocates a share of R^{2} to each input based on the Shapley attribution system, in the case of dependent or correlated inputs.

Usage

$\operatorname{lmg}(X, y, \operatorname{logistic}=$ FALSE, rank $=$ FALSE, nboot $=0$, conf = 0.95, max.iter = 1000, parl = NULL)
\#\# S3 method for class 'lmg'
print(x, ...)
\#\# S3 method for class 'lmg'
plot(x, ylim $=c(0,1), \ldots)$

Arguments

X
y a numeric vector containing the observed outcomes (i.e., dependent variable). If logistic=TRUE, can be a numeric vector of zeros and ones, or a logical vector, or a factor.
logistic logical. If TRUE, the analysis is done via a logistic regression(binomial GLM).
rank logical. If TRUE, the analysis is done on the ranks.
nboot the number of bootstrap replicates for the computation of confidence intervals.
conf the confidence level of the bootstrap confidence intervals.
max.iter if logistic=TRUE, the maximum number of iterative optimization steps allowed for the logistic regression. Default is 1000.
parl number of cores on which to parallelize the computation. If NULL, then no parallelization is done.
x
ylim the y-coordinate limits of the plot.
arguments to be passed to methods, such as graphical parameters (see par).

Details

The computation is done using the subset procedure, defined in Broto, Bachoc and Depecker (2020), that is computing all the R^{2} for all possible sub-models first, and then affecting the Shapley weights according to the Lindeman, Merenda and Gold (1980) definition.

For logistic regression (logistic=TRUE), the R^{2} value is equal to:

$$
R^{2}=1-\frac{\text { model deviance }}{\text { null deviance }}
$$

If either a logistic regression model (logistic $=$ TRUE), or any column of X is categorical (i.e., of class factor), then the rank-based indices cannot be computed. In both those cases, rank = FALSE is forced by default (with a warning).

If too many cores for the machine are passed on to the parl argument, the chosen number of cores is defaulted to the available cores minus one.

Value

lmg returns a list of class "lmg", containing the following components:
call the matched call.
lmg the estimations of the LMG indices.
R2s the estimations of the R^{2} for all possible sub-models.
indices list of all subsets corresponding to the structure of R2s.
w the Shapley weights.
conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap (if nboot>0).

X the observed covariates.
y the observed outcomes.
logistic logical. TRUE if the analysis has been made by logistic regression.
boot logical. TRUE if bootstrap estimates have been produced.
nboot number of bootstrap replicates.
rank logical. TRUE if a rank analysis has been made.
parl number of chosen cores for the computation.
conf level for the confidence intervals by bootstrap.

Author(s)

Marouane Il Idrissi

References

Broto B., Bachoc F. and Depecker M. (2020) Variance Reduction for Estimation of Shapley Effects and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification, 8(2).
D.V. Budescu (1993). Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114:542-551.
U. Gromping (2006). Relative importance for linear regression in R: the Package relaimpo. Journal of Statistical Software, 17:1-27.
M. Il Idrissi, V. Chabridon and B. Iooss (2021). Developments and applications of Shapley effects to reliability-oriented sensitivity analysis with correlated inputs. Environmental Modelling \& Software, 143, 105115, 2021
M. Il Idrissi, V. Chabridon and B. Iooss (2021). Mesures d'importance relative par decompositions de la performance de modeles de regression, Actes des 52emes Journees de Statistiques de la Societe Francaise de Statistique (SFdS), pp 497-502, Nice, France, Juin 2021
Lindeman RH, Merenda PF, Gold RZ (1980). Introduction to Bivariate and Multivariate Analysis. Scott, Foresman, Glenview, IL.

See Also

pcc, src, shapleyPermEx, shapleysobol_knn, emvd, pme_knn

Examples

```
library(parallel)
library(doParallel)
library(foreach)
library(gtools)
library(boot)
library(mvtnorm)
set.seed(1234)
n <- 1000
beta<-c(1,-1,0.5)
sigma<-matrix(c(1,0,0,
    0,1,-0.8,
    0,-0.8,1),
    nrow=3,
    ncol=3)
############################
# Gaussian correlated inputs
X <-rmvnorm(n, rep(0,3), sigma)
colnames(X)<-c("X1","X2", "X3")
#############################
# Linear Model
```

```
    y<- X%*%beta + rnorm(n,0,2)
    # Without Bootstrap confidence intervals
    x<-lmg(X, y)
    print(x)
    plot(x)
    # With Boostrap confidence intervals
    x<-lmg(X, y, nboot=100, conf=0.95)
    print(x)
plot(x)
# Rank-based analysis
x<-lmg(X, y, rank=TRUE, nboot=100, conf=0.95)
print(x)
plot(x)
############################
# Logistic Regression
y<-as.numeric(X%*%beta + rnorm(n)>0)
x<-lmg(X,y, logistic = TRUE)
plot(x)
print(x)
# Parallel computing
#x<-lmg(X,y, logistic = TRUE, parl=2)
#plot(x)
#print(x)
```

maximin_cplus
Maximin criterion

Description

Compute the maximin criterion (also called mindist). This function uses a C++ implementation of the function mindist from package DiceDesign.

Usage

maximin_cplus(design)

Arguments

design a matrix representing the design of experiments in the unit cube $[0,1]^{d}$. If this last condition is not fulfilled, a transformation into $[0,1]^{d}$ is applied before the computation of the criteria.

Details

The maximin criterion is defined by:

$$
\operatorname{maximin}=\min _{x_{i} \in X}\left(\gamma_{i}\right)
$$

where γ_{i} is the minimal distance between the point x_{i} and the other points x_{k} of the design.
A higher value corresponds to a more regular scaterring of design points.

Value

A real number equal to the value of the maximin criterion for the design.

Author(s)

Laurent Gilquin

References

Gunzburer M., Burkdart J. (2004) Uniformity measures for point samples in hypercubes https: //people.sc.fsu.edu/~jburkardt/.
Jonshon M.E., Moore L.M. and Ylvisaker D. (1990) Minmax and maximin distance designs, J. of Statis. Planning and Inference, 26, 131-148.
Chen V.C.P., Tsui K.L., Barton R.R. and Allen J.K. (2003) A review of design and modeling in computer experiments, Handbook of Statistics, 22, 231-261.

See Also

discrepancy measures provided by discrepancyCriteria_cplus.

Examples

```
dimension <- 2
n <- 40
X <- matrix(runif(n*dimension),n,dimension)
maximin_cplus(X)
```

morris

Morris's Elementary Effects Screening Method

Description

morris implements the Morris's elementary effects screening method (Morris 1991). This method, based on design of experiments, allows to identify the few important factors at a cost of $r \times(p+1)$ simulations (where p is the number of factors). This implementation includes some improvements of the original method: space-filling optimization of the design (Campolongo et al. 2007) and simplex-based design (Pujol 2009).

Usage

```
morris(model \(=\) NULL, factors, \(r\), design, \(\operatorname{binf}=0, b s u p=1\),
            scale = TRUE, ...)
\#\# S3 method for class 'morris'
tell(x, y = NULL, ...)
\#\# S3 method for class 'morris'
print(x, ...)
\#\# S3 method for class 'morris'
plot(x, identify = FALSE, atpen = FALSE, y_col = NULL,
    y_dim3 = NULL, ...)
\#\# S3 method for class 'morris'
plot3d(x, alpha \(=c(0.2,0)\), sphere.size \(=1, y \_c o l=\) NULL,
    y_dim3 = NULL)
```


Arguments

model
factors an integer giving the number of factors, or a vector of character strings giving their names.
r
design
binf
bsup either an integer, specifying the maximum value for the factors, or a vector for different values for each factor.
scale logical. If TRUE, the input design of experiments is scaled after building the design and before computing the elementary effects so that all factors vary within the range $[0,1]$. For each factor, the scaling is done relatively to its corresponding bsup and binf.

X	a list of class "morris" storing the state of the screening study (parameters, data, estimates).
y	a vector of model responses.
identify	logical. If TRUE, the user selects with the mouse the factors to label on the $\left(\mu^{*}, \sigma\right)$ graph (see identify).
atpen	logical. If TRUE (and identify = TRUE), the user-identified labels (more precisely: their lower-left corners) of the factors are plotted at the place where the user had clicked (if near enough to one of the factor points). If FALSE (and identify = TRUE), the labels are automatically adjusted to the lower, left, upper or right side of the factor point. For further information, see identify. Defaults to FALSE.
y_col	an integer defining the index of the column of $x \$ y$ to be used for plotting the corresponding Morris statistics μ^{*} and σ (only applies if $x \$ y$ is a matrix or an array). If set to NULL (as per default) and $x \$ y$ is a matrix or an array, the first column (respectively the first element in the second dimension) of $x \$ y$ is used (i.e. y_col = 1).
y_dim3	an integer defining the index in the third dimension of $x \$ y$ to be used for plotting the corresponding Morris statistics μ^{*} and σ (only applies if $\mathrm{x} \$ \mathrm{y}$ is an array). If set to NULL (as per default) and $x \$ y$ is a three-dimensional array, the first element in the third dimension of $\mathrm{x} \$ \mathrm{y}$ is used (i.e. y _dim3 $=1$).
alpha	a vector of three values between 0.0 (fully transparent) and 1.0 (opaque) (see rgl.material). The first value is for the cone, the second for the planes.
sphere.size	a numeric value, the scale factor for displaying the spheres.
	for morris: any other arguments for model which are passed unchanged each time it is called. For plot.morris: arguments to be passed to plot.default.

Details

plot.morris draws the $\left(\mu^{*}, \sigma\right)$ graph.
plot3d.morris draws the $\left(\mu, \mu^{*}, \sigma\right)$ graph (requires the rgl package). On this graph, the points are in a domain bounded by a cone and two planes (application of the Cauchy-Schwarz inequality).
When using the space-filling improvement (Campolongo et al. 2007) of the Morris design, we recommend to install before the "pracma" R package: its "distmat"" function makes running the function with a large number of initial estimates (r2) significantly faster (by accelerating the interpoint distances calculations).
This version of morris also supports matrices and three-dimensional arrays as output of model.

Value

morris returns a list of class "morris", containing all the input argument detailed before, plus the following components:

```
call the matched call.
X
    a data.frame containing the design of experiments.
y either a vector, a matrix or a three-dimensional array of model responses (de-
    pends on the output of model).
```

- if y is a vector: a $(r \times p)$ - matrix of elementary effects for all the factors.
- if y is a matrix: a $(r \times p \times \operatorname{ncol}(y))$ - array of elementary effects for all the factors and all columns of y .
- if y is a three-dimensional array: $\mathrm{a}(r \times p \times \operatorname{dim}(y)[2] \times \operatorname{dim}(y)[3])$ - array of elementary effects for all the factors and all elements of the second and third dimension of y.

Notice that the statistics of interest (μ, μ^{*} and σ) are not stored. They can be printed by the print method, but to extract numerical values, one has to compute them with the following instructions:
If $x \$ y$ is a vector:

```
mu <- apply(x$ee, 2, mean)
mu.star <- apply(x$ee, 2, function(x) mean(abs(x)))
sigma <- apply(x$ee, 2, sd)
If \(x \$ y\) is a matrix:
```

```
mu <- apply(x$ee, 3, function(M){
```

mu <- apply(x$ee, 3, function(M){
 apply(M, 2, mean)
 apply(M, 2, mean)
})
})
mu.star <- apply(abs(x$ee), 3, function(M){
mu.star <- apply(abs(x$ee), 3, function(M){
 apply(M, 2, mean)
 apply(M, 2, mean)
})
})
sigma <- apply(x$ee, 3, function(M){
sigma <- apply(x\$ee, 3, function(M){
apply(M, 2, sd)
apply(M, 2, sd)
})

```
})
```

If $x \$ y$ is a three-dimensional array:

```
mu <- sapply(1:dim(x$ee)[4], function(i){
    apply(x$ee[, , , i, drop = FALSE], 3, function(M){
        apply(M, 2, mean)
    })
}, simplify = "array")
mu.star <- sapply(1:dim(x$ee)[4], function(i){
    apply(abs(x$ee)[, , , i, drop = FALSE], 3, function(M){
        apply(M, 2, mean)
    })
}, simplify = "array")
sigma <- sapply(1:dim(x$ee)[4], function(i){
    apply(x$ee[, , , i, drop = FALSE], 3, function(M){
        apply(M, 2, sd)
    })
}, simplify = "array")
```

It is highly recommended to use the function with the argument scale $=$ TRUE to avoid an uncorrect interpretation of factors that would have different orders of magnitude.

Warning messages

"keeping r' repetitions out of \mathbf{r} " when generating the design of experiments, identical repetitions are removed, leading to a lower number than requested.

Author(s)
Gilles Pujol, with contributions from Frank Weber (2016)

References

M. D. Morris, 1991, Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161-174.
F. Campolongo, J. Cariboni and A. Saltelli, 2007, An effective screening design for sensitivity, Environmental Modelling
\& Software, 22, 1509-1518.
G. Pujol, 2009, Simplex-based screening designs for estimating metamodels, Reliability Engineering and System Safety 94, 1156-1160.

See Also

```
morrisMultOut
```


Examples

```
# Test case : the non-monotonic function of Morris
x <- morris(model = morris.fun, factors = 20, r = 4,
        design = list(type = "oat", levels = 5, grid.jump = 3))
print(x)
plot(x)
library(rgl)
plot3d.morris(x) # (requires the package 'rgl')
# Only for demonstration purposes: a model function returning a matrix
morris.fun_matrix <- function(X){
    res_vector <- morris.fun(X)
    cbind(res_vector, 2 * res_vector)
}
x <- morris(model = morris.fun_matrix, factors = 20,r = 4,
            design = list(type = "oat", levels = 5, grid.jump = 3))
plot(x, y_col = 2)
title(main = "y_col = 2")
# Also only for demonstration purposes: a model function returning a
# three-dimensional array
morris.fun_array <- function(X){
    res_vector <- morris.fun(X)
    res_matrix <- cbind(res_vector, 2 * res_vector)
    array(data = c(res_matrix, 5 * res_matrix),
        dim = c(length(res_vector), 2, 2))
```

\}
$x<-$ morris(model $=$ morris.fun_array, factors $=20, r=4$,
design = list(type = "simplex", scale.factor = 1))
plot (x, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")

```
morrisMultOut Morris's Elementary Effects Screening Method for Multidimensional Outputs
```


Description

morrisMultOut extend the Morris's elementary effects screening method (Morris 1991) to model with multidimensional outputs.

Usage

morrisMultOut(model = NULL, factors, r, design, binf = 0, bsup = 1, scale = TRUE, ...)
\#\# S3 method for class 'morrisMultOut'
tell (x, y = NULL, ...)

Arguments

model NULL or a function returning a outputs a matrix having as columns the model outputs.
factors an integer giving the number of factors, or a vector of character strings giving their names.
r
either an integer giving the number of repetitions of the design, i.e. the number of elementary effect computed per factor, or a vector of two integers $c(r 1, r 2)$ for the space-filling improvement (Campolongo et al. 2007). In this case, $r 1$ is the wanted design size, and $r 2(>r 1)$ is the size of the (bigger) population in which is extracted the design (this can throw a warning, see below).
design a list specifying the design type and its parameters:

- type = "oat" for Morris's OAT design (Morris 1991), with the parameters:
- levels: either an integer specifying the number of levels of the design, or a vector of integers for different values for each factor.
- grid. jump : either an integer specifying the number of levels that are increased/decreased for computing the elementary effects, or a vector of integers for different values for each factor. If not given, it is set to grid. jump $=1$. Notice that this default value of one does not follow Morris's recommendation of levels/2.
- type = "simplex" for simplex-based design (Pujol 2009), with the parameter:
- scale.factor: a numeric value, the homothety factor of the (isometric) simplexes. Edges equal one with a scale factor of one.
$\left.\left.\begin{array}{ll}\text { binf } & \begin{array}{l}\text { either an integer, specifying the minimum value for the factors, or a vector for } \\ \text { different values for each factor. }\end{array} \\ \text { bsup } \\ \text { either an integer, specifying the maximum value for the factors, or a vector for } \\ \text { different values for each factor. }\end{array}\right] \begin{array}{l}\text { logical. If TRUE, the input design of experiments is scaled after building the de- } \\ \text { sign and before computing the elementary effects so that all factors vary within } \\ \text { the range [0,1]. For each factor, the scaling is done relatively to its correspond- } \\ \text { ing bsup and binf. }\end{array}\right] \begin{aligned} & \text { a list of class "morris" storing the state of the screening study (parameters, } \\ & \text { data, estimates). }\end{aligned}$

Details

All the methods available for object of class "morris" are available also for objects of class "morrisMultOut". See the documentation relative to the function "morris" for more details.

Value

morrisMultOut returns a list of class "c(morrisMultOut, morris)", containing all the input argument detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments.
$y \quad a \quad$ matrix having as columns the model responses.
ee a vector of aggregated elementary effects.

Author(s)

Filippo Monari

References

Monari F. and P. Strachan, 2017. Characterization of an airflow network model by sensitivity analysis: parameter screening, fixing, prioritizing and mapping. Journal of Building Performance Simulation, 2017, 10, 17-36.

See Also

```
morris
```


Examples

```
mdl <- function (X) t(atantemp.fun(X))
    x = morrisMultOut(model = mdl, factors = 4, r = 50,
design = list(type = "oat", levels = 5, grid.jump = 3), binf = -1, bsup = 5, scale = FALSE)
print(x)
plot(x)
x = morrisMultOut(model = NULL, factors = 4, r = 50,
design = list(type = "oat", levels = 5, grid.jump = 3), binf = -1, bsup = 5, scale = FALSE)
Y = mdl(x[['X']])
tell(x, Y)
print(x)
plot(x)
```

parameterSets Generate parameter sets

Description

Generate parameter sets from given ranges, with chosen sampling scheme

Usage

parameterSets(par.ranges, samples, method = c("sobol", "innergrid", "grid"))

Arguments

par.ranges A named list of minimum and maximum parameter values
samples Number of samples to generate. For the "grid" and "innergrid" method, may be a vector of number of samples for each parameter.
method the sampling scheme; see Details

Details

Method "sobol" generates uniformly distributed Sobol low discrepancy numbers, using the sobol function in the randtoolbox package.
Method "grid" generates a grid within the parameter ranges, including its extremes, with number of points determined by samples
Method "innergrid" generates a grid within the parameter ranges, with edges of the grid offset from the extremes. The offset is calculated as half of the resolution of the grid diff(par. ranges)/samples/2.

Value

the result is a matrix, with named columns for each parameter in par. ranges. Each row represents one parameter set.

Author(s)

Joseph Guillaume, based on similar function by Felix Andrews

See Also

delsa, which uses this function

Examples

X.grid <- parameterSets(par.ranges=list(V1=c(1,1000), V2=c(1,4)), samples=c $(10,10)$, method="grid")
plot(X.grid)
X.innergrid<-parameterSets(par.ranges=list(V1=c(1,1000), V2=c(1,4)), samples=c (10,10), method="innergrid") points(X.innergrid,col="red")
library(randtoolbox)
X. sobol<-parameterSets(par. ranges=list(V1=c(1,1000), V2=c(1,4)), samples=100, method="sobol")
plot(X.sobol) pcc Partial Correlation Coefficients

Description

pcc computes the Partial Correlation Coefficients (PCC), Semi-Partial Correlation Coefficients (SPCC), Partial Rank Correlation Coefficients (PRCC) or Semi-Partial Rank Correlation Coefficients (SPRCC), which are sensitivity indices based on linear (resp. monotonic) assumptions, in the case of (linearly) correlated factors.

Usage

```
pcc(X, y, rank = FALSE, semi = FALSE, logistic = FALSE, nboot = 0, conf = 0.95)
## S3 method for class 'pcc'
print(x, ...)
## S3 method for class 'pcc'
plot(x, ylim = c(-1,1), ...)
## S3 method for class 'pcc'
ggplot(x, ylim = c(-1,1), ...)
```


Arguments

X a data frame (or object coercible by as.data.frame) containing the design of experiments (model input variables).
 (model output variables).
rank logical. If TRUE, the analysis is done on the ranks.
semi logical. If TRUE, semi-PCC are computed.
logistic logical. If TRUE, the analysis is done via a logistic regression (binomial GLM).
nboot the number of bootstrap replicates.
conf the confidence level of the bootstrap confidence intervals.
$x \quad$ the object returned by pcc.
ylim the y-coordinate limits of the plot.
... arguments to be passed to methods, such as graphical parameters (see par).

Details

Logistic regression model (logistic $=$ TRUE) and rank-based indices (rank $=$ TRUE) are incompatible.

Value

pcc returns a list of class "pcc", containing the following components:
call the matched call.
PCC a data frame containing the estimations of the PCC indices, bias and confidence intervals (if rank = TRUE and semi = FALSE).
PRCC a data frame containing the estimations of the PRCC indices, bias and confidence intervals (if rank = TRUE and semi = FALSE).
SPCC a data frame containing the estimations of the PCC indices, bias and confidence intervals (if rank = TRUE and semi = TRUE).

SPRCC a data frame containing the estimations of the PRCC indices, bias and confidence intervals (if rank = TRUE and semi = TRUE).

Author(s)

Gilles Pujol and Bertrand Iooss

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.
J.W. Johnson and J.M. LeBreton, 2004, History and use of relative importance indices in organizational research, Organizational Research Methods, 7:238-257.

See Also

src, 1mg

Examples

```
# a 100-sample with X1 ~ U(0.5, 1.5)
# X2 ~U(1.5, 4.5)
# X3 ~ U(4.5, 13.5)
library(boot)
n <- 100
X <- data.frame(X1 = runif(n, 0.5, 1.5),
    X2 = runif(n, 1.5, 4.5),
    X3 = runif(n, 4.5, 13.5))
# linear model : Y = X1^2 + X2 + X3
y<- with(X, X1^2 + X2 + X3)
# sensitivity analysis
x <- pcc(X, y, nboot = 100)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
x<- pcc(X, y, semi = TRUE, nboot = 100)
print(x)
plot(x)
```


Description

PLI computes the Perturbed-Law based Indices (PLI), also known as the Density Modification Based Reliability Sensitivity Indices (DMBRSI), which are robustness indices related to a probability of exceedence of a model output (i.e. a failure probability), estimated by a Monte Carlo method. See Lemaitre et al. (2015).

Usage

PLI(failurepoints, failureprobabilityhat, samplesize, deltasvector, InputDistributions, type="MOY", samedelta=TRUE)

Arguments

failurepoints a matrix of failure points coordinates, one column per variable.
failureprobabilityhat
the estimation of failure probability P through rough Monte Carlo method.
samplesize the size of the sample used to estimate P. One must have Pchap=dim(failurepoints)[1]/samplesize
deltasvector a vector containing the values of delta for which the indices will be computed. InputDistributions
a list of list. Each list contains, as a list, the name of the distribution to be used and the parameters. Implemented cases so far:

- For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel. Using Gumbel requires the package evd.
- For a variance perturbation: Gaussian, Uniform.
type a character string in which the user will specify the type of perturbation wanted. The sense of "deltasvector" varies according to the type of perturbation:
- type can take the value "MOY", in which case deltasvector is a vector of perturbated means.
- type can take the value "VAR", in which case deltasvector is a vector of perturbated variances, therefore needs to be positive integers.
samedelta a boolean used with the value "MOY" for type.
- If it is set at TRUE, the mean perturbation will be the same for all the variables.
- If not, the mean perturbation will be new_mean = mean+sigma*delta where mean, sigma are parameters defined in InputDistributions and delta is a value of deltasvector.

Value

PLI returns a list of matrices, containing:

- A matrix where the PLI are stored. Each column corresponds to an input, each line corresponds to a twist of amplitude delta.
- A matrix where their standard deviation are stored.

Author(s)

Paul Lemaitre

References

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:12001223.
E. Borgonovo and B. Iooss, 2017, Moment independent importance measures and a common rationale, In: Springer Handbook on UQ, R. Ghanem, D. Higdon and H. Owhadi (Eds).

See Also

PLIquantile, PLIquantile_multivar, PLIsuperquantile, PLIsuperquantile_multivar

Examples

```
# Model: Ishigami function with a treshold at -7
# Failure points are those < -7
    distributionIshigami = list()
for (i in 1:3){
distributionIshigami[[i]]=list("unif",c(-pi,pi))
distributionIshigami[[i]]$r=("runif")
}
\# Monte Carlo sampling to obtain failure points
```

```
    N = 100000
X = matrix(0,ncol=3,nrow=N)
for( i in 1:3) X[,i] = runif(N,-pi,pi)
T = ishigami.fun(X)
s = sum(as.numeric(T < -7)) # Number of failure
pdefchap = s/N # Failure probability
ptsdef = X[T < -7,] # Failure points
# sensitivity indices with perturbation of the mean
```

v_delta $=\operatorname{seq}(-3,3,1 / 20)$
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap, samplesize=N,
deltasvector=v_delta, InputDistributions=distributionIshigami, type="MOY",
samedelta=TRUE)
BIshm = Toto[[1]]
SIshm $=$ Toto[[2]]
$\operatorname{par}(\operatorname{mfrow}=c(1,1), \operatorname{mar}=c(4,5,1,1))$
plot(v_delta, BIshm[,2],ylim=c (-4,4), xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])), pch=19, cex=1.5)
points(v_delta,BIshm[,1], col="darkgreen", pch=15, cex=1.5)
points(v_delta,BIshm[,3], col="red", pch=17, cex=1.5)
lines(v_delta,BIshm[,2]+1.96*SIshm[,2], col="black")
lines(v_delta,BIshm[,2]-1.96*SIshm[,2], col="black")
lines(v_delta,BIshm[,1]+1.96*SIshm[,1], col="darkgreen")
lines(v_delta,BIshm[,1]-1.96*SIshm[,1], col="darkgreen")
lines(v_delta,BIshm[,3]+1.96*SIshm[,3], col="red")
lines(v_delta,BIshm[,3]-1.96*SIshm[,3], col="red")
abline(h=0,lty=2)
legend(0,3 , legend=c ("X1", "X2", "X3"),
col=c("darkgreen", "black", "red"), pch=c $(15,19,17)$, cex=1.5)
\# sensitivity indices with perturbation of the variance
v_delta $=\operatorname{seq}(1,5,1 / 4)$ \# user parameter. (the true variance is 3.29)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap, samplesize=N,
deltasvector=v_delta, InputDistributions=distributionIshigami, type="VAR",
samedelta=TRUE)

```
BIshv=Toto[[1]]
SIshv=Toto[[2]]
par(mfrow=c(2,1),mar=c(1,5,1,1)+0.1)
plot(v_delta,BIshv[,2],ylim=c(-.5,.5),xlab=expression(V_f),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red")
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red")
par(mar=c(4,5.1,1.1,1.1))
plot(v_delta,BIshv[,2],ylim=c(-30,.7),xlab=expression(V[f]),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red")
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red")
legend(2.5,-10,legend=c("X1", "X2", "X3"), col=c("darkgreen", "black", "red"),
pch=c(15, 19,17),cex=1.5)
#################################################################
# Example with an inverse probability transform
# (to obtain Gaussian inputs from Uniform ones)
# Monte Carlo sampling (the inputs are Uniform)
    N = 100000
X = matrix(0,ncol=3, nrow=N)
for( i in 1:3) X[,i] = runif(N,-pi,pi)
T = ishigami.fun(X)
s = sum(as.numeric(T < -7)) # Number of failure
pdefchap = s/N # Failure probability
# Empirical transform (applied on the sample)
    Xn <- matrix(0, nrow=N, ncol=3)
    for (i in 1:3){
        ecdfx <- ecdf(X[,i])
        q <- ecdfx(X[,i])
        Xn[,i] <- qnorm(q) # Gaussian anamorphosis
        # infinite max values => putting the symetrical values of min values
        Xn[which(Xn[,i]==Inf),i] <- - Xn[which.min(Xn[,i]),i]
        }
# Visualization of a perturbed density (the one of X1 perturbed on the mean)
```

```
    delta_mean_gauss <- 1 # perturbed value on the mean of the Gaussian transform
    Xtr <- quantile(ecdfx,pnorm(Xn[,1] + delta_mean_gauss)) # backtransform
par(mfrow=c(1,1))
    plot(density(Xtr), col="red") ; lines(density(X[,1]))
# sensitivity indices with perturbation of the mean
    distributionIshigami = list()
for (i in 1:3){
distributionIshigami[[i]]=list("norm",c(0,1))
distributionIshigami[[i]]$r=("rnorm")
}
ptsdef = Xn[T < -7,] # Failure points # failure points with Gaussian distrib.
v_delta = seq(-1.5,1.5,1/20)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="MOY",
samedelta=TRUE)
BIshm = Toto[[1]]
SIshm = Toto[[2]]
par(mfrow=c(1,1),mar=c(4,5,1,1))
plot(v_delta,BIshm[,2],ylim=c(-4,4),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshm[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshm[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshm[,2]+1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,2]-1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,1]+1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,1]-1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,3]+1.96*SIshm[,3],col="red")
lines(v_delta,BIshm[,3]-1.96*SIshm[,3],col="red")
abline(h=0,lty=2)
legend(0,3,legend=c("X1", "X2", "X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
```


Description

PLIquantile computes the Perturbed-Law based Indices (PLI) for quantile, which are robustness indices related to a quantile of a model output, estimated by a Monte Carlo method, See Sueur et al. (2017) and Iooss et al. (2020).

Usage

PLIquantile(order, x, y, deltasvector, InputDistributions, type="MOY", samedelta=TRUE, percentage $=$ TRUE, nboot $=0$, conf $=0.95$, bootsample=TRUE)

Arguments

order the order of the quantile to estimate.
x
the matrix of simulation points coordinates, one column per variable.
$y \quad$ the vector of model outputs.
deltasvector a vector containing the values of delta for which the indices will be computed.
InputDistributions
a list of list. Each list contains, as a list, the name of the distribution to be used and the parameters. Implemented cases so far:

- For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel. Using Gumbel requires the package evd.
- For a variance perturbation: Gaussian, Uniform.
type a character string in which the user will specify the type of perturbation wanted. The sense of "deltasvector" varies according to the type of perturbation:
- type can take the value "MOY",in which case deltasvector is a vector of perturbated means.
- type can take the value "VAR",in which case deltasvector is a vector of perturbated variances, therefore needs to be positive integers.
samedelta a boolean used with the value "MOY" for type.
- If it is set at TRUE, the mean perturbation will be the same for all the variables.
- If not, the mean perturbation will be new_mean = mean+sigma*delta where mean, sigma are parameters defined in InputDistributions and delta is a value of deltasvector.
percentage a boolean that defines the formula used for the PLI.
- If it is set at FALSE, the initially proposed formula is used (see Sueur et al., 2017).
- If not (set as TRUE), the PLI is given in percentage of variation of the quantile (see Iooss et al., 2020).
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
bootsample If TRUE, the uncertainty about the original quantile estimation is taken into account in the PLI confidence intervals (see Iooss et al., 2021). If FALSE, standard confidence intervals are computed for the PLI. It mainly changes the CI at small delta values.

Value

PLIquantile returns a list of matrices (each column corresponds to an input, each line corresponds to a twist of amplitude delta) containing the following components:

PLI the PLI.
PLICIinf the bootstrap lower confidence interval values of the PLI.
PLICIsup the bootstrap upper confidence interval values of the PLI.
quantile the perturbed quantile.
quantileCIinf the bootstrap lower confidence interval values of the perturbed quantile.
quantileCIsup the bootstrap upper confidence interval values of the perturbed quantile.

Author(s)

Paul Lemaitre, Bertrand Iooss, Thibault Delage and Roman Sueur

References

T. Delage, R. Sueur and B. Iooss, 2018, Robustness analysis of epistemic uncertainties propagation studies in LOCA assessment thermal-hydraulic model, ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018), Lucca, Italy, May 13-19, 2018.
C. Gauchy, J. Stenger, R. Sueur and B. Iooss, 2021, An information geometry approach for robustness analysis in uncertainty quantification of computer codes, Technometrics, doi:10.1080/00401706.2021.1905072
B. Iooss, V. Verges and V. Larget, 2021, BEPU robustness analysis via perturbed law-based sensitivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, doi:10.1177/1748006X211036569
P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-1223.
R. Sueur, N. Bousquet, B. Iooss and J. Bect, 2016, Perturbed-Law based sensitivity Indices for sensitivity analysis in structural reliability, Proceedings of the SAMO 2016 Conference, Reunion Island, France, December 2016.
R. Sueur, B. Iooss and T. Delage, 2017, Sensitivity analysis using perturbed-law based indices for quantiles and application to an industrial case, 10th International Conference on Mathematical Methods in Reliability (MMR 2017), Grenoble, France, July 2017.

See Also

PLI, PLIsuperquantile PLIquantile_multivar,PLIsuperquantile_multivar

Examples

\# Model: 3D function
distribution $=$ list()

```
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))
# Monte Carlo sampling
    N = 5000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = rnorm(N,0,1)
Y = 2 * X[,1] + X[,2] + X[,3]/2
alpha <- 0.95 # quantile order
q95 = quantile(Y,alpha)
nboot=20 # put nboot=200 for consistency
# sensitivity indices with perturbation of the mean
v_delta = seq(-1,1,1/10)
toto = PLIquantile(alpha,X,Y,deltasvector=v_delta,
    InputDistributions=distribution, type="MOY", samedelta=TRUE,
    percentage=FALSE,nboot=nboot)
# Plotting the PLI
    par(mar=c(4,5,1,1))
plot(v_delta, toto$PLI[,2],ylim=c(-1.5,1.5),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(0.8,1.5, legend=c("X1","X2", "X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
# Plotting the perturbed quantiles
    par(mar=c(4,5,1,1))
plot(v_delta,toto$quantile[,2],ylim=c(1.5,6.5),xlab=expression(delta),
ylab=expression(hat(q[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$quantile[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$quantile[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$quantileCIinf[,2],col="black")
lines(v_delta,toto$quantileCIsup[,2],col="black")
lines(v_delta,toto$quantileCIinf[,1],col="darkgreen")
lines(v_delta,toto$quantileCIsup[,1],col="darkgreen")
lines(v_delta,toto$quantileCIinf[,3],col="red")
lines(v_delta,toto$quantileCIsup[,3],col="red")
abline(h=q95,lty=2)
```

```
legend(0.5,2.4,legend=c("X1", "X2", "X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
#############################################################
# Plotting the PLI in percentage with refined confidence intervals
toto = PLIquantile(alpha,X,Y,deltasvector=v_delta,
    InputDistributions=distribution, type="MOY", samedelta=TRUE,
    percentage=TRUE, nboot=nboot,bootsample=FALSE)
    par(mar=c(4,5,1,1))
plot(v_delta, toto$PLI[,2],ylim=c(-0.6,0.6),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(0,0.6,legend=c("X1", "X2", "X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
###################################################
# another visualization by using the plotCI() fct
# (from plotrix package) for the CI plotting(from Vanessa Verges)
    library(plotrix)
    parameters = list(colors=c("darkgreen","black","red"),
                symbols=c(15,19,17),overlay=c(FALSE,TRUE,TRUE))
    par(mar=c(4,5,1,1),xpd=TRUE)
    for (i in 1:3){
        plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],
            cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
            add=parameters$overlay[i], xlab="", ylab="")
}
    title(xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),
        main=bquote("PLI-quantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
        ") of Y="~2*X[1] + X[2] + X[3]/2))
    abline(h=0,lty=2)
    legend("topleft",legend=c("X1", "X2", "X3"),col=parameters$colors,
        pch=parameters$symbols,cex=1.5)
```

[^0]
Description

PLIquantile_multivar computes the Perturbed-Law based Indices (PLI) for quantile and simultaneous perturbations of the means of 2 inputs, estimated by a Monte Carlo method.

Usage

PLIquantile_multivar(order, x, y, inputs, deltasvector, InputDistributions, samedelta=TRUE, percentage=TRUE, nboot $=0$, conf=0.95, bootsample=TRUE)

Arguments

order the order of the quantile to estimate.
$x \quad$ the matrix of simulation points coordinates, one column per variable.
y the vector of model outputs.
inputs the vector of the two inputs' indices for which the indices will be computed.
deltasvector a vector containing the values of the perturbed means for which the indices will be computed. Warning: if samedelta=FALSE, deltasvector has to be the vector of deltas (mean perturbations)
InputDistributions
a list of list. Each list contains, as a list, the name of the distribution to be used and the parameters. Implemented cases so far (for a mean perturbation): Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel. Using Gumbel requires the package evd.
samedelta a boolean used with the value "MOY" for type.

- If it is set at TRUE, the mean perturbation will be the same for all the variables.
- If not, the mean perturbation will be new_mean = mean+sigma*delta where mean, sigma are parameters defined in InputDistributions and delta is a value of deltasvector.
percentage a boolean that defines the formula used for the PLI.
- If it is set at FALSE, the initially proposed formula is used (see Sueur et al., 2017).
- If not (set as TRUE), the PLI is given in percentage of variation of the quantile (see Iooss et al., 2021).
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
bootsample If TRUE, the uncertainty about the original quantile estimation is taken into account in the PLI confidence intervals (see Iooss et al., 2021). If FALSE, standard confidence intervals are computed for the PLI. It mainly changes the CI at small delta values.

Details

This function does not allow perturbations on the variance of the inputs' distributions.

Value

PLIquantile_multivar returns a list of matrices (delta twist of input 1 (in rows) vs. delta twist of input 2 (in columns)) containing the following components:

PLI the PLI.
PLICIinf the bootstrap lower confidence interval values of the PLI.
PLICIsup the bootstrap upper confidence interval values of the PLI.
quantile the perturbed quantile.
quantileCIinf the bootstrap lower confidence interval values of the perturbed quantile.
quantileCIsup the bootstrap upper confidence interval values of the perturbed quantile.

Author(s)

Bertrand Iooss

References

T. Delage, R. Sueur and B. Iooss, 2018, Robustness analysis of epistemic uncertainties propagation studies in LOCA assessment thermal-hydraulic model, ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018), Lucca, Italy, May 13-19, 2018.
B. Iooss, V. Verges and V. Larget, 2021, BEPU robustness analysis via perturbed law-based sensitivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, doi:10.1177/1748006X211036569
P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-1223.
R. Sueur, N. Bousquet, B. Iooss and J. Bect, 2016, Perturbed-Law based sensitivity Indices for sensitivity analysis in structural reliability, Proceedings of the SAMO 2016 Conference, Reunion Island, France, December 2016.
R. Sueur, B. Iooss and T. Delage, 2017, Sensitivity analysis using perturbed-law based indices for quantiles and application to an industrial case, 10th International Conference on Mathematical Methods in Reliability (MMR 2017), Grenoble, France, July 2017.

See Also

```
PLI,PLIquantile,PLIsuperquantile,PLIsuperquantile_multivar
```


Examples

```
# Model: 3D function
distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))
N = 5000
X = matrix (0,ncol=3,nrow=N)
```

```
for(i in 1:3) X[,i] = rnorm(N,0,1)
Y = 2 * X[,1] + X[,2] + X[,3]/2
alpha <- 0.95
nboot <- 20 # put nboot=200 for consistency
q95 = quantile(Y,alpha)
v_delta = seq(-1,1,1/10)
toto12 = PLIquantile_multivar(alpha, X, Y, c(1, 2),deltasvector=v_delta,
    InputDistributions=distribution, samedelta=TRUE)
toto = PLIquantile(alpha, X, Y, deltasvector=v_delta,InputDistributions=distribution,
    type="MOY", samedelta=TRUE, nboot=0)
par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),,ylim=c(-1,1),xlab=expression(delta),
    ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta, toto$PLI[,1],col="darkgreen", pch=15, cex=1.5)
points(v_delta,toto$PLI[,2],col="black",pch=19,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
abline(h=0,lty=2)
legend(-1,1. , legend=c("X1", "X2", "X3", "X1X2") , col=c("darkgreen", "black", "red", "blue"),
    pch=c(15, 19,17,16),cex=1.5)
# with bootstrap
v_delta = seq(-1,1,2/10)
toto12 = PLIquantile_multivar(alpha,X,Y,c(1,2),deltasvector=v_delta,
        InputDistributions=distribution, samedelta=TRUE, nboot=nboot, bootsample=FALSE)
toto = PLIquantile(alpha, X, Y, deltasvector=v_delta,InputDistributions=distribution,
        type="MOY", samedelta=TRUE, nboot=nboot, bootsample=FALSE)
par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),ylim=c(-1,1),xlab=expression(delta),
    ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,2],col="black",pch=19,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,diag(toto12$PLICIinf),col="blue")
lines(v_delta,diag(toto12$PLICIsup),col="blue")
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[, 2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta, toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(-1,1,legend=c("X1", "X2", "X3", "X1X2"), col=c("darkgreen", "black", "red", "blue"),
    pch=c(15, 19,17,16), cex=1.5)
######################################################
# another visualizations by using the plotrix,
# viridisLite, lattice and grid packages (from Vanessa Verges)
```

```
library(plotrix)
parameters = list(colors=c("darkgreen","black","red"),symbols=c(15,19,17))
par(mar=c (4, 5, 1, 1),xpd=TRUE)
plotCI(v_delta,diag(toto12$PLI),ui=diag(toto12$PLICIsup),li=diag(toto12$PLICIinf),
    xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),
    main=bquote("PLI-quantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
    ") on "~X[1]~"and"~X[2]~"of Y="~2*X[1] + X[2] + X[3]/2),
    cex=1.5,col="blue",pch=16)
for (i in 1:3){
    plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],
            cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
            add=TRUE)
}
abline(h=0,lty=2)
legend("topleft",legend=c("X1","X2", "X3", "X1X2"),
    col=c(parameters$colors,"blue"),pch=c(parameters$symbols,16),cex=1.5)
# Visu of all the PLIs (at any paired combinations of deltas)
library(viridisLite)
library(lattice)
library(grid)
colnames(toto12$PLI) = round(v_delta,2)
rownames(toto12$PLI) = round(v_delta,2)
coul = viridis(100)
levelplot(toto12$PLI, col.regions = coul, xlab=bquote(delta[X~.(1)]), ylab=bquote(delta[X~.(2)]),
    main=bquote(hat(PLI)[quantile[~X[1]~X[2]]]))
```


Description

PLIsuperquantile computes the Perturbed-Law based Indices (PLI) for superquantile, which are robustness indices related to a superquantile of a model output, estimated by a Monte Carlo method. See Iooss et al. (2020).

Usage

PLIsuperquantile(order, x, y, deltasvector, InputDistributions, type="MOY", samedelta=TRUE, percentage=TRUE, nboot=0, conf=0.95, bootsample=TRUE, bias=TRUE)

Arguments

order the order of the superquantile to estimate.
x
y deltasvector a vector containing the values of delta for which the indices will be computed. InputDistributions
a list of list. Each list contains, as a list, the name of the distribution to be used and the parameters. Implemented cases so far:

- For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel. Using Gumbel requires the package evd.
- For a variance perturbation: Gaussian, Uniform.
type a character string in which the user will specify the type of perturbation wanted. The sense of "deltasvector" varies according to the type of perturbation:
- type can take the value "MOY",in which case deltasvector is a vector of perturbated means.
- type can take the value "VAR", in which case deltasvector is a vector of perturbated variances, therefore needs to be positive integers.
samedelta a boolean used with the value "MOY" for type.
- If it is set at TRUE, the mean perturbation will be the same for all the variables.
- If not, the mean perturbation will be new_mean = mean+sigma*delta where mean, sigma are parameters defined in InputDistributions and delta is a value of deltasvector.
percentage a boolean that defines the formula used for the PLI.
- If it is set at FALSE, the classical formula used in the bibliographical references is used.
- If not (set as TRUE), the PLI is given in percentage of variation of the superquantile (even if it is negative).
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
bootsample If TRUE, the uncertainty about the original quantile estimation is taken into account in the PLI confidence intervals (see Iooss et al., 2020). If FALSE, standard confidence intervals are computed for the PLI. It mainly changes the CI at small delta values.
bias defines the version of PLI-superquantile:
- If it is set at "TRUE", it gives the mean of outputs above the perturbed quantile (alternative formula)
- If it is set at "FALSE", it gives the mean of perturbed outputs above the perturbed quantile (original formula)

Value

PLIsuperquantile returns a list of matrices (each column corresponds to an input, each line corresponds to a twist of amplitude delta) containing the following components:

PLI the PLI.

PLICIinf the bootstrap lower confidence interval values of the PLI.
PLICIsup the bootstrap upper confidence interval values of the PLI.
superquantile the perturbed superquantile.
superquantileCIinf
the bootstrap lower confidence interval values of the perturbed superquantile.
superquantileCIsup
the bootstrap upper confidence interval values of the perturbed superquantile.

Author(s)

Bertrand Iooss

References

B. Iooss, V. Verges and V. Larget, 2021, BEPU robustness analysis via perturbed law-based sensitivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, doi:10.1177/1748006X211036569
P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-1223.

See Also

PLI, PLIquantile, PLIsuperquantile_multivar

Examples

```
# Model: 3D function
    distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))
# Monte Carlo sampling
    N = 10000
X = matrix(0,ncol=3, nrow=N)
for(i in 1:3) X[,i] = rnorm(N,0,1)
Y=2*X[,1] + X[,2] + X[,3]/2
alpha <- 0.95
q95 = quantile(Y,alpha)
    sq95a <- mean(Y*(Y>q95)/(1-alpha)) ; sq95b <- mean(Y[Y>q95])
nboot=20 # change to nboot=200 for consistency
# sensitivity indices with perturbation of the mean
```

```
v_delta = seq(-1,1,1/10)
toto = PLIsuperquantile(alpha,X,Y,deltasvector=v_delta,
    InputDistributions=distribution, type="MOY", samedelta=TRUE,
    percentage=FALSE,nboot=nboot,bias=TRUE)
# Plotting the PLI
    par(mar=c(4,5,1,1))
plot(v_delta,toto$PLI[,2],ylim=c(-0.5,0.5),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(-1,0.5,legend=c("X1","X2", "X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
# Plotting the perturbed superquantiles
    par(mar=c(4,5,1,1))
plot(v_delta, toto$superquantile[,2],ylim=c(3,7),xlab=expression(delta),
ylab=expression(hat(q[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$superquantile[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$superquantile[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$superquantileCIinf[, 2],col="black")
lines(v_delta, toto$superquantileCIsup[, 2],col="black")
lines(v_delta,toto$superquantileCIinf[,1],col="darkgreen")
lines(v_delta,toto$superquantileCIsup[,1],col="darkgreen")
lines(v_delta,toto$superquantileCIinf[,3],col="red")
lines(v_delta,toto$superquantileCIsup[, 3],col="red")
abline(h=q95,lty=2)
legend(-1,7,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
# Plotting the unbiased PLI in percentage with refined confidence intervals
toto = PLIsuperquantile(alpha, X,Y,deltasvector=v_delta,
    InputDistributions=distribution, type="MOY", samedelta=TRUE, percentage=TRUE,
    nboot=nboot,bootsample=FALSE,bias=FALSE)
    par(mar=c(4,5,1,1))
plot(v_delta, toto$PLI[,2],ylim=c(-0.4,0.5),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
```

```
abline(h=0,lty=2)
legend(-1,0.5,legend=c("X1", "X2", "X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
####################################################
# another visualization by using the plotCI() fct
# (from plotrix package) for the CI plotting (from Vanessa Verges)
library(plotrix)
parameters = list(colors=c("darkgreen","black","red"),symbols=c(15,19,17),
    overlay=c(FALSE,TRUE,TRUE))
    par(mar=c(4,5,1,1),xpd=TRUE)
    for (i in 1:3){
    plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],
            cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
            add=parameters$overlay[i], xlab="", ylab="")
    }
    title(xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),
        main=bquote("PLI-superquantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
        ") of Y="~2*X[1] + X[2] + X[3]/2))
    abline(h=0,lty=2)
    legend("topleft",legend=c("X1","X2","X3"),
            col=parameters$colors,pch=parameters$symbols,cex=1.5)
```

 PLIsuperquantile_multivar
 Perturbed-Law based sensitivity Indices (PLI) for superquantile and
 simultaneous perturbations of 2 inputs

Description

PLIquantile_multivar computes the Perturbed-Law based Indices (PLI) for superquantile and simultaneous perturbations of the means of 2 inputs, estimated by a Monte Carlo method.

Usage

PLIsuperquantile_multivar(order, x, y, inputs, deltasvector, InputDistributions, samedelta=TRUE, percentage=TRUE, nboot $=0$, conf=0.95, bootsample=TRUE, bias=TRUE)

Arguments

order the order of the quantile to estimate.
$x \quad$ the matrix of simulation points coordinates, one column per variable.
$y \quad$ the vector of model outputs.
inputs the vector of the two inputs' indices for which the indices will be computed.
deltasvector a vector containing the values of the perturbed means for which the indices will be computed. Warning: if samedelta=FALSE, deltasvector has to be the vector of deltas (mean perturbations)
InputDistributions
a list of list. Each list contains, as a list, the name of the distribution to be used and the parameters. Implemented cases so far (for a mean perturbation): Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel. Using Gumbel requires the package evd.
samedelta a boolean used with the value "MOY" for type.

- If it is set at TRUE, the mean perturbation will be the same for all the variables.
- If not, the mean perturbation will be new_mean = mean+sigma*delta where mean, sigma are parameters defined in InputDistributions and delta is a value of deltasvector.
percentage a boolean that defines the formula used for the PLI.
- If it is set at FALSE, the initially proposed formula is used (see Sueur et al., 2017).
- If not (set as TRUE), the PLI is given in percentage of variation of the superquantile (see Iooss et al., 2021).
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
bootsample If TRUE, the uncertainty about the original quantile estimation is taken into account in the PLI confidence intervals (see Iooss et al., 2021). If FALSE, standard confidence intervals are computed for the PLI. It mainly changes the CI at small delta values.
bias defines the version of PLI-superquantile:
- If it is set at "TRUE", it gives the mean of outputs above the perturbed quantile (alternative formula)
- If it is set at "FALSE", it gives the mean of perturbed outputs above the perturbed quantile (original formula)

Details

This function does not allow perturbations on the variance of the inputs' distributions.

Value

PLIsuperquantile_multivar returns a list of matrices (delta twist of input 1 (in rows) vs. delta twist of input 2 (in columns)) containing the following components:

PLI	the PLI.
PLICIinf	the bootstrap lower confidence interval values of the PLI.
PLICIsup	the bootstrap upper confidence interval values of the PLI.
quantile	the perturbed quantile.
quantileCIinf	the bootstrap lower confidence interval values of the perturbed superquantile.
quantileCIsup	the bootstrap upper confidence interval values of the perturbed superquantile.

Author(s)

Bertrand Iooss

References

T. Delage, R. Sueur and B. Iooss, 2018, Robustness analysis of epistemic uncertainties propagation studies in LOCA assessment thermal-hydraulic model, ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018), Lucca, Italy, May 13-19, 2018.
B. Iooss, V. Verges and V. Larget, 2021, BEPU robustness analysis via perturbed law-based sensitivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, doi:10.1177/1748006X211036569
P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-1223.
R. Sueur, N. Bousquet, B. Iooss and J. Bect, 2016, Perturbed-Law based sensitivity Indices for sensitivity analysis in structural reliability, Proceedings of the SAMO 2016 Conference, Reunion Island, France, December 2016.
R. Sueur, B. Iooss and T. Delage, 2017, Sensitivity analysis using perturbed-law based indices for quantiles and application to an industrial case, 10th International Conference on Mathematical Methods in Reliability (MMR 2017), Grenoble, France, July 2017.

See Also

PLI, PLIquantile, PLIsuperquantile, PLIquantile_multivar

Examples

```
# Model: 3D function
distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))
N = 10000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = rnorm(N,0,1)
Y = 2 * X[,1] + X[,2] + X[,3]/2
alpha <- 0.95
nboot <- 20 # put nboot=200 for consistency
q95 = quantile(Y,alpha)
sq95a <- mean(Y*(Y>q95)/(1-alpha)) ; sq95b <- mean(Y[Y>q95])
v_delta = seq(-1,1,1/10)
toto12 = PLIsuperquantile_multivar(alpha,X,Y,c(1, 2), deltasvector=v_delta,
        InputDistributions=distribution, samedelta=TRUE,bias=FALSE)
toto = PLIsuperquantile(alpha,X,Y,deltasvector=v_delta,InputDistributions=distribution,
        type="MOY", samedelta=TRUE, nboot=0, bias=FALSE)
```

```
par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),,ylim=c(-1,1),xlab=expression(delta),
    ylab=expression(hat(PLI[i*delta])), pch=16,cex=1.5,col="blue")
points(v_delta, toto$PLI[,1],col="darkgreen", pch=15, cex=1.5)
points(v_delta, toto$PLI[, 2],col="black",pch=19,cex=1.5)
points(v_delta, toto$PLI[,3],col="red",pch=17,cex=1.5)
abline(h=0,lty=2)
legend(-1, 1., legend=c("X1", "X2", "X3", "X1X2"), col=c("darkgreen", "black", "red", "blue"),
    pch=c(15, 19, 17, 16), cex=1.5)
# with bootstrap (put in comment because too long for the CRAN tests)
v_delta = seq(-1,1,2/10)
toto12 = PLIsuperquantile_multivar(alpha,X,Y,c(1,2),deltasvector=v_delta,
    InputDistributions=distribution, samedelta=TRUE, nboot=nboot, bootsample=FALSE,bias=FALSE)
toto = PLIsuperquantile(alpha, X, Y, deltasvector=v_delta,InputDistributions=distribution,
        type="MOY", samedelta=TRUE, nboot=nboot, bootsample=FALSE,bias=FALSE)
par(mar=c(4, 5, 1, 1))
plot(v_delta,diag(toto12$PLI),ylim=c(-1,1),xlab=expression(delta),
    ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15, cex=1.5)
points(v_delta, toto$PLI[, 2],col="black",pch=19,cex=1.5)
points(v_delta, toto$PLI[,3],col="red",pch=17, cex=1.5)
lines(v_delta,diag(toto12$PLICIinf),col="blue")
lines(v_delta,diag(toto12$PLICIsup), col="blue")
lines(v_delta, toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[, 2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta, toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(-1,1, legend=c("X1", "X2", "X3", "X1X2"), col=c("darkgreen", "black", "red", "blue"),
    pch=c(15,19,17,16), cex=1.5)
```


\#

```
\# another visualizations by using the plotrix,
\# viridisLite, lattice and grid packages (from Vanessa Verges)
```


library(plotrix)

```
parameters = list(colors=c("darkgreen","black","red"),symbols=c(15,19,17))
par(mar=c(4,5,1,1),xpd=TRUE)
plotCI(v_delta,diag(toto12$PLI),ui=diag(toto12$PLICIsup),li=diag(toto12$PLICIinf),
    xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),
    main=bquote("PLI-superquantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
    ") on "~X[1]~"and"~X[2]~"of Y="~2*X[1] + X[2] + X[3]/2),
    cex=1.5,col="blue",pch=16)
for (i in 1:3){
    plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],
            cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
            add=TRUE)
```

\}
abline (h=0,lty=2)
legend("topleft", legend=c("X1","X2", "X3", "X1×2"),
col=c(parameters\$colors,"blue"),pch=c(parameters\$symbols,16), cex=1.5)
\# Visu of all the PLIs (at any paired combinations of deltas)
library (viridisLite)
library(lattice)
library(grid)
colnames(toto12\$PLI) $=$ round(v_delta, 2)
rownames(toto12\$PLI) $=$ round(v_delta, 2)
coul = viridis(100)
levelplot(toto12\$PLI, col.regions=coul, main=bquote(hat(PLI)[superquantile[~X[1]~X[2]]]), xlab=bquote(delta[X~.(1)]), ylab=bquote(delta[X~. (2)]))

Support index functions: Measuring the effect of input variables over their support

Description

Methods to plot the normalized support index functions (Fruth et al., 2016).

Usage

```
    ## S3 method for class 'support'
    plot(x, i = 1:ncol(x$X),
        xprob = FALSE, p = NULL, p.arg = NULL,
        ylim = NULL, col = 1:3, lty = 1:3, lwd = c(2,2,1), cex = 1, ...)
    ## S3 method for class 'support'
    scatterplot(x, i = 1:ncol(x$X),
            xprob = FALSE, p = NULL, p.arg = NULL,
            cex = 1, cex.lab = 1, ...)
```


Arguments

xprob an optional boolean indicating whether the inputs should be plotted in probabil-

X
i
p
an object of class support.
an optional vector of integers indicating the subset of input variables X_i for plotting. Default is the entire set of input variables. ity scale.

p.arg	list of probability names and parameters for the input distribution.
ylim	,
col	,
lty	,
lwd	,
cex	,
cex.lab	usual graphical parameters.
\ldots	additional graphical parameters to be passed to scatterplot method (ggMarginal
	function).

Details

If $x p r o b=T R U E$, the input variable $X _i$ is plotted in probability scale according to the informations provided in the arguments p, p.arg: The x-axis is thus $F(x)$, where F is the cdf of $X_{-} i$. If these ones are not provided, the empirical distribution is used for rescaling: The x-axis is thus $\mathrm{Fn}(\mathrm{x})$, where Fn is the empirical cdf of $\mathrm{X} _i$.
Legend details:
zeta*T : normalized total support index function
zeta* : normalized 1st-order support index function
nu* : normalized DGSM
Notice that the sum of (normalized) DGSM (nu*) over all input variables is equal to 1 . Furthermore, the expectation of the total support index function (zeta*T) is equal to the (normalized) DGSM (nu*).

Author(s)

O. Roustant

See Also

Estimation of support index functions: support

pme_knn | Data-given proportional marginal effects estimation via nearest- |
| :--- |
| neighbors procedure |

Description

pme_knn computes the proportional marginal effects (PME) via a nearest neighbor estimation. Parallelized computations are possible to accelerate the estimation process. It can be used with categorical inputs (which are transformed with one-hot encoding before computing the nearest-neighbors), dependent inputs and multiple outputs. For large sample sizes, the nearest neighbour algorithm can be significantly accelerated by using approximate nearest neighbour search.

Usage

```
pme_knn(model=NULL, X, method = "knn", tol = NULL, marg = T, n.knn = 2,
    n.limit = 2000, noise = F, rescale = F, nboot = NULL, boot.level = 0.8,
            conf=0.95, parl=NULL, ...)
## S3 method for class 'pme_knn'
tell(x, y, ...)
## S3 method for class 'pme_knn'
print(x, ...)
## S3 method for class 'pme_knn'
plot(x, ylim = c(0,1), ...)
## S3 method for class 'pme_knn'
ggplot(x, ylim = c(0, 1), ...)
```


Arguments

model a function defining the model to analyze, taking X as an argument.
$X \quad$ a matrix or data frame containing the observed inputs.
method the algorithm to be used for estimation, either "rank" or "knn", see details. Default is method="knn".
tol tolerance under which an input is considered as being a zero input. See details.
marg whether to chose the closed Sobol' (FALSE) or total Sobol' (TRUE) indices as value functions.
n.knn the number of nearest neighbours used for estimation.
n.limit sample size limit above which approximate nearest neighbour search is activated.
noise a logical which is TRUE if the model or the output sample is noisy. See details.
rescale a logical indicating if continuous inputs must be rescaled before distance computations. If TRUE, continuous inputs are first whitened with the ZCA-cor whitening procedure (cf. whiten() function in package whitening). If the inputs are independent, this first step will have a very limited impact. Then, the resulting whitened inputs are individually modified via a copula transform such that each input has the same scale.
nboot the number of bootstrap resamples for the bootstrap estimate of confidence intervals. See details.
boot. level a numeric between 0 and 1 for the proportion of the bootstrap sample size.
conf the confidence level of the bootstrap confidence intervals.
parl number of cores on which to parallelize the computation. If NULL, then no parallelization is done.
x
the object returned by pme_knn.
$y \quad$ a numeric univariate vector containing the observed outputs.
ylim the y-coordinate limits for plotting.
additional arguments to be passed to model, or to the methods, such as graphical parameters (see par).

Details

For method="rank", the estimator is defined in Gamboa et al. (2020) following Chatterjee (2019).For first-order indices it is based on an input ranking (same algorithm as in sobolrank) while for higher orders, it uses an approximate heuristic solution of the traveling salesman problem applied to the input sample distances (cf. TSP() function in package TSP). For method="knn", ranking and TSP are replaced by a nearest neighbour search as proposed in Broto et al. (2020) and in Azadkia \& Chatterjee (2020) for a similar coefficient.
The computation is done using the subset procedure, defined in Broto, Bachoc and Depecker (2020), that is computing all the Sobol' closed indices for all possible sub-models first, and then computing the proportional values recursively, as detailed in Feldman (2005), but using an extension to non strictly positive games (Margot Herin 2021).
Since boostrap creates ties which are not accounted for in the algorithm, confidence intervals are obtained by sampling without replacement with a proportion of the total sample size boot.level, drawn uniformly.
If the outputs are noisy, the argument noise can be used: it only has an impact on the estimation of one specific sensitivity index, namely $\operatorname{Var}(E(Y \mid X 1, \ldots, X p)) / \operatorname{Var}(Y)$. If there is no noise this index is equal to 1 , while in the presence of noise it must be estimated.
The distance used for subsets with mixed inputs (continuous and categorical) is the Euclidean distance, thanks to a one-hot encoding of categorical inputs.
If too many cores for the machine are passed on to the parl argument, the chosen number of cores is defaulted to the available cores minus one.
If marg = TRUE (default), the chosen value function to compute the proportional values are the total Sobol' indices (dual of the underlying cooperative game). If marg = FALSE, then the closed Sobol' indices are used instead. Differences may appear between the two.
Zero inputs are defined by the tol argument. If null, then inputs with:

$$
\left.S_{\{i\}}^{T}\right)=0
$$

are considered as zero input in the detection of spurious variables. If provided, zero inputs are detected when:

$$
S_{\{i\}}^{T} \leq \mathrm{tol}
$$

Value

pme_knn returns a list of class "pme_knn":
call the matched call.
PME the estimations of the PME indices.
VE the estimations of the closed Sobol' indices for all possible sub-models.
indices list of all subsets corresponding to the structure of VE.
method which estimation method has been used.
conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap (if nboot>0).
X the observed covariates.

y	the observed outcomes.
n. knn	value of the n. knn argument.
rescale	wheter the design matrix has been rescaled.
n.limit	value of the $n . l$ imit argument.
boot.level	value of the boot. level argument.
noise	wheter the PME must sum up to one or not.
boot	logical, wheter bootstrap confidence interval estimates have been performed.
nboot	value of the nboot argument.
parl	value of the parl argument.
conf	value of the conf argument.
marg	value of the marg argument.
tol	value of the tol argument.

Author(s)

Marouane Il Idrissi, Margot Herin

References

Azadkia M., Chatterjee S. (2019). A simple measure of conditional dependence. arXiv preprint arXiv:1910.12327.

Chatterjee S. (2019). A new coefficient of correlation. arXiv preprint arXiv:1909.10140.
Gamboa F., Gremaud P., Klein T., Lagnoux A. (2020). Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics. arXiv preprint arXiv:2003.01772.
Broto B., Bachoc F. and Depecker M. (2020) Variance Reduction for Estimation of Shapley Effects and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification, 8(2).
M. Il Idrissi, V. Chabridon and B. Iooss (2021). Developments and applications of Shapley effects to reliability-oriented sensitivity analysis with correlated inputs. Environmental Modelling \& Software, 143, 105115.
M. Il Idrissi, V. Chabridon and B. Iooss (2021). Mesures d'importance relative par decompositions de la performance de modeles de regression, Preprint, 52emes Journees de Statistiques de la Societe Francaise de Statistique (SFdS), pp. 497-502, Nice, France, Juin 2021
Feldman, B. (2005) Relative Importance and Value SSRN Electronic Journal.
M. Il Idrissi, M. Herin, B. Iooss and V. Chabridon, Cooperative Game Theory and Global Sensitivity Analysis, Ecole Thematique sur les Incertitudes en Calcul Scientifique (ETICS), Erdeven, France, September 2021.

See Also

sobolrank, shapleysobol_knn, shapleyPermEx, shapleySubsetMc, lmg, emvd

Examples

```
library(parallel)
library(doParallel)
library(foreach)
library(gtools)
library(boot)
library(RANN)
###########################################################
# Linear Model with Gaussian correlated inputs
library(mvtnorm)
set.seed(1234)
n <- }100
beta<-c(1, -1,0.5)
sigma<-matrix(c(1,0,0,
    0,1,-0.8,
    0,-0.8,1),
    nrow=3,
    ncol=3)
X <-rmvnorm(n, rep(0,3), sigma)
colnames(X)<-c("X1", "X2", "X3")
y<- X%*%beta + rnorm(n,0,2)
# Without Bootstrap confidence intervals
x<-pme_knn(model=NULL, X=X,
        n.knn=3,
        noise=TRUE)
tell(x,y)
print(x)
plot(x)
# With Boostrap confidence intervals
x<-pme_knn(model=NULL, X=X,
        nboot=10,
        n.knn=3,
        noise=TRUE,
        boot.level=0.7,
        conf=0.95)
tell(x,y)
print(x)
plot(x)
#####################################################
# Test case: the Ishigami function
# Example with given data and the use of approximate nearest neighbour search
```

```
n <- 5000
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- pme_knn(model = NULL, X = X, method = "knn", n.knn = 5,
                n.limit = 2000)
tell(x,Y)
plot(x)
library(ggplot2) ; ggplot(x)
######################################################
# Test case : Linear model (3 Gaussian inputs including 2 dependent) with scaling
# See Iooss and Prieur (2019)
library(mvtnorm) # Multivariate Gaussian variables
library(whitening) # For scaling
modlin <- function(X) apply(X,1,sum)
d <- 3
n <- 10000
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- ( sig %*% t(sig) ) * Cormat
Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
X <- Xall(n)
x <- pme_knn(model = modlin, X = X, method = "knn", n.knn = 5,
                        rescale = TRUE, n.limit = 2000)
print(x)
plot(x)
```


Description

This program computes the squared coefficient of the function decomposition in the tensor basis formed by eigenfunctions of Poincare differential operators. After division by the variance of the model output, it provides lower bounds of first-order and total Sobol’ indices.

Usage

PoincareChaosSqCoef(PoincareEigen, multiIndex, design, output, outputGrad = NULL, inputIndex = 1, der = FALSE, method = "unbiased")

Arguments

PoincareEigen output list from PoincareOptimal() function
multiIndex vector of indices $(11, \ldots, l d)$. A coordinate equal to 0 corresponds to the constant basis function 1

design	design of experiments (matrix of size n x d$)$ with d the number of inputs and n the number of observations
output	vector of length $\mathrm{n}(\mathrm{y} 1, \ldots, \mathrm{yn})$ of output values at design points matrix $\mathrm{n} x$ d whose columns contain the output partial derivatives at design points
inputIndex	index of the input variable (between 1 and d) der
logical (default=FALSE): should we use the formula with derivatives to compute	
the squared coefficient?	

Details

Similarly to polynomial chaos, where tensors of polynomials are used, we consider here tensor basis formed by eigenfunctions of Poincare differential operators. This basis is also orthonormal, and Parseval formula lead to lower bound for (unnormalized) Sobol, total Sobol indices, and any variance-based index. Denoting by $\left(e_{1, l 1} \ldots e_{d, l d}\right)$ one tensor basis, the corresponding coefficient is equal to
$c_{l 1, \ldots, l d}=<f, e_{1, l 1} \ldots e_{d, l d}>$.
For a given input variable (say $x 1$ to simplify notations), it can be rewritten with derivatives as:
$c_{l 1, \ldots, l d}=<d f / d x 1, d e_{1, l 1} / d x 1 e_{2, l 2} \ldots e_{d, l d}>/$ eigenvalue $_{1, l 1}$
The function returns an estimate of $c_{l 1, \ldots, l d}^{2}$, corresponding to one of these two forms (derivativefree, or derivative-based).

Value

An estimate of the squared coefficient.

Author(s)

Olivier Roustant and Bertrand Iooss

References

O. Roustant, F. Gamboa and B. Iooss, Parseval inequalities and lower bounds for variance-based sensitivity indices, Electronic Journal of Statistics, 14:386-412, 2020

See Also

PoincareOptimal

Examples

```
# A simple example
g <- function(x, a){
    res <- x[, 1] + a*x[, 1]*x[, 2]
```

```
    attr(res, "grad") <- cbind(1 + a * x[, 2], a * x[, 1])
    return(res)
}
n <- 1e3
set.seed(0)
X <- matrix(runif(2*n, min = -1/2, max = 1/2), nrow = n, ncol = 2)
a <- 3
fX <- g(X, a = a)
out_1 <- out_2 <- PoincareOptimal(distr = list("unif", -1/2, 1/2),
                only.values = FALSE, der = TRUE,
                method = "quad")
out <- list(out_1, out_2)
# Lower bounds for X1
c2_10 <- PoincareChaosSqCoef(PoincareEigen = out, multiIndex = c(1, 0),
                    design = X, output = fX, outputGrad = attr(fX, "grad"),
                    inputIndex = 1, der = FALSE)
c2_11 <- PoincareChaosSqCoef(PoincareEigen = out, multiIndex = c(1, 1),
                    design = X, output = fX, outputGrad = attr(fX, "grad"),
                    inputIndex = 1, der = FALSE)
c2_10_der <- PoincareChaosSqCoef(PoincareEigen = out, multiIndex = c(1, 0),
                                    design = X, output = fX, outputGrad = attr(fX, "grad"),
                                    inputIndex = 1, der = TRUE)
c2_11_der <- PoincareChaosSqCoef(PoincareEigen = out, multiIndex = c(1, 1),
                                    design = X, output = fX, outputGrad = attr(fX, "grad"),
                    inputIndex = 1, der = TRUE)
LB1 <- c(8/pi^4, c2_10, c2_10_der)
LB1tot <- LB1 + c(64/pi^8 * a^2, c2_11, c2_11_der)
LB <- cbind(LB1, LB1tot)
rownames(LB) <- c("True lower bound value",
                            "Estimated, no derivatives", "Estimated, with derivatives")
colnames(LB) <- c("D1", "D1tot")
cat("True values of D1 and D1tot:", c(1/12, 1/12 + a^2 / 144),"\n")
cat("Sample size: ", n, "\n")
cat("Lower bounds computed with the first Poincare eigenvalue:\n")
print(LB)
cat("\nN.B. Increase the sample size to see the convergence to true lower bound values.\n")
############################################################
# Flood model example (see Roustant et al., 2017, 2019)
```

library(evd) \# Gumbel law
library(triangle) \# Triangular law
\# Flood model
Fcrues_full2=function(X, ans=0)\{
\# ans=1 gives Overflow output; ans=2 gives Cost output; ans=0 gives both
mat=matrix (X, ncol=8);

```
    if (ans==0){ reponse=matrix(NA,nrow(mat),2);}
    else{ reponse=rep(NA,nrow(mat));}
    for (i in 1:nrow(mat)) {
        H = (mat[i,1] / (mat[i,2]*mat[i,8]*sqrt((mat[i,4] - mat[i,3])/mat[i,7])))^(0.6) ;
        S = mat[i,3] + H - mat[i,5] - mat[i,6] ;
        if (S > 0){ Cp = 1 ;}
        else{ Cp = 0.2 + 0.8 * (1 - exp(-1000 / S^4));}
        if (mat[i,5]>8){Cp = Cp + mat[i,5]/20 ;}
        else{ Cp = Cp + 8/20 ;}
        if (ans==0){
        reponse[i,1] = S ;
        reponse[i,2] = Cp ;
    }
    if (ans==1){ reponse[i] = S ;}
    if (ans==2){ reponse[i] = Cp ;}
    }
    return(RES=reponse)
}
# Flood model derivatives (by finite-differences)
dFcrues_full2 <- function(X, i, ans, eps){
    der = X
    X1 = X
    X1[,i] = X[,i]+eps
    der = (Fcrues_full2(X1,ans) - Fcrues_full2(X,ans))/(eps)
    return(der)
}
# Function for flood model inputs sampling
EchantFcrues_full2<-function(taille){
    X = matrix(NA,taille,8)
    X[,1] = rgumbel.trunc(taille,loc=1013.0,scale=558.0,min=500,max=3000)
    X[,2] = rnorm.trunc(taille,mean=30.0,sd=8,min=15.)
    X[,3] = rtriangle(taille,a=49,b=51,c=50)
    X[,4] = rtriangle(taille,a=54,b=56,c=55)
    X[,5] = runif(taille,min=7,max=9)
    X[,6] = rtriangle(taille,a=55,b=56,c=55.5)
    X[,7] = rtriangle(taille,a=4990,b=5010,c=5000)
    X[,8] = rtriangle(taille,a=295,b=305, c=300)
    return(X)
}
d <- 8
n <- 1e3
eps <- 1e-7 # finite-differences for derivatives
x <- EchantFcrues_full2(n)
yy <- Fcrues_full2(x, ans=2)
y <- scale(yy, center = TRUE, scale = FALSE)[,1]
dy <- NULL
for (i in 1:d) dy <- cbind(dy, dFcrues_full2(x, i, ans=2, eps))
method <- "quad"
```

```
out_1 <- PoincareOptimal(distr = list("gumbel", 1013, 558), min=500,max=3000,
    only.values = FALSE, der = TRUE, method = method)
out_2 <- PoincareOptimal(distr = list("norm", 30, 8), min=15, max=200,
    only.values = FALSE, der = TRUE, method = method)
out_3 <- PoincareOptimal(distr = list("triangle", 49, 51, 50),
    only.values = FALSE, der = TRUE, method = method)
out_4 <- PoincareOptimal(distr = list("triangle", 54, 56, 55),
    only.values = FALSE, der = TRUE, method = method)
out_5 <- PoincareOptimal(distr = list("unif", 7, 9),
    only.values = FALSE, der = TRUE, method = method)
out_6 <- PoincareOptimal(distr = list("triangle", 55, 56, 55.5),
    only.values = FALSE, der = TRUE, method = method)
out_7 <- PoincareOptimal(distr = list("triangle", 4990, 5010, 5000),
    only.values = FALSE, der = TRUE, method = method)
out_8 <- PoincareOptimal(distr = list("triangle", 295, 305, 300),
    only.values = FALSE, der = TRUE, method = method)
out_ <- list(out_1,out_2,out_3,out_4,out_5,out_6,out_7,out_8)
c2 <- c2der <- c2tot <- c2totder <- rep(0,d)
for (i in 1:d){
    m <- diag(1,d,d) ; m[,i] <- 1
    for (j in 1:d){
        cc <- PoincareChaosSqCoef(PoincareEigen = out_, multiIndex = m[j,],
                design = x, output = y, outputGrad = NULL,
                inputIndex = i, der = FALSE)
        c2tot[i] <- c2tot[i] + cc
        if (j == i) c2[i] <- cc
        cc <- PoincareChaosSqCoef(PoincareEigen = out_, multiIndex = m[j,],
                design = x, output = y, outputGrad = dy,
                inputIndex = i, der = TRUE)
        c2totder[i] <- c2totder[i] + cc
        if (j == i) c2der[i] <- cc
    }
}
print("Lower bounds of first-order Sobol' indices without derivatives:")
print(c2/var(y))
print("Lower bounds of first-order Sobol' indices with derivatives:")
print(c2der/var(y))
print("Lower bounds of total Sobol' indices without derivatives:")
print(c2tot/var(y))
print("Lower bounds of total Sobol' indices with derivatives:")
print(c2totder/var(y))
```


Description

A DGSM is a sensitivity index relying on the integral (over the space domain of the input variables) of the squared derivatives of a model output with respect to one model input variable. The product between a DGSM and a Poincare Constant (Roustant et al., 2014: Roustant et al., 2017) gives an upper bound of the total Sobol' index corresponding to the same input (Lamboni et al., 2013; Kucherenko and Iooss, 2016).

This Poincare constant depends on the type of probability distribution of the input variable. In the particular case of log-concave distribution, analytical formulas are available for double-exponential transport by the way of the median value (Lamboni et al., 2013). For truncated log-concave distributions, different formulas are available (Roustant et al., 2014). For general distributions (truncated or not), some Poincare constants can be computed via a relatively simple optimization process using different formula coming from transport inequalities (Roustant et al., 2017).
Notice that the analytical formula based on the log-concave law cases is a subcase of the doubleexponential transport. In all cases, with this function, the smallest constant is obtained using the logistic transport formula. PoincareOptimal allows to obtained the best (optimal) constant using another (spectral) method.
IMPORTANT: This program is useless for the two following input variable distributions:

- uniform on $[\min , \max]$ interval: The optimal Poincare constant is $\frac{(\max -\min)^{2}}{p i^{2}}$.
- normal with a standard deviation $s d$: The optimal Poincare constant is $s d^{2}$.

Usage

PoincareConstant(dfct=dnorm, qfct=qnorm, pfct=pnorm, logconcave=FALSE, transport="logistic", optimize.interval=c(-100, 100), truncated=FALSE, $\min =0$, $\max =1, \ldots$)

Arguments

dfct the probability density function of the input variable
qfct the quantile function of the input variable
pfct the distribution function of the input variable
logconcave logical value: TRUE for a log-concave distribution (analyical formula will be used). Requires argument 'dfct' and 'qfct'. FALSE (default value) means that the calculations will be performed using transport-based formulas (applicable for log-concave and non-log concave cases)
transport If logconcave=FALSE, choice of the transport inequalities to be used: "double_exp" (default value) for double exponential transport and "logistic" for logistic transport'. Requires argument 'dfct' and 'pfct'
optimize.interval
In the transport-based case (logconcave=FALSE), a vector containing the endpoints of the interval to be searched for the maximum of the function to be optimized
truncated logical value: TRUE for a truncated distribution. Default value is FALSE
min the minimal bound in the case of a truncated distribution
$\max \quad$ the maximal bound in the case of a truncated distribution
$\ldots \quad$ additional arguments

Details

In the case of truncated distributions (truncated=TRUE), in addition to the min and max arguments: - the truncated distribution name has to be passed in the 'dfct' and 'pfct' arguments if logconcave $=$ FALSE, - the non-truncated distribution name has to be passed in the 'dfct' and 'qfct' arguments if logconcave=TRUE. Moreover, if min and max are finite, optimize.interval is required to be defined as $\mathrm{c}(\min , \max)$.

Value

PoincareConstant returns the value of the Poincare constant.

Author(s)

Jana Fruth, Bertrand Iooss and Olivier Roustant

References

S. Kucherenko and B. Iooss, Derivative-based global sensitivity measures, In: R. Ghanem, D. Higdon and H. Owhadi (eds.), Handbook of Uncertainty Quantification, 2016.
M. Lamboni, B. Iooss, A-L. Popelin and F. Gamboa, Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests, Mathematics and Computers in Simulation, 87:45-54, 2013.
O. Roustant, F. Barthe and B. Iooss, Poincare inequalities on intervals - application to sensitivity analysis, Electronic Journal of Statistics, Vol. 11, No. 2, 3081-3119, 2017.
O. Roustant, J. Fruth, B. Iooss and S. Kuhnt, Crossed-derivative-based sensitivity measures for interaction screening, Mathematics and Computers in Simulation, 105:105-118, 2014.

See Also

PoincareOptimal

Examples

```
# Exponential law (log-concave)
PoincareConstant(dfct=dexp,qfct=qexp,pfct=NULL, rate=1, logconcave=TRUE) # log-concave assumption
PoincareConstant(dfct=dexp,qfct=NULL,pfct=pexp,rate=1,optimize.interval=c(0, 15))
    # logistic transport approach
```

\# Weibull law (log-concave)
PoincareConstant(dfct=dweibull, qfct=NULL,pfct=pweibull,optimize.interval=c(0, 15), shape=1, scale=1) \# logistic transport approach
\# Triangular law (log-concave)
library(triangle)
PoincareConstant (dfct=dtriangle, qfct=qtriangle, pfct=NULL, $a=-1, b=1, c=0$, logconcave=TRUE) \# log-concave assumption
PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, $a=-1, b=1, c=0$, transport="double_exp", optimize.interval=c ($-1,1$)) \# Double-exponential transport approach
PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, $a=-1, b=1, ~ c=0$, optimize.interval=c(-1,1)) \# Logistic transport calculation
\# Normal $N(0,1)$ law truncated on [-1.87,+infty]
PoincareConstant(dfct=dnorm, qfct=qnorm, pfct=pnorm, mean=0, sd=1, logconcave=TRUE, transport="double_exp", truncated=TRUE, min=-1.87, max=999) \# log-concave assumption
PoincareConstant(dfct=dnorm.trunc, qfct=qnorm.trunc, pfct=pnorm.trunc, mean=0, sd=1,
\# Double-exponential transport approach
truncated=TRUE, min=-1.87, max=999, transport="double_exp", optimize.interval=c(-1.87,20))
\# Logistic transport approach
PoincareConstant(dfct=dnorm.trunc, qfct=qnorm.trunc, pfct=pnorm.trunc, mean=0, sd=1, truncated=TRUE, min=-1.87, max=999, optimize.interval=c $(-1.87,20)$)
\# Gumbel law (log-concave)
library(evd)
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=NULL, loc=0, scale=1, logconcave=TRUE, transport="double_exp") \# log-concave assumption
PoincareConstant(dfct=dgumbel, qfct=NULL, pfct=pgumbel, loc=0, scale=1, transport="double_exp", optimize.interval=c $(-3,20)$) \# Double-exponential transport approach
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1, optimize.interval=c(-3,20)) \# Logistic transport approach
\# Truncated Gumbel law (log-concave)
\# Double-exponential transport approach
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1, logconcave=TRUE, transport="double_exp", truncated=TRUE, min=-0.92, max=3.56) \# log-concave assumption
PoincareConstant(dfct=dgumbel.trunc, $q f c t=N U L L, ~ p f c t=p g u m b e l . t r u n c, ~ l o c=0, ~ s c a l e=1$, truncated=TRUE, min=-0.92, max=3.56, transport="double_exp", optimize.interval=c ($-0.92,3.56$))
\# Logistic transport approach
PoincareConstant(dfct=dgumbel.trunc, qfct=qgumbel.trunc, pfct=pgumbel.trunc, loc=0, scale=1, truncated=TRUE, min=-0.92, max=3.56, optimize.interval=c $(-0.92,3.56)$)

PoincareOptimal Optimal Poincare constants for Derivative-based Global Sensitivity

 Measures (DGSM)
Description

A DGSM is a sensitivity index relying on the integral (over the space domain of the input variables) of the squared derivatives of a model output with respect to one model input variable. The product between a DGSM and a Poincare Constant (Roustant et al., 2014: Roustant et al., 2017), on the type of probability distribution of the input variable, gives an upper bound of the total Sobol' index corresponding to the same input (Lamboni et al., 2013; Kucherenko and Iooss, 2016).
This function provides the optimal Poincare constant as explained in Roustant et al. (2017). It solves numerically the spectral problem corresponding to the Poincare inequality, with Neumann conditions. The differential equation is $f^{\prime \prime}-V^{\prime} f^{\prime}=-\operatorname{lambda} f$ with $f^{\prime}(a)=f^{\prime}(b)=0$. In addition, all the spectral decomposition can be returned by the function. The eigenvalues are sorted in ascending order, starting from zero. The information corresponding to the optimal constant is thus given in the second column.
IMPORTANT: This program is useless for the two following input variable distributions:

- uniform on $[\min , \max]$ interval: The optimal Poincare constant is $\frac{(\max -\min)^{2}}{p i^{2}}$.
- normal with a standard deviation $s d$: The optimal Poincare constant is $s d^{2}$.

Usage

PoincareOptimal(distr=list("unif", c(0,1)), min=NULL, max=NULL,

$$
\begin{aligned}
& \mathrm{n}=500, \text { method }=\mathrm{c}(\text { "quadrature", "integral"), only.values = TRUE, } \\
& \text { der }=\text { FALSE, plot }=\text { FALSE, } \ldots \text {) }
\end{aligned}
$$

Arguments

distr a list or a function corresponding to the probability distribution.

- If it is a list, it contains the name of the R distribution of the variable and its parameters. Possible choices are: "unif" (uniform), "norm" (normal), "exp" (exponential), "triangle" (triangular from package triangle), "gumbel" (from package evd), "beta", "gamma", "weibull" and "lognorm" (lognormal). The values of the distribution parameters have to be passed in arguments in the same order than the corresponding R function.
- If it is a function, it corresponds to the pdf. Notice that the normalizing constant has no impact on the computation of the optimal Poincare constant and can be ommitted.

min	see below
max	[min,max]: interval on which the distribution is truncated. Choose low and high quantiles in case of unbounded distribution. Choose NULL for uniform and triangular distributions
n	number of discretization steps
method	method of integration: "quadrature" (default value) uses the trapez quadrature (close and quicker), "integral" is longer but does not make any approximation
only.values	if TRUE, only eigen values are computed and returned, otherwise both eigen- values and eigenvectors are returned (default value is TRUE)
der	if TRUE, compute the eigenfunction derivatives (default value is FALSE)

```
plot logical:if TRUE and only.values=FALSE, plots a minimizer of the Rayleigh ra-
    tio (default value is FALSE)
... additional arguments
```


Details

For the uniform, normal, triangular and Gumbel distributions, the optimal constants are computed on the standardized correponding distributions (for a better numerical efficiency). In these cases, the return optimal constant and eigenvalues correspond to original distributions.

Value

PoincareOptimal returns a list containing:
opt the optimal Poincare constant
values the eigenvalues in increasing order, starting from 0 . Thus, the second one is the spectral gap, equal to the inverse of the Poincare constant
vectors the values of eigenfunctions at knots
der the values of eigenfunction derivatives at knots
knots a sequence of length n formed by equally spaced real numbers in the support of the probability distribution, used for discretization

Author(s)

Olivier Roustant and Bertrand Iooss

References

O. Roustant, F. Barthe and B. Iooss, Poincare inequalities on intervals - application to sensitivity analysis, Electronic Journal of Statistics, Vol. 11, No. 2, 3081-3119, 2017.
O Roustant, F. Gamboa, B Iooss. Parseval inequalities and lower bounds \# for variance-based sensitivity indices. 2019. hal-02140127

See Also

PoincareConstant,PoincareChaosSqCoef

Examples

```
# uniform on [a, b]
a <- -1 ; b <- 1
out <- PoincareOptimal(distr = list("unif", a, b))
cat("Poincare constant (theory -- estimated):", (b-a)^2/pi^2, "--", out$opt, "\n")
# truncated standard normal on [-1, 1]
# the optimal Poincare constant is then equal to 1/3,
# as -1 and 1 are consecutive roots of the 2nd Hermite polynomial X*X - 1.
```

```
out <- PoincareOptimal(distr = dnorm, min = -1, max = 1,
    plot = TRUE, only.values = FALSE)
cat("Poincare constant (theory -- estimated):", 1/3, "--", out$opt, "\n")
# truncated standard normal on [-1.87, +infty]
out <- PoincareOptimal(distr = list("norm", 0, 1), min = -1.87, max = 5,
    method = "integral", n = 500)
print(out$opt)
# truncated Gumbel(0,1) on [-0.92, 3.56]
library(evd)
out <- PoincareOptimal(distr = list("gumbel", 0, 1), min = -0.92, max = 3.56,
    method = "integral", n = 500)
print(out$opt)
# symetric triangular [-1,1]
library(triangle)
out <- PoincareOptimal(distr = list("triangle", -1, 1, 0), min = NULL, max = NULL)
cat("Poincare constant (theory -- estimated):", 0.1729, "--", out$opt, "\n")
# Lognormal distribution
out <- PoincareOptimal(distr = list("lognorm", 1, 2), min = 3, max = 10,
    only.values = FALSE, plot = TRUE, method = "integral")
print(out$opt)
## ---------------------------------
## Illustration for eigenfunctions on the uniform distribution
## (corresponds to Fourier series)
b <- 1
a <- -b
out <- PoincareOptimal(distr = list("unif", a, b),
    only.values = FALSE, der = TRUE, method = "quad")
# Illustration for 3 eigenvalues
par(mfrow = c(3,2))
eigenNumber <- 1:3 # eigenvalue number
for (k in eigenNumber[1:3]){ # keep the 3 first ones (for graphics)
    plot(out$knots, out$vectors[, k + 1], type = "l",
            ylab = "", main = paste("Eigenfunction", k),
            xlab = paste("Eigenvalue:", round(out$values[k+1], digits = 3)))
    sgn <- sign(out$vectors[1, k + 1])
    lines(out$knots, sgn * sqrt(2) * cos(pi * k * (out$knots/(b-a) + 0.5)),
            col = "red", lty = "dotted")
    plot(out$knots, out$der[, k + 1], type = "l",
            ylab = "", main = paste("Eigenfunction derivative", k),
            xlab = "")
    sgn <- sign(out$vectors[1, k + 1])
```

```
    lines(out$knots, - sgn * sqrt(2) / (b-a) * pi * k * sin(pi * k * (out$knots/(b-a) + 0.5)),
        col = "red", lty = "dotted")
}
```

\# how to create a function for one eigenfunction and eigenvalue,
\# given N values
eigenFun <- approxfun(x = out\$knots, $y=$ out\$vectors[, 2])
eigenDerFun <- approxfun($x=$ out\$knots, $y=o u t \$ d e r[, ~ 2])$
$x<-\operatorname{runif}(n=3, \min =-1 / 2, \max =1 / 2$)
eigenFun(x)
eigenDerFun(x)

qosa Quantile-oriented sensitivity analysis

Description

qosa implements the estimation of first-order quantile-oriented sensitivity indices as defined in Fort et al. (2016) with a kernel-based estimator of conditonal probability density functions closely related to the one proposed by Maume-Deschamps and Niang (2018). qosa also supports a kernelbased estimation of Sobol first-order indices (i.e. Nadaraya-Watson).

Usage

```
qosa(model = NULL, X1, X2 = NULL, type = "quantile", alpha = 0.1, split. sample \(=2 / 3\),
nsample \(=1 \mathrm{e} 4\), nboot \(=0\), conf \(=0.95, .\). )
\#\# S3 method for class 'qosa'
tell (x, y = NULL, ...)
\#\# S3 method for class 'qosa'
print(x, ...)
\#\# S3 method for class 'qosa'
plot( \(x, y l i m=c(0,1), \ldots)\)
\#\# S3 method for class 'qosa'
\(\operatorname{ggplot}(x, y l i m=c(0,1), \ldots)\)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 a random sample of the inputs used for the estimation of conditional probability density functions. If X 2 is NULL, X 1 is split in two samples, with the first split. sample proportion of observations assigned to X 1 and the rest to X 2 .

X2
a random sample of the inputs used to evaluate the conditional probability density functions. If NULL, it is constructed with the last ($1-$ split. sample) proportion of observations from X1, see above.

type	a string specifying which first-order sensitivity indices must be estimated: quantile- oriented indices (type="quantile") or Sobol' indices (type="mean"). if type="quantile" the quantile level.
alpha	if X2=NULL the proportion of observations from X1 assigned to the estimation of conditional probability density functions.
nsample	the number of samples from the conditional probability density functions used to estimate the conditional quantiles (if type="quantile") or the conditional means (if type="mean").
nboot	the number of bootstrap replicates.
conf	a list of class "sobolrank" storing the state of the sensitivity study (parameters, data, estimates).
y	a vector of model responses.
$y l i m$	y-coordinate plotting limits. any other arguments for model which are passed unchanged each time it is called.

Details

Quantile-oriented sensitivty indices were defined as a special case of sensitivity indices based on contrast functions in Fort et al. (2016). The estimator used by qosa follows closely the one proposed by Maume-Deschamps \& Niang (2018). The only difference is that Maume-Deschamps and Niang (2018) use the following kernel-based estimate of the conditional cumulative distribution function:

$$
\hat{F}(y \| X=x)=\frac{\sum_{i=1}^{n} K_{h_{x}}\left(x-X_{i}\right) \mathbf{1}\left\{Y_{i}<y\right\}}{\sum_{i=1}^{n} K_{h_{x}}\left(x-X_{i}\right)}
$$

whereas we use

$$
\hat{F}(y \mid X=x)=\frac{\sum_{i=1}^{n} K_{h_{x}}\left(x-X_{i}\right) \int_{-\infty}^{y} K_{h_{y}}\left(t-Y_{i}\right) d t}{\sum_{i=1}^{n} K_{h_{x}}\left(x-X_{i}\right)}
$$

meaning that $1\left\{Y_{i}<y\right\}$ is replaced by $\int_{-\infty}^{y} K_{h_{y}}\left(t-Y_{i}\right) d t=\Phi\left(\frac{y-Y_{i}}{h_{y}}\right)$ where Φ is the cumulative distribution function of the standard normal distribution (since kernel K is Gaussian). The two definitions thus coincide when $h_{y} \rightarrow 0$. Our formula arises from a kernel density estimator of the joint pdf with a diagonal bandwidth. In a future version, it will be genralized to a general bandwidth matrix for improved performance.

Value

qosa returns a list of class "qosa", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments.
X1 a data.frame containing the design of experiments used for the estimation of conditional probability density functions.
a data.frame containing the design of experiments used for the evaluation of conditional probability density functions.
a vector of model responses.
y the estimations of the Sobol' sensitivity indices.

Author(s)

Sebastien Da Veiga

References

Fort, J. C., Klein, T., and Rachdi, N. (2016). New sensitivity analysis subordinated to a contrast. Communications in Statistics-Theory and Methods, 45(15), 4349-4364.
Maume-Deschamps, V., and Niang, I. (2018). Estimation of quantile oriented sensitivity indices. Statistics \& Probability Letters, 134, 122-127.

Examples

```
library(ks)
library(ggplot2)
library(boot)
# Test case : difference of two exponential distributions (Fort et al. (2016))
# We use two samples with different sizes
n1 <- 5000
X1 <- data.frame(matrix(rexp(2 * n1,1), nrow = n1))
n2 <- 1000
X2 <- data.frame(matrix(rexp(2 * n2,1), nrow = n2))
Y1 <- X1[,1] - X1[,2]
Y2 <- X2[,1] - X2[,2]
x <- qosa(model = NULL, X1, X2, type = "quantile", alpha = 0.1)
tell(x,c(Y1,Y2))
print(x)
ggplot(x)
# Test case : difference of two exponential distributions (Fort et al. (2016))
# We use only one sample
n <- 1000 # put n=10000 for more consistency
X <- data.frame(matrix(rexp(2 * n,1), nrow = n))
Y <- X[,1] - X[,2]
x <- qosa(model = NULL, X1 = X, type = "quantile", alpha = 0.7)
tell(x,Y)
print(x)
ggplot(x)
# Test case : the Ishigami function
# We estimate first-order Sobol' indices (by specifying 'mean')
# Next lines are put in comment because too long fro CRAN tests
#n <- 5000
#nboot <- 50
```

```
#X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
#x <- qosa(model = ishigami.fun, X1 = X, type = "mean", nboot = nboot)
#print(x)
#ggplot(x)
```

 sb Sequential Bifurcations

Description

sb implements the Sequential Bifurcations screening method (Bettonvil and Kleijnen 1996).

Usage

```
sb(p, sign = rep("+", p), interaction = FALSE)
\#\# S3 method for class 'sb'
ask(x, i = NULL, ...)
\#\# S3 method for class 'sb'
tell(x, y, ...)
\#\# S3 method for class 'sb'
print(x, ...)
\#\# S3 method for class 'sb'
plot(x, ...)
```


Arguments

p number of factors.
sign a vector fo length p filled with " + " and " - ", giving the (assumed) signs of the factors effects.
interaction a boolean, TRUE if the model is supposed to be with interactions, FALSE otherwise.
x
$y \quad a \quad v e c t o r ~ o f ~ m o d e l ~ r e s p o n s e s . ~$
i an integer, used to force a wanted bifurcation instead of that proposed by the algorithm.
... not used.

Details

The model without interaction is

$$
Y=\beta_{0}+\sum_{i=1}^{p} \beta_{i} X_{i}
$$

while the model with interactions is

$$
Y=\beta_{0}+\sum_{i=1}^{p} \beta_{i} X_{i}+\sum_{1 \leq i<j \leq p} \gamma_{i j} X_{i} X_{j}
$$

In both cases, the factors are assumed to be uniformly distributed on $[-1,1]$. This is a difference with Bettonvil et al. where the factors vary across $[0,1]$ in the former case, while $[-1,1]$ in the latter.
Another difference with Bettonvil et al. is that in the current implementation, the groups are splitted right in the middle.

Value

sb returns a list of class "sb", containing all the input arguments detailed before, plus the following components:
i the vector of bifurcations.
$y \quad$ the vector of observations.
ym the vector of mirror observations (model with interactions only).
The groups effects can be displayed with the print method.

Author(s)

Gilles Pujol

References

B. Bettonvil and J. P. C. Kleijnen, 1996, Searching for important factors in simulation models with many factors: sequential bifurcations, European Journal of Operational Research, 96, 180-194.

Examples

```
# a model with interactions
p <- 50
beta <- numeric(length = p)
beta[1:5] <- runif(n = 5, min = 10, max = 50)
beta[6:p] <- runif(n = p - 5, min = 0, max = 0.3)
beta <- sample(beta)
gamma <- matrix(data = runif(n = p^2, min = 0, max = 0.1), nrow = p, ncol = p)
gamma[lower.tri(gamma, diag = TRUE)] <- 0
gamma[1,2] <- 5
gamma[5,9] <- 12
f <- function(x) { return(sum(x * beta) + (x %*% gamma %*% x))}
# 10 iterations of SB
sa <- sb(p, interaction = TRUE)
for (i in 1 : 10) {
    x <- ask(sa)
    y <- list()
```

```
    for (i in names(x)) {
        y[[i]] <- f(x[[i]])
    }
    tell(sa, y)
}
print(sa)
plot(sa)
```

sensiFdiv Sensitivity Indices based on Csiszar f-divergence

Description

sensiFdiv conducts a density-based sensitivity analysis where the impact of an input variable is defined in terms of dissimilarity between the original output density function and the output density function when the input variable is fixed. The dissimilarity between density functions is measured with Csiszar f-divergences. Estimation is performed through kernel density estimation and the function kde of the package ks.

Usage

```
sensiFdiv(model = NULL, X, fdiv = "TV", nboot = 0, conf = 0.95, ...)
## S3 method for class 'sensiFdiv'
tell(x, y = NULL, ...)
## S3 method for class 'sensiFdiv'
print(x, ...)
## S3 method for class 'sensiFdiv'
plot(x, ylim = c(0, 1), ...)
## S3 method for class 'sensiFdiv'
ggplot(x, ylim = c(0, 1), ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
$X \quad$ a matrix or data. frame representing the input random sample.
fdiv a string or a list of strings specifying the Csiszar f-divergence to be used. Available choices are "TV" (Total-Variation), "KL" (Kullback-Leibler), "Hellinger" and "Chi2" (Neyman chi-squared).
nboot the number of bootstrap replicates
conf the confidence level for confidence intervals.
$x \quad a \operatorname{list}$ of class "sensiFdiv" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
ylim y-coordinate plotting limits.
any other arguments for model which are passed unchanged each time it is called.

Details

Some of the Csiszar f-divergences produce sensitivity indices that have already been studied in the context of sensitivity analysis. In particular, "TV" leads to the importance measure proposed by Borgonovo (2007) (up to a constant), "KL" corresponds to the mutual information (KrzykaczHausmann 2001) and "Chi2" produces the squared-loss mutual information. See Da Veiga (2015) for details.

Value

sensiFdiv returns a list of class "sensiFdiv", containing all the input arguments detailed before, plus the following components:
call the matched call.
X
a data. frame containing the design of experiments.
$y \quad a \operatorname{vector}$ of model responses.
S the estimations of the Csiszar f-divergence sensitivity indices. If several divergences have been selected, Sis a list where each element encompasses the estimations of the sensitivity indices for one of the divergence.

Author(s)

Sebastien Da Veiga, Snecma

References

Borgonovo E. (2007), A new uncertainty importance measure, Reliability Engineering and System Safety 92(6), 771-784.
Da Veiga S. (2015), Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, 85(7), 1283-1305.

Krzykacz-Hausmann B. (2001), Epistemic sensitivity analysis based on the concept of entropy, Proceedings of SAMO2001, 53-57.

See Also

kde, sensiHSIC

Examples

```
library(ks)
# Test case : the non-monotonic Sobol g-function
n <- 100
X <- data.frame(matrix(runif(8 * n), nrow = n))
# Density-based sensitivity analysis
# the next lines are put in comment because too long for CRAN tests
#x <- sensiFdiv(model = sobol.fun, X = X, fdiv = c("TV", "KL"), nboot=30)
#print(x)
```

\#library(ggplot2)
\#ggplot(x)
sensiHSIC
Sensitivity Indices based on Hilbert-Schmidt Independence Criterion (HSIC)

Description

sensiHSIC conducts a sensitivity analysis where the impact of an input variable is defined in terms of the distance between the input/output joint probability distribution and the product of their marginals when they are embedded in a Reproducing Kernel Hilbert Space (RKHS). This distance corresponds to the Hilbert-Schmidt Independence Criterion (HSIC) proposed by Gretton et al. (2005) and serves as a dependence measure between random variables, see Da Veiga (2015) for an illustration in the context of sensitivity analysis. The use of universal kernels ensures equivalence between HSIC nullity and independence of X and Y . In this case, a statistical test of independence with HSIC measure as statistic can be built. H0 is " X and Y are independent", against $\mathrm{H} 1: \mathrm{X}$ and Y are dependent. P-value can be computed either with asymptotic approximation (Gamma approximation), either with permutation method. See Meynaoui et al. (2019) for details. sensiHSIC can also be used to perform a Target Sensitivity Analysis (TSA). The basic idea of TSA is to measure the influence of the inputs on a critical domain of the model output, see Spagnol et al. (2019), Marrel and Chabridon (2020) for details. Aggregated HSIC indices can be readily computed for multiple outputs, but for functional outputs a first PCA step is possible and recommended, see Da Veiga (2015) for an illustration.

Usage

sensiHSIC(model $=$ NULL, X, target $=$ NULL, cond $=$ NULL, kernelX $=" r b f ", ~ p a r a m X=N A$,
kernelY = "rbf", paramY = NA, nboot $=0, \operatorname{conf}=0.95$,
estimator.type = "V-stat", test.method = "Asymptotic",
$B=5000$, crit.option = list(stop.criterion = "screening", alpha = 0.05, Bstart $=100$, Bfinal $=5000$, Bbatch $=100$, $10=200$, graph $=$ TRUE),
expl.var.PCA $=$ NULL, ...)
\#\# S3 method for class 'sensiHSIC'
tell ($\mathrm{x}, \mathrm{y}=\mathrm{NULL}, \ldots$.
\#\# S3 method for class 'sensiHSIC'
print(x, ...)
\#\# S3 method for class 'sensiHSIC'
plot(x, ylim = c(0, 1), ...)
\#\# S3 method for class 'sensiHSIC'
ggplot(x, ylim = c(0, 1), ...)

Arguments

model
X
a function, or a model with a predict method, defining the model to analyze. a matrix or data. frame representing the input random sample.

target	list of parameters to perform Target Sensitivity Analysis (TSA). c: threshold.
upper: TRUE for upper threshold and FALSE for lower threshold. type: the	
weight function type ("indicTh", "logistic", "exp1side"). param: the parameter	
value for "logistic" and "exp1side" types.	
cond	list of parameters to perform Conditional Sensitivity Analysis (CSA). c: thresh-
old. upper: TRUE for upper threshold and FALSE for lower threshold. type:	
the weight function type ("indicTh", "exp1side"). param: the parameter value	
for "exp1side" type.	
kernelX	a string or a list of strings specifying the reproducing kernel to be used for the
input variables. If only one kernel is provided, it is used for all input variables.	
Available choices are "rbf" (Gaussian), "laplace" (exponential), "dcov" (distance	
covariance, see details), "raquad" (rationale quadratic), "invmultiquad" (inverse	
multiquadratic), "linear" (Euclidean scalar product), "matern3" (Matern 3/2),	
"matern5" (Matern 5/2), "ssanova1" (kernel of Sobolev space of order 1) and	
"ssanova2" (kernel of Sobolev space of order 2)	

	the HSIC is estimated with a biased (but asymptotically unbiased) estimator, more practical for numerical implementation. If estimator.type $=$ "U-stat", the unbiased estimator is used. The variance is of order $o(1 / n)$ for both estimators (n being the sample size, i.e. number of rows of X). More details in Meynaoui et al., 2019
test.method	a string specifying the method used to compute the p-value of the HSIC-based independence test. If test.method $=$ "No" then no test performed. If test.method = "Asymptotic" (default value), an asympotic approximation with Gamma distribution is used. If test.method = "Permutation", a permutation method based on B boostrap samples is used to estimate the p-value in a non-asymptotic framework. Permutation-test are recommened for low sample size n. More details in Meynaoui et al., 2019. If test.method = "Seq_Permutation", an iterative permutation method is used to estimate the p-value. This approach bypasses the a-priori choice of the number of permutations (B) and the sequential estimation is stopped according to the user's objective (see crit.option for details).
B	number of boostrap samples used in the permutation method for the estimation of P -values in independence test. B is used only if test.method is "Permutation"
crit.option	a list of parameters used only if test.method = "Seq_Permutation". stop.criterion: "ranking", "screening" or "both". alpha: significance level of the test. Bstart: initial number of boostrap samples used for P-values estimation. Bfinal: final number of boostrap samples. Bbatch: batch of boostrap samples used in the iterative estimation. lo: parameter depending on the stability we want to achieve. graph: logical; if TRUE plot the sequential estimation of the pvalues.
expl.var.PCA	lower bound on the percentage of explained variance to be used in the selection of PCA components. Default is NULL, meaning that no PCA step is performed if there are multiple outputs.
x	a list of class "sensiHSIC" storing the state of the sensitivity study (parameters, data, estimates).
y	a vector of model responses.
ylim	y -coordinate plotting limits.
	any other arguments for model which are passed unchanged each time it is called.

Details

The HSIC sensitivity indices are obtained as a normalized version of the Hilbert-Schmidt independence criterion:

$$
S_{i}^{H S I C}=R_{H S I C}^{2}=\frac{\operatorname{HSIC}\left(X_{i}, Y\right)}{\sqrt{H S I C\left(X_{i}, X_{i}\right)} \sqrt{H S I C(Y, Y)}},
$$

see Da Veiga (2014) for details. When kernel $X=$ "dcov" and kernel $Y=$ "dcov", the kernel is given by $k\left(u, u^{\prime}\right)=1 / 2\left(\|u\|+\left\|u^{\prime}\right\|-\left\|u-u^{\prime}\right\|\right)$ and the sensitivity index is equal to the distance correlation introduced by Szekely et al. (2007) as was recently proven by Sejdinovic et al. (2013). The Target Sensitivity measures are defined via weight functions w which depend on $\mathrm{c}=$ threshold. Indicator function 1_{c} and smooth relaxations are available (according to target\$type):

$$
\text { if type }=" \text { indicTh" } ; w=1_{Y>c}
$$

$$
\begin{aligned}
& \text { if type }=" \text { logistic" } ; w=\frac{1}{1+\exp ^{-\operatorname{param} \cdot \frac{(Y-c)}{|c|}}}, \\
& \text { if type }=" \exp 1 \text { side" ; } w=\exp \left(-\frac{\max (c-Y, 0)}{\operatorname{param} \cdot \frac{\sigma(Y)}{5}}\right),
\end{aligned}
$$

where $\sigma(Y)$ is an estimation of the standard deviation of Y and param $=1$ is a parameter tuning the smoothness. The Conditional Sensitivity Analysis evaluates the influence of the inputs on the output within a critical domain only, for instance given by $Y>c$ (more details can be found in Marrel and Chabridon (2020)).

Value

sensiHSIC returns a list of class "sensiHSIC", containing all the input arguments detailed before, plus the following components:
call the matched call,
X
a data.frame containing the design of experiments,
$y \quad$ a vector of model responses,
S the estimations of normalized HSIC sensitivity indices (also denoted R2HSIC),
HSICXY the estimation of HSIC sensitivity indices (numerator in S formula),
Pvalue the estimation of P-value of the independence test based on HSIC statistic,
SeqPvalue a matrix containing the sequential p-values estimation of the independence test based on HSIC statistic.

Author(s)

Sebastien Da Veiga, Amandine Marrel, Anouar Meynaoui, Reda El Amri

References

Da Veiga S. (2015), Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, 85(7), 1283-1305.
Gretton A., Bousquet O., Smola A., Scholkopf B. (2005), Measuring statistical dependence with hilbert-schmidt norms, Jain S, Simon H, Tomita E, editors: Algorithmic learning theory, Lecture Notes in Computer Science, Vol. 3734, Berlin: Springer, 63-77.
Meynaoui A., Marrel A., and Laurent B. (2019). New statistical methodology for second level global sensitivity analysis, Preprint, ArXiv 1902.07030.
Marrel A., Chabridon V. (2020). Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor, Preprint.

Sejdinovic D., Sriperumbudur B., Gretton A., Fukumizu K., (2013), Equivalence of distance-based and RKHS-based statistics in hypothesis testing, Annals of Statistics 41(5), 2263-2291.
Spagnol A., Le Riche R., Da Veiga S. (2019), Global sensitivity analysis for optimization with variable selection, SIAM/ASA J. Uncertainty Quantification, 7(2), 417???443.

Szekely G.J., Rizzo M.L., Bakirov N.K. (2007), Measuring and testing dependence by correlation of distances, Annals of Statistics 35(6), 2769-2794.

See Also

```
kde,sensiFdiv,weightTSA
```


Examples

```
library(ggplot2)
library(boot)
    # Test case : the non-monotonic Sobol g-function
    # Only one kernel is provided with default hyperparameter value
    n <- 50
    X <- data.frame(matrix(runif(8 * n), nrow = n))
    # HSIC-based GSA and asymptotic independence test
    x <- sensiHSIC(model = sobol.fun, X, kernelX = "rbf", kernelY = "rbf",
        test.method = "Asymptotic")
    print(x)
    # HSIC-based GSA and permutation independence test
    x <- sensiHSIC(model = sobol.fun, X, kernelX = "rbf", kernelY = "rbf",
        estimator.type = "U-stat", test.method = "Permutation")
    print(x)
    # HSIC-based GSA and independence test with optimized number of permutations
    x <- sensiHSIC(model = sobol.fun, X, kernelX = "rbf", kernelY = "rbf",
        test.method = "Seq_Permutation",
        crit.option = list(stop.criterion = "ranking", alpha = 0.05,
        Bstart = 100, Bfinal = 3000, Bbatch = 100, lo = 100,
        graph = TRUE))
print(x)
# Target-HSIC GSA in case of given model
x <- sensiHSIC(model = sobol.fun, X, target = list(c = 0.4, upper = TRUE,
        type = "indicTh", param = 1), kernelX = "rbf",
        kernelY = "categ", test.method = "Permutation")
    # Target-HSIC GSA in case of given data
    x <- sensiHSIC(model = NULL, X, target = list(c = 0.4, upper = TRUE,
        type = "indicTh", param = 1), kernelX = "rbf",
        kernelY = "categ", test.method = "Permutation")
    y <- sobol.fun(X)
    tell(x,y)
    # Conditional-HSIC GSA in case of given model
    x <- sensiHSIC(model = sobol.fun, X, cond = list(c = 0.4, upper = TRUE,
        type = "indicTh", param = 1), kernelX = "rbf", kernelY = "rbf",
        test.method = "Permutation",B=3000)
    # Conditional-HSIC GSA in case of given data
    x <- sensiHSIC(model = NULL, X, cond = list(c = 0.4, upper = TRUE,
```

```
            type = "indicTh", param = 1), kernelX = "rbf", kernelY = "rbf",
            test.method = "Seq_Permutation", crit.option =
                    list(stop.criterion = "ranking", alpha = 0.05, Bstart = 100,
                            Bfinal = 3000, Bbatch = 100, lo = 100, graph = TRUE))
y<- sobol.fun(X)
tell(x,y)
# Test case : the Ishigami function
# A list of kernels is given with default hyperparameter value
n <- 100
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
x <- sensiHSIC(model = ishigami.fun, X, kernelX = c("rbf","matern3","dcov"),
    kernelY = "rbf")
print(x)
ggplot(x)
# A combination of kernels is given and a dummy value is passed for
# the first hyperparameter
x <- sensiHSIC(model = ishigami.fun, X, kernelX = c("ssanova1","matern3","dcov"),
    paramX = c(1,2,1), kernelY = "ssanova1")
print(x)
ggplot(x)
# Example in case of given data
n <- 100
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- sensiHSIC(model = NULL, X)
tell(x, Y)
print(x)
ggplot(x)
# Test case: functional toy fct 'Arctangent temporal function' with PCA pre-processing
# step and a dummy variable
# Put in comment because too long for the CRAN tests
#n <- 500
#X <- data.frame(matrix(runif(3*n, -7,7), nrow = n)) # We add a dummy variable
#Y <- atantemp.fun(X)
#x <- sensiHSIC(model = NULL, X, kernelX = "dcov", kernelY = "dcov", expl.var.PCA = 0.95,
# test.method = "Permutation")
#tell(x, Y)
#print(x)
#ggplot(x)
# Test case: Multiclass classification
n <- 200 # put n=500 for more consistency
X <- data.frame(matrix(-pi+2*pi*runif(3* n), nrow = n))
Ytemp <- ishigami.fun(X)
# Create output variable
Y <- rep(NA,n)
```

```
Y[Ytemp<0] <- 0
Y[Ytemp>=0 \& Ytemp<10] <- 1
Y[Ytemp>=10] <- 2
\(\mathrm{x}<-\) sensiHSIC(model \(=\) NULL, X , kernelX = "dcov", kernelY = "categ", paramY = "weighted",
    test.method = "Permutation")
tell ( \(x, y\) )
print(x)
ggplot(x)
```

```
shapleyBlockEstimation
```

Computation of the Shapley effects in the Gaussian linear framework with an unknown block-diagonal covariance matrix

Description

shapleyBlockEstimation estimates the Shapley effects of a Gaussian linear model when the parameters are unknown and when the number of inputs is large, choosing the most likely blockdiagonal structure of the covariance matrix.

Usage

shapleyBlockEstimationS(Beta, S, kappa=0, $M=20$, tol=10^(-6))
shapleyBlockEstimationX(X, Y, delta=NULL, M=20, tol=10^(-6))

Arguments

Beta	A vector containing the (estimated) coefficients of the linear model.
S	Empirical covariance matrix of the inputs. Has to be positive semi-definite ma- trix with same size that Beta.
X	Matrix containing an i.i.d. sample of the inputs.
Y	Vector containing the corresponding i.i.d. sample of the (noisy) output.
kappa	The positive penalization coefficient that promotes block-diagonal matrices. It is advised to choose kappa= 0 to get the largest block structure such that the maximal block size is M.
M	Positive number that fixes the positive penalization coefficient kappa to $1 /\left(p n^{\text {delta }}\right)$ It is advised to choose del ta to $2 / 3$ for a positive penalisation or delta=NULL to get the largest block structure such that the maximal block size is M.
tol	Maximal size of the estimate of the block-diagonal structure. The computation time grows exponentially with M.
	A relative tolerance to detect zero singular values of Sigma.

Details

If kappa $=0$ or if delta $=$ NULL, there is no penalization.
It is advised to choose M smaller or equal than 20 . For M larger or equal than 25 , the computation is very long.

Value

shapleyBlockEstimationS and shapleyblockEstimationX return a list containing the following compopents:

label	a vector containing the label of the group of each input variable.
S_B	the block-diagonal estimated covariance matrix of the inputs.
Shapley	a vector containing all the estimated Shapley effects.

Author(s)

Baptiste Broto, CEA LIST

References

B. Broto, F. Bachoc, and J-M Martinez, 2019.Block-diagonal covariance estimation and application to the Shapley effects in sensitivity analysis. arXiv:1907.12780.
B. Broto, F. Bachoc, M. Depecker, and J-M. Martinez, 2019, Sensitivity indices for independent groups of variables, Mathematics and Computers in Simulation, 163, 19-31.
B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: comparisons with Sobol' indices, numerical estimation and applications, International Journal of Uncertainty Quantification, 9, 493-514.
A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs, SIAM/ASA Journal of Uncertainty Quantification, 5, 986-1002.

See Also

shapleyLinearGaussian, shapleyPermEx, shapleyPermRand, shapleySubsetMc

Examples

```
# packages for the plots of the matrices
library(gplots)
library(graphics)
# the following function improves the plots of the matrices
sig=function(x,alpha=0.4)
{
    return(1/(1+exp(-x/alpha)))
}
```

\# 1) we generate the parameters by groups in order
K=4 \# number or groups
pk=rep($0, \mathrm{~K}$)
for (k in 1:K)
\{
$\mathrm{pk}[k]=$ round (6+4*runif(1))
\}
p=sum(pk)
Sigma_ord=matrix(0,nrow=p, ncol=p)
ind_min=0
L=5
for (k in 1:K)
\{
p_k=pk[k]
ind=ind_min+(1:p_k)
ind_min=ind_min+p_k
A=2*matrix(runif(p_k*L), nrow=L, ncol=p_k)-1
Sigma_ord[ind,ind]=t(A)\%*\%A + 0.2*diag(rep(1,p_k))
\}
image ((0:p) $+0.5,(0: p)+0.5, z=s i g\left(S i g m a _o r d\right), c o l=c m . c o l o r s(100), \quad z l i m=c(0,1)$, ylim=c(p+0.5,0.5), main=expression(Sigma["order"]), cex.main=3,ylab = "", xlab = "",axes=FALSE)
box()

Beta_ord=3*runif(p)+1
eta_ord=shapleyLinearGaussian(Beta=Beta_ord, Sigma=Sigma_ord) barplot(eta_ord,main=expression(eta["order"]),cex.axis = 2,cex.main=3)
\# 2) We sample the input variables to get an input vector more general
samp=sample(1:p)
Sigma=Sigma_ord[samp,samp]
image ($(0: p)+0.5,(0: p)+0.5, z=s i g(S i g m a), c o l=c m . \operatorname{colors}(100), \quad z l i m=c(0,1)$, ylim=c(p+0.5,0.5), main=expression(Sigma), cex.main=3,ylab = "",xlab = "",axes=FALSE)
box()

Beta=Beta_ord[samp]
eta=shapleyLinearGaussian(Beta=Beta, Sigma=Sigma)
barplot(eta, main=expression(eta), cex.axis = 2, cex.main=3)

```
# 3) We generate the observations with these parameters
n=5*p #sample size
C=chol(Sigma)
X0=matrix(rnorm(p*n),ncol=p)
X=X0%*%C
S=var(X) #empirical covariance matrix
image((0:p)+0.5,(0:p)+0.5,z=sig(S),col=cm.colors(100), zlim=c(0,1),
    ylim=c(p+0.5,0.5), main=expression(S),
    cex.main=3,ylab = "", xlab = "",axes=FALSE)
box()
beta0=rnorm(1)
Y=X%*%as.matrix(Beta)+beta0+0.2*rnorm(p)
```

\# 4) We estimate the block-diagonal covariance matrix
\# and the Shapley effects using the observations
\# We assume that we know that the groups are smaller than 15
Estim=shapleyBlockEstimationX(X,Y,delta=3/4, M=15, tol=10^(-6))
eta_hat=Estim\$Shapley
S_B=Estim\$S_B
image ($0: p)+0.5,(0: p)+0.5, z=s i g\left(S _B\right), \operatorname{col}=c m . \operatorname{colors}(100), \quad z \lim =c(0,1)$,
ylim=c(p+0.5,0.5), main=expression(S[hat(B)]),
cex.main=3,ylab = "",xlab = "", axes=FALSE)
box()
barplot(eta_hat, main=expression(hat(eta)), cex.axis $=2$, cex.main=3)
sum(abs(eta_hat-eta))
shapleyLinearGaussian Computation of the Shapley effects in the linear Gaussian framework

Description

shapleyLinearGaussian implements the computation of the Shapley effects in the linear Gaussian framework, using the linear model (without the value at zero) and the covariance matrix of the inputs. It uses the block-diagonal covariance trick of Broto et al. (2019) which allows to go through high-dimensional cases ($n b$ of inputs >25). It gives a warning in case of dim(block) >25.

Usage

shapleyLinearGaussian(Beta, Sigma, tol=10^(-6))

Arguments

Beta a vector containing the coefficients of the linear model (without the value at zero).
Sigma covariance matrix of the inputs. Has to be positive semi-definite matrix with same size that Beta.
tol a relative tolerance to detect zero singular values of Sigma.

Value

shapleyLinearGaussian returns a numeric vector containing all the Shapley effects.

Author(s)

Baptiste Broto

References

B. Broto, F. Bachoc, M. Depecker, and J-M. Martinez, 2019, Sensitivity indices for independent groups of variables, Mathematics and Computers in Simulation, 163, 19-31.
B. Broto, F. Bachoc, and J-M Martinez, 2019.Block-diagonal covariance estimation and application to the Shapley effects in sensitivity analysis. arXiv:1907.12780.
B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: comparisons with Sobol' indices, numerical estimation and applications, International Journal for Uncertainty Quantification, 9, 493-514.
A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs, SIAM/ASA Journal of Uncertainty Quantification, 5, 986-1002.

See Also

shapleyBlockEstimation, shapleyPermEx, shapleyPermRand, shapleySubsetMc

Examples

```
library(MASS)
library(igraph)
# First example:
p=5 #dimension
A=matrix(rnorm(p^2), nrow=p,ncol=p)
Sigma=t(A)%*%A
Beta=runif(p)
Shapley=shapleyLinearGaussian(Beta,Sigma)
plot(Shapley)
```

```
# Second Example, block-diagonal:
K=5 #number of groups
m=5 # number of variables in each group
p=K*m
Sigma=matrix(0,ncol=p,nrow=p)
for(k in 1:K)
{
    A=matrix(rnorm(m^2),nrow=m,ncol=m)
    Sigma[(m* (k-1)+1):(m*k),(m*(k-1)+1):(m*k)]=t(A)%*%A
}
# we mix the variables:
samp=sample(1:p,p)
Sigma=Sigma[samp, samp]
Beta=runif(p)
Shapley=shapleyLinearGaussian(Beta,Sigma)
plot(Shapley)
```

```
shapleyPermEx
```

Estimation of Shapley effects by examining all permutations of inputs (Agorithm of Song et al, 2016), in cases of independent or dependent inputs

Description

shapleyPermEx implements the Monte Carlo estimation of the Shapley effects (Owen, 2014) and their standard errors by examining all permutations of inputs (Song et al., 2016; Iooss and Prieur, 2019). It also estimates full first order and independent total Sobol' indices (Mara et al., 2015). The function also allows the estimations of all these sensitivity indices in case of dependent inputs. The total cost of this algorithm is $N v+d!\times(d-1) \times N o \times N i$ model evaluations.

Usage

shapleyPermEx (model = NULL, Xall, Xset, d, Nv, No, Ni = 3, colnames = NULL, ...) \#\# S3 method for class 'shapleyPermEx'
tell(x, y = NULL, return.var = NULL, ...)
\#\# S3 method for class 'shapleyPermEx'
print(x, ...)
\#\# S3 method for class 'shapleyPermEx'
plot(x, ylim = c(0, 1), ...)
\#\# S3 method for class 'shapleyPermEx'
ggplot(x, ylim = c(0, 1), title = NULL, ...)

Arguments

model	a function, or a model with a predict method, defining the model to analyze.
Xall	Xall(n) is a function to generate a n -sample of a d-dimensional input vector (following the required joint distribution).
Xset	$\mathrm{Xset}(\mathrm{n}, \mathrm{Sj}, \mathrm{Sjc}, \mathrm{xjc})$ is a function to generate a n -sample of a d-dimensional input vector corresponding to the indices in Sj conditional on the input values xjc with the index set Sjc (following the required joint distribution).
d	number of inputs.
Nv	Monte Carlo sample size to estimate the output variance.
No	Outer Monte Carlo sample size to estimate the expectation of the conditional variance of the model output.
Ni	Inner Monte Carlo sample size to estimate the conditional variance of the model output.
colnames	Optional: A vector containing the names of the inputs.
x	a list of class "shapleyPermEx" storing the state of the sensitivity study (parameters, data, estimates).
y	a vector of model responses.
return.var	a vector of character strings giving further internal variables names to store in the output object x.
ylim	y-coordinate plotting limits.
title	a title of the plot with ggplot() function.
	any other arguments for model which are passed unchanged each time it is called.

Details

This function requires R package "gtools".
The default values $\mathrm{Ni}=3$ is the optimal one obtained by the theoretical analysis of Song et al., 2016.
The computations of the standard errors (and then the confidence intervals) come from Iooss and prieur (2019). Based on the outer Monte carlo loop (calculation of expectation of conditional variance), the variance of the Monte carlo estimate is divided by No. The standard error is then averaged over the exact permutation loop. The confidence intervals at 95% correspond to +-1.96 standard deviations.

Value

shapleyPermEx returns a list of class "shapleyPermEx", containing all the input arguments detailed before, plus the following components:
call the matched call.
X
a data.frame containing the design of experiments.
$y \quad$ the response used.
E the estimation of the ouput mean.
V the estimation of the ouput variance.
Shapley the estimations of the Shapley effects.
SobolS the estimations of the full first-order Sobol' indices.
SobolT the estimations of the independent total sensitivity Sobol' indices.
Users can ask more ouput variables with the argument return. var (for example, the list of permutations perms).

Author(s)

Bertrand Iooss, Eunhye Song, Barry L. Nelson, Jeremy Staum

References

B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: comparisons with Sobol' indices, numerical estimation and applications, International Journal for Uncertainty Quantification, 9, 493-514.
T. Mara, S. Tarantola, P. Annoni, 2015, Non-parametric methods for global sensitivity analysis of model output with dependent inputs, Environmental Modeling \& Software 72, 173-183.
A.B. Owen, 2014, Sobol' indices and Shapley value, SIAM/ASA Journal of Uncertainty Quantification, 2, 245-251.
A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs, SIAM/ASA Journal of Uncertainty Quantification, 5, 986-1002.
E. Song, B.L. Nelson, and J. Staum, 2016, Shapley effects for global sensitivity analysis: Theory and computation, SIAM/ASA Journal of Uncertainty Quantification, 4, 1060-1083.

See Also

shapleyPermRand, shapleyLinearGaussian, shapleySubsetMc, shapleysobol_knn, lmg

Examples

```
##################################
# Test case : the Ishigami function (3 uniform independent inputs)
# See Iooss and Prieur (2019)
library(gtools)
d <- 3
Xall <- function(n) matrix(runif(d*n,-pi,pi),nc=d)
Xset <- function(n, Sj, Sjc, xjc) matrix(runif(n*length(Sj),-pi,pi),nc=length(Sj))
x <- shapleyPermEx(model = ishigami.fun, Xall=Xall, Xset=Xset, d=d,Nv=1e4, No=1e3,Ni=3)
print(x)
plot(x)
```

```
library(ggplot2)
ggplot(x)
###################################
# Test case : Linear model (3 Gaussian inputs including 2 dependent)
# See Iooss and Prieur (2019)
library(ggplot2)
library(gtools)
library(mvtnorm) # Multivariate Gaussian variables
library(condMVNorm) # Conditional multivariate Gaussian variables
modlin <- function(X) apply(X,1,sum)
d <- 3
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- ( sig %*% t(sig) ) * Cormat
Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
Xset <- function(n, Sj, Sjc, xjc){
    if (is.null(Sjc)){
        if (length(Sj) == 1){ rnorm(n,mu[Sj],sqrt(Covmat[Sj,Sj]))
        } else{ mvtnorm::rmvnorm(n,mu[Sj],Covmat[Sj,Sj])}
    } else{ condMVNorm::rcmvnorm(n, mu, Covmat, dependent.ind=Sj, given.ind=Sjc, X.given=xjc)}}
x <- shapleyPermEx(model = modlin, Xall=Xall, Xset=Xset, d=d, Nv=1e4, No = 1e3, Ni = 3)
print(x)
ggplot(x)
```

shapleyPermRand Estimation of Shapley effects by random permutations of inputs (Agorithm of Song et al, 2016), in cases of independent or dependent inputs

Description

shapleyPermRand implements the Monte Carlo estimation of the Shapley effects (Owen, 2014) and their standard errors by randomly sampling permutations of inputs (Song et al., 2016). It also estimates full first order and independent total Sobol' indices (Mara et al., 2015), and their standard errors. The function also allows the estimations of all these sensitivity indices in case of dependent inputs. The total cost of this algorithm is $N v+m \times(d-1) \times N o \times N i$ model evaluations.

Usage

```
shapleyPermRand(model = NULL, Xall, Xset, d, Nv, m, No = 1, Ni = 3, colnames = NULL, ...)
## S3 method for class 'shapleyPermRand'
tell(x, y = NULL, return.var = NULL, ...)
## S3 method for class 'shapleyPermRand'
print(x, ...)
## S3 method for class 'shapleyPermRand'
plot(x, ylim = c(0, 1), ...)
## S3 method for class 'shapleyPermRand'
ggplot(x, ylim = c(0, 1), title = NULL, ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
Xall $\quad \operatorname{Xall}(\mathrm{n})$ is a function to generate a n -sample of a d-dimensional input vector (following the required joint distribution).
Xset $\quad \mathrm{Xset}(\mathrm{n}, \mathrm{Sj}, \mathrm{Sjc}, \mathrm{xjc})$ is a function to generate a n -sample of a d-dimensional input vector corresponding to the indices in Sj conditional on the input values xjc with the index set Sjc (following the required joint distribution).
d number of inputs.
Nv Monte Carlo sample size to estimate the output variance.
m Number of randomly sampled permutations.
No Outer Monte Carlo sample size to estimate the expectation of the conditional variance of the model output.
$\mathrm{Ni} \quad$ Inner Monte Carlo sample size to estimate the conditional variance of the model output.
colnames Optional: A vector containing the names of the inputs.
$x \quad$ a list of class "shapleyPermRand" storing the state of the sensitivity study (parameters, data, estimates).
y a vector of model responses.
return.var a vector of character strings giving further internal variables names to store in the output object x.
ylim $\quad y$-coordinate plotting limits.
title a title of the plot with ggplot() function.
any other arguments for model which are passed unchanged each time it is called.

Details

This function requires R package "gtools".
The default values $\mathrm{No}=1$ and $\mathrm{Ni}=3$ are the optimal ones obtained by the theoretical analysis of Song et al., 2016.
The computations of the standard errors do not consider the samples to estimate expectation of conditional variances. They are only made regarding the random permutations and are based on the variance of the Monte carlo estimates divided by m . The confidence intervals at 95% correspond to +- 1.96 standard deviations.

Value
shapleyPermRand returns a list of class "shapleyPermRand", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments.
$y \quad$ the response used.
E the estimation of the ouput mean.
V the estimation of the ouput variance.
Shapley the estimations of the Shapley effects.
SobolS the estimations of the full first-order Sobol' indices.
SobolT the estimations of the independent total sensitivity Sobol' indices.
Users can ask more ouput variables with the argument return. var (for example, the list of permutations perms).

Author(s)

Bertrand Iooss, Eunhye Song, Barry L. Nelson, Jeremy Staum

References

B. Iooss and C. Prieur, 2019, Shapley effects for sensitivity analysis with correlated inputs: comparisons with Sobol' indices, numerical estimation and applications, International Journal of Uncertainty Quantification, 9, 493-514.
T. Mara, S. Tarantola, P. Annoni, 2015, Non-parametric methods for global sensitivity analysis of model output with dependent inputs, Environmental Modeling \& Software 72, 173-183.
A.B. Owen, 2014, Sobol' indices and Shapley value, SIAM/ASA Journal of Uncertainty Quantification, 2, 245-251.
A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs, SIAM/ASA Journal of Uncertainty Quantification, 5, 986-1002.
E. Song, B.L. Nelson, and J. Staum, 2016, Shapley effects for global sensitivity analysis: Theory and computation, SIAM/ASA Journal of Uncertainty Quantification, 4, 1060-1083.

See Also

shapleyPermEx, shapleyLinearGaussian, shapleySubsetMc, shapleysobol_knn

Examples

```
##################################
# Test case : the Ishigami function
# See Iooss and Prieur (2019)
```

```
library(gtools)
d <- 3
Xall <- function(n) matrix(runif(d*n,-pi,pi),nc=d)
Xset <- function(n, Sj, Sjc, xjc) matrix(runif(n*length(Sj),-pi,pi),nc=length(Sj))
x <- shapleyPermRand(model = ishigami.fun, Xall=Xall, Xset=Xset, d=d,Nv=1e4, m=1e4,No = 1,Ni=3)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
##################################
# Test case : Linear model (3 Gaussian inputs including 2 dependent)
# See Iooss and Prieur (2019)
library(ggplot2)
library(gtools)
library(mvtnorm) # Multivariate Gaussian variables
library(condMVNorm) # Conditional multivariate Gaussian variables
modlin <- function(X) apply(X,1,sum)
d <- 3
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- ( sig %*% t(sig) ) * Cormat
Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
Xset <- function(n, Sj, Sjc, xjc){
    if (is.null(Sjc)){
        if (length(Sj) == 1){ rnorm(n,mu[Sj],sqrt(Covmat[Sj,Sj]))
        } else{ mvtnorm::rmvnorm(n,mu[Sj],Covmat[Sj,Sj])}
    } else{ condMVNorm::rcmvnorm(n, mu, Covmat, dependent.ind=Sj, given.ind=Sjc, X.given=xjc)}}
m <- 1e3 # put m)1e4 for more precised results
x <- shapleyPermRand(model = modlin, Xall=Xall, Xset=Xset, d=d, Nv=1e3, m=m,No=1,Ni=3)
print(x)
ggplot(x)
```


Description

shapleysobol_knn implements the estimation of several sensitivity indices using only N model evaluations via ranking (following Gamboa et al. (2020) and Chatterjee (2019)) or nearest neighbour search (Broto et al. (2020) and Azadkia \& Chatterjee (2020)). Parallelized computations are possible to accelerate the estimation process. It can be used with categorical inputs (which are transformed with one-hot encoding), dependent inputs and multiple outputs. Sensitivity indices of any group of inputs can be computed, which means that in particular first-order/total Sobol indices and Shapley effects are accessible. For large sample sizes, the nearest neightbour algorithm can be significantly accelerated by using approximate nearest neighbour search. It is also possible to estimate Shapley effects with the random permutation approach of Castro et al.(2009), where all the terms are obtained with ranking or nearest neighbours.

Usage

```
shapleysobol_knn(model=NULL, X, method = "knn", n.knn = 2, n.limit = 2000, U = NULL,
            n.perm = NULL, noise = F, rescale = F, nboot = NULL, boot.level = 0.8,
            conf=0.95, parl=NULL, ...)
## S3 method for class 'shapleysobol_knn'
tell(x, y, ...)
## S3 method for class 'shapleysobol_knn'
extract(x, ...)
## S3 method for class 'shapleysobol_knn'
print(x, ...)
## S3 method for class 'shapleysobol_knn'
plot(x, ylim = c(0,1), ...)
## S3 method for class 'shapleysobol_knn'
ggplot(x, ylim = c(0, 1), ...)
## S3 method for class 'sobol_knn'
print(x, ...)
## S3 method for class 'sobol_knn'
plot(x, ylim = c(0,1), ...)
```


Arguments

model a function defining the model to analyze, taking X as an argument.
$X \quad$ a matrix or data frame containing the observed inputs.
method the algorithm to be used for estimation, either "rank" or "knn", see details. Default is method="knn".
n.knn the number of nearest neighbours used for estimation.
n.limit sample size limit above which approximate nearest neighbour search is activated.

U an integer equal to 0 (total Sobol indices) or 1 (first-order Sobol indices) or a list of vector indices defining the subsets of inputs whose sensitivity indices must be computed or a matrix of 0 s and 1 s where each row encodes a subset of inputs whose sensitivity indices must be computed (see examples). Default value is NULL, meaning that Shapley values are returned (see details).

n. perm	an integer, indicating the number of random permutations used for the Shapley effects’ estimation. Default is n. perm=NULL, indicating that all possible permu- tations are used. a logical which is TRUE if the model or the output sample is noisy. See details. a logical indicating if continuous inputs must be rescaled before distance compu- tations. If TRUE, continuous inputs are first whitened with the ZCA-cor whiten- ing procedure (cf. whiten() function in package whitening). If the inputs are independent, this first step will have a very limited impact. Then, the resulting whitened inputs are individually modified via a copula transform such that each input has the same scale.
nboot	the number of bootstrap resamples for the bootstrap estimate of confidence in- tervals. See details.
boot.level	a numeric between 0 and 1 for the proportion of the bootstrap sample size. the confidence level of the bootstrap confidence intervals.
conf	number of cores on which to parallelize the computation. If NULL, then no par- allelization is done.
x	the object returned by shapleysobol_knn.
ylim	a numeric univariate vector containing the observed outputs. the y-coordinate limits for plotting.
\ldots	additional arguments to be passed to model, or to the methods, such as graphical parameters (see par).

Details

For method="rank", the estimator is defined in Gamboa et al. (2020) following Chatterjee (2019).For first-order indices it is based on an input ranking (same algorithm as in sobolrank) while for higher orders, it uses an approximate heuristic solution of the traveling salesman problem applied to the input sample distances (cf. TSP() function in package TSP). For method="knn", ranking and TSP are replaced by a nearest neighbour search as proposed in Broto et al. (2020) and in Azadkia \& Chatterjee (2020) for a similar coefficient.
The computation is done using the subset procedure, defined in Broto, Bachoc and Depecker (2020), that is computing all the Sobol' closed indices for all possible sub-models first, and then affecting the Shapley weights.

It is the same algorithm as sobolshap_knn with method = "knn" with a slight computational improvement (the search for weight affectations is done on much smaller matrices, stored in a list indexed by their order), and ability to perform parallel computation and boostrap confidence interval estimates.

Since boostrap creates ties which are not accounted for in the algorithm, confidence intervals are obtained by sampling without replacement with a proportion of the total sample size boot.level, drawn uniformly.
If the outputs are noisy, the argument noise can be used: it only has an impact on the estimation of one specific sensitivity index, namely $\operatorname{Var}(E(Y \mid X 1, \ldots, X p)) / \operatorname{Var}(Y)$. If there is no noise this index is equal to 1 , while in the presence of noise it must be estimated.

The distance used for subsets with mixed inputs (continuous and categorical) is the Euclidean distance, thanks to a one-hot encoding of categorical inputs.

If too many cores for the machine are passed on to the parl argument, the chosen number of cores is defaulted to the available cores minus one.
If argument U is specified, only the estimated first-order or total Sobol' indices are returned, or the estimated closed Sobol' indices for the selected subsets. The Shapley effects are not computed, and thus, not returned.

The extract method can be used for extracting first-order and total Sobol' indices, after the Shapley effects have been computed. It returns a list containing both sensitivity indices.

Value

shapleysobol_knn returns a list of class "shapleysobol_knn" if U=NULL, containing the following components:
call the matched call.
Shap the estimations of the Shapley effect indices.
VE the estimations of the closed Sobol' indices for all possible sub-models.
indices list of all subsets corresponding to the structure of VE.
method which estimation method has been used.
n. perm number of random permutations.
w the Shapley weights.
conf_int a matrix containing the estimations, biais and confidence intervals by bootstrap (if nboot>0).
$X \quad$ the observed covariates.
y the observed outcomes.
n.knn value of the $n . k n n$ argument.
n.limit value of the n.limit argument.
$U \quad$ value of the U argument.
rescale wheter the design matrix has been rescaled.
n.limit maximum number of sample before nearest-neighbor approximation.
boot.level value of the boot. level argument.
noise wheter the Shapley values must sum up to one or not.
boot logical, wheter bootstrap confidence interval estimates have been performed.
nboot value of the nboot argument.
parl value of the parl argument.
conf value of the conf argument.
shapleysobol_knn returns a list of class "sobol_knn" if U, is specified, containing the following components:
call the matched call.
Sobol the estimations of the Sobol' indices.
indices list of all subsets corresponding to the structure of VE.

method conf_int	which estimation method has been used. a matrix containing the estimations, biais and confidence intervals by bootstrap (if nboot>0). the observed covariates.
y	the observed outcomes.
U	value of the U argument.
n. knn	value of the n. knn argument.
rescale	wheter the design matrix has been rescaled.
n.limit	value of the $n . l i m i t$ argument.
boot.level	value of the boot.level argument.
boot	logical, wheter bootstrap confidence interval estimates have been performed.
nboot	value of the nboot argument.
parl	value of the parl argument.
conf	value of the conf argument.

Author(s)

Marouane Il Idrissi, Sebastien Da Veiga

References

Azadkia M., Chatterjee S. (2019). A simple measure of conditional dependence. arXiv preprint arXiv:1910.12327.

Chatterjee S. (2019). A new coefficient of correlation. arXiv preprint arXiv:1909.10140.
Gamboa F., Gremaud P., Klein T., Lagnoux A. (2020). Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics. arXiv preprint arXiv:2003.01772.
Broto B., Bachoc F. and Depecker M. (2020) Variance Reduction for Estimation of Shapley Effects and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification, 8(2).

Castro J., Gomez D, Tejada J. (2009). Polynomial calculation of the Shapley value based on sampling. Computers \& Operations Research, 36(5):1726-1730.
M. Il Idrissi, V. Chabridon and B. Iooss (2021). Developments and applications of Shapley effects to reliability-oriented sensitivity analysis with correlated inputs. Environmental Modelling \& Software, 143, 105115.
M. Il Idrissi, V. Chabridon and B. Iooss (2021). Mesures d'importance relative par decompositions de la performance de modeles de regression, Preprint, 52emes Journees de Statistiques de la Societe Francaise de Statistique (SFdS), pp. 497-502, Nice, France, Juin 2021

See Also

sobolrank, sobolshap_knn, shapleyPermEx, shapleySubsetMc, lmg, pme_knn

Examples

```
library(parallel)
library(doParallel)
library(foreach)
library(gtools)
library(boot)
library(RANN)
############################################################
# Linear Model with Gaussian correlated inputs
library(mvtnorm)
set.seed(1234)
n <- }100
beta<-c(1,-1,0.5)
sigma<-matrix(c(1,0,0,
    0,1,-0.8,
    0,-0.8,1),
    nrow=3,
    ncol=3)
X <-rmvnorm(n, rep(0,3), sigma)
colnames(X)<-c("X1", "X2", "X3")
y<- X%*%beta + rnorm(n,0,2)
# Without Bootstrap confidence intervals
x<-shapleysobol_knn(model=NULL, X=X,
        n.knn=3,
        noise=TRUE)
tell(x,y)
print(x)
plot(x)
#Using the extract method to get first-order and total Sobol' indices
extract(x)
# With Boostrap confidence intervals
x<-shapleysobol_knn(model=NULL, X=X,
        nboot=10,
        n.knn=3,
        noise=TRUE,
        boot.level=0.7,
        conf=0.95)
tell(x,y)
print(x)
plot(x)
```

```
#####################
# Extracting Sobol' indices with Bootstrap confidence intervals
nboot <- 10 # put nboot=50 for consistency
#Total Sobol' indices
x<-shapleysobol_knn(model=NULL, X=X,
    nboot=nboot,
    n.knn=3,
    U=0,
    noise=TRUE,
    boot.level=0.7,
    conf=0.95)
tell(x,y)
print(x)
plot(x)
#First-order Sobol' indices
x<-shapleysobol_knn(model=NULL, X=X,
    nboot=nboot,
    n.knn=3,
    U=1,
    noise=TRUE,
    boot.level=0.7,
    conf=0.95)
tell(x,y)
print(x)
plot(x)
#Closed Sobol' indices for specific subsets (list)
x<-shapleysobol_knn(model=NULL, X=X,
    nboot=nboot,
    n.knn=3,
    U=list(c(1,2), c(1,2,3), 2),
    noise=TRUE,
    boot.level=0.7,
    conf=0.95)
tell(x,y)
print(x)
plot(x)
######################################################
# Test case: the non-monotonic Sobol g-function
# Example with a call to a numerical model
# First compute first-order indices with ranking
n <- 1000
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- shapleysobol_knn(model = sobol.fun, X = X, U = 1, method = "rank")
print(x)
plot(x)
```

```
library(ggplot2) ; ggplot(x)
# We can use the output sample generated for this estimation to compute total indices
# without additional calls to the model
x2 <- shapleysobol_knn(model = NULL, X = X, U = 0, method = "knn", n.knn = 5)
tell(x2,x$y)
plot(x2)
ggplot(x2)
######################################################
# Test case: the Ishigami function
# Example with given data and the use of approximate nearest neighbour search
n <- 5000
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- shapleysobol_knn(model = NULL, X = X, U = NULL, method = "knn", n.knn = 5,
                                    n.limit = 2000)
tell(x, Y)
plot(x)
library(ggplot2) ; ggplot(x)
# Extract first-order and total Sobol indices
x1 <- extract(x) ; print(x1)
#######################################################
# Test case : Linear model (3 Gaussian inputs including 2 dependent) with scaling
# See Iooss and Prieur (2019)
library(mvtnorm) # Multivariate Gaussian variables
library(whitening) # For scaling
modlin <- function(X) apply(X,1,sum)
d <- 3
n <- 10000
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- ( sig %*% t(sig) ) * Cormat
Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
X <- Xall(n)
x <- shapleysobol_knn(model = modlin, X = X, U = NULL, method = "knn", n.knn = 5,
rescale = TRUE, n.limit = 2000)
print(x)
plot(x)
```

shapleySubsetMc

Estimation of Shapley effects from data using nearest neighbors method

Description

shapleySubsetMc implements the estimation of the Shapley effects from data using some nearest neighbors method to generate according to the conditional distributions of the inputs. It can be used with categorical inputs.

Usage

shapleySubsetMc (X, Y, Ntot=NULL, Ni=3, cat=NULL, weight=NULL, discrete=NULL, noise=FALSE)
\#\# S3 method for class 'shapleySubsetMc'
plot (x, ylim $=c(0,1), \ldots)$

Arguments

X	a matrix or a dataframe of the input sample
Y	a vector of the output sample
Ntot	an integer of the approximate cost wanted Ni
the number of nearest neighbours taken for each point	
weight	a vector giving the indices of the input categorical variables a vector with the same length of cat giving the weight of each categorical vari- able in the product distance
discrete	a vector giving the indices of the input variable that are real, and not categorical, but that can take several times the same values
noise	logical. If FALSE (the default), the variable Y is a function of X
x	a list of class "shapleySubsetMc" storing the state of the sensitivity study (Shapley effects, cost, names of inputs)
ylim	y-coordinate plotting limits any other arguments for plotting

Details

If weight $=$ NULL, all the categorical variables will have the same weight 1.
If Ntot $=$ NULL, the nearest neighbours will be compute for all the $n\left(2^{p}-2\right)$ points, where n is the length of the sample. The estimation can be very long with this parameter.

Value

shapleySubsetMc returns a list of class "shapleySubsetMc", containing:
shapley the Shapley effects estimates.
cost the real total cost of these estimates: the total number of points for which the nearest neighbours were computed.
names the labels of the input variables.

Author(s)

Baptiste Broto

References

B. Broto, F. Bachoc, M. Depecker, 2020, Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution, SIAM/ASA Journal of Uncertainty Quantification, 8:693716.

See Also

shapleyPermEx, shapleyPermRand, shapleyLinearGaussian, sobolrank, shapleysobol_knn

Examples

```
# First example: the linear Gaussian framework
# we generate a covariance matrice Sigma
p <- 4 #dimension
A <- matrix(rnorm(p^2), nrow=p,ncol=p)
Sigma <- t(A)%*%A # it means t(A)%*%A
C <- chol(Sigma)
n <- 500 #sample size (put n=2000 for more consistency)
Z=matrix(rnorm(p*n),nrow=n,ncol=p)
X=Z%*%C # X is a gaussian vector with zero mean and covariance Sigma
Y=rowSums(X)
Shap=shapleySubsetMc(X=X,Y=Y,Ntot=5000)
plot(Shap)
#Second example: The Sobol model with heterogeneous inputs
p=8 #dimension
A=matrix(rnorm(p^2), nrow=p,ncol=p)
Sigma=t(A)%*%A
C=chol(Sigma)
n=500 #sample size (put n=5000 for more consistency)
Z=matrix(rnorm(p*n),nrow=n,ncol=p)
X=Z
#we create discrete and categorical variables
X[,1]=round (X[,1]/2)
X[,2]=X[,2]>2
X[,4]=-2*round}(X[,4])+
X[(X[,6]>0 &X[,6]<1),6]=1
cat=c(1,2) # we choose to take X1 and X2 as categorical variables (with the discrete distance)
discrete=c(4,6) # we indicate that X4 and X6 can take several times the same value
Y=sobol.fun(X)
Ntot <- 2000 # put Ntot=20000 for more consistency
Shap=shapleySubsetMc(X=X, Y=Y, cat=cat, discrete=discrete, Ntot=Ntot, Ni=10)
```

```
plot(Shap)
```


Description

sobol implements the Monte Carlo estimation of the Sobol' sensitivity indices (standard estimator). This method allows the estimation of the indices of the variance decomposition, sometimes referred to as functional ANOVA decomposition, up to a given order, at a total cost of $(N+1) \times n$ where N is the number of indices to estimate. This function allows also the estimation of the so-called subset (or group) indices, i.e. the first-order indices with respect to single multidimensional inputs.

Usage

sobol(model $=$ NULL, X1, X2, order $=1$, nboot $=0, \operatorname{conf}=0.95, \ldots$)
\#\# S3 method for class 'sobol'
tell (x, y = NULL, return.var = NULL, ...)
\#\# S3 method for class 'sobol'
print(x, ...)
\#\# S3 method for class 'sobol'
plot(x, ylim = c(0, 1), ...)
\#\# S3 method for class 'sobol'
plotMultOut (x, ylim $=c(0,1), \ldots$)
\#\# S3 method for class 'sobol'
$\operatorname{ggplot}(x, y l i m=c(0,1), \ldots)$

Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
order either an integer, the maximum order in the ANOVA decomposition (all indices up to this order will be computed), or a list of numeric vectors, the multidimensional compounds of the wanted subset indices.
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
$x \quad a \operatorname{list}$ of class "sobol" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
return.var a vector of character strings giving further internal variables names to store in the output object x.

ylim	y-coordinate plotting limits.
\ldots	any other arguments for model which are passed unchanged each time it is called.

Value

sobol returns a list of class "sobol", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments.
$y \quad a$ vector of model responses.
V the estimations of Variances of the Conditional Expectations (VCE) with respect to one factor or one group of factors.
D the estimations of the terms of the ANOVA decomposition (not for subset indices).

S the estimations of the Sobol' sensitivity indices (not for subset indices).
Users can ask more ouput variables with the argument return. var (for example, bootstrap outputs V.boot, D.boot and S.boot).

Author(s)

Gilles Pujol

References

I. M. Sobol, 1993, Sensitivity analysis for non-linear mathematical model, Math. Modelling Comput. Exp., 1, 407-414.

See Also

sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez,sobolEff, sobolSmthSpl, sobolmara, sobolroalhs,

Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# (there are 8 factors, all following the uniform distribution on [0,1])
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobol(model = sobol.fun, X1 = X1, X2 = X2, order = 2, nboot = 100)
print(x)
#plot(x)
```

library (ggplot2)
ggplot(x)

Description

sobol2002 implements the Monte Carlo estimation of the Sobol' indices for both first-order and total indices at the same time (alltogether $2 p$ indices), at a total cost of $(p+2) \times n$ model evaluations. These are called the Saltelli estimators.

Usage

```
sobol2002(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
## S3 method for class 'sobol2002'
tell(x, y = NULL, return.var = NULL, ...)
## S3 method for class 'sobol2002'
print(x, ...)
## S3 method for class 'sobol2002'
plot(x, ylim = c(0, 1), ...)
    ## S3 method for class 'sobol2002'
plotMultOut(x, ylim = c(0, 1), ...)
## S3 method for class 'sobol2002'
ggplot(x, ylim = c(0, 1), ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
$x \quad$ a list of class "sobol" storing the state of the sensitivity study (parameters, data, estimates).
y
return.var a vector of character strings giving further internal variables names to store in the output object x.
ylim $\quad y$-coordinate plotting limits.
$\ldots \quad$ any other arguments for model which are passed unchanged each time it is called

Details

BE CAREFUL! This estimator suffers from a conditioning problem when estimating the variances behind the indices computations. This can seriously affect the Sobol' indices estimates in case of largely non-centered output. To avoid this effect, you have to center the model output before applying "sobol2002". Functions "sobolEff", "soboljansen" and "sobolmartinez" do not suffer from this problem.

Value

sobol2002 returns a list of class "sobol2002", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments.
$y \quad$ the response used
V the estimations of Variances of the Conditional Expectations (VCE) with respect to each factor and also with respect to the complementary set of each factor ("all but $X_{i}{ }^{\prime \prime}$).
S the estimations of the Sobol' first-order indices.
T the estimations of the Sobol' total sensitivity indices.
Users can ask more ouput variables with the argument return. var (for example, bootstrap outputs V.boot, S.boot and T.boot).

Author(s)

Gilles Pujol

References

A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communication, 145, 580-297.

See Also

```
sobol,sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolEff, sobolmara, sobolGP,sobolMultOut
```


Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
```

```
# sensitivity analysis
x <- sobol2002(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
```

sobol2007 Monte Carlo Estimation of Sobol' Indices (improved formulas of Mauntz: Sobol et al. (2007) and Saltelli et al. (2010))

Description

sobol2007 implements the Monte Carlo estimation of the Sobol' indices for both first-order and total indices at the same time (alltogether $2 p$ indices), at a total cost of $(p+2) \times n$ model evaluations. These are called the Mauntz estimators.

Usage

sobol2007 (model $=$ NULL, X1, X2, nboot $=0, \operatorname{conf}=0.95, \ldots$)
\#\# S3 method for class 'sobol2007'
tell (x, y = NULL, return.var = NULL, ...)
\#\# S3 method for class 'sobol2007'
print(x, ...)
\#\# S3 method for class 'sobol2007'
plot(x, ylim = c(0, 1), ...)
\#\# S3 method for class 'sobol2007'
plotMultOut (x, ylim = c(0, 1), ...)
\#\# S3 method for class 'sobol2007'
ggplot($x, y \lim =c(0,1), \ldots)$

Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
$x \quad$ a list of class "sobol" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
return.var a vector of character strings giving further internal variables names to store in the output object x.
ylim $\quad y$-coordinate plotting limits.
$\ldots \quad$ any other arguments for model which are passed unchanged each time it is called

Details

This estimator is good for small first-order and total indices.
BE CAREFUL! This estimator suffers from a conditioning problem when estimating the variances behind the indices computations. This can seriously affect the Sobol' indices estimates in case of largely non-centered output. To avoid this effect, you have to center the model output before applying "sobol2007". Functions "sobolEff", "soboljansen" and "sobolmartinez" do not suffer from this problem.

Value

sobol2007 returns a list of class "sobol2007", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data.frame containing the design of experiments.
$y \quad$ the response used
V the estimations of Variances of the Conditional Expectations (VCE) with respect to each factor and also with respect to the complementary set of each factor ("all but $X_{i}{ }^{\prime \prime}$).

S
the estimations of the Sobol' first-order indices.
T
the estimations of the Sobol' total sensitivity indices.

Users can ask more ouput variables with the argument return. var (for example, bootstrap outputs V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss

References

I.M. Sobol, S. Tarantola, D. Gatelli, S.S. Kucherenko and W. Mauntz, 2007, Estimating the approximation errors when fixing unessential factors in global sensitivity analysis, Reliability Engineering and System Safety, 92, 957-960.
A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola, 2010, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications 181, 259-270.

See Also

```
sobol,sobol2002, sobolSalt,soboljansen, sobolmartinez, sobolEff, sobolmara, sobolMultOut
```


Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
library(boot)
n <- }100
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobol2007(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
```

sobolEff Monte Carlo Estimation of Sobol' Indices (formulas of Janon-Monod)

Description

sobolEff implements the Monte Carlo estimation of the Sobol' sensitivity indices using the asymptotically efficient formulas in section 4.2.4.2 of Monod et al. (2006). Either all first-order indices or all total-effect indices are estimated at a cost of $N \times(p+1)$ model calls or all closed second-order indices are estimated at a cost of $\binom{N \times p}{2}$ model calls.

Usage

sobolEff(model = NULL, X1, X2, order=1, nboot $=0$, conf $=0.95, \ldots$)
\#\# S3 method for class 'sobolEff'
tell (x, y = NULL, ...)
\#\# S3 method for class 'sobolEff'
print(x, ...)
\#\# S3 method for class 'sobolEff'
plot(x, ylim = c(0, 1), ...)
\#\# S3 method for class 'sobolEff'
$\operatorname{ggplot}(x, y l i m=c(0,1), \ldots)$

Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.

order	an integer specifying the indices to estimate: 0 for total effect indices, 1 for first- order indices and 2 for closed second-order indices.		
nboot	the number of bootstrap replicates, or zero to use asymptotic standard deviation estimates given in Janon et al. (2012).		
conf	the confidence level for confidence intervals.		
a list of class "sobolEff" storing the state of the sensitivity study (parameters,			
data, estimates).		\quad	a vector of model responses.
:---			
ylim		y-coordinate plotting limits.	
:---			
\ldots	\quad	any other arguments for model which are passed unchanged each time it is	
:---			
called.			

Details

The estimator used by sobolEff is defined in Monod et al. (2006), Section 4.2.4.2 and studied under the name T_N in Janon et al. (2012). This estimator is good for large first-order indices.

Value

sobolEff returns a list of class "sobolEff", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments.
$y \quad a \quad$ vector of model responses.
S the estimations of the Sobol' sensitivity indices.

Author(s)

Alexandre Janon, Laurent Gilquin

References

Monod, H., Naud, C., Makowski, D. (2006), Uncertainty and sensitivity analysis for crop models in Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications, Elsevier.
A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur (2014), Asymptotic normality and efficiency of two Sobol index estimators, ESAIM: Probability and Statistics, 18:342-364.

See Also

```
sobol,sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolSmthSpl
```


Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# (there are 8 factors, all following the uniform distribution on [0,1])
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobolEff(model = sobol.fun, X1 = X1, X2 = X2, nboot = 0)
print(x)
library(ggplot2)
ggplot(x)
```

sobolGP Kriging-based sensitivity analysis

Description

Perform a kriging-based global sensitivity analysis taking into account both the meta-model and the Monte-Carlo errors. The Sobol indices are estimated with a Monte-Carlo integration and the true function is substituted by a kriging model. It is built thanks to the function km of the package DiceKriging. The complete conditional predictive distribution of the kriging model is considered (not only the predictive mean).

Usage

sobolGP(
model,
type="SK",
MCmethod="sobol",
X1,
X2,
nsim=100,
nboot=1,
conf $=0.95$,
sequential = FALSE,
candidate,
sequential.tot=FALSE,
max_iter = 1000)
\#\# S3 method for class 'sobolGP'
ask(x, tot $=$ FALSE, ...)
\#\# S3 method for class 'sobolGP'
tell(x, y=NULL, xpoint=NULL, newcandidate=NULL, ...)

```
## S3 method for class 'sobolGP'
print(x, ...)
## S3 method for class 'sobolGP'
plot(x,...)
```


Arguments

model	an object of class "km" specifying the kriging model built from package "DiceKriging" (see km).
type	a character string giving the type of the considered kriging model. "SK" refers to simple kriging and "UK" refers to universal kriging (see km).
MCmethod	a character string specifying the Monte-Carlo procedure used to estimate the Sobol indices. The avaible methods are : "sobol", "sobol2002", "sobol2007", "sobolEff" and "soboljansen".
X1	a matrix representing the first random sample.
X2	a matrix representing the second random sample.
nsim	an integer giving the number of samples for the conditional Gaussian process. It is used to quantify the uncertainty due to the kriging approximation.
nboot	an integer representing the number of bootstrap replicates. It is used to quantify the uncertainty due to the Monte-Carlo integrations. We recommend to set nboot $=100$.
conf	a numeric representing the confidence intervals taking into account the uncertainty due to the bootstrap procedure and the Gaussian process samples.
sequential	a boolean. If sequential=TRUE, the procedure provides a new point where to perform a simulation. It is the one minimizing the sum of the MAIN effect estimate variances. The variance is taken with respect to the conditional Gaussian process. The new point is selected in the points candidate.
candidate	a matrix representing the candidate points where the best new point to be simulated is selected. The lines represent the points and the columns represent the dimension.
sequential.tot	a boolean. If sequential. tot=TRUE, the procedure provides a new point where to perform the simulation. It is the one minimizing the sum of the TOTAL effect estimate. The variance is taken with respect to the conditional Gaussian process. The new point is selected in the points candidate.
max_iter	a numeric giving the maximal number of iterations for the propagative Gibbs sampler. It is used to simulate the realizations of the Gaussian process.
x	an object of class S3 "sobolGP" obtaining from the procedure sobolGP. It stores the results of the Kriging-based global sensitivity analysis.
tot	a boolean. If tot=TRUE, the procedure ask provides a point relative to the uncertainty of the total Sobol' indices (instead of first order' ones).
xpoint	a matrix representing a new point added to the kriging model.
y	a numeric giving the response of the function at xpoint.

newcandidate a matrix representing the new candidate points where the best point to be simulated is selected. If newcandidate=NULL, these points correspond to candidate without the new point xpoint.
. . . any other arguments to be passed

Details

The function ask provides the new point where the function should be simulated. Furthermore, the function tell performs a new kriging-based sensitivity analysis when the point x with the corresponding observation y is added.

Value

An object of class S 3 sobolGP.

- call : a list containing the arguments of the function sobolGP :
- X1: X1
- X2 : X2
- conf: conf
- nboot: nboot
- candidate : candidate
- sequential : sequential
- max_iter : max_iter
- sequential.tot : sequential.tot
- model : model
- tot: tot
- method: MCmethod
- type : type
- nsim : nsim
- S : a list containing the results of the kriging-based sensitivity analysis for the MAIN effects:
- mean : a matrix giving the mean of the Sobol index estimates.
- var : a matrix giving the variance of the Sobol index estimates.
- ci : a matrix giving the confidence intervals of the Sobol index estimates according to conf.
- varPG : a matrix giving the variance of the Sobol index estimates due to the Gaussian process approximation.
- varMC : a matrix giving the variance of the Sobol index estimates due to the Monte-Carlo integrations.
- xnew : if sequential=TRUE, a matrix giving the point in candidate which is the best to simulate.
- xnewi : if sequential=TRUE, an integer giving the index of the point in candidate which is the best to simulate.
- T : a list containing the results of the kriging-based sensitivity analysis for the TOTAL effects:
- mean : a matrix giving the mean of the Sobol index estimates.
- var : a matrix giving the variance of the Sobol index estimates.
- ci : a matrix giving the confidence intervals of the Sobol index estimates according to conf.
- varPG : a matrix giving the variance of the Sobol index estimates due to the Gaussian process approximation.
- varMC : a matrix giving the variance of the Sobol index estimates due to the Monte-Carlo integrations.
- xnew : if sequential.tot=TRUE, a matrix giving the point in candidate which is the best to simulate.
- xnewi : if sequential.tot=TRUE, an integer giving the index of the point in candidate which is the best to simulate.

Author(s)

Loic Le Gratiet, EDF R\&D

References

L. Le Gratiet, C. Cannamela and B. Iooss (2014), A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes, SIAM/ASA J. Uncertainty Quantification 2-1, pp. 336-363.

See Also

sobol, sobol2002, sobol2007, sobolEff, soboljansen,sobolMultOut, km

Examples

```
library(DiceKriging)
#-----------------------------------------
# kriging model building
#---------------------------------------
d <- 2; n <- 16
design.fact <- expand.grid(x1=seq(0,1,length=4), x2=seq(0,1,length=4))
y <- apply(design.fact, 1, branin)
m <- km(design=design.fact, response=y)
#-------------------------------------------
# sobol samples & candidate points
#---------------------------------------
n <- 1000
X1 <- data.frame(matrix(runif(d * n), nrow = n))
X2 <- data.frame(matrix(runif(d * n), nrow = n))
candidate <- data.frame(matrix(runif(d * 100), nrow = 100))
```

```
#--------------------------------------------#
# Kriging-based Sobol
#----------------------------------------
nsim <- 10 # put nsim <- 100
nboot <- 10 # put nboot <- 100
res <- sobolGP(
model = m,
type="UK",
MCmethod="sobol",
X1,
X2,
nsim = nsim,
conf = 0.95,
nboot = nboot,
sequential = TRUE,
candidate,
sequential.tot=FALSE,
max_iter = 1000
)
res
plot(res)
x <- ask(res)
y <- branin(x)
# The following line doesn't work (uncorrected bug:
# unused argument in km(), passed by update(), eval(), tell.sobolGP() ??)
#res.new <- tell(res,y,x)
#res.new
```

soboljansen Monte Carlo Estimation of Sobol' Indices (improved formulas of Jansen (1999) and Saltelli et al. (2010))

Description

soboljansen implements the Monte Carlo estimation of the Sobol' indices for both first-order and total indices at the same time (alltogether $2 p$ indices), at a total cost of $(p+2) \times n$ model evaluations. These are called the Jansen estimators.

Usage

soboljansen(model $=$ NULL, X1, X2, nboot $=0$, conf $=0.95, \ldots$)
\#\# S3 method for class 'soboljansen'
tell(x, y = NULL, return.var = NULL, ...)

```
## S3 method for class 'soboljansen'
print(x, ...)
## S3 method for class 'soboljansen'
plot(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...)
    ## S3 method for class 'soboljansen'
plotMultOut(x, ylim = c(0, 1), ...)
## S3 method for class 'soboljansen'
ggplot(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
$x \quad$ a list of class "sobol" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
return.var a vector of character strings giving further internal variables names to store in the output object x .
ylim $\quad y$-coordinate plotting limits.
y _col an integer defining the index of the column of $x \$ y$ to be used for plotting the corresponding sensitivity indices (only applies if $x \$ y$ is a matrix or an array). If set to NULL (as per default) and $x \$ y$ is a matrix or an array, the first column (respectively the first element in the second dimension) of $\mathrm{x} \$ \mathrm{y}$ is used (i.e. y _col $=1$).
y_dim3 an integer defining the index in the third dimension of $x \$ y$ to be used for plotting the corresponding sensitivity indices (only applies if $x \$ y$ is an array). If set to NULL (as per default) and $x \$ y$ is a three-dimensional array, the first element in the third dimension of $x \$ y$ is used (i.e. $y _d i m 3=1$).
... for soboljansen: any other arguments for model which are passed unchanged each time it is called.

Details

This estimator is good for large first-order indices, and (large and small) total indices.
This version of soboljansen also supports matrices and three-dimensional arrays as output of model. If the model output is a matrix or an array, V, S and T are matrices or arrays as well (depending on the type of y and the value of nboot).

The bootstrap outputs V.boot, S.boot and T.boot can only be returned if the model output is a vector (using argument return.var). For matrix or array output, these objects can't be returned.

Value

soboljansen returns a list of class "soboljansen", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments.
$y \quad$ either a vector, a matrix or a three-dimensional array of model responses (depends on the output of model).
V the estimations of Variances of the Conditional Expectations (VCE) with respect to each factor and also with respect to the complementary set of each factor ("all but $X_{i}{ }^{\prime \prime}$).

S the estimations of the Sobol' first-order indices.
T the estimations of the Sobol' total sensitivity indices.

Users can ask more ouput variables with the argument return. var (for example, bootstrap outputs V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss, with contributions from Frank Weber (2016)

References

M.J.W. Jansen, 1999, Analysis of variance designs for model output, Computer Physics Communication, 117, 35-43.
A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola, 2010, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications 181, 259-270.

See Also

sobol, sobol2002, sobolSalt, sobol2007, sobolmartinez, sobolEff, sobolmara, sobolMultOut

Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8* n), nrow = n))
# sensitivity analysis
```

```
x <- soboljansen(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
# Only for demonstration purposes: a model function returning a matrix
sobol.fun_matrix <- function(X){
    res_vector <- sobol.fun(X)
        cbind(res_vector, 2 * res_vector)
}
x_matrix <- soboljansen(model = sobol.fun_matrix, X1, X2)
plot(x_matrix, y_col = 2)
title(main = "y_col = 2")
# Also only for demonstration purposes: a model function returning a
# three-dimensional array
sobol.fun_array <- function(X){
    res_vector <- sobol.fun(X)
    res_matrix <- cbind(res_vector, 2 * res_vector)
    array(data = c(res_matrix, 5 * res_matrix),
            dim = c(length(res_vector), 2, 2))
}
x_array <- soboljansen(model = sobol.fun_array, X1, X2)
plot(x_array, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")
```


Description

sobolmara implements the Monte Carlo estimation of the first-order Sobol' sensitivity indices using the formula of Mara and Joseph (2008), called the Mara estimator. This method allows the estimation of all first-order p indices at a cost of 2 N model calls (the random sample size), then independently of p (the number of inputs).

Usage

sobolmara(model = NULL, X1, ...)
\#\# S3 method for class 'sobolmara'
tell(x, y = NULL, return.var = NULL, ...)
\#\# S3 method for class 'sobolmara'
print(x, ...)
\#\# S3 method for class 'sobolmara'
sobolmara

```
plot(x, ylim = c(0, 1), ...)
    ## S3 method for class 'sobolmara'
plotMultOut(x, ylim = c(0, 1), ...)
## S3 method for class 'sobolmara'
ggplot(x, ylim = c(0, 1), ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the random sample.
$x \quad$ a list of class "sobolEff" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
return.var a vector of character strings giving further internal variables names to store in the output object x.
ylim $\quad y$-coordinate plotting limits.
any other arguments for model which are passed unchanged each time it is called.

Details

The estimator used by sobolmara is based on rearragement of a unique matrix via random permutations (see Mara and Joseph, 2008). Bootstrap confidence intervals are not available.

Value

sobolmara returns a list of class "sobolmara", containing all the input arguments detailed before, plus the following components:
call the matched call.
X
a data.frame containing the design of experiments.
$y \quad a \quad$ vector of model responses.
S the estimations of the Sobol' sensitivity indices.

Author(s)

Bertrand Iooss

References

Mara, T. and Joseph, O.R. (2008), Comparison of some efficient methods to evaluate the main effect of computer model factors, Journal of Statistical Computation and Simulation, 78:167-178

See Also

```
sobolroalhs,sobol,sobolMultOut
```


Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobolmara requires 1 sample
# (there are 8 factors, all following the uniform distribution on [0,1])
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobolmara(model = sobol.fun, X1 = X1)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
```

sobolmartinez Monte Carlo Estimation of Sobol’ Indices (formulas of Martinez
(2011))

Description

sobolmartinez implements the Monte Carlo estimation of the Sobol' indices for both first-order and total indices using correlation coefficients-based formulas, at a total cost of $(p+2) \times n$ model evaluations. These are called the Martinez estimators.

Usage

```
sobolmartinez(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
## S3 method for class 'sobolmartinez'
tell(x, y = NULL, return.var = NULL, ...)
## S3 method for class 'sobolmartinez'
print(x, ...)
## S3 method for class 'sobolmartinez'
plot(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...)
## S3 method for class 'sobolmartinez'
ggplot(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
nboot the number of bootstrap replicates, or zero to use theoretical formulas based on confidence interfaces of correlation coefficient (Martinez, 2011).
conf the confidence level for bootstrap confidence intervals.
sobolmartinez
x
y
return.var a vector of character strings giving further internal variables names to store in the output object x.
ylim $\quad y$-coordinate plotting limits.
$y _$col an integer defining the index of the column of $x \$ y$ to be used for plotting the corresponding sensitivity indices (only applies if $x \$ y$ is a matrix or an array). If set to NULL (as per default) and $x \$ y$ is a matrix or an array, the first column (respectively the first element in the second dimension) of $x \$ y$ is used (i.e. $y _c o l$ $=1$).
y_dim3 an integer defining the index in the third dimension of $x \$ y$ to be used for plotting the corresponding sensitivity indices (only applies if $x \$ y$ is an array). If set to NULL (as per default) and $x \$ y$ is a three-dimensional array, the first element in the third dimension of $x \$ y$ is used (i.e. y_dim3 $=1$).
for sobolmartinez: any other arguments for model which are passed unchanged each time it is called

Details

This estimator supports missing values (NA or NaN) which can occur during the simulation of the model on the design of experiments (due to code failure) even if Sobol' indices are no more rigorous variance-based sensitivity indices if missing values are present. In this case, a warning is displayed.
This version of sobolmartinez also supports matrices and three-dimensional arrays as output of model. Bootstrapping (including bootstrap confidence intervals) is also supported for matrix or array output. However, theoretical confidence intervals (for nboot $=0$) are only supported for vector output. If the model output is a matrix or an array, V, S and T are matrices or arrays as well (depending on the type of y and the value of nboot).
The bootstrap outputs \vee. boot, S. boot and T. boot can only be returned if the model output is a vector (using argument return. var). For matrix or array output, these objects can't be returned.

Value

sobolmartinez returns a list of class "sobolmartinez", containing all the input arguments detailed before, plus the following components:
call the matched call.

X
$y \quad$ either a vector, a matrix or a three-dimensional array of model responses (depends on the output of model).
V the estimations of normalized variances of the Conditional Expectations (VCE) with respect to each factor and also with respect to the complementary set of each factor ("all but X_{i} ").
$S \quad$ the estimations of the Sobol' first-order indices.
T
the estimations of the Sobol' total sensitivity indices.

Users can ask more ouput variables with the argument return. var (for example, bootstrap outputs V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss, with contributions from Frank Weber (2016)

References

J-M. Martinez, 2011, Analyse de sensibilite globale par decomposition de la variance, Presentation in the meeting of GdR Ondes and GdR MASCOT-NUM, January, 13th, 2011, Institut Henri Poincare, Paris, France.
M. Baudin, K. Boumhaout, T. Delage, B. Iooss and J-M. Martinez, 2016, Numerical stability of Sobol' indices estimation formula, Proceedings of the SAMO 2016 Conference, Reunion Island, France, December 2016

See Also

```
sobol,sobol2002,sobolSalt, sobol2007, soboljansen, soboltouati, sobolMultOut
```


Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobolmartinez(model = sobol.fun, X1, X2, nboot = 0)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
# Only for demonstration purposes: a model function returning a matrix
sobol.fun_matrix <- function(X){
        res_vector <- sobol.fun(X)
        cbind(res_vector, 2 * res_vector)
}
x_matrix <- sobolmartinez(model = sobol.fun_matrix, X1, X2)
plot(x_matrix, y_col = 2)
title(main = "y_col = 2")
```

```
# Also only for demonstration purposes: a model function returning a
# three-dimensional array
sobol.fun_array <- function(X){
    res_vector <- sobol.fun(X)
    res_matrix <- cbind(res_vector, 2 * res_vector)
    array(data = c(res_matrix, 5 * res_matrix),
        dim = c(length(res_vector), 2, 2))
}
x_array <- sobolmartinez(model = sobol.fun_array, X1, X2)
plot(x_array, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")
```

```
sobolMultOut
Monte Carlo Estimation of Aggregated Sobol' Indices for multiple and functional outputs
```


Description

sobolMultOut implements the aggregated Sobol' indices for multiple outputs. It consists in averaging all the Sobol indices weighted by the variance of their corresponding output. Moreover, this function computes and plots the functional (unidimensional) Sobol' indices for functional (unidimensional) model output via plotMultOut. Sobol' indices for both first-order and total indices are estimated by Monte Carlo formulas.

Usage

```
        sobolMultOut(model = NULL, q = 1, X1, X2, MCmethod = "sobol",
                        ubiquitous = FALSE, ...)
        ## S3 method for class 'sobolMultOut'
    print(x, ...)
    ## S3 method for class 'sobolMultOut'
    plot(x, ylim = c(0, 1), ...)
    ## S3 method for class 'sobolMultOut'
    plotMultOut(x, ylim = c(0, 1), ...)
    ## S3 method for class 'sobolMultOut'
    ggplot(x, ylim = c(0, 1), ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
$\mathrm{q} \quad$ dimension of the model output vector.
X1 the first random sample.
X2 the second random sample.
MCmethod a character string specifying the Monte-Carlo procedure used to estimate the Sobol indices. The avaible methods are : "sobol", "sobol2002", "sobol2007",
"soboljansen", "sobolmara" and "sobolGP".
ubiquitous if TRUE, 1D functional Sobol indices are computed (default=FALSE).
x
a list of class MCmethod storing the state of the sensitivity study (parameters, data, estimates).
ylim $\quad y$-coordinate plotting limits.
any other arguments for model which are passed unchanged each time it is called

Details

For this function, there are several gaps: the bootstrap estimation of confidence intervals is not avalaible and the tell function does not work. Aggregated Sobol' indices can be plotted with the S3 method plot and ubiquitous Sobol' indices can be visualized with the S3 method plotMultOut (does not work for the "sobolGP" method).

Value

sobolMultOut returns a list of class MCmethod, containing all its input arguments, plus the following components:
call the matched call.

X
y
V

S
T
Sfct the estimations of the functional Sobol' first-order indices (if ubiquitous=TRUE and plot.fct=TRUE).
Tfct the estimations of the functional Sobol' total sensitivity indices (if ubiquitous=TRUE and plot.fct=TRUE).

Author(s)

Bertrand Iooss

References

M. Lamboni, H. Monod and D. Makowski, 2011, Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models, Reliability Engineering and System Safety, 96:450459.
F. Gamboa, A. Janon, T. Klein and A. Lagnoux, 2014, Sensitivity indices for multivariate outputs, Electronic Journal of Statistics, 8:575-603.

See Also

sobol, sobol2002, sobol2007, soboljansen, sobolmara, sobolGP

Examples

```
# Tests on the functional toy fct 'Arctangent temporal function'
y0 <- atantemp.fun(matrix(c(-7,0,7, -7,0,7), ncol=2))
#plot(y0[1,],type="l")
#apply(y0,1,lines)
n <- 100
X <- matrix(c(runif(2*n, -7,7)),ncol=2)
y <- atantemp.fun(X)
plot(y0[2,],ylim=c(-2,2), type="l")
apply(y,1,lines)
# Sobol indices computations
n <- 1000
X1 <- data.frame(matrix(runif(2*n, -7,7), nrow = n))
X2 <- data.frame(matrix(runif(2*n, -7,7), nrow = n))
sa <- sobolMultOut(model=atantemp.fun, q=100, X1, X2,
    MCmethod="soboljansen", ubiquitous=TRUE)
print(sa)
plot(sa)
plotMultOut(sa)
library(ggplot2)
ggplot(sa)
```

sobolowen Monte Carlo Estimation of Sobol' Indices (improved formulas of
Owen (2013)

Description

sobolowen implements the Monte Carlo estimation of the Sobol' indices for both first-order and total indices at the same time (alltogether $2 p$ indices). Take as input 3 independent matrices. These are called the Owen estimators.

Usage

sobolowen (model $=$ NULL, X1, X2, X3, nboot $=0$, conf $=0.95$, varest $=2, \ldots$)
\#\# S3 method for class 'sobolowen'
tell (x, y = NULL, return.var = NULL, varest = 2, ...)
\#\# S3 method for class 'sobolowen'
print(x, ...)
\#\# S3 method for class 'sobolowen'

```
plot(x, ylim = c(0, 1), ...)
## S3 method for class 'sobolowen'
ggplot(x, ylim = c(0, 1), ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
X3 the third random sample.
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
varest choice for the variance estimator for the denominator of the Sobol' indices. varest $=1$ is for a classical estimator. varest=2 (default) is for the estimator proposed in Janon et al. (2012).

X
y
return.var
ylim $\quad y$-coordinate plotting limits.
$\ldots \quad$ any other arguments for model which are passed unchanged each time it is called

Value

sobolowen returns a list of class "sobolowen", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments.
$y \quad$ the response used
V the estimations of Variances of the Conditional Expectations (VCE) with respect to each factor and also with respect to the complementary set of each factor ("all but $X_{i}{ }^{\prime \prime}$).

S
the estimations of the Sobol' first-order indices.
T
the estimations of the Sobol' total sensitivity indices.
Users can ask more ouput variables with the argument return. var (for example, bootstrap outputs V.boot, S.boot and T.boot).

Author(s)

Taieb Touati and Bernardo Ramos

References

A. Owen, 2013, Better estimations of small Sobol' sensitivity indices, ACM Transactions on Modeling and Computer Simulations (TOMACS), 23(2), 11.
Janon, A., Klein T., Lagnoux A., Nodet M., Prieur C. (2012), Asymptotic normality and efficiency of two Sobol index estimators. Accepted in ESAIM: Probability and Statistics.

See Also

```
sobol,sobol2002, sobolSalt,sobol2007, soboljansen, sobolmartinez, sobolEff
```


Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobolowen requires 3 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
X3 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobolowen(model = sobol.fun, X1, X2, X3, nboot = 10) # put nboot=100
print(x)
plot(x)
library(ggplot2)
ggplot(x)
```

sobolrank
First-order sensitivity indices estimation via ranking

Description

sobolrank implements the estimation of all first-order indices using only N model evaluations via ranking following Gamboa et al. (2020) and inspired by Chatterjee (2019).

Usage

sobolrank(model $=$ NULL, X, nboot $=0$, conf $=0.95$, nsample $=$ round $(0.8 * n r o w(X)), \ldots)$
\#\# S3 method for class 'sobolrank'
tell (x, y = NULL, ...)

```
## S3 method for class 'sobolrank'
print(x, ...)
## S3 method for class 'sobolrank'
plot(x, ylim = c(0, 1), ...)
## S3 method for class 'sobolrank'
ggplot(x, ylim = c(0, 1), ...)
```


Arguments

model	a function, or a model with a predict method, defining the model to analyze.		
X	a random sample of the inputs.		
nboot	the number of bootstrap replicates, see details.		
conf	the confidence level for confidence intervals, see details.		
x	the size of the bootstrap sample, see details.		
y a list of class "sobolrank" storing the state of the sensitivity study (parameters,			
data, estimates).		\quad	a vector of model responses.
:---			
$y l i m$	\quad	y-coordinate plotting limits.	
:---			
\ldots	\quad	any other arguments for model which are passed unchanged each time it is	
:---			
called.			

Details

The estimator used by sobolrank is defined in Gamboa et al. (2020). It is based on ranking the inputs as was first proposed by Chatterjee (2019) for a Cramer-Von Mises based estimator. All first-order indices can be estimated with a single sample of size N. Since boostrap creates ties which are not accounted for in the algorithm, confidence intervals are obtained by sampling without replacement with a sample size nsample.

Value

sobolrank returns a list of class "sobolrank", containing all the input arguments detailed before, plus the following components:
call the matched call.
X
a data. frame containing the design of experiments.
$y \quad a \operatorname{vector}$ of model responses.
S the estimations of the Sobol' sensitivity indices.

Author(s)

Sebastien Da Veiga

References

Gamboa, F., Gremaud, P., Klein, T., \& Lagnoux, A., 2020, Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics, arXiv preprint arXiv:2003.01772.
Chatterjee, S., 2019, A new coefficient of correlation, Journal of the American Statistical Association, doi:10.1080/01621459.2020.1758115

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolSmthSpl, sobolEff, sobolshap_knn

Examples

\# Test case : the non-monotonic Sobol g-function
\# Example with a call to a numerical model
library(boot)
n <- 1000
X <- data.frame(matrix(runif($8 * n$), nrow $=n$))
x <- sobolrank(model = sobol.fun, X = X, nboot = 100)
print(x)
library(ggplot2)
ggplot(x)
\# Test case : the Ishigami function
\# Example with given data
n <- 500
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- sobolrank(model = NULL, X)
tell (x, Y)
print(x)
ggplot(x)
sobolrec Recursive estimation of Sobol' indices

Description

sobolrec implements a recursive version of the procedure introduced by Tissot \& Prieur (2015) using two replicated nested designs. This function estimates either all first-order indices or all closed second-order indices at a total cost of $2 \times N$ model evaluations where N is the size of each replicated nested design.

Usage

sobolrec(model=NULL, factors, layers, order, precision, method=NULL, tail=TRUE, ...)
\#\# S3 method for class 'sobolrec'
ask(x, index, ...)
\#\# S3 method for class 'sobolrec'
tell(x, y = NULL, index, ...)

```
## S3 method for class 'sobolrec'
print(x, ...)
## S3 method for class 'sobolrec'
plot(x, ylim = c(0,1), ...)
```


Arguments

model factors	a function, or a model with a predict method, defining the model to analyze. an integer giving the number of factors, or a vector of character strings giving their names.
layers	If order=1, a vector specifying the respective sizes of each layer (see "Details"). If order=2, an integer specifying the size of all layers.
order	an integer specifying which indices to estimate: 1 for first-order indices, 2 for closed second-order indices.
precision	a vector containing:
	- the target precision for the stopping criterion. - the number of steps for the stopping criterion (must be greater than 1).
tail	a boolean specifying the method used to choose the number of levels of the orthogonal array (see "Warning messages").
method	If order=2, a character specifying the method to construct the orthogonal arrays (see "Details"):
	- "al" for the algebraic method
	- "ar" for the accept-reject method
	Set to NULL if order=1.
X	a list of class "sobolrec" storing the state of the sensitivity study (parameters, data, estimates).
index	an integer specifying the step of the recursion
y	the model response.
ylim	y -coordinate plotting limits.
	any other arguments for model which are passed unchanged each time it is called.

Details

For first-order indices, layers is a vector:

$$
\left(s_{1}, \ldots, s_{m}\right)
$$

specifying the number m of layers of the nested design whose respective size are given by:

$$
\prod_{i=1}^{k-1} s_{i}, k=2, \ldots, m+1
$$

For closed second-order indices, layers directly specifies the size of all layers.

For each Sobol' index S the stopping criterion writes:

$$
\left|S_{l-1}-S_{l}\right|<\epsilon
$$

This criterion is tested for the last l_{0} steps (including the current one). ϵ and l_{0} are respectively the target precision and the number of steps of the stopping criterion specified in precision.
sobolrec uses either an algebraic or an accept-rejet method to construct the orthogonal arrays for the estimation of closed second-order indices. The algebraic method is less precise than the acceptreject method but offers more steps when the number of factors is small.
sobolrec automatically assigns a uniform distribution on $[0,1]$ to each input. Transformations of distributions (between $\mathrm{U}[0,1]$ and the wanted distribution) have to be performed before the call to tell().

Value

sobolrec returns a list of class "sobolrec", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data.frame containing the design of experiments (row concatenation of the two replicated designs).
$y \quad a \quad$ list of the response used at each step.
$V \quad$ a list of the model variance estimated at each step.
S a list of the Sobol' indices estimated at each step.
steps the number of steps performed.
N
the size of each replicated nested design.

Warning messages

"The value entered for layers is not the square of a prime number. It has been replaced by: " When order=2, the value of layers must be the square of a prime power number. This warning message indicates that it was not the case and the value has been replaced depending on tail. If tail=TRUE (resp. tail=FALSE) the new value of layers is equal to the square of the prime number preceding (resp. following) the square root of layers.
"The value entered for layers is not satisfying the constraint. It has been replaced by: " the value N for layers must satisfied the constraint $N \geq(d-1)^{2}$ where d is the number of factors. This warning message indicates that N was replaced by the square of the prime number following (or equals to) $d-1$.

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications, Springer Series in Statistics.
L. Gilquin, E. Arnaud, H. Monod and C. Prieur, 2016, Recursive estimation procedure of Sobol' indices based on replicated designs, preprint available at: https://hal.inria.fr/hal-01291769.

Examples

```
# Test case: the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# (there are 8 factors, all following the uniform distribution on [0,1])
# first-order indices estimation
x <- sobolrec(model = sobol.fun, factors = 8, layers=rep(2,each=15), order=1,
    precision = c(5*10^(-2),2), method=NULL, tail=TRUE)
print(x)
# closed second-order indices estimation
x <- sobolrec(model = sobol.fun, factors = 8, layers=11^2, order=2,
    precision = c(10^(-2),3), method="al", tail=TRUE)
print(x)
# Test case: dealing with external model
# put in comment because of bug with ask use !
#x <- sobolrec(model = NULL, factors = 8, layers=rep(2,each=15), order=1,
# precision = c(5*10^(-2),2), method=NULL, tail=TRUE)
#toy <- sobol.fun
#k <- 1
#stop_crit <- FALSE
#while(!(stop_crit) & (k<length(x$layers))){
# ask(x, index=k)
# y <- toy(x$block)
# tell(x, y, index=k)
# stop_crit <- x$stop_crit
# k <- k+1
#}
#print(x)
```

sobolrep

Sobol' indices estimation based on replicated orthogonal arrays

Description

sobolrep generalizes the estimation of the Sobol' sensitivity indices introduced by Tissot \& Prieur (2015) using two replicated orthogonal arrays. This function estimates either

- all first-order and second-order indices at a total cost of $2 \times N$ model evaluations,
- or all first-order, second-order and total-effect indices at a total cost of $N \times(d+2)$ model evaluations,
where $N=q^{2}$ and $q \geq d-1$ is a prime number corresponding to the number of levels of each orthogonal array.

Usage

```
sobolrep(model = NULL, factors, N, tail=TRUE,
conf=0.95, nboot=0, nbrep=1, total=FALSE, ...)
## S3 method for class 'sobolrep'
tell(x, y = NULL, ...)
## S3 method for class 'sobolrep'
print(x, ...)
## S3 method for class 'sobolrep'
plot(x, ylim = c(0,1), choice, ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
factors an integer giving the number of factors, or a vector of character strings giving their names.
$\mathrm{N} \quad$ an integer giving the size of each replicated design (for a total of $2 \times N$ model evaluations).
tail a boolean specifying the method used to choose the number of levels of the orthogonal array (see "Warning messages").
conf the confidence level for confidence intervals.
nboot the number of bootstrap replicates.
nbrep the number of times the estimation procedure is repeated (see "Details").
total a boolean specifying whether or not total effect indices are estimated.
x
$\mathrm{y} \quad$ the model response.
ylim y-coordinate plotting limits.
choice an integer specifying which indices to plot: 1 for first-order indices, 2 for secondorder indices, 3 for total-effect indices.
... any other arguments for model which are passed unchanged each time it is called.

Details

sobolrep automatically assigns a uniform distribution on [0,1] to each input. Transformations of distributions (between $\mathrm{U}[0,1]$ and the wanted distribution) have to be performed before the call to tell() (see "Examples").
nbrep specifies the number of times the estimation procedure is repeated. Each repetition makes use of the orthogonal array structure to obtain a new set of Sobol' indices. It is important to note that no additional model evaluations are performed (the cost of the procedure remains the same).

Value
sobolrep returns a list of class "sobolrep", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data.frame containing the design of experiments (row concatenation of the two replicated designs).
y the response used.
RP the matrix of permutations.
V the model variance.
S a data.frame containing estimations of the first-order Sobol' indices plus confidence intervals if specified.
S2 a data.frame containing estimations of the second-order Sobol' indices plus confidence intervals if specified.

T a data.frame containing estimations of the total-effect indices plus confidence intervals if specified.

Warning messages

"The value entered for N is not the square of a prime number. It has been replaced by: " the number of levels q of each orthogonal array must be a prime number. If N is not a square of a prime number, then this warning message indicates that it was replaced depending on the value of tail. If tail=TRUE (resp. tail=FALSE) the new value of N is equal to the square of the prime number preceding (resp. following) the square root of N.
"The value entered for N is not satisfying the constraint $N \geq(d-1)^{2}$. It has been replaced by: " the following constraint must be satisfied $N \geq(d-1)^{2}$ where d is the number of factors. This warning message indicates that N was replaced by the square of the prime number following (or equals to) $d-1$.

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications, Springer Series in Statistics.
J-Y. Tissot and C. Prieur, 2015, A randomized orthogonal orray-based procedure for the estimation of first- and second-order Sobol' indices, J. Statist. Comput. Simulation, 85:1358-1381.

Examples

```
# Test case: the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# (there are 8 factors, all following the uniform distribution on [0,1])
x <- sobolrep(model = sobol.fun, factors = 8, N = 1000, nboot=100, nbrep=1, total=FALSE)
print(x)
plot(x,choice=1)
plot(x,choice=2)
```

```
# Test case: dealing with non-uniform distributions
x <- sobolrep(model = NULL, factors = 3, N = 1000, nboot=0, nbrep=1, total=FALSE)
# X1 follows a log-normal distribution:
x$X[,1] <- qlnorm(x$X[,1])
# X2 follows a standard normal distribution:
x$X[,2] <- qnorm(x$X[,2])
# X3 follows a gamma distribution:
x$X[,3] <- qgamma(x$X[,3],shape=0.5)
# toy example
toy <- function(x){rowSums(x)}
y <- toy (x$X)
tell(x, y)
print(x)
plot(x,choice=1)
plot(x,choice=2)
```


Description

sobolroalhs implements the estimation of the Sobol' sensitivity indices introduced by Tissot \& Prieur (2015) using two replicated designs (Latin hypercubes or orthogonal arrays). This function estimates either all first-order indices or all closed second-order indices at a total cost of $2 \times N$ model evaluations. For closed second-order indices $N=q^{2}$ where $q \geq d-1$ is a prime number corresponding to the number of levels of the orthogonal array, and where d indicates the number of factors.

Usage

```
sobolroalhs(model = NULL, factors, N, p=1, order, tail=TRUE, conf=0.95, nboot=0, ...)
## S3 method for class 'sobolroalhs'
tell(x, y = NULL, ...)
## S3 method for class 'sobolroalhs'
print(x, ...)
## S3 method for class 'sobolroalhs'
plot(x, ylim = c(0,1), ...)
## S3 method for class 'sobolroalhs'
ggplot(x, ylim = c(0,1), ...)
```


Arguments

model	a function, or a model with a predict method, defining the model to analyze. an integer giving the number of factors, or a vector of character strings giving their names.
N	an integer giving the size of each replicated design (for a total of $2 \times N$ model evaluations). an integer giving the number of model outputs.
p	an integer giving the order of the indices (1 or 2). a boolean specifying the method used to choose the number of levels of the orthogonal array (see "Warning messages").
conf	the confidence level for confidence intervals.
nboot	the number of bootstrap replicates.
x list of class "sobolroalhs" storing the state of the sensitivity study (parame-	
ters, data, estimates).	
ylim	a vector of model responses.
\ldots	y-coordinate plotting limits.
any other arguments for model which are passed unchanged each time it is	
called.	

Details

sobolroalhs automatically assigns a uniform distribution on [0,1] to each input. Transformations of distributions (between $\mathrm{U}[0,1]$ and the wanted distribution) have to be realized before the call to tell() (see "Examples").
Missing values (i.e NA values) in outputs are automatically handled by the function.
This function also supports multidimensional outputs (matrices in y or as output of model). In this case, aggregated Sobol' indices are returned (see sobolMultOut).

Value

sobolroalhs returns a list of class "sobolroalhs", containing all the input arguments detailed before, plus the following components:
call the matched call.
X
a data.frame containing the design of experiments (row concatenation of the two replicated designs).
$\mathrm{y} \quad$ the responses used.
OA the orthogonal array constructed (NULL if order=1).
V the estimations of Variances of the Conditional Expectations (VCE) with respect to each factor.

S the estimations of the Sobol' indices.

Warning messages

"The value entered for N is not the square of a prime number. It has been replaced by: " when order $=2$, the number of levels of the orthogonal array must be a prime number. If N is not a square of a prime number, then this warning message indicates that it was replaced depending on the value of tail. If tail=TRUE (resp. tail=FALSE) the new value of N is equal to the square of the prime number preceding (resp. following) the square root of N.
"The value entered for N is not satisfying the constraint $N \geq(d-1)^{2}$. It has been replaced by: " when order $=2$, the following constraint must be satisfied $N \geq(d-1)^{2}$ where d is the number of factors. This warning message indicates that N was replaced by the square of the prime number following (or equals to) $d-1$.

Author(s)

Laurent Gilquin

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications, Springer Series in Statistics.
F. Gamboa, A. Janon, T. Klein and A. Lagnoux, 2014, Sensitivity indices for multivariate outputs, Electronic Journal of Statistics, 8:575-603.
J.Y. Tissot and C. Prieur, 2015, A randomized orthogonal orray-based procedure for the estimation of first- and second-order Sobol' indices, J. Statist. Comput. Simulation, 85:1358-1381.

See Also

```
sobolmara, sobolroauc, sobolMultOut
```


Examples

```
library(boot)
library(numbers)
#####################
# Test case: the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# (there are 8 factors, all following the uniform distribution on [0,1])
# first-order sensitivity indices
x <- sobolroalhs(model = sobol.fun, factors = 8, N = 1000, order = 1, nboot=100)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
# closed second-order sensitivity indices
x <- sobolroalhs(model = sobol.fun, factors = 8, N = 1000, order = 2, nboot=100)
```

```
print(x)
ggplot(x)
#####################
# Test case: dealing with non-uniform distributions
x <- sobolroalhs(model = NULL, factors = 3, N = 1000, order =1, nboot=0)
# X1 follows a log-normal distribution:
x$X[,1] <- qlnorm(x$X[,1])
# X2 follows a standard normal distribution:
x$X[,2] <- qnorm(x$X[,2])
# X3 follows a gamma distribution:
x$X[,3] <- qgamma(x$X[,3],shape=0.5)
# toy example
toy <- function(x){rowSums(x)}
y <- toy(x$X)
tell(x, y)
print(x)
ggplot(x)
#####################
# Test case : multidimensional outputs
toy <- function(x){cbind(x[,1]+x[,2]+x[,1]*x[,2],2*x[,1]+3*x[,1]*x[,2]+x[,2])}
x <- sobolroalhs(model = toy, factors = 3, N = 1000, p=2, order =1, nboot=100)
print(x)
ggplot(x)
```

sobolroauc

Description

sobolroauc deals with the estimation of Sobol' sensitivity indices when there exists one or multiple sets of constrained factors. Constraints within a set are expressed as inequality constraints (simplex constraint). This function generalizes the procedure of Tissot and Prieur (2015) to estimate either all first-order indices or all closed second-order indices at a total cost of $2 \times N$ model evaluations. For closed second-order indices $N=q^{2}$ where $q \geq d-1$ is a prime number denoting the number of levels of the orthogonal array, and where d indicates the number of independent factors or sets of factors.

Usage

```
sobolroauc(model = NULL, factors, constraints = NULL, N, p = 1, order,
    tail = TRUE, conf = 0.95, nboot = 0, ...)
## S3 method for class 'sobolroauc'
tell(x, y = NULL, ...)
## S3 method for class 'sobolroauc'
print(x, ...)
## S3 method for class 'sobolroauc'
plot(x, ylim = c(0,1), ...)
## S3 method for class 'sobolroauc'
ggplot(x, ylim = c(0,1), ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
factors an integer giving the number of factors, or a vector of character strings giving their names.
constraints a list giving the sets of constrained factors (see "Details").
N an integer giving the size of each replicated design (for a total of $2 \times N$ model evaluations).
p an integer giving the number of model outputs.
order an integer giving the order of the indices (1 or 2).
tail a boolean specifying the method used to choose the number of levels of the orthogonal array (see "Warning messages").
conf the confidence level for confidence intervals.
nboot the number of bootstrap replicates.
$x \quad$ a list of class "sobolroauc" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
ylim $\quad y$-coordinate plotting limits.
any other arguments for model which are passed unchanged each time it is called.

Details

constraints list the sets of factors depending on each other through inequality constraints (see "Examples"). A same factor is not allowed to appear in multiple sets. Factors not appearing in constraints are assumed to be independent and follow each a uniform distribution on $[0,1]$. One Sobol' index is estimated for each independent factor or set of factors.

Missing values (i.e NA values) in the model responses are automatically handled by the function.
This function also supports multidimensional outputs (matrices in y or as output of model). In this case, aggregated Sobol' indices are returned (see sobolMultOut).

Value
sobolroauc returns a list of class "sobolroauc", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data. frame containing the design of experiments (concatenation of two replicated designs).
$y \quad$ the responses used.
OA the orthogonal array constructed (NULL if order=1).
V the estimations of Variances of the Conditional Expectations (VCE) with respect to each factor.

S the estimations of the Sobol' indices.

Warning messages

"The value entered for N is not the square of a prime number. It has been replaced by: " when order $=2$, the number of levels of the orthogonal array must be a prime number. If N is not a square of a prime number, then this warning message indicates that it was replaced depending on the value of tail. If tail=TRUE (resp. tail=FALSE) the new value of N is equal to the square of the prime number preceding (resp. following) the square root of N .
"The value entered for N is not satisfying the constraint $N \geq(d-1)^{2}$. It has been replaced by: " when order $=2$, the following constraint must be satisfied $N \geq(d-1)^{2}$ where d is the number of independent factors or sets of factors. This warning message indicates that N was replaced by the square of the prime number following (or equals to) $d-1$.

Author(s)

Laurent Gilquin

References

L. Devroye, 1986, Non-Uniform Random Variate Generation. Springer-Verlag.
J. Jacques, C. Lavergne and N. Devictor, 2006, Sensitivity Analysis in presence of model uncertainty and correlated inputs. Reliability Engineering \& System Safety, 91:1126-1134.
L. Gilquin, C. Prieur and E. Arnaud, 2015, Replication procedure for grouped Sobol' indices estimation in dependent uncertainty spaces, Information and Inference, 4:354-379.
J.Y. Tissot and C. Prieur, 2015, A randomized orthogonal orray-based procedure for the estimation of first- and second-order Sobol' indices, J. Statist. Comput. Simulation, 85:1358-1381.

See Also

sobolroalhs, sobolmara
sobolSalt

Examples

```
library(boot)
library(numbers)
# Test case: the non-monotonic Sobol g-function
# (there are 8 factors, all following the uniform distribution on [0,1])
# Suppose we have the inequality constraints: X1 <= X3 and X4 <= X6.
# first-order sensitivity indices
x <- sobolroauc(model = sobol.fun, factors = 8, constraints = list(c(1,3),c(4,6)),
    N = 1000, order = 1, nboot=100)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
# closed second-order sensitivity indices
x <- sobolroauc(model = sobol.fun, factors = 8, constraints = list(c(1, 3),c(4,6)),
    N = 1000, order = 2, nboot=100)
print(x)
ggplot(x)
```

sobolSalt
Monte Carlo Estimation of Sobol' Indices based on Saltelli schemes

Description

sobolSalt implements the Monte Carlo estimation of the Sobol' indices for either both first-order and total effect indices at the same time (alltogether $2 p$ indices) at a total cost of $n \times(p+2)$ model evaluations; or first-order, second-order and total indices at the same time (alltogether $2 p+p \times(p-$ $1) / 2$ indices) at a total cost of $n \times(2 \times p+2)$ model evaluations.

Usage

```
sobolSalt(model = NULL, X1, X2, scheme="A", nboot = 0, conf = 0.95, ...)
## S3 method for class 'sobolSalt'
tell(x, y = NULL, ...)
## S3 method for class 'sobolSalt'
print(x, ...)
## S3 method for class 'sobolSalt'
plot(x, ylim = c(0, 1), choice, ...)
## S3 method for class 'sobolSalt'
ggplot(x, ylim = c(0, 1), choice, ...)
```


Arguments

model
X1
X2
scheme
nboot
conf
x
y
ylim
choice
a function, or a model with a predict method, defining the model to analyze.
the first random sample (containing n points).
the second random sample (containing n points).
a letter "A" or "B" indicating which scheme to use (see "Details")
the number of bootstrap replicates.
the confidence level for bootstrap confidence intervals.
a list of class "sobol" storing the state of the sensitivity study (parameters, data, estimates).
a vector of model responses.
y -coordinate plotting limits.
an integer specifying which indices to plot: 1 for first-order and total effect indices, 2 for second-order indices.
$\ldots \quad$ any other arguments for model which are passed unchanged each time it is called

Details

The estimators used are the one implemented in "sobolEff".
scheme specifies which Saltelli's scheme is to be used: "A" to estimate both first-order and total effect indices, " B " to estimate first-order, second-order and total effect indices.

Value

sobolSalt returns a list of class "sobolSalt", containing all the input arguments detailed before, plus the following components:
call the matched call.
X
a data.frame containing the design of experiments.
$y \quad$ the response used.
V the model variance.
S the estimations of the Sobol' first-order indices.
S2 the estimations of the Sobol' second-order indices (only for scheme "B").
T the estimations of the Sobol' total sensitivity indices.

Author(s)

Laurent Gilquin

References

A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur (2014), Asymptotic normality and efficiency of two Sobol index estimators, ESAIM: Probability and Statistics, 18:342-364.
A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communication, 145:580-297.

See Also

sobol, sobol2007, soboljansen, sobolmartinez, sobolEff

Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobolSalt(model = sobol.fun, X1, X2, scheme="A", nboot = 100)
print(x)
plot(x, choice=1)
library(ggplot2)
ggplot(x, choice=1)
```

```
sobolshap_knn
```

Flexible sensitivity analysis via ranking / nearest neighbours

Description

sobolshap_knn implements the estimation of several sensitivity indices using only N model evaluations via ranking (following Gamboa et al. (2020) and Chatterjee (2019)) or nearest neighbour search (Broto et al. (2020) and Azadkia \& Chatterjee (2020)). It can be used with categorical inputs (which are transformed with one-hot encoding), dependent inputs and multiple outputs. Sensitivity indices of any group of inputs can be computed, which means that in particular first-order/total Sobol indices and Shapley effects are accessible. For large sample sizes, the nearest neightbour algorithm can be significantly accelerated by using approximate nearest neighbour search. It is also possible to estimate Shapley effects with the random permutation approach of Castro et al.(2009), where all the terms are obtained with ranking or nearest neighbours.

Usage

sobolshap_knn(model $=$ NULL, X, id.cat $=$ NULL, $U=$ NULL, method $=$ "knn", n. $k n n=2$, return.shap $=$ FALSE, randperm $=$ FALSE, n.perm $=1 \mathrm{e} 4$, rescale $=$ FALSE, n.limit $=$ 2000, noise $=$ FALSE,..)
\#\# S3 method for class 'sobolshap_knn'
tell ($\mathrm{x}, \mathrm{y}=\mathrm{NULL}, \ldots$)
\#\# S3 method for class 'sobolshap_knn'

```
extract(x, ...)
    ## S3 method for class 'sobolshap_knn'
print(x, ...)
    ## S3 method for class 'sobolshap_knn'
plot(x, ylim = c(0, 1), type.multout = "lines", ...)
    ## S3 method for class 'sobolshap_knn'
ggplot(x, ylim = c(0, 1), type.multout = "lines", ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
$X \quad a$ random sample of the inputs.
id.cat a vector with the indices of the categorical inputs.

U	an integer equal to 0 (total Sobol indices) or 1 (first-order Sobol indices) or a list of vector indices defining the subsets of inputs whose sensitivity indices must be computed or a matrix of 0 s and 1 s where each row encodes a subset of inputs whose sensitivity indices must be computed (see examples) or NULL (all possible subsets).
method	the algorithm to be used for estimation, either "rank" or "knn", see details.
n. knn	the number of nearest neighbours used for estimation if method="knn".
return.shap	a logical indicating if Shapley effects must be estimated, can only be TRUE if U=NULL.
randperm	a logical indicating if random permutations are used to estimate Shapley effects, only if $U=$ NULL and return. shap=TRUE.
n. perm	the number of random permutations used for estimation if randperm=TRUE.
rescale	a logical indicating if continuous inputs must be rescaled before distance computations. If TRUE, continuous inputs are first whitened with the ZCA-cor whitening procedure (cf. whiten() function in package whitening). If the inputs are independent, this first step will have a very limited impact. Then, the resulting whitened inputs are individually modified via a copula transform such that each input has the same scale.
n.limit	the sample size limit above which approximate nearest neighbour search is activated, only used if method="knn".
noise	a logical which is TRUE if the model or the output sample is noisy, see details.
x	a list of class "sobolshap_knn" storing the state of the sensitivity study (parameters, data, estimates).
y	a vector of model responses.
ylim	y-coordinate plotting limits.
type.multout	the plotting method in the case of multiple outputs, either "points" or "lines", see examples.
	any other arguments for model which are passed unchanged each time it is called.

Details

For method="rank", the estimator is defined in Gamboa et al. (2020) following Chatterjee (2019). For first-order indices it is based on an input ranking (same algorithm as in sobolrank) while for higher orders, it uses an approximate heuristic solution of the traveling salesman problem applied to the input sample distances (cf. TSP() function in package TSP). For method="knn", ranking and TSP are replaced by a nearest neighbour search as proposed in Broto et al. (2020) and in Azadkia \& Chatterjee (2020) for a similar coefficient. The algorithm is the same as in shapleySubsetMc but with an optimized implementation. In particular, the distance used for subsets with mixed inputs (continuous and categorical) are the same but here the additional one-hot encoding of categorical variables makes it possible to work only with Euclidean distances. Furthermore, a fast approximate nearest neighbour search is also available, which is strongly recommended for large sample sizes. The main difference with shapleySubsetMc is that here we use the entire N sample to compute all indices, while in shapleySubsetMc the user can specify a total cost Ntot which performs a specific allocation of sample sizes to the estimation of each index. In addition, the weights option is not available here yet. If the outputs are noisy, the argument noise can be used: it only has an impact on the estimation of one specific sensitivity index, namely $\operatorname{Var}(E(Y \mid X 1, \ldots, X p)) / \operatorname{Var}(Y)$. If there is no noise this index is equal to 1 , while in the presence of noise it must be estimated.
When randperm=TRUE, Shapley effects are no longer estimated by computing all the possible subsets of variables but only on subsets obtained with random permutations as proposed in Castro et al.(2009). This is useful for problems with a large number of inputs, since the number of subsets increases exponentially with dimension.

The extract method is useful if in a first step the Shapley effects have been computed and thus sensitivity indices for all possible subsets are available. The resulting sobolshap_knn object can be post-treated by extract to get first-order and total Sobol indices very easily.

Value

sobolshap_knn returns a list of class "sobolshap_knn", containing all the input arguments detailed before, plus the following components:
call the matched call.
$X \quad$ a data.frame containing the design of experiments.
$y \quad a \quad$ vector of model responses.
$U \quad$ the subsets of inputs for which sensitivity indices have been computed.
$S \quad$ the estimations of the Sobol sensitivity indices (see details).
Shap the estimations of Shapley effects, if return.shap was set to TRUE.
order $\quad 0$ (total indices), 1 (first-order indices) or NULL. Used for plotting defaults.

Author(s)

Sebastien Da Veiga

References

Azadkia M., Chatterjee S. (2019). A simple measure of conditional dependence. arXiv preprint arXiv:1910.12327.

Broto B., Bachoc F., Depecker M. (2020), Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution, SIAM/ASA Journal of Uncertainty Quantification, 8:693-716.
Castro J., Gomez D, Tejada J. (2009). Polynomial calculation of the Shapley value based on sampling. Computers \& Operations Research, 36(5):1726-1730.

Chatterjee S. (2019). A new coefficient of correlation. arXiv preprint arXiv:1909.10140.
Gamboa F., Gremaud P., Klein T., Lagnoux A. (2020). Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics. arXiv preprint arXiv:2003.01772.

See Also

sobolrank, shapleysobol_knn, shapleySubsetMc

Examples

```
# Test case: the non-monotonic Sobol g-function
# Example with a call to a numerical model
# First compute first-order indices with ranking
n <- 1000
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- sobolshap_knn(model = sobol.fun, X = X, U = 1, method = "rank")
print(x)
library(ggplot2)
ggplot(x)
# We can use the output sample generated for this estimation to compute total indices
# without additional calls to the model
x2 <- sobolshap_knn(model = NULL, X = X, U = 0, method = "knn", n.knn = 5)
tell(x2,x$y)
ggplot(x2)
# Test case: the Ishigami function
# Example with given data and the use of approximate nearest neighbour search
library(RANN)
n <- 5000
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
Y <- ishigami.fun(X)
x <- sobolshap_knn(model = NULL, X = X, U = NULL, method = "knn", n.knn = 5,
    return.shap = TRUE, n.limit = 2000)
tell(x, Y)
library(ggplot2)
ggplot(x)
# We can also extract first-order and total Sobol indices
x1 <- extract(x)
print(x1)
# Test case : Linear model (3 Gaussian inputs including 2 dependent) with scaling
# See Iooss and Prieur (2019)
library(mvtnorm) # Multivariate Gaussian variables
library(whitening) # For scaling
modlin <- function(X) apply(X,1,sum)
```

```
d <- 3
n <- 10000
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- ( sig %*% t(sig) ) * Cormat
Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)
X <- Xall(n)
x <- sobolshap_knn(model = modlin, X = X, U = NULL, method = "knn", n.knn = 5,
    return.shap = TRUE, rescale = TRUE, n.limit = 2000)
print(x)
# Test case: functional toy fct 'Arctangent temporal function'
n <- 3000
X <- data.frame(matrix(runif(2*n,-7,7), nrow = n))
Y <- atantemp.fun(X)
x <- sobolshap_knn(model = NULL, X = X, U = NULL, method = "knn", n.knn = 5,
    return.shap = TRUE, n.limit = 2000)
tell(x, Y)
library(ggplot2)
library(reshape2)
ggplot(x, type.multout="lines")
```

sobolSmthSpl Estimation of Sobol' First Order Indices with B-spline Smoothing

Description

Determines the Si coefficient for singular parameters through B-spline smoothing with roughness penalty.

Usage

sobolSmthSpl(Y, X)

Arguments

$Y \quad$ vector of model responses.
X matrix having as rows the input vectors corresponding to the responses in Y .

Details

WARNING: This function can give bad results for reasons that have not been yet investigated.

Value
sobolSmthSpl returns a list of class "sobolSmthSpl" containing the following components:
call the matched call.
$X \quad$ the provided input matrix.
Y the provided matrix of model responses.
S a matrix having the following columns: Si (the estimated first order Sobol' indices), Si.e (the standard errors for the estimated first order Sobol' indices) and q0.05 (the 0.05 quantiles assuming for the Si indices Normal distributions centred on the Si estimates and with standard deviations the calculated standard errors)

Author(s)

Filippo Monari

References

Saltelli, A; Ratto, M; Andres, T; Campolongo, F; Cariboni, J; Gatelli, D; Saisana, M \& Tarantola, S. Global Sensitivity Analysis: The Primer Wiley-Interscience, 2008

M Ratto and A. Pagano, 2010, Using recursive algorithms for the efficient identification of smoothing spline ANOVA models, Advances in Statistical Analysis, 94, 367-388.

See Also

sobol, sobolEff, sobolGP

Examples

```
X = matrix(runif(5000), ncol = 10)
Y = sobol.fun(X)
sa = sobolSmthSpl(Y, X)
plot(sa)
```

sobolTIIlo

Description

sobolTIIlo implements the asymptotically efficient formula of Liu and Owen (2006) for the estimation of total interaction indices as described e.g. in Section 3.4 of Fruth et al. (2014). Total interaction indices (TII) are superset indices of pairs of variables, thus give the total influence of each second-order interaction. The total cost of the method is $\binom{(1+N+}{(N, 2)) \times n}$ where N is the number of indices to estimate. Asymptotic confidence intervals are provided. Via plotFG (which uses functions of the package igraph), the TIIs can be visualized in a so-called FANOVA graph as described in section 2.2 of Muehlenstaedt et al. (2012).

Usage

```
sobolTIIlo(model = NULL, X1, X2, conf = 0.95, ...)
## S3 method for class 'sobolTIIlo'
tell(x, y = NULL, ...)
## S3 method for class 'sobolTIIlo'
print(x, ...)
## S3 method for class 'sobolTIIlo'
plot(x, ylim = NULL, ...)
## S3 method for class 'sobolTIIlo'
ggplot(x, ylim = NULL, ...)
## S3 method for class 'sobolTIIlo'
plotFG(x)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
conf the confidence level for asymptotic confidence intervals, defaults to 0.95 .
$x \quad$ a list of class "sobolTIIlo" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \operatorname{vector}$ of model responses.
... any other arguments for model which are passed unchanged each time it is called.
ylim optional, the y limits of the plot.

Value

sobolTIIlo returns a list of class "sobolTIIlo", containing all the input arguments detailed before, plus the following components:

call	the matched call.
X	a data.frame containing the design of experiments.
y	a vector of model responses.
V	the estimation of the overall variance.
tii.unscaled	the unscaled estimations of the TIIs.
tii.scaled	the scaled estimations of the TIIs together with asymptotic confidence intervals.

Author(s)

Jana Fruth

References

R. Liu, A. B. Owen, 2006, Estimating mean dimensionality of analysis of variance decompositions, JASA, 101 (474), 712-721.
J. Fruth, O. Roustant, S. Kuhnt, 2014, Total interaction index: A variance-based sensitivity index for second-order interaction screening, J. Stat. Plan. Inference, 147, 212-223.
T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt, 2012, Data-driven Kriging models based on FANOVA-decomposition, Stat. Comput., 22 (3), 723-738.

See Also

```
sobolTIIpf
```


Examples

```
# Test case : the Ishigami function
# The method requires 2 samples
n <- 1000
X1 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
X2 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
# sensitivity analysis (the true values of the scaled TIIs are 0, 0.244, 0)
x <- sobolTIIlo(model = ishigami.fun, X1 = X1, X2 = X2)
print(x)
# plot of tiis and FANOVA graph
plot(x)
library(ggplot2)
ggplot(x)
library(igraph)
plotFG(x)
```

sobolTIIpf

Description

sobolTIIpf implements the pick-freeze estimation of total interaction indices as described in Section 3.3 of Fruth et al. (2014). Total interaction indices (TII) are superset indices of pairs of variables, thus give the total influence of each second-order interaction. The pick-freeze estimation enables the strategy to reuse evaluations of Saltelli (2002). The total costs are $(1+N) \times n$ where N is the number of indices to estimate. Via plotFG, the TIIs can be visualized in a so-called FANOVA graph as described in section 2.2 of Muehlenstaedt et al. (2012).

Usage

```
sobolTIIpf(model = NULL, X1, X2, ...)
## S3 method for class 'sobolTIIpf'
tell(x, y = NULL, ...)
## S3 method for class 'sobolTIIpf'
print(x, ...)
## S3 method for class 'sobolTIIpf'
plot(x, ylim = NULL, ...)
## S3 method for class 'sobolTIIpf'
ggplot(x, ylim = NULL, ...)
## S3 method for class 'sobolTIIpf'
plotFG(x)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
$x \quad$ a list of class "sobolTIIpf" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
... any other arguments for model which are passed unchanged each time it is called.
ylim optional, the y limits of the plot.

Value

sobolTIIpf returns a list of class "sobolTIIpf", containing all the input arguments detailed before, plus the following components:
call the matched call.

X
$y \quad a \quad$ vector of model responses.
V the estimation of the overall variance.
tii. unscaled the unscaled estimations of the TIIs together.
tii.scaled the scaled estimations of the TIIs.

Author(s)

Jana Fruth

References

J. Fruth, O. Roustant, S. Kuhnt, 2014, Total interaction index: A variance-based sensitivity index for second-order interaction screening, J. Stat. Plan. Inference, 147, 212-223.
A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 580-297.
T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt, 2012, Data-driven Kriging models based on FANOVA-decomposition, Stat. Comput., 22 (3), 723-738.

See Also

sobolTIIlo

Examples

```
# Test case : the Ishigami function
# The method requires 2 samples
n <- 1000
X1 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
X2 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
# sensitivity analysis (the true values are 0, 0.244, 0)
x <- sobolTIIpf(model = ishigami.fun, X1 = X1, X2 = X2)
print(x)
# plot of tiis and FANOVA graph
plot(x)
library(ggplot2)
ggplot(x)
library(igraph)
plotFG(x)
```

soboltouati Monte Carlo Estimation of Sobol' Indices (formulas of Martinez (2011) and Touati (2016))

Description

soboltouati implements the Monte Carlo estimation of the Sobol' indices for both first-order and total indices using correlation coefficients-based formulas, at a total cost of $(p+2) \times n$ model evaluations. These are called the Martinez estimators. It also computes their confidence intervals based on asymptotic properties of empirical correlation coefficients.

Usage

```
soboltouati(model = NULL, X1, X2, conf = 0.95, ...)
## S3 method for class 'soboltouati'
tell(x, y = NULL, return.var = NULL, ...)
## S3 method for class 'soboltouati'
print(x, ...)
## S3 method for class 'soboltouati'
plot(x, ylim = c(0, 1), ...)
## S3 method for class 'soboltouati'
ggplot(x, ylim = c(0, 1), ...)
```


Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
conf the confidence level for confidence intervals, or zero to avoid their computation if they are not needed.
x a list of class "sobol" storing the state of the sensitivity study (parameters, data, estimates).
$y \quad a \quad$ vector of model responses.
return.var a vector of character strings giving further internal variables names to store in the output object x.
ylim $\quad y$-coordinate plotting limits.
... any other arguments for model which are passed unchanged each time it is called

Details

This estimator supports missing values (NA or NaN) which can occur during the simulation of the model on the design of experiments (due to code failure) even if Sobol' indices are no more rigorous variance-based sensitivity indices if missing values are present. In this case, a warning is displayed.

Value

soboltouati returns a list of class "soboltouati", containing all the input arguments detailed before, plus the following components:

call	the matched call.
X	a data.frame containing the design of experiments.
y	the response used the estimations of normalized variances of the Conditional Expectations (VCE) with respect to each factor and also with respect to the complementary set of each factor ("all but X_{i}^{\prime}).
S	the estimations of the Sobol' first-order indices. T

Author(s)

Taieb Touati, Khalid Boumhaout

References

J-M. Martinez, 2011, Analyse de sensibilite globale par decomposition de la variance, Presentation in the meeting of GdR Ondes and GdR MASCOT-NUM, January, 13th, 2011, Institut Henri Poincare, Paris, France.
T. Touati, 2016, Confidence intervals for Sobol' indices. Proceedings of the SAMO 2016 Conference, Reunion Island, France, December 2016.
T. Touati, 2017, Intervalles de confiance pour les indices de Sobol, 49emes Journees de la SFdS, Avignon, France, Juin 2017.

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez

Examples

```
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- soboltouati(model = sobol.fun, X1, X2)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
```

squaredIntEstim Squared integral estimate

Description

This function provides two estimators of a squared expectation. The first one, naive, is the square of the sample mean. It is positively biased. The second one is a U-statistics, and unbiased. The two are equivalent for large sample sizes.

Usage

squaredIntEstim(x, method = "unbiased")

Arguments

$x \quad$ A vector of observations supposed to be drawn independently from a square integrable random variable
method If "unbiased", computes the U-statistics, otherwise the square of the sample mean is computed

Details

Let $\mathrm{X} 1, \ldots, \mathrm{Xn}$ be i.i.d. random variables. The aim is to estimate $\mathrm{t}=\mathrm{E}(\mathrm{Xi})^{\wedge} 2$. The naive estimator is the square of the sample mean: $\mathrm{T} 1=[(\mathrm{X} 1+\ldots+\mathrm{Xn}) / \mathrm{n}]^{\wedge} 2$. It is positively biased, and the bias is equal to $s^{\wedge} 2 / n$, where $s^{\wedge} 2=\operatorname{var}(\mathrm{X} 1)$. The U -statistics estimator is the average of $\mathrm{Xi} * \mathrm{Xj}$ over all unordered pairs (i, j). Equivalently, it is equal to T 1 minus the (unbiased) sample variance divided by n.

Value

A real number, corresponding to the estimated value of the squared integral.

Author(s)

O. Roustant

References

O. Roustant, F. Gamboa and B. Iooss, Parseval inequalities and lower bounds for variance-based sensitivity indices, Electronic Journal of Statistics, 14:386-412, 2020
Van der Vaart, A. W. Asymptotic statistics. Vol. 3. Cambridge university press, 2000.

Examples

```
n <- 100 # sample size
nsim <- 100 # number of simulations
mu <- 0
T <- Tunb <- rep(NA, nsim)
theta <- mu^2 # E(X)^2, with X following N(mu, 1)
for (i in 1:nsim){
    x <- rnorm(n, mean = mu, sd = 1)
    T[i] <- squaredIntEstim(x, method = "biased")
    Tunb[i] <- squaredIntEstim(x, method = "unbiased")
}
par(mfrow = c(1, 1))
boxplot(cbind(T, Tunb))
abline(h = theta, col = "red")
```

```
abline(h = c(mean(T), mean(Tunb)), col = c("blue", "cyan"), lty = "dotted")
# look at the difference between median and mean
```


Description

src computes the Standardized Regression Coefficients (SRC), or the Standardized Rank Regression Coefficients (SRRC), which are sensitivity indices based on linear or monotonic assumptions in the case of independent factors.

Usage

```
src(X, y, rank = FALSE, logistic = FALSE, nboot = 0, conf = 0.95)
## S3 method for class 'src'
print(x, ...)
## S3 method for class 'src'
plot(x, ylim = c(-1,1), ...)
## S3 method for class 'src'
ggplot(x, ylim = c(-1,1), ...)
```


Arguments

X a data frame (or object coercible by as.data.frame) containing the design of experiments (model input variables).
 (model output variables).
rank logical. If TRUE, the analysis is done on the ranks.
logistic logical. If TRUE, the analysis is done via a logistic regression (binomial GLM).
nboot the number of bootstrap replicates.
conf the confidence level of the bootstrap confidence intervals.
$x \quad$ the object returned by src.
ylim the y-coordinate limits of the plot.
... arguments to be passed to methods, such as graphical parameters (see par).

Details

Logistic regression model (logistic $=$ TRUE) and rank-based indices (rank = TRUE) are incompatible.

Value

src returns a list of class "src", containing the following components:
call the matched call.
SRC a data frame containing the estimations of the SRC indices, bias and confidence intervals (if rank = FALSE).

SRRC a data frame containing the estimations of the SRRC indices, bias and confidence intervals (if rank = TRUE).

Author(s)

Gilles Pujol and Bertrand Iooss

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

See Also

```
pcc, lmg
```


Examples

```
# a 100-sample with X1 ~ U(0.5, 1.5)
# X2 ~ U(1.5, 4.5)
# X3 ~ U(4.5, 13.5)
library(boot)
n <- 100
X <- data.frame(X1 = runif(n, 0.5, 1.5),
        X2 = runif(n, 1.5, 4.5),
        X3 = runif(n, 4.5, 13.5))
# linear model : Y = X1 + X2 + X3
y <- with(X, X1 + X2 + X3)
# sensitivity analysis
x <- src(X, y, nboot = 100)
print(x)
plot(x)
library(ggplot2)
ggplot(x)
```

Support index functions: Measuring the effect of input variables over their support

Description

Function to estimate the first-order and total support index functions (Fruth et al., 2016).

Usage

support(model, $\mathrm{X}, \mathrm{Xnew}=\mathrm{NULL}, \mathrm{fX}=\mathrm{NULL}, \operatorname{gradfX}=$ NULL, $\mathrm{h}=1 \mathrm{e}-06, \ldots$)

Arguments

model a function, or a model with a predict method, defining the model to analyze.
$X \quad$ a random sample.
Xnew an optional set of points where to visualize the support indices. If missing, X is used.
$f X \quad$ an optional vector containing the evaluations of model at X. If missing, $f X$ is computed by evaluating model at X .
gradfX an optional vector containing the evaluations of the gradient of model at X. If missing, gradf X is approximated by finite differences of model at X.
$h \quad a$ small number for computing finite differences $\left(f\left(X _i+h\right)-f\left(X _i\right)\right) / h$. Default is $1 \mathrm{e}-6$.
.. optional arguments to be passed to model.

Details

The first-order support index of $f(X)$ relative to $X_{-} i$ is the squared conditional expectation of its partial derivative with respect to $\mathrm{X} _\mathrm{i}$.

The total support index of $f(X)$ relative to $X_{_} i$ is the conditional expectation of its squared partial derivative with respect to $X_{-} i$.
These two functions measure the local influence of $X_{-} i$, in the global space of the other input variables. Up to square transformations, support indices can be viewed as regression curves of partial derivatives $d f(X) / d X _i$ with respect to $X_{-} i$. Estimation is performed by smoothing from the diagonal scatterplots (X_i,df/dX_i) with the function smooth.spline\{stats\} with the default options.

For the sake of comparison, support index functions may be normalized. The proposed normalization is the sum of the DGSM, equal to the sum of the overall means of total support functions. Normalized support index functions can be plotted with the S3 method plot, as well as the underlying diagonal scatterplots of derivatives (S3 method scatterplot).

Value

main	a matrix whose columns contain the first-order support index functions, esti- mated at Xnew.
total	a matrix whose columns contain the total support index functions, estimated at Xnew.
DGSM	a vector containing an estimation of DGSM.
X	\ldots
Xnew	\ldots
fX	\ldots
gradfX	\ldots

Author(s)

O. Roustant

References

J. Fruth, O. Roustant, S. Kuhnt, 2019, Support indices: Measuring the effects of input variables over their support, Reliability Engineering and System Safety, 187:17-27.

See Also

S3 methods plot and scatterplot: plot.support

Examples

```
# ----------------
# ishigami function
# -----------------
n <- 5000
n.points <- 1000
d <- 3
set.seed(0)
X <- matrix(runif(d*n, min = -pi, max = pi), n, d)
Xnew <- matrix(seq(from = -pi, to = pi, length=n.points), n.points, d)
b <- support(model = ishigami.fun, X, Xnew)
# plot method (x-axis in probability scale), of the normalized support index functions
plot(b, col = c("lightskyblue4", "lightskyblue1", "black"),
    xprob = TRUE, p = 'punif', p.arg = list(min = -pi, max = pi), ylim = c(0, 2))
# below : diagonal scatterplots of the gradient,
# on which are based the estimation by smoothing
scatterplot(b, xprob = TRUE)
```

```
# now with normal margins
# ----------------------
X <- matrix(rnorm(d*n), n, d)
Xnew <- matrix(rnorm(d*n.points), n.points, d)
b <- support(model = ishigami.fun, X, Xnew)
plot(b, col = c("lightskyblue4", "lightskyblue1", "black"), xprob = FALSE)
scatterplot(b, xprob = FALSE, type = "histogram", bins = 10, cex = 1, cex.lab = 1.5)
```

```
template.replace Replace Values in a Template Text
```


Description

template. replace replaces keys within special markups with values in a so-called template file. Pieces of R code can be put into the markups of the template file, and are evaluated during the replacement.

Usage

template.replace(text, replacement, eval = FALSE, key.pattern $=$ NULL, code.pattern $=$ NULL)

Arguments

text	vector of character strings, the template text.
replacement	the list values to replace in text. eval
boolean, TRUE if the code within code. pattern has to be evaluated, FALSE oth- erwise.	
key. pattern	custom pattern for key replacement (see below)
code.pattern	custom pattern for code replacement (see below)

Details

In most cases, a computational code reads its inputs from a text file. A template file is like an input file, but where some missing values, identified with generic keys, will be replaced by specific values.

By default, the keys are enclosed into markups of the form \$(KEY).
Code to be interpreted with R can be put in the template text. Pieces of code must be enclosed into markups of the form $@\{C O D E\}$. This is useful for example for formating the key values (see example). For interpreting the code, set eval = TRUE.

Users can define custom patterns. These patterns must be perl-compatible regular expressions (see regexpr. The default ones are:
key. pattern $=" \backslash \backslash \$ \backslash \backslash(K E Y \backslash \backslash) "$
code pattern $="(\ \backslash\{C O D E \backslash \backslash\} "$
code.pattern = "@
\{CODE
\}"
Note that special characters have to be escaped both (one for perl, one for R).

Author(s)

Gilles Pujol

Examples

```
txt <- c("Hello $(name)!", "$(a) + $(b) = @{$(a)+$(b)}",
    "pi = @{format(pi,digits=5)}")
replacement <- list(name = "world", a = 1, b = 2)
# 1. without code evaluation:
txt.rpl1 <- template.replace(txt, replacement)
print(txt.rpl1)
# 2. with code evalutation:
txt.rpl2 <- template.replace(txt, replacement, eval = TRUE)
print(txt.rpl2)
```

 testmodels Test Models for Sensitivity Analysis

Description

These functions are standard testcase for sensitivity analysis benchmarks. For a scalar output (see Saltelli et al. 2000 and https://www.sfu.ca/~ssurjano/):

- the g-function of Sobol' with 8 inputs, $\mathrm{X} \sim \mathrm{U}[0,1]$;
- the function of Ishigami with 3 inputs, $\mathrm{X} \sim \mathrm{U}[-\mathrm{pi}$, pi];
- the function of Morris with 20 inputs, $\mathrm{X} \sim \mathrm{U}[0,1]$;
- the Linkletter decreasing coefficients function, $\mathrm{X} \sim \mathrm{U}[0,1]$ (Linkletter et al. (2006));
- the heterdisc function with 4 inputs, $\mathrm{X} \sim \mathrm{U}[0,20]$;
- the Friedman function with 5 inputs, $\mathrm{X} \sim \mathrm{U}[0,1]$ (Friedman, 1991).

For functional output cases:

- the Arctangent temporal function with 2 inputs, $\mathrm{X} \sim \mathrm{U}[-7,7]$ (Auder, 2011). The functional support is on [0,2pi];
- the Cambell1D function with 4 inputs, $\mathrm{X} \sim \mathrm{U}[-1,5]$ (Campbell et al. 2006). The functional support is on [-90,90].

```
Usage
    sobol.fun(X)
    ishigami.fun(X)
    morris.fun(X)
    atantemp.fun(X, q = 100)
    campbell1D.fun(X, theta = -90:90)
    linkletter.fun(X)
    heterdisc.fun(X)
    friedman.fun(X)
```


Arguments

X
q

Value

A vector of function responses.

Author(s)

Gilles Pujol and Bertrand Iooss

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

Examples

```
# Examples for the functional toy fonctions
# atantemp function
y0 <- atantemp.fun(matrix(c(-7,0,7,-7,0,7),ncol=2))
plot(y0[1,],type="l")
apply(y0,1,lines)
n <- 100
X <- matrix(c(runif(2*n,-7,7)),ncol=2)
y <- atantemp.fun(X)
plot(y0[2,],ylim=c(-2,2),type="l")
apply(y,1,lines)
# campbell1D function
N1=100 # nombre de simulations pour courbes 1D
min=-1 ; max=5
nominal=(max+min)/2
X1 = NULL ; y1 = NULL
Xnom=matrix(nominal, nr=1,nc=4)
ynom=campbell1D.fun(Xnom, theta=-90:90)
plot(ynom,ylim=c(8,30),type="l",col="red")
for (i in 1:N1){
    X=matrix(runif(4,min=min,max=max),nr=1,nc=4)
    rbind(X1,X)
    y=campbell1D.fun(X, theta=-90:90)
    rbind(y1,y)
```

```
    lines(y)
}
```


Description

dnorm. trunc, pnorm. trunc, qnorm. trunc and rnorm. trunc are functions for the Truncated Normal Distribution. dgumbel.trunc, pgumbel.trunc, qgumbel. trunc and rgumbel.trunc are functions for the Truncated Gumbel Distribution.

Usage

$$
\begin{aligned}
& \text { dnorm. } \operatorname{trunc}(x, \operatorname{mean}=0, \text { sd }=1, \min =-1 \mathrm{e} 6, \max =1 \mathrm{e} 6) \\
& \text { pnorm. } \operatorname{trunc}(\mathrm{q}, \operatorname{mean}=0, \text { sd }=1, \min =-1 \mathrm{e} 6, \max =1 \mathrm{e} 6) \\
& \text { qnorm. } \operatorname{trunc}(\mathrm{p}, \operatorname{mean}=0, \text { sd }=1, \min =-1 \mathrm{e} 6, \max =1 \mathrm{e} 6) \\
& \text { rnorm. } \operatorname{trunc}(\mathrm{n}, \operatorname{mean}=0, \text { sd }=1, \min =-1 \mathrm{e} 6, \max =1 \mathrm{e} 6) \\
& \text { dgumbel. } \operatorname{trunc}(x, \operatorname{loc}=0, \text { scale }=1, \min =-1 \mathrm{e} 6, \max =1 \mathrm{e} 6) \\
& \text { pgumbel. } \operatorname{trunc}(\mathrm{q}, \operatorname{loc}=0, \text { scale }=1, \min =-1 \mathrm{e} 6, \max =1 \mathrm{e} 6) \\
& \text { qgumbel. } \operatorname{trunc}(p, \operatorname{loc}=0, \text { scale }=1, \min =-1 \mathrm{e} 6, \max =1 \mathrm{e} 6) \\
& \text { rgumbel. } \operatorname{trunc}(\mathrm{n}, \operatorname{loc}=0, \operatorname{scale}=1, \min =-1 \mathrm{e} 6, \max =1 \mathrm{e} 6)
\end{aligned}
$$

Arguments

x, q	vector of quantiles
p	vector of probabilities
n	number of observations
mean, sd	means and standard deviation parameters
loc, scale	location and scale parameters
\min	vector of minimal bound values
\max	vector of maximal bound values

Details

See dnorm for details on the Normal distribution. The Gumbel distribution comes from the evd package. See dgumbel for details on the Gumbel distribution.

Value

dnorm.trunc and dgumbel.trunc give the density, pnorm and pgumbel.trunc give the distribution function, qnorm and qgumbel. trunc give the quantile function, rnorm and rgumbel.trunc generate random deviates.

Author(s)

Gilles Pujol and Bertrand Iooss

$$
\text { weightTSA } \quad \text { Weight-function to transform an output variable in order to perform }
$$ Target Sensitivity Analysis (TSA)

Description

Transformation function of one variable (vector sample)

Usage

weightTSA(Y, c, upper = TRUE, type="indicTh", param=1)

Arguments

Y
c
The output vector
The threshold
upper
TRUE for upper threshold and FALSE for lower threshold
type
The weight function type ("indicTh", "zeroTh", logistic", "exp1side"):

- indicTh : indicator-thresholding
- zeroTh : zero-thresholding (keeps the variable value above (upper=TRUE case) or below the threshold)
- logistic : logistic transformation at the threshold
- exp1side : exponential transformation above (upper=TRUE case) or below the threshold (see Raguet and Marrel)
param The parameter value for "logistic" and "exp1side" types

Details

The weight functions depend on a threshold c and/or a smooth relaxation. These functions are defined as follows

- if type $=$ "indicTh": $w=1_{Y>c}$ (upper threshold) and $w=1_{Y<c}$ (lower threshold),
- if type $=$ "zeroTh": $w=Y 1_{Y>c}$ (upper threshold) and $w=Y 1_{Y<c}$ (lower threshold),
- if type = "logistic":

$$
w=\left[1+\exp \left(-\operatorname{param} \frac{Y-c}{|c|}\right)\right]^{-1}
$$

(upper threshold) and

$$
w=\left[1+\exp \left(-\operatorname{param} \frac{c-Y}{|c|}\right)\right]^{-1}
$$

(lower threshold),

- if type = "exp1side":

$$
w=\left[1+\exp \left(-\frac{\max (c-Y, 0)}{\frac{\text { param }}{5} \sigma(Y)}\right)\right]
$$

(upper threshold) and

$$
w=\left[1+\exp \left(-\frac{\max (Y-c, 0)}{\frac{\text { param }}{5} \sigma(Y)}\right)\right]
$$

(lower threshold), where $\sigma(Y)$ is an estimation of the standard deviation of Y and param $=1$ is a parameter tuning the smoothness.

Value

The vector sample of the transformed variable

Author(s)

B. Iooss

References

H. Raguet and A. Marrel, Target and conditional sensitivity analysis with emphasis on dependence measures, Preprint, https://hal.archives-ouvertes.fr/hal-01694129
A. Marrel and V. Chabridon, 2021, Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor, Reliability Engineering \& System Safety, 214:107711.
A. Spagnol, Kernel-based sensitivity indices for high-dimensional optimization problems, PhD Thesis, Universite de Lyon, 2020
Spagnol A., Le Riche R., Da Veiga S. (2019), Global sensitivity analysis for optimization with variable selection, SIAM/ASA J. Uncertainty Quantification, 7(2), 417-443.

Examples

```
n <- 100 # sample size
c<- 1.5
Y <- rnorm(n)
Yt <- weightTSA(Y, c)
```


Index

```
* IO
    template.replace, 160
* design
    delsa, }
    discrepancyCriteria_cplus,11
    fast99,16
    morris,22
    sb,72
    shapleyPermEx, }8
    shapleyPermRand,90
    sobol, 103
    sobol2002,105
    sobol2007,107
    sobolEff, 109
    soboljansen,115
    sobolmara,118
    sobolmartinez, 120
    sobolMultOut, 123
    sobolowen, }12
    sobolroalhs, 135
    sobolroauc, 138
    sobolSalt,141
    sobolTIIlo,148
    sobolTIIpf,150
    soboltouati, 152
* methods
    decoupling, }
* misc
    testmodels, 161
    truncateddistrib, 163
* package
    sensitivity-package,3
* proportional values
    pme_knn, 53
* regression
    pcc, }3
    src,156
* shapley
    emvd,12
```

lmg, 18
shapleysobol_knn, 93

* utilities
parameterSets, 29
addelman_const, 5, 6, 6
ask (decoupling), 7
ask.sb (sb), 72
ask.sobolGP (sobolGP), 111
ask.sobolrec (sobolrec), 129
atantemp.fun (testmodels), 161
campbell1D.fun (testmodels), 161
decoupling, 6, 7
delsa, 3, 6, 9, 30
dgumbel.trunc (truncateddistrib), 163
discrepancyCriteria_cplus, 5, 6, 11, 22
dnorm. trunc (truncateddistrib), 163
emvd, $6,12,20,56$
extract (decoupling), 7
extract.shapleysobol_knn
(shapleysobol_knn), 93
extract.sobolshap_knn (sobolshap_knn), 143
fast99, 4, 16, 104
friedman.fun (testmodels), 161
ggplot.pcc (pcc), 30
ggplot.pme_knn (pme_knn), 53
ggplot.qosa (qosa), 69
ggplot.sensiFdiv (sensiFdiv), 74
ggplot.sensiHSIC (sensiHSIC), 76
ggplot.shapleyPermEx (shapleyPermEx), 87
ggplot.shapleyPermRand
(shapleyPermRand), 90
ggplot.shapleysobol_knn
(shapleysobol_knn), 93
ggplot.sobol (sobol), 103
ggplot.sobol2002 (sobol2002), 105
ggplot.sobol2007 (sobol2007), 107
ggplot.sobolEff (sobolEff), 109
ggplot.soboljansen (soboljansen), 115
ggplot. sobolmara (sobolmara), 118
ggplot.sobolmartinez (sobolmartinez), 120
ggplot. sobolMultOut (sobolMultOut), 123
ggplot. sobolowen (sobolowen), 125
ggplot. sobolrank (sobolrank), 127
ggplot.sobolroalhs (sobolroalhs), 135
ggplot.sobolroauc (sobolroauc), 138
ggplot.sobolSalt (sobolSalt), 141
ggplot.sobolshap_knn (sobolshap_knn), 143
ggplot. sobolTIIlo (sobolTIIlo), 148
ggplot.sobolTIIpf (sobolTIIpf), 150
ggplot.soboltouati (soboltouati), 152
ggplot.src (src), 156
heterdisc.fun (testmodels), 161
identify, 24
ishigami.fun (testmodels), 161
kde, 75, 80
km, 112, 114
linkletter.fun (testmodels), 161
lmg, 3, 6, 15, 18, 31, 56, 89, 97, 157
maximin_cplus, 5, 6, 12, 21
morris, $3,8,22,28$
morris.fun (testmodels), 161
morrisMultOut, 5, 6, 26, 27
par, 10
parameterSets, 6, 9, 10, 29
pcc, $3,15,20,30,157$
pgumbel. trunc (truncateddistrib), 163
PLI, 5, 6, 32, 38, 42, 46, 50
PLIquantile, 5, 6, 33, 36, 42, 46, 50
PLIquantile_multivar, 5, 6, 33, 38, 40, 50
PLIsuperquantile, 5, 6, 33, 38, 42, 44, 50
PLIsuperquantile_multivar, 5, 6, 33, 38, 42, 46, 48
plot (plot.support), 52
plot.delsa (delsa), 9
plot.emvd (emvd), 12
plot.fast99 (fast99), 16
plot.lmg (lmg), 18
plot.morris (morris), 22
plot.pcc (pcc), 30
plot.pme_knn (pme_knn), 53
plot.qosa (qosa), 69
plot.sb (sb), 72
plot.sensiFdiv (sensiFdiv), 74
plot.sensiHSIC (sensiHSIC), 76
plot. shapleyPermEx (shapleyPermEx), 87
plot. shapleyPermRand (shapleyPermRand), 90
plot.shapleysobol_knn
(shapleysobol_knn), 93
plot.shapleySubsetMc (shapleySubsetMc), 100
plot. sobol (sobol), 103
plot.sobol2002 (sobol2002), 105
plot. sobol2007 (sobol2007), 107
plot.sobol_knn (shapleysobol_knn), 93
plot.sobolEff (sobolEff), 109
plot. sobolGP (sobolGP), 111
plot.soboljansen (soboljansen), 115
plot. sobolmara (sobolmara), 118
plot.sobolmartinez (sobolmartinez), 120
plot.sobolMultOut (sobolMultOut), 123
plot. sobolowen (sobolowen), 125
plot. sobolrank (sobolrank), 127
plot. sobolrec (sobolrec), 129
plot. sobolrep (sobolrep), 132
plot.sobolroalhs (sobolroalhs), 135
plot.sobolroauc (sobolroauc), 138
plot.sobolSalt (sobolSalt), 141
plot.sobolshap_knn (sobolshap_knn), 143
plot.sobolTIIlo(sobolTIIlo), 148
plot.sobolTIIpf (sobolTIIpf), 150
plot.soboltouati (soboltouati), 152
plot.src (src), 156
plot.support, 52, 159
plot3d.morris (morris), 22
plotFG (sobolTIIpf), 150
plotFG. sobolTIIlo (sobolTIIlo), 148
plotMultOut (sobolMultOut), 123
plotMultOut.sobol (sobol), 103
plotMultOut. sobol2002 (sobol2002), 105
plotMultOut. sobol2007 (sobol2007), 107
plotMultOut.soboljansen (soboljansen), 115
plotMultOut.sobolmara (sobolmara), 118
pme_knn, 5, 6, 15, 20, 53, 97
pnorm. trunc (truncateddistrib), 163
PoincareChaosSqCoef, 3, 6, 58, 67
PoincareConstant, 3, 6, 63, 67
PoincareOptimal, 3, 6, 59, 63, 64, 65
print.delsa (delsa), 9
print.emvd (emvd), 12
print.fast99 (fast99), 16
print.lmg (lmg), 18
print.morris (morris), 22
print.pcc (pcc), 30
print.pme_knn (pme_knn), 53
print. qosa (qosa), 69
print.sb (sb), 72
print.sensiFdiv (sensiFdiv), 74
print.sensiHSIC (sensiHSIC), 76
print.shapleyPermEx (shapleyPermEx), 87
print.shapleyPermRand (shapleyPermRand), 90
print.shapleysobol_knn (shapleysobol_knn), 93
print.sobol (sobol), 103
print.sobol2002 (sobol2002), 105
print.sobol2007 (sobol2007), 107
print.sobol_knn (shapleysobol_knn), 93
print.sobolEff (sobolEff), 109
print.sobolGP (sobolGP), 111
print.soboljansen (soboljansen), 115
print.sobolmara (sobolmara), 118
print.sobolmartinez (sobolmartinez), 120
print.sobolMultOut (sobolMultOut), 123
print.sobolowen (sobolowen), 125
print.sobolrank (sobolrank), 127
print.sobolrec (sobolrec), 129
print.sobolrep (sobolrep), 132
print. sobolroalhs (sobolroalhs), 135
print.sobolroauc (sobolroauc), 138
print.sobolSalt (sobolSalt), 141
print.sobolshap_knn (sobolshap_knn), 143
print.sobolTIIlo (sobolTIIlo), 148
print.sobolTIIpf (sobolTIIpf), 150
print.soboltouati (soboltouati), 152
print.src (src), 156
qgumbel.trunc (truncateddistrib), 163
qnorm. trunc (truncateddistrib), 163
qosa, 5, 69
regexpr, 160
rgumbel.trunc (truncateddistrib), 163
rnorm. trunc (truncateddistrib), 163
sb, $3,8,72$
scatterplot (plot.support), 52
sensiFdiv, 5, 74, 80
sensiHSIC, 5, 6, 75, 76
sensitivity, 10
sensitivity (sensitivity-package), 3
sensitivity-package, 3
shapleyBlockEstimation, 4, 6, 82, 86
shapleyBlockEstimationS
(shapleyBlockEstimation), 82
shapleyBlockEstimationX (shapleyBlockEstimation), 82
shapleyLinearGaussian, 4, 6, 83, 85, 89, 92, 102
shapleyPermEx, 4, 6, 20, 56, 83, 86, 87, 92, 97, 102
shapleyPermRand, 4, 6, 83, 86, 89, 90, 102
shapleysobol_knn, 5, 6, 20, 56, 89, 92, 93, 102, 146
shapleySubsetMc, 4, 6, 56, 83, 86, 89, 92, 97, 100, 146
sobol, 3, 103, 106, 108, 110, 114, 117, 119, $122,124,127,129,143,148,154$
sobol.fun (testmodels), 161
sobol2002, 4, 104, 105, 108, 110, 114, 117, $122,124,127,129,154$
sobol2007, 4, 104, 106, 107, 110, 114, 117, $122,124,127,129,143,154$
sobolEff, 4, 104, 106, 108, 109, 114, 117, $127,129,143,148$
sobolGP, 4, 6, 104, 106, 111, 124, 148
soboljansen, 4, 104, 106, 108, 110, 114, 115, $122,124,127,129,143,154$
sobolmara, 4, 104, 106, 108, 117, 118, 124, 137, 140
sobolmartinez, 4, 104, 106, 108, 110, 117, $120,127,129,143,154$
sobolMultOut, 5, 104, 106, 108, 114, 117, $119,122,123,137$
sobolowen, 4, 6, 125
sobol rank, 4, 56, 97, 102, 127, 146
sobolrec, 4, 6, 129
sobolrep, 4, 6, 132
sobolroalhs, 4, 6, 104, 119, 135, 140
sobolroauc, 4, 6, 137, 138

```
sobolSalt, 3, 6, 104, 106, 108, 110, 117, 122,
    127, 129, 141, 154
sobolshap_knn, 5, 97, 129,143
sobolSmthSpl, 3, 6, 104, 110, 129,147
sobolTIIlo, 4, 6, 148, 152
sobolTIIpf, 4, 6, 150, 150
soboltouati, 4, 6, 122,152
squaredIntEstim, 5, 6, 59, 154
src, 3, 8, 15, 20, 31, 156
support, 5, 6, 53,158
tell(decoupling), }
tell.delsa(delsa), }
tell.fast99 (fast99), 16
tell.morris(morris), 22
tell.morrisMultOut (morrisMultOut), 27
tell.pme_knn(pme_knn),53
tell.qosa (qosa), }6
tell.sb (sb), 72
tell.sensiFdiv(sensiFdiv), 74
tell.sensiHSIC (sensiHSIC),76
tell.shapleyPermEx (shapleyPermEx), 87
tell.shapleyPermRand (shapleyPermRand),
    90
tell.shapleysobol_knn
            (shapleysobol_knn), 93
tell.sobol (sobol), 103
tell.sobol2002 (sobol2002), 105
tell.sobol2007 (sobol2007), 107
tell.sobolEff (sobolEff), 109
tell.sobolGP (sobolGP), 111
tell.soboljansen (soboljansen), 115
tell.sobolmara (sobolmara), 118
tell.sobolmartinez (sobolmartinez), 120
tell.sobolowen (sobolowen), }12
tell.sobolrank (sobolrank), 127
tell.sobolrec (sobolrec), }12
tell.sobolrep (sobolrep), }13
tell.sobolroalhs (sobolroalhs), }13
tell.sobolroauc (sobolroauc), 138
tell.sobolSalt(sobolSalt), 141
tell.sobolshap_knn(sobolshap_knn), 143
tell.sobolTIIlo(sobolTIIlo), 148
tell.sobolTIIpf (sobolTIIpf), 150
tell.soboltouati (soboltouati), }15
template.replace, 5, 160
testmodels, 5, 161
truncateddistrib, 5, 163
```


[^0]: PLIquantile_multivar Perturbed-Law based sensitivity Indices (PLI) for quantile and simultaneous perturbations of 2 inputs

