Package 'sensitivityPStrat'

February 20, 2015

Type Package
Title Principal Stratification Sensitivity Analysis Functions
Version 1.0-6
Date 2014-11-04
Author Charles Dupont, Bryan Shepherd
Maintainer Charles Dupont <charles.dupont@vanderbilt.edu></charles.dupont@vanderbilt.edu>
Description This package provides functions to perform principal stratification sensitivity analyses on datasets.
Imports stats, survival
License GPL
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-12-04 00:14:37

R topics documented:

sensitivityPStrat-package	2
calc.v	3
funArray	4
funMatrix	5
funVector	6
plot.sensitivity	6
print.sensitivity	8
sensitivityGBH	9
sensitivityHHS	13
sensitivityJR	15
sensitivitySGD	19
sensitivitySGL	22
vaccine.trial	26
	28

Index

sensitivityPStrat-package

Principal Stratification Sensitivity Analysis Functions

Description

This package provides functions to perform sensitivity analyses of treatment effects within principal strata.

Details

A treatment effect is a contrast between Y(0) and Y(1) where Y(0) is the outcome if not treated and Y(1) is the outcome if treated. The average treatment effect (or average causal effect) is E(Y(1) - Y(1))Y(0)). In some settings there may be interest in estimating the average treatment effect among those who would be selected under either treatment assignment (i.e., E(Y(1) - Y(0)|S(0) = S(1) = 1), where S(0) is the indicator of selection if not treated and S(1) is the indicator of selection if treated (Robins 1986). For example, one may want to assess the average treatment effect of a drug on quality of life among those who would have lived regardless of their treatment assignment. The subgroup defined by S(0) = S(1) = 1 (e.g., those who would have lived regardless of treatment assignment) has been referred to as a principal stratum (Frangakis and Rubin, 2002). Principal stratum membership is not known so to identify the average treatment effect (or related estimands) within a principal stratum we assume 1. SUTVA (Rubin 1978) (i.e., no interference – that the potential outcomes for all subjects are independent of the treatment assignment of other subjects),2. ignorable treatment assignment (i.e., random assignment of treatment), 3. that one of the principal strata is empty, and 4. that a selected subject's outcome if assigned one treatment is independent of selection if assigned the other treatment. This package implements sensitivity analysis methods that relax these latter two assumptions.

sensitivityHHS and sensitivityGBH implement the methods described by Hudgens, Hoering and Self (2003) and Gilbert, Bosch, and Hudgens (2003), respectively. They estimate the average treatment effect in the always-selected principal stratum under assumptions 1-3, relaxing 4 using a worse-case scenario analysis (sensitivityHHS) or using a sensitivity parameter (sensitivityGBH). These functions also have options to do rank-based analyses and to compute other measures of treatment efficacy with continuous or binary outcomes (Hudgens and Halloran, 2006). sensitivitySGL implements the methods described by Shepherd, Gilbert, and Lumley (2006). It is similar to sensitivityHHS and sensitivityGBH except that it computes the difference between distribution functions in the always-selected principal stratum and allows the outcome to be right-censored. sensitivityJR estimates the average treatment effect in the always-selected principal stratum relaxing assumptions 3 and 4 as described by Jemiai and Rotnitzky (2005) and Shepherd, Redman, and Ankerst (2008). sensitivitySGD incorporates the methods of Shepherd, Gilbert, and Dupont (in press), extending sensitivityJR to right-censored outcomes.

Author(s)

Bryan E. Shepherd Department of Biostatistics Vanderbilt University calc.v

Charles Dupont Department of Biostatistics Vanderbilt University <charles.dupont@vanderbilt.edu>

Maintainer: Charles Dupont

References

Frangakis CE and Rubin DB (2002), "Principal stratification in causal inference," Biometrics 58, 21-29.

Gilbert PB, Bosch RJ, and Hudgens MG (2003), "Sensitivity Analysis for the Assessment of Causal Vaccine Effects of Viral Load in HIV Vaccine Trials," Biometrics 59, 531-541.

Hudgens MG, Halloran ME, "Causal vaccine effects on binary post infection outcomes," Journal of the American Statistical Association 101, 51-64.

Hudgens MG, Hoering A, and Self SG (2003), "On the Analysis of Viral Load Endpoints in HIV Vaccine Trials," Statistics in Medicine 22, 2281-2298.

Jemiai Y (2005), "Semiparametric Methods for Inferring Treatment Effects on Outcomes Defined Only if a Post-Randomization Event Occurs," unpublished doctoral dissertation under the supervision of A. Rotnitzky, Harvard School of Public Health, Dept. of Biostatistics.

Robins JM (1986), "A new approach to causal inference in mortality studies with sustained exposure periods - Application to control of the healthy worker survivor effect," Mathematical Modeling 7, 1393-1512.

Rubin DB (1978), "Bayesian inference for causal effects: the role of randomization," The Annals of Statistics 6, 34-58.

Shepherd BE, Gilbert PB, Lumley T (2007), "Sensitivity analyses comparing time-to-event outcomes existing only in a subset selected postrandomization," Journal of the American Statistical Association 102, 573-582.

Shepherd BE, Gilbert PB, and Dupont CT, "Sensitivity analyses comparing time-to-event outcomes only existing in a subset selected postrandomization and relaxing monotonicity," Biometrics (in press).

See Also

Surv

calc.v

Calculates the v matrix used in the estimation of standard errors in sensitivitySGL.

Description

Calculates the v matrix used in the estimation of standard errors in sensitivitySGL.

funArray

Usage

calc.v(event, time)

Arguments

event	logical vector indicating whether and event has happened.
time	vector; time until event or observation halted.

Value

returns a matrix.

Author(s)

Bryan E. Shepherd Department of Biostatistics Vanderbilt University

Charles Dupont Department of Biostatistics Vanderbilt University

References

Shepherd BE, Gilbert PB, Lumley T (2007), "Sensitivity analyses comparing time-to-event outcomes existing only in a subset selected postrandomization," Journal of the American Statistical Association 102, 573-582.

funArray

Create an array of functions

Description

Creates a array of functions.

Usage

```
funArray(...)
```

Arguments

... passed to array. see arguments to array

4

funMatrix

Author(s)

Charles Dupont Department of Biostatistics Vanderbilt University

See Also

funVector, funMatrix, array

funMatrix

Create a matrix of functions

Description

Creates a matrix of functions.

Usage

funMatrix(...)

Arguments

... passed to matrix. see arguments to matrix

Author(s)

Charles Dupont Department of Biostatistics Vanderbilt University

See Also

funVector, funArray, matrix

funVector

Description

Creates a vector of functions.

Usage

funVector(length = 0)

Arguments

length integer; length of vector.

Author(s)

Charles Dupont Department of Biostatistics Vanderbilt University

See Also

funMatrix, funArray, vector

plot.sensitivity plots the results of calls to the sensitivity functions.

Description

Functions used to plot the objects created by the sensitivityPStrat family of functions.

Usage

```
## S3 method for class 'sensitivity.1.0d'
plot(x, xlim, ylim,
    xlab = expression(beta), ylab = "ACE",
    display = c("analytic", "bootstrap"),
    ci.select = 1,
    col = "black", line.col = col, point.col = col,
    analytic.col = "red", analytic.line.col = analytic.col,
    analytic.point.col = analytic.col,
    bootstrap.col = "green", bootstrap.line.col = bootstrap.col,
    bootstrap.point.col = bootstrap.col,
    panel.last = NULL, type = "1", ...)
```

```
## S3 method for class 'sensitivity.2.0d'
plot(x, xlim, ylim, xlab = expression(beta[0]), ylab = expression(beta[1]),
    display = c("analytic", "bootstrap"), col = c(gray(.9), gray(1), gray(.8)),
    panel.last = NULL, ...)
## S3 method for class 'sensitivity.1.1d'
plot(x, xlim, ylim,
    xlab = expression(beta), ylab = "SCE",
    t.point, display = c("analytic", "bootstrap"),
    col = "black", line.col = col, point.col = col,
    analytic.col = "red", analytic.line.col = analytic.col,
    analytic.point.col = analytic.col,
    bootstrap.col = "green", bootstrap.line.col = bootstrap.col,
    bootstrap.point.col = bootstrap.col,
    panel.last = NULL, type = "1", ...)
```

х	sensitivity object	
t.point	the time point at which data to create the plot.	
display	character vector. Controls which confidence interval to use plot.	
ci.select	integer vector or 'all'. Selects the confidence interval to be ploted. If set to 'all' then all confidence intervals are plotted. Default value is 1.	
line.col	the color all the lines should be.	
point.col	the color all the infinity points should be.	
analytic.col	vector; the color of all of the analytic confidence interval markings. Value are recycled if more confidence intervals are selected then given color values.	
analytic.line.c	ol	
	vector; the color of all of the analytic confidence interval lines. Value are recycled if more confidence intervals are selected then given color values.	
analytic.point.	col	
	vector; the color of all of the analytic confidence interval infinity points. Value are recycled if more confidence intervals are selected then given color values.	
bootstrap.col	vector; the color of all of the bootstrap confidence interval markings. Value are recycled if more confidence intervals are selected then given color values.	
bootstrap.line.col		
	vector; the color of all of the bootstrap confidence interval lines. Value are recycled if more confidence intervals are selected then given color values.	
bootstrap.point.col		
	vector; the color of all of the bootstrap confidence interval infinity points. Value are recycled if more confidence intervals are selected then given color values.	
xlim, ylim, xlab, ylab, col, panel.last, type		
	see plot.default	
	arguments passed to plot.default	

Author(s)

Charles Dupont Department of Biostatistics Vanderbilt University

See Also

plot.default

Examples

```
data(vaccine.trial)
ansJR<-with(vaccine.trial,
          sensitivityJR(z=treatment,s=hiv.outcome,y=logVL,
                    beta0=c(-1,-.5,-.25,0,.25,.5,1),
                    beta1=c(-1,-.5,-.25,0,.25,.5,1),
                    phi=c(0.95,0.90), selection="infected",
                    groupings=c("placebo","vaccine"),
                    N.boot=50)
         )
plot(ansJR)
ans<-with(vaccine.trial,
          sensitivityGBH(z=treatment,s=hiv.outcome,y=logVL,
                    beta=c(-Inf,-1,0.75,-0.5,-0.25,0,.25,.5,.75,1,Inf),
                    selection="infected",
                    groupings=c("placebo","vaccine"),
                    empty.principal.stratum=c("not infected","infected"),
                    ci.method="bootstrap", ci=c(0.95, 0.9, 0.9),
                    ci.type=c("twoSided", "upper", "lower"),
                    custom.FUN=function(mu0, mu1, ...) mu1 - mu0,
                    N.boot=50, method=c("ACE", "T1", "T2"),
                    upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE)
         )
plot(ans, ci.select="all", bootstrap.col=c("red","green","blue"))
```

print.sensitivity prints the results of calls to the sensitivity functions.

Description

Print the prints sensitivityPStrat objects in a visually understandable way.

sensitivityGBH

Usage

```
## S3 method for class 'sensitivity.0d'
print(x, ...)
## S3 method for class 'sensitivity.1d'
print(x, ...)
```

Arguments

х	sensitivity object
	arguments passed to other print methods

Author(s)

Charles Dupont Department of Biostatistics Vanderbilt University

See Also

print.default

Examples

data(vaccine.trial)

sensitivityGBH

Principal stratification sensitivity analysis.

Description

Performs a sensitivity analysis using the method described in Gilbert, Bosch, and Hudgens (2003).

Usage

```
sensitivityGBH(z, s, y, beta, selection, groupings,
    empty.principal.stratum, ci = 0.95,
    ci.method = c("analytic", "bootstrap"),
    ci.type = "twoSided", custom.FUN = NULL, na.rm = FALSE,
    N.boot = 100, interval = c(-100, 100),
    upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE,
    method = c("ACE", "T1", "T2"), isSlaveMode=FALSE)
```

Z	vector; contains the grouping values (e.g., treatment assignment) for each record.
S	vector; indicates whether a record is selected.
У	vector; outcome value. Can be NA for unselected records.
beta	vector; values of the β sensitivity parameter. Inf and -Inf are acceptable.
selection	The value of s indicating selection.
groupings	vector of two elements $c(g0, g1)$; describes the possible group values. The first element $g0$ being the value of z that delineates the first group, the last element $g1$ being the value of z that delineates the second group.
empty.principal	.stratum
	vector of two elements $c(s0, s1)$; describes the s values that select the empty principal stratum. If empty.principal.stratum= $c(s0, s1)$, then stratum defined by $S(g0) = s0$ and $S(g1) = s1$ is the empty stratum. In this example $s0$ and $s1$ refer to the two possible values of s. (Note: method only works if $s0 \neq s1$).
ci	numeric vector; confidence interval level. Defaults to 0.95
ci.method	character; method by which the confidence interval and variance are calculated. Can be "analytic" or "bootstrap". Defaults to c("analytic", "bootstrap")
ci.type	character vector; type of confidence interval that the corresponding ci element is referring to. Can be "upper", "lower", or "twoSided". Defaults to "twoSided".
custom.FUN	function; function to calculate custom result. mu0, mu1, p0, p1 are available to be used as arguments in the custom function, where mu0 = $E(Y(g0) S(g0) = S(g1) = selected)$, mu1 = $E(Y(g1) S(g0) = S(g1) = selected)$, p0 = $P(S(g0) = selected)$, and p1 = $P(S(g1) = selected)$. The custom function must return a single value.
na.rm	logical; indicates whether records that are invalid due to NA values should be removed from the data set.
N.boot	integer; number of bootstrap repetitions that will be run when ci.method includes "bootstrap".
interval	numeric vector of length 2. Controls the range limits used by <code>optimize</code> to estimate $\alpha.$
lowerTest	logical. Return the lower one sided p-value for returned tests. Defaults to FALSE
upperTest	logical. Return the upper one sided p-value for returned tests. Defaults to FALSE

twoSidedTest	logical. Return a two sided p-value for returned tests. Defaults to TRUE
method	character vector; type of test statistic calculated. Can be one or more of "ACE", "T1", or "T2". Defaults to "ACE". Methods "T1" and "T2" are not implemented if ci.method includes "analytic".
isSlaveMode	logical. Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the average causal effect among those who would have been selected regardless of treatment assignment (ACE). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, and monotonicity (i.e., one of the principal strata is empty). ACE is identified by assuming a value of the sensitivity parameter beta, where e^{β} has an odds ratio interpretation:

If empty.principal.stratum = $c(S(g0) = not \ selected, S(g1) = selected)$ then given selected if assigned g0, the odds of being selected if assigned g1 multiplicatively increase e^{β} for every 1-unit increase in Y(g0).

If empty.principal.stratum = c(S(g0) = selected, S(g1) = not selected) then given selected if assigned g1, the odds of being selected if assigned g0 multiplicatively increase e^{β} for every 1-unit increase in Y(g1).

Specifying beta=-Inf or beta=Inf calls sensitivityHHS.

T1 and T2 are rank-based analogs of ACE. See <REF TBD>.

Value

an object of class sensitivity2d.

ACE	vector; $ACE = E(Y(g1) - Y(g0) S(g1) = S(g0) =$ selection). Vector of the estimated ACE values for specified beta values. Only exists if method includes "ACE".
ACE.ci	array; confidence interval of ACE determined by quantiles of bootstrap if ci.method includes "bootstrap". Otherwise calculated using analytic variance with large sample normal approximation. Only exists if method includes "ACE".
ACE.var	vector; estimated variance of ACE. Only exists if method includes "ACE".
ACE.p	vector; estimated p-value of ACE. Only exists if method includes "ACE".
Τ1	vector; Vector of the estimated T1 test statistic for specified beta values. Only exists if method includes "T1".
T1.p	vector; estimated p-value of T1. Only exists if method includes "T1".
Τ2	vector; Vector of the estimated T2 statistic for specified beta values. Only exists if method includes "T2".
T2.p	vector; estimated p-value of T2. Only exists if method includes "T2".
beta	vector; user-specified β values
alphahat	vector; estimated values of α

Fas0	function; estimator for the empirical distribution function values for $y0$ in the
	first group in the always selected principal stratum. $Pr(Y(g0) \le y0 S(g0) =$
	$S(g1) = ext{selection}; eta)$
Fas1	function; estimator for the empirical distribution function values for $y1$ in the second group in the always selected principal stratum. $Pr(Y(g1) \le y1 S(g0) = S(g1) = \texttt{selection}; \beta)$

Author(s)

Bryan E. Shepherd Department of Biostatistics Vanderbilt University

Charles Dupont Department of Biostatistics Vanderbilt University

References

Gilbert PB, Bosch RJ, and Hudgens MG (2003), "Sensitivity Analysis for the Assessment of Causal Vaccine Effects of Viral Load in HIV Vaccine Trials," Biometrics 59, 531-541.

See Also

sensitivityHHS, sensitivityJR, sensitivitySGL

Examples

```
data(vaccine.trial)
ans<-with(vaccine.trial,
          sensitivityGBH(z=treatment,s=hiv.outcome,y=logVL,
                    beta=c(0,.25,.5,.75,1,1.25,1.5),
                    selection="infected",
                    groupings=c("placebo","vaccine"),
                    empty.principal.stratum=c("not infected","infected"),
                    N.boot=100)
         )
ans
ans<-with(vaccine.trial,
          sensitivityGBH(z=treatment,s=hiv.outcome,y=logVL,
                    beta=c(-Inf,-1,-0.75,-0.5,-0.25,0,.25,.5,.75,1,Inf),
                    selection="infected",
                    groupings=c("placebo","vaccine"),
                    empty.principal.stratum=c("not infected","infected"),
                    ci.method="bootstrap", ci=c(0.95, 0.9, 0.9),
                    ci.type=c('twoSided', 'upper', 'lower'),
                    custom.FUN=function(mu0, mu1, ...) mu1 - mu0,
                    N.boot=100, method=c("ACE", "T1", "T2"),
                    upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE)
```

sensitivityHHS

ans

sensitivityHHS

)

Description

Performs a principal stratification sensitivity analysis using the method described in Hudgens, Hoering, and Self (2003).

Usage

```
sensitivityHHS(z, s, y, bound = c("upper", "lower"), selection,
    groupings, empty.principal.stratum, ci = 0.95,
    ci.method = c("bootstrap", "analytic"),
    ci.type = "twoSided", custom.FUN = NULL, na.rm = FALSE,
    N.boot = 100, upperTest = FALSE, lowerTest = FALSE,
    twoSidedTest = TRUE, method = c("ACE", "T1", "T2"),
    isSlaveMode=FALSE)
```

Z	vector; contains the grouping values (e.g., treatment assignment) for each record.
S	vector; indicates whether a record is selected.
У	vector; outcome values. Can be NA for unselected records.
bound	vector; which bound should be calculated, "upper" and/or "lower". Partial string matching is performed.
selection	The value of s indicating selection.
groupings	vector of two elements $c(g0, g1)$; describes to possible group values. The first element $g0$ being the value of z which delineates the first group, the last element $g1$ being the value of z which delineates the second group.
<pre>empty.principal</pre>	.stratum
	vector of two elements $c(s0, s1)$; describes the s values that select the empty principal stratum. If empty.principal.stratum= $c(s0, s1)$, then stratum defined by $S(g0) = s0$ and $S(g1) = s1$ is the empty stratum. In this example $s0$ and $s1$ refer to the two possible values of s. (Note: method only works if $s0 \neq s1$).
ci	numeric vector; confidence interval level, defaults to 0.95.
ci.method	character; method by which the confidence interval and variance are calculated. Can be "analytic" or "bootstrap". Defaults to c("analytic", "bootstrap"). Currently only works for "bootstrap".
ci.type	character vector; type of confidence interval that the corisponding ci element is referring to. Can be "upper", "lower", or "twoSided". Defaults to "twoSided".

custom.FUN	function; function to calculate custom result. mu0, mu1, p0, p1 are available to be used as arguments in the custom function, where mu0 = $E(Y(g0) S(g0) = S(g1) = selected)$, mu1 = $E(Y(g1) S(g0) = S(g1) = selected)$, p0 = $P(S(g0) = selected)$, and p1 = $P(S(g1) = selected)$. The custom function must return a single value.
na.rm	logical; indicates whether records that are invalid due to NA values should be removed from the data set.
N.boot	integer. Number of bootstrap repetitions that will be run when ci.method includes "bootstrap".
lowerTest	logical. Return the lower one sided p-value for returned tests. Defaults to $FALSE$
upperTest	logical. Return the upper one sided p-value for returned tests. Defaults to $FALSE$
twoSidedTest	logical. Return a two sided p-value for returned tests. Defaults to TRUE
method	character vector; type of test statistic calculated. Can be one or more of "ACE", "T1", or "T2". Defaults to "ACE".
isSlaveMode	logical; Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the average causal effect among those who would have been selected regardless of treatment assignment (ACE). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, and monotonicity (i.e., one of the principal strata is empty). ACE is still not identified after making these assumptions, so this method computes the lower and upper bounds of the estimated ACE. These bounds correspond to the values one would get if using sensitivityGBH and specifying the sensitivity parameter beta as -Inf or Inf.

Value

an object of class sensitivity2d.

ACE	ACE = E(Y(g1) - Y(g0) S(g1) = S(g0) = selection). Vector of the estimated ACE values at the specified bounds. Only exists if method includes "ACE".
ACE.ci	vector; confidence interval of ACE determined by quantiles of bootstrap if ci.method includes "bootstrap". Otherwise calculated using analytic variance with large sample normal approximation (NOT YET WORKING). Only exists if method includes "ACE".
ACE.var	vector; estimated variance of ACE. Only exists if method includes "ACE".
ACE.p	vector; estimated p-value of ACE. Only exists if method includes "ACE".
Fas0	function; estimator for the empirical distribution function values for $y0$ in the first group in the always selected principal stratum at the bounds. $Pr(Y(g0) \le y0 S(g0) = S(g1) = \texttt{selection})$
Fas1	function; estimator for the empirical distribution function values for $y1$ in the second group in the always selected principal stratum at the bounds. $Pr(Y(g1) \le y1 S(g0) = S(g1) = \texttt{selection})$

sensitivityJR

Author(s)

Bryan E. Shepherd Department of Biostatistics Vanderbilt University

Charles Dupont Department of Biostatistics Vanderbilt University

References

Hudgens MG, Hoering A, and Self SG (2003), "On the Analysis of Viral Load Endpoints in HIV Vaccine Trials," Statistics in Medicine 22, 2281-2298.

See Also

sensitivityGBH, sensitivityJR, sensitivitySGL

Examples

```
data(vaccine.trial)
est.bounds<-with(vaccine.trial,</pre>
                 sensitivityHHS(z=treatment, s=hiv.outcome, y=logVL,
                     selection="infected", groupings=c("placebo","vaccine"),
                     empty.principal.stratum=c("not infected","infected"),
                     N.boot=100)
                )
est.bounds
est.bounds<-with(vaccine.trial,
                 sensitivityHHS(z=treatment, s=hiv.outcome, y=logVL,
                     selection="infected", groupings=c("placebo","vaccine"),
                     empty.principal.stratum=c("not infected","infected"),
                     method=c("ACE", "T1", "T2"), N.boot=100,
                     custom.FUN=function(mu0, mu1, ...) mu1 - mu0,
                     upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE)
                )
est.bounds
```

sensitivityJR

Principal stratification sensitivity analysis relaxing the monotonicity assumption.

Description

Principal stratification sensitivity analysis relaxing monotonicity as described by Jemiai and Rotnitzky (2005) and implemented by Shepherd, Redman, and Ankerst (2008).

Usage

```
sensitivityJR(z, s, y, beta0, beta1, phi, Pi, psi,
    selection, groupings,
    ci = 0.95, ci.method = c("analytic","bootstrap"),
    ci.type = "twoSided", custom.FUN=NULL, na.rm = FALSE,
    N.boot = 100, interval = c(-100, 100),
    upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE,
    verbose=getOption("verbose"), isSlaveMode = FALSE)
```

Z	vector; contains the grouping values (e.g., treatment assignment) for each record.
S	vector; indicates whether a record is selected.
У	vector; outcome values. Can be NA for unselected records.
beta0	vector; values of the sensitivity parameter $\beta 0$ linking outcome in group $g0$ with selection if assigned group $g1$.
beta1	vector; values of the sensitivity parameter $\beta 1$ linking outcome in group $g1$ with selection if assigned group $g0$.
phi, Pi, psi	vector; sensitivity parameters specifying the joint distribution of $S(g0)$, $S(g1)$. Only one of the three parameters should be specified. psi is the log-odds ratio of selection. Pi is the probability of being in the always selected principal stratum $(Pr(S(g0) = S(g1) = selected))$. phi is the probability of selection in group $g0$ given selection in group $g1$ $(Pr(S(g0) = 1 S(g1) = 1))$.
selection	The value of s indicating selection.
groupings	vector of two elements $c(g0, g1)$; describes to possible group values. The first element $g0$ being the value of z the delineates the first group, the last element $g1$ being the value of z which delineates the second group.
ci	numeric vector; confidence interval value. Defaults to 0.95
ci.method	character; method by which the confidence interval and variance are calculated. Can be "analytic" or "bootstrap". Defaults to c("analytic", "bootstrap")
ci.type	character vector; type of confidence interval that the corresponding ci element is referring to. Can be "upper", "lower", or "twoSided". Defaults to "twoSided".
custom.FUN	function; function to calculate custom result. mu0, mu1, p0, p1 are available to be used as arguments in the custom function, where mu0 = $E(Y(g0) S(g0) = S(g1) = selected)$, mu1 = $E(Y(g1) S(g0) = S(g1) = selected)$, p0 = $P(S(g0) = selected)$, and p1 = $P(S(g1) = selected)$. The custom function must return a single value.
na.rm	logical; indicates whether records that are invalid due to NA values should be removed from the data set.
N.boot	integer; number of bootstrap repetitions that will be run when ci.method includes "bootstrap".
interval	numeric vector of length 2. Controls the range limits used by optimize to estimate $\alpha 0$ and $\alpha 1$.
lowerTest	logical. Return the lower one sided p-value for the ACE. Defaults to FALSE

upperTest	logical. Return the upper one sided p-value for the ACE. Defaults to FALSE
twoSidedTest	logical. Return a two sided p-value for the ACE. Defaults to TRUE
verbose	logical; prints dots when bootstrapping to show that something is happening. Bootstrapping can take a long time.
isSlaveMode	logical. Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the average causal effect among those who would have been selected regardless of treatment assignment (ACE) without assuming monotonicity (i.e., that one of the principal strata is empty). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects) and ignorable (i.e., random) treatment assignment. ACE is identified by assuming values for the sensitivity parameters beta0, beta1, and one of the parameters phi, psi, or Pi. The sensitivity parameters beta0 and beta1 have a log-odds ratio interpretation (see help for sensitivityGBH).

Only one of the parameters phi, psi, or Pi should be specified as all depend on each other. psi is unrestrained taking any value on the real line. The other parameters, psi and Pi have constraints and there will be estimation problems if these parameters are set at values outside the of their range of acceptable values based on the observed data. See Shepherd, Gilbert, Dupont (in press) for more details.

Value

object of class sensitivity3d

ACE	array; estimated values of ACE for all combinations of beta0, beta1, and phi, Pi, psi. Array dimensions are length(beta0), length(beta1), length(psi).
ACE.ci	array; confidence interval determined by quantile if ci.method includes "boot- strap". Otherwise calculated using analytic variance with large sample normal approximation. Array dimensions the same as ACE element.
ACE.var	array; estimated variance of ACE. Array dimensions the same as ACE element.
ACE.p	vector; estimated p-value of ACE.
beta0	vector; β values used for the first group.
alphahat0	vector; estimated α values for the first group.
Fas0	function; estimator for the distribution function of $y0$ in the first group in the always selected stratum.
beta1	vector; β values used for the second group.
alphahat1	vector; estimated α values for the second group.
Fas1	function; estimator for the distribution function of $y1$ in the second group in the always selected stratum.
phi	vector; phi values used.
Pi	vector; Pi values used.
psi	vector; psi values used.
ci.map	list; mapping of confidence interval to quantile probability. Use numbers con- tained within as indices to the SCE.ci element.

sensitivityJR

Author(s)

Bryan E. Shepherd Department of Biostatistics Vanderbilt University

Charles Dupont Department of Biostatistics Vanderbilt University

References

Jemiai Y (2005), "Semiparametric Methods for Inferring Treatment Effects on Outcomes Defined Only if a Post-Randomization Event Occurs," unpublished doctoral dissertation under the supervision of A. Rotnitzky, Harvard School of Public Health, Dept. of Biostatistics.

Shepherd BE, Redman MW, Ankerst DP (2008), "Does Finasteride affect the severity of prostate cancer? A causal sensitivity analysis," Journal of the American Statistical Association 2008, 484, 1392-1404.

Shepherd BE, Gilbert PB, and Dupont CT, "Sensitivity analyses comparing time-to-event outcomes only existing in a subset selected postrandomization and relaxing monotonicity," Biometrics, in press.

See Also

sensitivityGBH, sensitivitySGD

Examples

```
data(vaccine.trial)
ansJR<-with(vaccine.trial,
          sensitivityJR(z=treatment,s=hiv.outcome,y=logVL,
                    beta0=c(-1,-.5,0,.5,1),
                    beta1=c(-1,-.5,0,.5,1),
                    phi=c(0.95,0.9), selection="infected",
                    groupings=c("placebo", "vaccine"),
                    N.boot=100)
         )
ansJR
data(vaccine.trial)
ansJR<-with(vaccine.trial,
          sensitivityJR(z=treatment,s=hiv.outcome,y=logVL,
                    beta0=c(-1,-.5,0,.5,1),
                    beta1=c(-1,-.5,0,.5,1),
                    phi=c(0.95,0.9), selection="infected",
                    groupings=c("placebo","vaccine"),
                    custom.FUN=function(mu0, mu1, ...) mu1 - mu0,
```

18

)	upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE,
ansJR	N.boot=100)
sensitivitySGD	principal stratification sensitivity analysis with time to event data re- laxing monotonicity assumption.

Description

Principal stratification sensitivity analysis with time to event data relaxing monotonicity as described by Shepherd, Gilbert, and Dupont (in press).

Usage

_

```
sensitivitySGD(z, s, d, y, v, beta0, beta1, phi, Pi, psi, tau,
    time.points, selection, trigger, groupings,
    followup.time,
    ci=0.95, ci.method = c("bootstrap", "analytic"),
    ci.type="twoSided", custom.FUN = NULL, na.rm = FALSE,
    N.boot = 100L, N.events = NULL, interval = c(-100, 100),
    upperTest = FALSE, lowerTest = FALSE, twoSidedTest=TRUE,
    inCore = TRUE,verbose = getOption("verbose"),
    colsPerFile = 1000L, isSlaveMode = FALSE)
```

Z	vector; contains the grouping values (e.g., treatment assignment) for each record.
S	vector; indicates whether a record is selected.
d	vector; indicates whether a post-selection event has occurred. Can be NA for unselected records.
У	vector; the length of time from selection until event (d) or censoring. Can be NA for unselected records.
v	numeric vector; the length of time from randomization until selection or censoring.
beta0	numeric vector; values of the sensitivity parameter β linking outcome in group $g0$ with selection if assigned group $g1$.
beta1	numeric vector; values of the sensitivity parameter β linking outcome in group $g1$ with selection if assigned group $g0$.
phi, Pi, psi	vectors; sensitivity parameters specifying the joint distribution of $S(g0)$, $S(g1)$. Only one of the three parameters should be specified. psi is the log-odds ratio of selection. Pi is the probability of being in the always selected principal stratum $(Pr(S(g0) = S(g1) = selected))$. phi is the probability of selection in group $g0$ given selection in group $g1$ $(Pr(S(g0) = 1 S(g1) = 1))$.

tau	maximum observed follow-up time after selection. Selection weights are constant for $t > tau$.
time.points	vector; time points, t, at which $SCE(t)$ will be estimated.
selection	The value of s indicating selection.
trigger	The value of d that denotes the post-selection event.
groupings	Vector of two elements $c(g0, g1)$, the first element $g0$ being the value of z the delineates the first group, the last element $g1$ being the value of z which delineates the second group.
followup.time	numeric value; cut-off point for v after which records are lost to censoring.
ci	numeric vector; confidence interval level, defaults to 0.95.
ci.method	character; method by which the confidence interval and variance are calculated. Can be "analytic" or "bootstrap". Currently only works for "bootstrap".
ci.type	character vector; type of confidence interval that the corresponding ci element is refering to. Can be "upper", "lower", or "twoSided". Defaults to "twoSided".
custom.FUN	function; function to calculate custom result. Fas0, Fas1, time.points, p0, p1 are available to be used as arguments in the custom function. The custom function must return a vector of elements that is the same length as time.points.
na.rm	logical; indicates whether records that are invalid due to NA values should be removed from the data set.
N.boot	integer; number of bootstrap repetitions that will be run when ci.method includes "bootstrap".
N.events	integer; number of selection-events (S) for each bootstrap replication when do- ing selection-event based bootstrapping.
interval	numeric vector of length 2. Controls the range limits used to by optimize to estimate α .
lowerTest	logical. Return the lower one sided p-value for SCE. Defaults to FALSE
upperTest	logical. Return the upper one sided p-value for SCE. Defaults to FALSE
twoSidedTest	logical. Return a two sided p-value for SCE. Defaults to TRUE
verbose	logical; prints dots when bootstrapping to show that something is happening. Bootstrapping can take a long time.
inCore	logical; running in memory if TRUE, running with scratch files if FALSE. Default is TRUE. For large data analysis, the user may want to switch this to FALSE to allow for processing on data sets larger than can fit in memory.
colsPerFile	integer; number of columns of the scratch file to process in each pass (e.g., 100 columns).
isSlaveMode	logical. Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the "survival causal effect" among those who would have been selected regardless of treatment assignment (SCE) without assuming monotonicity (i.e., that one of the principal stratum is empty). The method assumes no interference (i.e., potential outcomes

sensitivitySGD

of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, and independent censoring (i.e., time from selection to event is independent of time from selection until censoring). SCE is identified by assuming values for the sensitivity parameters beta0, beta1, and one of the parameters phi, psi, or Pi. The sensitivity parameters beta0 and beta1 have a log-odds ratio interpretation (see help for sensitivityGBH). Given selection in one treatment arm, the probability of selection if in the other treatment arm is assumed to be constant for for T(z) > tau.

Only one of the parameters phi, psi, or Pi should be specified as all depend on each other. psi is unrestrained taking any value on the real line. The other parameters, phi and Pi have constraints and there will be estimation problems if these parameters are set at values outside the of their range of acceptable values based on the observed data. See Shepherd, Gilbert, Dupont (in press) for more details.

Value

object of class sensitivity3d

SCE	array; Calculated values of SCE for all combinations of the values from beta0, beta1, phi/Pi/psi, and time.points. Array dimensions are length(time.points) length(beta0), length(beta1), length(psi).
SCE.ci	array; Confidence interval of the SCE value. Confidence interval determined by quantile if using ci.method "bootstrap". Otherwise calculated using analytic variance with large sample normal approximation. Array dimensions the same as element SCE.
SCE.var	array; estimated variance of SCE. Array dimensions the same as element SCE.
beta0	vector; β values used for first group.
beta1	vector; β values used for second group.
psi	vector; ψ values used.
Pi	vector; Pi values used.
psi	vector; <i>psi</i> values used.
ci.map	list; mapping of confidence interval to quantile probability. Use numbers con- tained within as indices to the SCE.ci element.

Author(s)

Bryan E. Shepherd Department of Biostatistics Vanderbilt University

Charles Dupont Department of Biostatistics Vanderbilt University

References

Shepherd BE, Gilbert PB, and Dupont CT, "Sensitivity analyses comparing time-to-event outcomes only existing in a subset selected postrandomization and relaxing monotonicity," Biometrics, in press.

See Also

sensitivitySGL, sensitivityJR, Surv

Examples

```
data(vaccine.trial)
sens.analysis<-with(vaccine.trial,</pre>
                sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART,
                           d=ARTinitiation, beta0=c(0,-.25,-.5),
                           beta1=c(0, -.25, -.5), phi=c(0.95, 0.90), tau=3,
                           time.points=c(2,3), selection="infected",
                           trigger="initiated ART",
                           groupings=c("placebo","vaccine"), ci=.95,
                           ci.method="bootstrap", N.boot=100)
               )
sens.analysis
sens.analysis2<-with(vaccine.trial,</pre>
                sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART,
                           d=ARTinitiation, beta0=c(0,-.25,-.5),
                          beta1=c(0, -.25, -.5), phi=c(0.95, 0.90), tau=3,
                           time.points=c(2,3), selection="infected",
                           trigger="initiated ART",
                           groupings=c("placebo","vaccine"), ci=.95,
                           custom.FUN=function(Fas0,Fas1,...,time.points) {
                             Fas0(time.points) - Fas1(time.points)
                           },
                           ci.method="bootstrap", N.boot=100)
               )
sens.analysis2
```

sensitivitySGL principal stratification sensitivity analysis with time to event data

Description

Principal stratification sensitivity analysis with time to event data using the method described by Shepherd, Gilbert, and Lumley (2007).

sensitivitySGL

Usage

```
sensitivitySGL(z, s, d, y, v, beta, tau, time.points, selection, trigger,
  groupings, empty.principal.stratum, followup.time,
  ci=0.95, ci.method = c("analytic", "bootstrap"),
  ci.type="twoSided", custom.FUN = NULL, na.rm = FALSE,
  N.boot = 100L, interval = c(-100, 100),
  upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE,
  verbose = getOption("verbose"), isSlaveMode = FALSE)
```

Z	vector; contains the grouping values (e.g., treatment assignment) for each record.
S	vector; indicates whether a record is selected.
d	vector; indicates whether a post-selection event has occurred. Can be NA for unselected records.
У	vector; the length of time from selection until event (d) or censoring. Can be NA for unselected records.
v	numeric vector; the length of time from randomization until selection or censoring.
beta	vector; values of the sensitivity parameter β . Inf and -Inf are acceptable.
tau	maximum observed follow-up time after selection. Selection weights are constant for $t>{\sf tau}.$
time.points	vector; time points, t, at which $SCE(t)$ will be estimated.
selection	The value of s indicating selection.
trigger	logical; the value of d that denotes the post-selection event.
groupings	Vector of two elements $c(g0, g1)$, the first element $g0$ being the value of z the delineates the first group, the last element $g1$ being the value of z which delineates the second group.
empty.principal	.stratum
	vector of two elements $c(s0, s1)$; describes the s values that select the empty principal stratum. If empty.principal.stratum= $c(s0, s1)$, then stratum defined by $S(g0) = s0$ and $S(g1) = s1$ is the empty stratum. In this example $s0$ and $s1$ refer to the two possible values of s. (Note: method only works if $s0 \neq s1$).
followup.time	numeric value; cut-off point for v after which records are lost to censoring.
ci	numeric vector; confidence interval level, defaults to 0.95.
ci.method	character; method by which the confidence interval and variance are calculated. Can be "analytic" or "bootstrap".
ci.type	character vector; type of confidence interval that the corresponding ci element is referring to. Can be "upper", "lower", or "twoSided". Defaults to "twoSided".
custom.FUN	function; function to calculate custom result. Fas0, Fas1, time.points, p0, p1 are available to be used as arguments in the custom function. The custom function must return a vector of elements that is the same length as time.points.

na.rm	logical; indicates whether records that are invalid due to NA values should be removed from the data set.
N.boot	integer; number of bootstrap repetitions that will be run when ci.method includes "bootstrap".
interval	numeric vector of length 2. Controls the range limits used to by optimize to estimate α .
lowerTest	logical; Return the lower one sided p-value for SCE. Defaults to FALSE
upperTest	logical; Return the upper one sided p-value for SCE. Defaults to FALSE
twoSidedTest	logical; Return a two sided p-value for SCE. Defaults to TRUE
verbose	logical; prints dots when bootstrapping to show that something is happening. Bootstrapping can take a long time.
isSlaveMode	logical. Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the "survival causal effect" among those who would have been selected regardless of treatment assignment (SCE). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, monotonicity (i.e., one of the principal strata is empty), and independent censoring (i.e., time from selection to event is independent of time from selection until censoring). SCE is then identified by assuming a value of the sensitivity parameter β , where e^{β} has an odds ratio interpretation (see help for sensitivityGBH). Given selection in one treatment arm, the probability of selection if in the other treatment arm is assumed to be constant for for T(z) > tau.

SCE is computed at user specified time points.

Specifying beta=-Inf or beta=Inf estimates the bounds for SCE.

Value

object of class sensitivity2d

SCE	$SCE(t) = Pr(T(g0) \le t S(g0) = S(g1) = \text{selection}) - Pr(T(g1) \le t S(g0) = S(g1) = \text{selection}).$ Array of the estimated SCE at all time.points for specified beta values. Array dimensions are length(time.points) by length(beta).
SCE.ci	array; confidence interval of SCE determined by quantile if using ci.method includes "bootstrap". Otherwise calculated using analytic variance with large sample normal approximation. Array dimensions the same as element SCE.
SCE.var	array; estimated variance of SCE. Array dimensions the same as element SCE.
ci.map	list; mapping of confidence interval to quantile probability. Use numbers con- tained within as indices to the SCE.ci element.
beta	vector of user-specified β values
alphahat	vector of estimated values of α
уØ	vector of unique event times in the first group.

sensitivitySGL

Fas0	matrix of estimated empirical distribution function values for y0 in the first
	group in the always selected principal stratum. $Pr(Y(g0) \leq y0 S(g0) =$
	$S(g1) = ext{selection}; eta)$
y1	vector of unique event times in the second group.
Fas1	matrix of estimated empirical distribution function values for y1 in the second group in the always selected principal stratum. $Pr(Y(g1) \le y1 S(g0) = S(g1) = \text{selection}; \beta)$

Author(s)

Bryan E. Shepherd Department of Biostatistics Vanderbilt University

Charles Dupont Department of Biostatistics Vanderbilt University

References

Shepherd BE, Gilbert PB, Lumley T (2007), "Sensitivity analyses comparing time-to-event outcomes existing only in a subset selected postrandomization," Journal of the American Statistical Association 102, 573-582.

See Also

sensitivityGBH, sensitivityHHS, sensitivitySGD, Surv

Examples

```
custom.FUN=function(Fas0,Fas1,time.points,
                ...) { Fas0(time.points) - Fas1(time.points) },
                          N.boot=50, interval=c(-200,200))
               )
sens.time2
sens.time3<-with(vaccine.trial,</pre>
                sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
                          d=ARTinitiation, beta=c(-Inf,.25,0,-.25,Inf),
                          tau=3, time.points=c(2,3), selection="infected",
                          trigger="initiated ART", groupings=c("placebo","vaccine"),
                          empty.principal.stratum=c("not infected","infected"),
                          custom.FUN=function(Fas0,Fas1,time.points,
                ...) { Fas0(time.points) - Fas1(time.points) },
                          N.boot=50, interval=c(-200,200))
               )
sens.time3
```

vaccine.trial Simulated Vaccine Trial Data

Description

Simulated vaccine trial data for use in demonstrating the use of the sensitivity functions implemented in this package.

Usage

data(vaccine.trial)

Format

A data frame with 2000 observations on the following 5 variables.

treatment a factor with levels "placebo", "vaccine"

hiv.outcome a factor with levels "infected", "not infected"

logVL a numeric vector

ARTinitiation a factor with levels "initiated ART", "no ART"

followup.yearsART a numeric vector

Examples

```
set.seed(1063917538)
N<-2000
p0<-0.10
z<-c(rep(0,N/2),rep(1,N/2))
s0<-rbinom(N,1,p0)
y0<-rnorm(N,4.5,.75)</pre>
```

vaccine.trial

```
delta<-0
y1<-y0+delta
alpha<--4
beta<-1
w<-exp(alpha+beta*y0)/(1+exp(alpha+beta*y0))</pre>
s1<-s0*rbinom(N,1,w)</pre>
s<-s0*(1-z)+s1*z
y<-ifelse(s*(1-z)==1,y0,</pre>
    ifelse(s*z==1,y1,NA))
tjunk<-rexp(N,1/3)</pre>
cjunk<-runif(N,0,15)</pre>
t<-ifelse(s*(1-z)==1,tjunk,</pre>
    ifelse(s*z==1,tjunk,NA))
c1<-ifelse(s*(1-z)==1,cjunk,</pre>
      ifelse(s*z==1,cjunk,NA))
c<-pmin(c1,3)</pre>
```

```
treatment<-ifelse(z==1,"vaccine","placebo")
hiv.outcome<-ifelse(s==1,"infected","not infected")
logVL<-y
ARTinitiation<-ifelse(t<c,"initiated ART","no ART")
followup.yearsART<-round(pmin(t,c),2)</pre>
```

Index

```
*Topic classes
    funArray, 4
    funMatrix, 5
    funVector, 6
*Topic datasets
    vaccine.trial, 26
*Topic design
    calc.v, 3
    sensitivityGBH,9
*Topic hplot
    plot.sensitivity,6
*Topic package
    sensitivityPStrat-package, 2
*Topic print
    print.sensitivity, 8
array, 4, 5
calc.v, 3
funArray, 4, 5, 6
funMatrix, 5, 5, 6
funVector, 5, 6
matrix, 5
optimize, 10, 20
plot.default, 7, 8
plot.sensitivity,6
print.default,9
print.sensitivity, 8
quantile, 17, 21
sensitivityGBH, 2, 9, 14, 15, 17, 18, 21, 24,
         25
sensitivityHHS, 2, 11, 12, 13, 25
sensitivityJR, 2, 12, 15, 15, 22
sensitivityPStrat
        (sensitivityPStrat-package), 2
```

sensitivityPStrat-package, 2
sensitivitySGD, 2, 18, 19, 25
sensitivitySGL, 2, 12, 15, 22, 22
Surv, 3, 22, 25

vaccine.trial, 26 vector, 6